Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: ck_r@mail.ru

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Дом

Альтернативные источники электроэнергии для частного дома: виды, преимущества и недостатки, интересные инженерные решения

Содержание

Альтернативные источники энергии для дома

Для владельцев частных домов есть возможность значительно уменьшить счета за коммунальные услуги или вообще не пользоваться услугами поставщиков тепла, электроэнергии и газа. Можно даже обеспечить немалое хозяйство, а при желании и продавать излишки. Это реально и некоторыми уже проделано. Для этого используют альтернативные источники энергии. 

Альтернативные источники энергии могут обеспечить все потребности

Содержание статьи

Откуда можно получать энергию и в каком виде

На самом деле энергия, в том или ином виде, в природе есть практически везде — солнце, ветер, вода, земля — везде есть энергия. Основная задача — извлечь ее оттуда. Этим человечество занимается уже не одну сотню лет и достигло неплохих результатов. На сегодняшний момент альтернативные источники энергии могут обеспечить дом теплом, электроэнергией, газом, теплой водой. Причем альтернативная энергетика не требует каких-то сверх навыков или сверх знаний. Все можно сделать для своего дома своими руками. Итак, что можно сделать:

Все альтернативные источники энергии способны полностью обеспечить потребности человека, но для этого требуются слишком большие капиталовложения или/и слишком большие площади. Потому разумнее делать комбинированную систему: получать энергию от альтернативных источников, а при недостатке «добирать» из централизованных сетей.

Использование солнечной энергии

Один из самых мощных альтернативных источников энергии для дома — солнечное излучение. Для преобразования солнечной энергии есть два типа установок:

Не стоит думать что работают установки только не юге и только летом. Хорошо они работают и зимой. В ясную погоду при выпавшем снеге выработка энергии только немного ниже летней. Если в вашем регионе большое количество ясных дней, использовать подобную технологию можно.

Солнечные батареи

Солнечные батареи собирают из фотоэлектрических преобразователей, которые изготавливают на базе минералов, которые под действием солнечного света испускают электроны — вырабатывают электрический ток. Для частного применения используются кремниевые фотопреобразователи. По своей структуре они бывают монокристаллическими (сделаны из одного кристалла) и поликристаллическими (много кристаллов). Монокристаллические имеют более высокий КПД (13-25% в зависимости от качества)  и более продолжительный срок службы, но стоят дороже. Поликристаллические вырабатывают меньше электроэнергии (9-15%) и быстрее выходят из строя, но имеют более низкую цену.

Это поликристаллический фотопреобразователь. Обращаться с ними надо аккуратно — они очень хрупкие (монокристаллические тоже, но не в такой степени)

Сборка солнечной батареи своими руками несложна. Сначала надо приобрести некоторое количество кремниевых фотоэлементов (количество зависит от требуемой мощности). Чаще всего их покупают на китайских торговых площадках типа АлиЭкспресс. Затем порядок действий прост:

Несколько слов о том, почему подложку для солнечной панели (батареи) надо красить в белый цвет. Рабочий диапазон температур кремниевых пластин от — 40°C до +50°C. Работа при более высоких или низких температурах приводит к быстрому выходу элементов из строя. На крыше, летом, в закрытом объеме, температура может быть намного выше +50°C. Потому и необходим белый цвет — чтобы не перегреть кремний.

Солнечные коллекторы

При помощи солнечных коллекторов можно нагревать воду или воздух. Куда направлять нагретую солнцем воду — в краны для горячего водоснабжения или в систему отопления — выбираете вы сами. Только отопление будет низкотемпературным — для теплого пола, то что требуется. Но для того, чтобы температура в доме не зависела от погоды, систему требуется сделать резервируемой, чтобы при необходимости подключался другой источник тепла или котел переходил на другой источник энергии.

Наиболее распространенные трубчатые солнечные коллекторы

Солнечные коллекторы есть трех видов: плоские, трубчатые и воздушные. Наиболее распространенные — трубчатые, но и другие тоже имеют право на существование.

Плоские пластиковые

Две панели — черная и прозрачная — соединены в один корпус. Между ними расположен медный трубопровод в виде змейки. От солнца нижняя темная панель нагревается. от нее греется медь, а от нее — проходящая по лабиринту вода. Такой способ использования альтернативных источников энергии не самый эффективный, но привлекателен тем, что он очень прост в исполнении. Таким образом можно нагревать воду в бассейне. Надо будет только зациклить ее подачу (при помощи циркуляционного насоса). Точно также можно подогревать воду в емкости для летнего душа или использовать ее для бытовых нужд. Недостаток подобных установок — низкая эффективность и производительность. Чтобы нагреть большой объем воды, нужно или много времени, или большое количество плоских коллекторов.

Плоский солнечный коллектор

Трубчатые коллекторы

Это стеклянные трубки — вакуумные или коаксиальные — по которым протекает вода. Специальная система позволяет по максимуму концентрировать в трубках тепло, которое передается протекающей через них воде.

Трубчатые коллекторы могут быть вакуумными и перьевыми

В системе обязательно есть накопительная емкость, в которой вода и греется. Циркуляция воды в системе обеспечивается насосом. Такие системы самостоятельно не сделать — стеклянные трубки сделать своими руками проблематично и это — главный недостаток. Вместе с высокой ценой он сдерживает широкое внедрение этого источника энергии для дома. А сама система очень эффективна, на «ура» справляется с нагревом воды для ГВС и вносит приличный вклад в отопление.

Схема организации отопления и ГВС за счет альтернативных источников энергии — с использованием солнечных коллекторов

Воздушные коллекторы

В нашей стране они встречаются очень редко и зря. Они просты, их легко можно сделать своими руками. Единственный минус — требуется большая площадь: могут занимать всю южную (восточную, юго-восточную) стену. Система очень похожа на плоские коллекторы — черная нижняя панель, прозрачная верхняя, но греют они напрямую воздух, который принудительно (вентилятором) или естественным путем направляется в помещение. Несмотря на кажущуюся несерьезность, таким способом можно на протяжении светового дня греть небольшие помещения, в том числе и технические или подсобные: гаражи, дачи, сараи для живности.

Устройство возушного коллектора

Такой альтернативный источник энергии как солнце, дарит нам свое тепло, но большая его часть уходит «в никуда». Словить небольшую ее долю и использовать для личных нужд — вот задача, которую решают все эти приспособления.

Ветрогенераторы

Альтернативные источники энергии хороши тем, что они по большей части относятся к возобновляемым ресурсам. Самый вечный, наверное, ветер. Пока есть атмосфера и солнце, ветер тоже есть. Может какой-то непродолжительный период воздух и будет неподвижным, но очень недолго. Наши предки использовали энергию ветра в мельницах, а современный человек преобразует ее в электричество. Все что для этого требуется:

  • вышка, установленная в ветреном месте;
  • генератор с приделанными к нему лопастями;
  • накопительной батареи и системы распределения электрического тока.

Вышка строится любая, из любого материала. Накопительная батарея — аккумулятор, тут ничего не придумаешь, а куда подавать электричество — ваш выбор. Остается только сделать генератор. Его тоже можно купить уже готовым, но вполне можно сделать из двигателя от бытовой техники — стиральной машины, шуруповерта и т.п. Нужны будут неодимовые магниты и эпоксидная смола, токарный станок.

Схема обеспечения частного дома электричеством за счет альтернативных источников энергии (ветрогенератор и солнечные батареи)

На роторе мотора размечаем места под установку магнитов. Они должны находится на равном расстоянии друг от друга. Ротор выбранного мотора обтачиваем, формируя «посадочные места». Дно выемки должно иметь небольшой наклон, чтобы поверхность магнита была наклонена. В выточенные места на жидкие гвозди приклеиваются магниты, заливаются эпоксидной смолой. Поверхность затем наждачной бумагой доводится до гладкости. Далее надо приделать щетки, которые будут снимать ток. И все, можно собирать и запускать ветрогенератор.

Такие установки довольно эффективны, но их мощность зависит от многих факторов: интенсивности ветра, того, насколько правильно сделан генератор, насколько эффективно снимается разность потенциала щетками, от надежности электрических соединений и т.п.

Тепловые насосы для отопления дома

Тепловые насосы используют все имеющиеся в наличии альтернативные источники энергии. Они отбирают тепло у воды, воздуха, грунта. В небольших количествах это тепло есть там даже зимой, вот его и собирает тепловой насос и перенаправляет на обогрев дома.

Тепловые насосы также используют альтернативные источники энергии — тепло земли, воды и воздуха

Принцип работы

Чем же так привлекательны тепловые насосы? Тем, что затратив 1 кВт энергии на ее перекачку, в самом плохом варианте вы получите 1,5 кВт тепла, а самые удачные реализации могут дать до 4-6 кВт. И это никак не противоречит закону сохранения энергии, ведь расходуется энергия не на получение тепла, а не его перекачивание. Так что никаких нестыковок.

Схема теплового насоса для использования альтернативных источников энергии

У тепловых насосов есть три рабочих контура: два наружных и они внутренний, а также испаритель, компрессор и конденсатор. Работает схема так:

  • В первом контуре циркулирует теплоноситель, который отбирает тепло у низкопотенциальных источников. Он может быть опущен в воду, закопан в землю, а может отбирать тепло у воздуха. Самая высокая температура, которая достигается в этом контуре — около 6°C.
  • Во внутреннем контуре циркулирует теплоноситель с очень низкой температурой кипения (обычно 0°C). Нагревшись, хладагент испаряется, пар попадает в компрессор, где сжимается до высокого давления. При сжатии выделяется тепло, пары хладагента разогреваются до температуры в среднем от +35°C до +65°C.
  • В конденсаторе тепло передается теплоносителю из третьего — отопительного — контура. Остывающие пары конденсируются, затем дальше попадают в испаритель. И далее цикл повторяется.

Отопительный контур лучше всего делать в виде теплого пола. Температуры для этого самые подходящие. Для радиаторной системы потребуется слишком большое число секций, что некрасиво и невыгодно.

Альтернативные источники тепловой энергии: откуда и как брать тепло

Но самые большие сложности вызывает устройство первого внешнего контура, который собирает тепло. Так как источники низкопотенциальные (тепла у низ мало), то для сбора его в достаточном количестве требуются большие площади. Есть четыре вида контуров:

  • Кольцами уложенные в воде трубы с теплоносителем. Водоем может быть любым — река, пруд, озеро. Главное условие — он не должен промерзать насквозь даже в самые сильные морозы. Более эффективно работают насосы, выкачивающие тепло из речки, в стоячей воде тепла передается намного меньше. Такой источник тепла реализуется проще всего — закинуть трубы, привязать груз. Только велика вероятность случайного повреждения.

    В воде сделать термальное поле проще всего

  • Термальные поля с закопанными ниже глубины промерзания трубами. В этом случае недостаток один — большие объемы земляных работ. Приходится снимать грунт на большой площади, да еще на солидную глубину.

    Большой объем земляных работ

  • Использование геотермальных температур. Бурят некоторое количество скважин большой глубины, в них опускают контура с теплоносителем. Чем хорош этот вариант — мало места требует, но не везде есть возможность бурить на большие глубины, да и услуги буровых стоят немало. Можно, правда, сделать буровую установку самостоятельно, но работа все равно нелегкая.

    Со скважинами требуется меньше места

  • Извлечение тепла из воздуха. Так работают кондиционеры с возможностью обогрева — отбирают тепло у «забортного» воздуха. Даже при минусовой температуре такие агрегаты работают, правда при не очень «глубоком» минусе — до -15°C. Чтобы работа была интенсивнее, можно использовать тепло от вентиляционных шахт. Закинуть туда несколько переть с теплоносителем и качать оттуда тепло.

    Самые компактные, но и самые нестабильные тепловые насосы, отбирающие тепло у воздуха

Основной недостаток тепловых насосов — высокая цена самого насоса, да и монтаж полей сбора тепла обходится недешево. На этом деле можно сэкономить, сделав насос самостоятельно и также своими руками уложив контура, но сумма все равно останется немалой. Плюс в том, что отопление будет недорогим а действовать система будет долго.

Все альтернативные источники энергии имеют природное происхождение, но получать двойную выгоду можно только от биогазовых установок. В них перерабатываются отходы жизнедеятельности домашних животных и птицы. В результате получается некоторый объем газа, который после очищения и осушения можно использовать по прямому назначению. Оставшиеся переработанные отходы можно продать или использовать на полях для повышения урожайности — получается очень эффективное и безопасное удобрение.

Из навоза тоже можно получать энергию, только не в чистом виде, а в виде газа

Коротко о технологии

Образование газа происходит при брожении, и участвуют в этом бактерии, живущие в навозе. Для выработки биогаза подходят отходы любого скота и птицы, но оптимален навоз КРС. Его даже добавляют к остальным отходам для «закваски» — в нем содержатся именно нужные для переработки бактерии.

Для создания оптимальных условий необходима анаэробная среда — брожение должно проходить без доступа кислорода. Потому эффективные биореакторы — закрытые емкости. Чтобы процесс шел активнее, необходимо регулярное перемешивание массы. В промышленных установках для этого устанавливаются мешалки с электроприводами, в самодельных биогазовых установках это обычно механические устройства — от простейшей палки до механических мешалок, которые «работают» от силы рук.

Принципиальная схема биогазовых установок

В процессе образования газа из навоза участвуют два типа бактерий: мезофильные и термофильные. Мезофильные активны при температуре от +30°C до +40°C, термофильные — при +42°C до +53°C. Более эффективно работают термофильные бактерии. При идеальных условиях выработка газа с 1 литра полезной площади может достигать 4-4,5 литров газа. Но поддерживать в установке температуру в 50°C очень непросто и затратно, хотя затраты себя оправдывают.

Немного о конструкциях

Самая простая биогазовая установка — это бочка с крышкой и мешалкой. В крышке сделан вывод для подключения шланга, по которому газ поступает в резервуар. От такого объема много газа не получите, но на одну-две газовые горелки его хватит.

Более серьезные объемы можно получить от подземного или надземного бункера. Если речь о подземном бункере, то его делают из железобетона. Стенки от грунта отделяют слоем теплоизоляции, саму емкость можно разделить на несколько отсеков, в которых будет происходить переработка со сдвигом во времени. Так как работают в таких условиях обычно мезофильные культуры, весь процесс занимает от 12 до 30 дней (термофильные перерабатывают за 3 дня), потому сдвиг по времени желателен.

Схема бункерной биогазовой установки

 

Навоз поступает через бункер загрузки, с противоположной стороны делают люк выгрузки, откуда отбирают переработанное сырье. Заполняется бункер биосмесью не полностью  — порядка 15-20%  пространства остается свободным — тут скапливается газ. Для его отвода в крышку встраивается трубка, второй конец которой опускается в гидрозатвор — емкость частично заполненную водой. Таким образом газ осушается — в верхней части собирается уже очищенный, он отводится при помощи другой трубки и уже может подавиться к потребителю.


Использовать альтернативные источники энергии может каждый. Владельцам квартир осуществить это сложнее, а вот в частном доме можно хоть все идеи реализовать. Есть уже даже реальные примеры того. Люди обеспечивают полностью потребности свои и немалого хозяйства.

Альтернативная энергия для полного обеспечения частного дома

Взаимодействие систем

Альтернативные источники электроэнергии для дома имеют некоторые особенности работы. Например, когда светит солнце или дует ветер, соответствующие контроллеры заряжают аккумуляторы до напряжения 56 В. Если аккумуляторы уже заряжены, но выработка энергии продолжается (то есть еще светит солнце или дует ветер), то контроллеры отправляют вырабатываемую электроэнергию напрямую на ТЭНы, встроенные в буферную емкость, до разрядки аккумуляторов до 54В.

При разрядке аккумуляторов ниже 54 В вся вырабатываемая электроэнергия снова автоматически начинает подаваться на аккумуляторы для их зарядки. При достижении напряжения в них 56 В цикл повторяется.

Когда светит солнце (преимущественно в теплый период года) система солнечных коллекторов преобразует солнечную энергию в тепловую. Вырабатываемая тепловая энергия нагревает бойлер. Если температура воды в бойлере достигла 60°С, а тепловая энергия еще вырабатывается, то контролер солнечной системы перенаправляет подачу вырабатываемого тепла с бойлера на теплообменник буферной ёмкости, нагревая ее.

Пиролизный котел обеспечивает подогрев воды для радиаторного отопления и теплого пола. Также он нагревает воду в бойлере, если тепла, вырабатываемого солнечными коллекторами, не достаточно.

Таким образом любой избыток выработанной энергии будет аккумулироваться в том или ином виде, что в конечном счёте ускоряет окупаемость проекта, а сама система будет защищена от преждевременного износа (особенно это касается аккумуляторных батарей).

Мощность этих ТЭНов 4 кВт выбрана исходя из того что солнце и ветер совместно могут дать не более 4 кВт электоэнергии в час. Таким образом, ТЭНы нагревают воду в буферной емкости, которая, обладая большой теплоемкостью, может вместить большое количество теплоты и обеспечить непрерывное использование вырабатываемой энергии и максимальную эффективность установленного оборудования для производства электрической энергии.

Накопленная в буферной емкости теплота используется для производства горячей воды и поддержки системы комфортного теплого пола.

Все системы, потребляющие электроэнергию (система освещения, система кондиционирования и бытовые приборы в доме), берут ее из аккумуляторов, разряжая их. Напряжение 220 В на входе в дом обеспечивается инвертором.

Альтернативные источники энергии для частного дома

  В наше время использование альтернативных источников энергии в личных целях становится все популярнее. Все чаще в проект частного дома архитекторами заложены инновационные энергетические приспособления. И это экономически грамотно. Неоднократные кропотливые просчеты доказывают, что такие виды энергии значительно экономят бюджеты домовладельцев. Они экологически дружественны и имеют высокую производительность.

  Если Вы окончательно решили отказаться от центрального энергоснабжения и отдать предпочтение альтернативным энергоисточникам, тогда мы смело Вам поможем. Специалисты компании помогут подобрать приборы, рассчитают мощности, правильно все установят, и в результате нашего сотрудничества все инженерные системы будут работать в унисон. Ваш дом будет абсолютно автономным.

  Что мы советуем использовать в частном доме из источников альтернативной энергии?

1. Солнечные фотомодули, электростанции или батареи. Они предназначены для выработки электроэнергии, используя солнечную энергию. Такие устройства бывают разной мощности. Например, для дома, площадь которого 350 кв.м таких модулей понадобится не более 12 штук. Их производительность в солнечный период (март-сентябрь) будет составлять 300-400 кВт\час, а в менее активный период — до 150. Все батареи подключаются к инверторной системе (примерная мощность 6 кВт) через зарядное устройство. Для накопления электроэнергии, под землей на глубине 3 метра устанавливаются аккумуляторы, емкостью 92 ампера\ час.
Солнечная батарея состоит из кристаллов, которые улавливают энергию. Бывают монокристаллические и поликристаллические. Моно – более долговечные, но капризны. Для их безупречной работы нужен постоянный поток солнечного света. Поликристаллические батареи подстраиваются под любые погодные условия.
2. Ветрогенератор. С его помощью получим еще один альтернативный источник питания. В нем энергия ветра преобразуется в электричество. Для частного дома достаточно мощности в 5 кВт при диаметре лопастей 6-7 метров. Высота мачты, на которой установлен улавливатель ветра, составляет 26-30 метров. При высокой активности ветра, производительность генератора — 450-600 кВт\час, в иной период – до 200 кВт.
Используя только солнечные батареи и ветрогенератор, Вы получите 700 кВт в час, этого будет предостаточно для работы всей домашней техники в полную мощность.
3. Котел на биотопливе. Такой котел обеспечит высокую эффективность вследствие сжигания древесины, гранулированного торфа или других биопродуктов. Загрузка топлива происходит один раз в сутки. При мощности котла 60 кВт его ресурса хватит для того, чтобы отопить жилой дом до 400 кв. м., а также дополнительные помещения — баню, сауну, зимний сад.
4. Солнечный коллектор. Этот альтернативный источник энергии преобразует энергию солнца в тепловую. Устанавливается на крыше частного дома. Используется для нагревания воды. Преобразованная электроэнергия накапливается в специальную буферную емкость или сразу используется бойлером для нагрева воды. В летний период, когда потребность в отоплении отпадает, энергия используется для нагрева воды до 60 градусов, затем контроллер направляет «лишнюю» тепловую энергию в буферную емкость, объемом 2000 литров. Такая емкость имеет теплообменник, мощностью 45 кВт. Тепловая энергия из буферной зоны летом используется только для подогрева полов в ванных комнатах.
5. Геотермальные тепловые насосы – еще один вид альтернативного источника тепла. С помощью такой техники используется энергия земли и воды. Летом такая система работает на охлаждение дома. Минусами в этом виде получения альтернативной энергии есть дороговизна оборудования, но последующая экономия на оплате коммунальных услуг покажется Вам более приятной. Для работы насоса необходим постоянный источник энергии.
6. Инфракрасное отопление – сегодня становится очень популярным альтернативным видом отопления. Такой вид обогрева дома экономичный и быстро монтируется. При монтаже теплого пола используют инфракрасную пленку. Кроме теплого пола часто в частном доме прокладывают систему «теплый плинтус».

Как же все это будет работать системно?

  При монтаже системы отопления устанавливается котел на биотопливе, подключаются специально предназначенные для такого вида отопления радиаторы. Укладывается теплый пол, который работает от альтернативного источника энергии. Разводятся трубы по всему дому. Обязательно помним про буферную емкость и теплообменник.
Подогрев воды осуществляет бойлер с теплообменниками от солнечного коллектора и от котла.
Система кондиционирования дома также работает от альтернативного питания. Она автономна, с возможностью регулировки температуры в каждой комнате отдельно. Аналогичная ситуация и с вентилированием. Система вентиляции устанавливается с регуляторами влажности и очистки воздуха.
Энергия солнца, ветра или воды заряжает аккумуляторы до напряжения в них в размере 56 В. Если аккумуляторы заряжены, альтернативный источник направляет энергию в резервные емкости, а именно на ТЭНы. Их мощность 4 кВт. ТЭНы, в свою очередь, нагревают воду. Также накопленное тепло из буферной зоны идет на обогрев полов.

  Привычными и уже давно используемыми альтернативными источниками получения тепла есть камины, печи, а также кондиционеры.

  Применение альтернативного метода получения электроэнергии в частном доме — самое правильное решение. Вы получаете умный дом с минимальными энергопотерями. Для того, чтобы получить высокий коэффициент энергоэффективности в доме, специалисты компании неукоснительно правильно и согласно технологии спроектируют выбранный Вами инновационный альтернативный источник энергоснабжения, установят его и запустят бесперебойную работу всех систем жизнедеятельности Вашего дома.

Альтернативные источники электроэнергии для загородного дома —

В настоящее время в качестве основных используются следующие источники электрической энергии: атомные электростанции, работающие на ядерном топливе, тепловые электростанции, работающие на угле или газе и гидроэлектростанции. В ближайшие 50-60 лет запасы природного газа, угля, нефти будут исчерпаны практически полностью и возникнет энергетический кризис, поэтому уже сейчас в большинстве стран мира ведутся разработки энергосберегающих технологий, поиск альтернативных и недорогих источников энергии.

Электроснабжение частного дома можно осуществить различными способами. Так, например, если рядом с домом или на небольшом расстоянии от него проходит линия электропередач 0,4 кВ, то самым недорогим вариантом подключения будет вариант заказа в электромонтажной организации работ по подключению дома к электрическим сетям общего пользования. Если же подключение к электрическим сетям общего пользования связано с большими финансовыми затратами, то актуальным становится вопрос выбора альтернативного источника электроснабжения.

Существует несколько эффективных альтернативных источников электроэнергии. Основными из них являются работающие на энергии солнца и ветра. Выбор альтернативного источника довольно сложный и трудоемкий процесс. Прежде всего, необходимо рассчитать потребляемую электрическую мощность всех потребителей дома с учетом коэффициента загрузки и коэффициента одновременности, затем на основании полученных результатов выбрать мощность и тип источника электроснабжения, руководствуясь стоимостью оборудования, электромонтажных работ и кВт*ч электроэнергии.

Для электроснабжения среднестатистического загородного дома, расположенного в Подмосковье, использующего нагрузку, состоящую из холодильника, освещения, телевизора, кондиционера и стиральной машины, необходим источник электроэнергии мощностью 6 кВт. Среднесуточное потребление составит порядка 16 кВт*ч. Выбор альтернативного источника электроэнергии необходимо производить с учетом возможного увеличения потребляемой мощности:

Ветрогенератор

Стоимость ветроустановки в сборе мощностью 7 кВт составит порядка 24000 долларов. В состав комплекта, помимо самого вертогенератора и мачты для его установки, войдёт контроллер заряда аккумуляторов, инвертор 48/220 В, 20 аккумуляторных батарей емкостью 200 А*ч, необходимых для бесперебойной работы электрооборудования дома во время штиля или низкой скорости ветра.

Солнечная батарея

Электроустановка на основе солнечных модулей мощностью 7 кВт будет стоить ориентировочно 30000 долларов. Комплект будет состоять из 45 монокристаллических солнечных панелей мощностью 270 Вт, контроллера заряда, инвертора 48/220 в и 20 аккумуляторных батарей емкостью 200 А*ч, необходимых для бесперебойной работы в ночное время. Необходимо учесть, что помимо стоимости самой установки по выработке электрической энергии необходимо будет оплатить стоимость электромонтажных работ, составляющих порядка 20% стоимости оборудования.

Альтернативные источники электроэнергии имеют свои недостатки. Так, например, ветрогенератор начинает вырабатывать электроэнергию при скорости ветра от 3 м/с, а на номинальную мощность выходит при скорости ветра от 6 до 12 м/с в зависимости от модели и производителя. Солнечные элементы также зависят от погодных условий, в пасмурную погоду выработка электроэнергии у них снижается в разы.

В CLIMAG.RU всегда помогут произвести грамотный выбор оборудования для альтернативного источника электроэнергии, его установку и электромонтажные работы.

10 альтернативных источников энергии, о которых вы ничего не знали

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.

Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.

Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.

«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу. 

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.

Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.

Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа – во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.

Энергия из тепла человека

Принцип термоэлектрических генераторов, работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Такой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.

Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.

Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства. 

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.

Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод, загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала – не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.

«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало – его хватает лишь на питание небольших портативных гаджетов.

Смотреть далее: 10 самых красивых ветряных электростанций мира

Альтернативные источники энергии

В современном мире, с растущими показателями потребления и как следствие — ограниченными энергоресурсами, стремительные обороты набирает развитие технологий добычи энергии из альтернативных, возобновляемых источников. К таким источникам относятся, в первую очередь, солнечная и ветровая энергии, геотеримальное тепло, энергия морских волн и приливов.

Сегодня альтернативные источники энергии уже широко используются для решения проблем энергоснабжения не только в промышленных масштабах, но и в частном секторе.  Доступность технологий получения энергии из неисчерпаемых источников позволяет строить энергонезависимые дома с экологически чистой инфраструктурой в удаленных районах и решать проблемы энергоснабжения уже существующих объектов. 

Виды альтернативных источников энергии

Такие альтернативные источники энергии, как энергия солнечного света и ветра используются для энергоснабжения и нагрева воды, геотермальное тепло земли — для отопления и кондиционирования зданий. Преобразование солнечной энергии в электрическую происходит при помощи фотоэлектрических пластин из кремния — самого распространенного элемента на планете. Солнечные батареи, на основе кремниевых пластин имеют продолжительный ресурс жизни — более 25 лет и, в зависимости от технологии производства, сохраняют до 80% своей эффективности в течении всего ресурса. Количество энергии, получаемой от солнечных батарей, различается и напрямую зависит от месторасположения и солнечной активности в различные сезоны года. Эффективность преобразования энергии у солнечных батарей достигает 20% и зависит от технологии их производства и чистоты кремния. Технология стремительно развивается и показатель эффективности постоянно растет.

Эксплуатация ветро-установок (ветрогенераторов) для получения электричества, целесообразна в районах с высоким значением средней скорости ветра или в периоды низкой солнечной активности. Эффективность преобразования энергии ветра не уступает эффективности гелиоустановок, но зависит от точки расположения объекта и корректно рассчитанного потенциала местности.

Широко используется для отопления зданий и геотермальное тепло земли. Тепловые насосы позволяют получать тепло окружающей среды: земли, воды или воздуха. В зимний период геотермальное тепло используется для отопления зданий, а в летние месяцы позволяет эффективно отводить тепло, производя кондиционирование.

Альтернативные источники энергии и выгоды их использования

Эффективность использования тех или иных альтернативных источников энергии напрямую зависит от региона, в котором необходима установка. Качественный мониторинг энергопотенциала позволяет определять наиболее подходящую технологию и рассчитывать ее окупаемость на годы вперед, а так же исключает ошибки связанные с региональными особенностями.

Конечно, первоначальную цену энергонезависимого дома, с экологически чистыми, возобновляемыми источниками энергоснабжения, сегодня нельзя назвать низкой, но по истечении двух — пяти лет эксплуатации альтернативные источники энергии полностью окупают свою стоимость и приносят ощутимую финансовую выгоду в течении многих лет.  Не стоит забывать о экологичности альтернативных технологий добычи энергии. Солнечные, ветровые и гелиоустановки не производят вредных выбросов в атмосферу, не загрязняют воду и безопасны для человека.

 

Производство солнечных батарей набирает обороты

Нехватка ресурсов в удаленных регионах, в совокупности с быстрыми темпами развития технологии привело к ситуации, когда производство солнечных батарей быстро набирает обороты, а стоимость конечных изделий с каждым годом становится все более доступной для потребителей со средним уровнем доходов. И если вчера технология гелиоустановок была доступна лишь для космических программ, то уже сегодня мини-солнечные электростанции, как грибы после дождя, растут на крышах домов и садовых участках.

 

     

какие технологии можно использовать, их преимущества и недостатки

О том, что запасы нефти, газа и угля не бесконечны, знают даже школьники. Цены на энергоносители постоянно повышаются, заставляя плательщиков тяжко вздыхать и задумываться об увеличении собственных доходов. Несмотря на достижения цивилизации, за пределами городов остается немало мест, в которые не подведен газ, а кое-где нет даже электричества. Там же, где такая возможность есть, стоимость работ по монтажу системы порой абсолютно не соответствует уровню доходов населения. Неудивительно, что альтернативная энергия своими руками вызывает сегодня интерес как у владельцев больших и малых загородных домов, так и у горожан.

Весь окружающий нас мир полон энергии, которая содержится не только в недрах земли. Еще в школе, на уроках географии, мы узнали, что можно с высокой эффективностью в использовать энергию ветра, солнца, приливов и отливов, падающей воды, земного ядра и прочих подобных энергоносителей в масштабах целых стран и континентов. Однако использовать альтернативные источники энергии можно и для отопления отдельного дома.

Виды альтернативных источников энергии

Среди вариантов природных источников частного энергоснабжения следует отметить:

  • солнечные батареи;
  • солнечные коллекторы;
  • тепловые насосы;
  • ветрогенераторы;
  • установки для поглощения энергии воды;
  • биогазовые установки.

Располагая достаточным количеством средств, можно купить готовую модель одного из подобных устройств и заказать ее монтаж. Откликаясь на пожелания потребителей, промышленники давно освоили изготовление солнечных панелей, тепловых насосов и т. п. Однако их стоимость остается стабильно высокой. Такие устройства вполне можно сделать самостоятельно, сэкономив некоторое количество денег, но затратив больше времени и сил.

Видео: какую природную энергию можно использовать

Принцип действия и применение солнечных батарей в частном доме

Физическое явление, на котором основан принцип работы этого источника энергии – фотоэффект. Солнечный свет, попадая на её поверхность, высвобождает электроны, что создает избыточный заряд внутри панели. Если подключить к ней аккумулятор, то благодаря зарнице в количестве зарядов в цепи появится ток.

Принцип работы солнечной батареи заключается в фотоэффекте

Конструкции, способные улавливать и преобразовывать энергию солнца, многочисленны, разнообразны и постоянно улучшаются. Для множества народных умельцев совершенствование этих полезных конструкций превратилось в отличное хобби. На тематических выставках такие энтузиасты охотно демонстрируют множество полезных идей.

Чтобы сделать солнечные батареи, необходимо приобрести монокристаллические или поликристаллические фотоэлементы, поместить их в прозрачный каркас, который фиксируют прочным корпусом

Основа солнечной батареи — специальные кристаллы, которые улавливают энергию. В домашних условиях такие элементы изготовить невозможно, их придется приобретать. Кристаллы очень хрупкие, обращаться с ними нужно осторожно. Чтобы сделать солнечную батарею, необходимо:

  1. Изготовить каркас для солнечных батарей из прозрачного материала, например, оргстекла.
  2. Сделать корпус из металлического уголка, фанеры и т. п.
  3. Аккуратно спаять кристаллические элементы в схему.
  4. Поместить фотоэлементы в каркас.
  5. Выполнить монтаж корпуса.

Вообще существует два вида фотоэлементов: монокристаллические и поликристаллические. Первые более долговечны и имеют КПД около 13%, а вторые быстрее выходят из строя, их КПД несколько ниже — менее 9%. Однако монокристаллические фотоэлементы хорошо работают лишь при стабильном потоке солнечной энергии, в облачный день их эффективность становится значительно ниже. А вот поликристаллические элементы переносят капризы погоды гораздо лучше.

Полученное электричество можно использовать для питания бытовой техники или же для обогрева помещения при помощи технологии теплого пола. Но энергия солнца пригодна не только для выработки электрической энергии. С помощью солнечной энергии можно нагревать воду. Об этом в следующем разделе статьи. Итак, преимущества этого источника энергии:

  • неиссякаемость;
  • отсутствие каких-либо отходов или шумов в процессе производства энергии;
  • автономность;
  • относительно дешевое техническое обслуживание;
  • прогрессивность;

Недостатки этой технологии таковы:

  • высокая стоимость самих панелей и наладочных работ;
  • небольшое загрязнение планеты выбросами при производстве;
  • дорогие аккумуляторные батареи;
  • низкий КПД панелей, и, как следствие, необходимость их большого количества.

Подробная инструкция по изготовлению солнечной батареи в нашем следующем материале: https://aqua-rmnt.com/otoplenie/alt_otoplenie/solnechnaya-batareya-svoimi-rukami.html

Видео: изготовление солнечной батареи своими руками

Готовые батареи размещают, разумеется, на самой солнечной стороне крыши. При этом следует предусмотреть возможность регулирования наклона панели. Например, во время снегопадов панели следует размещать практически вертикально, иначе слой снега может помешать работе батарей или даже повредить их.

Устройство и использование солнечных коллекторов

Примитивный солнечный коллектор представляет собой пластину из металла черного цвета, помещенную под тонкий слой прозрачной жидкости. Как известно из школьного курса физики – темные предметы нагреваются сильнее, чем светлые. Эта жидкость при помощи насоса движется, охлаждает пластину и нагревается при этом сама. Контур с нагретой жидкостью можно поместить в бак, подключенный к источнику холодной воды. Нагревая воду в баке, жидкость из коллектора охлаждается. А затем и возвращается обратно. Таким образом, эта энергосистема позволяет получить постоянный источник горячей воды, а в зимнее время ещё и горячие батареи отопления.

Существует три вида коллекторов, отличающихся устройством

На сегодняшний день существует 3 типа таких устройств:

  • воздушные;
  • трубчатые;
  • плоские.

Воздушные

Воздушные коллекторы состоят из пластин темного цвета

Воздушные коллекторы представляют собой пластины чёрного цвета, закрытые стеклом или прозрачным пластиком. Вокруг этих пластин естественно или принудительно циркулирует воздух. Теплый воздух применяется для обогрева комнат в доме или же для сушки белья.

Достоинством является предельная простота конструкции и низкая стоимость. Единственным недостатком является применение принудительной циркуляции воздуха. Но можно обойтись и без неё.

Трубчатые

Плюс такого коллектора — простота и надежность

Трубчатые коллекторы имеют вид нескольких выстроенных в ряд стеклянных трубок, покрытых изнутри светопоглощающим материалом. Они соединены в общий коллектор и через них циркулирует жидкость. Такие коллекторы имеют 2 способа передачи полученной энергии: прямой и косвенный. Первый способ используется в зимнее время. Второй же применяется круглогодично. Существует вариация с использованием вакуумных трубок: одна вставляется в другую и между ними создается вакуум.

Это изолирует их от окружающей среды и лучше сохраняет полученное тепло. Достоинствами являются простота и надёжность. К недостаткам можно отнести высокую стоимость установки.

Плоские

Чтобы сделать работу коллекторов эффективнее, инженеры предложили использовать концентраторы

Плоский коллектор – самый распространенный тип. Именно он послужил примером для объяснения принципа действия этих устройств. Достоинством этой разновидности являются простота и дешевизна в сравнении с другими. Недостатком является значительная потеря тепла, чем другие подтипы не страдают.

Чтобы улучшить уже существующие гелиосистемы инженеры предложили применять подобие зеркал, названное концентраторами. Они позволяют поднять температуру воды со стандартных 120 до 200 C°. Этот подвид коллекторов получил название концентрационных. Это один из самых дорогостоящих вариантов исполнения, что, несомненно, является недостатком.

Полная инструкция по изготовлению монтажу солнечного коллектора в нашей следующей статье: https://aqua-rmnt.com/otoplenie/boilery/solnechnyiy-vodonagrevatel-svoimi-rukami.html

Использование энергии ветра

Если ветер способен гонять стаи туч, почему бы не использовать его энергию на другие полезные дела? Поиски ответа на этот вопрос привели инженеров к созданию ветрогенератора. Это устройство обычно состоит из:

  • генератора;
  • высокой башни;
  • лопастей, которые вращаются, улавливая ветер;
  • батареи;
  • системы электронного управления.

Принцип действия ветрогенератора довольно прост. Лопасти, вращаясь от сильного ветра, вращают валы трансмиссии( в простонародье – коробку передач). Они соединены с генератором переменного тока. Трансмиссия и генератор расположены в люльке или, по-другому, гондоле. Она может иметь поворотный механизм. Генератор подключен к управляющей автоматике и повышающему напряжение трансформатору. После трансформатора напряжение, увеличившее своё значение, отдается в общую систему электроснабжения.

Ветрогенераторы подходят для местности, где постоянно дует ветер

Поскольку вопросы создания ветрогенераторов изучаются довольно давно, существуют проекты самых разнообразных конструкций этих устройств. Модели с горизонтальной осью вращения занимают довольно большое пространство, а вот ветрогенераторы с вертикальной осью вращения гораздо компактнее. Разумеется, для эффективной работы устройства требуется достаточно сильный ветер.

Достоинства:

  • отсутствие выбросов;
  • автономность;
  • использование одного из возобновляемых ресурсов;

Недостатки:

  • необходимость в постоянстве ветра;
  • высокая начальная цена;
  • шум, издаваемый при вращении, и электромагнитное излучение;
  • занимают большие площади.

Ветрогенератор необходимо разместить как можно выше, чтобы его работа была эффективной. Модели, которые имеют вертикальную ось вращения, компактнее, чем при горизонтальном вращении

Пошаговое руководство по изготовлению ветрогенератора своими руками на нашем сайте: https://aqua-rmnt.com/otoplenie/alt_otoplenie/vetrogenerator-svoimi-rukami.html

Вода как источник энергии

Самый известный способ использования воды для получения электричества — это, конечно же, ГЭС. Но он не единственный. Есть ещё энергия приливов и энергия течений. А теперь по порядку.

Гидроэлектростанция это плотина, в которой имеется несколько шлюзов для управляемого сброса воды. Эти шлюзы соединены с лопастями турбогенераторов. Протекая под давлением, вода раскручивает его, тем самым вырабатывая электричество.

Недостатки:

  • затопление прибрежных территорий;
  • уменьшение численности обитателей рек;
  • шум.

Для использования энергии воды строят специальные станции

Сила течений

Этот способ получения энергии похож на ветрогенератораторный, с той лишь разницей, что генератор с лопастями огромных размеров размещается поперек крупного морского течения. Такого как Гольфстрим, например. Но это очень дорого и технически сложно. Поэтому всё крупные проекты остаются пока на бумаге. Тем не менее, существуют небольшие, но действующие проекты, демонстрирующие возможности этого вида энергии.

Энергия приливов

Конструкция электростанции, превращающая эту разновидность энергии в электричество, представляет собой огромную плотину, размещенную в морском заливе. В ней есть отверстия, через которые вода проникает на обратную сторону. Они связаны трубопроводом с электрогенераторами.

Работает приливная электростанция следующим образом: во время прилива уровень воды повышается и создается давление, способное вращать вал генератора. По окончании прилива впускные отверстия закрываются и во время отлива, который происходит через 6 часов, открывают выпускные и процесс повторяется в обратную сторону.

Плюсы этого способа:

  • дешевое обслуживание;
  • приманка для туристов.

Недостатки:

  • значительные затраты на строительство;
  • вред для морской фауны;
  • ошибки при проектировании могут вызвать затопление близлежащих городов.

Применение биогаза

Во время анаэробной переработки органических отходов выделяется так называемый биогаз. В результате получается смесь газов, состоящая из метана, углекислоты и сероводорода. Генератор для получения биогаза состоит из:

  • герметичного бака;
  • шнека для перемешивания органических отходов;
  • патрубка для выгрузки отработанной массы отходов;
  • горловины для заливки отходов и воды;
  • патрубка, по которому поступает полученный газ.

Нередко емкость для переработки отходов устраивают не на поверхности, а в толще грунта. Чтобы не допустить утечки полученного газа, ее делают полностью герметичной. При этом следует помнить о том, что в процессе выделения биогаза давление в емкости постоянно повышается, поэтому газ требуется из емкости регулярно отбирать. Помимо биогаза в результате переработки получается отличное органическое удобрение, полезное для выращивания растений.

К устройству и правилам эксплуатации такого газового генератора предъявляются повышенные требования безопасности, поскольку биогаз опасно вдыхать и он может взорваться. Впрочем, в ряде стран мира, например, в Китае, этот способ получения энергии распространен довольно широко.

Подобная установка для получение биогаза может стоить недешево

Этот продукт переработки отходов можно использовать как:

  • сырье для тепловой электростанции и когенерационной установки;
  • замену природному газу в плитах, горелках и котлах.

Сильной стороной этого вида топлива являются возобновляемость и доступность, особенно в деревнях, сырья для переработки. Этот вид топлива имеет и ряд недостатков, таких как:

  • выбросы от сжигания;
  • несовершенная технология получения;
  • цена аппарата для создания биогаза.

Конструкция генератора для получения биогаза очень проста, однако при его эксплуатации следует соблюдать определенную осторожность, поскольку биогаз — опасное для здоровья горючее вещество

Состав и количество биогаза, получаемого из отходов, зависит от субстрата. Больше всего газа получают при использовании жира, зерна, технического глицерина, свежей травы, силоса и т. п. Обычно в бак загружают смесь из отходов животного и растительного происхождения, в которую добавляют некоторое количество воды. В летнее время рекомендуется увеличить влажность массы до 94-96%, а в зимнее время достаточно и 88-90% влаги. Воду, подаваемую в резервуар с отходами, следует подогревать до 35-40 градусов, иначе процессы разложения будут замедлены. Чтобы сохранить тепло, снаружи на бак монтируют слой теплоизоляционного материала.

Применение биотоплива (биогаза)

Действие теплового насоса основано на обратном принципе Карно. Это довольно большое и достаточно сложное устройство, которое собирает низкопотенциальную тепловую энергию окружающей среды и преобразовывает ее в энергию с высоким потенциалом. Чаще всего тепловые насосы используют для обогрева помещений. Устройство состоит из:

  • наружного контура с теплоносителем;
  • внутреннего контура с теплоносителем;
  • испарителя;
  • компрессора;
  • конденсатора.

В системе также используется фреон. Наружный контур теплового насоса может поглощать энергию из различной среды: земли, воды, воздуха. Затраты труда на его создание зависят от типа насоса и его конфигурации. Сложнее всего устроить насос типа «земля-вода», в котором наружный контур горизонтально располагается в толще грунта, поскольку это требует масштабных земляных работ. Если возле дома есть водоем, имеет смысл сделать тепловой насос типа «вода-вода». В этом случае наружный контур просто опускают в водоем.

Тепловой насос преобразует низкопотенциальную энергию земли, воды или воздуха в высокопотенциальную тепловую энергию, которая позволяет вполне эффективно обогреть здание

Эффективность работы теплового насоса зависит не столько от того, как высока температура среды, сколько от ее постоянства. Правильно спроектированный и установленный тепловой насос может обеспечить дом достаточным количеством тепла в зимнее время, даже при очень низкой температуре воды, земли или воздуха. В летнее время тепловые насосы могут выполнять роль кондиционера, охлаждая жилище.

Чтобы использовать такие насосы, нужно предварительно выполнить буровые работы

К достоинствам этих установок можно отнести:

  • энергоэффективность;
  • пожаробезопасность;
  • многофункциональность;
  • длительная эксплуатация до первого капитального ремонта.

Слабой стороной подобной системы являются:

  • высокая изначальная цена в сравнении с другими способами обогрева здания;
  • требование к состоянию питающей электросети;
  • более шумные, чем классический газовый котел;
  • необходимость проведения буровых работ.

Видео: как работают тепловые насосы

Статьи в тему:

Как видите, для того чтобы обеспечить свой дом теплом и электричеством, можно использовать солнечную энергию, силу ветра и воды. У каждого из способов есть свои преимущества и недостатки. Но тем не менее, из всех существующих вариантов можно использовать метод, который будет и недорогим, и эффективным.

Материал обновлен 30.01.2018

Оцените статью:

Поделитесь с друзьями!

7 способов снабдить ваш дом возобновляемой энергией — Key Life Homes

Если вы не очень богаты, вы, вероятно, всегда ищете способы сэкономить пару долларов. Один из лучших способов сократить ежемесячные счета — это инвестировать в возобновляемые источники энергии. Не от силовой установки, а всего того, что можно напугать самому.

Использование возобновляемых источников энергии для питания вашего дома может снизить или полностью исключить ваши счета за коммунальные услуги, а налоговые льготы для установки возобновляемых источников энергии могут сделать их еще более рентабельными.Вот семь различных способов снабдить ваш дом возобновляемой энергией.

Крышные солнечные панели
Это, вероятно, наиболее распространенный и очевидный метод, если вы изучаете возобновляемые источники энергии. Солнечные панели обычно устанавливаются на вашей крыше, хотя вы также можете установить их у себя во дворе. В зависимости от вашей широты и ориентации панелей вы можете генерировать 10 или более ватт на квадратный фут. Типичный дом потребляет не менее киловатта энергии, поэтому нескольких квадратных футов солнечных панелей должно хватить для обеспечения большей части или всех ваших потребностей.

Если срок службы вашей нынешней крыши подходит к концу, вы также можете подумать об инвестициях в солнечную черепицу. В то время как стандартные солнечные панели на крыше устанавливаются поверх вашей нынешней крыши, солнечная черепица фактически заменяет вашу черепицу. SolarCity Илона Маска недавно объявила о плане начать производство солнечной черепицы, и другие компании, такие как SunTegra, производят ее в течение многих лет.

Конечно, одна большая слабость солнечной энергии в том, что она работает только тогда, когда солнце встало.Если вы хотите запитать свой дом, когда солнце садится, вам нужно будет заплатить за электроэнергию в сети или инвестировать в второй тип возобновляемой энергии.

Ветряные турбины
Ветряные турбины чаще всего используются на ветряных фермах или плавучих морских объектах, но если у вас достаточно недвижимости, вы можете установить небольшую ветряную турбину на своей территории, чтобы обеспечить электроэнергией свой дом.
У ветряных турбин есть несколько недостатков, которые делают их менее популярными в жилых районах. Они могут быть уродливыми и наделать много шума.Они занимают место, и в зависимости от того, где вы живете, местные законы и правила зонирования могут прямо запретить это.

Но если эти недостатки вас не касаются или не беспокоят, энергия ветра может оказаться большим преимуществом. Ветроэнергетика более стабильна, чем солнечная, и ветряная турбина хорошего размера может легко вырабатывать большую часть или все ваши потребности в электроэнергии. В зависимости от вашего региона ветер может быть лучшим вложением в возобновляемые источники энергии, чем солнечная.

Солнечная печь
Возможно, вы не готовы обеспечить весь свой дом возобновляемыми источниками энергии.Это большой проект, и, возможно, он просто невыполним по разным причинам. Вы по-прежнему можете обеспечить часть своего дома возобновляемой энергией, построив солнечную печь.

Солнечные печи обычно представляют собой научный проект, но на самом деле печи потребляют довольно много электроэнергии. Использование солнца для пассивного нагрева еды — хороший способ начать работу в мире возобновляемых источников энергии. Солнечные печи работают, улавливая солнечный свет для нагрева пищи. Вы можете купить духовку на солнечной батарее или построить свою собственную из нескольких распространенных материалов.

Духовки на солнечных батареях

имеют ряд преимуществ: они бесплатно нагревают пищу и работают даже при отключении электричества или в аварийной ситуации. Вам никогда не придется перекусить из-за недостатка энергии.

Hydro Power
Это не сработает для большинства людей, но если на вашем участке есть проточная вода, вам повезло. Вы можете направить поток или реку частично или полностью, чтобы они протекали через турбину и приводили в действие ваш дом.

Есть несколько способов сделать это, но в самом простом случае вы захотите найти наибольшее расстояние по вертикали, которое будет преодолевать вода, и отвести эту воду, чтобы она проходила через турбину контролируемым образом.В зависимости от количества воды и расстояния по вертикали вы можете таким образом производить значительную мощность. Установить гидроэлектростанцию ​​непросто, и вам может потребоваться профессиональная установка. Однако, если у вас есть некоторые инженерные знания, вы даже можете построить его самостоятельно с нуля.

И преимущества гидроэнергетики огромны. В отличие от солнечной и ветровой, гидроэнергетика стабильна и непрерывна, а это означает, что вы всегда будете получать одинаковую мощность, несмотря ни на что. Вам никогда не придется беспокоиться о том, что ваш генератор не сможет питать ваш дом.Это может стоить небольшого инженерного проекта.

Солнечное водонагревание
Солнечная энергия нужна не только для производства электроэнергии. Вы также можете использовать энергию солнца для обогрева дома.

Солнечные водонагреватели используют солнце для нагрева запаса воды, которую затем можно перекачивать через радиаторы, из смесителей или насадок для душа. Эта система намного дешевле, чем использование газа или электричества для нагрева воды, и ее проще установить, чем солнечные панели.Если вы не хотите полностью использовать возобновляемые источники энергии для всего дома, хорошей альтернативой может стать солнечное нагревание воды.

Существует множество различных типов солнечных водонагревателей, каждый из которых имеет свои преимущества и недостатки, поэтому обязательно выберите тот тип системы, который лучше всего подходит для вас.

Солнечная система кондиционирования воздуха
Может показаться странным использование солнечного тепла для охлаждения вашего дома, но это именно то, что делает солнечная система кондиционирования воздуха.Солнечное кондиционирование воздуха использует те же принципы, что и солнечный водонагреватель, но использует эту горячую воду в системе кондиционирования воздуха.

Кондиционер потребляет больше электроэнергии, чем что-либо еще в вашем доме. Кондиционер может стоить вам значительных денег каждый год, особенно если у вас есть система кондиционирования и вы живете в жарком климате. Использование горячей воды для охлаждения дома может сэкономить деньги и помочь окружающей среде.
В качестве бонуса горячая вода, производимая для кондиционирования воздуха, также может использоваться для других целей в вашем доме.В зависимости от вашей установки вы также можете получить преимущества солнечного нагрева воды с дополнительным кондиционированием воздуха.

Tesla Powerwall
Технически Powerwall (или другая подобная большая аккумуляторная батарея) не является возобновляемой энергией, но она хорошо работает с любым домашним генератором возобновляемых источников и может даже сэкономить ваши деньги без какой-либо другой системы возобновляемой энергии.

Powerwall — это большая перезаряжаемая батарея, способная хранить несколько киловатт-часов электроэнергии. Сам по себе он может быть запрограммирован на подзарядку от сети, когда цены на электроэнергию низкие, и разрядку при высоких ценах, чтобы сэкономить ваши деньги в часы пик.

Однако Powerwall лучше всего использовать в сочетании с источником возобновляемой энергии, например, солнечной или ветровой. Powerwall может накапливать избыточную электроэнергию, которую вы не используете сразу, поэтому вы всегда можете использовать возобновляемую солнечную или ветровую энергию, даже когда солнце садится или не дует ветер.

Powerwall может сгладить колебания в производстве возобновляемой энергии, устраняя один из основных недостатков возобновляемой энергии. Кроме того, благодаря предстоящему законодательству вы можете получить налоговую скидку за подключение Powerwall к сети.

Статья предоставлена ​​Popular Mechanics

6 способов получения зеленой энергии в домашних условиях

Самый простой способ для большинства домовладельцев сократить свои счета за коммунальные услуги — это сократить потребление энергии за счет самодисциплины и повышения эффективности. Но для тех, у кого есть время и деньги для инвестирования, установка одной или нескольких систем зеленой энергии может принести большую и долгосрочную экономию, при этом делая больше для защиты окружающей среды.

Выбор и покупка системы зеленой энергии для жилых домов может стать большим проектом. Некоторые системы могут быть нерентабельными для вашего дома, а другие могут быть вообще несовместимы. Но как только вы определитесь с вариантами и установщиками в вашем районе, вы можете быть удивлены тем, что находится в пределах вашего ценового диапазона.

Изучите местные правила и стимулы для использования зеленой энергии

Прежде чем вы увлечетесь, следует иметь в виду несколько важных факторов.Во-первых, штаты и муниципалитеты различаются способами регулирования некоторых систем возобновляемой энергии, особенно солнечных батарей и ветряных турбин. Если выясняется, что ваш город серьезно ограничивает одно или оба, полезно выяснить это на раннем этапе. Позвоните в местную мэрию или проконсультируйтесь с местным установщиком ветряных и солнечных батарей, чтобы узнать, что разрешено в вашем районе.

Во-вторых, могут существовать налоговые льготы и другие стимулы, которые сделают для вас более доступным приобретение системы зеленой энергии.С 2018 года федеральный налоговый кредит на возобновляемые источники энергии для жилищного строительства был продлен до конца 2021 года и распространяется на такие системы, как солнечные панели, ветряные турбины, геотермальные тепловые насосы и солнечные водонагреватели. Ваш штат может предлагать дополнительные налоговые льготы, а у ваших местных коммунальных предприятий даже могут быть программы, упрощающие установку возобновляемых источников энергии.

Производство электроэнергии дома

1. Солнечные батареи для жилых домов

Каждый лучик солнца, падающий на вашу крышу, — это бесплатное электричество.Все, что вам нужно, это солнечная панель для его захвата. И отчасти благодаря вышеупомянутой налоговой льготе многие домовладельцы участвуют в акции.

Панели солнечных батарей

должны устанавливаться профессионалами, и многие установщики без каких-либо обязательств проведут оценку вашего дома, чтобы определить лучшие места для установки и предложить оценку. Некоторые могут даже установить солнечную черепицу, которая придаст более обтекаемый вид.

Энергию, вырабатываемую солнечными панелями, нужно сразу же использовать или хранить.Когда ваш дом потребляет больше энергии, чем производят ваши солнечные батареи, солнечная энергия просто компенсирует количество электроэнергии, которое вам нужно покупать из сети. Но когда вы производите больше, чем используете, вы можете продавать эту избыточную энергию обратно в электросеть, что еще больше снизит ваши счета. Другой вариант — купить домашний аккумулятор, который может хранить эту энергию до тех пор, пока она вам не понадобится после наступления темноты.

2. Ветряные турбины

Вам не нужны огромные турбины, которые вы видите на ветряных электростанциях, для выработки зеленой энергии для вашего дома.Такой маленький пропеллер, как крышка мусорного бака, может существенно сократить ваши домашние счета за электроэнергию, если он установлен в достаточно ветреном месте.

Профессиональная установка здесь также важна, как для обеспечения безопасности турбины, так и для ее размещения там, где до нее дойдет ветер. И, как и в случае с солнечными панелями, вы должны использовать ее или терять, когда вы генерируете энергию с помощью ветряных турбин.

3. Солнечные и ветровые гибридные системы

Если у вас солнечные дни и ветреные ночи, гибридная солнечно-ветровая система может быть идеальным вариантом для вашего региона.Эта комбинация повышает вероятность того, что ваш дом будет вырабатывать электричество круглосуточно, поэтому теоретически вы можете полностью отключиться от сети, добавив домашний аккумулятор.

4. Микрогидроэнергетические системы

Есть проточный ручей на вашем участке? Вы можете направить поток воды через небольшую турбину и позволить току генерировать бесплатное электричество 24 часа в сутки. Система микрогидроэнергетики часто даже лучше, чем гибридная система, потому что поток воды более постоянный и надежный, чем ветер и солнце.

5. Солнечные водонагреватели

Если полная система солнечных панелей выходит за рамки вашего ценового диапазона, но у вас все еще есть солнечная недвижимость на вашей крыше, солнечный водонагреватель — менее дорогой способ получить некоторую бесплатную энергию. В большинстве солнечных водонагревателей сам резервуар хранится на крыше как часть установки, что придает ему более громоздкий вид. Но это позволяет солнцу выполнять работу по поддержанию одного из самых больших источников энергии в вашем доме.

6. Геотермальные тепловые насосы

Температура под землей намного более стабильна, чем температура в наших домах, и зимой геотермальный тепловой насос может украсть часть этого скрытого тепла.Эти системы используют замкнутый контур труб для перекачки жидкости через подземный канал в ваш дом и обратно под землю. Внутри дома теплообменник использует тепло от труб для обогрева жилых помещений при минимальном расходе энергии.

Возобновляемые источники энергии — это разумный способ сократить ваши счета и снизить нагрузку на окружающую среду. И с таким количеством различных способов вернуть его домой, производство собственной энергии может оказаться более возможным, чем вы ожидали.

О Джоше Крэнке

Джош Крэнк — писатель-фрилансер и маркетолог с опытом работы в юридической журналистике, написании путевых заметок и маркетинге для многих коммерческих отраслей.В Direct Energy он идеально подходит для написания статей об обслуживании и ремонте дома, энергоэффективности и технологиях умного дома. Джош живет со своей женой, маленьким сыном и бесконечно воющей смесью гончих и бассет-хаундов в Новом Орлеане.

Установление рекорда в области возобновляемых источников энергии

Как аналитики и наблюдатели перехода к экономике с низким содержанием углерода и работоспособной энергии, мы обычно не пишем о фильмах.Но мы рискуем перейти в сферу культурных комментариев в свете недавнего выпуска Planet of the Humans , продюсером которого является Майкл Мур. На протяжении всей своей карьеры Мур использовал документальные фильмы для освещения социальных и экономических проблем во многих областях. К сожалению, его новый фильм включает в себя так много заблуждений и столько устаревшей информации, что мы чувствуем себя обязанными прояснить факты о возобновляемых источниках энергии.

Мы понимаем главную идею фильма: общества во всем мире должны кардинально изменить свои модели потребления.Но, ошибочно подходя к этому, создатели фильма дискредитируют ценность чистых энергетических технологий и людей, которые стремятся продвигать их внедрение.

За последнее десятилетие отрасль чистой энергетики сильно изменилась. Стоимость резко упала, технологии стали более эффективными, а решения по интеграции возобновляемых источников энергии в электрические сети продвинулись вперед. Вот факты:

1. Возобновляемые источники энергии заменяют энергию ископаемого топлива в сети.

В U.S. и практически в каждом регионе, когда электричество, поставляемое с помощью энергии ветра или солнца, доступно, оно вытесняет энергию, производимую генераторами, работающими на природном газе или угле. Тип энергии, вытесняемый возобновляемыми источниками энергии, зависит от часа дня и сочетания генерации в сети в это время. Бесчисленные исследования показали, что, поскольку энергия ветра и солнца заменяет производство ископаемых, возобновляемые источники энергии также сокращают выбросы CO2. Например, исследование NREL показало, что производство 35% электроэнергии с использованием ветра и солнца в западной части США.С. снизит выбросы СО2 на 25-45%.

Солнечные и ветряные электростанции преобладали в строительстве новых электростанций в США в последние годы, в то время как электростанции, работающие на ископаемом топливе, особенно угольные, по-прежнему выводятся из эксплуатации рекордными темпами. В 2019 году ветровая (9,1 ГВт) и солнечная (5,3 ГВт) мощность составляла 62% всех новых генерирующих мощностей по сравнению с 8,3 ГВт природного газа, а 14 ГВт угольных мощностей были выведены из эксплуатации. Управление энергетической информации США (EIA) также прогнозировало, что большая часть нового поколения электроэнергии добавится в США.С. в 2020 году может происходить от ветра и солнца, при этом ожидается, что новые газовые электростанции будут составлять менее четверти новых генерирующих мощностей. Конечно, некоторые из этих установок могут быть отложены из-за пандемии COVID-19. В то время как объемы производства природного газа превысили объемы возобновляемых источников энергии в 2018 году, изменив прежнюю тенденцию к лидерству в области возобновляемых источников энергии, по данным EIA, в том же году было выведено из эксплуатации 12,9 ГВт мощности на угле и 4,6 ГВт на газе.

Исходные данные: EIA, таблицы 4.2.A и 4.2.B, Существующая чистая летняя мощность с разбивкой по источникам энергии и типам производителей (https://www.eia.gov/electricity/annual/html/epa_04_02_a.html, https://www.eia.gov/electricity /annual/html/epa_04_02_b.html)

2. Чистая энергия создала миллионы рабочих мест — и может создать больше.

В начале 2020 года в секторе чистой энергетики в США было занято около 3,4 миллиона человек, при этом большая часть рабочей силы сосредоточена в отрасли энергоэффективности. В 2019 году количество рабочих мест в сфере чистой энергетики превысило количество рабочих мест в секторе ископаемого топлива в 3: 1; в 42 штатах и ​​округе Колумбия рабочая сила в области экологически чистой энергии превышала штат работников отрасли ископаемого топлива.Качество этих рабочих мест также важно. Согласно исследованию Института Брукингса, работники экологически чистой энергетики зарабатывают более высокую и справедливую заработную плату по сравнению с работниками в стране, при этом средняя почасовая оплата превышает средний показатель по стране на 8–19%.

Ожидается, что

рабочих мест в чистой энергии продолжат расти, несмотря на удар по сектору в результате COVID-19. К 2028 году Бюро статистики труда США прогнозирует, что двумя наиболее быстрорастущими рабочими местами в Соединенных Штатах будут монтажники солнечных батарей (прогнозируется рост на 105%) и ветроэнергетики (прогнозируется рост на 96%).Согласно «Сценарию преобразования энергетики» Международного агентства по возобновляемым источникам энергии, количество рабочих мест в области возобновляемых источников энергии во всем мире может более чем утроиться, достигнув 42 миллионов рабочих мест к 2050 году, в то время как рабочие места в области энергоэффективности вырастут в шесть раз, в результате чего будет занято более 21 миллиона человек. Напротив, ожидается, что отрасль ископаемого топлива потеряет более 6 миллионов рабочих мест за тот же период времени, даже без воздействия вируса.

3. Ветровые и солнечные электростанции могут быть построены с минимальным воздействием на окружающую среду и часто с сопутствующими выгодами.

Все электростанции, включая возобновляемые источники энергии, оказывают определенное воздействие на окружающую среду при размещении, разработке и эксплуатации. За последние два десятилетия практика размещения ветроэнергетических проектов в США стала более сложной и эффективной для минимизации воздействия. В результате ветровые проекты имеют меньшее воздействие, чем проекты других типов, и, по данным Министерства энергетики США, находятся в самом конце списка событий, которые могут иметь негативное воздействие на окружающую среду и дикую природу.Более того, эти проекты часто приносят сопутствующие выгоды. Ветряные фермы, расположенные в сельской местности, приносят пользу фермерам и владельцам ранчо, обеспечивая годовой доход от 4 000 до 8 000 долларов на турбину, позволяя землевладельцам продолжать использовать эти участки для ведения сельского хозяйства или выпаса скота. Кроме того, владельцы ветряных электростанций платят уездные налоги на собственность, которые поддерживают школы, центры отдыха и другие уездные мероприятия.

Практика размещения солнечных батарей требует экологических исследований для выявления и сведения к минимуму негативных воздействий.Могут быть разработаны планы, обеспечивающие дополнительные преимущества, такие как защита дикой природы, улучшение здоровья почвы и удержания воды, уход за местной растительностью или включение растений, благоприятных для опылителей. Дополнительные льготы могут включать доход от сдачи в аренду фермерам и налоговые поступления в графство или город. Платежи землевладельцам сильно различаются в США и могут составлять от 300 до 1000 долларов за акр.

И для эксплуатации этих станций, конечно же, не требуется никакой инфраструктуры для доставки топлива, такой как газопроводы, грузовики с пропаном, угольные баржи и железные дороги, каждая из которых оказывает собственное негативное воздействие на окружающую среду.

4. Солнечная энергия и ветер в настоящее время обеспечивают самую дешевую электроэнергию для 67% мира.

Затраты, связанные с солнечной и ветровой энергией, резко снизились за последние годы. По данным BNEF, стоимость энергии для наземного ветра и солнечной энергии для коммунальных предприятий в настоящее время составляет 44 и 50 долларов США за МВтч (на нормированной основе) по сравнению со 100 и 300 долларами за МВтч всего десять лет назад. В США нормированная стоимость энергии (LCOE), связанная с наземным ветром (24-46 долларов США / МВт-ч) и солнечной энергией в коммунальном масштабе (31-111 долларов США / МВт-ч), в настоящее время меньше, чем у почти всего газового производства электроэнергии.Аккумуляторные батареи, которые имеют решающее значение для решения проблемы изменчивости ветровой и солнечной энергии, продемонстрировали самое быстрое глобальное падение цен среди всех технологий — с почти 600 долларов за МВтч в 2015 году до примерно 150 долларов за МВтч в первой половине 2020 года.

Это резкое падение стоимости солнечной энергии и наземного ветра для коммунальных предприятий сделало их самыми дешевыми источниками энергии в двух третях мира. Сегодня солнечные проекты в Чили, на Ближнем Востоке и в Китае или ветряные проекты в Бразилии, США и Индии приближаются к цифрам ниже 30 долларов за МВтч, что ниже, чем затраты на строительство и производство энергии на электростанциях, использующих уголь или даже электричество. самый дешевый газ.К 2030 году предстоящие инновации, вероятно, еще больше снизят затраты.

5. Хотя ветер и солнце не могут производить энергию каждый час в течение дня, вырабатываемой ими энергией можно управлять в сети.

Ветряные электростанции производят электроэнергию, когда дует ветер, а солнечные фермы вырабатывают электроэнергию, когда есть солнце, что приводит к изменчивости в поставках энергии. Тем не менее, это может управляться — и управляется — коммунальными предприятиями и операторами сетей с помощью методов эксплуатации, прогнозирования, реагирующих нагрузок и инфраструктуры, такой как хранение и передача.Электрические сети предназначены для учета изменчивости спроса потребителей на электроэнергию, поддержания постоянного баланса между производством и спросом и поддержания резервов на случай отключения системы любого типа (например, отказа электростанции), поэтому они уже предназначены для управления изменчивостью. Однако сети необходимо модифицировать, чтобы со временем они стали более гибкими, чтобы они могли интегрировать большее количество энергии ветра и солнца и устранить дополнительную изменчивость, которая связана с большей зависимостью от возобновляемых источников энергии. Могут помочь увеличение инвестиций в системы хранения и передачи данных, а также рыночные реформы.

По всему миру сетевые операторы ежегодно управляют все большим количеством энергии ветра и солнца. В 2018 году операторы в Калифорнии, Юго-Западе и Техасе использовали ветровую и солнечную энергию почти для 20% или более своей энергии в среднем за год и более 50-60% в час. В Европе нескольким странам удалось добиться даже более высокого почасового проникновения ветра и солнца, включая Данию (139%), Германию (89%) и Ирландию (88%).

6. Аккумуляторные батареи экономически целесообразны для решения проблемы изменчивости ветра и солнца и могут помочь снизить выбросы.

В то время как большая часть аккумуляторов энергии в настоящее время поступает из гидроаккумулирующих установок, использование аккумуляторов энергии быстро растет из-за их все более конкурентоспособной стоимости. Цены на литий-ионные накопители энергии резко упали — на 85% в период с 2010 по 2018 год. Батареи являются эффективными носителями энергии с эффективностью в обоих направлениях 85-90%. Если они заряжаются от возобновляемых источников энергии, они не имеют дополнительных выбросов парниковых газов.

Батареи

могут предоставлять сети различные услуги, включая сглаживание колебаний ветра и солнца.Хранение может обеспечить необходимое резервное или резервное питание, которое, как подразумевает пленка, должно исходить от резервных газовых или угольных генераторов. Использование батарей для замены резервного источника ископаемого топлива будет означать более высокий уровень ветровой и солнечной энергии в сети, меньшую потребность в газе и угле и меньшие выбросы.

Батареи

с четырехчасовым разрядом, конечно, не могут удовлетворить все требования энергосистемы. Требуется дополнительная работа — и в настоящее время она ведется — над вариантами длительного хранения в рамках набора инструментов, необходимых для надежной, доступной и низкоуглеродной энергосистемы.

7. Ветряные и солнечные проекты могут работать десятилетиями и могут развиваться быстрее, чем другие источники генерации.

Все электростанции и их компоненты имеют «срок полезного использования» до того, как им потребуется замена или ремонт. Срок полезного использования возобновляемых источников энергии может превышать два десятилетия. Например, ветряные турбины рассчитаны на срок службы около 20 лет, а фотоэлектрические системы часто остаются в рабочем состоянии от 25 до 40 лет. В некоторых случаях, когда большие ветряные турбины становятся более эффективными и экономичными, оборот оборудования ускоряется.В этих случаях турбины меньшего размера были заменены раньше, чем они могли бы быть заменены более крупными и более эффективными турбинами, чтобы существенно увеличить выработку электроэнергии на существующих объектах.

Кроме того, объекты возобновляемой энергии обычно могут быть развернуты быстрее, чем установки, работающие на ископаемом топливе. В то время как строительство солнечных и наземных ветряных электростанций обычно занимает менее двух лет, на строительство газовых электростанций обычно требуется до четырех лет, а также может потребоваться строительство инфраструктуры газопровода.

8. Возобновляемые источники энергии производят больше энергии, чем используется при их производстве, и производят меньше выбросов, чем другие источники энергии, в течение своего срока службы.

Хотя все источники электроэнергии приводят к определенным выбросам парниковых газов в течение своего срока службы, возобновляемые источники энергии имеют значительно меньше выбросов, чем электростанции, работающие на ископаемом топливе. По оценкам одного исследования, возобновляемые источники энергии обычно выбрасывают около 50 г или меньше выбросов CO2 на кВт-ч в течение своего срока службы, по сравнению с примерно 1000 г CO2 / кВт-ч для угля и 475 г CO2 / кВт-ч для природного газа.Большая часть выбросов в течение жизненного цикла от генераторов ископаемого топлива происходит от сжигания топлива, но также происходит от добычи сырья, строительства, переработки топлива, эксплуатации завода и вывода из эксплуатации объектов.

Хотя производство солнечных панелей требует значительного количества энергии, исследования показали, что они компенсируют потребление энергии при производстве в течение примерно двух лет эксплуатации, в зависимости от типа модуля. И кристаллический кремний, и тонкопленочные солнечные панели содержат токсичные материалы, такие как свинец, серебро и кадмий; поэтому необходимо ускорить усилия по внедрению надлежащих методов утилизации и повторного использования модулей, как это делается в Европе и компанией First Solar в США.S., чтобы надлежащим образом улавливать и повторно использовать эти материалы.

9. Электромобили значительно сокращают выбросы.

Электрификация легковых автомобилей ускорилась в последние годы, и в настоящее время в Соединенных Штатах работает более 1 миллиона электромобилей (EV). Несколько исследований показывают, что к 2030 году их количество может вырасти до 20 миллионов электромобилей, при этом только в Калифорнии будет более 4 миллионов электромобилей.

Электромобили

обеспечивают существенное снижение выбросов — и связанные с этим преимущества для здоровья — поскольку они в два-три раза более эффективны, чем обычные автомобили внутреннего сгорания, и не имеют выхлопных газов.Однако они действительно выделяют выбросы парниковых газов на этапе производства топлива, производства транспортных средств и использования транспортных средств. Исследования показывают, что примерно 50% всех выбросов в течение жизненного цикла аккумуляторов электромобилей приходится на электроэнергию, используемую на предприятиях по производству и сборке аккумуляторов. Кроме того, чистый углеродный след электромобиля зависит от электричества, используемого для его зарядки.

По всей стране многие города и корпорации переводят свои автопарки на электромобили и взяли на себя обязательства использовать 100% возобновляемую электроэнергию для удовлетворения спроса на электроэнергию.Но, как мы отмечаем в недавнем отчете WRI, все еще необходимы новые решения, которые позволили бы клиентам более легко заряжать свои электромобили возобновляемыми источниками энергии. Потенциальное сокращение выбросов в течение всего жизненного цикла электромобиля также может быть достигнуто за счет производства батарей для электромобилей на объектах, работающих на возобновляемых источниках энергии.

10. Инвестиции частного сектора в чистую энергию имеют решающее значение для снижения выбросов парниковых газов.

Согласование финансового риска и прибыли с инвестициями в низкоуглеродную энергию имеет решающее значение для сдвига экономики в сторону более низких выбросов парниковых газов.Без значительных инвестиций частного сектора в экологически чистую энергию решение проблемы изменения климата будет более трудным, дорогостоящим и затратным по времени. В отличие от многих других стран, где поставщики энергии, в том числе в электроэнергетическом секторе, являются государственными предприятиями, большая часть собственности и инвестиций в электрическую инфраструктуру в Соединенных Штатах поступает из частного сектора. Перенаправление частных инвестиций на возобновляемые источники энергии и другие источники энергии с нулевым выбросом углерода имеет смысл и может быть более безопасным вложением.

Возобновляемая энергия не идеальна. Никакой формы энергии нет. Но люди во всем мире нуждаются в электричестве, и поиск чистых источников энергии намного лучше, чем продолжать идти по пути загрязнения ископаемого топлива. Возобновляемые источники энергии являются важной, хотя и не исключительной, частью того, что необходимо для решения неотложной и важной глобальной проблемы изменения климата.

Государственных возобновляемых источников энергии | Агентство по охране окружающей среды США

На этой странице:

Обзор

Возобновляемая энергия — это электроэнергия, вырабатываемая из топливных источников, которая восстанавливается за короткий период времени и не уменьшается.Хотя некоторые технологии использования возобновляемых источников энергии оказывают влияние на окружающую среду, возобновляемые источники энергии считаются экологически более предпочтительными по сравнению с традиционными источниками и при замене ископаемого топлива обладают значительным потенциалом для сокращения выбросов парниковых газов.

В то время как штаты по-разному определяют возобновляемые технологии в целях достижения государственных целей и задач, большинство из них включают как минимум:

  • Солнечная энергия (фотоэлектрическая, солнечная тепловая)
  • Ветер
  • Геотермальная энергия
  • Биомасса
  • Биогаз (e.г., свалочный газ / газ метантенка для очистки сточных вод)
  • Гидроэлектростанция с низким уровнем воздействия

Варианты использования возобновляемых источников энергии включают:

  • Производство возобновляемой энергии на месте с использованием системы или устройства в месте, где используется электроэнергия (например, фотоэлектрические панели на государственном здании, геотермальные тепловые насосы, комбинированное производство тепла и электроэнергии на биомассе).

  • Покупка возобновляемой энергии через сертификаты возобновляемой энергии (REC), также известные как зеленые метки, сертификаты зеленой энергии или продаваемые сертификаты возобновляемых источников энергии, которые представляют собой технологии и экологические характеристики электроэнергии, произведенной из возобновляемых источников.

  • Покупка возобновляемой энергии у электроэнергетической компании в рамках программы экологичного ценообразования или зеленого маркетинга, при которой покупатели платят небольшую надбавку в обмен на электроэнергию, произведенную на месте из возобновляемых источников энергии.

Выгоды от возобновляемых источников энергии

Экологические и экономические преимущества добавления возобновляемых источников энергии в государственный портфель могут включать:

  • Производство энергии, исключающей выбросы парниковых газов из ископаемого топлива и снижающей некоторые типы загрязнения воздуха
  • Диверсификация энергоснабжения и снижение зависимости от импорта топлива
  • Обеспечение экономического развития и рабочих мест в производстве, установке и т. Д.

Барьеры на пути к возобновляемым источникам энергии

Ценовая конкурентоспособность является наиболее очевидным препятствием для установки возобновляемых источников энергии.Во многих случаях препятствия на пути расширения использования возобновляемых источников энергии регулируются и, следовательно, находятся под контролем государства. Некоторые примеры включают:

Структуры тарифов на коммунальные услуги

Неблагоприятные структуры тарифов на коммунальные услуги были постоянным препятствием для более широкого внедрения технологий возобновляемых источников энергии. Если не будет проводиться тщательный мониторинг для поощрения развития распределенной генерации, структуры тарифов могут увеличить стоимость возобновляемых источников энергии (например, из-за резервных тарифов, отсутствия чистых измерений) или полностью запретить подключение к электрической сети.

Отсутствие стандартов подключения

Отсутствие стандартных правил подключения или единых процедур и технических требований для подключения систем возобновляемой энергии к электросети предприятия электроснабжения может затруднить, а то и вовсе сделать невозможным подключение возобновляемых систем к электросети. сетка.

Препятствия при выдаче экологических разрешений

Крупномасштабные технологии использования возобновляемых источников энергии подлежат всем необходимым экологическим разрешениям крупных промышленных предприятий.Производство возобновляемой энергии с использованием новых технологий может столкнуться с препятствиями при выдаче разрешений до тех пор, пока должностные лица, выдающие разрешения, не ознакомятся с воздействием процессов генерации на окружающую среду.

Отсутствие передачи данных

Многие возобновляемые источники энергии расположены в отдаленных районах, где отсутствует готовый или рентабельный доступ к передаче электроэнергии. Государства, которые не установили четкие правила в отношении коммунальных услуг, которые позволяют возмещать инвестиции в передачу (т.е. возмещение затрат), а также не скоординировали процессы планирования и выдачи разрешений, замедляют развитие проектов возобновляемой энергии в масштабе коммунальных предприятий на своей территории.

Государственная политика поддержки возобновляемых источников энергии

Количество установок возобновляемой энергии в разных штатах сильно различается, отражая индивидуальные приоритеты штата или региона, и не всегда из-за ресурсов или технического потенциала. Например, восемь штатов с наибольшим рейтингом по мощности установленной солнечной энергии включают штаты на юго-западе и северо-востоке (Калифорния, Нью-Джерси, Аризона, Массачусетс, Нью-Йорк, Невада, Техас, Пенсильвания), на долю которых приходится 99,5% всех солнечных фотоэлектрических установок, в то время как в национальном масштабе наибольший потенциал для производства электроэнергии с помощью фотоэлектрических систем находится в девяти юго-западных и западных штатах (Аризона, Калифорния, Колорадо, Гавайи, Нью-Мексико, Невада, Техас, Юта, Вайоминг).

Государства приняли ряд мер по поддержке увеличения инвестиций в технологии возобновляемых источников энергии и их внедрения.

  • Стандарты портфеля возобновляемых источников энергии (RPS) требуют, чтобы электроэнергетические компании и другие розничные поставщики электроэнергии предоставляли определенный процент или количество электроэнергии потребителям с соответствующими возобновляемыми ресурсами. EPA провело несколько государственных веб-семинаров по RPS. Подробная информация о политике доступна в Руководстве к действию EPA в области энергетики и окружающей среды, глава 5: Стандарты портфеля возобновляемых источников энергии.

  • Фонды государственных пособий для возобновляемых источников энергии — это совокупность ресурсов, используемых штатами для инвестирования в проекты экологически чистого энергоснабжения. Фонды обычно создаются за счет взимания небольшой платы с тарифов на электроэнергию для потребителей (т. Е. Платы за системные льготы). Подробная информация о политике доступна в Руководстве к действию EPA в области энергетики и окружающей среды, глава 3: Финансирование и политика финансового стимулирования.

  • Нормативы по охране окружающей среды на основе результатов устанавливают лимиты выбросов на единицу продукции производственной энергии процесса (т.е., электричество, тепловая энергия или мощность на валу), с целью повышения эффективности преобразования топлива и использования возобновляемых источников энергии в качестве мер по борьбе с загрязнением воздуха. Подробная информация о политике доступна в Руководстве к действию EPA в области энергетики и окружающей среды, глава 6: Соображения политики для комбинированного производства тепла и электроэнергии: Соображения политики для комбинированного производства тепла и электроэнергии.

  • Стандарты межсетевого взаимодействия — это процессы и технические требования, которые определяют, как электроэнергетические компании штата будут обращаться с возобновляемыми источниками энергии, которые необходимо подключать к электрической сети.Установление стандартных процедур может уменьшить неопределенность и задержки, с которыми могут столкнуться системы возобновляемых источников энергии при подключении к электросети в государствах, которые не установили стандарты взаимоподключения. Подробная информация о политике доступна в Руководстве к действию EPA в области энергетики и окружающей среды, глава 7: Политика в области электроэнергетики. Межгосударственный совет по возобновляемым источникам энергии (IREC) предлагает типовые процедуры присоединения для регулирующих органов коммунальных предприятий.

  • Net Metering позволяет бытовым или коммерческим потребителям, которые вырабатывают собственную возобновляемую электроэнергию (например,g., солнечные фотоэлектрические панели), чтобы получить компенсацию за вырабатываемую ими электроэнергию. Правила чистых измерений требуют, чтобы электроэнергетические компании были в состоянии гарантировать, что электрические счетчики клиентов точно отслеживают, сколько электроэнергии используется на месте или возвращается в электрическую сеть. Когда электричество, произведенное на месте, не используется, оно возвращается в сеть; когда выработки на месте недостаточно для удовлетворения потребностей потребителя, он использует электроэнергию из сети. Фактически, избыточная электроэнергия возвращается потребителю позже, когда он в противном случае заплатил бы за нее.Межгосударственный совет по возобновляемым источникам энергии (IREC) предлагает Типовые правила учета нетто.

  • Льготные тарифы поощряют развитие возобновляемых источников энергии, обязывая электроэнергетические компании оплачивать заранее установленные сверх рыночные ставки за возобновляемую энергию, подаваемую в сеть. Эти тарифы, которые могут варьироваться в зависимости от типа используемого ресурса, предоставляют производителям возобновляемых источников энергии определенный поток доходов от их проектов. В 2009 году Калифорния, Гавайи, Вермонт и Вашингтон, хотя и распространены в Европе, были первыми штатами в США.S. установить зеленые тарифы. Подробная информация о политике доступна в проекте анализа политики штата в области чистой энергии (SCEPA) Национальной лаборатории возобновляемой энергии: Анализ льготных тарифов на возобновляемые источники энергии в США.

  • Оценка собственности Чистая энергия (PACE) — это вариант финансирования, при котором обязательство по возмещению стоимости установок возобновляемой энергии или модернизации энергоэффективности возлагается на жилую недвижимость, а не на отдельного заемщика.Этот механизм побуждает владельцев собственности вкладывать средства в усовершенствования экологически чистой энергии, даже если период окупаемости больше, чем владелец намерен сохранить собственность. PACE NOW ведет список штатов и местных органов власти, в которых разрешены программы PACE.

  • Финансовые стимулы — такие как гранты, ссуды, скидки и налоговые льготы — предоставляются в некоторых штатах для поощрения развития возобновляемых источников энергии. База данных государственных стимулов для возобновляемых источников энергии и эффективности отслеживает наличие стимулов, предлагаемых государством.

EPA Программы поддержки возобновляемых источников энергии

Green Power Partnership (GPP) — это добровольная программа, которая поддерживает организационные закупки зеленой энергии, предлагая консультации экспертов, техническую поддержку, инструменты и ресурсы. Партнерство работает с сотнями компаний, колледжей и университетов, организаций, а также местных, государственных и федеральных правительственных агентств. GPP предоставляет государствам ресурсы о том, как они могут показать пример, покупая зеленую энергию для государственных операций.

Программа распространения метана на свалках (LMOP) — это программа добровольной помощи и партнерства, которая способствует использованию свалочного газа в качестве возобновляемого источника зеленой энергии. Предотвращая выбросы метана за счет разработки энергетических проектов, связанных со свалочным газом, LMOP помогает предприятиям, штатам, поставщикам энергии и сообществам защищать окружающую среду и строить устойчивое будущее.

AgSTAR — это добровольная программа, которая способствует использованию систем регенерации биогаза для сокращения выбросов метана из отходов животноводства.

RE – Powering America’s Lands — EPA поощряет развитие возобновляемых источников энергии на существующих и ранее загрязненных землях и участках добычи полезных ископаемых. Эта инициатива определяет потенциал возобновляемых источников энергии на этих объектах и ​​предоставляет другие полезные ресурсы для сообществ, разработчиков, промышленности, государственных и местных органов власти или всех, кто заинтересован в повторном использовании этих участков для развития возобновляемых источников энергии.

Инструменты и ресурсы

Препятствия на пути к технологиям использования возобновляемых источников энергии

Капитальные затраты

Наиболее очевидным и широко разрекламированным препятствием для использования возобновляемых источников энергии является стоимость — в частности, капитальных затрат или авансовых расходов на строительство и установку солнечных и ветряных электростанций.Как и большинство возобновляемых источников энергии, солнечная и ветровая энергия чрезвычайно дешевы в эксплуатации — их «топливо» бесплатное, а обслуживание минимально, поэтому основная часть расходов приходится на создание технологий.

Средняя стоимость установки солнечных систем в 2017 году варьировалась от чуть более 2000 долларов за киловатт (киловатты — это мера мощности) для крупномасштабных систем до почти 3700 долларов для жилых систем. Новый газовый завод может стоить около 1000 долларов за киловатт. Стоимость Wind составляет от 1200 до 1700 долларов за кВт.

Более высокие затраты на строительство могут заставить финансовые учреждения с большей вероятностью воспринимать возобновляемые источники энергии как рискованные, ссужая деньги по более высоким ставкам и затрудняя коммунальным предприятиям или застройщикам оправдание инвестиций. Для электростанций, работающих на природном газе и других ископаемых видах топлива, стоимость топлива может быть переложена на потребителя, что снижает риск, связанный с первоначальными инвестициями (хотя и увеличивает риск ошибочных счетов за электроэнергию).

Однако, если учесть затраты на энергетических проектов в течение жизненного цикла, ветер и солнечная энергия в коммунальном хозяйстве могут быть наименее дорогими источниками выработки энергии, по мнению управляющей компании Lazard.По состоянию на 2017 год стоимость ветроэнергетики (до налоговых льгот, которые еще больше снизили бы стоимость) составляла 30-60 долларов за мегаватт-час (мера энергии), а крупномасштабная солнечная энергия стоила 43-53 доллара за мегаватт-час. Для сравнения: энергия от наиболее эффективных типов газовых станций стоит 42-78 долларов за МВтч; стоимость угольной электроэнергии не менее 60 долларов за МВтч.

Что еще более обнадеживает, капитальные затраты на возобновляемые источники энергии резко упали с начала 2000-х годов и, вероятно, будут продолжать это делать. Например: в период с 2006 по 2016 год средняя стоимость самих фотоэлектрических модулей упала с 3 долларов.50 долл. США за ватт 0,72 доллара за ватт — снижение на 80 процентов всего за 10 лет.

Производство возобновляемой энергии — Energy Saving Trust

С помощью системы возобновляемых источников энергии вы могли бы обогревать свой дом или вырабатывать собственное электричество, сокращая при этом свои счета за электроэнергию и свою зависимость от ископаемого топлива.

В 2020 году более 42% электроэнергии в энергосистеме Великобритании приходилось на возобновляемые источники энергии, впервые опередив ископаемое топливо. Дома вы можете установить технологии производства электроэнергии, чтобы получать еще больше электроэнергии из возобновляемых источников.

Переход на возобновляемые источники энергии не только помогает окружающей среде, но и позволяет сэкономить деньги. Например, установка солнечных батарей может сэкономить до 230 фунтов стерлингов в год на счетах за электроэнергию.

Многие люди до сих пор используют ископаемое топливо для обогрева своих домов с помощью газовых или масляных котлов. У нас есть советы о том, как уменьшить углеродное воздействие этих систем, или вы можете подумать об установке низкоуглеродной системы отопления.

Существует множество различных типов систем возобновляемой энергии.Используйте наши ресурсы и руководства, чтобы выбрать то, что подходит вам, вашему дому и вашему образу жизни.

Какой вид возобновляемой энергии мне подходит?

Имея такое разнообразие доступных технологий, каждая из которых имеет свои преимущества и особенности, вам может быть интересно, с чего начать. Итак, если вы заинтересованы в установке возобновляемых источников энергии в своем доме, позвольте нам познакомить вас с некоторыми основами.

Домашние возобновляемые источники энергии можно в общих чертах разделить на те, которые производят тепло, и те, которые генерируют электричество.

Сделайте правильный выбор

Прежде чем выбрать подходящую систему возобновляемых источников энергии для вашего дома и потребностей, необходимо учесть несколько моментов. Наши советы помогут вам принять это решение.

Узнать больше

Важные моменты, которые следует учитывать

Установка возобновляемых источников энергии

Перед установкой системы возобновляемой энергии нужно учесть многое, но ее наличие поможет сократить ваши счета за электроэнергию и выбросы углекислого газа.

Узнать больше

Защита прав потребителей

Мы рекомендуем вам выбрать сертифицированную систему и сертифицированного установщика при установке домашней системы возобновляемых источников энергии.

Узнать больше

Последнее обновление: 29 июня 2021 г.

10 различных альтернативных источников энергии (солнечная, ветровая, геотермальная, биомасса, океан и другие источники энергии)

В мире существует 10 основных альтернативных источников энергии, которые используются для выработки электроэнергии. В то время как другие источники обнаруживаются все время, ни один из них не достиг той стадии, когда их можно было бы использовать для обеспечения силы, помогающей функционированию современной жизни.

Все эти различные источники энергии используются в основном для производства электроэнергии.Мир запускается серией электрических реакций — независимо от того, говорите ли вы о машине, которую вы ведете, или о свете, которую вы включаете. Все эти различные источники энергии добавляют к запасу электроэнергии, которая затем отправляется в разные места по линиям высокой мощности.

Виды источников энергии

Их можно разделить на возобновляемые и невозобновляемые источники энергии.

Возобновляемый источник энергии

Возобновляемый источник энергии — это любой природный ресурс, который может быстро и надежно заменить его.Эти источники энергии многочисленны, устойчивы, восполняются естественным образом и не наносят вреда окружающей среде.

Основными видами или источниками возобновляемой энергии являются:

  • Солнечная энергия
  • Энергия ветра
  • Геотермальная энергия из тепла внутри земли
  • Гидроэнергетика на проточной воде
  • Энергия океана в форме волн, приливов, течений и тепловой энергии океана.
  • Биомасса растений

Невозобновляемый источник энергии

Невозобновляемый источник энергии — это источник с ограниченным запасом, который мы можем добывать или извлекать из земли, и в конечном итоге он закончится.

Они образовались за тысячи лет из останков древних морских растений и животных, которые жили миллионы лет назад. Большинство этих источников энергии представляют собой «грязные» ископаемые виды топлива, которые, как правило, вредны для окружающей среды.

Основными видами или источниками невозобновляемой энергии являются:

  • Нефть
  • Сжиженные углеводородные газы
  • Природный газ
  • Уголь
  • Атомная энергия

Различные источники энергии

Вот обзор каждого из различных источников энергии, которые используются, и каковы потенциальные проблемы для каждого из них.

1. Солнечная энергия

Первичный источник энергии — солнце.Солнечная энергия собирает энергию солнца с помощью коллекторных панелей для создания условий, которые затем можно превратить в своего рода энергию. Большие поля солнечных панелей часто используются в пустыне для сбора энергии, достаточной для зарядки небольших подстанций, а во многих домах солнечные системы используются для обеспечения горячей водой, охлаждения и дополнения своей электроэнергии.

Проблема с солнечной батареей заключается в том, что, хотя солнечного света достаточно, только определенные географические районы мира получают достаточное количество прямой энергии солнца на достаточно долгое время для выработки полезной энергии из этого источника.

Его доступность также зависит от смены сезонов и погоды, когда они не всегда могут использоваться. Для продуктивного использования требуются высокие начальные инвестиции, поскольку технология хранения солнечной энергии еще не достигла своего оптимального потенциала.

2. Ветровая энергия

Энергия ветра становится все более распространенной. Новые инновации, которые позволяют появляться ветряным электростанциям, делают их более распространенным явлением. Используя большие турбины, которые используют имеющийся ветер в качестве энергии для вращения, турбина может затем вращать генератор для производства электроэнергии.

Это требует больших вложений, и скорость ветра также не всегда одинакова, что влияет на выработку электроэнергии. Хотя многим это казалось идеальным решением, в реальности ветряные электростанции начинают обнаруживать непредвиденные экологические последствия, которые могут не сделать их идеальным выбором.

3. Геотермальная энергия

Источник: Canva

Геотермальная энергия — это энергия, производимая из-под земли. Он чистый, экологичный и экологически чистый. В земной коре из-за медленной задержки радиоактивных частиц постоянно возникают высокие температуры.Горячие камни, находящиеся под землей, нагревают воду, которая производит пар. Затем пар улавливается, что помогает двигать турбины. Затем вращающиеся турбины приводят в действие генераторы.

Геотермальная энергия может использоваться в жилых помещениях или в промышленных масштабах. В древние времена он использовался для купания и обогрева помещений. Геотермальные установки обычно имеют низкие выбросы, если они закачивают пар и воду, которые они используют, обратно в резервуар.

Самым большим недостатком геотермальной энергии является то, что ее можно производить только на определенных участках по всему миру.Самая большая группа геотермальных электростанций в мире расположена на геотермальном поле Гейзеры в Калифорнии, США.

Другой недостаток заключается в том, что там, где нет подземных резервуаров, создание геотермальных электростанций может увеличить риск землетрясения в районах, которые уже считаются геологическими горячими точками.

4. Водородная энергия

Водород доступен вместе с водой (h3O) и является наиболее распространенным элементом на Земле. Вода содержит две трети водорода и может быть найдена в сочетании с другими элементами.

После отделения его можно использовать в качестве топлива для выработки электроэнергии. Водород является огромным источником энергии и может использоваться в качестве источника топлива для кораблей, транспортных средств, домов, промышленных предприятий и ракет. Он полностью возобновляем, может производиться по запросу и не оставляет токсичных выбросов в атмосферу.

5. Приливная энергия

Источник: Canva

Приливная энергия использует приливы и отливы для преобразования кинетической энергии приходящих и исходящих приливов в электрическую.Производство энергии с помощью приливной энергии наиболее распространено в прибрежных районах. Приливная энергия является одним из возобновляемых источников энергии и производит большое количество энергии, даже когда приливы идут с небольшой скоростью.

Когда уровень воды в океане увеличивается, возникают приливы, которые несутся в океане взад и вперед. Чтобы получить достаточную мощность от потенциала приливной энергии, высота прилива должна быть как минимум на пять метров (около 16 футов) выше, чем при отливе.

Огромные инвестиции и ограниченная доступность участков — это лишь некоторые из недостатков приливной энергии. Высокое гражданское строительство и высокие тарифы на закупку электроэнергии делают капитальные затраты на электростанции с приливной энергией очень высокими.

6. Волновая энергия

Источник: Canva

Энергия волн создается за счет волн, порождаемых океанами. Поскольку океан управляется гравитацией луны, использование ее силы становится привлекательным вариантом. Различные методы преобразования энергии волн в электроэнергию были изучены с использованием плотиноподобных конструкций или устройств, закрепленных на дне океана, на поверхности воды или чуть ниже нее.

Энергия волн является возобновляемой, экологически чистой и не наносит вреда атмосфере. Его можно использовать в прибрежных регионах многих стран, и он может помочь стране уменьшить свою зависимость от зарубежных стран в плане топлива.

Производство волновой энергии может нанести ущерб морской экосистеме, а также может быть источником беспокойства для частных и коммерческих судов. Он сильно зависит от длины волны, а также может быть источником визуального и шумового загрязнения. Эта энергия также менее интенсивна по сравнению с тем, что доступно в более северных и южных широтах.

7. Гидроэнергетика

Источник: Canva

. Многие люди не знают, что большинство крупных и малых городов мира полагаются на гидроэнергетику в прошлом веке. Каждый раз, когда вы видите крупную плотину, она дает электроэнергию где-то на электростанции. Сила воды используется для включения генераторов для производства электричества, которое затем используется. Он не загрязняет окружающую среду, не влечет за собой отходов и выделяет токсичные газы.

Проблемы, с которыми сейчас сталкивается гидроэнергетика, связаны со старением плотин.Многие из них нуждаются в серьезных реставрационных работах, чтобы оставаться функциональными и безопасными, а это стоит огромных денег. Утечка питьевой воды в мире также вызывает проблемы, поскольку поселкам может потребоваться вода, которая обеспечивает их электроэнергией.

8. Энергия биомассы

Источник: Canva

Энергия биомассы производится из органических материалов и широко используется во всем мире. Хлорофилл, присутствующий в растениях, улавливает солнечную энергию, превращая углекислый газ из воздуха и воды из земли в углеводы в процессе фотосинтеза.Когда растения сжигают, вода и углекислый газ снова выбрасываются обратно в атмосферу.

Биомасса обычно включает зерновые, растения, деревья, обрезки дворов, древесную стружку и отходы животноводства. Энергия биомассы используется для отопления и приготовления пищи в домах, а также в качестве топлива в промышленном производстве.

Однако сбор топлива был тяжелым. Этот вид энергии производит большое количество углекислого газа в атмосферу. В отсутствие достаточной вентиляции при приготовлении пищи в помещении топливо, такое как навоз, вызывает загрязнение воздуха, что представляет серьезную опасность для здоровья.Более того, неустойчивое и неэффективное использование биомассы приводит к уничтожению растительности и, следовательно, к деградации окружающей среды.

9. Атомная энергетика

Источник: Canva

Хотя ядерная энергетика остается предметом споров о том, насколько безопасно ее использовать и действительно ли она энергоэффективна, если принять во внимание отходы, которые она производит, факт остается фактом. возобновляемые источники энергии, доступные в мире.

Энергия создается посредством определенной ядерной реакции, которая затем собирается и используется в генераторах.Хотя почти в каждой стране есть ядерные генераторы, существуют моратории на их использование или строительство, поскольку ученые пытаются решить проблемы безопасности и утилизации отходов.

Ядерная энергия производится из урана, невозобновляемого источника энергии, атомы которого расщепляются (посредством процесса, называемого ядерным делением), чтобы произвести тепло и, в конечном итоге, электричество. Ученые считают, что уран был создан миллиарды лет назад, когда образовались звезды. Уран находится повсюду в земной коре, но добывать его и перерабатывать в топливо для атомных электростанций слишком сложно или слишком дорого.

В будущем ядерная энергетика будет использовать реакторы на быстрых нейтронах, не только за счет использования примерно в 60 раз больше энергии урана, но и за счет открытия возможности использования тория, который является более распространенным элементом, в качестве топлива. Теперь около 1,5 миллиона тонн обедненного урана, считающегося не более чем отходами, становятся топливным ресурсом.

Фактически, в процессе работы они будут «обновлять» свой собственный топливный ресурс. Возможный результат состоит в том, что ресурс топлива, доступный для реакторов на быстрых нейтронах, настолько велик, что значительное истощение источника топлива практически невозможно.

10. Ископаемое топливо (уголь, нефть и природный газ)

Источник: Canva

Когда большинство людей говорят о различных источниках энергии, в качестве возможных вариантов они называют природный газ, уголь и нефть — все они считаются лишь одним источником энергии из ископаемого топлива. Ископаемое топливо является источником энергии для большей части мира, в основном с использованием угля и нефти.

Нефть перерабатывается во многие продукты, наиболее используемым из которых является бензин. Природный газ становится все более распространенным, но используется в основном для отопления, хотя на улицах появляется все больше и больше автомобилей, работающих на природном газе.

Проблема с ископаемым топливом двоякая. Чтобы получить ископаемое топливо и преобразовать его для использования, должно произойти сильное разрушение и загрязнение окружающей среды. Запасы ископаемого топлива также ограничены, ожидается, что их хватит еще на 100 лет с учетом базового уровня потребления.

Трудно определить, какой из этих источников энергии лучше всего использовать. У всех есть свои плюсы и минусы. Хотя сторонники каждого типа власти рекламируют свою как лучшую, правда в том, что все они ошибочны.Что должно произойти, так это согласованные усилия, чтобы изменить то, как мы потребляем энергию, и создать баланс между тем, из каких из этих источников мы черпаем.

.