Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Прибор для проверки емкости конденсаторов: ПРИБОР ДЛЯ ИЗМЕРЕНИЯ ЕМКОСТИ КОНДЕНСАТОРОВ

Содержание

Прибор для измерения ёмкости конденсаторов

Из заголовка статьи понятно, что сегодня речь пойдет о приборе для измерения ёмкости конденсаторов. Не в каждом простом мультиметре есть данная функция. А ведь при изготовлении очередной самоделки мы очень часто задумываемся: будет ли она работать, исправны ли конденсаторы, которые мы применили, как их проверить.Да и просто в процессе ремонта данный прибор будет необходим. Проверить на целостность электролитический конденсатор, конечно, можно при помощи тестера. Но мы узнаем: живой он или нет, а вот определить ёмкость , насколько он сухой, мы не сможем.

В некоторых дешевых мультиметрах, которые присутствуют сейчас на рынке, имеется эта функция. Но предел измерения ограничен цифрой в 200 микрофарад. Что явно мало. Нужно хотя бы четыре тысячи микрофарад. Но такие мультиметры стоят на порядок выше. Поэтому я наконец-то решил купить измеритель ёмкости конденсаторов. Выбирал самый дешевый с приемлемыми характеристиками. Остановил свой выбор на XC6013L:

Поставляется это устройство в красивой коробке. Правда, на коробке изображение другого мультиметра:

А сверху наклейка с моделью данного прибора, наверно, у китайцев не хватает коробок:

Прибор заключён в защитный желтый кожух из мягкой пластмассы, похожей на резину. В руках чувствуется увесистость, что говорит о серьезности прибора. С нижней стороны имеется откидная подставка, которая многим может и не пригодиться:

Питается измеритель ёмкости от батарейки напряжением 9 вольт типа крона, которая поставляется в комплекте:

Характеристики прибора просто великолепны. Он может производить измерения от 200 пикофарад до 20 тысяч микрофарад. Что вполне достаточно для радиолюбительских целей:

Сверху прибора расположился большой и информативный жидкокристаллический дисплей. Под ним находятся две кнопки. Слева — красная кнопка, при помощи которой можно зафиксировать на дисплее текущее показание ёмкости. А справа — синяя кнопка, которая очень порадовала, — подсветкой экрана, что, несомненно, является плюсом данного прибора. Между кнопками имеется коннектор для измерения малогабаритных конденсаторов. Правда, проверить бушные конденсаторы, выпаянные из плат доноров, не получается, так как контактные площадки расположены достаточно глубоко. Поэтому данным коннектором можно воспользоваться, только проверяя конденсаторы с длинными выводами:

Под селектором выбора диапазонов измерений находится коннектор для подключения щупов. Кстати, щупы выполнены из такого же материала, как защитный кожух прибора, наощупь они довольно-таки мягкие:

Там же находится, несомненно, самая важная функция прибора — это установка нулевых показаний при измерении ёмкостей в разряде пикофарад. Что наглядно видно на следующих двух фотографиях. Здесь умышленно извлечен один щуп и при помощи регулятора выставлен ноль:

Здесь щуп поставлен на место. Как видите, ёмкость щупов влияет на показания. Теперь достаточно при помощи регулятора выставить ноль и произвести измерения, что будет достаточно точно:

Теперь давайте протестируем прибор в работе и посмотрим, на что он способен.

Тестируем измеритель ёмкости конденсаторов

Для начала будем проверять конденсаторы заведомо исправные, новые и извлечённые из плат доноров. Первым будет подопытный на 120 микрофарад. Это новый экземпляр. Как видите, показания слегка занижены. Кстати, таких конденсаторов у меня штуки 4, и ни один не показал 120 микрофарад. Возможна погрешность прибора. А может, сейчас делают одну некондицию:

Вот одна тысяча микрофарад, весьма точно:

Две тысячи двести микрофарад, тоже неплохо:

А вот десять  микрофарад:

Ну а теперь сто микрофарад, очень хорошо:

Давайте посмотрим на показания прибора, которые он покажет при проверке дефектных конденсаторов, которые были извлечены во время ремонта монитора samsung. Как видите, разница ощутима:

Вот такие получились результаты. Конечно, в некоторых случаях неисправность электролитического конденсатора видна визуально. Но в большинстве случаев без прибора обойтись сложно. К тому же я тестировал данный прибор на двух платах, проверяя конденсаторы, не выпаивая их. Устройство показало неплохие результаты, только в некоторых случаях нужно соблюдать полярность. Поэтому я советую купить такой прибор, и вы сможете измерять ёмкость конденсаторов своими руками.

Смотрим видеоверсию данной статьи:

.

Измеритель ёмкости конденсаторов HONEYTEK A6013L

Измеритель ёмкости конденсаторов HONEYTEK A6013L. Есть доставка из России. В Новосибирск пришёл за неделю, и был доставлен на дом курьером.

В небольшом чёрном конверте была только картонная коробка с прибором, без «пупырки». Коробка универсальная, поэтому изображённый на ней прибор не похож на тот, что находится внутри:


Первая загадка! Найди отличия на изображении двух приборов в центре коробки (я нашёл только одно):


Сзади на коробке информация о производителе:


Слева на коробке модельный ряд. Нужная модель помечена вручную маркером:


Содержимое. Загадка вторая! Как произносится название TIANQIU на комплектной батарейке типа «Крона»:


Внутри находится лист A4 с инструкцией на плохом английском, книжка-инструкция на хорошем китайском, талон ОТК от 29.05.2020 г, прибор, батарейка, и два коротких провода с «крокодилами»:


Сам прибор довольно компактный, но увесистый. В руке лежит нормально, защищён чехлом из резиноподобного пластика:


Загадка третья! Как понять надпись на крышке батареи на 9 вольт (Во избежание удара электрическим током перед заменой батареи или открывания корпуса отсоедините измерительные провода):


Защитный чехол оранжевого цвета съёмный, пахнет химической резиной:


Сам измеритель заключён в твёрдый синий пластик без запаха:


Тестируем новенький китайский электролитический конденсатор, 10000 мкФ на 16 вольт путём втыкания его в контактную площадку под экраном справа:

Измерение конденсаторов с точностью 2% в качестве эталонных.

Два б/у слюдяных конденсатора СГМ-4 6200x500v. Первый:


Второй:


Один «новый» СГМ-3 на 3600x500v от 03.1970 г.:


Один «новый» СГМ-3 на 1200x500v от 04.1976 г.:


Померил также имеющиеся у меня б/у электролиты, все в порядке.


Есть приятная голубоватая подсветка, включаемая кнопкой со знаком «солнышко» (горит 5 секунд):


Кнопка HOLD, там же, фиксирует на экране цифры, в противном случае при измерении электролитических конденсаторов они имеют обыкновение хаотично меняться в плюс и минус в небольшом диапазоне. Плёночные конденсаторы тестируются нормально.

Сей девайс успешно продаётся по всему миру уже лет десять. И даже на Амазон, и имеет там высокую оценку. В России же его почему-то мало кто знает. И даже здесь, на Муське, этот обзор будет первый.

На Ютубе есть хороший видеообзор, не мой.

Предвижу вопрос: Зачем покупать отдельный тестер конденсаторов, если обычный мультиметр может измерять ёмкости тоже?

Ответ прост: Многие недорогие мультиметры могут мерить конденсаторы максимум до 200 микрофарад, тот же VC97, а этот — до 20 миллифарад. Так что для ремонта конденсаторов блока питания — самое то.

Вердикт — дёшево и сердито. Полезно. Быстрая доставка из России.

Купил за свои:


К покупке рекомендую.

Измерители емкости конденсаторов, схемы самодельных приборов

Простые схемы измерителей ESR оксидных конденсаторов

В статье приводятся варианты схемы простого прибора, позволяющего находить неисправные электролитические конденсаторы, не выпаивая их из схемы. Кроме того, данным прибором можно «прозванивать» электрические цепи, проверять прохождение сигнала в устройствах ВЧ и НЧ, оценивать моточные …

5
7741
0

Прибор для измерения емкости электролитических конденсаторов

Этот измеритель является простым устройством, служащим для измерения емкости электролитических конденсаторов от 1 мФ до 4700 мФ. Его точность — около 5% — в большей мере зависит от точности исполнения и градуировки. Принцип действия устройства следующий: измеряемый конденсатор Сх заряжается током…

1
6640
7

Измеритель емкости на логических микросхемах (К1ЛБ553, К155ИЕ2)

Схема простого самодельного измерителя емкости на логических микросхемах. Измеритель емкости состоит из генератора импульсов (D1.1—D1.3), делителя частоты-(02—D4), электронного ключа (V1) и измерительной цепи (V2, R7 и Р1). Принцип действия прибора основан на измерении среднего тока разряда измеряемого конденсатора, заряженного от источника …

0
4336
0

Измеритель емкости на операционном усилителе К153УД1 (МАА501)

Принципиальная схема самодельного измерителя емкости конденсаторов. выполнена на операционном усилителе К153УД1. Принцип действия измерителя емкости конденсаторов от нескольких пикофарад до 5 мкФ основан на измерении переменного тока, протекающего через исследуемый конденсатор …

1
5469
0

Простой стрелочный измеритель емкости электролитических конденсаторов

Схема измерителя емкости электролитических конденсаторов, которые в процессе эксплуатации и хранения изменяют свою емкость, поэтому иногда возникает необходимость измерения их емкости. Принцип действия измерителя емкости конденсаторов от 3000 пФ — 300 мкгФ основан на измерении пульсирующего тока, протекающего …

0
6014
0

Приставка к частотомеру для проверки конденсаторов (icm7555)

Для измерения емкости конденсаторов можно воспользоваться схемой, рис., и любым частотомером. Схема представляет из себя приставку к частотомеру, по показаниям которого при помощи пересчета можно определить емкость. Измеряемый конденсатор подключается к клеммам Х1 — Х2, и его…

1
4957
0

Испытатель конденсаторов (155ЛА3)

С помощью такого прибора можно проверить, нет ли внутри конденсаторов обрыва или короткого замыкания, значительной утечки. Рассчитан он на конденсаторы емкостью более 50 пФ. Основой прибора является собранный на элементах …

1
5029
0

Испытатель конденсаторов

Как показала практика, при ремонте промышленной и бытовой радиоаппаратуры наиболее часто встречающаяся неисправность — полная (обрыв, пробой) или частичная потеря емкости как оксидных, так и любых других …

1
7859
0

Цифровой измеритель ёмкости

Предлагаемый прибор позволяет измерять емкость конденсаторов в диапазоне 1…10000 мкФ. Он портативен и потребляет от девятивольтовой батареи всего 7 мА. Принцип роботы прибора основан на измерении продолжительности разряда конденсатора…

0
6562
3

Радиодетали, электронные блоки и игрушки из китая:

Испытатель конденсаторов.

С
помощью такого прибора можно проверить, нет ли внутри конденсаторов
обрыва короткого замыкания, или значительной утечки. Рассчитан он на
конденсаторы емкостью более 50 пФ. Основа
прибора генератор прямоугольных импульсов, собранный на элементах
DD1.1- DD1.3, частота следования которых составляет около 75 кГц, а
скважность примерно 3.

Элемент DD1.4,
включенный инвертором, исключает влияние нагрузки на работу генератора.
С его выхода импульсное напряжение идет по цепи: резистор R3,
конденсатор С2 и проверяемый конденсатор,
подключенный к гнездам XS1 и XS2 и далее через диод VD1, микроамперметр
РА1 и шунтирующий их резистор R2. Детали этой нагрузочной цепи
подобраны таким образом, что без проверяемого конденсатора в ней ток
через стрелочный прибор РА1 не превышает 15
мкА. При подключении проверяемого конденсатора и нажатии кнопки SB1 ток
в цепи увеличивается до 40 … 60 мкА, и если прибор будет показывать
ток в этих пределах, то независимо от емкости проверяемого конденсатора
можно сделать вывод о его исправности. Эти пределы тока цепи отмечают
на шкале прибора цветными метками. Если емкость проверяемого
конденсатора больше 5 мкФ, то при нажатии на кнопку стрелка индикатора
резко отклонится до конечной отметки шкалы, а затем, возвращаясь назад,
устанавливается в пределах отмеченного сегмента. Полярный конденсатор
выводом положительной обкладки подключают к гнезду XS1.При внутреннем
обрыве проверяемого конденсатора стрелка индикатора останется на
исходной отметке, а если конденсатор пробит или его внутренне
сопротивление, характеризующее ток утечки, менее 60 кОм, стрелка
индикатора отклоняется за пределы контрольного сегмента и даже может
зашкаливать. 

Налаживание:
После включения питания стрелка должна отклониться до деления примерно
15 мкА. В случае необходимости такой ток устанавливают подбором
резистора R3. Затем к гнездам «Сх»
подключают конденсатор емкостью 220 … 250 пФ и подбором резистора R2
добиваются отклонения стрелки индикатора до отметки 50 мкА. После этого
замкнув гнезда, убеждаются в отклонении стрелки за пределы шкалы.
Монтажную плату устройства вместе с питающей его батареей 3336Л следует
разместить в корпусе подходящих размеров.
Испытатель можно питать и
от любого другого источника с напряжением 5V и током не менее 50 мА.


Рис.1 Принципиальная схема измерителя конденсаторов

Монтажная плата испытателя конденсаторов показана на рисунке.
В конструкции использован стрелочный микроамперметр от китайского мультиметра:

Шкала прибора заменена другой с
обозначением сектора для исправных конденсаторов, который располагается
между 8 и 20 Омами по предыдущей верхней шкале:


Для нормальной работы микроамперметра сопротивление R3 снижено до 100 Ом.
Устройство питается от 4-х батареек 1,5V. Ток потребления в дежурном режиме с микросхемой К131ЛА3 составил 20,3 мА, в режиме измерения 20,5 мА.


Источник: http://radio-hobby. org/




Прибор предназначен для измерения емкости оксидных конденсаторов в
составе узла, в котором они применены
(т. е. без выпаивания).
Параметры
входных цепей прибора рассчитаны таким образом, что на точность
измерения практически не влияют ни сопротивление подключенных к
проверяемому конденсатору цепей аппарата, ни полярность этих элементов,
ни полярность подключения самого прибора.

Пределы измерения
емкости — 1… 1000 мкФ,
Относительная погрешность измерения в
интервале значений 20…500 мкФ — не более —20 и +40 %.

Принципиальная схема.

Принцип
его действия основан на измерении падения переменного (50 Гц)
напряжения на делителе, состоящем из резисторов R1, R2 и проверяемого
конденсатора Сх. Снимаемый с делителя сигнал усиливается микросхемой
DA1 и поступает на выпрямитель, выполненный по схеме удвоения
напряжения на диодах VD1, VD2. Постоянная составляющая выпрямленного
напряжения   через   логарифмирующую цепь R7,VD3,R8
(она расширяет пределы измерения емкости) поступает на микроамперметр
РА1, и его стрелка отклоняется на угол, обратно пропорциональный
емкости конденсатора Сх.
 В приборе можно использовать постоянные резисторы МЛТ, переменные резисторы СП4-1 (СП5-2, ППЗ-45),
конденсаторы
КМ-6, МБМ(С1), КТ-1(СЗ). К50-6. К50-16, К53-1 (остальные).
Трансформатор Т1—любой, мощностью более 1 Вт с напряжением
на вторичной обмотке 2X22V.
Для подключения прибора к проверяемому
конденсатору и прокалывания защитного лака, которым обычно покрыты
печатные платы радиоаппаратуры, рекомендуется изготовить специальный
щуп. По сути, это — два склеенных корпусами цанговых карандаша, в
которые вместо грифелей вставлены стальные иглы. К утолщенным концам
игл припаивают гибкий экранированный провод, который подключают к
гнездам XS1, XS2.

Налаживание прибора сводится к подгонке
(попеременным изменением сопротивлений резисторов R3, R7 и R8) шкалы
путем измерения емкости заведомо исправных конденсаторов с возможно
меньшим допускаемым отклонением емкости от номинала (конденсаторы
с  допуском   10%).
Шкалу микроамперметра
градуируют непосредственно в микрофарадах или пользуются при работе
градировочной таблицей. Если применен микроамперметр с током полного
отклонения стрелки 100 мкА, то отметка 5 мкА соответствует емкости 1000
мкФ, отметки 10, 20, 40, 60, 80 и 90 мкА — соответственно 500, 200,
100, 50, 20 и 10 мкФ, отметка 100 мкА — 0.
Перед измерением прибор
калибруют переменным резистором R8, ось которого выведена на лицевую
панель, устанавливают стрелку микроамперметра РА1 на отметку 0 (100
мкА).
Пределы измерения емкости можно сместить в
сторону больших или меньших значений, для чего достаточно заменить
резисторы R1 и R2 резисторами соответственно меньших или больших
сопротивлений, сохранив неизменным их отношение.
 
   Микросхему К548УН1А в испытателе можно заменить на
К140УД7, К554УД2 и т. п., обеспечив им напряжения питания +15V и — 15V.
Необходимые
для питания ОУ DА1 напряжения получены выпрямлением переменного
напряжения обмотки II трансформатора Т1 и последующей стабилизацией его
параметрическими стабилизаторами R9,VD4 и R10,VD5.


Для
расширения пределов измерения емкости в сторону меньших значений в
прибор необходимо ввести еще один делитель входного напряжения,
подключив его как показано на рис.1 (нумерация новых деталей
продолжает начатую на схеме в начале статьи, пропуск в нумерации
означает, что элемент исключен). Делитель R11, R12 подключают
к прибору, переключателем SA1.
Замена подстроечного резистора R7 постоянным, и введение резистора R14 облегчают налаживание испытателя.


Чертеж
печатной платы модернизированного прибора показан на рис. 2,
смонтированную плату закрепляют непосредственно на шпильках зажимов
микроамперметра  РА1.

Простой прибор, за основу которого взяты предыдущие варианты схем.
Конструкция размещена в корпусе милливольтметра SUNWA YX1000A:

Для
установки «нуля» использован переменный резистор R8, определяющий
коэффициент усиления ОУ DA1. Если сопротивление микроамперметра РА1
отличается от 1 кОм, то номинал переменного резистора должен быть
соответственно изменен. Для уменьшения чувствительности усилителя к
«наводкам» от сетевого напряжения номинал разделительного конденсатора
С1 увеличен в 10 раз (1 мкФ).
Для градуировки шкалы индикатора
рассчитывают отклонения стрелки (в процентах от всей шкалы) для каждой
емкости из ряда Е12 (от 2,2 мкФ до 220 мкФ) по формуле: (Сх/Roбp)x100%.
Образцовые
резисторы R4—R6 подбирают с максимально возможной точностью.
Желательно, чтобы резисторы R1—R3 отличались друг от друга по
сопротивлению точно в 10 раз, иначе придется устанавливать стрелку
индикатора на «нуль» при каждой смене диапазона.
Операционный
усилитель должен быть с полной внутренней коррекцией и высоким входным
сопротивлением, например: К140УД8, К140УД18, К140УД22. Диоды VD1—VD4 —
германиевые с малым прямым напряжением. VD5.VD6 — любые с обратным
напряжением более 30V. Конденсатор С1 — любой малогабаритный, а С2 —
обязательно с малым током утечки (К52, К53). Переключатель диапазонов
SA1 — штатный, галетный. Для более плавной установки «нуля», резистор
R8 рекомендуется заменить цепочкой из последовательно соединенных
переменного и постоянного резисторов, чтобы переменным можно было
компенсировать любые изменения сетевого напряжения.
Для приборов,
описанных выше, также желателен сетевой трансформатор с увеличенным
числом витков на вольт. Конденсатор C1 нужно использовать
емкостью 1 мкФ, резистор R3 заменить переменным («установка нуля»), а
переменные и подстроенные — постоянными. Резистором R6 устанавливать
стрелку на нуль нельзя, поскольку будет «растягиваться» или «сжиматься»
шкала из-за нелинейности характеристики диода VD3.

Источник: «РАДИО» №9 1990г, №11 1996г.


 

 

Схема питается от двух
3-хвольтовых батареек, соединенных последовательно, потребляя:
6,5мА при разомкнутых щупах
и 10мА — при замкнутых.

 

Схема:


В качестве генератора использована МС КР1211ЕУ1 Datasheet (частота при номиналах на
схеме около 70кГц), трансформаторы могут быть применены фазоинверторные от БП
АТ/АТХ — одинаковые параметры (коэффициенты трансформации в частности)
практически от всех производителей.


Внимание!!! В трансформаторе Т1
используется лишь половинка обмотки.


Головка прибора имеет чувствительность 300мкА, но возможно использование других
головок. Предпочтительно использование более чувствительных головок.

Шкала прибора растянута на треть при измерении до 1-го Ома. Десятая Ома
легко отличимая от 0,5 Ома, в шкалу укладываются 22 Ома.

Растяжку и диапазон можно варьировать с помощью добавления витков к
измерительной обмотке (с щупами) и/или к обмоткам III того или иного
трансформатора.

Источник: http://datagor.ru/


 

 

Предлагаемый вариант схемы и
конструкции компактного прибора для оценки ЭПС оксидных конденсаторов с
питанием от батареи отличается от опубликованных ранее использованием
распространенных деталей и стабилизатором напряжения питания, повышающим
точность измерения.

Конструкция оформлена в виде
малогабаритного переносного прибора со съемным щупом—иглой, вторым щупом на
гибком проводе и стрелочным индикатором с градуировкой в Омах.

Диапазон измерения сопротивления
— 0,5… 100 Ом. Питание — от батареи напряжением 9V («Крона» и аналогичные).

Прибор предназначен для
использования не в качестве средства измерения ЭПС, а для быстрой проверки
исправности оксидных конденсаторов. Как показала практика, «высохшие»
оксидные конденсаторы, потерявшие емкость, также имеют и повышенные значения
ЭПС. Таким образом, оценивая эквивалентное последовательное сопротивление,
можно выявлять неисправные конденсаторы с полной или частичной потерей емкости.

Схема прибора рис.
1.

Он состоит из нескольких узлов:
высокочастотного генератора на элементе DD1.1, который вырабатывает колебания с
частотой 350…400 кГц, буферного усилителя на DD1.2—DD1.6, делителя напряжения
R2—R4 и усилителя переменного тока на транзисторе VT2. Полученное переменное
напряжение выпрямляется диодами VD2—VD5, сглаживается конденсатором С5 и
поступает на микроамперметр РА1, проградуированный как омметр, по показаниям
которого оценивается ЭПС и пригодность конденсатора. Микросхема DD1 питается
через стабилизатор на транзисторе VT1; это необходимо для стабилизации амплитуды
испытательного сигнала на щупах прибора Х1 — XS1. Потребляемый микросхемой ток
не превышает 15 мА.

Настройку прибора начинают с
установки частоты ВЧ генератора. Подключив осциллограф к щупам XS1 (Х1) и XS2,
устанавливают частоту в интервале 350…400 кГц (в авторском варианте период
колебаний равен 2,66 мкс). Подстроечником катушки L1 устанавливают частоту;
если частота не укладывается в заданные пределы, можно изменить число витков
катушки L1, добавив или отмотав их. Затем подстроечным резистором R2
устанавливают амплитуду колебаний, равную 50 мВ. После этого нужно установить
рабочий режим транзистора VT2. До впаивания конденсатора СЗ подбором резистора
R5 устанавливают напряжение между коллектором и эмиттером транзистора VT2,
примерно равным половине напряжения питания прибора. Затем впаивают конденсатор
СЗ.

Рис. 3

Сопротивление переменного
резистора R8 устанавливают таким, чтобы при разомкнутых щупах прибора стрелка
устанавливалась на максимальное значение, не зашкаливая при этом. Затем градуируют
шкалу в Омах.

Для этого вскрывают
микроамперметр РА1, на его шкалу наклеивают бумагу и, последовательно подключая
резисторы сопротивлением 1, 2, 3, 5, 10, 20, 50, 100 Ом, делают риски
карандашом на шкале прибора. После окончательного оформления шкалы
микроамперметр собирают.


В приборе использованы детали:

Транзисторы КТ3102Г (возможно
КТ3102Б, КТ3102В) — желательно с наибольшим коэффициентом передачи И21э.
Микроамперметр РА1 — индикатор М4762-М1, такие использовались в индикаторах
уровня записи отечественных магнитофонов.

Конденсаторы — импортные от
старого китайского плейера.

Катушка L1 намотана на
пластмассовом каркасе диаметром 7 мм проводом ПЭВ-2 диаметром 0,3 мм и содержит
125 витков (в секции I — 50 витков). Подстроечник — ферритовый с резьбой М4 и
длиной 7 мм. Для катушки можно использовать каркасы от контуров ПЧ приемников.
Число витков в этом случае придется подобрать экспериментально.

При этом секция II катушки L1
должна содержать примерно в 1,5 раза больше витков, чем секция I.

Кнопка SB1 — МП7. Резисторы —
МЛТ-0,125, подстроечный R2 — СПЗ-386, переменный R8 — СПЗ-166.

Плата прибора с расположением
деталей показана на рис. 2. Все детали размещены на одной стороне печатной
платы, за исключением катушки L1 и переменного резистора R8, которые находятся
со стороны проводников.

Как видно из чертежа, проводники
со стороны установки элементов, выделенные цветом, можно при желании выполнить
монтажным проводом, используя для платы стеклотекстолит, фольгированный с одной
стороны.

Корпус прибора изготовлен из двух
алюминиевых экранов от контуров ПЧ лампового цветного телевизора, которые имеют
на внутренней стороне направляющие пазы для платы. Так как точность
изготовления экранов невысокая, то размеры платы перед изготовлением следует
уточнить. Плата должна плотно входить в направляющие. В одном из экранов делают
вырез для стрелочного индикатора. Экраны соединяют между собой пайкой — на них
имеются с двух сторон латунные выводы, которыми они крепились в плате
телевизора.

Щуп—иглу XS1 делают съемной на
резьбе. По окончании работы иглу вывинчивают, разворачивают наоборот и
вставляют внутрь прибора. Щуп XS2 на коротком гибком проводе подключают к
корпусу прибора. Эти провода желательно выполнить по возможности короткими,
чтобы исключить влияние их индуктивности на показания прибора.

В противном случае при замкнутых
щупах прибора стрелка не будет устанавливаться на нулевое значение.

Источник: http://forum.cxem.net/



Также по теме: ESR — METP Помощник Радиомеханика.

Copyright ©2011 SHCompamy Odessa

Измеритель емкости конденсаторов своими руками: принцип, схема

Конденсатор — элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и — Q — на другой. Ёмкость здесь в фарадах, напряжение — вольтах, заряд — кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.

Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.

Обозначения на конденсаторах

Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.

Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.

Вычисления с помощью формул электротехники

Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.

Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

Схема измерения

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.

 Измерительные приборы

Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.

В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.

В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.

Самодельный С — метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Конструкция и детали

R1, R5 6,8k R12 12k R10 100k C1 47nF

R2, R6 51k R13 1,2k R11 100k C2 470pF

R3, R7 68k R14 120 C3 0,47mkF

R4, R8 510k R15 13

Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

Вариант печатной платы и расположение компонентов

Видео по теме

Самодельный прибор для измерения емкости конденсаторов. Вы здесь: Схема измерителя емкости конденсаторов



При ремонте радиоаппаратуры, часто приходится сталкиваться с высохшей емкостью и тогда на помощь приходить схема измерителя
С

Тот, кто занимается ремонтом бытовой или промышленной радиоаппаратуры, знает, что исправность конденсаторов удобно проверять без их демонтажа. Однако многие измерители емкости конденсаторов такой возможности не предоставляют. При проектировании же нового измерителя решалась задача создания прибора с широким диапазоном, линейной шкалой и прямым отсчетом, чтобы можно было пользоваться им, как лабораторным.

Помимо этого, прибор должен быть диагностическим, т. е. способным проверять и конденсаторы, зашунтированные р-n переходами полупроводниковых приборов и сопротивлениями резисторов.

Принцип работы прибора таков. На вход дифференциатора, в котором проверяемый конденсатор используется в качестве дифференцирующего, подается напряжение треугольной формы. При этом на его выходе получается меандр с амплитудой, пропорциональной емкости этого конденсатора. Далее детектор выделяет амплитудное значение меандра и выдает постоянное напряжение на измерительную головку.

Амплитуда измерительного напряжения на щупах прибора примерно 50 мВ, что недостаточно для открывания р-n переходов полупроводниковых приборов, поэтому они не оказывают своего шунтирующего действия.

Прибор имеет два переключателя. Переключатель пределов «Шкала» с пятью положениями: 10 мкФ, 1 мкФ, 0,1 мкФ, 0,01 мкФ, 1000 пФ. Переключателем «Множитель» (Х1000, Х100, Х10, Х1) меняется частота измерения. Таким образом, прибор имеет восемь поддиапазонов измерения емкости от 10000 мкФ до 1000 пФ, что практически достаточно в большинстве случаев.

Генератор треугольных колебаний собран на ОУ микросхемы DA1.1, DA1.2, DA1.4 (рис. 1). Один из них, DA1.1, работает в режиме компаратора и формирует сигнал прямоугольной формы, который поступает на вход интегратора DA1.2. Интегратор преобразует прямоугольные колебания в треугольные. Частота генератора определяется элементами R4, С1-С4. В цепи обратной связи генератора стоит инвертор на ОУ DA1.4, который обеспечивает автоколебательный режим. Переключателем SA1 можно устанавливать одну из частот измерения (множитель): 1 Гц (Х1000), 10 Гц(х100), 100 Гц(х10), 1 кГц(х1).

Скачать схему

Рис. 1

ОУ DA2.1 — повторитель напряжения, на его выходе сигнал треугольной формы амплитудой около 50 мВ, который и используется для создания измерительного тока через проверяемый конденсатор Сх.

Так как емкость конденсатора измеряется в плате, на нем может находиться остаточное напряжение, поэтому для исключения повреждения измерителя параллельно его щупам подключены два встречно-параллельных диода моста VD1.

ОУ DA2.2 работает как дифференциатор и выполняет роль преобразователя ток — напряжение. Его выходное напряжение: Uвых=(R12…R16) Iвх=(R12…R16)Cх dU/dt. Например, при измерении емкости 100 мкФ на частоте 100 Гц получается: Iвх=Сх dU/dt=100 100 мВ/5 мс=2мА, Uвых= R16 Iвх=1 кОм мА=2 В.

Элементы R11, С5-С9 необходимы для устойчивой работы дифференциатора. Конденсаторы устраняют колебательные процессы на фронтах меандра, которые делают невозможным точное измерение его амплитуды. В результате на выходе DA2.2 получается меандр с плавными фронтами и амплитудой, пропорциональной измеряемой емкости. Резистор R11 также ограничивает входной ток при замкнутых щупах или при пробитом конденсаторе. Для входной цепи измерителя должно выполняться неравенство: (3…5)СхR11

Если это неравенство не выполнено, то за половину периода ток Iвх не достигает установившегося значения, а меандр — соответствующей амплитуды, и возникает погрешность в измерении. Например, в измерителе, описанном в , при измерении емкости 1000 мкФ на частоте 1 Гц постоянная времени определяется как Cх R25=1000 мкФ 910 Ом=0,91 с. Половина же периода колебаний Т/2 составляет лишь 0,5 с, поэтому на данной шкале измерения окажутся заметно нелинейными.

Синхронный детектор состоит из ключа на полевом транзисторе VT1, узла управления ключом на ОУ DA1.3 и накопительного конденсатора С10. ОУ DA1.2 выдает управляющий сигнал на ключ VT1 во время положительной полуволны меандра, когда его амплитуда установлена. Конденсатор С10 запоминает постоянное напряжение, выделенное детектором.

С конденсатора С10 напряжение, несущее информацию о величине емкости Сх, через повторитель DA2. 3 подается на микроамперметр РА1. Конденсаторы С11, С12 — сглаживающие. С движка переменного резистора калибровки R22 снимается напряжение на цифровой вольтметр с пределом измерения 2 В.

Источник питания (рис. 2) выдает двухполярные напряжения ±9 В. Опорные напряжения образуют термостабильные стабилитроны VD5, VD6. Резисторами R25, R26 устанавливают необходимую величину выходного напряжения. Конструктивно источник питания объединен с измерительной частью прибора на общей монтажной плате.

Рис. 2

В приборе использованы переменные резисторы типа СПЗ-22 (R21, R22, R25, R26). Постоянные резисторы R12-R16 — типа С2-36 или С2-14 с допустимым отклонением ±1 %. Сопротивление R16 получено соединением последовательно нескольких подобранных резисторов. Сопротивления резисторов R12-R16 можно использовать и других типов, но их надо подобрать с помощью цифрового омметра (мультиметра). Остальные постоянные резисторы — любые с мощностью рассеяния 0,125 Вт. Конденсатор С10 — К53-1 А, конденсаторы С11-С16 — К50-16. Конденсаторы С1, С2 — К73-17 или другие металлопленочные, СЗ, С4 — КМ-5, КМ-6 или другие керамические с ТКЕ не хуже М750, их необходимо также подобрать с погрешностью не более 1 %. Остальные конденсаторы — любые.

Переключатели SA1, SA2 — П2Г-3 5П2Н. В конструкции допустимо применить транзистор КП303 (VT1) с буквенными индексами А, Б, В, Ж, И. Транзисторы VT2, VT3 стабилизаторов напряжения могут быть заменены другими маломощными кремниевыми транзисторами соответствующей структуры. Вместо ОУ К1401УД4 можно использовать К1401УД2А, но тогда на пределе «1000 пФ» возможно появление ошибки из-за смещения входа дифференциатора, создаваемого входным током DA2.2 на R16.

Трансформатор питания Т1 имеет габаритную мощность 1 Вт. Допустимо использовать трансформатор с двумя вторичными обмотками по 12 В, но тогда необходимо два выпрямительных моста.

Для настройки и отладки прибора потребуется осциллограф. Неплохо иметь частотомер для проверки частот генератора треугольных колебаний. Нужны будут и образцовые конденсаторы.

Прибор начинают настраивать с установки напряжений +9 В и -9 В с помощью резисторов R25, R26. После этого проверяют работу генератора треугольных колебаний (осциллограммы 1, 2, 3, 4 на рис. 3). При наличии частотомера измеряют частоту генератора при разных положениях переключателя SA1. Допустимо, если частоты отличаются от значений 1 Гц, 10 Гц, 100 Гц, 1 кГц, но между собой они должны отличаться точно в 10 раз, так как от этого зависит правильность показаний прибора на разных шкалах. Если частоты генератора не кратны десяти, то необходимой точности (с погрешностью 1 %) добиваются подбором конденсаторов, подключаемых параллельно конденсаторам С1-С4. Если емкости конденсаторов С1-С4 подобраны с необходимой точностью, можно обойтись без измерения частот.

Далее проверяют работу ОУ DA1.3 (осциллограммы 5, 6). После этого устанавливают предел измерения «10 мкФ», множитель — в положение «Х1» и подключают образцовый конденсатор емкостью 10 мкФ. На выходе дифференциатора должны быть прямоугольные, но с затянутыми, сглаженными фронтами колебания амплитудой около 2 В (осциллограмма 7). Резистором R21 выставляют показания прибора — отклонение стрелки на полную шкалу. Цифровой вольтметр (на пределе 2 В) подключают к гнездам XS3, XS4 и резистором R22 выставляют показание 1000 мВ. Если конденсаторы С1 — С4 и резисторы R12 — R16 точно подобраны, то показания прибора будут кратными и на других шкалах, что можно проверить с помощью образцовых конденсаторов.

Измерение емкости конденсатора, впаянного в плату с другими элементами, обычно получается достаточно точным на пределах 0,1 — 10 000 мкФ, за исключением случаев, когда конденсатор зашунтирован низкоомной резистивной цепью. Так как его эквивалентное сопротивление зависит от частоты Хс=1/wС, то для уменьшения шунтирующего действия других элементов устройства необходимо увеличивать частоту измерения с уменьшением емкости измеряемых конденсаторов. Если при измерении конденсаторов емкостью 10 000 мкФ, 1000 мкФ, 100 мкФ, 10 мкФ использовать соответственно частоты 1 Гц, 10 Гц, 100 Гц, 1 кГц, то шунтирующее действие резисторов скажется на показании прибора при параллельно включенном резисторе сопротивлением 300 Ом (ошибка около 4 %) и меньше. При измерении конденсаторов емкостью 0,1 и 1 мкФ на частоте 1 кГц ошибка в 4 % будет из-за влияния параллельно включенного резистора уже сопротивлением 30 и 3 кОм соответственно.

На пределах 0,01 мкФ и 1000 пФ конденсаторы целесообразно проверять все-таки с отключением шунтирующих цепей, так как измерительный ток мал (2 мкА, 200 нА). Стоит, однако, напомнить, что надежность конденсаторов небольшой емкости заметно выше благодаря конструкции и более высокому допустимому напряжению.

Иногда, например, при измерении некоторых конденсаторов с оксидным диэлектриком (К50-6 и т. п.) емкостью от 1 мкФ до 10 мкФ на частоте 1 кГц появляется погрешность, связанная, по всей видимости, с собственной индуктивностью конденсатора и потерями в его диэлектрике; показания прибора оказываются меньшими. Поэтому бывает целесообразно производить измерения на более низкой частоте (например, в нашем случае на частоте 100 Гц), хотя при этом шунтирующие свойства параллельных резисторов будут сказываться уже при большем их сопротивлении.

ЛИТЕРАТУРА

1. Кучин С. Прибор для измерения емкости. — Радио, 1993, № 6, с. 21 — 23.
2. Болгов А. Испытатель оксидных конденсаторов. — Радио, 1989, № 6, с. 44.

О перегрузке, переключите прибор на более грубый предел. Осуществляйте такое переключение до тех пор, пока не появятся показания. Прочитайте их.

Если используется мостовая приставка для измерения емкости, используйте мультиметр в качестве устройства для определения баланса моста. К соответствующим выводам моста подключите его через детектор с фильтрующим конденсатором , а на самом мультиметре выберите режим микроамперметра постоянного тока. Подключите конденсатор к мосту, сбалансируйте последний по минимуму показаний, затем по шкале моста прочитайте показания.

Если мультиметр функцией измерения емкости не обладает, а мостовой приставки нет, воспользуйтесь следующим способом. Возьмите генератор стандартных сигналов. Установите на нем известную амплитуду сигнала, равную нескольким вольтам. Включите последовательно мультиметр, работающий в режиме микроамперметра или миллиамперметра переменного тока (в зависимости от условий измерения), генератор и испытуемый конденсатор. Установите такую частоту, чтобы мультиметр показал ток, не превышающий в первом случае 200 мкА, а во втором — 2 мА (если частота слишком мала, он не покажет ничего). Затем поделите амплитудное значение напряжения, выраженного в вольтах, на квадратный корень из двух, чтобы получить действующее его значение. Ток переведите в амперы, после чего поделите напряжение на ток, и вы получите емкостное сопротивление конденсатора, выраженное в омах. Затем, зная частоту и емкостное сопротивление, вычислите емкость по формуле:

C=1/(2πfR), где C — емкость в фарадах, π — математическая константа «пи», f — частота в герцах, R — емкостное сопротивление в омах.

Переведите рассчитанную таким образом емкость в более удобные единицы: пикофарады, нанофарады или микрофарады.

Чаще всего необходимость замера емкости возникает у владельцев автотранспорта при проверке работоспособности аккумуляторов. Есть несколько простых шагов, чтобы верно измерить их емкость
.

Инструкция

Аккумулятор представляет собой химический источник тока, в котором электрический ток вырабатывается за счет химических реакций, протекающих в аккумуляторе.

Таким образом, принцип действия аккумулятора мало чем отличается от обычной батарейки. Емкость аккумулятора – это количество электричества, которое может выдать новый или полностью заряженный аккумулятор.

Емкость аккумулятора измеряется в ампер-часах или миллиампер-часах. Так, если емкость
аккумулятора составляет 2000ма-час (миллиампер-часов), это означает, что аккумулятор сможет выдавать ток 2 тысячи миллиампер в течение 1 часа или 200 миллиампер в течение 10 часов.

Для определения емкости, аккумулятор необходимо сначала полностью зарядить, затем разрядить заданным током и проследить время полной разрядки аккумулятора. Затем нужно высчитать произведение тока на время, за которое разрядился аккумулятор, полученная величина и будет емкость
ю аккумулятора.

Аналогичным образом измеряется емкость
батарейки. Смысл измерения емкости аккумулятора или батарейки состоит в том, что можно узнать время, за которое аккумулятор или батарейка полностью разрядятся. После этого аккумулятор потребует перезарядки, а батарейка придет в полную непригодность.

Источники:

  • в чем измеряется емкость аккумулятора

Автомобильный генератор служит для питания всех электрических устройств автомобиля после запуска двигателя. Он всегда должен находится в исправном состоянии, так как от его работы зависит правильная зарядка аккумуляторной батареи. Кроме того, генератор дает возможность подключать к бортовой сети дополнительно множество различных приборов и устройств. Следует регулярно следить за его технической исправностью. Проверить генератор можно мультиметром или на специальном стенде.

Вам понадобится

Инструкция

Проверьте реле-регулятор. Оно служит для поддержания оптимального значения напряжения в бортовой сети автомобиля . Реле-регулятор не дает ему возрасти до критических уровней. Заведите автомобиль . Поставьте переключатель мультиметра в режим «измерения напряжения». Замерьте электропитание бортовой сети. Это можно сделать на выходах генератора или на клеммах АКБ. Оно должно быть в районе 14-14,2 В. Нажмите на акселератор. Еще раз проверьте показание. Если напряжение изменилось больше чем 0,5 В, то это является признаком неправильной работы реле регулятора.

Проверьте диодный мост. Он состоит из шести диодов. Три из них являются положительными, а три отрицательными. Переведите переключатель мультиметра в режим «звука». Теперь при замыкании контактов тестера будет слышен писк. Проведите проверку как в прямом, так и в обратном направлении. Ели в обоих случаях слышен писк, то диод пробит и его следует заменить .

Проверьте статор генератора . Он представляет собой металлический цилиндр, внутри которого особым образом уложена обмотка. Для проверки отсоедините вывода статора от диодного моста. Осмотрите состояние обмотки на предмет механических повреждений и подгорания. Переведите мультиметр в режим «измерения сопротивления». Проверьте обмотку на пробой . Для этого один контакт тестера прижмите к корпусу статора, а второй к одному из выводов обмотки. Если сопротивление стремиться к бесконечности, то она исправна. Показания менее 50 КОм предупреждают о скорой поломке генератора.

Проверьте ротор генератора. Он представляет собой металлический стержень, на который намотана обмотка возбуждения. На одном его конце находятся контактные кольца, по которым скользят щетки. После извлечения ротора, осмотрите состояние подшипников и

В электрических цепях применяются конденсаторы разного типа. В первую очередь они отличаются по емкости. Для того чтобы определить этот параметр, используются специальные измерители. Указанные устройства могут производиться с различными контактами. Современные модификации выделяются высокой точностью замеров. Для того чтобы сделать простой измеритель емкости конденсаторов своими руками, необходимо ознакомиться с основными составляющими прибора.

Как устроен измеритель?

Стандартная модификация включает в себя модуль с расширителем. Данные о выводятся на дисплей. Некоторые модификации функционируют на базе релейного транзистора. Он способен работать на разных частотах. Однако стоит отметить, что такая модификация не подходит для многих типов конденсаторов.

Устройства низкой точности

Сделать низкой точности измеритель ЭПС емкости конденсаторов своими руками можно при помощи переходного модуля. Однако в первую очередь используется расширитель. Контакты для него целесообразнее подбирать с двумя полупроводниками. При выходном напряжении 5 В ток должен составлять не более 2 А. Для защиты измерителя от сбоев применяются фильтры. Настройку осуществлять следует при частоте 50 Гц. Тестер в данном случае должен показывать сопротивление не выше 50 Ом. У некоторых возникают проблемы с проводимостью катода. В данном случае следует заменить модуль.

Описание моделей высокой точности

Делая измеритель емкости конденсаторов своими руками, расчет точности следует производить исходя из линейного расширителя. Показатель перегрузки модификации зависит от проводимости модуля. Многие эксперты советуют для модели подбирать дипольный транзистор. В первую очередь он способен работать без тепловых потерь. Также стоит отметить, что представленные элементы редко перегреваются. Контактор для измерителя можно использовать низкой проводимости.

Чтобы сделать простой точный измеритель емкости конденсаторов своими руками, стоит позаботиться о тиристоре. Указанный элемент должен работать при напряжении не менее 5 В. При проводимости 30 мк перегруженность у таких устройств, как правило, не превышает 3 А. Фильтры используются разного типа. Устанавливать их следует за транзистором. Также стоит отметить, что дисплей можно подключать только через проводниковые порты. Для зарядки измерителя подойдут батареи на 3 Вт.

Как сделать модель серии AVR?

Сделать измеритель емкости конденсаторов своими руками AVR можно только на базе переменного транзистора. В первую очередь для модификации подбирается контактор. Для настройки модели стоит сразу замерить выходное напряжение. Отрицательное сопротивление у измерителей не должно превышать 45 Ом. При проводимости 40 мк перегрузка в устройствах составляет 4 А. Чтобы обеспечить максимальную точность измерений, используются компараторы.

Некоторые эксперты рекомендуют подбирать только открытые фильтры. Они не боятся импульсных помех даже при большой загруженности. Полюсные стабилизаторы в последнее время пользуются большим спросом. Для модификации не подходят только сеточные компараторы. Перед включением устройства делается замер сопротивления. У качественных моделей данный параметр составляет примерно 40 Ом. Однако в данном случае многое зависит от частотности модификации.

Настройка и сборка модели на базе PIC16F628A

Сделать измеритель емкости конденсаторов своими руками на PIC16F628A довольно проблематично. В первую очередь для сборки подбирается открытый трансивер. Модуль разрешается использовать регулируемого типа. Некоторые эксперты не советуют устанавливать фильтры высокой проводимости. Перед пайкой модуля проверяется выходное напряжение.

При повышенном сопротивлении рекомендуется заменить транзистор. С целью преодоления импульсных помех применяются компараторы. Также можно использовать проводниковые стабилизаторы. Дисплеи часто применяются текстового типа. Устанавливать их стоит через канальные порты. Настройка модификации происходит при помощи тестера. При завышенных параметрах емкости конденсаторов стоит заменить транзисторы с малой проводимостью.

Модель для электролитических конденсаторов

При необходимости можно сделать измеритель емкости электролитических конденсаторов своими руками. Магазинные модели этого типа выделяются низкой проводимостью. Многие модификации производятся на контакторных модулях и работают при напряжении не более 40 В. Система защиты у них используется класса РК.

Также стоит отметить, что измерители данного типа отличаются пониженной частотностью. Фильтры у них применяются только переходного типа, они способны эффективно справляться с импульсными помехами, а также гармоническими колебаниями. Если говорить про недостатки модификаций, то важно отметить, что у них малая пропускная способность. Они показывают плохие результаты в условиях повышенной влажности. Также эксперты указывают на несовместимость с проводными контакторами. Устройства нельзя применять в цепи переменного тока.

Модификации для полевых конденсаторов

Устройства для полевых конденсаторов выделяются пониженной чувствительностью. Многие модели способны работать от прямолинейных контакторов. Устройства чаще всего используются переходного типа. Для того чтобы сделать модификацию своими руками, надо применять регулируемый транзистор. Фильтры устанавливаются в последовательном порядке. Для проверки измерителя применяются сначала конденсаторы малой емкости. При этом тестером фиксируется отрицательное сопротивление. При отклонении свыше 15 % необходимо проверить работоспособность транзистора. Выходное напряжение на нем не должно превышать 15 В.

Устройства на 2 В

На 2 В измеритель емкости конденсаторов своими руками делается довольно просто. В первую очередь эксперты рекомендуют заготовить открытый транзистор с низкой проводимостью. Также важно подобрать для него хороший модулятор. Компараторы, как правило, используются низкой чувствительности. Система защиты у многих моделей применяется серии КР на фильтрах сеточного типа. Для преодоления импульсных колебаний используются волновые стабилизаторы. Также стоит отметить, что сборка модификации предполагает применение расширителя на три контакта. Для настройки модели следует использовать контактный тестер, а показатель сопротивление не должен быть ниже 50 Ом.

Модификации на 3 В

Складывая измеритель емкости конденсаторов своими руками, можно использовать переходник с расширителем. Транзистор целесообразнее подбирать линейного типа. В среднем проводимость у измерителя должна равняться 4 мк. Также перед установкой фильтров важно зафиксировать контактор. Многие модификации также включают в себя трансиверы. Однако данные элементы не способны работать с полевыми конденсаторами. Предельный параметр емкости у них равняется 4 пФ. Система защиты у моделей применяется класса РК.

Модели на 4 В

Собирать измеритель емкости конденсаторов своими руками разрешается только на линейных транзисторах. Также для модели потребуется качественный расширитель и переходник. Если верить экспертам, то фильтры целесообразнее применять переходного типа. Если рассматривать рыночные модификации, то у них может использоваться два расширителя. Работают модели при частоте не более 45 Гц. При этом чувствительность у них часто меняется.

Если собирать простой измеритель, то контактор можно использовать без триода. У него малая проводимость, однако он способен работать при большой загруженности. Также стоит отметить, что модификация должна включать в себя несколько полюсных фильтров, которые будут уделять внимание гармоническим колебаниям.

Модификации с однопереходным расширителем

Сделать измеритель емкости конденсаторов своими руками на базе однопереходного расширителя довольно просто. В первую очередь рекомендуется подобрать для модификации модуль с низкой проводимостью. Параметр чувствительности при этом должен составлять не более 4 мВ. У некоторых моделей имеется серьезная проблема с проводимостью. Транзисторы применяются, как правило, волнового типа. При использовании сеточных фильтров быстро нагревается тиристор.

Чтобы избежать подобных проблем, рекомендуется устанавливать сразу два фильтра на сеточных переходниках. В конце работы останется только припаять компаратор. Для повышения работоспособности модификации устанавливаются канальные стабилизаторы. Также стоит отметить, что существуют устройства на переменных контакторах. Они способны работать при частоте не более 50 Гц.

Модели на базе двухпереходных расширителей: сборка и настройка

Сложить на двухпереходных расширителях цифровой измеритель емкости конденсаторов своими руками довольно просто. Однако для нормальной работы модификаций подходят только регулируемые транзисторы. Также стоит отметить, что при сборке нужно подбирать импульсные компараторы.

Дисплей для устройства подойдет строчного типа. При этом порт разрешается использовать на три канала. Для решения проблем с искажением в цепи применяются фильтры низкой чувствительности. Также стоит отметить, что модификации нужно собирать на диодных стабилизаторах. Настройка модели осуществляется при отрицательном сопротивлении 55 Ом.

Простые измерители емкости

Многие современные и некоторые не очень современные мультиметры имеют функцию измерения емкости. Если же такого мультиметра нет, а есть только прибор, которым можно измерять сопротивление и ток, то несложные приспособления к нему позволят проверить работоспособность и узнать емкость неполярных и даже полярных конденсаторов емкостью от единиц или десятков пикофарад до сотен и тысяч микрофарад. О таких приставках и рвссказывает автор публикуемой статьи.

Вначале упомяну так называемый метод баллистического гальванометра, или, как его называют в просторечии, метод отскока стрелки. Под отскоком понимают кратковременное отклонение стрелки. Этот метод вовсе не требует дополнительных приспособлений и позволяет грубо оценить параметры конденсатора, сравнивая его с заведомо исправным. Для этого мультиметр включают на предел измерения сопротивления и щупами дотрагиваются до выводов предварительно разряженного конденсатора (рис. 1). Ток зарядки вызовет кратковременное отклонение стрелки, тем большее, чем больше емкость конденсатора. Пробитый конденсатор имеет сопротивление, близкое к нулевому, а конденсатор с оборванным выводом не вызовет никакого отклонения стрелки омметра.

На пределе «Омы» удается проверять конденсаторы емкостью в тысячи микрофарад. При проверке оксидных конденсаторов надо соблюдать полярность, предварительно определив, на каком из выводов мультиметра присутствует плюсовое напряжение (полярность выводов мультиметра в режиме измерения сопротивлений может и не совпадать с полярностью в режиме измерения токов или напряжений). На пределе «кОм х 1» можно проверять конденсаторы емкостью в сотни микрофарад, на пределе «кОм х 10» — в десятки микрофарад, на пределе «кОм х 100» — в единицы микрофарад и, наконец, на пределе «кОм х 1000» или «МОм» — в доли микрофарады. Но конденсаторы емкостью в сотые доли микрофарады и менее дают слишком малое отклонение стрелки, поэтому судить об их параметpax становится трудно.

На рис. 2 приведена схема измерения емкости с помощью понижающего трансформатора и диодного моста. Так удается измерять емкости от тысячи пикофарад до единиц микрофарад. Отклонение стрелки прибора здесь стабильное, поэтому считывать показания легче. Ток в цепи миллиамперметра РА1 пропорционален напряжению вторичной обмотки трансформатора, частоте тока и емкости конденсатора. При частоте сети 50 Гц, а это наш бытовой стандарт, и вторичном напряжении трансформатора 16 В, ток через конденсатор емкостью 1000 пФ будет около 5 мкА, через 0,01 мкФ — 50 мкА, через 0,1 мкФ — 0,5 мА и через 1 мкФ — 5 мА. Калибровать или проверять показания также можно с помощью заведомо исправных конденсаторов известной емкости.

Резистор R1 служит для ограничения тока до значения 0,1 А в случае короткого замыкания измерительной цепи. Большой погрешности в показания на указанных пределах измерений этот резистор не вносит. Трансформатор понижающий, лучше малогабаритный, подобный тем, что используют в маломощных блоках питания (сетевых адаптерах). На вторичной обмотке он должен обеспечивать переменное напряжение 12…20 В.

Работает устройство следующим образом. Когда частота колебательного контура L1C2 в цепи коллектора транзистора VT1 оказывается близкой к частоте основного резонанса кварцевого резонатора ZQ1, возбудившийся генератор потребляет минимальный ток. Омметр, который питает устройство энергией, уменьшение тока будет воспринимать как увеличение измеряемого сопротивления. Таким образом, с помощью омметра удается контролировать процесс настройки контура в резонанс конденсатором переменной емкости (КПЕ) С2. Частота генератора определяется резонансной частотой кварцевого резонатора, а емкость и индуктивность колебательного контура при резонансе взаимосвязаны в соответствии с формулой Томсона : f = 1/2WLC. Изменяя индуктивность катушки контура, необходимо добиться, чтобы резонанс наблюдался при емкости КПЕ, близкой к максимальной. Контролируемые конденсаторы подключают параллельно КПЕ, при этом резонанс будет наблюдаться при другом положении ротора КПЕ. Его емкость уменьшится на величину искомой.

Функциональную схему омметра и особенности его подключения можно посмотреть в статье . Желательно выбрать предел, на котором омметр развивает ток короткого замыкания порядка 1 …2 мА, и определить полярность выходного напряжения. При неправильной полярности подключения омметра устройство не заработает, хотя и не выйдет из строя. Измерить напряжение холостого хода, ток короткого замыкания омметра и определить его полярность на различных пределах измерения сопротивления можно с помощью другого прибора. С помощью описанной приставки можно измерять индуктивность катушек в пределах приблизительно 17…500 мкГн. Это при использовании кварцевого резонатора на частоту 1 МГц и КПЕ емкостью 50…1500пФ. Катушку для этого устройства делают сменной и калибруют прибор, используя эталонные индуктивности. Можно также использовать приставку как кварцевый калибратор.

Вместо устройства по схеме рис. 3 можно предложить менее громоздкое, в том отношении, что не потребуются КПЕ, кварц и катушка. Его схема показана на рис. 4. Назову эту приставку «Преобразователь емкости в активное сопротивление с питанием от омметра». Она представляет собой двухкаскадный УПТ на транзисторах VT1 и VT2 разной структуры и непосредственной связью между каскадами. Измеряемый конденсатор Сх включают в цепь положительной обратной связи с выхода на вход УПТ. При этом возникает релаксационная генерация и транзисторы часть времени остаются закрытыми. Этот промежуток времени пропорционален емкости конденсатора.

Пульсации выходного тока фильтрует блокировочный конденсатор С1. Усредненный ток, потребляемый устройством, при увеличении емкости конденсатора Сх становится меньше, и омметр воспринимает это как увеличение сопротивления. Устройство уже начинает реагировать на конденсатор емкостью 10 пФ, а при емкости 0,01 мкФ его сопротивление становится большим (сотни килоом). Если сопротивление резистора R2 уменьшить до 100 кОм, то интервал измеряемых емкостей составит 100 пФ…0,1 мкФ. Начальное сопротивление устройства — около 0,8 кОм. Здесь следует отметить, что оно нелинейное и зависит от протекающего тока. Поэтому на разных пределах измерения и с разными приборами показания будут различаться, и для проведения измерений необходимо сравнивать искомые показания с показаниями, даваемыми образцовыми конденсаторами.

С. Коваленко, г. Кстово Нижегородской обл. Радио 07-05.
Литература:
1. Пилтакян А. Простейшие измерители L и С:
Сб.: «В помощь радиолюбителю», вып. 58, с.61—65. — М.: ДОСААФ, 1977.
2. Поляков В. Теория: Понемногу — обо всем.
Расчет колебательных контуров. — Радио, 2000, № 7, с. 55, 56.
3. Поляков В. Радиоприемник с питанием от… мультиметра. — Радио, 2004, № 8, с. 58.

В процессе эксплуатации внутри оксидных конденсаторов постоянно происходят электрохимические процессы, разрушающие место соединения вывода с обкладками. И из-за этого появляется переходное сопротивление, достигающее иногда десятков Ом. Токи Заряда и разряда вызывают нагрев этого места, что еще больше ускоряет процесс разрушения. Еще одной частой причиной выхода из строя электролитических конденсаторов является «высыхание», электролита. Чтоб уметь отбраковывать такие конденсаторы предлагаем радиолюбителям собрать эту несложную схему

Идентификация и проверка стабилитронов оказывается несколько сложнее чем проверка диодов, т.к для этого нужен источник напряжения, превышающий напряжение стабилизации.

С помощью этой самодельной приставки вы сможете одновременно наблюдать на экране однолучевого осциллографа сразу за восемью низкочастотными или импульсными процессами. Максимальная частота входных сигналов не должна превышать 1 МГц. По амплитуде сигналы должны не сильно отличаться, по крайней мере, не должно быть более 3-5-кратного отличия.

Устройство расчитано на проверку почти всех отечественных цифровых интегральных микросхем. Им можно проверить микросхемы серий К155, К158, К131, К133, К531, К533, К555, КР1531, КР1533, К176, К511, К561, К1109 и многие другие

Помимо измерения емкости, эту приставку можно использовать для измерения Uстаб у стабилитронов и проверки полупроводниковых приборов, транзисторов, диодов. Кроме того можно проверять высоковольтные конденсаторы на токи утечки, что весьма помогло мне при налаживание силового инвертора к одному медицинскому прибору

Эта приставка к частотомеру используется для оценки и измерения индуктивности в диапазоне от 0,2 мкГн до 4 Гн. А если из схемы исключить конденсатор С1 то при подключении на вход приставки катушки с конденсатором, на выходе будет резонансная частота. Кроме того, благодаря малому значению напряжения на контуре можно оценивать индуктивность катушки непосредственно в схеме, без демонтажа, я думаю многие ремонтники оценят эту возможность.

В интернете много разных схем цифровых термометров, но мы выбрали те которые отличается своей простотой, малым количеством радиоэлементов и надежностью, а пугаться того, что она собрана на микроконтроллере не стоит, т.к его очень легко запрограммировать.

Одну из схем самодельного индикатора температуры со светодиодным индикатором на датчике LM35 можно использовать для визуальной индикации плюсовых значений температуры внутри холодильника и двигателя автомобиля, а также воды в аквариуме или бассейне и т.п. Индикация выполнена на десяти обычных светодиодах подключенных к специализированной микросхеме LM3914 которая используется для включения индикаторов с линейной шкалой, и все внутренние сопротивления ее делителя обладают одинаковыми номиналами

Если перед вами встанет вопрос как измерить частоту вращения двигателя от стиральной машины. Мы подскажем простой ответ. Конечно можно собрать простой стробоскоп, но существует и более грамотная идея, например использованием датчика Холла

Две очень простые схемы часов на микроконтроллере PIC и AVR. Основа первой схемы микроконтроллер AVR Attiny2313, а второй PIC16F628A

Итак, хочу сегодня рассмотреть очередной проект на микроконтроллерах, но еще и очень полезный в ежедневных трудовых буднях радиолюбителя. Это цифровой вольтметр на микроконтроллере. Схема его была позаимствована из журнала радио за 2010 год и может быть с легкостью переделана под амперметр.

Эта конструкция описывает простой вольтметр, с индикатороми на двенадцати светодиодах. Данное измерительное устройство позволяет отображать измеряемое напряжение в диапазоне значений от 0 до 12 вольт с шагом в 1 вольт, причем погрешность в измерении очень низкая.

Рассмотрена схема измерителя индуктивности катушек и емкости конденсаторов, выполненная всего на пяти транзисторах и, несмотря на свою простоту и доступность, позволяет в большом диапазоне определять с приемлемой точностью емкость и индуктивность катушек. Имеется четыре поддиапазона для конденсаторов и целых пять поддиапазонов катушек.

Думаю большинству понятно, что звучание системы во многом определяется различным уровнем сигнала на ее отдельных участках. Контролируя эти места, мы можем оценить динамику работы различных функциональных узлов системы: получить косвенные данные о коэффициенте усиления, вносимых искажениях и т.п. Кроме того, результирующий сигнал просто не всегда можно прослушать, поэтому и, применяются различного рода индикаторы уровня.

В электронных конструкциях и системах встречаются неисправности, которые возникают достаточно редко и их очень сложно вычислить. Предлагаемое самодельное измерительное устройство используется для поиска возможных контактных проблем, а также дает возможность проверять состояние кабелей и отдельных жил в них.

Основой этой схемы является микроконтроллер AVR ATmega32. ЖК дисплей с разрешением 128 х 64 точек. Схема осциллографа на микроконтроллере предельно проста. Но есть один существенный минус — это достаточно низкая частота измеряемого сигнала, всего лишь 5 кГц.

Эта приставка здорово облегчит жизнь радиолюбителя, в случае если у него появится необходимость в намотке самодельной катушки индуктивности, или для определения неизвестных параметров катушки в какой либо аппаратуре.

Предлагаем вам повторить электронную часть схемы весов на микроконтроллере с тензодатчиком, прошивка и чертеж печатной платы к радиолюбительской разработке прилагаеться.

Самодельный измерительный тестер обладает следующими Функциональными возможностями: измерение частоты в диапазоне от 0.1 до 15000000 Гц с возможностью изменения времени измерения и отображением значение частоты и длительности на цифровом экране. Наличие опции генератора с возможностью регулировки частоты во всем диапазоне от 1-100 Гц и выводом результатов на дисплей. Наличие опции осциллограф с возможностью визуализации формы сигнала и измерения его амплитудного значения. Функция измерения емкости, сопротивления, а также напряжения в режиме осциллографа.

Простым методом измерения тока в электрической цепи является способ измерение падения напряжения на резисторе, соединенным последовательно с нагрузкой. Но при протекании тока через это сопротивление, на нем генерируется ненужная мощность в виде тепла, поэтому его необходимо выбрать минимально возможной величиной, что ощутимо усиливает полезный сигнал. Следует добавить, что рассмотренные ниже схемы позволяют отлично измерять не только постоянный, но и импульсный ток, правда, с некоторым искажением, определяемый полосой пропускания усилительных компонентов.

Устройство используется для измерения температуры и относительной влажности воздуха. В качестве первичного преобразователя взят датчик влажности и температуры DHT-11. Самодельный измерительный прибор можно использовать в складских и жилых помещениях для мониторинга температуры и влажности, при условии, что не требуется высокая точность результатов измерений.

В основном для измерения температуры применяются температурные датчики. Они имеют различные параметры, стоимость и формы исполнения. Но у них имеется один большой минус, ограничивающий практику их использования в некоторых местах с большой температурой среды объекта измерения с температурой выше +125 градусов по Цельсию. В этих случаях намного выгоднее использовать термопары.

Прибор для проверки конденсаторов

При сборке практически любой радиолюбительской схемы, где есть конденсаторы, их необходимо проверить на исправность перед сборкой схемы. Для этого я собрал прибор для проверки конденсаторов. Схему взял из сборника Б. С. Иванов « В помощь радиокружку», Радио и связь. 1990г, 3-е издание. Вот схема прибора.

Для сборки нам потребуются следующие детали и инструменты:

1 – микросхема К 155 ЛА3,Сопротивления 0,25вт ,1,5ком, 15 ком, 3,3 ком, 1 ком, Конденсаторы 4700 пф, 68 пф , диод Д9Б , светодиод АЛ 307А , две кнопки, или двойной тумблер « шестиконтактный » , монтажные провода , припой , два 5-ти контактных магнитофонных разъема «папа» и «мама». 2- паяльник, пинцет , кусачки, пассатижи, дрель, сверла, винты и гайки М3 М4, два небольших уголка , Корпус небольших размеров , Фольгированный , стеклотекстолит для печатной платы. Собираем следующим образом. Шаг 1 – изготавливаем печатную плату. Как ее изготовить знает каждый школьник.

После этого спаиваем детали на плате, согласно схеме.

Шаг-2

в готовом у меня пластмассовом корпусе я просверлил два отверстия , и установил в них разъем и тумблер.

Шаг-3

установил печатную плату в корпус, при помощи винтов и гаек М3.

Шаг-4

из такой же пластмассы изготовил боковую стенку корпуса.

Внутри корпуса закрепил два уголка , а уже на них я закрепил боковую крышку при помощи двух винтов М4. После этого спаиваю до конца схему.

Шаг-5 налаживаю прибор

Для этого Нам нужен стрелочный прибор Ц4315 или аналогичный с пределом измерения постоянного тока 100 мка. Подключаю прибор согласно фото к источнику постоянного питания 4,5в, в моем случае к блоку питания , и к прибору Ц4315 согласно схеме.

Выводы разъема обозначены на схеме цифрами 1-6. При подключении кнопкой SB2 источника питания 4,5в через индикатор протекает ток около 15 мка. Если параллельно конденсатору С2 будет подключен кнопкой SB1 исправный проверяемый конденсатор, ток возрастет и будет находится в пределах 40 – 60 мка, независимо от его емкости .Эти пределы принимают за нормальные и отмечают на шкале зеленым цветом . При проверке конденсаторов емкостью больше 5 мкф стрелка прибора вначале резко отклоняется в сторону конечного деления шкалы 100 мка , а затем возвращается в пределы сегмента. При проверке оксидных конденсаторов их плюсовой вывод обязательно соединяют с гнездом XS1 (+). Если внутренний обрыв , стрелка остается на делении 15 мка.

Если конденсатор пробит , стрелка отклонится за конечное деление . Если с утечкой , стрелка отклонится за пределы сегмента, если сопротивление утечки менее 60 ком. Налаживаем так. Нажать SB2, убедится в отклонении стрелки на 15 мка , если не соответствует ( 15 – 20%) – подобрать R3. К гнездам XS1 и XS2 подключают конденсатор 250 пф и нажав сразу две кнопки замечают показания индикатора . Подбором R2 доводят стрелку до деления 50 мка ( середина сегмента).

Замкнув после этого гнезда убеждаются в отклонении стрелки за конечное деление. Я уменьшил C2 -20 пф, R1-1 ком , C1 – 3300 пф теперь прибор проверяет конденсаторы от 1 пф. Как подключать прибор к Ц4315 показано на фото. Этот прибор работает у меня уже 5 лет , им легко и быстро проверять конденсаторы.

Лучший тестер конденсаторов — отличные предложения на тестеры конденсаторов от глобальных продавцов тестеров конденсаторов

Отличные новости !!! Вы попали в нужное место для тестера конденсаторов. К настоящему времени вы уже знаете, что все, что вы ищете, вы обязательно найдете на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший тестер конденсаторов вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели тестер конденсаторов на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в тестере конденсаторов и думаете о выборе аналогичного продукта, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести конденсаторный тестер по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

10 лучших измерителей емкости 2021 года — обзоры эксперта!

Вы электрик? Тогда вы можете знать о важности измерителя емкости.Это устройство, используемое для измерения уровня энергии в устройствах. Электрики используют его для считывания емкости отдельных конденсаторов.

С развитием технологий было изобретено все больше и больше лучших измерителей емкости. Рынок наводнен сотнями из них. Некоторые из них поставляются как отдельные устройства, в то время как другие, например, мультиметр, интегрируются с другими устройствами.

Top 5 лучших измерителей емкости: выбор редакции

Но вы не можете пойти в магазин и купить какой-либо измеритель емкости.Вы должны выбрать тот, который подходит для вашей работы. В противном случае вы можете не получить качественный результат. Из-за их большого количества на рынке вы можете не понять, что выбрать.

В результате мы исследовали лучший измеритель емкости, который вы можете купить сегодня на рынке. Каждый из следующих основных обзоров емкости даст вам представление об устройстве и о том, почему оно в настоящее время является одним из лучших на рынке. Но перед этим вот список;

Обзор 10 лучших измерителей емкости:

1.Signstek MESR-100 V2 Автоматическое определение диапазона в цепи Конденсатор измерителя ESR LCR

Тестер Signstek MESR-100V2 — мечта каждого электрика. Это поможет вам проверить, поврежден ли ваш конденсатор, неисправен или работает ли он правильно. Плохие электронные конденсаторы вместо фильтрации шума создают большую рябь.

Большие конденсаторы имеют сопротивление более 3 Ом. Поскольку этот измеритель ESR работает от пика до пика с хорошими конденсаторами или 15 мВ постоянного тока, он отлично подходит для тестирования схем.

Вы уменьшаете импеданс на 100 кГц, чтобы измерить истинное значение последовательного резистора.Измеритель тестирует с использованием низкого напряжения, что означает, что полупроводник внутри тестируемого устройства не подвергается риску включения. Вы также можете использовать эту программу проверки для проверки вашего телевизора, аудиоплаты, ЖК-дисплея или других устройств во время их ремонта.

Благодаря большому ЖК-дисплею вы можете легко просматривать и читать информацию. Переносить этот тестер цепей не составит труда благодаря прилагаемому к нему пластиковому корпусу изогнутой формы.

Батарея выходит за рамки батареи 9 В, что делает ее удобной в использовании в любое время.Тестер Signstek MESR-100V2 поставляется с внешним USB-источником питания, что означает, что вы можете заряжать его от компьютера или внешнего блока питания.

Двойной терминал помогает быстро и легко проверить резистор или конденсатор. Если вы не понимаете, как работает измеритель емкости, вы можете следовать инструкциям, прилагаемым к этому тестеру.

Плюсы:

  • Быстрое и удобное использование
  • Обеспечивает точные результаты
  • Помогает уменьшить высокочастотную составляющую прямоугольной волны для улучшения результатов
  • Его разрешение 0.001 Ом очень высокий
  • Имеет большой ЖК-дисплей для удобного чтения результатов
  • Поставляется в пластиковом футляре для перевозки
  • Использует долговечные батареи
  • Использует стандартный порт micro-USB

Минусы:

  • Поставляется с короткими щупами
  • У вас могут возникнуть трудности с обнулением счетчика

Купить на Amazon

2. Цифровой тестер конденсаторов ELIKE от 0,1 пФ до 20 мФ

Цифровой тестер конденсаторов

ELIKE входит в наш список лучших на рынке благодаря своим диапазонам измерения.Их девять, начиная с 200Pf и заканчивая 20mF.

Его ЖК-дисплей полюбится любому электрику. Он большой, с подсветкой сзади и с местом для хранения данных. Информация не только достаточно большая, чтобы ее можно было прочитать, но и ее можно увидеть даже в темных местах.

Измерения обычно точны, так как вы можете измерять, начиная с нуля, используя кнопку настройки нуля. Вам не нужно беспокоиться о качестве этого устройства, поскольку оно соответствует стандартам безопасности IEC 61010.

Это лучший измеритель электрических конденсаторов для устранения всех проблем с электричеством в вашем доме.Использовать его несложно, и тестер идеально подходит для проверки конденсаторов перед использованием. Ваша печатная плата становится неисправной, если возникает проблема с конденсатором.

Благодаря небольшому размеру вы можете легко носить его с собой куда угодно. С его кнопкой удержания информация остается на дисплее. Сигнал индикатора батареи предупреждает вас, когда вам необходимо заменить батарею, делая ее надежной.

Плюсы:

  • Испытания конденсаторов и всей бытовой электротехники
  • Информация остается на ЖК-дисплее для справки благодаря функции удержания
  • Поставляется с большим ЖК-дисплеем для лучшей видимости отображаемой информации
  • Вы можете узнать, когда заменить батарею, по индикатору разряда батареи
  • Благодаря компактным размерам его можно легко носить с собой куда угодно.
  • Соответствует стандартам безопасности IEC

Минусы:

  • Не идет с носителем
  • Легко портится при неправильном обращении

Купить на Amazon

3.Honeytek A6013l Тестер конденсаторов

Благодаря девяти диапазонам измерения вы можете измерять устройства с диапазоном от 200 пФ до 20 мФ. Поскольку существует множество электронных устройств, подпадающих под этот диапазон, это удобный тестер конденсаторов. Читать отображаемую информацию не составит труда благодаря большому ЖК-дисплею. Он также подсвечивается сзади, чтобы обеспечить вам оптимальный обзор.

Если вам нужно, чтобы отображаемая информация оставалась на долгое время для справки, вам нужно только включить функцию удержания данных.Большинство пользователей не любят тратить свои кровно заработанные деньги на недолговечные устройства, но это устройство — отличное решение для ваших денег.

Тестер конденсаторов Honeytek A60131 показывает превышение дальности, чтобы увеличить срок его службы. Вам также не доставляет неудобств разряженная батарея, поскольку она предупреждает вас о низком уровне заряда. Тестер также поставляется с очень прочной и надежной LSI-схемой.

Использовать это проще простого. Вам нужно только установить его на ноль, используя настройки нуля для компенсации измерительных проводов.Вы можете легко положить его в сумку или карман и носить с собой куда угодно благодаря карманному размеру.

Плюсы:

  • Имеет девять диапазонов измерения, начиная с 200 пФ и заканчивая 20 мФ
  • Поставляется со значительным ЖК-дисплеем с подсветкой для лучшей видимости
  • Имеет защиту от перегрузки входа
  • Можно долго держать данные на дисплее
  • Предупреждает пользователя о выходе за пределы допустимого диапазона и низком заряде батареи
  • Небольшой размер для облегчения переноски

Минусы:

  • Иногда 9-вольтовый разъем может расшататься, и его необходимо подтянуть
  • Иногда показания нестабильны

Купить на Amazon

4.Тестер цепей MESR-100, тестер конденсаторов KKMOON mesr-100

Вы ищете лучший цифровой измеритель емкости? На этом ваш поиск может закончиться тестером цепей MESR-100. Благодаря двойному терминалу это высокая производительность. Тестер идеально подходит для быстрой и простой проверки любого резистора или конденсатора общего назначения. Вы также можете использовать его для проверки ремонта ЖК-дисплея, телевизора и аудиоплаты.

Проверка обычно выполняется очень быстро из-за распечатанной тестером таблицы СОЭ. Он удаляет импеданс с частотой 100 кГц, где сопротивление уменьшается, что позволяет измерять сопротивление последовательного резистора.Используя эту теорию, тестер может определить, поврежден ли конденсатор, неисправен или находится в хорошем состоянии.

Тестер цепей

MESR-100 поставляется с автоматическим отображением полярности на большом ЖК-дисплее, который светится на заднем плане. Показания видны даже при слабом освещении. Если вы не используете его в течение 10 часов, он автоматически отключается для экономии энергии. Благодаря диапазону измерения от 0,001 до 100,0R он обладает невероятно мощной функцией тестирования.

Вы можете использовать его для выполнения внутрисхемных тестов, от пика до пика в конденсаторе ниже 15МВ и использовать синусоидальную волну 100 кГц для измерения значения ESR.Его легко использовать, так как вам нужно всего лишь нажать кнопку измерения, чтобы выбрать режим.

Безопасность этого счетчика гарантируется, так как он поставляется в нескользящем футляре. С этим устройством вы по достоинству оцените соотношение цены и качества.

Плюсы:

  • Высокая производительность
  • Измеряет исправность конденсатора.
  • Спит автоматически и имеет дизайн подсветки
  • Имеет мощную тестовую функцию
  • Поставляется с красивой защитной оболочкой

Минусы:

  • Иногда внутрисхемные показания нестабильны
  • Поставляется с короткими испытательными кабелями

Купить на Amazon

5.Цифровой измеритель емкости мультиметра, тестер конденсатора cciyu от 0.1Pf до 2000uF

Если вас беспокоит безопасность, это лучший измеритель конденсаторов, который вы можете купить сегодня на рынке. Цифровой измеритель емкости мультиметра поставляется с защитными перчатками, и вы можете легко использовать его и носить с собой.

Отлично подходит для измерения электричества различными инструментами. Если у вас есть несколько проблем с бытовой техникой и автомобилем, этот тестер устранит их все.

Имея 9 диапазонов измерения, от 200PF до 20mF, он обладает превосходным диапазоном точности.ЖК-дисплей имеет 3 1/2 дюйма, достаточно большой для хорошей видимости. Экран также имеет подсветку, которая улучшает видимость как в ярких, так и в темных областях.

Аналого-цифровое преобразование тестера и технология двойной интеграции CMOS автоматически выбирают и сбрасывают полярность. Вы можете рассчитывать на этот измеритель во всех ваших энергетических испытаниях.

Плюсы:

  • Поставляется с защитными перчатками
  • Точно измеряет
  • Сбрасывает и автоматически выбирает полярность
  • Приходит в бой, поэтому его легко носить с собой
  • Простота использования
  • Точно устраняет различную бытовую технику и автомобильные проблемы
  • Поставляется с большим ЖК-дисплеем с подсветкой для четкой видимости.
  • Гарантия 1 год — отличное соотношение цены и качества.

Минусы:

  • Измерительный переключатель расположен сбоку, поэтому считывание показаний затруднено, так как вы должны держать прибор.
  • Некоторые аксессуары могут быть затянуты неплотно

Купить на Amazon

6.Цифровой автоматический измеритель емкости Excelvan M6013, тестер конденсатора

Привлекательный цвет и дизайн тестера могут вас заинтересовать, но что может вас поразить, так это его диапазон измерения. Excelvan измеряет от 0,01 пФ до 470 мФ у v2. Вам потребуется ~ 0.2S только для чтения 2200Uf. Для получения оптимальных результатов вам необходимо сначала разрядить конденсатор перед тестированием.

Цифровой тестер автоматического определения дальности Excelvan M6013 может измерять большой диапазон, но расстояние и длина проводов могут повлиять на его точность.Но вам понравится тот факт, что его показания более стабильны по сравнению с большинством тестеров. ЖК-экран большой, поэтому вы четко видите все цифры.

На ЖК-дисплее можно прочитать не более пяти цифр. Благодаря средней функции бега, которая выполняется автоматически, это повышает удобство. Зарядить его легко, так как он оснащен разъемом micro-USB для подключения внешнего источника питания. Тот факт, что производитель предлагает 1-летнюю гарантию, гарантирует, что вам понравится соотношение цены и качества.

Плюсы:

  • Поставляется со значительным ЖК-дисплеем для лучшей видимости
  • Измеряет большой диапазон
  • Имеет стабильные показания
  • Функционирование автоматическое
  • Можно заряжать извне
  • Поставляется с годовой гарантией

Минусы:

  • Длина провода может повлиять на его точность
  • Перед зарядкой необходимо разрядить конденсатор

Купить на Amazon

7.Цифровой измеритель емкости профессиональный конденсатор 0.1Pf — 20000Uf

Производитель разработал этот измеритель для профессионалов, что делает его лучшим тестером конденсаторов на сегодняшний день. Качество не подвергается риску, поскольку оно сертифицировано CE. Вы можете питать его от мощной батареи на 9 В, но она не входит в комплект поставки.

Батареи потребляют мало энергии, поэтому вам не нужно беспокоиться о счетах за электроэнергию. Вы также можете легко просматривать результаты благодаря большому ЖК-дисплею.Некоторые тестеры сложны в использовании, но не этот. Вы также можете с комфортом переносить его куда хотите, благодаря его легкости и компактности.

С этим тестером безопасность на высшем уровне. В упаковке есть защитная куртка. Если вы хотите, чтобы информация оставалась надолго, вам нужно только нажать функцию удержания. Он поставляется с ручкой, с помощью которой вы можете вручную установить нулевое значение.

Вам не нужно беспокоиться при покупке этого тестера, так как продавцы проверяют его перед отправкой.Это реальная сделка за ваши деньги.

Плюсы:

  • Сертифицирован CE и идеально подходит для профессионалов
  • Простота эксплуатации и переноски
  • Бескомпромиссная безопасность благодаря защитной куртке.
  • Поставляется с функцией удержания для более длительного хранения данных
  • Имеет ручку ручной регулировки, которая поможет вам обнулить его
  • Отображаемые цифры большие для облегчения видимости
  • Устройство проходит испытания перед отгрузкой

Минусы:

  • Батареи надо ставить отдельно
  • Легко портится при неправильном обращении

Купить на Amazon

8.KKmoon M6013 Цифровой высокоточный измеритель конденсатора

Диапазон измерения этого тестера цепей впечатляет. Тестер конденсаторов сопротивления измеряет от 0,01 пФ до 470 мФ для V2. Вы будете использовать 0,2 с, чтобы считать емкость 2200 мкФ. Вам понравятся показания этого тестера. Они не ошибаются, но всегда стабильны, что отличает его от остальных.

Функция усреднения тестера работает в автоматическом режиме, что позволяет более точно считывать пФ. Вы можете четко видеть показания, поскольку они большие и содержат пять цифр.Точечно-матричный ЖК-дисплей также большой, что улучшает читаемость. Благодаря микро-USB вы также можете заряжать его от внешнего источника питания, например от внешнего аккумулятора.

Но перед тестированием нужно разрядить конденсатор. Расстояние и длина провода могут повлиять на его точность. Из-за простоты использования этот тестер могут использовать как профессионалы, так и домашние мастера.

Плюсы:

  • Имеет большой диапазон измерения
  • Отображает пять больших единиц на большом матричном ЖК-дисплее
  • Показания обычно стабильные
  • Кто угодно может использовать этот тестер

Минусы:

  • Расстояние и длина кабеля тестера могут повлиять на получение точных результатов.
  • Конденсатор должен быть разряжен перед испытанием

Купить на Amazon

9.Цифровой измеритель емкости Elenco CM1555

Elenco CM1555 — это прибор, который вам нужен, когда вам нужны точные результаты и четкость считывания. Благодаря большому диапазону измерения и ЖК-дисплею. Вы можете измерять конденсаторы от 0,1 пФ до 20000 мкФ. Подразумевается, что вы можете использовать его для тестирования различных устройств.

Благодаря компактным размерам и легкому весу вы можете легко носить его с собой на различных устройствах для тестирования. Его ЖК-экран имеет 3 ½ дюйма и отображает большие цифры. Он также поставляется с ручкой регулировки нуля, чтобы установить его для тестирования.

В комплект поставки входят такие аксессуары, как измерительные провода, специальный и банановый разъем. Он также поставляется с мощными батареями на 9 В. Что может вас заинтересовать, так это небольшая цена, несмотря на удивительные возможности тестера. Подчеркивается качество, благодаря чему вы будете служить вам долго.

Не ждите разочарований, потому что он не противоречит тому, для чего был создан, что делает его любимым для многих пользователей. Но будьте осторожны при обращении с ним, так как на экране могут появиться царапины.У него также нет футляра для его хранения, а это значит, что вам придется покупать его отдельно.

Из-за его известной точности и других возможностей этот тестер стоит купить!

Плюсы:

  • Обеспечивает точные результаты
  • Работает дольше
  • Имеет большой диапазон измерения
  • Идеально подходит для тестирования различных устройств
  • Простота использования и переноски
  • Имеет ручку ручного обнуления для установки нуля для тестирования
  • Поставляется с большим ЖК-дисплеем
  • Отображает пять больших цифр для лучшей читаемости

Минусы:

  • Экран может поцарапать при неправильном обращении
  • Без футляра

10.Цифровой измеритель емкости UYIGAO UA6013L

Если вы профессиональный электрик, этот тестер конденсаторов создан для вас. Его широкий диапазон измерения от 0,1 пФ до 20 000 мкФ впечатляет. Цифровой измеритель емкости поставляется с девятью измерительными секциями, что объясняет, почему он дает точные результаты.

Вы без труда увидите показания благодаря большим цифрам, которые отображаются без ошибок. Отображение происходит на большом ЖК-дисплее тестера. Что вам понравится в этом тестере, так это его простота в эксплуатации.Он поставляется с ручным регулятором для установки нуля и готов к тестированию.

Вам не нужно беспокоиться о счетах за электроэнергию при использовании цифрового измерителя емкости UYIGAO UA6013L. Его энергопотребление очень низкое. Универсальность этого устройства поразит вас. Цифровой измеритель емкости также можно использовать для выбора конденсаторов, проверки ошибок, согласования емкостей, проведения численного анализа и измерения кабелей, печатных схем и емкостей переключателей.

Благодаря своей небольшой и менее громоздкой конструкции вы можете легко носить его с собой в любое место.Безопасность этого устройства оптимальна благодаря защитной рубашке, входящей в комплект.

Плюсы:

  • Идеально для профессионалов
  • Простота использования
  • Обеспечивает точные показания
  • Четкие показания в виде больших цифр на значительном ЖК-дисплее
  • Потребляет меньше энергии
  • Поставляется с большим диапазоном измерения в девяти секциях
  • Выполняет прочие задачи
  • Поставляется с защитной курткой
  • Легко носить с собой
  • Доступный

Минусы:

  • Может дать небольшую погрешность в результате ручного измерения
  • Мониторы откалиброваны иначе, чем отображаемое устройство

Купить на Amazon

Возможно, каждый из приведенных выше обзоров измерителя емкости мог побудить вас купить его для вашей работы.Но вам не нужно покупать что-либо в сети магазина или в Интернете. Тот факт, что измеритель емкости занимает первое место в нашем списке или лучше всего подходит для вашего друга, не означает, что он идеален для вас.

Конденсаторы

имеют разные характеристики для удовлетворения определенных потребностей. Если вы хотите приобрести емкость, которая будет соответствовать вашим потребностям и бюджету, вам необходимо учесть некоторые моменты перед покупкой. Вот что вам следует сделать в первую очередь;

Руководство по покупке: что следует учитывать при выборе измерителя емкости

a) Характеристики

Чем лучше характеристики измерителя емкости, тем он лучше! От характеристик устройства зависит его производительность.Его переменный и постоянный ток, сопротивление, переменное и постоянное напряжение должны иметь высокие характеристики. Измеритель с более высоким напряжением, чем устройства, которые вы хотите проверить, отлично подойдет. Но убедитесь, что текущий диапазон не превышает допустимого для тестируемого устройства. Убедитесь, что измеритель емкости высокого класса показывает истинное среднеквадратичное значение.

b) Разрешение цифрового мультиметра

Разрешение цифрового мультиметра — это количество цифр, которое измеряет уровень сигнала устройства. Это измерение изменения выходного сигнала в результате любого колебания входного сигнала.Цифровые мультиметры требуют, чтобы вы больше времени наблюдали за крайним правым значением. У вас может не быть времени, что делает это недостатком.

c) Измерение частоты

Подумайте, хотите ли вы измерять частоту и в то же время контролировать ток и напряжение в заданном диапазоне частот. Некоторые цифровые мультиметры могут справиться со всем сразу. Устройство должно поддерживать правильную частоту, если оно питается от переменного напряжения.

г. Измерение температуры

Емкость с функцией двойного перепада температур идеальна для покупки, если вы хотите ее контролировать.С помощью такого прибора можно одновременно измерять две температуры.

д) Точность

Избегайте измерителей емкости, которые показывают ошибки. Выбирайте те, которые показывают точные и стабильные результаты. Исследования могут помочь вам выбрать наиболее точный измеритель, который вы можете купить в любое время. Попросите отзывы пользователей или профессионалов.

f) Входное сопротивление

Высокий входной импеданс поможет вам получить точные измерения даже с помощью самой чувствительной электроники.

г) Энергетическая емкость

Учитывайте энергоемкость устройств, с которыми вы хотите работать. Кроме того, знайте, что оптимальный измеритель переходного напряжения может работать без повреждений.

Заключение

Измерители емкости необходимы для тестирования наших электронных устройств. Некоторые также имеют другие функции, такие как анализ, сопоставление и выбор. Как показано выше, лучший измеритель емкости — это тот, который удовлетворяет все ваши потребности и вписывается в ваш бюджет.Но перед покупкой нужно учесть некоторые факторы, описанные выше.

Ссылка на источник:

  1. https://en.wikipedia.org/wiki/Capacitance_meter

Конденсаторы-тестеры — Все производители — eTesters.com

Отображение недавних результатов 1 — 15 из 16 найденных продуктов.

  • Тестер конденсаторов

    Cap Check® — HD Electric Company

    Линия тестеров конденсаторов Cap Check® предназначена для выявления внутренних проблем с конденсатором или конденсаторной батареей.Доказано, что приборы являются ценным активом при обслуживании конденсаторов как на опорах, так и на подстанциях. Тестеры определят неисправные или вышедшие из строя конденсаторы, которые могут разорваться при включении питания. Cap Check III предназначен для установки на столб и отдельных конденсаторов и может позволить бригаде из двух человек проверить батарею из 12 примерно за 20 минут. Cap Check II основан на тех же принципах и специально разработан для проверки конденсаторных блоков в батареях подстанций.

  • Тестер трансформаторов и конденсаторов

    Quick-Check® — HD Electric Company

    Тестер трансформаторов и конденсаторов Quick-Check® — это универсальный инструмент для быстрой и простой проверки конденсаторов, трансформаторов и подключенных к ним соединений.В полевых условиях Quick-Check используется для проверки первичной и вторичной сторон новых или модернизированных одно- или трехфазных трансформаторных установок на короткое замыкание перед подачей питания. В магазине Quick-Check используется для быстрой проверки входящих и выходящих трансформаторов на предмет короткого замыкания или размыкания как первичной, так и вторичной обмоток, включая внутренние предохранители и прерыватели. Quick-Check также проверяет конденсаторы и конденсаторные батареи. Имеется магнит, чтобы удерживать Quick-Check на месте во время тестирования.

  • Тестер электролитических конденсаторов

    Chroma ATE Inc.

    Анализатор

    — это универсальный измерительный прибор, предназначенный для анализа характеристик электролитических конденсаторов. Он имеет несколько функций, которые могут быть запрограммированы в зависимости от характеристик конденсатора путем изменения настроек для проверки выдерживаемого напряжения тонкой пленки окисления металла, тока утечки конденсатора, емкости, коэффициента рассеяния, импеданса и эквивалентного последовательного сопротивления и т. Д.

  • Тестер конденсатора для EDLC (электрический двухслойный конденсатор)

    PFX2400 серии — Kikusui Electronics Corp.

    Тестеры конденсаторов серии PFX2400 предназначены для разработки тестеров заряда / разряда для конденсаторов с двойным электрическим слоем. Номинальное напряжение составляет 5 В для одноэлементных батарей. Доступна линейка из 4 моделей: 5A / 12 каналов, 35A / 4 канала, 70A / 2 канала и 140A / 1 канал.В последние годы конденсатор с двойным электрическим слоем увеличивал свою емкость, и его можно использовать в электромобилях в качестве источников энергии для запуска двигателя и помощи при разгоне. Ожидается более широкое использование этих конденсаторов в качестве нового источника энергии для повышения экономии автомобильного топлива, а также улучшения качества выхлопных газов. Тестеры конденсаторов серии PFX 2400 удовлетворяют потребности в более сложных и специализированных тестах, связанных с двумя ключевыми проблемами, с которыми сталкивается более широкое использование конденсаторов с двойным электрическим слоем: технологии накопления энергии и управление питанием (оптимизация энергопотребления).

  • Тестер внутрисхемного ESR и DCR конденсатора

    236 — GME Technology

    Этот внутрисхемный тестер ESR и DCR предназначен для измерения ESR (эквивалентного последовательного сопротивления) конденсаторов в диапазоне от 0,47 мкФ до 2200 мкФ, внутри или вне цепи. Возможность устранения неисправностей в цепи экономит время и делает 236 обязательным для всех, кто тестирует или устраняет неисправности в печатных платах.

  • Автоматический тестер диэлектрических потерь с защитой от помех

    SFK061 — Shanghai Launch Electric Co., Ltd.

    Он предназначен для тестирования tgδ и Cx материалов и оборудования, таких как различные типы изоляционных материалов, изолирующие втулки, силовой кабель и конденсатор, измерительный трансформатор и трансформатор.Тестер оснащен высоковольтным преобразователем переменного тока и прецизионным стандартным конденсатором, прост в эксплуатации, полностью автоматизирован, имеет стабильные и надежные данные и пригоден для печати. Тестер также оборудован защитным устройством высокого напряжения.

  • Полностью автоматический тестер емкости и индуктивности

    SFh266 — Shanghai Launch Electric Co., Ltd.

    Полностью автоматический тестер емкости и индуктивности специально разработан для групп шунтирующих реакторов, одиночных реакторов в оборудовании SCV, под руководством экспертов по компенсации реактивной мощности.Измерение емкости шунтирующего конденсатора, сборка одиночного конденсатора или групповых конденсаторов без снятия обмотки Измерение индуктивности реактора и волнового улавливателя без снятия обмотки Измерение пусковой емкости трансформаторов и генераторов без снятия обмотки Измерение шунтирующего (разрядного) сопротивления

  • Тестеры высокого напряжения постоянного тока

    DPW серии — UDEYRAJ ELECTRICALS PRIVATE LIMITED

    Эти портативные тестеры предназначены для использования при испытании высоковольтного оборудования в энергетике.Регулярные испытания изоляции и утечки являются необходимым требованием для ОПН, испытаний на пробой кабеля, зарядки конденсаторов и другого лабораторного использования.

  • Измеритель диэлектрических потерь изоляционного масла

    HDLT — Hention Electrical Equipment Co., Ltd.

    Этот интегрированный тестер диэлектрических потерь с драгоценным изоляционным маслом предназначен для измерения диэлектрических потерь TAN и емкости изоляционного масла трансформаторов.Это высокоточный инструмент; интегрирован с масленкой, прибором контроля температуры, датчиком температуры, мостом для испытания на диэлектрическую потерю, испытательной мощностью переменного тока, стандартным конденсатором и т. д.

  • Тестеры ограничителей перенапряжения

    нержавеющая сталь 450 — ATSI

    Тестер ограничителя перенапряжения ATSI SST-450 предназначен для быстрого и простого тестирования всех обычно используемых ограничителей переходного напряжения: металлооксидных варисторов (MOV), газоразрядных трубок (GDT), кремниевых лавинных диодов (SAD), тиристорных устройств защиты от перенапряжения. (TSPD) и гибридные устройства.Источник постоянного тока 1 мА и напряжением до 1000 вольт тестера имеет функцию определения как пикового, так и среднего значения, чтобы обеспечить полные параметры тестирования как для ломов, так и для клещей. Измерения отображаются с разрешением 0,1 В. Тестер может тестировать супрессоры с фильтрующим конденсатором до 200 мкФ. Также доступна переходная коробка для вставных глушителей.

  • Оборудование для тестирования аккумуляторных элементов

    Xiamen WinAck Battery Technology Co., ООО

    Тестер срока службы аккумуляторных батарей — это высокоточная система, разработанная специально для тестирования заряда и разряда аккумуляторных элементов. Он подходит для испытаний на циклические циклы аккумуляторных элементов, испытаний заряда и разряда аккумуляторных батарей, тестирования производительности аккумуляторных элементов, теста на определение емкости аккумуляторных элементов, батареи. ИК-тест элемента, тест на глубокую разрядку, функциональный тест мощных литий-ионных аккумуляторных элементов, таких как аккумуляторный модуль EV, аккумуляторный модуль ES, суперконденсатор…

Цепь тестера утечки конденсатора

— Быстрый поиск протекающих конденсаторов

Этот простой тестер конденсаторов способен проверять протекающие электролитические конденсаторы в диапазоне от 1 мкФ до 450 мкФ.Он может тестировать большие пусковые и рабочие конденсаторы, а также миниатюрные конденсаторы 1 мкФ на 10 В. Как только вы поймете временной цикл, вы можете протестировать до 0,5 мкФ и до 650 мкФ.

Генри Боуман

Как сделать этот тестер емкости

Схема тестера утечки конденсатора была сделана из некоторых ненужных деталей, которые у меня были под рукой, а также из пары операционных усилителей и таймера 555. Тест основан на синхронизированном цикле зарядки, когда два отсека напряжения показывают заряд 37% и 63%.

На схеме конденсатор подключен к клеммам, обозначенным C. Одна сторона заземлена, а другая сторона подключена к поворотному селекторному переключателю, а также ко входам двух операционных усилителей. Положение «G» на поворотном переключателе — это заземление с низким сопротивлением для разряда конденсаторов при подключении. Перед подключением конденсаторы большой емкости следует всегда разряжать.

Принципиальная схема

Стабилитрон на 12 В также предназначен для защиты по напряжению. Если на конденсаторе отмечена полярность, красная точка или + должна быть подключена к положительному щупу.Селекторный переключатель также должен находиться в положении «G» при подключении. S2 должен находиться в положении «разгрузка».

Размеры резистора поворотного переключателя были определены путем обращения формулы T = RC, так что R = T / C. Каждое значение резистора на поворотном переключателе выбирается таким образом, чтобы обеспечить приблизительное время зарядки 5,5 секунд. Фактическое среднее время зарядки составляет от 4,5 до 6,5 секунд.

Допуски резисторов и небольшие различия в номиналах конденсаторов создают разницу в 5,5-секундной конструкции.Напряжение питания должно быть очень близким к 9 вольт. Любое более низкое или более высокое напряжение повлияет на напряжение на делителях сопротивления на входных контактах IC 2 и IC 3.

Как проверить

Напряжение на вилке адаптера переменного / постоянного тока было выше заявленных 9 вольт. Я использовал последовательно понижающий резистор на 110 Ом, чтобы снизить его до 9 В. Когда конденсатор подключен к тестовым клеммам, переключатель выбора должен быть перемещен с «G» на то же или ближайшее значение конденсатора для тестирования.

Когда S2 приводится в действие для зарядки, 9 вольт подается на резистор селекторного переключателя через общий дворник к конденсатору, чтобы начать заряд конденсатора. Напряжение 9 В также подается на эмиттер Q1, транзистора с усилением по току. Q1 немедленно проведет и запитает 555, так как база Q1 находится под резистивным потенциалом земли от выходного контакта IC 3 6.

Таймер 555 загорается светодиодом 2 один раз в секунду, пока не будет достигнуто 63% заряда. Два операционных усилителя сконфигурированы как компараторы напряжения.Когда достигается 37% (3,3 В) заряда, выход IC2 становится высоким, загорается светодиод 3.

Когда достигается 63% заряда (5,7 В), IC 3 становится высоким, загорается светодиод 4, а также прекращается подача питания Q1. к таймеру. Работа S2 для разряда обеспечивает заземление через тот же резистор, который заряжал конденсатор.

Модель 555 не работает во время разряда. Светодиод 4 сначала погаснет, указывая на то, что напряжение упало ниже 63%, затем светодиод 3 также погаснет, когда напряжение упадет ниже 37%.Ниже приведены индикаторы неисправностей для тестов конденсаторов после проверки того, что вы выбрали правильный диапазон и правильно подключена полярность:

Обрыв конденсатора : Загораются светодиоды 3 и 4 сразу после срабатывания переключателя заряда. Через конденсатор не протекает ток, поэтому оба компаратора сразу обеспечат высокий выходной сигнал.

Закороченный конденсатор : светодиоды 3 и 4 никогда не загораются. Светодиод таймера 2 будет постоянно мигать.

Высокое сопротивление: короткое замыкание или изменение значения: 1.светодиод 3 может гореть, а светодиод 4 не гореть. 2. Оба светодиода 3 и 4 могут гореть, но время зарядки больше или меньше расчетного. Попробуйте использовать заведомо исправный конденсатор и повторите проверку.

У меня был конденсатор с маркировкой 50 мкФ, который заряжался до 63% за 12-13 секунд. Я проверил его с помощью цифрового тестера конденсаторов, и он показал фактическое значение 123 мкФ!

Если у вас конденсатор, который находится в среднем диапазоне между двумя значениями конденсатора, проверьте оба значения. Среднее значение между высокими и низкими интервалами заряда должно находиться в пределах 4.Диапазон 5-6,5 секунд.

Время зарядки 0,5 мкФ составляет 2,5–3 секунды в положении 1 мкФ. Кроме того, тестирование конденсатора емкостью 650 мкФ в позиции 450 мкФ обеспечит время зарядки 8-10 секунд. Альтернативой поворотному переключателю могут быть переключатели spst для каждого резистора. Перед установкой используйте цифровой омметр для проверки сопротивления каждого резистора. Резисторы 6 кОм и 3,4 кОм, используемые в сетях делителей напряжения операционного усилителя, должны выбираться с учетом низких допусков. Напряжение 3 и 6 вольт на делителях было бы достаточно близко для цикла зарядки.

Другой простой тестер конденсаторов

Следующая конструкция представляет собой простую схему тестера утечки электролитических конденсаторов. Довольно много излучающих конденсаторов создают внутреннее сопротивление, которое изменяется в ответ на изменения температуры и / или напряжения.

Эта внутренняя утечка может вести себя как переменный резистор, включенный параллельно синхронизирующему конденсатору.

В невероятно быстрых интервалах времени результат утечки конденсатора может быть номинальным, но по мере увеличения временного интервала ток утечки может привести к значительному изменению схемы таймера или, возможно, к полному отказу.

В любом случае непредсказуемый конденсатор синхронизации может превратить безупречно исправную схему таймера в ненадежный мусор.

Как работает схема

На рисунке ниже представлена ​​принципиальная схема нашего электролитического детектора утечки. В этой схеме используется PNP-транзистор общего назначения (Q1) 2N3906, подключенный к схеме постоянного тока, в результате чего на испытательный конденсатор подается зарядный ток 1 мА.

Двухдиапазонная измерительная схема используется для отображения заряда конденсатора и тока утечки.Пару батареек обеспечивают питание цепи.

Стабилитрон 5 В (D1) фиксирует на базе Q1 постоянный потенциал 5 В, обеспечивая постоянное падение напряжения вокруг R2 (эмиттерный резистор Q1) и постоянный ток на тестируемом конденсаторе (обозначенном как Cx).

При установке в положение 1 S1 напряжение, используемое на Cx, ограничивается примерно 4 В; если S1 находится в положении 2, напряжение на конденсаторе увеличивается примерно до 12 В. Дополнительная батарея может быть включена последовательно с B1 и B2 для повышения зарядного напряжения примерно до 20 В.

Когда S2 находится в его нормально замкнутом положении (как показано), измеритель подключается параллельно с R3 (шунтирующий резистор измерителя), что позволяет схеме отображать полный диапазон 1 мА. Когда S2 нажат (разомкнут), диапазон измерения контура уменьшается до 50 мкА полной шкалы.

Настройка схемы

Схемы на рис. 2 и 3 демонстрируют несколько способов выбора шунтирующего резистора (R3 на рис. 1) для увеличения диапазона M1 с диапазона 50 мкА по умолчанию до 1 мА.

Если у вас есть подходящий вольтметр, который может измерять 1 В, тогда вы можете использовать схему, показанную на рис. 2, для определения R3.

В этой процедуре отрегулируйте R1 (потенциометр 10 кОм) на максимальное сопротивление и отрегулируйте R3 (потенциометр на 500 Ом) до минимального значения.

Подключите батарею, как показано, и выполните точную настройку R1 для получения показания 1 В на M1. Осторожно увеличивайте предустановленное значение R3, пока M2 (измеритель тока) не покажет отклонение на полную шкалу. Изучите только R1, пока вы изменяете предустановку R3, чтобы поддерживать показание 1V на M1.

В то время как M1 показывает 1 вольт, а M2 отображает полную шкалу, потенциометр устанавливается на правильное значение сопротивления, необходимое для R3. Вы можете использовать потенциометр для шунтирующего резистора или выбрать одно из эквивалентных значений из своего блока резисторов. В качестве альтернативы, если у вас есть прецизионный амперметр, который может проверять 1 мА, вы можете попробовать схему на рис. 3.

Вы можете реализовать точно такие же процедуры, как на рис. 2, и точно настроить R1 для отображения 1 мА. .

Как использовать

Чтобы применить предложенную схему проверки утечки конденсатора, начните с S1 в выключенном положении.Подключите проверяемый конденсатор к клеммам, соблюдая правильную поляризацию.

Переместите S1 в положение 1, и вы должны обнаружить, что измеритель (в зависимости от емкости конденсатора) показывает полную шкалу в течение короткого промежутка времени, а затем возвращается к нулевому показанию тока. В случае, если конденсатор закорочен внутри или сильно протекает, вы можете обнаружить, что измеритель постоянно показывает показания полной шкалы.

В случае, если счетчик все же вернется к нулю, попробуйте нажать S2, и счетчик может не сдвинуться вверх по шкале для исправного конденсатора.Если номинальное напряжение конденсатора превышает 6 вольт, переместите S1 в положение 2, и вы должны увидеть идентичные результаты для исправного конденсатора.

Если измеритель показывает возрастающее отклонение, конденсатор не может быть хорошей перспективой для применения в схеме таймера. Возможно, конденсатор не выдержит испытания, но все равно останется хорошим устройством.

Если электролитический конденсатор не используется или не заряжается в течение длительного времени, это может привести к высокому току утечки при первоначальном приложении напряжения; но когда напряжение остается подключенным к конденсатору в течение разумного периода времени, блок обычно может снова включиться.

Испытательная схема может быть применена для восстановления дремлющего конденсатора путем надлежащего контроля результатов на измерителе M1.

Резисторы
(Все постоянные резисторы — 1/4 Вт, 5% единиц.)
R1-2.2k
R2-4.7k
R3 — см. Текст
Semiconductors
Q1-2N3904 NPN кремния общего назначения транзистор
D1 — IN4734A стабилитрон 5,6 В

Разное
MI- 50 мкА измеритель
B1, B2 транзистор-радиобатарея 9 В
Переключатель SI-SP3T
S2-нормально замкнутый кнопочный переключатель

О Swag

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

Руководство и 10 лучших выборов [2021]

Емкость — это способность электронного компонента накапливать энергию, вызванную различным напряжением, в виде электрического заряда. Электронный компонент, в котором хранится энергия, называется конденсатором. Чтобы измерить емкость конденсатора, нам понадобится электронное измерительное устройство, которое называется тестером конденсаторов.Для измерения щупы необходимо подключить к ножкам конденсатора.

Способы проверки конденсатора

На практике существуют различные методы проверки конденсатора:

  1. Мультиметр с измерением емкости
  2. Автономный тестер конденсатора
  3. Измеритель ESR

Для проверки конденсатора вне цепи , мультиметр с измерением емкости и тестер конденсаторов — правильный выбор.

Перед проведением теста необходимо полностью разрядить конденсатор.Для тестирования конденсатора с помощью тестера конденсаторов требуется только демонтированный / отключенный конденсатор и подключение к нему датчиков.

Тот же метод применяется при использовании мультиметра с измерением емкости. Чтобы определить качество конденсатора, убедитесь, что сравниваемые показания все еще находятся в пределах допустимого диапазона. Если показание находится вне его, то это можно рассматривать как неисправный конденсатор.

С другой стороны, измеритель ESR является лучшим, когда дело доходит до проверки конденсатора внутри цепи.

В то время как предыдущие способы показывают единицы измерения в Фарадах, измеритель СОЭ показывает показания в единицах Ом.

Качество конденсатора можно узнать, сравнив показания с таблицей характеристик, в которой содержится ожидаемое считываемое значение в отношении рабочего напряжения и значения емкости. Если показания соответствуют таблице и находятся в пределах допуска, конденсатор находится в хорошем состоянии.

Несмотря на то, что в повседневной жизни существует множество приложений для тестирования конденсаторов, самым простым из них является замена конденсатора во время ремонта электроприборов.

10 лучших тестеров конденсаторов 2021

Если вы ищете лучший тестер конденсаторов, то ожидается, что этот пост вам поможет. Мы рассмотрим 10 лучших тестеров конденсаторов. На самом деле, это далеко не все тестеры конденсаторов. Некоторые из них являются мультиметрами с измерением емкости (функция измерения емкости встроена в мультиметр), а некоторые — измерителями ESR. Конечно, они призваны расширить ваши возможности, когда дело доходит до покупки прибора для измерения и проверки емкости.

№1. B&K Precision 830C [Лучший автономный тестер конденсаторов в целом]

Самостоятельный поиск лучшего тестера конденсаторов требует много времени. С другой стороны, вы можете значительно сократить время, затрачиваемое на это, читая определенные обзорные статьи, такие как наша. Если вы профессионал и пытаетесь найти лучший тестер конденсаторов для работы, то B&K Precision 830C будет правильным выбором.

Счетчик оснащен широким набором функций и возможностей.Таким образом, он становится лучшим тестером конденсаторов. Он имеет широкий диапазон измерений от 1000 пФ до 200 мФ. Он подходит для большинства конденсаторов, имеющихся на рынке. Он соответствует стандартам безопасности: EN61010-1 по степени загрязнения и EN61326-1 по устойчивости и выбросам. Есть два дисплея (основной и дополнительный) и два типа питания (батарея 9 В и адаптер переменного тока). Дисплей также оснащен подсветкой.

Использование этого глюкометра дает вам совершенно новый опыт измерения. Он поддерживает ручные и автоматические измерения диапазона.Существуют различные режимы, такие как режим допуска, относительный, режим сравнения и режим записи.

  1. Режим допуска: полезен для сортировки и тестирования большого количества компонентов.
  2. Относительный режим: полезен, когда пользователю нужно «обнулить» счетчик на основе эталонного значения.
  3. Режим сравнения: для сортировки конденсаторов и настройки 25 наборов предельных диапазонов.
  4. Режим записи: лучше всего подходит для регистратора данных и настраивается на ПК через USB (виртуальный COM).

Плюсы:

  • Широкий диапазон измерений
  • Интерфейс USB
  • Функция автоматического выбора диапазона
  • 3-летняя гарантия

Минусы:

Часто задаваемые вопросы :

В: Поддерживает ли он автоматическое измерение диапазона?

A: Да, он поддерживает быстрое автоматическое определение диапазона для измерений компонентов.

В: Что необходимо сделать перед измерением?

A: Обязательно отключите питание и разрядите конденсатор, чтобы предотвратить возможное повреждение измерителя.

Q: Как эффективно измерить емкость?

A: Емкость измеряется измерителем, заряжающим конденсатор известным током, в результате чего определяется время периода зарядки, а затем вычисляется емкость. Чем больше емкость, тем больше времени требуется на измерение. Для этого измерителя вам необходимо выбрать подходящий диапазон измерения, чтобы ускорить измерение.

2. KKMoon M6013 [Другой автономный вариант]

Всегда лучше иметь другой вариант для покупки. В этом случае вариант KKMoon M6013. Это не подведет. Будучи вторым по величине после BK Precision 830C, этот продукт подходит для большинства домашних пользователей и профессиональных инженеров.

Самая сильная особенность — диапазон измерения от 0,01 пФ до 470 мФ, что шире, чем у BK Precision 830C. Простой и минимальный интерфейс делает его удобным даже для новичков.Режим может быть установлен как автоматический или ручной в зависимости от ваших предпочтений. Он поддерживает два источника питания (2 аккумулятора AA или micro-USB). Его цена почти в десять раз дешевле, чем у BK Precision 830C. Таким образом, это будет полезно для вас.

Плюсы:

  • Недорогой
  • Большой диапазон измерения
  • Простой и удобный интерфейс
  • Подходит для HVAC

Минусы:

  • Кабели датчика слишком короткие
Часто задаваемые вопросы

Q: Какие режимы измерения доступны на глюкометре?

A: В нем есть автоматический и ручной режимы измерения дальности.

Q: Сколько ручных диапазонов установить?

A: Он имеет только три типа ручных диапазонов, что упрощает его использование.

Q: Какое практическое применение лучше всего подходит для этого измерителя?

A: Лучше всего подходит для домашних пользователей и профессиональных инженеров, таких как HVAC (отопление, вентиляция и кондиционирование воздуха).

3. Honeytek A6013L [Лучший автономный тестер конденсаторов для бюджета]

Иногда бывает достаточно бюджета. Фактор, который является серьезной причиной, когда речь идет о покупке определенного счетчика.Неудивительно, что его можно было ограничить. Вот почему выбор Honeytek A6013L в качестве лучшего тестера конденсаторов с ограниченным бюджетом, несомненно, пойдет вам на пользу.

Сама цена почти втрое дешевле KKMoon M6013. Несмотря на то, что он дешевый, он по-прежнему поддерживает стандартные и базовые функции измерения емкости. Диапазоны измерения разделены на 9 позиций от 0,1 пФ до 20 мФ, что более чем достаточно для дешевого измерителя. В этом измерителе доступны дополнительные функции, такие как удержание данных, ЖК-дисплей с подсветкой, регулировка нуля, по всему диапазону и индикация низкого заряда батареи.Его уникальная особенность заключается в том, что он автоматически разряжает конденсаторы ниже 1000 В. Он упакован в компактную структуру и карманный размер с защитной кобурой.

Плюсы:

  • В три раза дешевле, чем KKMoon M6013
  • Функция автоматического разряда
  • Размер кармана

Минусы:

Часто задаваемые вопросы:

В: Поддерживает ли он авто -классифицировать?

A: Нет.

Q: Сколько диапазонов у измерителя?

A: Есть девять диапазонов от 200 пФ до 20 мФ.

Q: Какая у него самая лучшая функция?

A: Имеет функцию автоматического разряда конденсаторов ниже 1000 В.

4. Автономный тестер конденсаторов Elike DT6013 [Лучшая альтернатива]

Наличие альтернативы означает, что вы можете получить больше преимуществ, сравнивая характеристики продуктов нескольких компаний. Более того, если альтернатива стоит немного. Elike DT6013 — лучшая альтернатива, которая у вас есть, помимо Honeytek A6013L.

Расходомер такой же недорогой, как и Honeytek A6013L.Предоставляемые функции в основном такие же, как у Honeytek. Например, диапазон измерения, удержание данных, настройка нуля и LDC с подсветкой. Тем не менее, он соответствует стандарту безопасности IEC 61010 и является хорошим выбором для поиска и устранения неисправностей бытовой электросети. На ЖК-дисплее также есть большие цифры, что упрощает чтение для пользователей.

Плюсы:

  • Легко читаемый дисплей с подсветкой
  • Недорого, как Honeytek A6013L
  • Подходит для устранения бытовых электрических проблем
  • Стандарт безопасности IEC 61010

Минусы:

Часто задаваемые вопросы :

Q: Есть ли в этой модели режим автоматического выбора диапазона?

A: Нет, эта модель не поддерживает режим автоматического выбора диапазона.

В: Подходит ли он для такого серьезного использования?

A: Соответствует стандарту безопасности 61010, касающемуся электрических требований к лабораторному испытательному и измерительному оборудованию.

В: Для чего это лучше всего?

A: Лучше всего решать бытовые проблемы с электричеством.

5. Тестер конденсаторов Supco MFD10 [Автономная модель с простейшим интерфейсом]

Типичный тестер конденсаторов может быть довольно утомительным и требовать больше времени для работы. Тем более, если у вас есть несколько лет опыта.Поэтому логично, что счетчик с действительно простым интерфейсом даст новый пользовательский опыт. Supco MFD10, безусловно, может быть правильным выбором из-за своей простоты.

Стоит разумная цена. Несмотря на то, что его диапазон измерения меньше, он по-прежнему имеет другие преимущества для пользователей. Время измерения будет короче. Это связано с функцией автоматического выбора диапазона и нажатием одной кнопки. Это означает, что нажимать кнопку нужно только после того, как конденсатор будет готов к измерениям. Измеритель покажет OPEN для открытых конденсаторов и SHRT для закороченных конденсаторов на светодиодном дисплее.Кроме того, он предназначен для удовлетворения промышленных и сервисных нужд. Так что не стоит беспокоиться о его применении в реальной жизни.

Плюсы:

  • Интерфейс действительно простой
  • Умеренная цена
  • Режим автоматического выбора диапазона

Минусы:

  • Выводы слишком короткие
  • Меньший диапазон измерения

Часто задаваемые вопросы:

В: Какой режим измерения предоставляет измеритель?

A: Обеспечивает режим автоматического выбора диапазона.

В: Почему кнопка только одна?

A: Потому что он разработан компанией для кнопочного управления.

Q: В чем он хорош?

A: Это достойный вариант для промышленных и сервисных нужд.

6. Fluke-117 [Лучший мультиметр с измерением емкости]

Всегда существует потребность в том, чтобы пользователи нуждались в большом количестве измерительных функций в одном измерителе. Это пригодится; приятно использовать в экстремальных условиях. Таким образом, для удобства пользователей требуется такой практичный измеритель.Если вы ищете такой, то Fluke-117 — правильный выбор для вас.

Fluke-117 — цифровой мультиметр для измерения сопротивления, напряжения, силы тока, целостности цепи, частоты и емкости. Диапазон измерения емкости составляет от 1000 нФ до 9999 мкФ. Несмотря на то, что его диапазон меньше, чем у любого типичного тестера конденсаторов, он выполняет больше функций измерения. Этот измеритель также поддерживает режим автоматического выбора диапазона. Среди других предлагаемых функций — низкое входное сопротивление для лучшего чтения и «VoltAlert» для определения напряжения без контакта.Он соответствует стандарту CAT III 600 В. Он совместим с громкой связью с использованием дополнительного магнитного подвеса и лучше всего подходит для коммерческих зданий.

Плюсы:

  • VoltAlert
  • True RMS
  • Низкое входное сопротивление
  • Работа в режиме громкой связи

Минусы:

  • Дорого
  • Меньший диапазон измерения

Часто задаваемые вопросы :

Q: Как измерить емкость в этом измерителе?

A: Поверните поворотный переключатель к значку диода, затем нажмите желтую кнопку, чтобы переключиться на функцию измерения емкости, и автоматический выбор диапазона выполнит свою работу в зависимости от диапазонов, указанных в технических характеристиках измерителя.

Q: Какие замечательные функции предлагает этот измеритель?

A: Компания предлагает «VoltAlert» для бесконтактного определения напряжения и низкого входного импеданса для предотвращения ложных показаний, вызванных паразитным напряжением.

Q: Для каких реальных приложений это лучше всего?

A: Лучше всего подходит для коммерческих зданий, больниц и школ.

7. Neoteck 8233D PRO [Лучший недорогой мультиметр с измерением емкости]

Цифровой мультиметр с измерением емкости также доступен по доступной цене.Neoteck 8233D PRO доступен для продажи компанией по недорогой цене для пользователей. Однако о его производительности не стоит беспокоиться.

Neoteck 8233D PRO — компактный портативный цифровой мультиметр. Он соответствует стандарту безопасности IEC 61010-1. Диапазон его емкости составляет от 1 мкФ до 2000 мкФ. Собственно, диапазоны неплохие, учитывая невысокую цену и другие функции. Он поддерживает режим автоматического выбора диапазона. Его цена почти в десять раз дешевле Fluke-117. Для защиты от ударов при падении предлагается резиновый чехол.Что касается дисплея, компания разработала ЖК-дисплей с подсветкой и индикатором хранения данных. Измеритель будет упакован вместе с проводами зонда, проводами с зажимом типа «крокодил» и руководством.

Плюсы:

  • Недорогой
  • Режим автоматического выбора диапазона
  • Стандарт безопасности IEC 61010-1

Минусы:

  • Меньшие диапазоны емкости, чем у Fluke-117

Часто задаваемые вопросы :

В: Поддерживает ли он режим автоматического выбора диапазона?

A: Да, этот измеритель поддерживает режим автоматического выбора диапазона.

Q: Есть ли дополнительные аксессуары в упаковке?

A: Поставляется с проводами зонда и зажимами типа «крокодил».

8. Signstek MESR-100

Важно понимать, что существуют различные методы проверки конденсаторов. Один из них — с помощью измерителя СОЭ. В то время как тестер конденсаторов и мультиметр показывают единицы измерения в Фарадах, ESR показывает значение в Ом. И емкость, и ESR (эквивалентное последовательное сопротивление) являются отличными индикаторами для определения состояния конденсатора.Signstek MESR-100 может стать первым измерителем СОЭ, который вы, вероятно, захотите попробовать.

Этот измеритель использует 100 кГц для измерения значения ESR. Диапазон измерения довольно широк — от 1 мкФ до 1 мФ. Пользовательский интерфейс подходит как для новичков, так и для профессионалов благодаря своей простоте. Он оснащен распечатанной таблицей СОЭ для быстрой проверки. Вы можете переключиться в автоматический или ручной режим в зависимости от ваших предпочтений. Он поддерживает два типа питания (2 аккумулятора AA и USB).

Плюсы:

  • Простой пользовательский интерфейс
  • Типы двух источников питания
  • Поддерживает автоматический и ручной диапазон

Минусы:

  • Провода зонда очень короткие

Часто задаваемые вопросы :

Q: Как настроить автоматический / ручной режим?

A: Для автоматического режима нажмите и отпустите кнопку RANGE, пока на ЖК-дисплее не отобразится AUTO.Он автоматически выберет подходящий диапазон.

В ручном режиме на ЖК-дисплее отобразится MANUAL после того, как вы нажмете и отпустите кнопку RANGE. Затем вы можете выбрать диапазоны от 1R, 10R и 100R.

В: Что такое таблица СОЭ?

A: Это таблица, которая действует как справочная и определяет соотношение между емкостью и ожидаемым измеренным сопротивлением.

9. Atlas ESR70

Хорошо иметь еще один измеритель СОЭ по другой цене.Всегда есть больше пользы, если потратить больше бюджета. Atlas ESR70 будет достойным выбором, так как у него есть уникальные особенности для вас.

Его форма не похожа на другие типичные счетчики, представленные на рынке. Таким образом, он действительно выделяется среди измерителей ESR. Его диапазон шире, чем у MESR-100, от 1 мкФ до 22 мФ. Он может автоматически разряжать заряженные конденсаторы перед их измерением. Эта функция называется «Уникальный контролируемый разряд». Он также имеет звуковые оповещения, чтобы помочь пользователям.

Плюсы:

  • Уникальный дизайн счетчика
  • Звуковые оповещения
  • Простота использования
  • Более широкий диапазон, чем MESR-100

Минусы:

  • Дорого
  • Предоставляются только зажимы типа «крокодил»
  • не прилагается распечатанная таблица ESR

Часто задаваемые вопросы:

В: Как определить характеристики конденсатора?

A: Более низкое значение ESR считается лучше, чем большее значение ESR.Хорошее значение ESR конденсатора обычно ниже, чем значение, указанное в таблице ESR.

Q: Что такое уникальный контролируемый разряд?

A: Это функция автоматического разряда заряженного конденсатора перед измерением емкости и ESR.

10. Интеллектуальный пинцет ST5-S [Подходит для SMD]

Иногда электронные компоненты имеют размер SMD (устройства для поверхностного монтажа). Обычным измерителем его не измерить. Другими словами, для этого нужен специально разработанный инструмент.Smart Tweezers ST5-S будет лучшим выбором для измерения конденсаторов SMD.

Он представлен как портативный измеритель LCR, который может измерять сопротивление, индуктивность, емкость, импеданс и ESR соответственно. Диапазон емкости составляет от 3 пФ до 199 мкФ в автоматическом режиме и от 0,5 пФ до 999 мкФ для максимальных диапазонов. Выберите емкость в меню РЕЖИМ для измерения емкости. Доступен автоматический режим для измерения индуктивности, емкости и сопротивления. Аккумулятор вставлен внутрь, и его нужно будет перезарядить с помощью зарядного устройства USB, как только загорится индикатор.

Плюсы:

  • Богатые функции
  • Многоплатформенное подключение

Минусы:

Часто задаваемые вопросы:

В: Поддерживается ли автоматический режим?

A: да, глюкометр поддерживает автоматический режим, войдя в меню РЕЖИМ и выбрав АВТО.

Что такое тестер конденсаторов?

Тестер конденсаторов — это измеритель, который обеспечивает автономное измерение емкости. Наличие такого измерителя позволяет нам проводить измерение емкости быстрее, чем с помощью мультиметра.

По сравнению с тестером конденсаторов, нам по-прежнему требуется мультиметр с измерением емкости, чтобы выполнять на несколько шагов больше, чем при использовании автономного тестера конденсаторов для измерения емкости. Фактически, стандартный мультиметр может проверять конденсатор, но единицы измерения, используемые для измерения, — это единицы сопротивления или напряжения. Вот почему тестер конденсаторов по-прежнему остается лучшим выбором для измерения емкости.

Использование тестера конденсаторов также можно заменить другим вариантом, например измерителем ESR.Эта опция полезна, когда вам нужно проверить конденсатор, не распаивая его. Однако использование ESR не позволяет напрямую измерить его емкость. Вы только собираетесь измерить сопротивление (эквивалентной серии).

На что следует обратить внимание при покупке тестера конденсаторов

1. Диапазон измерений

Типичный тестер конденсаторов должен иметь несколько диапазонов измерения. Это первая функция, которую вы должны учитывать перед покупкой, которая определит гибкость того, как вы будете использовать ее в реальной жизни.

2. Интегрированные функции

Имеет смысл, если некоторым пользователям удобнее иметь счетчик с большим количеством функций или возможностей. Однако имейте в виду, что нет ничего странного в том, что существует компромисс между встроенным измерителем и автономным тестером конденсаторов.

3. Точность

Тестер конденсаторов с большей точностью лучше, чем с меньшей точностью. Он определяет близость измерения к фактическому или стандартному значению.

4. Разрешение

Более высокое разрешение предоставит пользователям больше деталей, чем более низкое.Если при измерениях требуется много деталей, то лучше приобрести тестер конденсаторов с более высоким разрешением.

5. Точность

Хорошая точность означает, что измерения будут повторять одни и те же или почти одинаковые значения в нескольких измерениях. С другой стороны, плохая точность приведет к значительной разнице в значениях измерения.

6. Чувствительность

Чувствительность означает способность прибора обнаруживать малейшие изменения в измерениях.Таким образом, прибор с хорошей чувствительностью полезен для тех, кому необходимо обнаруживать действительно небольшие изменения в реальных условиях использования.

Заключение

Подводя итог, можно сказать, что есть разные способы проверки конденсаторов. Каждый из них может быть выполнен под счетчики определенного типа. Вы должны иметь в виду, что здесь мы пытаемся предложить лучшее, основываясь на наших собственных исследованиях и знаниях. Вы всегда можете принять решение.

Вкратце, мы настоятельно рекомендуем следующие продукты:

  1. BK Precision для лучшего тестера автономных конденсаторов .
  2. Fluke-117 для лучшего цифрового мультиметра с функцией измерения емкости .
  3. Atlas ESR70 для лучшего измерителя ESR .
  4. Smart Tweezer ST5-S для лучший для SMD .

Надеюсь, этот пост вам поможет. Спасибо!

▷ Как использовать измеритель емкости?

В прошлый раз Насир рассказывал нам об измерении тока амперметрами, сегодня статья про емкостной измеритель…

Что такое конденсатор?

Конденсатор — это двухполюсное устройство накопления заряда, которое накапливает электрический заряд между двумя проводящими пластинами, разделенными сопротивлением.Это основное введение в конденсатор, которое кратчайшим образом описывает его работу. Прежде чем углубляться в детали измерителя емкости, необходимо знать о функционировании и работе конденсатора.

Конденсатор

накапливает энергию, но он не так эффективен, как другие устройства накопления энергии, такие как батареи и т. Д. Основная причина этого заключается в том, что он довольно быстро разряжается, и это одна из причин, по которой он весьма полезен в приложениях, где требуется быстрая энергия.

Что такое измеритель емкости?

Способность конденсатора накапливать электрические заряды известна как его емкость, и для этого используется измеритель емкости. Измеритель емкости используется для измерения емкости конденсатора. Он измеряет скорость накопления заряда и возвращает значение емкости в цифровом виде, обычно, но не всегда.

Также доступны аналоговые измерители емкости, которые показывают показания в виде стрелки, движущейся по шкале, но они довольно старые и неточные.В настоящее время широко используются цифровые измерители емкости, поскольку они просты в обращении и считываются, а также повышают точность.

Измерение емкости с помощью измерителя емкости

Измеритель емкости может быть выполнен в виде отдельного устройства или встроен в цифровой мультиметр. Он имеет два выходных пробника, которые можно легко подключить к двум ножкам конденсатора для измерения его емкости, как показано ниже:

Это можно измерить двумя способами, а именно:

  1. Измеряя скорость нарастания напряжения
  2. Пропуская высокочастотный переменный ток

Каждый из этих процессов будет подробно описан ниже…

Измерение скорости нарастания напряжения

Когда измеритель емкости соединен с конденсатором, он заряжает его заданным значением тока.Когда конденсатор заряжается и разряжается таким образом с помощью измерителя емкости, измеритель емкости измеряет скорость, с которой напряжение на этом конденсаторе растет из-за этого тока.

Затем измеряется емкость как функция повышения напряжения. Чем медленнее нарастает напряжение на конденсаторе, тем больше будет значение его емкости.

Пропуская высокочастотный переменный ток

Другой метод измерения емкости с помощью измерителя емкости — пропускание высокочастотного переменного тока.Когда переменный ток пропускается с очень высокой частотой, измеряется результирующее изменение напряжения и определяется емкость как функция этого результирующего напряжения.

Использование измерителя емкости

Конденсаторы

широко используются в настоящее время в приложениях, где требуется быстрый источник энергии, из-за того, что они разряжают энергию с большой скоростью. Часто конденсатор имеет неразборчивую емкость, поэтому его невозможно использовать, не зная его фактического номинала.

Измеритель емкости используется для измерения неизвестных емкостей в цепи, что важно для правильной работы схемы.

Насир.

Есть много других подобных измерительных устройств, которые чрезвычайно часто используются в повседневных электрических приложениях. Чтобы узнать о них больше, следите за обновлениями и продолжайте посещать нас.

Как проверить конденсатор без демонтажа [испытание электрической цепи]

Эй! надеюсь, у вас все хорошо.

Печатная плата обычно имеет резисторы, конденсаторы, катушки индуктивности, микросхемы, разъемы и некоторые другие компоненты.Часто эти компоненты перегорают и требуют замены.

Компоненты, которые имеют более высокую вероятность сгорания, — это резисторы, конденсаторы и, реже, микросхемы. Причина в том, что в основном резисторы и конденсаторы находятся на передней панели любой платы. А иногда перенапряжение их выгорает.

Что касается резистора и микросхемы, вы можете определить неисправный, просто взглянув на него на плате. Сгоревшая микросхема или резистор вскрываются, и вы можете найти их на плате за секунды.

Однако это не относится к конденсатору.

В случае с конденсатором дела обстоят немного иначе. Если вам повезет, вы найдете неисправный конденсатор, просто взглянув на его верхнюю часть, он будет взломан.

Но что, если тебе не повезло?

Настоящая проблема, с которой вы столкнетесь, — нормально выглядящий конденсатор может оказаться плохим. Таким образом, вам нужно снять весь конденсатор с платы, проверить каждый, найти плохого парня и перепаять всех без исключения на плате. Это не лучший способ, и никто не хочет этого делать.

Не волнуйтесь.

В этом посте мы определенно найдем способ проверить конденсатор, не снимая его с корпуса.

Надеюсь, вам понравится эта статья.

Проверить конденсатор, не снимая его

Давай посмотрим правде в глаза.

Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы, измерив его значение емкости с помощью измерителя конденсаторов или мультиметра. Потому что в такой ситуации упомянутые устройства приводят вас к ложным показаниям, и вы не сможете на самом деле сказать, был ли конденсатор, который вы тестировали, действительно плохим или правильным.

Почему?

  • Причина в том, что когда конденсатор находится внутри печатной платы, есть много других компонентов, включенных последовательно или параллельно с ним. Таким образом, вы получаете эквивалентное значение, а не фактическое.
  • Когда конденсатор находится за пределами платы, иногда неисправный конденсатор может дать вам правильное значение емкости на мультиметре или измерителе конденсатора.

Несомненно, для измерения емкости используются мультиметр или емкостной измеритель. Им просто нельзя доверять, чтобы сказать вам, плохой или хороший конденсатор, вне или внутри печатной платы.

Итак, как я могу проверить эту суку?

Остался один вариант, который мы можем использовать для проверки конденсатора, и это измерение его эквивалентного последовательного сопротивления (ESR).

Таким образом, лучшим решением для тестирования конденсатора без его фактического демонтажа является использование измерителя ESR или интеллектуального пинцета. Оба работают одинаково и их можно использовать. Но измеритель ESR предпочтительнее для сквозных конденсаторов, а последний — для проверки конденсаторов SMD.

В оставшейся части статьи я подробно расскажу, что это за устройства, и как они проверяют внутрисхемные конденсаторы.

Измеритель СОЭ

Термин ESR означает эквивалентное последовательное сопротивление, измеряемое в Ом, что означает, что измеритель ESR — это устройство, используемое для определения эквивалентного последовательного сопротивления реального конденсатора без его отсоединения от цепи.

Это устройство не может измерять емкость и может использоваться только для проверки конденсатора.

У идеального конденсатора значение ESR равно нулю, но на самом деле оно очень-очень меньше; близка к идеальной стоимости. Высокое значение ESR является первым признаком неисправности конденсатора.

Увеличение значения ESR увеличивает как падение напряжения внутри конденсатора, так и нагрев. Тепло, выделяемое в конденсаторах, происходит из-за резистивного нагрева, и это тепло вызывает утечку конденсатора.

Если вы не проверите электролитический конденсатор на значение ESR с помощью измерителя ESR, вы не сможете определить, хороший ли конденсатор или плохой.

Как проверить конденсатор с помощью измерителя ESR?

Ниже приведены быстрые шаги для проверки любого внутрисхемного конденсатора с помощью измерителя ESR.

  • Сначала разрядите проверяемый конденсатор. Это настолько важно и важно, что если вы случайно забудете этот шаг, вы можете в конечном итоге разрушить свой измеритель СОЭ. Для получения дополнительной информации всегда разряжайте конденсатор перед измерением любого его параметра.
  • Разряд конденсатора может производиться закорачивая его ноги любыми доступными способами. Но не просто закорачивайте ножки вместе с проводом с низким сопротивлением, рекомендуется использовать материал с высоким сопротивлением.
  • Включите измеритель СОЭ и закоротите его провода, пока на экране не появится 0.Если на экране уже отображается 0 показаний, то закорачивать провода нет необходимости.
  • Подсоедините красный провод измерителя ESR к положительному, а черный — к отрицательному выводу тестируемого конденсатора.
  • Запишите показания измерителя СОЭ.
  • Сравните показание с таблицей на корпусе измерителя СОЭ. Если значение ESR находится в заданном диапазоне, конденсатор исправен и не требует изменений, если нет, то конденсатор плох и нуждается в замене.
  • Если тело ESR не дает никакой таблицы, используйте техническое описание конденсатора, чтобы прочитать его значение ESR.

В техническом описании каждого конденсатора указано его значение ESR при частоте 100 кГц и определенное номинальное напряжение. Отклонение от этого значения помогает нам решить, нужно ли заменять конденсатор. Обычно ESR неисправного конденсатора увеличивается.

Более того, хороший конденсатор будет иметь измерения почти как короткое замыкание, а все другие части, подключенные параллельно ему, будут иметь минимальное влияние на конечные измерения. Это функция, которая делает измеритель СОЭ незаменимым инструментом для поиска и устранения неисправностей электронного оборудования.

Итак, если вы действительно хотите обнаружить и исправить неисправные конденсаторы в своих устройствах, вам понадобится приличный измеритель ESR. Хорошее СОЭ можно найти где угодно.

Просто найдите это.

Я рекомендую и мне нравится этот измеритель СОЭ (ссылка на продукт) . Прелесть этого счетчика в том, что он надежен и продается по очень приемлемой цене. Если вам нравится этот, купите его с бесплатной доставкой по всему миру. Если вы любитель или новичок и ищете лучшую недорогую альтернативу, вы должны попробовать этот измеритель СОЭ (ссылка на продукт) .

Интеллектуальный пинцет

Обычно измеритель ESR может сделать всю работу за вас, но когда дело доходит до SMD-компонентов, он не так удобен, как умный пинцет. Если вы решите использовать ESR, все будет в порядке, но умный пинцет (ссылка на Amazon) — это весело и, на мой взгляд, замечательный инструмент для вашей лаборатории.

Настоящая проблема умных пинцетов в том, что они дорогие. Когда я в последний раз проверял, его цена была около 300 долларов. Но помимо использования его только для проверки конденсаторов, он также может быть отличным портативным измерителем LCR.

Все шаги измерения такие же, как я обсуждал выше для измерителя ESR.

Визуально неисправный конденсатор

Вместо того, чтобы использовать измеритель ESR или пинцет, мы также можем проверить конденсатор, не снимая его, путем общего осмотра.

Плохой электролитический конденсатор проглатывает верхнюю часть, вы видите такой в ​​цепи; просто замените его, не теряя времени на тестирование.

Значение емкости может быть в диапазоне хороших значений, когда вы проверяете его вне цепи с помощью мультиметра или емкостного измерителя, но все же оно плохое.

Заключение

Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы с помощью измерителя емкости или мультиметра. Причина в том. оба они могут привести к ложным результатам.

Единственное решение для проверки конденсаторов без демонтажа припайки — это измерение их эквивалентного последовательного сопротивления (ESR). Это значение измеряется измерителем СОЭ.

Измеритель ESR посылает переменный ток частотой 100 кГц в проверяемый конденсатор. Ток создает напряжение на конденсаторе, а затем с помощью математики рассчитывается и отображается на экране ESR.

Вы получаете смещенное значение ESR после сравнения его с диаграммой ESR, у вас плохой конденсатор.

Ну вот и все. Теперь, если такой читатель, как я, сначала прочитает заключение. Вы это читаете. Пора перейти к началу. Но вы читатель, зашедший так далеко. Я надеюсь, что вам понравилось.

Спасибо и хорошо проводите время.

Другие полезные посты

.