Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Напряжение на светодиодах в светодиодной лампе: Светодиодная лампа: схема, работа, ремонт

Содержание

Очень важный параметр светодиодных ламп, о котором мало кто знает / Хабр

На упаковках светодиодных ламп можно найти множество параметров: мощность, световой поток, эквивалент мощности, индекс цветопередачи. Но один очень важный параметр производители указывают крайне редко. Это тип драйвера.

По

ГОСТ 29322-92

в сети должно быть напряжение 230 вольт, однако тот же ГОСТ допускает отклонение сетевого напряжения ±10%, то есть допустимо напряжение от 207 до 253 вольт. Впрочем, во многих районах (особенно, сельских) напряжение иногда падает до 180 вольт и ниже.

При пониженном напряжении обычные «лампочки Ильича» светят гораздо тусклее. На нижнем пороге допустимого напряжения 207 вольт, 60-ваттная лампа накаливания, рассчитанная на 230 В, светит, как 40-ваттная на номинальном напряжении (habr.com/ru/company/lamptest/blog/386513/).

Работа светодиодных ламп на пониженном напряжении зависит от типа используемой электронной схемы (драйвера).

Если в лампе используется простейший RC-драйвер или линейный драйвер на микросхеме, лампа ведёт себя почти так же, как лампа накаливания (светит тусклее при понижении напряжения, а при скачках напряжения в сети её свет «дёргается»).

Если же используется IC-драйвер, яркость лампы не меняется при изменении напряжения питания в очень широких пределах. Фактически, у таких ламп есть встроенный стабилизатор.

Если посмотреть на все светодиодные лампы, которые я протестировал в проекте Lamptest.ru, определяя тип драйвера, окажется, что у 3/4 всех ламп IC-драйвер и только у четверти линейный или RC-драйвер. Если же посмотреть только на филаментные лампы, картина резко меняется: из 321 протестированных ламп только у 131 (40%) IC-драйверы.

У большинства ламп с линейным драйвером яркость падает на 5% от номинальной при снижении напряжения до 210-220 В и на 10% при напряжении 200-210В.

Некоторые лампы с IC-драйвером не снижают яркость при падении напряжения даже до 50 вольт, но большинство стабильно работает при напряжении от 150 вольт.

Вот так ведут себя две филаментные лампы (левая с IC-драйвером, правая — с линейным) при изменении напряжения от 230 до 160 вольт.

Я измеряю минимальное напряжение, при котором световой поток лампы падает не более, чем на 5% от номинального. В таблице результатов Lamptest это напряжение указано в столбце «Вмин». Если при снижении напряжения световой поток начинает падать сразу, я указываю линейный (LIN) тип драйвера (столбец «drv»), если световой поток при снижении напряжения стабилен, а потом начинает снижаться, — тип драйвера IC1, если при снижении напряжения лампа выключается, — IC2, если начинает вспыхивать — IC3.

К сожалению, тип драйвера по упаковке лампы и параметрам, приводимым производителями на сайтах, узнать почти невозможно. Отдельные производители пишут на упаковке «IC драйвер». Чаще пишут широкий диапазон напряжения, например «170-260В», но не всегда это соответствует действительности. На Lamptest много ламп, у которых указаны широкие диапазоны напряжений, а фактически в них установлен линейный драйвер и на нижней границе указанного диапазона они горят «вполнакала». Указание узкого диапазона «220-240 В» или просто «230 В» тоже ни о чём не говорит: множество таких ламп построены на IC-драйвере и фактически работают при значительно более низких напряжениях без снижения яркости.

Всё, что я могу посоветовать для определения типа драйвера — смотреть результаты на Lamptest по лампе или её аналогам (тот же производитель, тот же тип, тот же цоколь), если конкретная модель лампы ещё не протестирована.

Конечно, лампы с IC-драйвером лучше. Они не меняют яркость при уменьшении напряжения в сети и их свет не «дёргается» при перепадах напряжения. Кроме того, такой драйвер заведомо лучше защищён от любых перепадов напряжения и в целом более надёжен.

Рекомендую учитывать при выборе светодиодных ламп тип драйвера и по возможности покупать лампы с IC-драйвером.

© 2019, Алексей Надёжин

Напряжение на светодиоде

В сети «гуляют» таблицы со следующими величинами рабочего напряжения светодиодов:

белые 3-3,7 v

синие 2,5-3,7 v

зеленые 2,2-3,5 v

желтые 2,1-2,2 v

красные 1,6-2,03 v

В то же время производители конкретных SMD светодиодов дают следующие напряжение питания светодиодов:

Напряжение красного светодиода самое низкое, а белого – самое высокое.

На цвет свечения светодиода влияют добавки в полупроводнике. Корректировать цвет удается нанесением люминофора, так, например, получают из голубого свечения белый свет.

Падение напряжения на светодиоде зависит не только от цвета свечения, но и от конкретного типа, протекающего тока, температуры и старения. Отвод тепла в лампах, светильниках и прожекторах является очень важной задачей, т.к. сильно влияет на степень деградации светодиодов. .

На практике самым важным параметром светодиода, от которого зависит срок его службы, является номинальный ток. Для светодиодов увеличение тока на 20% выше номинального сокращает срок их службы в несколько раз. Поэтому для светодиодов стабилизатор напряжения не обязателен, важнее поддерживать заданный ток с помощью специальных драйверов, которые автоматически поддерживают ток в широком диапазоне колебаний напряжения питания. «Правильные» драйверы обеспечивают нормальную работу светодиодной лампы в диапазоне питающего напряжения 60-260 вольт.

В случае использования токограничивающих резисторов, напряжение желательно стабилизировать. КПД при таком включении складывается из КПД стабилизатора напряжения и потерь на резисторе и не превышает 80%, в то время как КПД современных драйверов-стабилизаторов тока не ниже 95%.

Наличие технологического разброса прямого падения напряжения даже у диодов произведённых в одном технологическом цикле, делает нежелательным их параллельное включение.
Проблема решается уменьшением тока через светодиоды с соответствующей потерей яркости свечения, либо установкой ограничительного резистора на каждый led.

При последовательном включении все светодиоды в гирлянде, должны быть одного типа или иметь одинаковый рабочий ток.

Следует помнить, что светодиод пропускает ток только при подаче на катод отрицательного напряжения, а на анод положительного.
При обратном включении ток протекает при повышенном напряжении и следствием может стать пробой и выход из строя.
Допустимое обратное напряжение, как правило, находится в пределах 5 вольт.
При питании переменным током надо использовать встречно-параллельное включение диодов.

Зависимость интенсивности излучения светодиода от прямого тока нелинейная, при увеличении тока интенсивность излучения растет не пропорционально.

  • Схема светодиодной лампы на 220в
  • Как паять светодиодную ленту
  • Светодиодная лента на 220 в
  • Простое зарядное устройство
  • Разрядное устройство для автомобильного аккумулятора
  • Схема драйвера светодиодов на 220
  • Подсветка для кухни из ленты
  • Подсветка рабочей зоны кухни
  • LED лампа Selecta g9 220v 5w
  • Светодиодная лампа ASD LED-A60
  • Схема светодиодной ленты
  • Схема диодной лампы 5 Вт 220в
  • Простой цифровой термометр своими руками с датчиком на LM35
  • Общедомовой учет тепла
  • Питание светодиодов, блок питания для светодиодов

    Постоянные читатели часто интересуются, как правильно сделать питание для светодиодов, чтобы срок службы был максимален. Особенно это актуально для led  неизвестного производства с плохими техническими характеристиками или завышенными.

    По внешнему виду и параметрам  невозможно определить качество. Частенько приходится рассказывать как рассчитать блок питания для светодиодов, какой лучше купить или сделать своими руками. В основном рекомендую купить готовый, любая схема после сборки требует проверки и настройки.



    Содержание

    • 1. Основные типы
    • 2. Как сделать расчёт
    • 3. Калькулятор для расчёта
    • 4. Подключение в автомобиле
    • 5. Напряжения питания светодиодов
    • 6. Подключение от 12В
    • 7. Подключение от 1,5В
    • 8. Как рассчитать драйвер
    • 9. Низковольтное от 9В до 50В
    • 10. Встроенный драйвер, хит 2016
    • 11. Характеристики

    Основные типы

    Светодиод – это полупроводниковый электронный элемент, с низким внутренним сопротивлением. Если подать на него стабилизированное напряжение, например 3V, через него пойдёт большой ток, например 4 Ампера, вместо требуемого 1А. Мощность на нём составит 12W, у него сгорят тонкие проводники, которыми подключен кристалл. Проводники отлично видно на цветных и RGB диодах, потому что на них нет жёлтого люминофора.

    Если блок питания для светодиодов  12V со стабилизированным напряжением, то для ограничения тока последовательно устанавливают резистор. Недостатком такого подключения будет более высокое потребление энергии, резистор тоже потребляет некоторую энергию. Для светодиодных аккумуляторных фонарей на 1,5В применять такую схему нерационально. Количество вольт на батарейке быстро снижается, соответственно будет падать яркость.  И без повышения минимум до 3В диод не заработает.

    Этих недостатков  лишены специализированные светодиодные драйвера на ШИМ контроллерах. При изменениях напряжения  ток остаётся постоянным.

    Как сделать расчёт

    Чтобы рассчитать блок питания для светодиодов необходимо учитывать 2 основных параметра:

    1. номинальная потребляемая мощность или желаемая;
    2. напряжение падения.

    Суммарное энергопотреблением подключаемой электрической цепи не должно превышать  мощности блока.

    Падения напряжения зависит от того, какой свет излучает лед чип. Я рекомендую покупать фирменные LED, типа Bridgelux, разброс параметров у них минимальный. Они гарантированно держат заявленные характеристики и имеют запас по ним. Если покупаете на китайском базаре, типа Aliexpress, то не надейтесь на чудо, в 90% вас обманут и пришлют барахло с параметрами в 2-5 раз хуже. Это многократно проверяли мои коллеги, которые заказывали недорогие LED 5730 иногда по 10 раз. Получали они SMD5730 на 0,1W, вместо 0,5W. Это определяли по вольтамперной-характеристике.

    Пример различной яркости кристаллов

    К тому же у дешевых разброс параметров очень большой. Что бы  это определить в домашних условиях своими руками, подключите их последовательно 5-10 штук. Регулирую количество вольт, добейтесь чтобы они слегка светились. Вы увидите, что часть светит ярче, часть едва заметно. Поэтому некоторые в номинальном рабочем режиме будут греться сильнее, другие меньше. Мощность будет на них разная, поэтому самые нагруженные выйдут из строя раньше остальных.

    Калькулятор для расчёта

    Для удобства читателей опубликовал онлайн калькулятор для расчёта резистора для светодиодов при подключении к стабильному напряжению.

    Калькулятор учитывает 4 параметра:

    • количество вольт на выходе;
    • снижение напряжения на одном LED;
    • номинальный рабочий ток;
    • количество LED в цепи.

    Подключение в автомобиле

    ..

    При заведенном двигателе бывает в среднем 13,5В — 14,5В, при заглушенном12В — 12,5В. Особые требования при включении в автомобильный прикуриватель или бортовую сеть. Кратковременные скачки могут быть до 30В. Если у вас используется токоограничивающее сопротивление, то сила тока возрастает прямо пропорционально повышению напряжению питания светодиодов. По этой причине лучше ставить стабилизатор на микросхеме.

    Недостатком использования светодиодных драйверов в авто может быть появление помех на радио в УКВ диапазоне. ШИМ контроллер работает на высоких частотах и будет давать помехи на ваш радиоприёмник. Можно попробовать заменить на другой или линейный типа стабилизатор тока LM317 для светодиодов. Иногда помогает экранирование металлом и размещение подальше от головного устройства авто.

    Напряжения питания светодиодов

    Из таблиц видно, для маломощных на 1W, 3W этот показатель  2В для красного, желтого цвета, оранжевого. Для белого , синего, зелёного он от 3,2В до 3,4В. Для мощных от 7В до 34В. Эти циферки придется использовать для расчётов.

    Таблица для LED на 1W, 3W, 5W

    Таблица для мощных светодиодов 10W, 20W, 30W, 50W, 100W

    Подключение от 12В

    Одно из самых распространенных напряжений это 12 Вольт, они присутствуют в бытовой  технике, в автомобиле и автомобильной электронике. Используя 12V можно полноценно подключить 3 лед диода. Примером служит светодиодная лента на 12V, в которой 3 штуки и резистор подключены последовательно.

    Пример на диоде 1W,  его номинальный ток 300мА.

    • Если на одном LED падает 3,2В, то для 3шт получится 9,6В;
    • на резисторе будет 12В – 9,6В = 2,4В;
    • 2,4 / 0,3 = 8 Ом номинал нужного сопротивления;
    • 2,4 * 0,3 = 0,72W будет рассеиваться на резисторе;
    • 1W + 1W + 1W + 0,72 = 3,72W полное энергопотребление всей цепи.

    Аналогичным образом можно вычислить и для другого количества элементов в цепи.

    Подключение от 1,5В

    Источник питания для светодиодов может быть и простой пальчиковой батарейкой на 1,5В. Для LED диода требуется обычно минимум 3V, без стабилизатора тут никак не обойтись. Такие специализированные светодиодные драйвера используются в  ручных фонариках на Cree Q5 и Cree XML T6. Миниатюрная микросхема повышает количество вольт до 3V и стабилизирует  700мА. Включение от 1. 5 вольт при помощи токоограничивающего сопротивления невозможно. Если применить две  батареи на  1.5 вольт, соединив их последовательно, получим 3В. Но батарейки достаточно быстро разряжаются,  а яркость будет падать еще быстрее. При 2,5В емкости в батареях останется еще много, но диод уже практически потухнет. А светодиодный драйвер будет поддерживать номинальную яркость даже при 1В.

    Обычно такие модули заказываю на Aliexpress,  у китайцев  стоят 50-100руб, в России они дороговаты.

    Как рассчитать драйвер

    Чтобы рассчитать драйвер питания для светодиодов со стабильным током:

    1. составьте на бумаге схему подключения;
    2. если драйвер китайский, то желательно проверить выдержит он заявленную мощность или нет;
    3. учитывайте, что для разных цветов (синий, красный, зеленый) разное падение вольт;
    4. суммарная мощность не должна быть выше, чем у источника тока.

    Нарисуйте схему включения, на которой распределите элементы, если они подключены не просто последовательно, а комбинировано с параллельным соединением.

    На китайском блоке питания неизвестного производителя мощность может быть значительно ниже. Они запросто  указывают максимальную пиковую мощность, а не номинальную долговременную. Проверять сложнее, надо предельно нагрузить блок питания и замерить параметры.

    Для третьего пункта используйте примерные таблицы для  1W,3W, 5W, 10W, 20W, 30W, 50W, 100W, которые приведены выше. Но больше доверяйте характеристикам, которые вам дал продавец. Для однокристальных бывает 3V, 6V, 12V.

    Если энергопотребление цепи  в сумме  превысит номинальную мощность  источника питания, то ток просядет и увеличится нагрев. Он восстановится до нормального уровня, если снизить нагрузку.

    Для светодиодных лент сделать расчёт очень просто. Измерьте количество Ватт на 1 метр и умножьте на количество метров. Именно измерьте, в большинстве случаем мощность завышена и вместо 14,4 Вт/м получите 7 Вт/м. Ко мне слишком часто обращаются с такой проблемой разочарованные покупатели.

    Низковольтное от 9В до 50В

    Кратко расскажу, что использую для включения для блоков на 12В, 19V, 24В и  для подключения к автомобильным 12В.

    Чаще всего покупаю готовые модули на ШИМ микросхемах:

    1. бывают повышающие, например, на входе 12V, на выходе 22В;
    2. понижающие, например из 24В до 17В.

    Не всем хочется тратить большую денежку на покупку готового прожектора для авто, светодиодного светильника или заказывать готовый драйвер. Поэтому обращаются ко мне, что бы из подручных комплектующих собрать что-нибудь приличное. Цена таких модулей начинается от 50руб до 300руб за модель на 5А с радиатором. Покупаю заранее по несколько штук, расходятся быстро.

    Больше всех популярен вариант на линейной ИМС LM317T LM317, простой, надежный устаревший.

    Очень популярны модели на LM2596, но она уже устарела и советую обратить внимание на более современное с хорошим КПД. Такие блоки имеют от 1 до 3 подстроечных сопротивлений, которыми можно настроить любые параметры до 30В и до 5А.

    Встроенный драйвер, хит 2016

    В начале 2016 года стали набирать популярность светодиодные модули и COB диоды с интегрированным драйвером. Они включаются сразу в сеть 220В, идеальный вариант для сборки светотехники своими руками. Все элементы находятся на одной теплопроводящей пластине. ШИМ контроллеры миниатюрные, благодаря хорошему контакту с системой охлаждения. Тестировать надежность и стабильность еще не приходилось, первые отзывы появятся минимум через полгода использования. Уже заказал самую дешевую и доступную модель COB на 50W. Чтобы найти такие на китайском базаре Алиэкспресс, укажите в поиске «integrated led driver».

    Характеристики

     

    Глобальная проблема, это подделка светодиодов Cree и Philips в промышленных масштабах. У китайцев для этого есть целые предприятия, внешне копируют на 95-99%, простому покупателю отличить невозможно. Самое плохое, когда такую подделку вам продают под видом оригинального Cree T6. Вы будете подключать поддельный по техническим спецификациям оригинального. Подделка имеет характеристики в среднем на 30% хуже. Меньше световой поток, ниже максимальная рабочая температура, ниже энергопотребление. Про обман вы узнаете очень не скоро, он проработает примерно в 5-10 раз меньше настоящего, особенно на двойном токе.

    Недавно измерял световой поток своих фонариков на левых Cree производства  LatticeBright. Доставал всю плату с драйвером и ставил в фотометрический шар. Получилось 180-200 люмен, у оригинала 280-300лм. Без серьезного оборудования, которое преимущественно есть в лабораториях, вы не сможете измерить, соответственно узнать правду.

    Иногда попадаются разогнанные диоды,  сила тока на которых на 30%-60% выше номинальной, соответственно и мощность. Недобросовестный производитель, особенно  подвально-китайский пользуется тем, что срок службы трудно измерить в часах. Ведь никто не засекает отработанное время, а когда светильник или светодиодный прожектор выйдут из строя продавца уже не найти. Да и искать бессмысленно, срок гарантии на такую продукцию дают всегда меньше периода службы.

    Принцип работы источников питания | Статьи «MLT»

    Почти полуторавековая «эра» применения ламп накаливания в настоящее время подходит к концу. На смену им на короткое время сначала пришли энергосберегающие люминесцентные лампы, а в последнее время все более прочные позиции занимают светодиодные светильники.

    К сожалению, принципы питания электрических ламп накаливания настолько укоренились в массовом сознании, что механически переносятся и на светодиодные светильники. Однако, если лампу накаливания достаточно подключить к соответствующему напряжению, неважно, переменного или постоянного тока, чтобы она светила, то светодиодам требуются источники питания с особыми характеристиками, которые мы сейчас и рассмотрим.

    Светодиод представляет собой полупроводниковый кристалл, состоящий из двух зон, одна из которых содержит свободные электроны, а другая — «дырки». Свечение возникает при рекомбинации электронов и «дырок» в области перехода между этими двумя зонами. Яркость свечения в первом приближении пропорциональна силе протекающего через него тока.

    А как же быть с напряжением? Ведь лампы накаливания способны светить при самых разных величинах питающего напряжения — от долей вольта до нескольких тысяч вольт, лишь бы сопротивление спирали соответствовало нужному значению в соответствии с законом Ома. Оказывается, никак! P-N-переход — структура, обладающая фиксированным порогом, при котором возникает излучение света и зависящем только от материала кристалла и технологии его изготовления. Для светодиодов разного цвета он составляет от 1,6 В (инфракрасные и красные) до 4,4 В (ультрафиолетовые) — Рис. 1. Зависимость падения напряжения на P-N-переходе светодиодов разного цвета от силы протекающего через них тока

    Наиболее часто применяемые для освещения белые светодиоды (на самом деле они либо синие, либо ультрафиолетовые, покрытые люминофором, переизлучающим свет в видимом диапазоне), имеют падение на P-N-переходе порядка 3…3,3 В. Таким образом, светодиоды, в принципе, являются низковольными источниками света, к тому же требующими для своего питания постоянный ток. К относительно высокому напряжению их можно подключать, лишь соединив несколько светодиодов последовательно в «гирлянду».  

    Как видно из Рис. 1, пока напряжение через P-N-переход светодиода не достигло порога открывания, ток через него практически не протекает и свет не излучается вообще! Как только переход открылся и через него начал протекать ток, начинается свечение. При этом минимальное приращение напряжения на P-N-переходе ведет к драматическому повышению тока через него (линия вольт-амперной характеристики идет почти вертикально). Если же при этом учесть, что протекание тока через светодиод вызывает его нагрев, при котором падение напряжения на P-N-переходе снижается, то очевидно, что при питании светодиодов стабильным напряжением ток через них будет все время возрастать, пока выделяющееся на кристалле тепло не превысит максимально допустимое значение и он не разрушится от теплового пробоя. Особенно критичен данный эффект для мощных светодиодов (0,5…1…2…5 Вт), которые по определению выделяют достаточно много тепла.

    Поэтому светодиоды следует питать не стабильным напряжением, а стабильным током! А падение напряжения на P-N-переходе будет таким, какое уж получится при данном токе и температуре кристалла. Таким образом, источники питания для светодиодов (их еще называют «драйверами», т.е. «водителями») являются стабилизаторами тока.

    Поскольку мы здесь рассматриваем только сетевые источники питания, то опустим особенности конструкции низковольтных светодиодных лент и светодиодных фонариков.

    По принципу стабилизации выходного тока светодиодные драйверы, питающиеся от сети переменного тока напряжением 230 В (с 2014 г. действует ГОСТ 32144-2013, в котором это напряжение задекларировано вместо привычных 220 В), можно подразделить:

      — на базе реактивного сопротивления балластного конденсатора
      — на базе импульсных преобразователей входного переменного напряжения в постоянный выходной ток

        Конденсаторный драйвер является самым простым по конструкции, но в то же время и с самыми отвратительными характеристиками излучаемого света. Поскольку на частоте 50 Гц через балластный конденсатор протекает примерно 70 мА тока на каждую микрофараду емкости, то очевидно, что для питания даже одноваттных светодиодов током до 350 мА, потребуется емкость порядка 4…5 мкФ. Габариты такого конденсатора будут чрезмерно большими, а пульсации яркости светильника с таким драйвером — неприемлемо высокими.

        Рис. 2  Пульсации яркости светодиодной лампы с конденсаторным драйвером, фиксируемые камерой смартфона (горизонтальные чередующиеся темные и светлые полосы)

        У конденсаторных драйверов есть еще оно крайне неприятное свойство. При подаче питания на пике синусоиды сетевого напряжения импульс тока через конденсатор намного превышает допустимый для светодиодов, вызывая их электрический пробой.

        На Рис. 3 приведены фото двух светодиодных ламп. Слева — с конденсаторным драйвером и справа – с полупроводниковым преобразователем. Как видно, пульсации яркости левой лампы с частотой сети не позволяют отнести ее к категории полезных для глаз.

        Таким образом, задачей драйвера, предназначенного для питания светодиодных светильников, является формирование стабильного тока через них, при напряжении, соответствующем текущему падению на цепочке светодиодов.

        По принципу связи с питающим сетевым напряжением транзисторные драйверы можно подразделить на изолированные, в которых выходные клеммы подачи напряжения на светодиоды (т.н. «холодная» часть), никак не связаны гальванически со входными цепями («горячая» часть) и неизолированные, в которых выходные клеммы тоже «горячие», т.е. гальванически соединены со входными. Драйверы первого типа предназначены для светильников, эксплуатирующихся под открытым небом и подвергающихся всем воздействиям непогоды (сырость, туман, дождь, снег и т.п.), а также в сырых помещениях и в ручных светильниках. Драйверы второго типа можно использовать в стационарных светильниках, размещаемых в помещениях с низкой влажностью, если не предусматривается прикосновения к ним руками. Конечно, и в этих случаях можно использовать драйверы первого типа, если устраивает их цена (первые, как правило, дороже вторых).

        Опциональным (необязательным, но весьма желательным) узлом драйверов, а для светильников мощностью 20 Вт и более — обязательным, является корректор коэффициента мощности (ККМ или англоязычный термин —Power Factor Corrector, PFL). Он существенно снижает влияние выпрямителя с емкостным фильтром на форму сетевого напряжения (Рис. 4).

        Рис. 4  Искажения формы сетевого напряжения из-за влияния выпрямителя

        с емкостным фильтром без корректора коэффициента мощности

        Высокопроизводительный ККМ с хорошими параметрами выполняется на специализированных микросхемах. Рекомендуемый иногда (с целью удешевления) пассивный диодно-конденсаторный ККМ (Рис. 5) увеличивает уровень пульсаций выпрямленного сетевого напряжения, а следовательно, пульсаций яркости светильников и для глаз также не полезен.

        На входе преобразователя обычно размещается сетевой противопомеховый конденсаторно-дроссельный фильтр (Рис. 6), главной задачей которого является отнюдь не защита самого преобразователя, а наоборот — предотвращение проникновения импульсных помех, формируемых преобразователем, в сеть, поскольку они могут привести к сбоям некоторых электронных устройств (модемы, телефоны и т. п.). В состав ККМ он обычно входит по умолчанию (Рис. 6).

         

        Важным параметром источников питания светодиодных светильников является мощность, которую они могут обеспечить на светодиодах. Не углубляясь в обсуждение принципиальной разницы между вольт-амперами (В˖А) и Ваттами (Вт) и учитывая, что на каждом P-N-переходе падает 3…3,3 В, можно прикинуть, что светодиод мощностью один ватт потребляет ток, равный 0,3…0,35 А. Двухваттный — соответственно, 0,6…0,7 А и т.д. Мощность светодиодов, соединенных последовательно, суммируется, а поскольку на каждом из них падают те же 3…3,3 В, то суммируется и падение напряжения на их цепочке, тогда, как ток через нее остается неизменным, независимо от количества последовательно включенных светодиодов. Указанные токи являются максимально допустимыми при длительной (непрерывной) работе, разогревая кристалл светодиода до достаточно высоких температур. Практически для работы выбирают примерно 80 % от максимального значения допустимого тока. Яркость свечения при этом падает незначительно (практически незаметно для глаз), а вот нагрев — существенно, продлевая срок функционирования светодиодов.

        Хотя выше было указано, что выходное напряжение источника питания светодиодных светильников является вторичным и некритичным параметром, вместе с тем, его следует учитывать при выборе драйвера. Если в техническом описании указано, что он способен обеспечить на выходе 15…115 В, то значит, что к такому драйверу можно подключить от 5 до 36 светодиодов, соединенных последовательно в одну цепочку (3…3,3 В ˖ 5…36 = 15…118 В).

        Размеры драйвера хоть и являются второстепенным параметром, однако, могут сыграть определенную роль в конструкции светодиодных светильников, обеспечивая их миниатюризацию.

        В заключение хотелось бы развеять широко распространенное заблуждение о необходимости защиты выхода светодиодного драйвера от короткого замыкания. Для стабилизаторов напряжения справедлива редакция формулы закона Ома:

        где: I — ток нагрузки, U — выходное напряжение, R — сопротивление нагрузки.

        При R, стремящемся к бесконечности (отсутствие нагрузки), выходной ток I стремится к нулю независимо от значения выходного напряжения U. И наоборот, при коротком замыкании (К.З.) выхода (R → 0) выходной ток стремится к бесконечности. Естественно, такой аварийной ситуации следует избегать, вводя в схему узел защиты от превышения выходного тока.

        Для светодиодных драйверов, являющихся стабилизаторами тока, действует другая редакция формулы закона Ома:

        Исходя из нее, видим, что при стремящемся к нулю сопротивлении нагрузки, к нулю стремится и выходное напряжение, независимо от установленного тока. Это значит, что режим К.З. их выхода (в отличие от стабилизаторов напряжения) является штатным. Иными словами, выходной ток больше того, на который настроен драйвер, не будет превышен никогда! А вот обрыв нагрузки, при котором ее сопротивление стремится к бесконечности, ведет к такому же, стремящемуся к бесконечности, росту выходного напряжения. Поскольку идеальных компонентов не бывает, это напряжение «найдет себе дорогу», разрушив (пробив) выходные цепи драйвера (Рис. 7). Поэтому светодиодный драйвер обязательно должен быть защищен от аварийного обрыва нагрузки, который является намного более вероятным, чем К.З.

        Рис. 7  Разрушение сетевого драйвера светодиодного светильника

        вследствие обрыва цепочки питаемых им светодиодов

        Электрооборудование, выполненное непрофессионалами  не сможет должным образом обеспечить надёжную работу ваших светодиодных светильников. Покупайте продукцию только у проверенных производителей.

        Как определить на сколько вольт светодиод

        Существует несколько методов как определить на сколько вольт светодиод. Один из них – довольно простой и не всегда срабатывает. Другой же – требует дополнительно аппаратуры и небольших познаний в электронике. В любом случае, они пользуются популярностью среди обладателей светодиодных лент, фонариков и других приспособлений.

        Какими бывают светодиоды

        Светодиод имеет массу обозначений (СД, СИД и LED). В основе такого устройства лежит небольшой полупроводниковый кристалл. Когда через него проходит электроток – происходит выброс фотонов, что приводит к свечению. Номинальное напряжение внутри такой конструкции позволяет определить, какой напряжение способен выдержать диод и какое необходимо для его нормальной работы. Используя эти значения, можно узнать на сколько вольт светодиоды в фонарике и в лампе.
        Из неорганических полупроводниковых веществ создаются красные и желтые, зеленые и синие – на основе индия-галлия и нитрада. Различаются по сфере применения: для индикации и освещения. Вторые мощные и считаются отдельным осветительным прибором. Первые же используются в различных устройствах удаленного доступа: пульты, мобильные телефоны и другие.
        Для освещения зачастую используются диоды, светящиеся белый светом. В зависимости от их мощности, подсветка может быть яркой или тусклой. Используются для домов и квартир, торговых центров и общественных заведений. По цвету их делят на: холодный, теплый и нейтральный оттенок. Классифицируются дополнительно по способу монтажа.
        Светодиоды обладают различными параметрами мощности и напряжения. От этого зависит качество освещение, использование дополнительных блоков питания. Если неверно подобрать источник энергии – это может привести к малому эксплуатационному сроку полупроводников и быстрой поломке. Несколько указанных способов помогут определить напряжение в светодоиодах.

        Первый метод: узнать теоретическим способом на сколько вольт рассчитан светодиод

        Внешние признаки – отличная возможность, как узнать на сколько вольт бывают светодиоды. В этом случае Вам поможет цвет свечения, форма и размеры полупроводникового прибора. Примеси различных химических элементов дают определенное свечение: начиная от красного и заканчивая желтым. Также существуют прозрачные модели, в которых определить параметры вольтажа можно только с мультиметром. Для того, чтобы узнать нужный параметр, нужно выполнить такие действия:
        — Тестер нужно выставить на «Проверка обрыва»;
        — Используйте щупы, чтобы прикоснуться к выходу светодиода;
        — Несильное свечение кристалла поможет понять напряжение, которое есть в диоде
        Окрашены они в разный цвет не случайно – при помощи внешних значений, можно определить примерное значение тока. Утверждать, что эти значения абсолютно верны – не стоит. Цвета стандартизированы и используются в условиях производства, вне зависимости от марки и производителя. Например, красный обладает напряжение до 2 В, а зеленый до четырех. Благодаря подобным обозначениям, можно не только узнать сколько вольт он потребляет, но и сколько вольт выдержит светодиод.
        На некоторых моделях Вы сможете рассмотреть количество кристаллов, влияющих на тип самого полупроводникового устройства. В корпусе СМД расположено несколько полупрозрачных кристаллов, соединяясь – они выдают определенный свет. Часто используются в лампах на 220 В.
        Последним, теоретическим способом сколько вольт потребляет светодиод, является программное обеспечение. Вы можете воспользоваться программами, которые содержат в себе целую базу данных. Введя уже известные параметры и цвет, Вы получите приблизительные данные. Далеко не всегда они верны, поэтому от теории переходим к практике.

        Второй метод: практический

        Это самый точный, но трудоемкий способ, как узнать на сколько вольт бывают светодиоды. Проведя тестирование, Вы сможете узнать параметры падения напряжения и значение силы тока. Воспользовавшись полученными данными, можно долгое время использовать полупроводник и подобрать для него нужное напряжение.
        Для тестирования Вам понадобится:
        — Вольтметр;
        — Мультиметр;
        — Двенадцати ватный блок питания;
        — Резистор от 510 Ом
        Принцип действия такой же, как и ранее – необходимо узнать номинальный ток. Соберите небольшую схему с резистором и вольтметром. Напряжение увеличивают до того момента, пока кристалл не загорится достаточно ярким светом. При достижении порогового значения – показания спадают и перестают расти. После этого необходимо снимать показания электрода.
        В некоторых случаях свечения может не быть, например, до 2 В. Обнаружить инфракрасный диод можно: излучатель направляется на включенную камеру мобильного телефона. На экране может возникнуть белое пятно, которое и будет инфракрасным диодом.
        Схему можно собрать и из подручных средств: вместо блока питания взять обыкновенную батарейку на 9 Вольт, вместо источников питания – стабилизатор сетевого напряжения. Подобная схема может не выдать номинального значения, но вполне способна показать достаточно примерные. Если характеристики неизвестны, нужно сразу же рассчитать значения светодиода, чтобы предупредить его выход из строя.

        Очень важный параметр светодиодных ламп, о котором мало кто знает: ammo1 — LiveJournal

        На упаковках светодиодных ламп можно найти множество параметров: мощность, световой поток, эквивалент мощности, индекс цветопередачи. Но один очень важный параметр производители указывают крайне редко. Это тип драйвера.

        По ГОСТ 29322-92 в сети должно быть напряжение 230 вольт, однако тот же ГОСТ допускает отклонение сетевого напряжения ±10%, то есть допустимо напряжение от 207 до 253 вольт. Впрочем, во многих районах (особенно, сельских) напряжение иногда падает до 180 вольт и ниже.

        При пониженном напряжении обычные «лампочки Ильича» светят гораздо тусклее. На нижнем пороге допустимого напряжения 207 вольт, 60-ваттная лампа накаливания, рассчитанная на 230 В, светит, как 40-ваттная на номинальном напряжении (ammo1. livejournal.com/671053.html).

        Работа светодиодных ламп на пониженном напряжении зависит от типа используемой электронной схемы (драйвера).

        Если в лампе используется простейший RC-драйвер или линейный драйвер на микросхеме, лампа ведёт себя почти так же, как лампа накаливания (светит тусклее при понижении напряжения, а при скачках напряжения в сети её свет «дёргается»).

        Если же используется IC-драйвер, яркость лампы не меняется при изменении напряжения питания в очень широких пределах. Фактически, у таких ламп есть встроенный стабилизатор.

        Если посмотреть на все светодиодные лампы, которые я протестировал в проекте Lamptest.ru, определяя тип драйвера, окажется, что у 3/4 всех ламп IC-драйвер и только у четверти линейный или RC-драйвер. Если же посмотреть только на филаментные лампы, картина резко меняется: из 321 протестированных ламп только у 131 (40%) IC-драйверы.

        У большинства ламп с линейным драйвером яркость падает на 5% от номинальной при снижении напряжения до 210-220 В и на 10% при напряжении 200-210В.

        Некоторые лампы с IC-драйвером не снижают яркость при падении напряжения даже до 50 вольт, но большинство стабильно работает при напряжении от 150 вольт.

        Вот так ведут себя две филаментные лампы (левая с IC-драйвером, правая — с линейным) при изменении напряжения от 230 до 160 вольт.

        Я измеряю минимальное напряжение, при котором световой поток лампы падает не более, чем на 5% от номинального. В таблице результатов Lamptest это напряжение указано в столбце «Вмин». Если при снижении напряжения световой поток начинает падать сразу, я указываю линейный (LIN) тип драйвера (столбец «drv»), если световой поток при снижении напряжения стабилен, а потом начинает снижаться, — тип драйвера IC1, если при снижении напряжения лампа выключается, — IC2, если начинает вспыхивать — IC3.

        К сожалению, тип драйвера по упаковке лампы и параметрам, приводимым производителями на сайтах, узнать почти невозможно. Отдельные производители пишут на упаковке «IC драйвер». Чаще пишут широкий диапазон напряжения, например «170-260В», но не всегда это соответствует действительности. На Lamptest много ламп, у которых указаны широкие диапазоны напряжений, а фактически в них установлен линейный драйвер и на нижней границе указанного диапазона они горят «вполнакала». Указание узкого диапазона «220-240 В» или просто «230 В» тоже ни о чём не говорит: множество таких ламп построены на IC-драйвере и фактически работают при значительно более низких напряжениях без снижения яркости.

        Всё, что я могу посоветовать для определения типа драйвера — смотреть результаты на Lamptest по лампе или её аналогам (тот же производитель, тот же тип, тот же цоколь), если конкретная модель лампы ещё не протестирована.

        Конечно, лампы с IC-драйвером лучше. Они не меняют яркость при уменьшении напряжения в сети и их свет не «дёргается» при перепадах напряжения. Кроме того, такой драйвер заведомо лучше защищён от любых перепадов напряжения и в целом более надёжен.

        Рекомендую учитывать при выборе светодиодных ламп тип драйвера и по возможности покупать лампы с IC-драйвером.

        © 2019, Алексей Надёжин


        Основная тема моего блога — техника в жизни человека. Я пишу обзоры, делюсь опытом, рассказываю о всяких интересных штуках. А ещё я делаю репортажи из интересных мест и рассказываю об интересных событиях.
        Добавьте меня в друзья здесь. Запомните короткие адреса моего блога: Блог1.рф и Blog1rf.ru.

        Второй мой проект — lamptest.ru. Я тестирую светодиодные лампы и помогаю разобраться, какие из них хорошие, а какие не очень.

        Светодиодные лампы, светильники, ленты.

        СЕТОДИОДНЫЕ ЛАМПЫ, СВЕТИЛЬНИКИ, ЛЕНТЫ

            Наконец то решился собрать в кучу все, что имеется на сегодня по поводу светодиодов, светодиодных ламп и матриц освещения. Разумеется на полноту предлагаемой информации притендовать не могу, тем не менее используя и свой собственный опыт и опыт жителей интеренета постараюсь все упорядочить.
            Немного истории:
            Впервые создан 1962, разработал Ник Холоньяк в Университете Иллинойса для компании General Electric, годом раньше был опробован инфракрасный светодиод Робертом Байардом и Гари Питтманом из компании Texas Instruments.
            Свечение в полупроводниковом кристалле возникает при рекомбинации электронов и дырок в области p-n-перехода. Область p-n-перехода, образуется контактом двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.
            Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).
           
        При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.
           
        Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.
            В рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому для светодиодов необходимо стабилизировать ток. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

            Для начала стоит разобраться из чего же состоят светодиодные лампы. Разумеется из цокля, корпуса и светорасеивателя. Разумеется, что внутри каждой лампы есть не много электроники.
            Самый простой и популярный среди радиолюбителей источник питания для светодиодов состоит из конденсаторного баласта и установленного стабилитрона, правда некоторые стремяться упростить схему и емксоть подбираютт таким образом, чтобы не ставить стабилитрон, но это уже на собственное усмотрение:

            Не смотря на свою простоту данный «драйвер» имеет существенный недостаток — он стабилизирует напряжения, а для светодиодов необходим стабилизатор тока. Разумеется, что С1 должен быть пленочным.
            Для тех, кто запамятовал напоминаю, что емкость конденсатора расчитывается исходя из необходимого напряжения на нагрузке и потребляемого нагрузкой тока. Формула выглядит следующим образом:

            Для расширения диапазона питающих напряжений можно использовать аналог стабилитрона на транзисторе. В этом случае выделяемое тепло якобы стабилитроном может быть гораздо больше, поскольку максимальное тепло популярных стабилитронов 1,5 Вт, а транзистор в корпусе ТО-126 может расеивать до 10-15 Вт, в корпусе ТО220 до 20 Вт, а с радиатором еще больше. Следовательно можно увеличить емкость конденсатора для сохранения работоспособности при пониженном напряжении питания, а при повышенном тепло все равно будет успевать отводится на радиатор транзистора. Схема драйвера приобретает следующий вид:

            Положение может исправить введение в данную схему стабилизатора тока. Однако проблема будет решена не полностью — на транзисторе все равно будет выделяться тепло, которое придется рассеивать, а значит придется использовать радиатор повышенной площади (мощным светодиодам тоже нужен радиатор). В конечнои итоге схема линейного драйвера для светодиодов приобретает вид:

            Но это все любительские схемы, а это значит, что имеет смысл посмотреть, что творят инженеры заводов — производителей светодиодных ламп. Врать не буду — обзор не мой, но уровень подхода автора заставил аплодировать стоя. Оригинал статьи ТУТ, у себя я лишь помещую выжимку:
            Лампа BBK P653F, лампа P654F выглядит так же.
           Лампа разборная, конструкция у ламп P653F и P654F абсолютно одинаковая, отличаются они только излучающим узлом.
           32 светодиода установлены на алюминиевой плате и включены последовательно, на один светодиод приходится 49.3 / 32 = 1.54 вольта. Плата через термопасту прилегает к радиатору. Температура платы возле светодиода 53°C.

           Контроллер построен на микросхеме SM7525, дает на выходе 49.3V 0.106A. Не понравилось в конструкции лампы то, что контроллер установлен наполовину в цоколь, наполовину в алюминиевом радиаторе, но никакой изоляции между радиатором и платой контроллера нет.
           Схема простая, однако немного запутанная из-за непривычного включения индуктивности и ключа. На входе диодного моста на плате имеется место для предохранителя, но он не установлен.

         

           Пульсации светового потока почти такие же, как и у ламп PC73C и PC74C (9% на частоте 50 кГц).
           
            Лампа BBK PC73C. Лампа PC74C по конструкции такая же.
            Лампа разборная. Пластмассовый цоколь на резьбе (с большим усилием!) выкручивается из радиатора. Белое пластмассовое кольцо придерживает защитное прозрачное стекло и металлический жестяной отражатель. За отражателем прячется сложный многосегментный светодиод (я насчитал 35 сегментов в матрице 7×5).

            Контроллер дает на выходе 21.2V, 0.29A. Температура радиатора возле светодиода 66°C, температура поверхности светодиода 133°C (!).
           
        Контроллер построен на микросхеме BP9023. К сожалению, микросхема настолько китайская, что даташита на неё на английском языке просто нет.

         

            Схема построена по принципу обратноходового однотактного преобразователя, очень похожа на схему с контроллером BP2831A. Резисторы RS1 и RS2 задают ограничение по выходному току, резистор R4 скорее всего (по аналогии с контроллером BP2831A) задает порог защиты по напряжению. Цепочка D1R5R6C4 служит для демпфирования высоковольтных выбросов напряжения на стоке ключевого транзистора микросхемы.
           
            Лампа Ecola 7w 4200K GU10
            Лампа не предназначена для разборки, но если Вы все же на это решились, то начинать нужно с матового защитного стекла. Оно приклеено по краям мастикой к алюминиевому радиатору. Отклеить стекло очень сложно, не повредив его (у меня не получилось). Под стеклом прячется печатная плата на алюминиевой основе, на которой стоят 14 светодиодов, включенных последовательно. Печатная плата прижата к радиатору стопорным кольцом, и место контакта платы и радиатора промазано теплопроводящей пастой. Печатная плата односторонняя, и довольно тонкая (0.6 мм), что служит улучшению теплообмена между светодиодами и радиатором.

            Пластмассовый цоколь крепится к радиатору двумя саморезами, головки которых незаметны под мастикой.
           
        Контроллер дает на выходе 81V, 0.066A. Температура платы возле светодиода 55°C. Контроллер собран на миниатюрной плате, которая целиком помещается в цоколь, входы и выходы контроллера подключены проводами минимальной длины. Вокруг контроллера со всех сторон пластмасса, поэтому замыкания исключены.

         

            Конструкция в целом очень аккуратная и продуманная, и не удивительно, что контроллер совсем не излучает радиопомех, и пульсации светового потока не улавливаются фотоприемником (их просто нет!). Контроллер построен на микросхеме BP2831A, схема очень простая.
           
            Лампа Ecola 6w 2800K GU5.3
            Лампа полностью разборная. Но выглядит по сравнению с предыдущей лампой Ecola 7w 4200K GU10 как бедная родственница. Куда подевались лоск разработки конструкции и качество сборки? Несмотря на цоколь GU5.3, лампа имеет большие размеры и из-за массивного радиатора довольно тяжелая. В патроне без дополнительного крепления держаться она не будет. При выкручивании нижних винтов (которые крепят цоколь к радиатору) будьте осторожны, потому что головки винтов некачественные, и винты выкручиваются с усилием.

            Свет излучают 3 включенных последовательно светодиода. Радиатор сделан так, что служит и корпусом лампы, и рефлектором. Температура платы возле светодиода 60°C. Спереди имеется защитное стекло с тремя линзами, которое крепится на винтах.
           Контроллер построен на микросхеме BP3122, выдает на выходе 9.6V, 0. 41A. Плата контроллера спроектирована очень тщательно и имеет маленькие размеры. Для монтажа используются обе стороны платы, и многие SMD-компоненты смонтированы прямо под трансформатором. Меня несколько удивило, что на выходе контроллера нет фильтрующего конденсатора. Наверное этим как раз и объясняются высокочастотные пульсации светового потока.

         

            К сожалению, лампа не может похвастаться низким уровнем радиопомех, и световой поток на выходе имеет большие пульсации на частоте 67.5 кГц
           
            Лампа Navigator NLL-MR16 3K GU5.3
        Лампа не только неразборная, но даже внутри залита эластичным белым пластиком, напоминающим резину. Радиатора нет, 10 светодиодов установлены на алюминиевой плате.

            Контроллер построен на микросхеме BP2832A, дает на выходе 59V, 0. 096A. Температура платы возле светодиода 83oC, т. е. светодиоды имеют не самый лучший тепловой режим.

         

            Микросхема BP2832A по цоколевке полностью совпадает с микросхемой BP2831A (да и по параметрам они отличаются только мощностью, BP2832A мощнее). Поэтому принципиальная схема контроллера отличается от схемы BP2831A (применена в лампе Ecola 7w 4200K GU10) только наличием дополнительных фильтрующих элементов (C1, L1).
           Несомненные достоинства лампы — малые размеры, почти полное отсутствие радиопомех, малые высокочастотные пульсации тока потребления и маленький уровень пульсаций светового потока.
           
            Лампа Navigator NLL-PAR16 4K GU10
           Лампа неразборная. Для вскрытия мне пришлось распилить её корпус дремелем. Лампа имеет маленький рефлектор для многосегментного светодиода, который совсем не прикрыт защитным стеклом. Радиатор отсутствует. Температура алюминиевого основания возле светодиода 87oC.

           К сожалению, при попытке сковырнуть крышку я случайно ударил отверткой по поверхности светодиода, в результате в нем получился обрыв. Поэтому измерять параметры контроллера пришлось с похожим многосегментным светодиодом из другой лампы.
           В испорченном светодиоде было 17 излучающих сегментов. По выходному току 0.13A, потребляемой мощности лампы 8 Вт и предполагаемому КПД я высчитал ориентировочно выходное напряжение 53 вольта.
           Контроллер построен на микросхеме SL21083 компании NXT (в даташите она именуется как SSL21083T).

         

           Схема традиционная, с дополнительными фильтрующими элементами входного тока Rf1, C1, L1. По уровню радиопомех это очень хороший контроллер, помех почти нет. Пульсации светового потока незначительные, и они на высокой частоте 86 кГц.
            Архив с PDF файлами показанных микросхем можно СКАЧАТЬ ЗДЕСЬ.
           
            Теперь вернемся к самоделкам и немного поразмышляем. Как видно из фото, приведенных выше ламп в светодиодных лампах используются и наборы SMD светодиодов и одинарные более менее мощные светодиоды. Несколько месяцев назад я заказал и успешно получил светодиоды серии 5730. На стренице продавца было указанно, что это светодиоды на 0,5 Вт, однако после сборки матрицы выяснилось, что это несколько не то, что хотелось увидеть — светодиоды намного слабее и тусклее, чем должны быть.

            После небольшого разбирательства выяснилось, что цена прямо пропорциональна качеству и далеко не все продавцы пишут истинные параметры светодиодов. Благодаря ссылке подписчика была найдена довольно ИНТЕРЕСНАЯ СТАТЬЯ как раз на эту тему. Вкратце статья выглядит так:

            Насобиралось у меня немного китайских светодиодов smd5730, решил рассказать вам немного о них. Всего у меня 4 разных светодиода. Первые — неплохие, китайские светодиоды, они уже обозревались здесь. Вторые — самые дешевые 5730 на aliexpress. Я их покупал по $ 1.15 за 200шт. Третьи и четвертые с самой обычной метровой светодиодной линейки на алюминиевой подложке, купленной в оффлайне за 2$, холодной и теплой цветовой температуры.
           Что бы было легче их сравнивать, я разрезал ту же алюминиевую линейку на минимально делимые кусочки, по 3 диода. Две оставил с родными диодами, а на остальных двух перепаял на купленные на Али. Фена, к сожалению, у меня пока нету. Выпаивать светодиоды паяльником как-то не очень — чаще всего он плавится или ломается. Я сделал по простому — нагрел утюг, и положил кусочки линейки на рабочую поверхность на рабочую поверхность утюга. Перед этим, конечно же, диоды промазал флюсом.

           Как только алюминиевая подложка нагрелась, снимаю светодиоды пинцетом, и убираю ее с утюга. Намазываю еще раз флюсом, прохожусь по контактам паяльником, для того, что бы на них набралось немного припоя. Потом сверху кладу новые светики и акуратно кладу линейку обратно на утюг. Как только припой расплавился, линейку акуратно, что бы светодиоды не «уплыли», убираю. После того как кусочек линейки остыл, хорошенько протираю его изопропиловым спиртом, что бы смыть остатки паяльной пасты. Припаиваю провода. Получается как-то так:

           Когда «подопытные» готовы — проверяю как они светят. Взял чистый белый лист бумаги, Он будет служить фоном. На фотоаппарате выставил ручной баланс белого по листу бумаги. Настройки экспозиции в ручном режиме, для того что бы можно было оценить яркость разных диодов. Кусочки линейки прикладываю перпендикулярно листу бумаги, подав на них напряжение 12в, и фотографирую. Не забываю померить ток. Получилось так:
           
        Так же решил померить ток и падениенапряжения при 150мА каждого диода по отдельности. Напряжение выбрал среднее — 3,2в. Фотографировать не стал, просто напишу:
            ток при 3,2в/напряжение при 150мА
           1. 151,1мА/3,2в
           2. 84 мА/3,65в
           3. 81,2мА/3,55в
           4. 49,8мА/4,26в

            Как видите, разница большая. Кристаллы у диодов тоже разные:

            Итоги:
           Первые светодиоды наиболее качественные, кристал у них действительно 0,5Вт. Его размер 15х30mil. Раньше у этого продавца были диоды с еще большим кристаллом — 20х40 mil, но мощность его была такой же. Наверное технология изготовления кристала усовершенствовалась.
           Продавец обещает 50-50Lm при 3,0-3,2в и 150мА. Так же есть в наличии диоды с температурой 3000-3500К, 5000-5500К и 6000-6500К. КУПИТЬ СВЕТОДИОДЫ.
           Вторые и третьи среднего качества, мощность где-то 0,25Вт. Больше о них ничего сказать не могу.
        Последние самые дешевые и, соответственно, самые плохие. Мощностью менее 0,2Вт. Кристал мелкий, думаю от 2838. В описании продавец не указывает ни производителя кристалла, ни его параметров. Только то что это smd5730.

            Однако далеко не всем нужны именно 5730, поэтому немного порывшись по отзывам перепроверил данную мне ссылку и выяснилось, что на Али есть МАГАЗИН ПРОИЗВОДИТЕЛЯ светодиодов, и светодиоды там весьма приличного качества.
           
            Откровенно говоря монтаж вручную 84-х светодиодов оказалось той еще задачкой и оставшиеся светодиоды я решил на лампы пока что не использовать — на подсветку аппаратуры, или может еще куда пригодятся, а паять лампы… Уж увольте… Смысл полуторачасового сидения за ручной пайкой утрачивается, ведь есть уже ГОТОВЫЕ МАТРИЦЫ самых различных размеров, цветов и мощностей, идеально подходящие под потолочные светильники:

            Разумеется, что подобная матрица решает далеко не все задачи и в некоторых случая SMD светодиоды будут удобней, тем не менее наличие матриц существенно упрощает изготовление самодельных светильников.
            Разумеется, что обременять себя пайкой светодиодных драйверов решится далеко не каждый, да иногда и цена готовой светодиодной лампы бывает меньше самодельной. Просто у самодельных ламп больше универсальность — их можно использовать в оформлении интерьера, изготовлении оригинальных светильников и подсветок.
            Готовые драйвера для светодиодных светильников так же присутствуют на Али. Не скажу, что довольно много потратил сил на поиски приличного магазина, тем не менее таковой нашелся. Единственным недостатком магазина является мелкооптовая торговля (отправка от 3 штук). Тем не менее цены более чем примелемые. Если заниматься изготовлением самодельных светодиодных ламп даже от случая к случаю, то приобретенные драйвера лишними не окажутся. Мощностная линейка довольно большая, есть варианты и в герметичном корпусе для установки на улице. есть варианты и с гальванической связью с сетью и с развязкой от сети. В общем выбирать уже Вам: МАГАЗИН ДРАЙВЕРОВ
           
            Готовые лампы такой большой оригинальностью не отличаются. .. Не отличались. Совсем не давно нашел довольно интересный магазин, специализирующийся именно на светодиодных лампах и просмотрев несколько позиций товаров пришел к выводу, что эти лампы вполне приличного качестве — положительных отзывов порядка 95-98% в среднем. Разумеется, что всем угодить трудно. Цены тоже вполне приемлемы — светодиодная лампа на 7 Вт стоит 1,2$. МАГАЗИН ЗДЕСЬ.
            Однако при выборе светодиодной лампы не стоит гнаться за низкой ценой. Понятно, что это Китай, однако Китай тоже разным бывает и не секрет, что кто то из производителей гонится за низкой ценой снижая себестоимость ламп, а кто то за качеством нарабатывая авторитет. А некоторые успевают и то и другое. Тут стоит остановится немного подробней…
            Дело в том, что наиболее ответственные производители кроме фотографии самой светодиодной лампы выкладывают фотографии ее начинки и просмотрев не один десяток фотографий уже не трудно сделать вывод о том, что это за лампа, как хорошо и как долго она будет работать. Например подавляющее большинство светодиодных ламп имеющих внешний вид, приведенный на фото ниже догловечностью отличаться не будет, особенно в тех случаях, когда в сети 220 вольт хронически повышенное напряжение:

            Эти лампы могу отличаться и по габаритам и по мощности, но как правило у них аналогичная начинка — конденсаторный баласт, диодный мост, электролит и несколько токоограничивающи резисторов, т.е. схема еще проще, чем показанная на втором рисунке этой страницы. Кто то из производителей об этом умалчивает, а кто то не скрывает всю примитивность драйвера и показывает это прямо на странице продажи:

            Естественно, что яркость свечения данной светодиодной лампы будет на прямую зависеть от сетевого напряжения 220 вольт — меньшее напряжение уменьшит яркость, большее увеличит яркость и увеличит нагрев светодиодов, что соответсвенно уменьшит из ресурс работы.
            Лампы, которые не боятся изменения сетевого напряжения и не меняют свою яркость, причем иногда в ОЧЕНЬ широком диапазоне питающих напряжений, выглядят несколько иначе, да и вес имеют как минимум раза в 2 больший. Обычно и продавцы и производители хотят подчернуть то, что их лампы отличают от так называемого ширпотреба и показывают то, что стоит внутри лампы, и именно и радиатор для светодиодов, и драйвер, и иногда даже работу лампы в проверочных стендах, демонстрирующию силу света, отдаваемую их изделием:

            Как видно из фотографий лампы имеют полноценные блоки питания и гарантируют создание оптимальных режимов работы светодиодов. Однако увеличение электроники внутри данного светильника не безвозмездное — данные лампы стоят как миниму в полтора раза дороже, но эти деньги не будут выброшены на ветер — в межсезонье обычно сетевое напряжение плавает в дольно большом диапазоне и отсутствие изменения освещености в помещении будет только радовать. Кроме этого стабилизированное питание самих светодиодов значительно увеличчивает их ресурс работы — при перегреве светодиоды довольно быстро выходят из строя, а это чревато покупкой новой лампы.
           
           
            В заключении хотелось бы сказать, что пробовались и лично мной варианты нескольких драйверов:
            ЛИНЕЙНЫЕ
            ИМПУЛЬСНЫЕ
            HV9910 пока отложен — ждемс транзисторы, а вот на базе IR2153 драйвер мне понравился и как только появятся «лишние» деньги обязательно куплю светодиодов на 100 Вт.

        Адрес администрации сайта: [email protected]
           

         

        Правильный диапазон напряжения для светодиодного приложения

        Новое в апреле 2019 г.

        Выбор драйвера светодиодов с надлежащим рабочим диапазоном напряжения (область постоянного тока) может показаться довольно простым, но в этой статье объясняется, что это не так просто. Во-первых, нужно понимать, что прямое напряжение светодиода неодинаково от кристалла к кристаллу. Во-вторых, напряжение светодиода меняется при повышении или понижении температуры перехода. Поскольку правильная работа драйвера имеет решающее значение для функциональности и надежности лампы, стоит более подробно изучить эти факторы, влияющие на напряжение светодиода.В этой статье объясняются типичные проблемы, связанные с прямым напряжением светодиодов, и способы правильного определения необходимого запаса напряжения драйвера светодиодов. Также предлагается найти новую функцию в некоторых новых драйверах светодиодов, которая может работать с временным повышенным выходным напряжением, чтобы обойти проблему высокого напряжения светодиода при чрезвычайно низкой температуре.

        Проектирование светодиодной лампы представляет собой многоплановую инженерную работу, включающую в себя вопросы оптического, теплового и электрического проектирования. Для достижения целевых оптических требований в первую очередь определяются тип и количество светодиодов, а также их управляющий ток.В зависимости от определенных соображений безопасности и/или модульного подхода к проектированию определенное количество светодиодов помещается в одну цепочку, а другое — параллельно. Когда эти факторы определены, первая оценка рабочего напряжения светодиода может быть сделана путем умножения количества светодиодов в одной цепочке на типичное прямое напряжение (V прямое ) этого светодиода.

        В вперед_всего = В вперед x Число/строка

        Приведенный выше расчет дает приблизительное представление о диапазоне рабочего напряжения, и вместе с определенным током возбуждения можно узнать требуемую мощность.Однако это число не является абсолютным значением и не подходит для обеспечения надлежащего электрического проектирования. Чтобы проект учитывал напряжение драйвера, напряжение светодиода должно учитываться 1) характеристикой VI, 2) вариациями производства и 3) температурным коэффициентом. В следующем абзаце эти 3 аспекта объясняются отдельно, а в конце В статье приведен пример оценки напряжения и шаги выбора светодиодного драйвера.

        Характеристики V/I светодиода

        Для идеального светодиода прямое напряжение не изменяется при увеличении тока (рис. 1.). В действительности, прямое напряжение ДЕЙСТВИТЕЛЬНО изменяется в зависимости от тока, и важно проверять напряжение светодиода на основе фактического расчетного тока, а не ссылаться на стандартные условия испытаний, указанные в спецификации.
        В приведенном ниже примере спецификация показывает, что типичное напряжение светодиода составляет 3,2 В. Если светодиод используется не на 350 мА, а на 1 А, то вместо 3,2 В на светодиод фактическое типичное напряжение светодиода составляет 3,8 В на светодиод. Эта разница в 0,6 В может привести к совершенно другому результату, если последовательно подключить большое количество светодиодов. Кроме того, ситуация может стать еще хуже, если драйвер светодиода имеет высокий пульсирующий ток, что приведет к пиковому току выше 1 А и, следовательно, пиковому напряжению превысит 3,8 В.

        типичных

        минимум максимум
        . A, 85 ° C) V 3.2 3.48
        Рис. Зрелая добыча должна обеспечивать более жесткий допуск, приводящий к нормальному распределению (например, рис. 3). Типичный допуск по напряжению из-за производственных отклонений составляет менее 10%, что может быть косвенно получено из отношения максимального к типичному для типичного прямого напряжения в таблице данных светодиодов (см. Таблицу 1, столбцы 4 и 5).С другой стороны, производственные данные, такие как фактическое распределение прямого напряжения, возможно, придется проверять непосредственно у производителя светодиодов.
        Хотя абсолютный максимум/минимум составляет +/- 10 %, по статистике, чем больше светодиодов подключено последовательно, тем больше вероятность того, что суммарное прямое напряжение установится около типичного значения напряжения. Рекомендуется создать некоторый запас по напряжению, безопасным считается запас в 10% от типичного напряжения. Также можно рассмотреть более высокую маржу, которая поставит драйвер в лучшее рабочее состояние и продлит срок службы драйверов.Рис. 3. Распределение прямого напряжения светодиодов производства

        LED Vf. Против. Temp

        Прямое напряжение светодиода имеет отрицательный температурный коэффициент, это означает, что чем выше температура, тем ниже прямое напряжение. Поскольку светодиод является самонагревающимся элементом, при правильной тепловой конструкции лампы постоянная рабочая температура и рабочее напряжение светодиода обычно достаточно стабильны. Худший случай наступает, когда лампа запускается при низкой температуре. Чтобы оценить потребность в дополнительном напряжении при низкой температуре, спецификация светодиодов предоставляет типичную кривую V-T в соответствии со стандартными условиями испытаний (например,грамм. 350 мА). Многие производители также предоставляют программное средство для проверки напряжения в соответствии с переменными параметрами, такими как температура перехода (Tj), управляющий ток и т. д. допуск или разница тока. В первом случае потребность в напряжении носит временный характер, и, таким образом, запас по напряжению не требуется постоянно резервировать. На рынке есть несколько передовых драйверов светодиодов, оснащенных функцией адаптации к напряжению для удовлетворения кратковременных требований к напряжению.

        Например, HLG-480H-C компании Mean Well имеет функцию «адаптации к окружающей среде», которая может автоматически снижать выходной ток для замены на более высокое выходное напряжение, сохраняя при этом общую выходную мощность в пределах спецификации. По мере того, как лампа включается и постепенно нагревается, напряжение падает до нормального уровня, а затем ток также возвращается к исходному расчетному значению. Функция адаптации к окружающей среде обеспечивает запас напряжения на 20 % выше, чем у обычного драйвера светодиодов. HLG-480H-C1400, работающий от 171~343 В, может временно повышать напряжение до 412 В, чтобы обеспечить успешный запуск ламп при экстремально низких температурах (например,грамм. -40°С).

        Серия HVGC с постоянной мощностью, аналогичным образом, допускает более высокое выходное напряжение при уменьшении силы тока. Существуют также различные возможности для других моделей. Если есть какие-либо вопросы о проблеме запуска светодиодов, пожалуйста, свяжитесь с MEAN WELL для получения лучших предложений.

        Рис. 4 Зависимость температуры от прямого напряжения

        Пример и сводка

        В конструкции лампы используется 100 светодиодов, как на рис. 2, ток возбуждения составляет 1,05 А. Всего есть 2 строки, что означает, что каждая строка имеет 50 светодиодов. Минимальная рабочая температура согласно спецификации лампы составляет 0°C.Чтобы определить требования к напряжению:

        Решение 1: Введите эти параметры в программное обеспечение ПК и получите рабочую точку светодиода с запасом. Более подробно уточните у производителя.

        Решение 2. Ознакомьтесь со спецификацией светодиода и выполните следующие действия:

        • Шаг 1: Проверьте кривую V-I светодиода, найдите напряжение на кривой в соответствии с заданным током.

          Согласно рис. 2 типичное прямое напряжение светодиода при 1,05 А составляет 3,8 В

        • Шаг 2: Умножьте это напряжение на количество светодиодов в одной цепочке.

          3,8 (В) x 50 (шт.) = 190 В

        • Шаг 3: Учет производственных допусков с использованием отношения максимального напряжения к типовому.

          3,48 (В) / 3,2 (В) = 108,75 %
          190 (В) x 108,75 % = 206,6 (В)

          Краткая сводка:
          Общее прямое напряжение светодиодов, типичное значение 190 В
          Общее прямое напряжение светодиодов в худшем случае 207 В*
          (* Здесь не учитываются пульсации тока драйвера.)

        • Шаг 4: Учет температурного коэффициента для оценки пускового напряжения в наихудшем случае.

          Из рис. 4, тип. напряжение при 0°С 3,6В, при 85°С 3,2В.
          Предположим, что светодиодная лампа обычно работает при Tj 85°C
          3,6 (В, Tj=0) / 3,2 (В, Tj=85) = 1,125 меньше 1,2 V
          Суммарное прямое напряжение светодиода в худшем случае 207 В x 1,2 = 248,4 В 207В (435Вт). Это соответствует рейтингу HLG-480C.Кроме того, HLG-480H имеет очень низкую пульсацию тока, поэтому влиянием пульсации на изменение напряжения светодиода можно пренебречь. При низкой температуре требуемое напряжение может временно превышать 249 В, что не находится в пределах нормального диапазона постоянного тока, однако такая ситуация возникает редко, и ее можно покрыть функцией адаптации к окружающей среде HLG-480H-C2100, которая максимально поддерживает 275 В с пониженный ток.

          Эта статья написана Mean Well и взята с сайта www.meanwell.com

          Какой самый яркий светодиод?

          Хотите узнать, какой у нас самый яркий светодиод? Я могу сказать вам из первых рук, что вы определенно не одиноки в этом.Нам часто задают этот вопрос, и, честно говоря, на него нет прямого ответа. У нас есть разные типы светодиодов, разные цветовые температуры и разные массивы, которые делают ответ многословным, поэтому я посвящаю целый пост в блоге, чтобы ответить на него как можно лучше.

          Стоит отметить, что дни измерения яркости по мощности лампочки подходят к концу, поскольку светодиоды продолжают набирать обороты. Компонентные светодиоды измеряются в люменах, что является измерением света, которое трудно объяснить, если вы еще не имеете приблизительного представления о выходе в люменах и тому подобном.Лучший способ, которым я могу объяснить это, — это диаграмма, которую я составил в прошлом, которая показывает определенные мощности ламп накаливания и люмены, которые они испускают, чтобы у вас было представление о том, с чем их сравнивать.

          Большие светодиодные массивы

          Как я уже упоминал во вступительном абзаце, сложно сравнивать все наши светодиоды напрямую, поскольку у нас много разных видов. Наш чип на платах, таких как Cree CXB, будет самым ярким вариантом, который вы можете купить в виде одной платы у нас здесь, в LEDSupply. CXA — это массив высокой плотности, который излучает сумасшедшие люмены при небольшой площади, как вы можете видеть из выходных данных на странице продукта и в таблицах ниже. Вы также заметите, что они могут работать при более низких диапазонах тока, а напряжения также намного выше, поэтому мощность вашего света немного выровняется (мощность = ток (А) x прямое напряжение). В общем, если вы ищете быстрый ответ, вот он: Cree CXA — наш самый яркий вариант в качестве единственного светодиода!

          Если вам нужна дополнительная информация и другие варианты, продолжайте читать…

          Последний тип нечетных шаровых светодиодов, который мы предлагаем, — это Cree MC-E, который представляет собой многокристальный светодиод.У MCE 3 матрицы в центре под одним куполом. MCE хорош, если вы хотите работать при низких токах и при этом получать хороший выходной сигнал, но что касается яркости, вы определенно можете добиться большего, поскольку другие светодиоды могут работать при гораздо более высоких токах.

          Теперь, когда мы избавились от странных шаровидных светодиодов, пришло время для более прямых сравнений. Мы продаем наши светодиоды высокой мощности в виде неизолированных излучателей или в вариантах поверхностного монтажа 1-Up и 3-Up на нашей плате MCPCB Star Board. Мы устанавливаем светодиоды на эти платы для вас, чтобы вы могли легко подключить к ним питание и так далее.Плата имеет диаметр 0,75 дюйма и имеет точки пайки по периметру. Эти светодиоды в основном относятся к семейству Cree XLamp, однако у нас также есть Luxeon Rebel, который будет включен в сравнение Lumen ниже.

          Температурные испытания и горячее группирование

          Прежде чем мы перейдем к фактическим значениям люменов, я хочу уточнить, что приведенные ниже диаграммы и таблицы показывают значения люменов при тестировании при 25ºC. Это стандарт для тестирования светового потока, и мы взяли всю нашу информацию прямо из этого инструмента сравнения светодиодов Cree и таблиц данных Luxeon.Эти люмены точны, когда светодиоды работают при температуре около 25ºC, однако иногда трудно поддерживать светодиоды при такой низкой температуре, поэтому мы приводим значения люменов, протестированные при 85ºC на страницах некоторых наших продуктов. Это процесс, называемый горячим биннингом, поскольку он показывает выходной сигнал светодиодов при работе при более высоких температурах. Я просто хотел указать на это, чтобы вы не видели здесь эти цифры в люменах, а затем переходили на страницы продуктов, видели разные цифры и всячески путались. Просто обязательно посмотрите на указанную тестовую температуру, чтобы вы знали, чего ожидать, и понимали разницу.

          Цветовая температура и яркость

          Цветовая температура напрямую влияет на яркость. Цветовая температура работает в том смысле, что более низкие температуры около 3000K — это теплый белый, а более высокие температуры, такие как 6500K+, — холодный белый. Нейтральный белый — это золотая середина, обычно около 4000-6000К. Промышленным стандартом является то, что холодные белые светодиоды ярче, чем теплые белые. Если вы возьмете, например, XP-G2, вы увидите, что световой поток светодиода при токе 350 мА выглядит следующим образом:

          • теплый белый =121 люмен
          • нейтральный белый = 129 люмен
          • холодный белый (6500K) = 158 люмен

          Итак, если вы просто ищете максимально яркий свет и не заботитесь о том, теплый он или холодный, вам всегда следует придерживаться холодного белого цвета, чтобы убедиться, что вы получаете максимально яркий свет от выбранного вами светодиода. Взгляните на следующие таблицы для теплого белого, нейтрального белого и холодного белого светового потока. Имейте в виду, что эти числа предназначены для светодиодов с одним витком, поэтому, если вы хотите ярче, вы всегда можете выбрать 3 светодиода, что утроит эти числа. Единственными светодиодами, недоступными в варианте с тремя вверх, являются CXA, Luxeon K и MC-E, о которых говорилось ранее, и Cree XM-L2, поскольку он имеет больший кристалл, а 3 светодиода не могут быть подключены к нашей звездообразной плате MCPCB.

          Cool-White Сравнительная таблица яркости светодиодов

          Светодиод MFG
          Тип
          Диапазон CCT Световой поток (лм) при 25°C
          Прямое напряжение (В f )
          LEDНомер детали поставки Излучатель MFG
          Код заказа
          Мин. Тип. Макс. Группа 350 мА 700 мА 1000 мА 1500 мА 3000 мА Одноместный 3-местный
          Люксеон Мятежник 5000 К 5000 К 10 000 К Н 105 (3В) 189 (3,2 В) 236 (3,4 В) н/д н/д 07040-PW750-Н 07007-PW750-Н LXML-PW31
          Кри ХР-Е2 5000 К 5000 К 10 000 К 4 квартал 116. 7 (3,04 В) 200 (3,19 В) 254,5 (3,29 В) н/д н/д CREEXPE2-750-1 CREEXPE2-750-3 XPEBWT-L1-0000-00C51
          Кри XP-G2 5000 К 5000 К 8300 К Р2 129,3 (2,91 В) 236,4 (3,04 В) 314,4 (3,12 В) 426,3 (3,25 В) н/д CREEXPG2-W129 CREEXPG2-W387 XPGBWT-L1-0000-00EE4
          Кри ХТ-Е 5000 К 6500 К 8300 К Р4 149.2 (3В) 265,6 (3,2 В) 347,1 (3,33 В) 459,6 (3,52 В) н/д КРЕКСТ-W130 КРЕКСТ-W390 XTEAWT-00-0000-00000G51
          Кри XP-G2 5000 К 6500 К 8300 К Р5 157,6 (2,91 В) 288,2 (3,04 В) 383,4 (3,12 В) 519,8 (3,25 В) н/д CREEXPG2-W158 CREEXPG2-W474 СПГВТ-L1-0000-00H51
          Кри XM-L2 5000 К 6500 К 8300 К Т6 166. 9 (2,84 В) 318,9 (2,95 В) 437,9 (3,02 В) 616,1 (3,14 В) 1048.1 (3,43 В) CREEXML2-W318 н/д XMLBWT-00-0000-0000T6051
          Кри XP-L 5000 К 6500 К 8300 К В5 192 (2,87 В) 363,7 (2,98 В) 499,7 (3,06 В) 705,7 (3,17 В) 1198,9 (3,46 В) CREEXPL-665-1 CREEXPL-665-3 СПЛАВТ-00-0000-0000V5051
          Кри МС-Е 5000 К 6500 К 8300 К М 430 (12.4В) 750,7 (13,61 В) н/д н/д н/д КРЕМСЕ-W430 н/д MCE4WT-A2-0000-000M01
          Кри XHP35 5000 К 6500 К 8300 К Е4 716,9 (11,78 В) 1270,3 (12,36 В) 1653,9 (12,78 В) н/д н/д CREEXHP-765-1 CREEXHP-765-3 СХП35А-00-0000-0Д00Э40Э1
          Кри КСБ 1310 5000 К 5000 К 8300 К К4 897. 7 (18,15 В) 1428,5 (18,82 В) 1877.2 (19,43 В) н/д н/д КСБ1310-18-5000 н/д КСБ1310-0000-000Ф00К450Ф
          Кри КСБ 1520 5000 К 5000 К 8300 К Р4 1646.2 (36,14 В) 2913.2 (37,9 В) н/д н/д н/д КСБ1520-35-5000 н/д КСБ1520-0000-000Н00П250Ф

          Нейтрально-белый Сравнительная таблица яркости светодиодов

          Светодиод MFG
          Тип
          Диапазон CCT Световой поток (лм) при 25°C
          Прямое напряжение (В f )
          LEDПоставка № по каталогу Излучатель MFG
          Код заказа
          Мин. Тип. Макс. Группа 350 мА 700 мА 1000 мА 1500 мА 3000 мА Одноместный 3-местный
          Люксеон Мятежник 3500 К 4000 К 5000 К Н 105 (3В) 189 (3,2 В) 236 (3,4 В) н/д н/д 07040-PW740-Н 07007-PW740-Н LXML-PW51
          Кри ХР-Е2 3700 К 4000 К 5300 К 4 квартал 116. 7 (3,04 В) 200 (3,19 В) 254,5 (3,29 В) н/д н/д CREEXPE2-740-1 CREEXPE2-740-3 XPEBWT-L1-0000-00CE4
          Кри XP-G2 3700 К 4000 К 5300 К Р2 129,3 (2,91 В) 236,4 (3,04 В) 314,4 (3,12 В) 426,3 (3,25 В) н/д CREEXPG2-NW129 CREEXPG2-NW387 XPGBWT-L1-0000-00EE4
          Кри XM-L2 3700 К 4000 К 5300 К Т5 154.9 (2,84 В) 296,1 (2,95 В) 406,6 (3,02 В) 572.1 (3 В) 973,2 (3,43 В) CREEXML2-NW296 н/д XMLBWT-00-0000-000LT50E4
          Кри XP-L 3700 К 4000 К 5300 К В3 175,3 (2,87 В) 332 (2,98 В) 456,3 (3,06 В) 644,3 (3,17 В) 1094,6 (3,46 В) CREEXPL-740-1 CREEXPL-740-3 СПЛАВТ-00-0000-000LV30E5
          Кри МС-Е 3700 К 4000 К 5300 К К 370 (12. 4В) 646 (13,61 В) н/д н/д н/д КРЕМСЕ-NW370 н/д MCE4WT-A2-0000-000KE4

          Теплый белый Сравнительная таблица яркости светодиодов

          Светодиод MFG
          Тип
          Диапазон CCT Световой поток (лм) при 25°C
          Прямое напряжение (В f )
          LEDПоставка № по каталогу Излучатель MFG
          Код заказа
          Мин. Тип. Макс. Группа 350 мА 700 мА 1000 мА 1500 мА 3000 мА Одноместный 3-местный
          Люксеон Мятежник 2700 К 3000 К 4000 К К 77 (3В) 130 (3,2 В) 173 (3,4 В) н/д н/д 07040-PW830-К 07007-PW830-К LXM3-PW71
          Кри ХР-Е2 2200 К 3000 К 3700 К Q2 102 (3. 04В) 174,8 (3,19 В) 222,5 (3,29 В) н/д н/д CREEXPE2-830-1 CREEXPE2-830-3 XPEBWT-L1-0000-00AE7
          Кри ХТ-Е 2600 К 3000 К 3700 К 4 квартал 114,8 (3 В) 204,3 (3,2 В) 267 (3,33 В) 353,6 (3,52 В) н/д CREEXTE-WW100 CREEXTE-WW300 XTEAWT-00-0000-00000LCE7
          Кри XP-G2 2600 К 3000 К 3700 К В5 121.3 (2,91 В) 221,9 (3,04 В) 295,1 (3,12 В) 400,1 (3,25 В) н/д CREEXPG2-WW121 CREEXPG2-WW363 XPGBWT-L1-0000-00DE7
          Кри XM-L2 2600 К 3000 К 3700 К Т3 131,1 (2,84 В) 250,6 (2,95 В) 344 (3,02 В) 484,1 (3,14 В) 823,5 (3,43 В) CREEXML2-WW227 н/д XMLBWT-00-0000-000LT30E7
          Кри XP-L 2700 К 3000 К 3500 К У6 158. 6 (2,87 В) 300,4 (2,98 В) 412,8 (3,06 В) 582,9 (3,17 В) 990,4 (3,46 В) CREEXPL-830-1 CREEXPL-830-3 СПЛАВТ-00-0000-000LU60E7
          Кри МС-Е 2600 К 3000 К 3700 К Дж 320 (12,4 В) 558,7 (13,61 В) н/д н/д н/д КРЕМСЕ-WW320 н/д MCE4WT-A2-0000-000JE7
          Кри КСБ 2600 К 2700 К 3700 К Дж2 723.8 (18,15 В) 1151,7 (18,82 В) 1513,4 (19,34) н/д н/д КСБ1310-18-2700 н/д КСБ1310-0000-000Ф00х527Ф
          Luxeon K 8-Up 2600 К 3000 К 3700 К А 855 (21В) 1496.2 (22 В) 2137,5 (22,75) н/д н/д ЛЮКСЕОН-K-COBWW08 н/д ЛСК8-ПВ30-0008
          Кри КСБ 1520 2600 К 2700 К 3700 К М4 1244. 1 (36,14 В) 2201,5 (37,9 В) н/д н/д н/д КСБ1520-35-2700 н/д КСБ1520-0000-000Н00М427Ф
          Luxeon K 12-Up 2600 К 3000 К 3700 К А 1280 (31,5 В) 2240 (32,75 В) 3200 (33,5) н/д н/д ЛЮКСЕОН-К-КОБWW12 н/д ЛСК8-ПВ30-0012

          В этом отрывке о XM-L2 упоминается еще один важный фактор — размер.Размер имеет значение, так как иногда вам нужен максимально яркий свет на небольшой площади. В моем последнем посте я сравнил XP-L и XM-L2, которые вы можете увидеть здесь. Я обратился к этому сравнению, так как многие люди заметили, что XP-L позиционировался как самый яркий, но XM-L2 не сильно отставал. Вы можете прочитать больше об этом в посте, но XP-L — это, по сути, кристалл XM-L2 в меньшем корпусе. Небольшой корпус позволил затем разместить 3 таких светодиода высокой яркости на нашей звездной плате, чтобы утроить выходную мощность. Один на один Cree XP-L не кажется намного лучше, чем XM-L2, но когда вы видите, что XP-L может утроить это при том же размере, игра с числами полностью меняется.

          Надеюсь, я не запутал вас в этом посте, но вы можете видеть, что измерить яркость немного сложнее, чем просто посмотреть на все значения светового потока и сказать, что это самая яркая лампа. Если вам нужен самый яркий светодиод в плане голых излучателей и поверхностного монтажа, то это Cree 3-up XP-L.Надеюсь, этот пост окажется полезным для вас в ваших исследованиях по поиску лучшего светодиода для вас.

          Как работает светодиод 5 мм?

          Светоизлучающие диоды (СИД) окружают нас повсюду. Они в наших домах, в наших машинах, даже в наших телефонах. Светодиоды бывают разных форм и размеров, что дает дизайнерам возможность адаптировать их к своему продукту. Каждый раз, когда загорается что-то электронное, есть большая вероятность, что за этим стоит светодиод. Низкое энергопотребление и небольшие размеры делают их отличным выбором для многих различных продуктов, поскольку их можно более плавно встроить в дизайн, чтобы сделать устройство в целом лучше.

          В прошлом мы обсуждали светодиоды высокой яркости, но в этом посте мы сосредоточим наше внимание на 5-мм светодиодах или светодиодах со сквозным отверстием. Это типы светодиодов, которые, вероятно, будут использоваться в вашей небольшой электронике в качестве светового индикатора или чего-то в этом роде. 5-миллиметровые светодиоды потребляют гораздо меньше тока для работы, чем светодиоды высокой яркости, 20 мА по сравнению с минимум 350 мА для мощных светодиодов. Если вы следили за нашей оригинальной статьей «Мастеринг светодиодов», вы должны знать: больше тока = больше света.Таким образом, очевидно, что эти 5-миллиметровые светодиоды будут скорее акцентным светом или светом для очень маленьких помещений. Именно для этого предназначены 5-миллиметровые светодиоды, их можно использовать вместе в большом массиве для создания знака или какой-то матрицы, или их можно использовать по отдельности, чтобы сделать небольшой индикатор или один из тех крошечных фонариков на цепочке для ключей. .

          Светодиоды

          диаметром 5 мм очень полезны, так как они легко питаются от небольшого источника питания и служат долго. Это позволяет легко включать их во многие электронные устройства или размещать источники света там, где они обычно не могут быть установлены.Название 5mm LED происходит от их размеров: корпус из эпоксидной смолы сверху имеет диаметр около 5 мм. Эти сверхмалые источники света просты в использовании, но мы не можем упускать из виду определенные этапы настройки нашей светодиодной схемы.

          Основы светодиодов 5 мм

          Светодиод представляет собой вариант базового диода. Диод — это электронный компонент, который проводит электричество только в одном направлении. Диоды имеют так называемое прямое номинальное напряжение, которое определяет минимальную разницу напряжений между анодом (+) и катодом (-), чтобы позволить электронам течь (аааа..сладкое электричество). Светодиод в основном такой же, как диод, с ключевым отличием в том, что он генерирует свет, когда проходит электричество.

          Светодиоды

          диаметром 5 мм представляют собой тип светодиодов, в которых кристалл удерживается на опорной стойке, заключенной в эпоксидный купол для защиты. Затем соединения выполняются через две ножки или штыри, выходящие из нижней части. Как мы уже упоминали, диод пропускает ток только в одном направлении. Это делает крайне важным различать положительную сторону (анод) и отрицательную сторону (катод).Со светодиодами 5 мм это легко, заметили, что ножки разной длины? Более длинная ножка — это анод, а более короткая из двух — это катод. Если ваши ножки обрезаны или у вас есть производитель, который делает их одинакового размера, обычно вокруг края 5-миллиметрового корпуса со стороны катода есть плоское пятно (см. Ниже).

          Убедитесь, что вы всегда подключаете положительный аккумулятор/источник питания к аноду, а отрицательный или заземление к катоду. Это позволит убедиться, что полярность совпадает, и электричество будет течь, если у вас достаточно входного напряжения, зажигая ваш 5-мм светодиод. Если вы подключите его в обратном направлении, ничего не произойдет, и цепь останется замкнутой. Чтобы убедиться, что у вас достаточно мощности для вашего светодиода, есть два ключевых параметра, на которые следует обратить внимание при рассмотрении спецификаций светодиодов: прямое напряжение и прямой ток.

          Напряжение светодиода 5 мм

          Для каждого светодиода должно быть указано «Прямое напряжение», которое определяет величину напряжения, необходимого для проведения электричества и производства света. Если вы попытаетесь подать что-то меньшее, чем это количество, светодиод останется открытым и непроводящим.Как только падение напряжения на светодиоде достигнет прямого напряжения, ваш светодиод загорится. Если у вас есть несколько светодиодов последовательно, вы должны учитывать сумму их номинальных значений прямого напряжения.

          Давайте взглянем на один из наших стандартных синих 5-мм светодиодов. Теперь мы можем легко увидеть в спецификациях на странице продукта, что светодиод имеет прямое напряжение около 3,4 В. Итак, мы берем этот светодиод и пытаемся подключить его к батарейке АА, светодиод что-нибудь сделает? Батареи типа АА имеют только номинальное напряжение 1.5V так что нет, нам не хватает напряжения для проведения электричества. Однако, если мы добавим еще одну батарею AA последовательно, наше напряжение будет на уровне 3 В, и мы сможем запустить 5-мм светодиод. «Но вы сказали, что светодиоду нужно 3,4 В!» Да, я знаю, но когда вы говорите с точностью до нескольких знаков после запятой, все будет в порядке.

          5-мм светодиодный ток

          Теперь некоторые люди думают, что им нужно позаботиться только о напряжении светодиода, и все будет в порядке. Это упускает из виду очень важную часть светодиодов, ток. Светодиоды потребляют столько тока, сколько могут в цепи, что, в свою очередь, приводит к увеличению температуры светодиода, пока он не перегорит.Поэтому, чтобы иметь дело с меньшим количеством неисправных светодиодов, давайте обращаем внимание на номинальные токи светодиодов.

          Приведенный выше пример, когда входное напряжение и прямое напряжение настолько близки, является единственным примером, когда вам не нужно сильно беспокоиться о токе. Согласно эмпирическому правилу на нашем сайте, когда ваше входное напряжение составляет 3 В, вы можете запитать любой из 5-мм светодиодов, кроме красного и желтого, не беспокоясь об отслеживании тока. Это связано с тем, что в источнике питания недостаточно тока для того, чтобы 5 мм вытянулся и сгорел.

          Во всех остальных случаях необходимо ограничить ток, протекающий через светодиод. В мощных светодиодах
          это делается с помощью драйвера постоянного тока. Номинальный ток 5-миллиметровых светодиодов намного ниже, обычно около 15-30 мА, и мы можем контролировать ток, включив резистор последовательно со светодиодом. Именно здесь вы часто будете слышать термин «резистор ограничения тока», поскольку резистор обеспечивает значительное ограничение тока, протекающего через цепь.

          5-мм светодиоды обычно тестируются при 20 мА, они могут потреблять ток до 30 мА, но, по моему мнению, я обычно стараюсь поддерживать 5-мм светодиоды при 20 мА, которые рекомендуются во всех их спецификациях. Теперь нам нужно выяснить, как найти правильный размер резистора для вашей схемы, чтобы сохранить ваши светодиоды в безопасности!

          Поиск резистора подходящего размера для ваших светодиодов

          Резисторы бывают самых разных размеров, и для определения правильного размера для вашей системы требуется математика. Не волнуйтесь, мы делаем это очень просто с помощью этого калькулятора сопротивления, который вычисляет размер резистора, который вам нужен. Это отличный инструмент, но всегда полезно узнать, как производятся расчеты, так что следуйте инструкциям.Чтобы найти токоограничивающий резистор правильного размера, мы должны знать два свойства светодиода: прямой ток и прямое напряжение.

          Давайте используем тот же синий светодиод из примера выше. На странице товара вы увидите таблицу, изображенную справа. В кружке показано прямое напряжение (Vf) при заданном испытательном токе. Таким образом, вы можете видеть, что для этого светодиода при постоянном токе 20 мА светодиод будет падать на 3,2-3,6 В. Мы возьмем золотую середину и должны предположить, что этот светодиод упадет до 3,4 В.

          В этом примере в качестве источника питания я буду использовать последовательно 3 батарейки АА.Каждая батарейка АА имеет напряжение около 1,5 В, поэтому в сумме у нас есть 4,5 В для нашего светодиода. Мы должны использовать закон Ома, чтобы найти предел резистора, но сначала мы должны найти напряжение на нем. Резистор и светодиод будут включены последовательно, то есть падение напряжения на них будет суммироваться, чтобы равняться входному напряжению. Это означает, что мы можем легко найти падение напряжения на резисторе, поскольку мы уже знаем, что светодиоды составляют 3,4 В.

          Входное напряжение = светодиод В f + Напряжение резистора

          Напряжение резистора = Входное напряжение — светодиод В f

          Напряжение на резисторе = 4.5В – 3,4В

          Таким образом, на резисторе будет падать около 1,1 В. Теперь, когда у нас есть это, мы можем использовать закон Ома для расчета необходимого сопротивления!

          Сопротивление = Напряжение/ток (в амперах)

          Сопротивление = 1,1/0,02 (20 мА)

          Сопротивление = 55 Ом

          В зависимости от светодиода будет меняться резистор. Для этого примера мы можем предположить, что необходим резистор 55 Ом, ближайший размер, который у нас есть, — 60,4, поэтому мы выберем его.Если вы сомневаетесь в значении или если оно находится между предлагаемыми значениями сопротивления, выберите немного больший размер.

          Последнее, что нужно проверить при работе со светодиодами и резисторами, — это мощность резистора. Все наши резисторы имеют мощность ¼ Вт. Требуемая мощность резистора — это разница между мощностью светодиода и общей мощностью цепи. Таким образом, в приведенном выше примере мы найдем требуемую мощность резистора.

          Мощность светодиода = 3,4 В x 0,02 А = . 068 Вт

          Общая мощность = 4,5 В x 0,02 А = 0,09 Вт

          Мощность, рассеиваемая резистором = ,09 – 0,068 = ,022 Вт

          Резистор мощностью ¼ Вт (0,25) может легко выдерживать 0,022 Вт, так что все готово! Установите резистор последовательно со светодиодом (на положительной стороне соединения), и ваш свет готов.

          Не хотите мучиться с поиском резистора и работой с несколькими резисторами в одной цепи? Обратите внимание на DynaOhm от LuxDrive.Это полностью герметизированный переменный резистор на полупроводниковой основе, оптимизированный для замены резисторов в 5-мм светодиодах. Этот блок будет включен последовательно, как и резистор. Разница в том, что он уже рассчитан на определенный номинальный ток, поэтому вам нужно беспокоиться только о напряжении. DynaOhm может принимать от 2,6 В до 50 В постоянного тока, поэтому вводите все, что вам нужно для ваших светодиодов.

          Теперь, когда мы закончили все эти забавные разговоры о напряжении и токе, мы можем погрузиться в то, что действительно волнует людей, а именно в свет, который излучают эти крошечные лампочки. Цвет и яркость измеряются несколькими способами. Наш сайт всегда хорошо их перечисляет и систематизирует, но давайте узнаем, как эти диоды создают свет, который они излучают.

          Длина волны светодиода

          Длина волны светодиода

          — это, по сути, очень точный способ объяснения цвета света. Для светодиодов цвет может отличаться из-за интенсивного производственного процесса, а иногда длина волны немного отличается. На листе спецификаций светодиода 5 мм вы фактически увидите минимальную и максимальную длину волны.Различия всегда находятся в пределах одного и того же спектра, просто если вы покупаете светодиоды одного цвета в разных партиях, могут быть небольшие различия (даже если наши глаза их не замечают).

          Эта длина волны фактически определяется типом полупроводникового материала, используемого для изготовления диода внутри этого 5-мм корпуса. Структура энергетических зон полупроводников различается в зависимости от материала, поэтому фотоны излучаются с разными частотами, которые влияют на свет, который мы видим. Ниже приведена полная таблица наших светодиодов и вариантов длины волны.Некоторые из наиболее популярных цветов, которые мы продаем, — темно-красный 660 нм и розовый 440 нм.

          Имеются также белые светодиоды диаметром 5 мм теплого и холодного белого цвета.

          Яркость светодиода

          Таким образом, длина волны зависит от полупроводникового материала, а интенсивность света зависит от тока, подаваемого на диод. Следовательно, чем выше ток возбуждения, тем ярче будет ваш светодиод. Яркость 5-миллиметровых светодиодов обычно измеряется в милликанделах (мкд), но это гораздо больше, чем просто установка определенного значения яркости любого светодиода.

          Самое интересное в этом измерении света, кандела, заключается в том, что это не мера количества световой энергии, как измеряется большинство других форм света, а действительная яркость. Это число находится путем взятия мощности, излучаемой в определенном направлении, и взвешивания этого числа с помощью функции светимости света. В основном это означает, что угол луча, который мы обсудим ниже, может влиять на свет, но также и на длину волны. Человеческий глаз более чувствителен к одним длинам волн, чем к другим, и эта модель яркости учитывает это.Вот почему 5-миллиметровые ИК-светодиоды не будут иметь выхода, потому что мы не можем видеть эту длину волны. Это то же самое для УФ и даже для синего и других распространенных цветов.

          Эта сила света (яркость) варьируется от светодиода к светодиоду, как вы увидите. Цвета имеют тенденцию быть ниже, от десятков до сотен, тогда как белые (и некоторые цвета, которые мы видим лучше, например зеленый) могут достигать 20 000 мкд. Мы перечисляем светоотдачу всех 5-мм светодиодов при испытательном токе 20 мА.

          Угол обзора 5 мм

          5-мм светодиоды на нашем сайте будут маркированы по цвету и углу луча.5-миллиметровые светодиоды показывают график, подобный приведенному справа, который показывает угол, под которым будет идти луч, и интенсивность под определенными углами. Чтобы прочитать график, представьте, что светодиод стоит прямо под ним. «Спицы» на графике — это углы, а радужные линии — интенсивность в процентах от максимальной интенсивности. Посмотрите ниже, как мы описываем, как найти угол обзора и яркость под этим углом любого 5-мм светодиода.

          Рассеивающий светодиод 5 мм

          Часто рекомендуется иметь какой-либо рассеиватель или матовое покрытие, если на светодиоды будет смотреть непосредственно человеческий глаз.Некоторые 5-миллиметровые светодиоды имеют покрытие купола из эпоксидной смолы, которое делает световой поток более мягким. У нас есть один белый светодиод диаметром 5 мм, в котором используется такое покрытие, поэтому оно приятно для глаз. Это снизит яркость, но сделает свет более привлекательным.

          Go Explore с 5-мм светодиодами

          Светодиоды

          диаметром 5 мм очень доступны по цене и просты в эксплуатации. Посмотрите, что вы можете с ними сделать, варианты безграничны. Теперь вы знаете, как запитать 5-миллиметровые светодиоды, определить их цвет и яркость, а также убедиться, что свет будет распространяться туда, где вам это нужно. Удачи!

          Как использовать мультиметр напряжения для устранения неполадок при установке светодиодов

          1.) Выберите правильную настройку переменного тока на вольтметре

          .

          Для проверки сети переменного тока высокого напряжения необходимо сначала установить мультиметр в правильное положение переключателя диапазона и вставить измерительный провод в соответствующий разъем. На нашем мультиметре напряжение переменного тока отмечено красным. Как видите, есть вариант 600 или 200. Вы хотите выбрать вариант выше, чем напряжение, которое вы тестируете.В этом случае мы тестируем на 120 В переменного тока, поэтому мы устанавливаем циферблат на 200. Если вы тестируете напряжение выше 200 В переменного тока, вы должны установить селекторный переключатель на 600.

          2.) Подсоедините щупы к источнику питания переменного тока

          .

          Подсоедините измерительные провода к двум точкам, в которых должны быть сняты показания напряжения, в этом случае один провод к вашей нагрузке и один провод к нейтрали, полярность не имеет значения (НИКОГДА НЕ ПРИКАСАЙТЕСЬ К ДВУМ ТОЧКАМ ОДНИМ ПРОИСХОДИТЬ). Будьте осторожны, не касайтесь проводников под напряжением какими-либо частями тела.Никогда не заземляйтесь при выполнении электрических измерений. Не прикасайтесь к открытым металлическим трубам, розеткам, арматуре и т. д., которые могут иметь потенциал земли. Изолируйте свое тело от земли, используя сухую одежду, резиновую обувь, резиновые коврики или любой разрешенный изолирующий материал. Никогда не прикасайтесь к открытой проводке, соединениям или любым проводникам цепи под напряжением, когда пытаетесь провести измерения. Всегда проверяйте правильность работы тестового оборудования перед использованием.

          3.) Проверьте показания напряжения переменного тока на мультиметре

          Если все сделано правильно, на цифровом экране мультиметра должно появиться значение напряжения.В этом случае мы тестировали, чтобы убедиться, что источник питания получает входное напряжение 120 В переменного тока, и показание составило 118,9 В переменного тока, что является приемлемым. При любых показаниях напряжения следует ожидать небольшое отклонение в любом направлении.

          1.) Выберите правильную настройку постоянного тока на вольтметре

          .

          Чтобы протестировать питание постоянного тока низкого напряжения, вы должны сначала установить мультиметр в правильное положение на переключателе диапазона и вставить измерительный провод в соответствующий разъем. На нашем мультиметре напряжение постоянного тока отмечено черным цветом.Как видите, есть варианты 200, 20 или 2. Вы хотите выбрать вариант выше, чем напряжение, которое вы тестируете. В этом случае мы тестируем 12 В постоянного тока, поэтому мы устанавливаем циферблат на 20. Если вы тестируете напряжение выше 20, вы должны установить селекторный переключатель на 200.

          2.) Подсоедините щупы к источнику питания постоянного тока

          Подсоедините измерительные провода к двум точкам, в которых должны быть сняты показания напряжения, в этом случае красный провод к положительному, а черный к отрицательному, обратная полярность даст отрицательное показание (НИКОГДА НЕ ПРИКАСАЙТЕСЬ К ДВУМ ТОЧКАМ ОДИН ВЫВОД). Будьте осторожны, не касайтесь проводников под напряжением какими-либо частями тела. Никогда не заземляйтесь при выполнении электрических измерений. Не прикасайтесь к открытым металлическим трубам, розеткам, арматуре и т. д., которые могут иметь потенциал земли. Изолируйте свое тело от земли, используя сухую одежду, резиновую обувь, резиновые коврики или любой разрешенный изолирующий материал. Никогда не прикасайтесь к открытой проводке, соединениям или любым проводникам цепи под напряжением, когда пытаетесь провести измерения. Всегда проверяйте правильность работы тестового оборудования перед использованием.

          3.) Проверьте показания напряжения постоянного тока на мультиметре

          Если все сделано правильно, на цифровом экране мультиметра должно появиться значение напряжения. В этом случае мы тестировали, чтобы убедиться, что источник питания выдает 12 В постоянного тока, и показание пришло к 12,12 В постоянного тока, что является приемлемым. При любых показаниях напряжения следует ожидать небольшое отклонение в любом направлении. Если вы поменяете полярность на своих тестовых проводах, показания будут равны -12,12 В постоянного тока, это хороший способ проверить полярность, если она не отмечена на вашем светодиодном изделии.

          1.) Найдите проблему непрерывности

          Выполняется проверка непрерывности, чтобы определить, разомкнута или замкнута цепь. Например, настенный выключатель замыкается, когда его переводят в положение «включено», и размыкает, когда его выключают. Разомкнутая цепь не может проводить электричество. Замкнутая цепь имеет непрерывность. Этот тест следует проводить при отсутствии тока. Всегда отключайте устройство от сети или выключайте главный автоматический выключатель перед попыткой проверки целостности цепи. Всегда проверяйте правильность работы тестового оборудования перед использованием.Если все сделано правильно, можно использовать тест непрерывности для определения точного места проблемы, такой как сломанное паяное соединение или потеря провода, в этом случае светодиодная лента имеет сломанное паяное соединение.

          2.) Выберите правильную настройку на вольтметре

          .

          Для проверки непрерывности установите переключатель диапазона в положение наименьшего сопротивления или эмблему, которая выглядит как перевернутый символ Wi-Fi, и подсоедините красный щуп к соответствующему разъему. Существует множество вариантов проверки уровней сопротивления, но эти параметры не очень важны для устранения любых распространенных проблем со светодиодами.Вы можете проверить, правильно ли работает ваш мультиметр, соединив два измерительных провода вместе, устройство должно издать звуковой сигнал или зарегистрироваться как 0, что означает отсутствие сопротивления.

          3.) Проверьте непрерывность источника проблемы

          После того, как вы нашли то, что, по вашему мнению, является источником вашей проблемы, и у вас правильно настроен мультиметр, вы можете приступить к поиску и устранению источника проблемы. В этом случае мы проверили положительное соединение на каждой стороне светодиодной ленты, где мы думаем, что паяное соединение нарушено. Как вы можете видеть, вольтметр не обнулился и не издал звуковой сигнал, что означает отсутствие непрерывности между этими двумя точками, то есть питание не может продолжаться между этими двумя точками. Теперь мы можем проверить две точки до и после проблемы, чтобы убедиться, что это единственное место с проблемой.

          4.) Проверьте непрерывность до и после источника проблемы

          После того, как вы нашли то, что, по вашему мнению, является источником вашей проблемы, и проверили целостность, теперь вы можете проверить целостность до и после проблемы, чтобы убедиться, что это единственный источник проблемы.При размещении двух тестовых проводов на двух положительных медных контактных площадках до и после сломанного паяного соединения измеритель напряжения сообщает мне с помощью 0 дисплея и звукового сигнала, что между этими двумя точками есть непрерывность. Теперь я могу быть уверен, что сломанное паяное соединение является источником проблемы, и с помощью быстрой пайки внахлест я могу легко устранить проблему.

          1.) Падение напряжения на светодиодах

          Распространенное заблуждение при установке светодиодов заключается в том, что вы можете просто соединить большое количество светодиодных продуктов в серию без каких-либо проблем.У нас есть некоторые продукты, которые могут работать дальше, чем другие в одной серии, но в целом, чем дольше вы запускаете светодиодный продукт в серии, тем больше падение напряжения вы испытаете, особенно когда вы используете длинные соединительные провода от вашего источника питания. источник. Параллельное соединение — лучший способ борьбы с падением напряжения в вашем светодиодном изделии, и знание напряжения, которое получают ваши светодиодные изделия, имеет решающее значение для срока службы и яркости ваших светодиодных изделий.

          2.) Проверка выхода постоянного тока от источника питания

          Если вы читали приведенное выше руководство по тестированию напряжения постоянного тока, вы должны быть знакомы с правильным способом измерения выходного напряжения источника питания постоянного тока. В этом случае источник питания выдает 12,12 В, как и должно быть, но когда я добавлю 200 футов провода между источником питания и моими лампами, вы увидите падение напряжения. Имейте в виду, что 200-футовая проволока предназначена только для демонстрационных целей. В любой установке светодиодного освещения чем короче длина используемого провода, тем лучше и равномернее будет светоотдача.

          3.) Проверка входа постоянного тока на светодиодном изделии

          После добавления 200-футового провода 18AWG между моими светодиодными фонарями и источником питания постоянного тока я могу просто использовать измерительные провода мультиметра для измерения входного напряжения моих светодиодных фонарей.В этом случае входное напряжение составляет 10,91 В постоянного тока в начале полосы, поэтому мы потеряли более 1 вольта по всему проводу. Вы также должны проверить конец вашей светодиодной установки, поскольку падение напряжения продолжает происходить во всех светодиодах. Если в конце светодиода наблюдается падение напряжения, подайте питание как в конец, так и в начало, чтобы выровнять падение напряжения.

          4.) Регулировка выходного напряжения на блоке питания светодиодов

          **Никогда не регулируйте потенциометр источника питания без использования вольтметра. Это неправильный способ сделать ваши огни ярче, со временем неправильное напряжение на ваших светодиодных лампах сократит срок службы и потенциально может стать причиной пожара.**

          Вы можете отрегулировать выходное напряжение на некоторых источниках питания с помощью подстроечного потенциометра, расположенного на передней панели устройства. Только наши невлагозащищенные блоки питания имеют подстроечный регулятор напряжения. Просто поверните потенциометр по часовой стрелке, чтобы увеличить, и против часовой стрелки, чтобы уменьшить, а затем повторно проверьте напряжение в начале светодиодов.

          5.) Повторно проверьте вход постоянного тока на светодиодном изделии

          .

          После регулировки выходного напряжения на вашем светодиодном источнике питания вы можете повторно проверить входное напряжение в начале ваших светодиодных фонарей. После регулировки подстроечного потенциометра напряжение моей светодиодной ленты теперь составляет 12,15 В постоянного тока, что гораздо более приемлемо, чем 10,9 В постоянного тока. Обязательно проверьте напряжение на всех ваших светодиодных лентах, оптимальное напряжение составляет + или — 0,75 В.

          Понимание мощности светодиодного освещения в ваттах и ​​эффективности светодиодного освещения в терминах люмен/ватт и коэффициента мощности

          Мощность светодиода

          Мощность (P) любого электрического устройства, включая светодиодную лампу, измеряется в ваттах (Вт), что равно потребляемому току или электричеству (I), измеренному в амперах, умноженному на напряжение (В).

                         P = V x I

          Таким образом, мощность светодиода пропорциональна напряжению и/или току, так что устройство может иметь низкое напряжение, но при этом может потреблять очень большой ток и потреблять большую мощность. Например, традиционный дихроичный галогенный потолочный светильник мощностью 50 Вт потребляет всего 12 В переменного тока, но потребляет 4,167 ампер.

          Светодиодные лампы

          по своей природе имеют низкое напряжение, но также и относительно низкий ток, что делает их менее мощными и более эффективными, чем традиционные лампы накаливания и галогенные светильники.Обычно речь идет о токе от 100 до 750 миллиампер в зависимости от прямого напряжения, необходимого для включения светодиода. В связи с этим, только потому, что светодиодный свет использует более высокий ток, это не означает, что он будет ярче. Скорее, это зависит от мощности, которая пропорциональна увеличению напряжения и/или тока. Есть некоторое преимущество в использовании светодиодов с более высоким напряжением, когда между светодиодом и источником питания возникают большие расстояния, например, в полосовом светодиодном освещении. Однако для большинства приложений это не имеет большого значения.

          Типичные диапазоны мощности бытовых и коммерческих ламп общего назначения составляют от 3 Вт до 15 Вт. Как правило, чем выше мощность, тем больше ток и, следовательно, больше светоотдача. Однако это не всегда так и приводит нас к понятию КПД и коэффициента мощности.

          Эффективность светодиодного освещения

          Эффективность светодиодного освещения измеряется в люменах на ватт (Лм/Вт), что относится к общему количеству света, излучаемого светодиодной лампой на 1 Вт энергии.

                          Эффективность = общий световой поток / общая мощность

          Старые светодиодные чипы, установленные в светодиодных лампах предыдущего поколения, выпущенных еще в 2008–2010 годах, производят меньше света на ватт, чем светодиодные чипы 2011–2012 годов, используемые в более современных светодиодных лампах. Например, лампа мощностью 7 Вт 2012 года с чипом CREE XT-E может производить больше света или светового потока, чем лампа мощностью 12 Вт с более старым чипом CREE XP-E. Более современные светодиодные лампы также имеют лучшую конструкцию радиатора, что обеспечивает более высокую светоотдачу.

          Важный вывод заключается в том, что более высокая мощность не всегда означает большее количество света, а «больше — не всегда лучше». В конечном счете, для потребителя важно провести исследование или «попробовать, прежде чем купить». Подумайте о том, чтобы обратиться к нашему контрольному списку руководства по покупке светодиодов в разделе, посвященном сроку службы светодиодов, чтобы отсеять потенциально неэффективные или ненадежные продукты.

          Эффективность светодиодов в сравнении с эффективностью лампы

          Как обсуждалось в разделе «Уровни люмена» в «Общие сведения о светодиодном освещении», вы также должны следить за тем, чтобы в информации о продавце указывалась эффективность лампы, а не эффективность светодиода.Из-за присущих колбе потерь КПД лампы всегда будет меньше, чем КПД светодиода, в зависимости от конструкции. Это включает в себя тепловые эффекты, потери драйвера и оптическую неэффективность, которые в совокупности снижают общую эффективность светодиодной лампы или светильника по сравнению с внутренним корпусом светодиода или чипом. В совокупности эти потери могут снизить эффективность более чем на 30%. В таких случаях производитель может указать, что светодиодная лампа MR16 имеет световой поток 720 лм, но в действительности для светодиодной лампы он составляет всего около 500 лм.

          Светодиодное освещение и коэффициент мощности 

          Еще одним усложнением является коэффициент мощности (PF), значение которого меньше 1,0 и измеряет эффективность драйвера светодиода или источника питания. По сути, электрическое устройство может иметь номинальную мощность 100 Вт, но фактически потреблять более 100 Вт из-за фазовой задержки между мгновенным напряжением и мгновенным током. Помните, что питание от сети представляет собой переменный или переменный ток, и он состоит из синусоидальных волн колеблющегося напряжения и колебательного тока.В идеале эти две формы волны являются синхронными (PF = 1), но из-за природы электроники или индуктивных нагрузок, таких как электродвигатели, возникает задержка между формой волны напряжения и формой волны тока, что приводит к растрате электроэнергии или реактивной мощности, которая не в состоянии выполнять какую-либо работу. Таким образом, устройство может быть рассчитано на реальную мощность 1000 Вт, но потреблять 1500 Вт полной или активной мощности из-за коэффициента мощности 0,67 и в конечном итоге терять 500 Вт или 1/3 от общей потребляемой мощности из-за того, что ток не совпадает по фазе.Отмечая, что для того, чтобы электрическое устройство могло использовать ток, он должен быть в фазе с напряжением, при условии, что мощность равна напряжению x ток или P = VI.

          PF обычно является проблемой только в коммерческих приложениях в индуктивных устройствах, которые используют очень большую мощность, так что задержки между током и напряжением в сумме приводят к значительным потерям мощности. К другим компонентам, вызывающим задержки между током и напряжением, относятся трансформаторы, регуляторы напряжения и балласты в люминесцентных лампах.В жилых помещениях такие потери относительно минимальны, и электрические компании в любом случае будут взимать плату только за реальную мощность. Тем не менее, потери все еще существуют, поэтому те, кто заботится об энергопотреблении или экологически чистые люди, могут захотеть проверить коэффициент мощности своих источников питания для светодиодного освещения, чтобы убедиться, что коэффициент мощности больше 0,8, чтобы обеспечить минимальные потери энергии. На самом деле программа Energy Star Министерства энергетики США (DOE) предписывает минимально допустимые коэффициенты мощности или 0,7 и 0,9 соответственно для бытовых и коммерческих светодиодных светильников.

          В настоящее время большинство источников питания имеют пассивную или активную коррекцию коэффициента мощности в той или иной форме, что приводит к коэффициенту мощности > 0,9, что позволяет достичь минимальных потерь мощности. Единственным исключением являются драйверы со сверхвысоким затемнением, которые затемняют до 1%. Из-за высоких емкостных нагрузок, необходимых для стабилизации тока при очень низких уровнях затемнения, чтобы избежать мерцания, PF плохой, обычно около 0,65, что означает, что светодиодная лампа мощностью 10 Вт будет потреблять около 15,4 Вт (или ВА, полная мощность) при полной нагрузке.Однако на практике это не является большой проблемой, поскольку эти драйверы обычно используются в приложениях, где яркость ламп будет уменьшаться до низких уровней в течение большей части их срока службы, так что реальная мощность составляет 2 или 3 Вт, а кажущаяся мощность все еще очень мала. до 4,6 Вт.

          Если диммирование будет только изредка, то мы предлагаем пойти на компромисс с минимальным эффектом диммирования с драйвером, у которого коэффициент мощности > 0,9. Хотя, как уже отмечалось, это в основном проблема коммерческого освещения, где лампы работают от 8 до 24 часов в сутки.Если вы являетесь жилым пользователем, вы можете меньше беспокоиться. Тем не менее, пожалуйста, обратите внимание на рейтинги PF на вкладке со спецификациями наших продуктов, чтобы получить представление об эффективности.

          Если вы являетесь коммерческим клиентом, в бизнесе которого преобладают высокоиндуктивные нагрузки, такие как электродвигатели, или большой набор емкостных нагрузок с плохим коэффициентом мощности, вам следует рассмотреть возможность коррекции коэффициента мощности (PFC) и посетить наш раздел, посвященный государственным скидкам. и схемы, по которым такие проекты могут субсидироваться.Если вы потребляете очень много энергии, то PFC может привести к очень большой экономии электроэнергии и счетов за электроэнергию.

          Каталожные номера:

          Энергоэффективность светодиодов. Программа строительных технологий. Информационный бюллетень по технологии твердотельного освещения. Министерство энергетики США. www.eere.energy.gov

          Возобновляемые и эффективные системы электроснабжения. 2004. Гилбер М. Мастерс

          Анализ энергосистемы. 2007. ПП Део

          Методы коррекции коэффициента мощности в светодиодном освещении.Август 2011 г., Новости электронных компонентов  

          Резисторы для светодиодных цепей | Применение резисторов

          Резисторы в цепях светоизлучающих диодов (LED)

          Светодиод (светоизлучающий диод) излучает свет, когда через него проходит электрический ток. Простейшая схема питания светодиода представляет собой источник напряжения с последовательно соединенными резистором и светодиодом. Такой резистор часто называют балластным резистором. Балластное сопротивление используется для ограничения тока через светодиод и предотвращения чрезмерного тока, который может сжечь светодиод. Если источник напряжения равен падению напряжения светодиода, резистор не требуется. Светодиоды также доступны в интегрированном корпусе с соответствующим резистором для работы светодиодов.

          Сопротивление балластного резистора легко рассчитать с помощью закона Ома и законов Кирхгофа. Номинальное напряжение светодиода вычитается из источника напряжения, а затем делится на желаемый рабочий ток светодиода:

          $$R = \frac{V — V_{LED}}{I}$$

          Где В — источник напряжения, В LED — напряжение светодиода, а I — ток светодиода.Таким образом, вы можете найти правильный резистор для правильной работы светодиода.

          Эта простая светодиодная схема с балластным резистором может использоваться в качестве индикатора включения для DVD-плеера или компьютерного монитора. Хотя эта схема широко используется в бытовой электронике, она не очень эффективна, так как избыточная энергия от источника напряжения рассеивается на балластном резисторе. Поэтому иногда применяются более сложные схемы для обеспечения большей энергоэффективности.

          Пример простой светодиодной схемы

          В следующем примере светодиод с напряжением 2 В и током 30 мА должен быть подключен к источнику питания 12 В.

          Балластное сопротивление можно рассчитать по формуле:

          $$R = \frac{V — V_{LED}}{I} = \frac{12 — 2}{0,03} = 333 \Omega$$

          Резистор должен иметь сопротивление 333 Ом. Если точное значение недоступно, выберите следующее более высокое значение сопротивления, чтобы поддерживать ток ниже пределов светодиода.

          Несколько светодиодов в последовательной цепи

          Часто несколько светодиодов подключаются к одному источнику напряжения последовательным соединением.Таким образом, несколько резисторов могут разделять один и тот же ток. Поскольку ток через все последовательно соединенные светодиоды одинаков, они должны быть одного типа. Обратите внимание, что для освещения одного светодиода в этой схеме используется столько же энергии, сколько и для нескольких последовательно соединенных светодиодов. Источник напряжения должен обеспечивать достаточно большое напряжение для суммы падений напряжения светодиодов плюс резистор. Обычно источник напряжения на 50 процентов выше, чем сумма напряжений светодиодов. В качестве альтернативы можно использовать источник с более низким напряжением и более низким током, компенсируя более низкую яркость каждого отдельного светодиода за счет использования большего количества светодиодов.Кроме того, тепловые потери меньше, а срок службы светодиодов выше из-за меньшей нагрузки.

          Пример последовательного подключения нескольких светодиодов

          В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2 В и синий светодиод с напряжением 4,5 В. Оба имеют номинальную силу тока 30 мА. Законы Кирхгофа говорят нам, что сумма падений напряжения в цепи равна нулю. Поэтому напряжение на резисторе должно быть равно напряжению источника минус сумма падений напряжения на светодиодах.По закону Ома рассчитываем значение сопротивления балластного резистора:

          $$R = \frac{V — V_{LED1} — V_{LED2}}{I} = \frac{12 — 2 — 4,5}{0,03} = 183,3 \Omega$$

          Сопротивление резистора должно быть не менее 183,3 Ом. Обратите внимание, что падение напряжения на резисторе составляет 5,5 В. Можно было бы подключить в схему дополнительные светодиоды.

          Несколько светодиодов в параллельной цепи

          Возможно подключение светодиодов параллельно, но это может создать больше проблем, чем последовательное подключение.Прямые напряжения светодиодов должны точно совпадать, иначе загорится только светодиод с самым низким напряжением и, возможно, перегорит из-за избыточного тока. Даже если светодиоды имеют одинаковую спецификацию, они могут иметь плохое соответствие ВАХ из-за различий в производственном процессе. Это приводит к тому, что светодиоды пропускают разный ток. Чтобы свести к минимуму разницу в токе, параллельно подключенные светодиоды обычно имеют балластный резистор для каждой ветви.

          Как работает светодиод?

          Светодиод (светоизлучающий диод) представляет собой полупроводниковое устройство.По сути, это соединение P-N с выводами, прикрепленными к каждой стороне. Идеальный диод имеет нулевое сопротивление при прямом смещении и бесконечное сопротивление при обратном смещении. Однако в реальных диодах на диоде должно присутствовать небольшое напряжение, чтобы он проводил ток. Это напряжение, наряду с другими характеристиками, определяется материалами и конструкцией диода. Когда напряжение прямого смещения становится достаточно большим, избыточные электроны с одной стороны перехода начинают объединяться с дырками с другой стороны.Когда это происходит, электроны переходят в менее энергичное состояние и выделяют энергию. В светодиодах эта энергия выделяется в виде фотонов. Материалы, из которых изготовлен светодиод, определяют длину волны и, следовательно, цвет излучаемого света. Первые светодиоды были изготовлены из арсенида галлия и излучали красный свет. Сегодня светодиоды изготавливаются из различных материалов и могут излучать различные цвета. Напряжения варьируются от примерно 1,6 В для красных светодиодов до примерно 4,4 В для ультрафиолетовых. Знание правильного напряжения важно, потому что приложение слишком большого напряжения к диоду может привести к большему току, чем светодиод может безопасно выдержать.

          Сегодня доступны светодиоды малой и высокой мощности. Светодиоды обычно выделяют меньше тепла и потребляют меньше энергии, чем лампы накаливания такой же яркости. Они также служат дольше, чем эквивалентные лампочки. Светодиоды используются в широком спектре осветительных и светочувствительных приложений.

          Использование светодиодов в качестве фотодиодов

          В качестве фотодиодов можно использовать светодиоды

          . Фотодиоды — это полупроводники, поведение которых противоположно светодиодам. В то время как светодиод будет излучать свет по мере его проводимости, фотодиод будет генерировать ток при воздействии света с правильной длиной волны.Светодиод будет демонстрировать эту характеристику при воздействии света с длиной волны ниже его нормальной рабочей длины волны. Это позволяет использовать светодиоды в таких схемах, как датчики света и оптоволоконные цепи связи.

          Символ светодиода

          Минимальное ограниченное напряжение 5 обычных цветов светодиодов

          Стандартное напряжение светодиодных ламп составляет 12 В и 24 В, и одна группа светодиодных ламп 12 В состоит из трех светодиодов, а 24VLED состоит из шести светодиодов.Однажды какой-то клиент попросил уменьшить напряжение питания, но здесь мы должны заметить, что не все цвета и все характеристики светодиодных светильников могут быть использованы при снижении напряжения питания, и оно не может быть уменьшено безоговорочно. Для того, чтобы классифицировать напряжение того, какие светодиоды могут быть уменьшены, сначала посмотрите на управляющее напряжение цельного светодиода пяти распространенных цветов.

          1. Белый светодиод: 3,0~3,3 В

          2. Красный светодиод: 1,8 ~ 2,2 В

          3.Синий светодиод: 3,0~3,2 В

          4. Зеленый светодиод: 2,9 ~ 3,1 В

          5. Желтый светодиод: 1,8 ~ 2,0 В

          Стандартные характеристики напряжения источника постоянного тока, доступные на рынке, составляют 6 В, 9 В, 12 В, 18 В, 24 В, тогда спецификации понижения напряжения светодиодных ламп также должны соответствовать вышеуказанным спецификациям, в противном случае соответствие мощности тоже проблема.

          A. Использование нескольких типов светодиодов общего цвета в качестве примера для иллюстрации минимального предела напряжения группы из 3 светодиодов.

          1. Белые светодиоды: в соответствии с минимальным управляющим напряжением: 3 * 3,0 = 9 В, если источник питания светодиода составляет 9 В, и к этому светодиоду нельзя добавить резистор ограничения тока. Если светодиоды из других групп выйдут из строя, это вызовет увеличение тока на светодиодах этой группы, что приведет к перегоранию светодиодов. Но если добавить ограничивающий токовый резистор в эту группу светодиодов, он будет ниже, чем минимальное управляющее напряжение светодиода, и это повлияет на силу света и эффект свечения светодиодной лампы.Следовательно, нижний предел напряжения белых светодиодных ламп составляет 12 В.

          2. Красные светодиоды: в соответствии с минимальным управляющим напряжением 1,8 В: 3 * 1,8 В = 5,4 В, затем, исходя из спецификации общего напряжения питания, 6 В в порядке. Поскольку 6 В-5,4 В = 0,6 В, мы можем добавить 30 Ом. токоограничительный резистор. Таким образом, минимальное ограничение напряжения красного светодиода составляет 6 В.

          3.Синие светодиоды: минимальный предел напряжения синих светодиодов такой же, как у белых светодиодов, который составляет 12 В.

          4. Зеленые светодиоды: в соответствии с минимальным управляющим напряжением 2,9 В: 3 * 2,9 В = 8,7 В, затем, исходя из общей спецификации напряжения питания, 9 В в порядке. 9V-8.7V=0.3V, мы также можем добавить резистор ограничения тока 15 Ом. Таким образом, минимальное напряжение зеленого светодиода составляет 9 В.

          5. Желтые светодиоды: минимальный предел напряжения желтого светодиода такой же, как и у красного светодиода, который составляет 6 В.

          B. Минимальный предел напряжения группы из шести светодиодов:

          1.Белые светодиоды: в соответствии с минимальным управляющим напряжением: 6 * 3,0 = 18 В, если источник питания светодиода составляет 18 В, к этому светодиоду нельзя добавить резистор ограничения тока. Если светодиоды из других групп сломаны, это приведет к перегибу текущего светодиода этой группы, что приведет к перегоранию светодиодов. Но если добавить резистор ограничения тока в эту группу светодиодов, то оно будет ниже, чем минимальное управляющее напряжение светодиода, и это повлияет на силу света и эффект свечения светодиодной лампы. Таким образом, нижний предел напряжения белых светодиодных ламп составляет 24 В.

          2. Красные светодиоды: в соответствии с минимальным напряжением питания: 6 * 1,8 В = 10,8 В, исходя из общей спецификации источника питания, 12 В в порядке. Поскольку 12В-10,8В=1,2В, мы также можем добавить резистор ограничения тока 60 Ом. Таким образом, минимальный предел напряжения красного светодиода составляет 12 В.

          3.Синие светодиоды: минимальный предел напряжения синего светодиода такой же, как у красного светодиода, который составляет 24 В.

          4. Зеленые светодиоды: в соответствии с минимальным напряжением питания: 6*2.9 В = 17,4 В, тогда, исходя из общей спецификации напряжения питания, 18 В в порядке.