Расчет полезной нагрузки на пустотную плиту перекрытия
Бетонные пустотные плиты уже много лет используют для обустройства межэтажных перекрытий при строительстве зданий из любых строительных материалов: железобетонных панелей, стеновых блоков (газобетонных, пенобетонных, газосиликатных), а также при возведении монолитных или кирпичных сооружений. Нагрузка на пустотную плиту перекрытия – одна из основных характеристик таких изделий, которую необходимо учитывать уже на этапе проектирования будущего строения. Неправильный расчет этого параметра негативно скажется на прочности и долговечности всего строения.
Разновидности пустотных плит перекрытия
Пустотные плиты наиболее широко применяют при обустройстве перекрытий при строительстве жилых домов, общественных и промышленных сооружений. Толщина таких панелей составляет 160, 220, 260 или 300 мм. По типу отверстий (пустот) изделия бывают:
- с круглыми отверстиями;
- с пустотами овальной формы;
- с отверстиями грушевидной формы;
- с формой и размерами пустот, которые регламентируются техусловиями и специальными стандартами.
Самые востребованные на современном строительном рынке – изделия с толщиной 220 мм и отверстиями цилиндрической формы, так как они рассчитаны на значительные нагрузки на каждую пустотную плиту перекрытия, а ГОСТ предусматривает их применение для обустройства перекрытий практически всех типов зданий. Различают три типа таких конструкционных изделий:
- Плиты с цилиндрическими пустотами Ø=159 мм (маркируют символами 1ПК).
- Изделия с круглыми отверстиями Ø=140 мм (2ПК), которые изготавливают только из тяжелых видов бетона.
- Панели с пустотами Ø=127 мм (3ПК).
На заметку! Для малоэтажного индивидуального строительства допустимо применение панелей толщиной 16 см и отверстиями Ø=114 мм. Важный момент, который надо учитывать, выбирая изделие такого типа, уже на этапе проектирования сооружения – максимальная нагрузка, которую выдержит плита.
Характеристики пустотных плит перекрытий
К основным техническим характеристикам пустотных плит относятся:
- Геометрические размеры (стандартные: длина – от 2,4 до 12 м; ширина – от 1,0 до 3,6 м; толщина – от 160 до 300 мм). По желанию заказчика производитель может изготовить нестандартные панели (но только при строгом соблюдении всех требований ГОСТа).
- Масса (от 800 до 8600 кг в зависимости от размеров панели и плотности бетона).
- Допустимая нагрузка на плиту перекрытия (от 3 до 12,5 кПа).
- Тип бетона, который использовали при изготовлении (тяжелый, легкий, плотный силикатный).
- Нормированное расстояние между центрами отверстий от 139 до 233 мм (зависит от типа и толщины изделия).
- Минимальное количество сторон, на которые должна опираться панель перекрытия (2, 3 или 4).
- Расположение пустот в плите (параллельно длине либо ширине). Для панелей, предназначенных для опоры на 2 или 3 стороны, пустоты необходимо обустраивать только параллельно длине изделия. Для плит, опирающихся на 4 стороны, возможно расположение отверстий параллельно как длине, так и ширине.
- Арматура, использованная при изготовлении (напрягаемая или ненапрягаемая).
- Технологические выпуски арматуры (если таковые предусмотрены проектным заданием).
Маркировка пустотных плит
Марка панели состоит из нескольких групп букв и цифр, разделенных дефисами. Первая часть – тип плиты, ее геометрические размеры в дециметрах (округленные до целого числа), количество сторон опоры, на которое рассчитана панель. Вторая часть – расчетная нагрузка на плиту в кПа (1 кПа = 100 кг/м²).
Внимание! В маркировке указана расчетная, равномерно распределенная нагрузка на бетонное перекрытие (без учета собственной массы изделия).
Дополнительно в маркировке указывают тип бетона, примененного для изготовления (Л – легкий; С – плотный силикатный; тяжелый бетон индексом не обозначают), а также дополнительные характеристики (например, сейсмологическую устойчивость).
Например, если на плиту нанесена маркировка 1ПК66.15-8, то это расшифровывается следующим образом:
1ПК – толщина панели – 220 мм, пустоты Ø=159 мм и она предназначена для установки с опорой на две стороны.
66.15 – длина составляет 6600 мм, ширина – 1500 мм.
8 – нагрузка на плиту перекрытия, которая составляет 8 кПа (800 кг/м²).
Отсутствие в конце маркировки буквенного индекса указывает на то, что для изготовления был применен тяжелый бетон.
Еще один пример маркировки: 2ПКТ90.12-6-С7. Итак, по порядку:
2ПКТ – панель толщиной 220 мм с пустотами Ø=140 мм, предназначенная для установки с упором на три стороны (ПКК означает необходимость установки панели на четыре стороны опоры).
90.12 – длина – 9 м, ширина – 1,2 м.
6 – расчетная нагрузка 6 кПа (600 кг/м²).
С – означает, что она изготовлена из силикатного (плотного) бетона.
7 – панель может быть использована в регионах с сейсмологической активностью до 7 баллов.
Достоинства и недостатки пустотных плит
По сравнению со сплошными аналогами пустотные панели обладают рядом несомненных преимуществ:
- Меньшей массой по сравнению со сплошными аналогами, причем без потери надежности и прочности. Это значительно уменьшает нагрузки на фундамент и несущие стены. При монтаже можно использовать технику меньшей грузоподъемности.
- Меньшей стоимостью, так как для их изготовления необходимо значительно меньшее количество строительного материала.
- Более высокой тепло- и звукоизоляцией (за счет пустот в «теле» изделия).
- Отверстия могут быть использованы для прокладки различных инженерных коммуникаций.
- Изготовление плит осуществляют только на крупных заводах, оснащенных современным высокотехнологичным оборудованием (производство их в кустарных условиях, практически, невозможно). Поэтому можно быть уверенным в соответствии изделия заявленным техническим характеристикам (согласно ГОСТ).
- Многообразие стандартных типоразмеров позволяет осуществлять строительство сооружений самых различных конфигураций (доборные элементы перекрытий можно изготовить из стандартных панелей или заказать у производителя).
- Быстрый монтаж перекрытия по сравнению с обустройством монолитной железобетонной конструкции.
К недостаткам таких плит можно отнести:
- Возможность монтажа только с применением грузоподъемной техники, что приводит к удорожанию постройки при индивидуальном строительстве жилого дома. Необходимость свободного места на частном участке для маневрирования подъемного крана при монтаже перекрытий.
На заметку! Деревянные перекрытия, которые очень популярны в индивидуальном строительстве, устанавливают на балки, для монтажа которых также необходимо применение техники достаточной грузоподъемности.
- При использовании стеновых блоков необходимо обустройство железобетонного армопояса.
- Невозможность изготовления своими руками.
Примерный расчет предельной нагрузки на пустотную плиту перекрытия
Для того чтобы самостоятельно рассчитать, какую максимальную нагрузку могут выдерживать плиты перекрытия, которые вы планируете использовать при строительстве, необходимо учесть все моменты. Допустим, что для обустройства перекрытий вы хотите использовать панели 1ПК63.12-8 (то есть, величина расчетной нагрузки, которую выдерживает одно изделие, составляет 800 кг/м²: для дальнейших расчетов обозначим ее буквой Q₀). Рассчитав сумму всех динамических, статических и распределенных нагрузок (от веса самой плиты; от людей и животных, мебели и бытовой техники; от стяжки, утеплителя, финишного напольного покрытия и перегородок), которую обозначаем QΣ, можно определить, какую нагрузку выдерживает ваша конкретная плита. Основной момент, на который надо обратить внимание: в результате всех расчетов (разумеется, с учетом повышающего коэффициента прочности) должно получиться, что QΣ ≤ Q₀.
Для того чтобы определить равномерно распределенную нагрузку от собственного веса плиты, необходимо знать ее массу (M). Можно воспользоваться либо величиной массы, указанной в сертификате завода-изготовителя (если его предоставили в месте продажи), либо справочной величиной из таблицы ГОСТ-а, которая составлена для изделий, изготовленных из тяжелых видов бетона со средней плотностью 2500 кг/м³. В нашем случае справочный вес плиты составляет 2400 кг.
Сначала вычисляем площадь плиты: S = L⨯H = 6,3⨯1,2 = 7,56 м². Тогда нагрузка от собственного веса (Q₁) составит: Q₁ = M:S = 2400:7,56 = 317,46 ≈ 318 кг/м².
В некоторых строительных справочниках рекомендуют при расчетах использовать суммарное усредненное значение полезной нагрузки на перекрытие жилых помещений – Q₂=400 кг/м².
Тогда суммарная нагрузка, которую необходимо выдерживать плите перекрытия, составит:
QΣ = Q₁ + Q₂ = 318 + 400 = 718 кг/м² ˂ 800 кг/м², то есть основной момент QΣ ≤ Q₀ соблюден и выбранная плита пригодна для обустройства перекрытий жилых помещений.
Для точных расчетов будут необходимы значения удельной плотности (стяжки, теплоизолятора, финишного покрытия), значение нагрузки от перегородок, вес мебели и бытовой техники и так далее. Нормативные показатели нагрузок (Qн) и коэффициенты надежности (Үн) указаны в соответствующих СНИП-ах.
В заключении
На современном строительном рынке представлены пустотелые плиты с расчетными нагрузками от 300 до 1250 кг/м². Если подойти к моменту расчета необходимой предельной нагрузки ответственно, то можно выбрать изделие, удовлетворяющее именно вашим требованиям, не переплачивая за излишнюю прочность.
|
Какую нагрузку выдерживает плита перекрытия
Отделочный материал выбирается по принципу, какую нагрузку выдерживает плита перекрытия. Этот показатель будет влиять на обустройство крыши здания. В основном, когда строится любое здание или объект, в первую очередь соблюдается жесткость каркаса, его устойчивость. Все эти характеристики напрямую зависят от прочности создаваемого перекрытия.
Виды плит и конструкция перекрытия.
Основные характеризующие моменты
Установка плиты перекрытия на несущую конструкцию кровли позволяет заниматься возведением многоэтажных домов. Чтобы правильно выполнить проект здания, необходимо точно знать, какое давление выдержит выбранная плита перекрытия. Необходимо хорошо разбираться в разнообразии плит.
Чертеж пустотной плиты перекрытия.
Прежде чем приступать к возведению многоэтажного здания, необходимо провести расчет нагрузки. От будущего веса будет зависеть подбор конструкции здания, от нагрузки зависит, какую нужно устанавливать плиту.
На производстве выпускается два вида плит:
- полнотелые;
- пустотные.
Полнотелые системы отличаются большой массой, они стоят очень дорого. Такая конструкция применяется в строительстве серьезных объектов, которые относятся к социально значимым.
При строительстве жилых домов в основном используется пустотная плита. Надо сказать, что основные технические параметры такой плиты соответствуют всем стандартам строительства жилого помещения:
Плиту отличает:
- высокая надежность;
- малый вес.
Важнейшим преимуществом этих изделий можно назвать низкую стоимость. Это дало возможность применять такую систему намного чаще, если сравнивать ее с другими.
Для расчета перекрытия учитывается местонахождение пустот. Они располагаются таким образом, чтобы несущие характеристики изделия не были нарушены. Пустоты влияют также на звукоизоляцию помещения, его теплоизоляционные свойства.
Плита изготавливается самых разных размеров. Ее длина может достигать максимально 9,7 м при максимальной ширине — 3,5 м.
Расчет на продавливание плиты межэтажного перекрытия.
При строительстве зданий чаще всего применяются конструкции с габаритами 6 х1,5 м. Этот размер считается стандартным и наиболее востребованным. Данную систему применяют для возведения:
- высотных зданий;
- многоэтажек;
- коттеджей.
Так как вес данных плит не очень высок, их легко монтировать, для чего применяется пятитонный кран.
Вернуться к оглавлению
Как рассчитать нагрузку правильно
Строительство любого дома не может обойтись без правильного расчета нагрузки, которую способна удержать плита перекрытия. От нее зависит жесткость всего здания. Поэтому данные расчеты — это залог безопасного строительства, это гарантия безопасности жизни людей.
В каждом доме перекрытия имеют две конструктивные части:
- верхняя;
- нижняя.
Схема нагрузок на перекрытие.
Верхняя часть передает нагрузку нижней конструкции. Поэтому очень важно точно рассчитать допустимую величину.
В основном расчет любой строительной конструкции просто необходим, чтобы впоследствии не произошло разрушение здания. В случае ошибочного расчета стены очень быстро начнут трескаться. Здание быстро развалится.
Расчет нагрузки плиты делается в двух категориях:
- динамический;
- статический.
Статический расчет учитывает все предметы, которые осуществляют нагрузку на плиту. Все движущиеся объекты несут динамическую величину.
Чтобы выполнить расчет, необходимо иметь:
- калькулятор;
- рулетку;
- уровень.
От размера плиты зависит ее устойчивость к различным нагрузкам.
Для определения нагрузки, которую способна выдержать будущая плита перекрытия, предварительно делается подробный чертеж. Учитывается площадь дома и все, что может создавать нагрузку. К данным элементам относятся:
- перегородки;
- утепления;
- цементные стяжки;
- напольное покрытие.
Основная опорная система кровли находится в торцах плиты. Когда изготавливаются плиты, армирование располагается так, чтобы максимальная нагрузка приходилась именно на торцы.
Центр плиты не должен воспринимать нагрузку, она не закладывается при расчете конструкции.
Нормативные, расчетные нагрузки и коэффициент надежности.
Поэтому середина конструкции не выдержит, даже если она будет усилена капитальными стенами.
Чтобы понять, как делается расчет, возьмем для примера конструкцию типа «ПК-50-15-8». Согласно ГОСТу 9561-91, масса данной системы равна 2850 кг.
- Сначала рассчитывается площадь всей несущей поверхности: 5 м × 1,5 м = 7,5 кв. м.
- Затем рассчитывается вес, который может удержать плита: 7,5 кв. м × 800 кг/кв.см= 6000 кг.
- После этого определяется масса: 6000 кг — 2850 кг = 3150 кг.
На последнем шаге подсчитывается, сколько останется от нагрузки после проведения утепления, укладки стяжки и обшивки полов. Профессионалы стараются брать напольное покрытие, чтобы оно и стяжка не превышали 150 кг/кв.см.
Затем 7,5 кв. м умножается на значение 150 кг/кв.см, в результате получается 1125 кг. От массы плиты, равной 3150 кг, отнимается 1125 кг, получается 3000 кг. Таким образом, 1 кв. м может выдержать 300 кг/кв. см.
Вернуться к оглавлению
Расчет точечной нагрузки
Данный параметр должен выполняться очень грамотно и расчетливо. Если нагрузка будет приходиться в одну точку, то это будет сильно влиять на срок службы перекрытия.
Справочники по строительству приводят формулу:
800 кг/кв.см × 2 = 1600 кг.
Следовательно, одна индивидуальная точка способна выдержать 1600 кг.
Однако при более точном расчете необходимо учесть коэффициент надежности. Его значение для жилого здания берется 1,3. В результате:
800 кг/кв.см × 1,3 = 1040 кг.
Но, даже имея данный безопасный размер, желательно точечную нагрузку располагать рядом с несущей конструкцией.
Вернуться к оглавлению
Несколько дополнительных сведений
Характеристики железобетонных плит перекрытий
Конечно, если известны все технические параметры перекрытия, ориентировочная масса, которая будет основной нагрузкой, выполнить нужные расчеты достаточно легко. При этом необходимо учесть существование нескольких разновидностей нагрузок.
В первую очередь, это продолжительность нагрузки. Она может существовать в виде:
- постоянной;
- временной.
Постоянную нагрузку создают:
- мебель;
- люди;
- бытовая техника;
- вещи, постоянно расположенные в помещении.
Кроме того, постоянно давит масса несущей конструкции, оказывает влияние горное давление.
Под временными нагрузками понимаются те, которые появляются при строительстве самых разных конструкций.
К особым нагрузкам относится сейсмическое воздействие, возможное изменение свойств грунта.
Кратковременные нагрузки возникают от оборудования, применяемого при строительстве здания, при атмосферном воздействии. Когда делается расчет самой большой нагрузки, необходимо учесть и длительные нагрузки. Они составляют большую группу, к ним можно отнести:
- замерзание воды;
- появление льда;
- возникновение трещин;
- линию жесткости;
- кирпичную стенку:
- цементную стяжку;
- покрытие напольной поверхности;
- массу перегородок;
- массу оборудования для выполнения стационарной работы, это могут быть конвейерные установки, различные аппараты, твердые или жидкообразные тела;
- вес стеллажей, находящихся на складе или в другом помещении;
- массу скопившейся пыли, этот фактор часто игнорируют, однако его необходимо обязательно принимать к сведению, это также лишний вес;
- атмосферные осадки.
Вернуться к оглавлению
Несколько полезных рекомендаций
Чтобы усилить несущую способность плит перекрытия, специально делается армирование.
Когда проводится расчет нагрузки, которая создается массой самого разного производственного оборудования, требуется учитывать существующую нормативную нагрузку. Сюда входит и масса проложенных трубопроводов.
Когда расчет касается нестандартного оборудования, лучше всего за основу брать паспортные данные, которые прилагает завод-изготовитель данного оборудования.
При расчете учитывается также вес конвейеров, аппаратов и изоляции. Чаще всего производитель плиты сопровождает изделие паспортом, где указывается допустимая нагрузка плиты перекрытия.
Как собрать нагрузку от перегородок
Содержание:
1. Пример 1.
2. Как собрать нагрузку от перегородок для расчета монолитной плиты.
3. Как собрать нагрузку от перегородок для расчета колонн и фундаментов
4. Пример 2. Собрать нормативную (характеристическую) нагрузку от перегородок на колонну и на стену.
5. Как собрать нагрузку от перегородок для расчета (или проверки) сборной плиты
6. Пример 3. Перегородка проходит поперек сборной плиты.
7. Пример 4. Перегородка проходит вдоль сборной плиты.
8. Пример 5. Перегородки находятся над частью сборной плиты.
В ДБН В.1.2-2:2006 «Нагрузки и воздействия» о сборе нагрузок от перегородок сказано скупо:
Давайте разберемся, как рациональней собирать нагрузку от перегородок для различных ситуаций.
Что такое характеристическая нагрузка? Это нормативная нагрузка еще безо всяких коэффициентов, т.е. фактический вес перегородок. Этот фактический вес, по сути, распределен по очень узкой площади (т.к. толщина перегородки обычно не превышает 150 мм), и наиболее правдоподобным будет принимать нагрузку от перегородки как линейную. Что это значит?
Пример 1. Есть кирпичная перегородка высотой 2,5 м, толщиной 0,12 м, длиной 3 м, ее объемный вес равен 1,8 т/м3. Нужно собрать нагрузку от перегородки на плиту.
Она оштукатурена с двух сторон, каждый слой штукатурки имеет толщину 0,02 м, объемный вес штукатурки 1,6 т/м3. Нужно найти нормативную (характеристическую) нагрузку от перегородки для расчета плиты перекрытия.
Найдем вес 1 м 2 перегородки:
(1,8∙0,12 + 1,6∙2∙0,02)∙1 = 0,28 т/м2 (здесь 1 – это площадь перегородки).
Зная высоту перегородки, определим, сколько будет весить погонный метр перегородки:
0,28∙2,5 = 0,7 т/м.
Таким образом, мы получили погонную линейную нагрузку 0,7 т/м, которая будет действовать на плиту перекрытия под всей перегородкой (каждый метр перегородки весит 0,7 т/м). Суммарный же вес перегородки будет равен 0,7∙3 = 2,1 т, но такое значение для расчета нужно далеко не всегда.
Теперь рассмотрим, в каких ситуациях нагрузку от перегородок следует оставлять в виде линейной нагрузки, а когда – переводить в равномерно распределенные по площади нагрузки, как это рекомендуется в п. 6.6 ДБН «Нагрузки и воздействия».
Сразу оговорюсь, если вы считаете перекрытие в программном комплексе, позволяющем с легкостью задавать перегородки или линейную нагрузку от них, следует воспользоваться этой возможностью и делать наиболее приближенный к жизни расчет – такой, где все нагрузки от перегородок в виде линейно-распределенных расположены каждая на своем месте.
Если же вы считаете вручную или же по каким-то причинам хотите упростить программный счет (вдруг, компьютер не тянет такое обилие перегородок), следует проанализировать, как это делать и делать ли.
Как собрать нагрузку от перегородок для расчета монолитной плиты
Рассмотрим варианты с монолитным перекрытием. Допустим, есть у нас фрагмент монолитного перекрытия, на который необходимо собрать нагрузку от перегородок, превратив ее в равномерно распределенную.
Что для этого нужно? Во-первых, как в примере 1, нужно определить нагрузку от 1 погонного метра перегородки, а также суммарную длину перегородок.
Допустим, погонная нагрузка у нас 0,3 т/м (перегородки газобетонные), а суммарная длина всех перегородок 76 м. Площадь участка перекрытия 143 м2.
Первое, что мы можем сделать, это размазать нагрузку от всех перегородок по имеющейся площади перекрытия (найдя вес всех перегородок и разделив его на площадь плиты):
0,3∙76/143 = 0,16 т/м2.
Казалось бы, можно так и оставить, и приложить нагрузку на все перекрытие и сделать расчет. Но давайте присмотримся, у нас есть разные по интенсивности загруженности участки перекрытия. Где-то перегородок вообще нет, а где-то (в районе вентканалов) их особенно много. Справедливо ли по всему перекрытию оставлять одинаковую нагрузку? Нет. Давайте разобьем плиту на участки с примерно одинаковой загруженностью перегородками.
На желтом участке перегородок нет вообще, справедливо будет, если нагрузка на этой площади будет равна 0 т/м2.
На зеленом участке общая длина перегородок составляет 15,3 м. Площадь участка 12 м2 (заметьте, площадь лучше брать не строго по перегородкам, а отступая от них где-то на толщину перекрытия, т.к. нагрузка на плиту передается не строго вертикально, а расширяется под углом 45 градусов). Тогда нагрузка на этом участке будет равна:
0,3∙15,3/12 = 0,38 т/м2.
На розовом участке общая длина перегородок составляет 38,5 м, а площадь участка равна 58 м2. Нагрузка на этом участке равна:
0,3∙38,5/58 = 0,2 т/м2.
На каждом синем участке общая длина перегородок составляет 11,1 м, а площадь каждого синего участка равна 5 м2. Нагрузка на синих участках равна:
0,3∙11,1/5 = 0,67 т/м2.
В итоге, мы имеем следующую картину по нагрузке (смотрим на рисунок ниже):
Видите, как значительно различаются нагрузки на этих участках? Естественно, если сделать расчет при первом (одинаковом для всей плиты) и втором (уточненном) варианте загружения, то армирование будет разным.
Делаем вывод: всегда нужно тщательно анализировать, какую часть плиты загружать равномерной нагрузкой от перегородок, чтобы результат расчета был правдоподобным.
Если вы собираете нагрузку от перегородок на перекрытие, опирающееся на стены по четырем сторонам, то следует руководствоваться следующим принципом:
Как собрать нагрузку от перегородок для расчета колонн и фундаментов
Теперь рассмотрим на том же примере, как следует собирать нагрузку от перегородок для расчета колонн и стен или фундаментов под ними. Конечно, если вы делаете расчет перекрытия, то в результате такого расчета вы получите реакции на опорах, которые и будут нагрузками на колонны и стены. Но если перекрытие по каким-то причинам не считаете, а требуется просто собрать нагрузку от перегородок, то как быть?
Здесь начинать нужно не с анализа загруженности частей плиты. Первый шаг в таком случае – это разделить плиту на грузовые площади для каждой колонны и стены.
На рисунке показано, как это сделать. Расстояние между колоннами делится пополам и проводятся горизонтальные линии. Точно так же ровно посередине между колоннами и между колоннами и нижней стеной проводятся горизонтали. В итоге в районе колонн плита поделена на квадраты. Все перегородки, попадающие в квадрат конкретной колонны, нагружают именно эту колонну. А на стену приходится нагрузка с полосы, ширина которой равна половине пролета. Остается только на каждом участке, где есть перегородки, посчитать суммарную длину этих перегородок и весь их вес передать на колонну.
Пример 2. Собрать нормативную (характеристическую) нагрузку от перегородок на розовую колонну и на стену с рисунка выше.
Вес одного погонного метра перегородки 0,35 кг. Суммарная длина перегородок в квадрате розовой колонны 5,4 м (из этих 5,4 м, одна перегородка длиной 1,4 м находится ровно на границе между двумя колоннами, а 4 м – в квадрате сбора нагрузки). Суммарная длина перегородок на полосе сбора нагрузки для стены – 18 м, длина стены 15,4 м.
Соберем нагрузку на колонну:
0,35∙4 + 0,35∙1,4/2 = 1,65 т.
Здесь мы взяли всю нагрузку от четырех метров стен и половину нагрузки от стены длиной 1,4 м (вторая половина пойдет на другую колонну).
На колонну также придется изгибающий момент от веса перегородок (если перекрытие опирается жестко), но без расчета плиты момент определить сложно.
Соберем нагрузку на стену. Нагрузка собирается на 1 погонный метр стены. Так как перегородки расположены довольно равномерно, находится общий вес всех перегородок и делится на длину стены:
0,35∙18/15,4 = 0,41 т/м.
Как собрать нагрузку от перегородок для расчета (или проверки) сборной плиты
Так как сборные плиты имеют четкую конфигурацию и схему опирания (обычно по двум сторонам), то подход для сбора нагрузок от перегородок должен быть особенным. Рассмотрим варианты сбора нагрузок на примерах.
Пример 3. Перегородка проходит поперек плиты.
Толщина перегородки 0,12 м, высота 3 м, объемный вес 1,8 т/м3; два слоя штукатурки по 0,02 м толщиной каждый, объемным весом 1,6 т/м3. Ширина плиты 1,2 м.
Так как плита считается как балка на двух опорах, то нагрузку от перегородки следует брать сосредоточенную – в виде вертикальной силы, приложенной к «балке» в месте опирания перегородки. Величина сосредоточенной силы равна весу всей перегородки:
0,12∙3∙1,2∙1,8 + 2∙0,02∙3∙1,2∙1,6 = 1,0 т.
Пример 4. Перегородка проходит вдоль сборной плиты.
В таком случае, не зависимо от того, где находится перегородка – посередине или на краю плиты, нагрузка от нее берется равномерно распределенной вдоль плиты. Эта нагрузка собирается на 1 погонный метр плиты.
Толщина перегородки 0,1 м, высота 2,5 м, объемный вес 0,25 т/м3.
Определим равномерно распределенную нагрузку 1 п.м плиты:
0,1∙2,5∙1∙0,25 = 0,06 т/м.
Пример 5. Перегородки находятся над частью плиты.
Когда плиту пересекает несколько перегородок, у нас есть два варианта:
1) выделить нагрузку от продольных перегородок в равномерно распределенную, а нагрузку от поперечных перегородок – в сосредоточенную;
2) всю нагрузку сделать равномерно распределенной, «размазав» ее по участку плиты с перегородками.
Толщина перегородки 0,1 м, высота 2,5 м, объемный вес 0,25 т/м3. Ширина плиты 1,5 м, длина продольной перегородки 3 м, длина двух самых коротких перегородок 0,7 м.
Определим нагрузку на плиту по варианту 1.
Равномерно распределенная нагрузка равна:
0,1∙2,5∙1∙0,25 = 0,06 т/м.
Сосредоточенная нагрузка от крайней правой перегородки равна:
0,1∙2,5∙1,5∙0,25 = 0,1 т.
Сосредоточенная нагрузка от каждой из двух коротких перегородок равна:
0,1∙2,5∙0,7∙0,25 = 0,044 т.
Определим нагрузку на плиту по варианту 2.
Найдем общий вес всех перегородок:
0,1∙2,5∙0,25∙(3 + 1,5 + 0,7∙2) = 0,37 т.
Найдем длину перегородки, на которой действует нагрузка:
3 + 0,1 = 3,1 м.
Найдем величину равномерно распределенной нагрузки на участке 3,1 м:
0,37/3,1 = 0,12 т/м.
class=»eliadunit»>
Добавить комментарий
допустимая нагрузка от стяжки на плиту перекрытия в хрущевке? : Строительный сезон
Какая допустимая нагрузка от стяжки на плиту перекрытия в хрущевке? Подробнее о плите — вскрыл полы, плита вся в каких-то буграх, торчит арматура в некоторых местах, перепад по высоте на 6 метров длины — 10 см. Хочу использовать керамзит и сверху цементную стяжку, примерно посчитал — на кв. метр получится ~150 кг.
Допустимая нагрузка на плиту перекрытия прежде всего зависит от типа данной плиты. Так, например, допустимая нагрузка на многопустотную плиту перекрытия ПК-63-12-8 составляет 800 кг/м². Однако следует учитывать и «возраст» плиты перекрытия, и ее техническое состояние. Если «плита вся в каких-то буграх, торчит арматура в некоторых местах», а дом построен при царе Горохе, т.е. генсеке Хрущеве, то следует сделать поправку в сторону уменьшения нагрузки.
Не следует забывать, что вскрытие старых полов, а так же выполнение побочных работ, например оббивки штукатурки стен даст дополнительную не распределенную нагрузку на перекрытия, поэтому заранее нужно подумать про вывоз отходов.
Более конкретную информацию можно получить, выполнив строительную экспертизу состояния межэтажного перекрытия. Организаций, занимающихся этим родом деятельности, в настоящее время достаточно много. Нагружать на свой страх и риск дополнительной нагрузкой устаревшие плиты перекрытия не советую, можно оказаться вместе с ними на головах соседей снизу.
В постановлении правительства Москвы № 508-ПП от 25.10.2011 «Об организации переустройства и (или) перепланировки жилых и нежилых помещений в многоквартирных домах» говорится, что монтажно-строительные работы по изготовлению полов, а также по изменению конструкции полов выполняются на основе согласованного в местной жилищной инспекции проекта переустройства (Приложение 1, п. 2.2.8). Там же указывается, что не допускается устройство каких-либо конструкций, создающих сверхнормативные – свыше 150 кг/м² — нагрузки на плиты перекрытия (Приложение 1, п.2.2.11).
Таким образом, необходимо разработать проект переустройства полов и согласовать его в местной жилищной инспекции, учитывая при этом, что максимальная сверхнормативная нагрузка на плиты перекрытия должна быть не более 150 кг/м².
С уважением, Александр Новиков,
Консультант справочной службы «Стройинформ».
Нагрузки на плиту перекрытия от стяжки
Нас спрашивают:
Здравствуйте! У меня вопрос по поводу нагрузки на плиту перекрытия от стяжки. Дом «хрущевка», плиты перекрытия в нем монолитные, из того что проштудировал, рассчитаны на нагрузку 600 кг на кв.м. Толщиной где 10, где 12 см, кривые в общем, отлиты не ровно, размером 3 на 6 м, лежат на несущих балках. Балки по бокам по всей длине.
В моей 2-х комнатной квартире 3 плиты получается, на одной толщина стяжки из пескобетона получилась 2-5 см, что вообще не критично, это нагрузка максимум 100 кг на кв. м.
На второй плите толщина слоя стяжки начинается с 8 см и уменьшается до 5 см. Тоже вроде терпимо макс. 160 кг на кв. м. Это в комнатах.
А вот, что сильно беспокоит — кухня с коридором. Находится это все на одной плите, причем она не стандарт похоже какой-то. Длина чуть больше 6 м, а вот ширина по видимым размерам в квартире получается 2,5 м. Опять же толщина как можно понять порядка 8 см, меньше чем те что в комнатах.
На этой плите находится асбестовая (если я не ошибаюсь) коробка ванная+туалет, которая в свою очередь еще и установлена на куске вырезанной плиты. Все это располагается на этой самой тонкой плите.
Из-за того что плиты комнат неровные, толщина стяжки, чтобы выровнять уровень, получается 8 см, а в центре на кухне, дополнительно кривизна пола, уровень до 10-11 см в одном месте доходит.
У стен кухни нужно толщину меньше 5 и даже 3 см. Но в среднем 8 см получается. То есть, если считать макс нагрузка получилась 220 кг на кв.м. А значит, 600-220=380 кг на кв. м осталось запаса. Опять же я не знаю как коробка санузла (ванна+туалет), какую она дает нагрузку…
Тем более, хотелось бы еще плитку наклеить туда, а это доп. нагрузка потому как в среднем 1 кв.м плитки весит 12-13 кг. Боюсь чтобы к соседям не провалиться каким-нибудь образом, мало ли!
Короб ванны с плитой получается стоит, если мерить от стены, примерно по средине плиты. Хотя вроде видел, 3 прицепа песка от легковой машины пролежали по центру таких плит полгода, без проблем, ничего им не стало, тем не менее, не создаю ли я критичной нагрузки на перекрытие? Подскажите пожалуйста, если нетрудно!
Мы отвечаем:
Александр, в справочниках обычно указывается нормативная нагрузка, реально плиты имеют определенный запас прочности, иногда довольно значительный, но разумеется, надеяться на это не стоит и лишний раз перегружать тоже. Опять же, стоит учесть и возможность брака и усталость конструкции, так что Ваши опасения целиком оправданы. Только я не понял, как Вы рассчитывали доп. вес стяжки? Если взять толщину даже 10 см то на метр квадратный это будет 0,1 м3, а вес максимум 220 кг это если использовать тяжелый бетон, раствор же имеет объемный вес порядка 1,8 тн/м3, т. е. вес квадрата десятисантиметровой подготовки будет около 180 кг. А на 5 см стяжки, соответственно вдвое меньше. Обычно стяжка больше трех, максимум 5 см не делается, а значительные перепады выводятся подсыпкой керамзитового щебня или банального шлака (печного или доменного). Можно, как вариант, использовать листы пенополистирола, получите дополнительную тепло-, шумоизоляцию.
Что до коробки, то ее вес в расчет можно не принимать. Во-первых, она передает его через плиту на ниже лежащие конструкции (под вами у соседей видимо тоже есть коробка?), во-вторых, значительную часть нагрузки воспринимают стены. Так что, спокойно облицовывайте плиткой, укладывайте выравнивающий слой, хоть в пять сантиметров толщиной, проблем не будет.
А вообще сам подход у Вас очень правильный. Сколько я видел «спецов», которые абсолютно не задумывались вопросами несущей способности, а потом за голову хватались! Бывали случаи когда буквально чудом удавалось серьезнейших последствий избежать…
Оставляйте ваши советы и комментарии ниже. Подписывайтесь на новостную рассылку. Успехов вам, и добра вашей семье!
Виды межэтажных перекрытий — монолитные, многопустотные плиты, по деревянным балкам
Межэтажные перекрытия относятся к основным элементам дома, объединяют в себе ограждающую и несущую функции. Они разделяют смежные по высоте жилые, подвальные и чердачные помещения, различаются по техническим и теплозвукоизоляционным характеристикам.
Правильность выбора материалов, выполнения проектных расчетов и устройства обеспечивает должную прочность, жесткость и надежность. Реализуемое решение зависит от особенностей конструкции здания и планировки, постоянных и переменных нагрузок.
Монолитное межэтажное перекрытие
Заливка межэтажного перекрытия — проверенный и хорошо зарекомендовавший себя метод. Трудоемкость процесса компенсируется преимуществами армированного бетона — долговечностью, высокой несущей способностью и устойчивостью к деформациям.
Монолитные перекрытия требуют мощного фундамента и используются в малоэтажном частном строительстве при возведении кирпичных и блочных зданий из газобетона. Толщина плиты определяется плотностью армирования и максимально допустимой нагрузкой.
Устройство монолитного межэтажного перекрытия включает в себя создание двухъярусного каркаса из арматуры A-III и укладку бетона класса В20-В25 в один этап для исключения риска появления трещин. Использование профессиональной съемной опалубки позволяет сократить время работ и получить минимальные отклонения от плоскостности, тогда как сооружение самодельной приводит к лишним расходам материалов и худшей регулировке по высоте.
Межэтажное перекрытие из многопустотных плит
Многопустотные плиты подходят для устройства межэтажных перекрытий в частных домах с кирпичными, каменными и блочными несущими стенами. Они изготавливаются из тяжелого и легкого бетона, демонстрируют высокие показатели жесткости, прочности и трещиностойкости.
Заводская готовность плит межэтажных перекрытий обуславливает технологичность, быстроту и удобство монтажа и прокладки проводки в пустотах. Локальные нагрузки в точках сопряжения со стенами объясняют необходимость создания армопояса по периметру. Сборная конструкция перекрытия подразумевает обязательное замоноличивание стыков.
Использование плит типа ПК сопряжено с рядом трудностей. Большой вес требует применения спецтехники, что удорожает строительство. Типовые размеры ограничивают по длине и ширине. При сложной архитектуре дома возможно наличие неперекрытых участков под отдельное дополнительное армирование и бетонирование.
Межэтажное перекрытие по деревянным балкам
Конструктивные особенности дома не всегда допускают использование тяжелого сборного или монолитного железобетона. Сборные межэтажные перекрытия по деревянным балкам устраиваются, исходя из расчета нагрузок и допустимого прогиба, и обеспечивают достаточную прочность при относительно небольшом весе.
Система универсальна и используется в кирпичных, блочных, бревенчатых и каркасных зданиях. Деревянные межэтажные балки перекрытия крепятся в вырезанных пазах, гнездах в кладке с опорой на армопояс, к верхней обвязке, в зависимости от требований зашиваются с обеих сторон или остаются открытыми со стороны потолка. Сечение и шаг установки выбираются в соответствии с расчетами и длиной пролета.
При необходимости межэтажное перекрытие может устраиваться по фермам с более сложной конфигурацией. Такая система позволяет прокладывать габаритные коммуникации — трубы и воздуховоды разного диаметра, и увеличить величину пролета.
чертежей строительных норм. Раздел B: Бетонные конструкции
Чертежи строительных норм. Раздел B: Бетонная конструкция
Раздел B: Бетонная конструкция
Введение | Раздел
А | Раздел B | Раздел C | Раздел D
| Раздел E | Раздел F | Раздел G
Загрузите файлы AutoCAD DWG (zip-архив): Раздел A | Раздел B | Раздел C |
Разделы D-G
Рисунок B-1 : Допустимое расположение ленточных опор
Все наружные стены и внутренние несущие стены должны опираться на усиленные
бетонные ленточные фундаменты. Внутренние стены могут поддерживаться за счет утолщения плиты под
стены и соответствующим образом укрепить ее. Фундаменты обычно должны располагаться на слое.
грунта или камня с хорошими несущими характеристиками. Такие почвы будут включать плотные пески,
мергель, другие сыпучие материалы и жесткие глины.
Фундамент должен быть отлит не менее чем от 1 ’6 дюймов до 2’ 0 дюймов
под землей, его толщина не менее 9 дюймов и ширина не менее 24 дюймов, или
как минимум в три раза шире стены, непосредственно поддерживаемой им.Где
в качестве несущего материала фундамента необходимо использовать глины, ширина подошвы должна быть
увеличено до минимума 2 футов 6 дюймов.
Рисунок B-2 : Типичная деталь раздвижной опоры
Когда отдельные железобетонные колонны или колонны из бетонных блоков
при использовании они должны поддерживаться квадратными опорами размером не менее 2–0 дюймов и
12 дюймов толщиной. Для опор колонн минимальное армирование должно быть »
стержни диаметром 6 дюймов в обоих направлениях, образующие ячейку 6 дюймов.
Рисунок B-3 : Армирование ленточных опор
Усиление фундамента необходимо для обеспечения непрерывности
структура. Это особенно важно в случае плохого заземления или когда
здание может быть подвержено землетрясениям.Предполагается, что армирование
деформированные стальные прутки с высоким пределом текучести, которые обычно поставляются в OECS. Для полосы
опор, минимальная арматура должна состоять из 2 стержней № 4 («), размещенных
продольно и поперечно расположенные стержни диаметром 12 дюймов.
Рисунок B-4 : Бетонный пол в деревянных домах
Рисунок B-5 : Фундамент из бетонной ленты и бетонное основание с
Деревянное Строительство
Приемлемое устройство фундамента небольшого деревянного дома
с бетонным или деревянным полом. Эта конструкция подходит для
достаточно жесткие почвы или мергель. Там, где здание будет на скале, толщина
опора может быть уменьшена, но деревянные постройки очень легкие и их легко сдуть.
их основы. Поэтому здание должно быть надежно прикреплено болтами к бетонному основанию,
и опоры должны быть достаточно тяжелыми, чтобы предотвратить подъем.
Рисунок B-6 : Типичные детали каменной кладки
Бетонные блоки, используемые в стенах, должны быть прочными, без трещин и
их края должны быть прямыми и правильными.Номинальная ширина блоков для наружных стен
и несущие внутренние стены должны быть не менее 6 дюймов, а торцевая оболочка должна быть
минимальная толщина 1 дюйм. Наружные стены лучше построить толщиной 8 дюймов.
бетонный блок. Ненесущие перегородки могут быть построены из блоков с
номинальная толщина 4 дюйма или 6 дюймов. Стены из блоков должны быть усилены как
вертикально и горизонтально; это должно выдерживать ураганы и землетрясения. это
обычная практика в большинстве OECS — использовать бетонные колонны на всех углах и
перекрестки.Дверные и оконные косяки необходимо укрепить.
Рекомендуемая минимальная арматура для строительства бетонных блоков
выглядит следующим образом:
- Прутки диаметром 4 дюйма по углам по вертикали.
- Прутки диаметром 2 дюйма на стыках по вертикали.
- Прутки диаметром 2 дюйма на косяках дверей и окон
- для армирования горизонтальных стен используйте стержни Dur-o-waL (или аналогичные) или стержни.
каждый второй курс следующим образом: - Для вертикального армирования стен используйте стержни, расположенные следующим образом:
блоки 4 дюйма 1 бар
Блоки 6 дюймов 2 стержня
Блоки 8 дюймов 2 стержня
4-дюймовые блоки 32
Блоки 6 дюймов 24
Блоки 8 дюймов 16
Рисунок B-7 : Деталь бетонной колонны
Колонны должны иметь минимальные размеры 8 x 8 дюймов и могут быть
образуется опалубкой с четырех сторон или опалубкой с двух сторон с блокировкой с двух других. Минимальная арматура колонны должна составлять стержни диаметром 4 с хомутом на
Центры 6 дюймов. Колонна с заполненным сердечником или бетонная колонна должна быть
высота до пояса (кольцевой балки) у каждого дверного косяка.
Рисунок B-8 : Альтернативные опоры для блочной кладки
Эта железобетонная опора монолитно построена с
плита перекрытия.Состоит из серии плит перекрытий под стенами с
минимум 12 дюймов глубиной вниз по периметру. Основание полностью размещено на колодце.
уплотненный гранулированный материал.
Рисунок B-9: Деталь перекрытия
Железобетонная плита перекрытия не выходит за пределы периметра.
стены. Арматурная сетка в плите размещается сверху с 1-дюймовыми крышками. Плита сооружается на хорошо утрамбованном зернистом заполнителе, щебне или мергеле.
Рисунок B-10 : Альтернативная деталь перекрытия
Подвесная железобетонная плита привязана к внешней
перекрывающая балка на уровне пола. Важна верхняя (стальная) арматура. Главный
арматура должна быть порядка «диаметра в 9» центрах, а
распределительная сталь диаметром 3/8 дюйма с центрами 12 дюймов.
Рисунок B-11 : Деталь крепления направляющей Vernadah к колонне
Важно, чтобы рельсы были надежно закреплены в боковой стенке.
столбец. Как минимум, болты должны быть оцинкованы для предотвращения коррозии.
Для крепления балясин к бетону рекомендуется использовать эпоксидный раствор или химические анкеры.
столбец.
Рисунок B-12 : Устройство усиления для подвесных перекрытий
Арматура должна быть согнута и закреплена опытными мастерами.Необходимо следить за тем, чтобы верхняя стальная часть находилась в верхней части с соответствующим покрытием.
Рисунок B-13 : Устройство усиления для
Подвесные балки
Арматура должна быть согнута и закреплена опытными мастерами.
Необходимо следить за тем, чтобы верхняя стальная часть находилась в верхней части с соответствующим покрытием.
Рисунок B-14 : Устройство усиления для
Подвесные консольные балки
Арматура должна быть согнута и закреплена опытными мастерами. Необходимо следить за тем, чтобы верхняя стальная часть находилась в верхней части с соответствующим покрытием.
Рисунок B-15 : Устройство усиления для
Подвесная лестница
Введение | Раздел А
| Раздел B | Раздел C | Раздел D | Раздел E | Раздел F | Раздел G
Размер и размеры бетонной опоры
Итак, как несущая способность почвы соотносится с размером опор? Основание передает нагрузку на почву.Чем ниже несущая способность почвы, тем шире должно быть основание. Если почва очень прочная, то основание даже не обязательно, просто грунта под стеной будет достаточно, чтобы удержать здание.
Таблица размеров опор
Вот минимальная ширина для бетонных или каменных фундаментов (дюймы):
Несущая способность грунта (фунт / кв. Дюйм) | ||||||
1,500 | 2 000 | 2 500 90 248 | 3 000 | 3,500 | 4 000 90 248 | |
Традиционная конструкция с деревянным каркасом | ||||||
1-этажный | 16 | 12 | 10 | 8 | 7 | 6 |
2-этажный | 19 | 15 | 12 | 10 | 8 | 7 |
3-этажный | 22 | 17 | 14 | 11 | 10 | 9 |
4-дюймовая кирпичная облицовка деревянным каркасом или 8-дюймовая пустотелая бетонная кладка | ||||||
1-этажный | 19 | 15 | 12 | 10 | 8 | 7 |
2-этажный | 25 | 19 | 15 | 13 | 11 | 10 |
3-этажный | 31 | 23 | 19 | 16 | 13 | 12 |
8-дюймовая сплошная или полностью залитая цементная кладка | ||||||
1-этажный | 22 | 17 | 13 | 11 | 10 | 9 |
2-этажный | 31 | 23 | 19 | 16 | 13 | 12 |
3-этажный | 40 | 30 | 24 | 20 | 17 | 15 |
Источник: Таблица 403. 1; Кодекс CABO для проживания одной и двух семей; 1995.
Дополнительные размеры опоры:
- Толщина основания — от 8 до 12 дюймов
- Глубина опоры — варьируется в зависимости от линии промерзания и прочности почвы (некоторые опоры могут быть неглубокими, а другие — глубокими)
Калькулятор бетона — Подсчитайте, сколько бетона вам понадобится для фундамента .
Найдите поблизости подрядчиков по ремонту плит и фундаментов, которые помогут с вашими опорами.
Вы можете найти рекомендуемый размер фундамента в зависимости от размера и типа дома, а также несущей способности почвы. Как видите, тяжелые дома на слабой почве требуют опор шириной 2 фута и более. Но самые легкие здания на самой прочной почве требуют опор шириной 7 или 8 дюймов. Под стеной толщиной 8 дюймов это то же самое, что сказать, что у вас нет опоры.
Эти числа основаны на предположениях о весе строительных материалов, а также о динамических и статических нагрузках на крыши и перекрытия. Допустимая несущая способность грунта под основанием должна равняться нагрузке, создаваемой конструкцией. Читая таблицу, вы видите, что код требует основания шириной 12 дюймов под двухэтажным деревянным каркасным домом в почве с плотностью 2500 фунтов на квадратный фут. 12-дюймовая опора — это 1 квадратный фут на линейный фут, поэтому в кодексе говорится, что часть двухэтажного деревянного дома, которая опирается на внешние стены, весит около 2500 фунтов, может быть, немного консервативно, но разумно. Фундамент такого же размера требуется под одноэтажный дом, если он облицован кирпичом, то предполагается, что вес кирпича равен целому второму этажу.
Если бы у вас был инженер, спроектировавший фундамент на основе результатов испытаний грунта и ваших отпечатков, он бы суммировал фактические веса бетона, дерева и кирпича, которые вы бы использовали в своем здании, с учетом требуемых временных нагрузок, и рассчитайте, какой вес будет иметь ваш дом. Это может быть немного меньше или немного больше, чем предполагает код. Затем он возьмет известную несущую способность грунта, на которую можно доверить квадратный фут почвы, и спроектировать основание таким образом, чтобы площадь под основанием, умноженная на несущую способность почвы, была равна фактической нагрузке или превышала ее.
На практике вам не нужно выполнять эту процедуру для большинства домов. Не стоит беспокоиться о том, насколько сильно вы будете отличаться от стандартной, соответствующей требованиям кодекса. Если у вас нет подпорных стен или какой-либо другой особой ситуации, плата инженерам, вероятно, не оправдана.
В любом случае, я бы не рекомендовал строителям сокращать стандартный размер опор, даже если они знают, что строят на прочной почве. Независимо от требований к опорам, каменщики и подрядчики по наливу стен хотят, чтобы их блоки или их формы могли сидеть на опорах.Но урок, который следует извлечь, заключается в том, что, когда грунт очень прочный (емкость 4000 фунтов на квадратный фут или лучше), опоры могут не быть строго необходимыми с точки зрения несущей способности. Это означает, что не так важно, например, правильно ли расположена стена по центру фундамента.
Как скоро укладывать бетон для стен и колонн на опоры и плиты? | Журнал Concrete Construction
Q .: Два аналогичных вопроса были подняты относительно укладки бетона поверх недавно завершенных плит и фундаментов.В одном случае подрядчик хотел сформировать и разместить стены подвала на следующий день после завершения строительства фундаментов, но архитектор потребовал от архитектора подождать 7 дней. В другом случае инженер отказал в разрешении на укладку бетонной колонны над полностью закрепленной и поддерживаемой плитой, которая была уложена 5–7 часами ранее в тот же день. Рассматриваемые столбцы располагались по центру над столбцами нижнего уровня. Какие правила ограничивают время заливки бетона в этих условиях?
А.: После долгих поисков и расследований мы пришли к выводу, что не существует никаких письменных правил, регулирующих эти случаи. Бетон в значительной степени имеет свои собственные правила в отношении времени схватывания и затвердевания, и у строителей, соблюдающих эти естественные ограничения, не было проблем. Например, подрядчик не будет использовать готовую плиту для установки опалубки для колонн до тех пор, пока бетон не станет достаточно твердым, чтобы не повредить его в результате работ. Опалубка и опоры, поддерживающие плиту, обычно рассчитаны также на то, чтобы выдерживать нагрузки от строительных работ на плите.
Стены подвала : Обычной практикой является заливка стен на следующий день после заливки фундаментов, но вряд ли вы найдете ссылку, в которой говорится, что вы можете или не можете это делать. Одна из причин, по которой это относительно безопасно, заключается в том, что размеры опор часто соответствуют минимальным требованиям местных норм, которые на самом деле являются слишком большими по сравнению с нагрузкой, которую стена будет оказывать на опору. Помните также, что на этом этапе строительства единственная нагрузка на опору будет исходить от веса стены, поскольку конструкция, для которой она была спроектирована, еще не установлена.
Размещение колонн на новой плите : После проверки более десятка книг, технических отчетов и стандартов, касающихся опалубки и бетонных конструкций (из США и Европы), мы не нашли утверждения, ограничивающего время установки колонн на верх плиты.
Однако мы обнаружили ограничения на соответствующее условие размещения бетона в перекрытиях и балках поверх глубокого подъемника из свежего бетона в стенах или колоннах. Руководство Американского института бетона (ACI) по инспекции бетона, ACI «Технические требования к конструкционному бетону для зданий (ACI 301-84)» и Строительный кодекс ACI (ACI 318-89) содержат утверждения, аналогичные намерениям следующего раздела. 8.3.2 из ACI 301-84: «Укладка бетона в опорные элементы не должна начинаться до тех пор, пока бетон, ранее помещенный в колонны и стены, не перестанет быть пластичным и будет оставаться на месте не менее двух часов».
Ни один из трех документов ACI не устанавливает каких-либо ограничений для связанных условий размещения бетона над поддерживаемым элементом (балкой или плитой).
Мы обсуждали этот вопрос с бывшим председателем комитета 301 ACI, Дэвидом Густафсоном, техническим директором Института арматурной стали; и с нынешним председателем 301 Тимоти Мур из Gilbert / Commonwealth, Inc.Оба заявили, что не знают правил или ограничений по времени укладки бетона колонн поверх недавно готовых плит. Мур далее заявил, что среди множества изменений, которые комитет рассматривает для будущих пересмотров ACI 301, такие положения не рассматриваются. Он сказал, что единственными другими положениями ACI 301, которые могут иметь какое-либо значение, будут те, которые касаются строительных швов. Раздел 6.1 ACI 301 (строительные швы) содержит положения о расположении строительных швов и склеивании на строительных швах, где это необходимо или разрешено, но ничего не касается сроков размещения.
Мы также опросили Рэнди Борднера, бывшего председателя комитета ACI 347, Опалубка для бетона. Борднер — профессиональный инженер и специалист в области проектирования и строительства многоэтажных зданий. Он заявил, что на его работах бетон колонн обычно укладывался поверх бетонной плиты, уложенной в тот же день, единственная проблема заключалась в удовлетворительной твердости плиты для крепления любых необходимых шаблонов и распорок.
Интересно, что П. Кумар Мета из Калифорнийского университета в Беркли говорит в своей книге Конструкция, свойства и материалы бетона относительно схватывания и твердения цементного теста в бетоне (стр. 191): «Время, затраченное на «solidify» полностью отмечает окончательный набор, который не должен быть слишком длинным, чтобы возобновить строительные работы в разумные сроки после укладки бетона.«
Это заявление подразумевает, что возобновление строительных работ может произойти во время окончательной установки.
1.2: Структурные нагрузки и система нагружения
2.1.4.1 Дождевые нагрузки
Дождевые нагрузки — это нагрузки из-за скопившейся массы воды на крыше во время ливня или сильных осадков. Этот процесс, называемый пондированием, в основном происходит на плоских крышах и крышах с уклоном менее 0,25 дюйма / фут.Заливка крыш возникает, когда сток после атмосферных осадков меньше количества воды, удерживаемой на крыше. Вода, скопившаяся на плоской или малоскатной крыше во время ливня, может создать большую нагрузку на конструкцию. Поэтому это необходимо учитывать при проектировании здания. Совет Международного кодекса требует, чтобы на крышах с парапетами были первичные и вторичные водостоки. Первичный водосток собирает воду с крыши и направляет ее в канализацию, а вторичный сток служит резервным на случай засорения первичного водостока.На рисунке 2.3 изображена крыша и эти дренажные системы. Раздел 8.3 стандарта ASCE7-16 определяет следующее уравнение для расчета дождевых нагрузок на неотклоненную крышу в случае, если основной слив заблокирован:
где
- R = дождевая нагрузка на неотклоненную крышу в фунтах на кв. Дюйм или кН / м 2 .
- d s = глубина воды на неотклоненной крыше до входа во вторичную дренажную систему (т.е.е. статический напор) в дюймах или мм.
- d h = дополнительная глубина воды на неотклоненной крыше над входом во вторичную дренажную систему (т. Е. Гидравлический напор) в дюймах или мм. Это зависит от скорости потока, размера дренажа и площади дренажа каждого дренажа.
Расход Q в галлонах в минуту можно рассчитать следующим образом:
Q (галлонов в минуту) = 0,0104 Ai
где
- A = площадь крыши в квадратных футах, осушаемая дренажной системой.
- и = 100 лет, 1 час. интенсивность осадков в дюймах в час для местоположения здания, указанного в правилах водоснабжения.
Рис. 2.3. Водосточная система с крыши (адаптировано из Международного совета по кодам).
2.1.4.2 Ветровые нагрузки
Ветровые нагрузки — это нагрузки, действующие на конструкции ветровым потоком. Ветровые силы были причиной многих структурных нарушений в истории, особенно в прибрежных регионах. Скорость и направление ветрового потока непрерывно меняются, что затрудняет точное прогнозирование давления ветра на существующие конструкции.Это объясняет причину значительных усилий по исследованию влияния и оценки ветровых сил. На рисунке 2.4 показано типичное распределение ветровой нагрузки на конструкцию. Основываясь на принципе Бернулли, взаимосвязь между динамическим давлением ветра и скоростью ветра может быть выражена следующим образом при визуализации потока ветра как потока жидкости:
где
- q = воздух с динамическим ветровым давлением в фунтах на квадратный фут.
- ρ = массовая плотность воздуха.
- V = скорость ветра в милях в час.
Базовую скорость ветра для определенных мест в континентальной части США можно получить из основной контурной карты скорости в ASCE 7-16 .
Предполагая, что удельный вес воздуха для стандартной атмосферы составляет 0,07651 фунт / фут 3 и подставляя это значение в ранее указанное уравнение 2.1, можно использовать следующее уравнение для статического давления ветра:
Для определения величины скорости ветра и его давления на различных высотах над уровнем земли прибор ASCE 7-16 модифицировал уравнение 2.2 путем введения некоторых факторов, учитывающих высоту сооружения над уровнем земли, важность сооружения для жизни и имущества человека, а также топографию его местоположения, а именно:
где
K z = коэффициент скоростного давления, который зависит от высоты конструкции и условий воздействия. Значения K z перечислены в таблице 2.4.
K zt = топографический фактор, который учитывает увеличение скорости ветра из-за внезапных изменений топографии там, где есть холмы и откосы. Этот коэффициент равен единице для зданий на ровной местности и увеличивается с высотой.
K d = коэффициент направленности ветра. Он учитывает уменьшенную вероятность максимального ветра, идущего с любого заданного направления, и уменьшенную вероятность развития максимального давления при любом направлении ветра, наиболее неблагоприятном для конструкции. Для конструкций, подверженных только ветровым нагрузкам, K d = 1; для конструкций, подвергающихся другим нагрузкам, помимо ветровой, значения K d приведены в таблице 2.5.
- K e = коэффициент высоты земли. Согласно разделу 26.9 в ASCE 7-16 , он выражается как K e = 1 для всех отметок.
- V = скорость ветра, измеренная на высоте z над уровнем земли.
Три условия воздействия, классифицированные как B, C и D в таблице 2.4, определены с точки зрения шероховатости поверхности следующим образом:
Экспозиция B: Шероховатость поверхности для этой категории включает городские и пригородные зоны, деревянные участки или другую местность с близко расположенными препятствиями. Эта категория применяется к зданиям со средней высотой крыши ≤ 30 футов (9,1 м), если поверхность простирается против ветра на расстояние более 1500 футов. Для зданий со средней высотой крыши более 30 футов (9,1 м) эта категория будет применяться, если шероховатость поверхности с наветренной стороны превышает 2600 футов (792 м) или в 20 раз превышает высоту здания, в зависимости от того, что больше.
Экспозиция C: Экспозиция C применяется там, где преобладает шероховатость поверхности C. Шероховатость поверхности C включает открытую местность с разбросанными препятствиями высотой менее 30 футов.
Воздействие D: Шероховатость поверхности для этой категории включает квартиры, гладкие илистые отмели, солончаки, сплошной лед, свободные участки и водные поверхности. Воздействие D применяется, когда шероховатость поверхности D простирается против ветра на расстояние более 5000 футов или в 20 раз больше высоты здания, в зависимости от того, что больше. Это также применимо, если шероховатость поверхности с наветренной стороны равна B или C, и площадка находится в пределах 600 футов (183 м) или 20-кратной высоты здания, в зависимости от того, что больше.
Таблица 2.4. Коэффициент воздействия скоростного давления, K z , как указано в ASCE 7-16 .
Тип конструкции | К d |
---|---|
Основная система сопротивления ветровой нагрузке (MWFRS) Комплектующие и облицовка | 0.85 0,85 |
Арочные крыши | 0,85 |
Дымоходы, резервуары и аналогичные конструкции Площадь Шестиугольник Круглый | 0. 9 0,95 0,95 |
Сплошные отдельно стоящие стены и сплошные отдельно стоящие и прикрепленные знаки | 0,85 |
Знаки открытые и решетчатый каркас | 0,85 |
Башни ферменные Треугольная, квадратная, прямоугольная Все прочие сечения | 0.85 0,95 |
Чтобы получить окончательное внешнее давление для расчета конструкций, уравнение 2.3 дополнительно модифицируется следующим образом:
где
- P z = расчетное давление ветра на лицевую поверхность конструкции на высоте z над уровнем земли. Он увеличивается с высотой на наветренной стене, но остается постоянным с высотой на подветренной и боковых стенах.
- G = фактор порыва ветра. G = 0,85 для жестких конструкций с собственной частотой ≥ 1 Гц. Коэффициенты порывов ветра для гибких конструкций рассчитываются с использованием уравнений в ASCE 7-16 .
- C p = коэффициент внешнего давления. Это часть внешнего давления на наветренные стены, подветренные стены, боковые стены и крышу. Значения C p представлены в таблицах 2.6 и 2.7.
Чтобы вычислить ветровую нагрузку, которая будет использоваться при проектировании стержня, объедините внешнее и внутреннее давление ветра следующим образом:
где
GC pi = коэффициент внутреннего давления из ASCE 7-16 .
Рис. 2.4. Типичное распределение ветра на стенах конструкции и крыше.
Таблица 2. 6. Коэффициент давления на стенку, C p , как указано в ASCE 7-16 .
Примечания:
1. Положительные и отрицательные знаки указывают на давление ветра, действующее по направлению к поверхностям и от них.
2. L — это размер здания, перпендикулярный направлению ветра, а B — размер, параллельный направлению ветра.
Таблица 2.7. Коэффициенты давления на крышу, C p , для использования с q h , как указано в ASCE 7-16 .
Пример \ (\ PageIndex {1} \)
Двухэтажное здание, показанное на рисунке 2.5 — это начальная школа, расположенная на плоской местности в пригороде, со скоростью ветра 102 миль в час и категорией воздействия B. Какое давление скорости ветра на высоте крыши для основной системы сопротивления ветровой силе (MWFRS)?
Рис. 2.5. Двухэтажное здание.
Решение
Средняя высота крыши h = 20 футов
Таблица 26. 10-1 из ASCE 7-16 утверждает, что если категория воздействия — B и коэффициент воздействия скоростного давления для h = 20 ′, то K z = 0.7.
Коэффициент топографии из раздела 26.8.2 документа ASCE 7-16 равен K zt = 1,0.
Коэффициент направленности ветра для MWFRS, согласно таблице 26.6-1 в ASCE 7-16 , составляет K d = 0,85.
Используя уравнение 2.3, скоростное давление на высоте 20 футов для MWFRS составляет:
В некоторых географических регионах сила, оказываемая скопившимся снегом и льдом на крышах зданий, может быть довольно огромной и может привести к разрушению конструкции, если не будет учтена при проектировании конструкции.
Предлагаемые расчетные значения снеговых нагрузок приведены в нормах и проектных спецификациях. Основой для расчета снеговых нагрузок является так называемая снеговая нагрузка на грунт. Снеговая нагрузка на грунт определяется Международными строительными нормами (IBC) как вес снега на поверхности земли. Снеговые нагрузки на грунт для различных частей США можно получить из контурных карт в ASCE 7-16 . Некоторые типичные значения снеговых нагрузок на грунт из этого стандарта представлены в таблице 2.8. После того, как эти нагрузки для требуемых географических областей установлены, их необходимо изменить для конкретных условий, чтобы получить снеговую нагрузку для проектирования конструкций.
Согласно ASCE 7-16 расчетные снеговые нагрузки для плоских и наклонных крыш можно получить с помощью следующих уравнений:
где
- р f = расчетная снеговая нагрузка на плоскую крышу.
- р с = расчетная снеговая нагрузка для скатной крыши.
- р г = снеговая нагрузка на грунт.
- I = фактор важности. См. Таблицу 2.9 для значений коэффициента важности в зависимости от категории здания.
- C e = коэффициент воздействия. См. Таблицу 2.10 для значений коэффициента воздействия в зависимости от категории местности.
- C t = тепловой коэффициент. См. Типичные значения в таблице 2.11.
- C s = коэффициент наклона.Значения C s приведены в разделах с 7.4.1 по 7.4.4 из ASCE 7-16 , в зависимости от различных факторов.
Расположение | Нагрузка (PSF) |
---|---|
Ланкастер, Пенсильвания Якутат, АК Нью-Йорк, NY Сан-Франциско, Калифорния Чикаго, Иллинойс Таллахасси, Флорида | 30 150 30 5 25 0 |
Категория риска структуры | Фактор важности |
---|---|
I II III IV | 0.8 1.0 1,1 1,2 |
Таблица 2.10. Коэффициент экспозиции, C e , как указано в ASCE 7-16 .
Тепловое состояние | Температурный коэффициент |
---|---|
Все конструкции, кроме указанных ниже | 1. 0 |
Конструкции, поддерживаемые чуть выше точки замерзания, и другие конструкции с холодными вентилируемыми крышами, в которых тепловое сопротивление (R-значение) между вентилируемым и отапливаемым помещениями превышает 25 ° F × h × ft 2 / BTU (4,4 K × м 2 / Вт) | 1,1 |
Неотапливаемые и открытые конструкции | 1.2 |
Сооружения намеренно удерживаются ниже нуля | 1,3 |
Теплицы с непрерывным обогревом и крышей, имеющей тепловое сопротивление (значение R) менее 2,0 ° F × в × фут 2 / BTU | 0,85 |
Пример 2. 4
Одноэтажный отапливаемый жилой дом, расположенный в пригороде Ланкастера, штат Пенсильвания, считается частично незащищенным. Крыша дома с уклоном 1 на 20, без нависающего карниза. Какова расчетная снеговая нагрузка на крышу?
Решение
Согласно рис. 7.2-1 в ASCE 7-16 , снеговая нагрузка на грунт для Ланкастера, штат Пенсильвания, составляет
р г = 30 фунтов на квадратный дюйм.
Поскольку 30 psf> 20 psf, доплата за дождь на снегу не требуется.
Чтобы найти уклон крыши, используйте θ = arctan
.
Согласно ASCE 7-16 , поскольку 2,86 ° <15 °, крыша считается крышей с низким уклоном. В таблице 7.3-2 в ASCE 7-16 указано, что тепловой коэффициент для обогреваемой конструкции составляет C t = 1,0 (см. Таблицу 2.11).
Согласно таблице 7.3-1 в ASCE 7-16 , коэффициент воздействия для частично открытой местности категории B составляет C e = 1. 0 (см. Таблицу 2.10).
В таблице 1.5-2 в ASCE 7-16 указано, что фактор важности I s = 1,0 для категории риска II (см. Таблицу 2.9).
Согласно уравнению 2.6 снеговая нагрузка на плоскую крышу составляет:
Так как 21 фунт / фут> 20 I с = (20 фунт / фут) (1) = 20 фунт / кв. Дюйм. Таким образом, расчетная снеговая нагрузка на плоскую крышу составляет 21 фунт / фут.
2.1.4.4 Сейсмические нагрузки
Смещение грунта, вызванное сейсмическими силами во многих географических регионах мира, может быть весьма значительным и часто повреждает конструкции.Это особенно заметно в регионах вблизи активных геологических разломов. Таким образом, большинство строительных норм и правил требуют, чтобы конструкции были спроектированы с учетом сейсмических сил в таких областях, где вероятны землетрясения. Стандарт ASCE 7-16 предоставляет множество аналитических методов для оценки сейсмических сил при проектировании конструкций. Один из этих методов анализа, который будет описан в этом разделе, называется процедурой эквивалентной боковой силы (ELF). Поперечный сдвиг основания V и поперечная сейсмическая сила на любом уровне, вычисленные с помощью ELF, показаны на рисунке 2.6. Согласно процедуре, общий статический поперечный сдвиг основания, V , в определенном направлении для здания определяется следующим выражением:
где
V = боковой сдвиг основания здания. Расчетное значение V должно удовлетворять следующему условию:
W = эффективный сейсмический вес здания. Он включает в себя общую статическую нагрузку здания и его постоянного оборудования и перегородок.
T = основной естественный период здания, который зависит от массы и жесткости конструкции. Он рассчитывается по следующей эмпирической формуле:
C t = коэффициент периода строительства. Значение C t = 0,028 для каркасов из конструкционной стали, устойчивых к моменту, 0,016 для жестких железобетонных рам и 0,02 для большинства других конструкций (см. Таблицу 2.12).
ℎ n = высота самого высокого уровня здания, а x = 0.8 для стальных жестких рам, 0,9 для жестких железобетонных рам и 0,75 для других систем.
Конструкционная система | C т | x |
---|---|---|
Рамы, сопротивляющиеся моменту стальные Рамы с эксцентрическими распорками (EBF) Все прочие конструкционные системы | 0.028 0,03 0,02 | 0,8 0,75 0,75 |
S DI = расчетное спектральное ускорение. Он оценивается с использованием сейсмической карты, которая обеспечивает расчетную интенсивность землетрясения для конструкций в местах с T = 1 секунда.
S DS = расчетное спектральное ускорение.Он рассчитывается с использованием сейсмической карты, которая обеспечивает расчетную интенсивность землетрясения для конструкций с T = 0,2 секунды.
R = коэффициент модификации ответа. Это объясняет способность структурной системы противостоять сейсмическим силам. Значения R для нескольких распространенных систем представлены в таблице 2.13.
I = фактор важности. Это мера последствий для жизни человека и материального ущерба в случае выхода конструкции из строя.Значение фактора важности равно 1 для офисных зданий, но равняется 1,5 для больниц, полицейских участков и других общественных зданий, где в случае разрушения конструкции ожидается большая гибель людей или повреждение имущества.
Система сейсмостойкости | R |
---|---|
Системы несущих стен Стены срезные железобетонные обычные Обычные армированные стены сдвига Стены с легким каркасом (холоднокатаная сталь), обшитые конструкционными панелями, устойчивыми к сдвигу, или стальными листами | 4 2 |
Строительные каркасные системы Стены срезные железобетонные обычные Обычные армированные стены сдвига Рамы стальные, ограниченные продольным изгибом | 5 2 8 |
Моментостойкие каркасные системы Стальные рамы для особых моментов Рамы с обычным моментом стальные Рамы моментные железобетонные обычные | 8 3 |
После того, как общая сейсмическая статическая поперечная поперечная сила сдвига основания в заданном направлении для конструкции вычислена, следующим шагом будет определение поперечной сейсмической силы, которая будет приложена к каждому уровню пола, используя следующее уравнение:
где
F x = боковая сейсмическая сила, приложенная к уровню x .
W i и W x = эффективные сейсмические веса на уровнях i и x .
ℎ i и ℎ x = высота от основания конструкции до этажей на уровнях i и x .
= суммирование произведения W i и по всей структуре.
k = показатель распределения, относящийся к основному собственному периоду конструкции.Для T ≤ 0,5 с, k = 1,0, а для T ≥ 2,5 с, k = 2,0. Для T , лежащего между 0,5 и 2,5 с, k может быть вычислено с использованием следующего отношения:
Рис. 2.6. Процедура эквивалентной боковой силы
Пример 2.5
Пятиэтажное офисное стальное здание, показанное на рис. 2.7, укреплено по бокам стальными каркасами, устойчивыми к особым моментам, и его размеры в плане 75 на 100 футов.Здание находится в Нью-Йорке. Используя процедуру эквивалентной боковой силы ASCE 7-16 , определите поперечную силу, которая будет приложена к четвертому этажу конструкции. Статическая нагрузка на крышу составляет 32 фунта на квадратный фут, статическая нагрузка на перекрытие (включая нагрузку на перегородку) составляет 80 фунтов на квадратный фут, а снеговая нагрузка на плоскую крышу составляет 40 фунтов на квадратный фут. Не обращайте внимания на вес облицовки. Расчетные параметры спектрального ускорения: S DS = 0,28 и S D 1 = 0.11.
Рис. 2.7. Пятиэтажное офисное здание.
Решение
S DS = 0,28 и S D 1 = 0,11 (дано).
R = 8 для стальной рамы со специальным моментом сопротивления (см. Таблицу 2.13).
Офисное здание относится к категории риска занятости II, поэтому I e = 1,0 (см. Таблицу 2.9).
Рассчитайте приблизительный фундаментальный естественный период здания T a .
C t = 0,028 и x = 0,8 (из таблицы 2. 12 для стальных силовых рам).
ℎ n = Высота крыши = 52,5 фута
Определите статическую нагрузку на каждом уровне. Поскольку снеговая нагрузка на плоскую крышу, указанная для офисного здания, превышает 30 фунтов на квадратный фут, 20% снеговой нагрузки должны быть включены в расчеты сейсмической статической нагрузки.
Вес, присвоенный уровню крыши:
W крыша = (32 фунта на фут) (75 футов) (100 футов) + (20%) (40 фунтов на квадратный фут) (75 футов) (100 футов) = 300000 фунтов
Вес, присвоенный всем остальным уровням, следующий:
W i = (80 фунтов на фут) (75 футов) (100 футов) = 600000 фунтов
Общая статическая нагрузка составляет:
W Итого = 300000 фунтов + (4) (600000 фунтов) = 2700 тыс.
Расчет коэффициента сейсмической реакции C s .
Следовательно, C s = 0,021> 0,01
Определите сейсмический сдвиг основания V .
V = C с W = (0,021) (2700 тысяч фунтов) = 56,7 тыс.
Рассчитайте поперечную силу, приложенную к четвертому этажу.
2.1.4.5 Гидростатическое давление и давление земли
Опорные конструкции должны быть спроектированы таким образом, чтобы не допускать опрокидывания и скольжения, вызываемых гидростатическим давлением и давлением грунта, чтобы обеспечить устойчивость их оснований и стен.Примеры подпорных стен включают гравитационные стены, консольные стены, контрфорсированные стены, резервуары, переборки, шпунтовые сваи и другие. Давление, создаваемое удерживаемым материалом, всегда перпендикулярно поверхностям удерживающей конструкции, контактирующим с ними, и изменяется линейно с высотой. Интенсивность нормального давления р и результирующая сила P на удерживающую конструкцию рассчитывается следующим образом:
Где
γ = удельный вес удерживаемого материала.
ℎ = расстояние от поверхности удерживаемого материала и рассматриваемой точки.
2.1.4.6 Разные нагрузки
Существует множество других нагрузок, которые также можно учитывать при проектировании конструкций в зависимости от конкретных случаев. Их включение в сочетания нагрузок будет основано на усмотрении проектировщика, если предполагается, что в будущем они окажут значительное влияние на структурную целостность. Эти нагрузки включают тепловые силы, центробежные силы, силы из-за дифференциальной осадки, ледовые нагрузки, нагрузки от затопления, взрывные нагрузки и многое другое.
2.2 Сочетания нагрузок для расчета конструкций
Конструкции спроектированы с учетом требований как прочности, так и удобства эксплуатации. Требование прочности обеспечивает безопасность жизни и имущества, а требование эксплуатационной пригодности гарантирует удобство использования (людей) и эстетику конструкции. Чтобы соответствовать указанным выше требованиям, конструкции проектируются на критическую или самую большую нагрузку, которая будет действовать на них. Критическая нагрузка для данной конструкции определяется путем объединения всех различных возможных нагрузок, которые конструкция может нести в течение своего срока службы.В разделах 2.3.1 и 2.4.1 документа ASCE 7-16 представлены следующие сочетания нагрузок для использования при проектировании конструкций с использованием методов расчета коэффициента нагрузки и сопротивления (LRFD) и расчета допустимой прочности (ASD).
Для LRFD комбинации нагрузок следующие:
1.1.4 D
2.1.2 D + 1.6 L + 0,5 ( L r или S или R )
3.1.2 D + 1.6 ( L r или S или R ) + ( L или 0.5 Вт )
4.1.2 D + 1.0 W + L + 0,5 ( L r или S или R )
5.0.9 D + 1.0 W
Для ASD комбинации нагрузок следующие:
1. D
2. D + L
3. D + ( L r или S или R )
4. D + 0,75 L + 0.75 ( L r или S или R )
5. D + (0,6 W )
где
D = статическая нагрузка.
L = временная нагрузка из-за занятости.
L r = постоянная нагрузка на крышу.
S = снеговая нагрузка.
R = номинальная нагрузка из-за начальной дождевой воды или льда, без учета затопления.
W = ветровая нагрузка.
E = сейсмическая нагрузка.
Пример 2.6
Система перекрытий, состоящая из деревянных балок, расположенных на расстоянии 6 футов друг от друга по центру, и деревянной обшивки с пазом и шпунтом, как показано на рисунке 2.8, выдерживает статическую нагрузку (включая вес балки и обшивки) 20 фунтов на квадратный дюйм и динамическую нагрузку 30 фунтов на квадратный фут. Определите максимальную факторную нагрузку в фунтах / футах, которую должна выдержать каждая балка перекрытия, используя комбинации нагрузок LRFD.
Рис. 2.8. Система полов.
Решение
Собственная нагрузка D = (6) (20) = 120 фунт / фут
Переменная нагрузка L 905 10 = (6) (30) = 180 фунт / фут
Определение максимальных факторизованных нагрузок W u с использованием комбинаций нагрузок LRFD и пренебрежением членами, не имеющими значений, дает следующее:
W u = (1,4) (120) = 168 фунтов / фут
W u = (1,2) (120) + (1,6) (180) = 288 фунтов / фут
W u = (1.2) (120) + (0,5) (180) = 234 фунт / фут
W u = (1,2) (120) + (0,5) (180) = 234 фунт / фут
W u = (1,2) (120) + (0,5) (180) = 234 фунт / фут
W u = (0,9) (120) = 108 фунтов / фут
Регулирующая факторная нагрузка = 288 фунтов / фут
2.3 Ширина и площадь притока
Зона притока — это зона нагрузки, на которую будет воздействовать элемент конструкции. Например, рассмотрим внешнюю балку B1 и внутреннюю балку B2 односторонней системы перекрытий, показанной на рисунке 2.9. Входная ширина для B1 — это расстояние от центральной линии луча до половины расстояния до следующего или соседнего луча, а подчиненная область для луча — это область, ограниченная шириной подчиненного элемента и длиной луча, как заштриховано на рисунке. Для внутренней балки B2-B3 общая ширина W T составляет половину расстояния до соседних балок с обеих сторон.
Рис. 2.9. Площадь притока.
2.4 Области влияния
Зоны влияния — это зоны нагружения, которые влияют на величину нагрузок, переносимых конкретным элементом конструкции.В отличие от притоков, где нагрузка в пределах зоны воспринимается элементом, все нагрузки в зоне влияния не поддерживаются рассматриваемым элементом.
2,5 Снижение динамической нагрузки
Большинство кодексов и стандартов допускают снижение временных нагрузок при проектировании больших систем перекрытий, поскольку очень маловероятно, что такие системы всегда будут поддерживать расчетные максимальные временные нагрузки в каждом случае. Раздел 4.7.3 стандарта ASCE 7-16 позволяет снизить временные нагрузки для стержней с зоной воздействия A I ≥ 37.2 м 2 (400 футов 2 ). Площадь влияния — это произведение площади притока и коэффициента элемента динамической нагрузки. Уравнения ASCE 7-16 для определения приведенной временной нагрузки на основе зоны воздействия следующие:
где
L = уменьшенная расчетная временная нагрузка на фут 2 (или м 2 ).
≥ 0,50 L o для конструктивных элементов, поддерживающих один пол (например, балок, балок, плит и т. Д.).
≥ 0,40 L o для конструктивных элементов, поддерживающих два или более этажа (например, колонны и т. Д.).
Никакое уменьшение не допускается для динамических нагрузок на пол более 4,79 кН / м 2 (100 фунтов / фут 2 ) или для полов общественных собраний, таких как стадионы, зрительные залы, кинотеатры и т. Д., Поскольку существует большая вероятность того, что такие этажи будут перегружены или использованы как гаражи.
L o = несниженная расчетная временная нагрузка на фут 2 (или 2 м) из таблицы 2.2 (Таблица 4.3-1 в ASCE 7-16 ).
A T = площадь притока элемента в футах 2 (или м 2 ).
K LL = A I / A T = коэффициент элемента динамической нагрузки из таблицы 2.14 (см. Значения, указанные в таблице 4.7-1 в ASCE 7-16 ).
A I = K LL A T = зона воздействия.
Таблица 2.14. Коэффициент динамической нагрузки элемента.
Строительный элемент | К LL |
Внутренние колонны и внешние колонны без консольных плит | 4 |
Наружные колонны с консольными перекрытиями | 3 |
Угловые колонны с консольными перекрытиями | 2 |
Внутренние и краевые балки без консольных плит | 2 |
Все остальные элементы, включая панели в двусторонних плитах | 1 |
Пример 2. 7
В четырехэтажном школьном здании, используемом для классных комнат, колонны расположены, как показано на Рисунке 2.10. Нагрузка конструкции на плоскую крышу оценивается в 25 фунтов / фут 2 . Определите уменьшенную временную нагрузку, поддерживаемую внутренней колонной на уровне земли.
Рис. 2.10. Четырехэтажное здание школы.
Решение
Любая внутренняя колонна на уровне земли выдерживает нагрузку на крышу и временные нагрузки на втором, третьем и четвертом этажах.
Площадь притока внутренней колонны составляет A T = (30 футов) (30 футов) = 900 футов 2
Временная нагрузка на крышу составляет F R = (25 фунтов / фут 2 ) (900 футов 2 ) = 22500 фунтов = 22,5 k
Для динамических нагрузок на перекрытие используйте уравнения ASCE 7-16 , чтобы проверить возможность уменьшения.
L o = 40 фунтов / фут 2 (из таблицы 4. 1 в ASCE 7-16 ).
Если внутренняя колонна K LL = 4, то зона влияния A 1 = K LL A T = (4) (900 футов 2 ) = 3600 футов 2 .
Поскольку 3600 футов 2 > 400 футов 2 , временная нагрузка может быть уменьшена с помощью уравнения 2.14 следующим образом:
Согласно таблице 4.1 в ASCE 7-16 , приведенная нагрузка как часть неуменьшенной временной нагрузки на пол для классной комнаты равна Таким образом, приведенная временная нагрузка на пол составляет:
F F = (20 фунтов / фут 2 ) (900 футов 2 ) = 18000 фунтов = 18 кг
Общая нагрузка, воспринимаемая внутренней колонной на уровне земли, составляет:
F Итого = 22.5 к + 3 (18 к) = 76,5 к
Краткое содержание главы
Структурные нагрузки и системы нагружения: Конструкционные элементы рассчитаны на наихудшие возможные сочетания нагрузок. Некоторые нагрузки, которые могут воздействовать на конструкцию, кратко описаны ниже.
Постоянные нагрузки : Это нагрузки постоянной величины в конструкции. Они включают в себя вес конструкции и нагрузки, которые постоянно прилагаются к ней.
Динамические нагрузки : Это нагрузки различной величины и положения.К ним относятся подвижные грузы и нагрузки из-за занятости.
Ударные нагрузки : Ударные нагрузки — это внезапные или быстрые нагрузки, прикладываемые к конструкции в течение относительно короткого периода времени по сравнению с другими нагрузками на конструкцию.
Дождевые нагрузки : Это нагрузки из-за скопления воды на крыше после ливня.
Ветровые нагрузки : Это нагрузки из-за давления ветра на конструкции.
Снеговые нагрузки : Это нагрузки, оказываемые на конструкцию скопившимся снегом на крыше.
Нагрузки при землетрясении : Это нагрузки, оказываемые на конструкцию колебаниями грунта, вызванными сейсмическими силами.
Гидростатическое давление и давление грунта : Это нагрузки на подпорные конструкции из-за давлений, создаваемых удерживаемыми материалами. Они линейно меняются с высотой стен.
Сочетания нагрузок: Двумя методами проектирования зданий являются метод расчета коэффициента нагрузки и сопротивления (LRFD) и метод расчета допустимой прочности (ASD).Некоторые комбинации нагрузок для этих методов показаны ниже.
LRFD:
1.1.4 D
2.1.2 D + 1.6 L + 0,5 ( L r или S или R )
3.1.2 D + 1.6 ( L r или S или R ) + ( L или 0,5 W )
4.1.2 D + 1.0 W + L + 0.5 ( L R или S или R )
5.0.9 D + 1.0 W
ASD:
1. D
2. D + L
3. D + ( L r или S или R )
4. D + 0,75 L + 0,75 ( L r или S или R )
5. D + (0,6 W )
Список литературы
ACI (2016), Требования строительных норм для конструкционного бетона (ACI 318-14), Американский институт бетона.
ASCE (2016), Минимальные расчетные нагрузки для зданий и других конструкций, ASCE 7-16, ASCE.
ICC (2012), Международные строительные нормы и правила, Международный совет по нормам.
Практические задачи
2.1 Определите максимальный факторный момент для балки крыши, подверженной следующим эксплуатационным нагрузкам:
M D = 40 psf (статический момент нагрузки)
M L r = 36 psf (момент нагрузки на крышу)
M s = 16 psf (момент снеговой нагрузки)
2.2 Определите максимальную факторную нагрузку, которую выдерживает колонна, подверженная следующим эксплуатационным нагрузкам:
P D = 500 тысяч фунтов (статическая нагрузка)
P L = 280 тысяч фунтов (постоянная нагрузка на пол)
P S = 200 тысяч фунтов (снеговая нагрузка)
P E = ± 30 тысяч фунтов (сейсмическая нагрузка)
P w = ± 70 тысяч фунтов (ветровая нагрузка)
2. 3 Типичная планировка композитной системы перекрытий из железобетона и бетона в здании библиотеки показана на рисунке P2.1. Определите статическую нагрузку в фунтах / футах, действующую на типичную внутреннюю балку B 1- B 2 на втором этаже. Все лучи имеют размер W 12 × 44, расстояние между ними составляет 10 футов. Распределенная нагрузка на второй этаж:
Пескоцементная стяжка толщиной 2 дюйма | = 0.25 фунтов / кв. Дюйм |
Железобетонная плита толщиной 6 дюймов | = 50 фунтов / кв. Дюйм |
Подвесной потолок из металлической обрешетки и гипсокартона | = 10 фунтов / кв. Дюйм |
Электротехнические и механические услуги | = 4 фунта / кв. Дюйм |
Типовой план этажа
Рис.P2.1. Сталь-железобетонная композитная система перекрытий.
2.4 План второго этажа здания начальной школы показан на рисунке P2.1. Отделка пола аналогична практической задаче 2.3, за исключением того, что потолок выполнен из акустической древесноволокнистой плиты с минимальной расчетной нагрузкой 1 фунт-сила на фут. Все балки имеют размер W, 12 × 75, вес 75 фунтов / фут, а все балки — W 16 × 44, с собственным весом 44 фунта / фут. Определите статическую нагрузку на типичную внутреннюю балку A 2- B 2.
2.5 План второго этажа офисного помещения показан на рисунке P2.1. Отделка пола аналогична практической задаче 2.3. Определите общую статическую нагрузку, приложенную к внутренней колонне B 2 на втором этаже. Все балки W 14 × 75, и все балки W 18 × 44.
2.6 Четырехэтажное здание больницы с плоской крышей, показанное на рисунке P2. 2, имеет рамы с концентрическими связями в качестве системы сопротивления поперечной силе. Вес на каждом уровне пола указан на рисунке.Определите сейсмический сдвиг основания в тысячах фунтов с учетом следующих расчетных данных:
S 1 = 1,5 г
S s = 0,6 г
Класс площадки = D
Рис. P2.2. Четырехэтажное здание с плоской крышей.
2.7 Используйте ASCE 7-16 для определения снеговой нагрузки (psf) для здания, показанного на рисунке P2.3. Следующие данные относятся к зданию:
Снеговая нагрузка на грунт = 30 фунтов / кв. Дюйм
Крыша полностью покрыта битумной черепицей.
Угол наклона крыши = 25 °
Открытая местность
Категория размещения I
Неотапливаемое сооружение
Рис. P2.3. Образец кровли.
2,8. В дополнение к расчетной снеговой нагрузке, рассчитанной в практической задаче 2.7, крыша здания на рисунке P2. 3 подвергается статической нагрузке 16 фунтов на квадратный фут (включая вес фермы, кровельной доски и асфальтовой черепицы) по горизонтали. самолет. Определите равномерную нагрузку, действующую на внутреннюю ферму, если фермы имеют 6 футов-0 дюймов в центре.
2.9 Ветер дует со скоростью 90 миль в час на закрытое хранилище, показанное на рисунке P2.4. Объект расположен на ровной местности с категорией воздействия B. Определите давление скорости ветра в psf на высоте карниза объекта. Топографический коэффициент равен K zt = 1.0.
Рис. P2.4. Закрытая сторга.
Как определить толщину кладки стен в зданиях?
Толщина кирпичной кладки в здании рассчитывается с учетом нагрузок и других факторов.Обсуждаются различные требования к подходящей толщине кладки стен.
Рис.1: Каменная стена и структура каменной кладки
Требования к толщине кладки стен в зданиях
Существуют различные требования к толщине кладки стен, которые необходимо учитывать на этапе проектирования.
Например, рекомендуется использовать постоянную толщину стены кладки между боковыми опорами. Боковая опора для кладки обеспечивается поперечными стенами, пилястрами и конструктивными элементами каркаса, как показано на рисунке 2.
Рис.2: Боковая опора каменной стены
Что касается изменения кладки в вертикальном направлении, следует учитывать расстояние между этажами, конструкционными каркасами и крышами, когда толщина кирпичной стены варьируется.
Толщина кирпичной кладки меняется между полом и крышей, а также между разными этажами, как правило, для достижения тепловых, звуковых и противопожарных требований.
Рис.3: Вертикальная опора кирпичной стены, учитываемая при изменении толщины кладки
При изменении толщины стены кладки рекомендуется удлинить более толстую стену до нижнего уровня опоры.
Строительные нормы и правила для конструкции каменной кладки (ACI 530-11) гласят, что при изменении толщины кирпичной стены, построенной из пустотелых каменных блоков, потребуется обеспечить слой или несколько слоев твердых блоков каменной кладки или полностью залитые пустотелые блоки из кирпичной кладки между более толстой и более тонкой каменной стеной.
Целью создания прочного слоя кладки между более толстой и более тонкой кладкой является надлежащая передача нагрузок от верхней стены (тонкая стена) к стене ниже (толстая стена).
Есть несколько ограничений и ограничений, которые следует учитывать для каменных стен, за исключением случая, когда стены спроектированы для армирования на основе инженерных принципов.
Ограничения, связанные с толщиной кладки для различных типов кирпичных стен, обсуждаются ниже.
Требования к толщине несущей кирпичной стены
Толщина несущей кирпичной стены должна быть не менее 304,8 мм (1 фут.) толщиной для максимальной высоты стены 10,668 м (35 футов).
Кроме того, толщину кирпичной стены необходимо увеличивать на 101,6 мм (4 дюйма) на каждые последующие 10,668 м (35 футов) высоты или доли этой высоты, измеренные от верха каменной стены.
Есть несколько случаев, когда вышеуказанные условия не могут применяться к несущим каменным стенам.
Эти исключительные случаи включают усиленную каменную стену, каменную стену верхнего этажа, каменную стену жилых домов, каменную стену пентхаусов и крышных конструкций, каменную стену из простого бетона и цементного кирпича, пустотелую каменную стену, облицованную каменную стену, несущую каменную стену.
Кирпичная стена с усилением
Если несущая кирпичная стена усилена или усилена железобетонными полами или каменными поперечными стенами на расстоянии не более 3,65 м (12 футов), то можно принять толщину 304,8 мм (1 фут) для максимальной стены. высота 21,33 м (70 футов).
Толщина каменной стены должна увеличиваться на 101,6 мм (4 дюйма) на каждые последующие 21,33 м (70 футов) высоты или доли этой высоты, измеренные от верха каменной стены.
Каменная стена верхнего этажа
Разрешается использовать толщину 203,2 мм (8 дюймов) для несущей кладки верхнего этажа здания с максимальной высотой 10,668 м (35 футов).
Стена не должна подвергаться боковым нагрузкам, а ее высота не должна превышать 3,65 м (12 футов), в противном случае такая толщина не может учитываться.
Каменная стена для жилых домов
Толщина несущей кирпичной стены в жилом доме с максимумом трех этажей принимается равной 203.2 мм (8 дюймов).
Эту толщину не следует использовать, если здание выше трех этажей, или если высота стены превышает 10,668 м (35 футов), или если стена подвергается боковым нагрузкам.
Кроме того, толщина стены может быть уменьшена до 152,4 мм (6 дюймов) для одноэтажного здания, если максимальная высота стены составляет 2,74 м (9 футов).
Кладка стен мансард и конструкций крыши
Толщина кладки несущей стены высотой 3.65 м (12 футов) над уровнем крыши или пентхаусы можно принять за 203,2 мм (8 дюймов).
Стена из обычного бетона и кирпича с цементным раствором
Можно использовать простой бетон и кирпичную кладку толщиной 152 мм (6 футов).
Пустотелая кирпичная стена
Рекомендуется ограничить высоту полости или стены из каменной кладки максимум 10,668 м (35 футов).
При этом высота стенки полости не должна быть больше 7.62 м (25 футов) над опорой, если ее толщина равна 254 мм (10 дюймов).
Требования к толщине стен из бутового камня
Толщина каменной стены ни в коем случае не должна быть меньше 406 мм (16 дюймов).
Толщина ненесущих стен кладки
Минимальная толщина стены парапета может быть принята равной 203 мм (8 дюймов), а его высота не должна превышать толщину стены более чем в три раза.
Тем не менее, можно использовать стену парапета меньшей толщины, если она усилена, чтобы противостоять землетрясениям.
Что касается требований к толщине наружной несущей кирпичной стены, следует использовать те же технические характеристики, что и в ACI 530-11 для несущей каменной стены: 152 мм (6 дюймов) для одноэтажного здания и 203 мм (8 дюймов) для более чем одноэтажного здания.
Подробнее:
Виды кладки стен
Типы соединений при строительстве стен из кирпичной кладки и их применение
Строительство зданий с пластиковыми бутылками — стены, крыша и благоустройство
Типы сейсмостойких каменных стен
Список литературы
ACI 530-11. Требования и спецификации строительных норм и правил для конструкции каменной кладки. Американский институт бетона. Мичиган, стр. C151-C152. 2011.
BIA. Эмпирический дизайн кирпичной кладки. Ассоциация кирпичной промышленности. Вирджиния, стр. 2-4. 1991.
ФРЕДЕРИК С. МЕРРИТТ, ДЖОНАТАН Т. РИКЕТТС. Справочник по проектированию и строительству зданий. 6-е изд. Нью-Йорк: McGRAW-HILL, 2001.
.
ICC. Строительный кодекс Флориды. Совет Международного кодекса. Флорида, стр. 21.6-21.7. 2001.
Правительство округа Кэрролл | Рекомендации по соблюдению жилищного кодекса округа Кэрролл, Мэриленд
Следующий список требований кодекса предназначен для того, чтобы помочь вам в соблюдении Кодекса публичных местных законов и постановлений округа Кэрролл, глава 170, но он не охватывает весь кодекс.
Несоблюдение всех применимых требований кодекса приведет к уведомлению о нарушении и / или приказу о прекращении работы до тех пор, пока такие нарушения не будут исправлены.
РАЗРЕШЕНИЕ НА СТРОИТЕЛЬСТВО И ОДИН КОМПЛЕКТ УТВЕРЖДЕННЫХ ЧЕРТЕЖЕЙ ДОЛЖНЫ БЫТЬ ДОСТУПНЫ НА МЕСТЕ ДЛЯ ТРЕБУЕМОЙ ПРОВЕРКИ.
Если у вас возникнут какие-либо вопросы относительно этих требований, звоните по телефону 410-386-2674.
1. ПРОЕКТИРОВАНИЕ ЗДАНИЯ
a. Глубина линии замерзания 30 дюймов
б. Живые нагрузки на перекрытие
i. Жилые комнаты 40 # PSF добавить 10 # статическая нагрузка
ii.Спальные места и кладовые на чердаке с лестницей 30 # PSF добавить 10 # статическую нагрузку
iii. Склад на чердаке (легкий склад, без лестницы) 20 # PSF добавить 10 # статическая нагрузка
iv. Деки 40 # PSF
c. Кровельные нагрузки
i. Статическая нагрузка на нижний пояс 10 # PSF
ii. 40 # ПСФ
г. Расчетная скорость ветра 115 миль / ч, максимальная
2. ПОДНОЖКИ
a. Минимальная глубина уклона до низа всех опор — 30 дюймов или до твердой опоры, в зависимости от того, что больше.
г. Размер — должен иметь толщину 8 дюймов и выступать как минимум на 4 дюйма за пределы стены с каждой стороны.
г. Опоры дымохода — должны иметь толщину 12 дюймов и выходить на 6 дюймов за пределы стены со всех сторон.
г. Подушка основания колонны — одноярусная опора 24 x 24 x 12 дюймов, 30 x 30 x 15 дюймов для двухэтажной опоры или 36 x 36 x 18 дюймов для трехъярусной опоры; при переносе нагрузки на крышу, увеличится до следующего размера столбца подбетонка площадки; или рассчитаны на то, чтобы нести необходимый груз.
e. Верхняя поверхность должна быть ровной, нижняя поверхность — уклон не более 1: 10.
ф. Ступенчатые опоры — верхний проход должен перекрывать предыдущий и связывать вместе.
г. Монолитная заливка — одновременная заливка нижних колонтитулов, стены и плиты — может использоваться с шириной не менее 12 дюймов и глубиной 30 дюймов и толщиной плиты 3 ½ дюйма.
3. ФУНДАМЕНТАЛЬНЫЕ СТЕНЫ
a. Верхний слой блока должен быть сплошным или заполненным.
г. Верх стены на высоте не менее 6 дюймов над уровнем земли.
г. Толщина стены в зависимости от глубины засыпки. Максимальная засыпка для 8-дюймового полого блока 4 ’, для 10-дюймового блока 5’, для 12-дюймового блока 6 ’. Должностное лицо Кодекса, когда того требуют почвенные условия, может уменьшить разрешенный объем обратной засыпки или запросить отчет инженера.
г. Пластинчатые анкеры — утвержденные ремни должны располагаться и устанавливаться в соответствии с инструкциями производителя. Болты ½ дюйма на расстоянии не более 6 дюймов по центру, 7 дюймов в кирпичную кладку и не более 12 дюймов от углов.
e. Если толщина стен из полых блоков из кирпичной кладки или полых стен, связанных с каменной кладкой, уменьшается, то между стеной внизу и более тонкой стеной сверху должен быть построен ряд сплошной кладки.
ф. Стеновая конструкция каменной кладки должна быть установлена в соответствии с нормами.
4. ДРЕНАЖ ФУНДАМЕНТА, ГИДРОИЗОЛЯЦИЯ
a. Перфорированная дренажная плитка = минимальный диаметр 3 дюйма или утвержденная дренажная система с отчетом ICC ES. Устанавливается по внешнему периметру стен, где внутренняя оценка ниже внешней.
г. Плитка окружена 4-дюймовым гравием и покрыта утвержденным фильтрующим материалом.
г. Дренажная плитка должна сливаться в герметичный отстойник, в котором установлен насос или который обеспечивает самотеком для уклона, слива как минимум на 10 футов от дома и 10 футов от границы участка.
г. Свободный дренаж, привязанный к герметичному отстойнику или положительному потоку силы тяжести с помощью 2-дюймовой трубы с минимальным уклоном ¼–1’0 дюймов или 3-дюймовой трубы с минимальным уклоном 1
/ 8–1’0 дюймов
e.Наружная часть кирпичных стен, окружающих подвалы ниже уровня земли, должна быть покрыта портландцементом 3/8 дюйма с выемкой на дне и покрыта утвержденной гидроизоляцией.
ф. Залитые бетонные стены, ограждающие участки ниже уровня земли, должны иметь стенные анкеры, отломанные заподлицо с поверхностью и покрытые утвержденной гидроизоляцией.
5. ОПОРНЫЕ КОЛОННЫ ДОМА
a. Все опорные стойки или колонны должны быть закреплены сверху и снизу.
г. Регулируемые колонны — винтовые анкеры в бетоне для предотвращения бокового смещения.
г. Все поверхности стальных колонн должны быть покрыты антикоррозийной краской.
г. Расстояние между колоннами — справочные размеры балок.
e. Опоры колонн — см. Раздел 2 d.
6. ЗАЩИТА ОТ ПОВРЕЖДЕНИЯ
a. Подоконники, обработанные под давлением, менее 8 дюймов от готового сплава.
г. Вся древесина, контактирующая с землей или бетоном, должна обрабатываться под давлением.
г. Деревянные балки забиты в каменную стену — зазор ½ дюйма по бокам и по краям. Низ балки не должен находиться в прямом контакте с кладкой.
г. Деревянные балки или нижняя часть деревянного конструкционного пола, если расстояние составляет менее 18 дюймов, или деревянные балки, когда расстояние до открытого грунта составляет менее 12 дюймов, должны подвергаться обработке давлением.
e. Подоконники и шпалы на бетонной или кирпичной плите, находящейся в непосредственном контакте с землей, должны подвергаться обработке давлением, если они не отделены от такой плиты непроницаемым барьером для влаги.
ф. Сайдинг, обшивка, каркас стен снаружи на расстоянии менее 6 дюймов от земли должны быть изготовлены из дерева, обработанного под давлением, или защищены утвержденным способом.
г. Деревянные планки обрешетки или другие элементы деревянного каркаса, прикрепленные непосредственно к внутренней части наружных каменных стен или бетонной стены ниже уровня земли, за исключением случаев, когда одобренный антипирен наносится между стеной и полосами обрешетки или элементами каркаса.
ч. Вся древесина, контактирующая с землей и поддерживающая постоянные конструкции, должна быть обработана пиломатериалом.
и. Все крепежные детали для древесины, обработанной под давлением, должны быть горячеоцинкованы, оцинкованы, из нержавеющей стали, силиконовой бронзы или меди.
7. ПОМОЩЬ НА ПЕРЕДАЧИ
a. Доступ ко всем подпольным помещениям. Минимальный размер проема в полу должен составлять 18 x 24 дюйма;
проемов в стене по периметру должны быть не менее 16 x 24 дюйма.
г. Вентиляция подлозки 1 кв.футов площади на 150 кв. футов. Одно отверстие в пределах 3 футов от каждого угла.
г. Обеспечьте водосточную плитку, когда уклон под полом ниже, чем внешний готовый уклон.
г. Радоновая система должна быть установлена в соответствии с Приложением F Международного жилищного кодекса
и обозначена непрерывной оранжевой линией краски по всей конструкции.
e. Внешняя часть каменных стен, окружающих подвалы ниже уровня земли, должна быть покрыта 3
/8-дюймовым цементом Portland
, выгнутым снизу и покрытым утвержденной гидроизоляцией.
ф. Залитые бетонные стены, ограждающие участки ниже уровня земли, должны иметь стенные анкеры, отломанные заподлицо с поверхностью
и покрытые утвержденной гидроизоляцией.
8. СТРОИТЕЛЬСТВО СТЕН
a. Несущие стены — внутренние и внешние. Двойная верхняя пластина. Исключение: одинарная верхняя плита может быть установлена на несущих и наружных стенах
при условии, что плита должным образом закреплена в стыках, углах и
пересекающихся стенах по крайней мере эквивалентом оцинкованной стали толщиной 3 дюйма на 6 дюймов на 0,9036 дюйма, что составляет
прибивается к стене стойки или сегменту стены тремя гвоздями 8d или аналогичными, при условии, что стропила или балки
центрируются по стойкам с допуском не более 1 дюйма.
г. Должны быть сооружены внутренние несущие перегородки и противопожарная защита должна осуществляться как внешние стены.
г. Внутренние ненесущие перегородки могут быть сконструированы с использованием стоек 2 ”x 3”, расположенных с шагом 16 дюймов по центру, или стоек 2 ”x
4”, расположенных с интервалом 24 дюйма по центру, где не требуется в качестве связующей линии стены.
г. Противопожарная защита всех скрытых пространств перегородок с карнизами стен, чтобы отрезать все скрытые сквозняки и создать эффективный противопожарный барьер между этажами и крышей.
e. Здания должны быть укреплены в соответствии с нормами или инженерным проектированием.
ф. Стойки должны быть непрерывными от пола / фундамента до потолка или крыши.
г. Все пролеты коллекторов и балок должны быть установлены в соответствии с нормами или спроектированы в
в соответствии с принятой инженерной практикой.
9. ОБЩЕЕ СТРОИТЕЛЬСТВО КЛАДКИ
a. Минимальная толщина кладки несущей стены более одного этажа должна составлять 8 дюймов.
г. ПЛОТНЫЕ кирпичные стены одноэтажных жилых домов и гаражей должны быть не менее 6 дюймов в толщину и не более 9 дюймов в высоту.
г. Если толщина стен из полых блоков из кирпичной кладки или полых стен, связанных с каменной кладкой, уменьшается, то между стеной внизу и более тонкой стеной сверху должен быть построен ряд сплошной кладки.
г. Пустотные опоры должны быть закрыты 4-дюймовым каменным слоем или бетоном или должны иметь полости верхнего слоя, заполненные бетонным раствором.
e. Кладка над проемами должна поддерживаться стальными перемычками, железобетонными или каменными перемычками или каменными арками, предназначенными для поддержки прилагаемой нагрузки.
ф. Балки, фермы или другие сосредоточенные нагрузки, поддерживаемые стеной или колонной, должны иметь опору длиной не менее 3 дюймов на сплошную кладку толщиной не менее 4 дюймов или на металлическую опорную плиту соответствующей конструкции.
г. Стены ствола кладки высотой и длиной 48 дюймов или меньше должны быть усилены.
10. НАСТЕННЫЕ ПОКРЫТИЯ
а. Сайдинг, потолок, потолок или одобренный тип для наружного использования.
и. За виниловым сайдингом необходим водостойкий барьер.
г. Кладочный шпон
i. 1 дюйм воздушного пространства или 1 дюйм заделки до обрамления.
ii. Кладочный шпон не должен выдерживать никакой вертикальной нагрузки, кроме статической нагрузки шпона выше.
iii. Крепится к несущей стене с помощью нержавеющих металлических стяжек.
iv. Металлические стенные анкеры должны располагаться на расстоянии не более 24 дюймов по центру по горизонтали и должны выдерживать не более 2,67 кв. Футов площади стены.
v. Фетровую бумагу без дырок и разрывов или другой одобренный атмосферостойкий материал следует покрыть всеми внешними стенами.
vi. Гидроизоляция для облицовки кладки должна располагаться под первым слоем кладки над уровнем готовой земли над фундаментной стеной или плитой.
vii. Снаружи кладки должны быть предусмотрены дренажные отверстия на максимальном расстоянии 33 дюйма от центра и не менее 3/16 дюйма в диаметре.
viii. Гидроизоляцию следует использовать вокруг окон и дверей, под каменной кладкой и на ее концах, прежде всего выступов, деревянной отделки, там, где подъезды, террасы или лестницы, прикрепленные к стене или полу, на всех пересечениях стен и крыши.
11. НАПОЛЬНЫЕ СИСТЕМЫ
a. Минимальная нагрузка на балку: дерево — 1 ½ дюйма, кладка — 3 дюйма.
г. Подвесить балки или перекрыть балку минимум на 3 дюйма.
г. Системы инженерных полов должны быть установлены, закреплены и заблокированы в соответствии с инструкциями производителя.
12. РАФЕРЫ ИЛИ ФЕРМЫ
a. Конструкция крыши и потолка должна быть способна выдерживать все нагрузки, возникающие в соответствии с требованиями к нагрузке, и передавать результирующие нагрузки на опорные элементы конструкции.
г. Фермы должны быть скреплены для предотвращения вращения и обеспечения поперечной устойчивости в соответствии с требованиями, указанными в строительной документации или требованиями BCSI 1-03. Вся строительная документация должна быть на месте.
г. Обшивка кровли:
и. Фанера — ½ ”24” по центру без зажимов; 3/8 ”24” по центру используйте зажимы или блокировку
ii. Фанера OSB — ½ ”24” по центру без зажимов; 7/16 «24» по центру без зажимов 3/8 «16» по центру
используйте зажимы или блокировку.
13.ВЕНТ, ПРОХОД НА ЧЕРДАК
a. Вентиляционные отверстия софита и конька или фронтальные вентиляционные отверстия, чистая свободная вентиляция 1 кв. Фут на каждые 150 кв. Футов площади
вентилируемого помещения.
г. Обеспечьте легкодоступную панель доступа размером 22 x 30 дюймов.
г. Обеспечьте вентиляцию скрытых пространств стропил.
г. Обеспечьте спусковую лестницу с проходом шириной 2 фута к платформе обслуживания HVAC 30 x 30 дюймов, когда блок установлен на чердаке.
e.
14. КРЫША
a. Подложка по требованию R905.1.1 с уклоном крыши более 4 дюймов на 12 дюймов, являющимся однослойным, и уклоном крыши 4 на 12 дюймов, но не менее 2 дюймов на 12 дюймов, являющимся двухслойным, если не утверждено иное.
г. Битумная черепица крепится в соответствии с печатными инструкциями производителя.
г. Установка долин, стен и других гидроизоляций в соответствии с печатными инструкциями производителя битумной черепицы. Требуются ледяные барьеры, указанные в R905.1.2
15. БЕТОННЫЕ ПОЛЫ
а. Бетонная плита на уровне: минимальная толщина 3 ½ дюйма, прочность на сжатие 2500 SPI, каменное основание толщиной 4 дюйма.
г. Заливка не должна содержать растительности и посторонних материалов и должна быть уплотнена, чтобы обеспечить равномерную опору. Заливка не должна превышать 24 дюйма.
г. Пароизоляция толщиной 6 мил с швами, перекрытыми не менее 12 дюймов между бетонной плитой перекрытия и основанием. Пароизоляция может отсутствовать; отдельно стоящие гаражи, хозяйственные постройки и другие неотапливаемые сооружения; подъездные пути, дорожки, патио и другие плоские участки.
г. На плите с уровнем пола менее 12 дюймов ниже уровня земли должна быть установлена изоляция R-10 в соответствии с Международным энергетическим кодексом.
e. Радоновая система должна быть установлена в соответствии с Приложением F Международного жилищного кодекса и обозначена непрерывной оранжевой линией краски по всей конструкции.
16. ДЫМОХОД И КАМИНЫ
a. 4-дюймовая каменная кладка вокруг футеровки дымохода с воздушным пространством ½ дюйма вокруг дымохода.
г. 8 ”массивная кладка без футеровки дымохода.
г. Расстояние между дымоходом и горючими материалами 2 дюйма внутри и / или 1 дюйм снаружи.
г. Противопожарные меры на перекрытиях, перекрытиях и крышах.
e.Верх дымохода должен выступать не менее чем на 2 фута над любой частью здания в пределах 10 футов, но не должен быть менее чем на 3 фута выше точки, в которой он проходит через крышу.
ф. Установите сверчков в дымоходе, если размер, параллельный линии гребня, превышает 30 дюймов и не пересекает линию гребня.
г. Очаги должны выдвигаться минимум на 20 дюймов. Надставки должны быть 16 дюймов для топок площадью менее 6 кв. Футов и 20 дюймов для топок более 6 кв. Футов. Дровяной камин должен иметь установленные двери с уплотнением.
ч. Отверстия для чистки, если таковые имеются, должны быть оборудованы дверцами и рамами из черных металлов, которые должны оставаться плотно закрытыми, за исключением случаев использования.
и. Отверстия для чистки не являются обязательными, за исключением случаев, когда дровяные печи должны быть соединены с дымоходами из каменной кладки. Если они предусмотрены, они должны быть оборудованы дверцами и рамами из черных металлов, которые должны оставаться плотно закрытыми, когда они не используются. Отверстия для очистки должны располагаться не менее чем на 2 ‘6 дюймов ниже самого нижнего входа в дымоход.
Дж. Сборный дымоход — одобренный тип национально признанным испытательным агентством с допусками, указанными в 16-c.
17. ОСВЕЩЕНИЕ, ВЕНТИЛЯЦИЯ И ОТОПЛЕНИЕ
a. Подвал — 2% площади, включая инфильтрацию дверей.
г. Жилые комнаты — 8% площади; ½ работоспособный
ИСКЛЮЧЕНИЯ:
i. Застекленные области могут не открываться, если предусмотрена утвержденная система механической вентиляции, способная производить смену воздуха каждые 30 минут.
ii. Застекленные зоны можно не устанавливать в помещениях, где предусмотрена утвержденная система механической вентиляции, способная производить смену воздуха каждые 30 минут; Предусмотрен искусственный свет, способный производить в среднем 6 футов свечей на площади
комнат на высоте 30 дюймов над уровнем пола.
г. Ванные комнаты — 1 окно площадью не менее 3 кв. Футов с остеклением на ½ открываемых или вытяжных вентиляторов, выводимых наружу с одобренным концевым фитингом в каждом отсеке.
18. РАЗМЕР КОМНАТЫ
а. Минимум 1 комната минимум 120 кв. Футов.
г. Прочие жилые помещения минимум 70 кв. Футов. Исключение: Кухни
c. Комнаты, за исключением кухонь, должны быть не менее 7 футов по горизонтали.
19. НЕОБХОДИМАЯ ВЫСОТА ПОТОЛКА
a. Незаконченный подвал 6’-8 ’, кроме балок 6’-4”.
г. Жилые помещения — минимум 7 футов; для наклонных потолков см. код.
г. Меховые потолки не менее 7 футов.
20. САНИТАРИИ
а. Обеспечьте как минимум 1 санузел, туалет, ванну или душ и кухонную раковину в каждой квартире
.
21. РАСПОЛОЖЕНИЕ ЗАЩИТНОГО СТЕКЛА
a. Входные и выходные двери.
г. Панели раздвижных дверей, распашные двери.
г. Штормовые двери.
г. Двери и ограждения для гидромассажных ванн, гидромассажных ванн, спа, парных, ванн и душевых.Остекление в любой части стены здания, охватывающей эти отсеки, где нижний край остекления находится менее чем на 60 дюймов над входным отверстием слива и в пределах 60 дюймов от кромки воды.
e. Остекление в неподвижной или работающей панели рядом с дверью, где ближайший вертикальный край находится в пределах 24-дюймовой дуги двери в закрытом положении и нижний край которой находится менее чем на 60 дюймов над полом или пешеходной поверхностью.
ф. Окна площадью более 9 кв. Футов и нижний край менее 18 дюймов над полом; верхний край на высоте более 36 дюймов над полом.Одна или несколько поверхностей для ходьбы в пределах 36 дюймов по горизонтали от остекления.
г. Лестница.
22. ПРИКЛЮЧЕННЫЙ ГАРАЖ
а. Отделен от дома и его мансарды гипсокартоном ½ ”со стороны гаража.
г. Гараж между жилыми комнатами должен быть отделен от жилых комнат наверху гипсокартоном 5/8 дюйма типа X, а стены, поддерживающие такую конструкцию, — гипсокартоном 1/2 дюйма.
г. Дверь между домом и гаражом, а не в спальные помещения, двери со сплошным сердечником 1-3 / 8 дюйма или 20-минутные огнестойкие двери или аналогичные, закрывающиеся самостоятельно.
г. Пол, негорючий, с уклоном в сторону главного подъезда транспортного средства или водостока.
23. ТРЕБОВАНИЯ К ВЫХОДУ
a. На каждую жилую единицу должна быть предусмотрена как минимум 1 выходная дверь. Дверь должна иметь боковые петли и обеспечивать минимальную ширину в свету 32 дюйма при измерении между лицевой стороной двери и упором с дверью, открытой под углом 90 градусов.
г. Подвал, жилые чердаки и каждая спальная комната должны иметь как минимум один дверной выход или окно с чистым проемом 5.7 кв. Футов с минимальной открытой шириной 20 дюймов, минимальной открытой высотой 24 дюйма и максимальной высотой порога от пола 44 дюйма. Исключение: чистый проем окон первого этажа уменьшен до 5,0 кв. Футов. ПРИМЕЧАНИЕ: минимальная открытая ширина 20 дюймов и минимальная открытая высота 24 дюйма не обеспечат 5,7 кв. Фута чистого чистого проема. Ширина проема в свету в дюймах x высота проема в свету в дюймах = 820 кв. Дюймов.
г. Решетки, решетки и сетки или другие препятствия, помещенные над окнами аварийного выхода, должны сниматься изнутри без использования ключа или инструмента.
г. Замок или защелка на всех выходных дверях должны легко открываться со стороны, с которой должен быть выполнен выход, без использования ключа.
24. ПОСАДКИ
а. Площадка минимум 3х 3 фута должна быть с каждой стороны выходных дверей. Пол или площадка не должны быть более чем на 1 ½ дюйма ниже вершины порога.
ИСКЛЮЧЕНИЯ:
i. Наверху внутренней лестницы при условии, что дверь не поднимается над лестницей.
ii. Посадка у внешнего дверного проема должна быть не более чем на 7 ¾ дюймов ниже верхней границы порога, если дверь не опускается над площадкой.
iii. Наружные штормовые и сетчатые двери освобождены от требований к посадке.
25. ЛЕСТНИЦА
а. Минимальная ширина 36 дюймов выше высоты поручня и ниже требуемой высоты перемычки.
г. Минимальная ширина на высоте поручня и ниже составляет 32 дюйма.
г. Минимальный протектор — 10 дюймов от носа к носу. Максимальный подступенок составляет 7 ¾ ”от верха проступи до верха проступи.
г. Наибольшая высота ступени или подступенка в пределах любого лестничного марша не должна превышать наименьшую более чем на 3/8 дюйма. Высота по высоте не менее 6 футов 8 дюймов.
e. Допускаются забежные, винтовые и круговые лестницы; у каждого свой код.
ф. Подступенки не должны пропускать 4-дюймовую сферу.
г. Закрытое доступное пространство под лестницей должно иметь стены и перекрытия, защищенные с закрытой стороны сухой стеной ½ дюйма.
26. ПОРУЧНИ И ЗАЩИТЫ
a. Поручни, имеющие минимальную и максимальную высоту 34 и 38 дюймов, измеренную от выступа протектора.
г. Поручни рядом со стеной должны иметь пространство не менее 1 ½ дюйма между стеной и поручнем и должны быть возвращены или заканчиваться новыми стойками.
г. Ограждения для подъездов, балконов или фальшполов на высоте более 30 дюймов над полом или уровнем земли должны иметь ограждения высотой не менее 36 дюймов, измеренные по вертикали от носа ступеней.
г. Открытые стороны лестниц с общим подступенком более 30 дюймов над полом или уровнем должны иметь перила не менее 34 дюймов в высоту, измеренные по вертикали от носа ступеней.
e. Расстояние между элементами ограждения по горизонтали и вертикали не должно превышать 4 дюйма.
ф. Промежуточные рельсы и / или декоративные затворы не должны пропускать объект диаметром 6 дюймов или более.
г. Треугольные отверстия, образованные подступенком, ступенькой и нижним поручнем перил на лестницах, не должны пропускать сферу диаметром 6 дюймов.
27. ДЫМОВАЯ СИГНАЛИЗАЦИЯ
a. Установлены дымовые извещатели по мере необходимости для новых жилищ; на каждом этаже, за пределами каждой отдельной спальной зоны и в каждой спальне. См. Раздел IRC R314 для получения дополнительной информации.
г. Сигнализаторы угарного газа установлены снаружи каждой спальной зоны в непосредственной близости от спален. Дополнительную информацию см. В разделе IRC R315.
28.КУХОННАЯ ВЕНТИЛЯЦИЯ И СУШИЛКА ДЛЯ ОДЕЖДЫ ВЫХЛОПНАЯ
a. Вентиляционные системы должны быть независимыми от всех других систем и должны выводить влагу наружу.
г. Вентиляционные отверстия не должны быть соединены винтами для листового металла или средствами крепления, которые заходят в вентиляционное отверстие.
г. Вытяжные отверстия должны быть оборудованы обратным клапаном.
г. Вентиляционные отверстия должны быть выполнены из жестких металлических каналов с гладкими внутренними поверхностями с соединениями, проходящими в направлении воздушного потока.
e. Соединения гибких воздуховодов не должны быть скрыты внутри конструкции.
ф. Размер вентиляционного отверстия должен быть не менее диаметра выпускного отверстия прибора.
г. Максимальная длина вытяжного вентиляционного отверстия диаметром 4 дюйма не должна превышать 35 футов от места сушилки до стены или окончания крыши и должна заканчиваться полностью открывающимся вытяжным колпаком. Если воздуховод скрыт, постоянная этикетка или бирка должна быть расположена в пределах 6 футов от длины соединения, и каждый вертикальный стояк должен быть снабжен средствами для очистки.
ч. Должно применяться уменьшение максимальной длины на 30 дюймов для каждого изгиба на 45 градусов и на 5 футов для каждого изгиба на 90 градусов.
29. МИКРОВОЛНОВЫЕ ПЕЧИ
a. Установка перечисленного и маркированного кухонного прибора или микроволновой печи над перечисленным и маркированным кухонным прибором должна соответствовать условиям перечисления и маркировки верхнего прибора.
30. ВЫТЯЖНЫЕ ВЕНТИЛЯЦИОННЫЕ ВЫТЯЖКИ
a. Домашние бройлеры с открытым верхом должны иметь металлический вентиляционный колпак размером не менее 28 с зазором не менее ”между колпаком и нижней стороной из горючего материала или шкафов.
г. Между варочной поверхностью и горючими материалами или шкафами должно быть сохранено расстояние не менее 24 дюймов.
г. Вытяжной колпак должен быть не меньше ширины бройлера и распространяться по всему блоку.
31. Желоба и водостоки
a. Требуется для конструкций с любой долей ниже допустимой.
г. Забрызгивайте блоки на водосточные трубы.
32. ТРЕБОВАНИЯ К ИЗОЛЯЦИИ ПРЕДВАРИТЕЛЬНЫЙ МЕТОД
a. Потолки Р-49.
г. Стены Р-20 или Р-13 + 5 сплошная изоляция
c.Стены подвала Р-10 сплошной или Р-13 полый.
г. Периметр плиты Р-10. (см. требования — Бетонный пол, Раздел 15)
e. Стены подполья Р-10.
ф. Этаж Р-19.
г. Окна должны иметь значение U 0,35
.
33. ТРЕБОВАНИЯ К ИЗОЛЯЦИИ ТАКЖЕ МОГУТ БЫТЬ ВЫПОЛНЕНЫ РАСЧЕТАМИ ЭНЕРГЕТИЧЕСКОГО КОНТУРА:
a. Агентство, одобренное третьей стороной.
г. Отчет о проверке соответствия РЭС.
г. Соответствие программе Energy Star на основе принятой IECC.
34. ТРЕБОВАНИЯ К ПРОГРАММИРОВАНИЮ
a. Утвержденный антикоррозийный оклад должен быть установлен в соответствии с правилами для предотвращения попадания воды на все окна, двери, дымоходы, крыши, кирпичную кладку, настил и отделку наружных стен.
Расчет нагрузки на колонну, балку и плиту
При расчете общей нагрузки на колонны, балки, плиты мы должны знать о различных нагрузках, приходящихся на колонну. Как правило, расположение колонн, балок и перекрытий можно увидеть в конструкции каркасного типа.В раме нагрузка на конструкцию передается от плиты к балке, от балки к колонне и в конечном итоге достигает фундамента здания.
Для расчета нагрузки здания необходимо рассчитать нагрузки на следующие элементы:
Что такое столбец:
Колонна — это вертикальный элемент строительной конструкции, который в основном предназначен для восприятия сжимающей и продольной нагрузки. Колонна — один из важных конструктивных элементов строительной конструкции. В зависимости от нагрузки, поступающей на столбец, размер увеличивается или уменьшается.
Длина колонны обычно в 3 раза меньше их наименьшего поперечного размера в поперечном сечении. Прочность любой колонны в основном зависит от ее формы и размеров поперечного сечения, длины, расположения и положения колонны.
Расчет нагрузки на колонну
Что такое луч:
Балка — это горизонтальный конструктивный элемент в строительстве, который предназначен для восприятия поперечной силы, изгибающего момента и передачи нагрузки на колонны с обоих концов.Нижняя часть балки испытывает силу растяжения и силу сжатия верхней части. Таким образом, в нижней части балки предусмотрено больше стальной арматуры по сравнению с верхней частью балки.
Что такое плита:
Плита представляет собой ровный конструктивный элемент здания, на котором предусмотрена ровная твердая поверхность. Эти плоские поверхности плит используются для изготовления полов, крыш и потолков. Это горизонтальный конструктивный элемент, размер которого может варьироваться в зависимости от размера и площади конструкции, а также может варьироваться его толщина.
Но минимальная толщина плиты указана для нормального строительства около 125 мм. Как правило, каждая плита поддерживается балкой, колонной и стеной вокруг нее.
Нагрузка на колонну, балку и плиту :
1) Собственная масса колонны X Количество этажей
2) Собственная масса балок на погонный метр
3) Нагрузка стен на погонный метр
4) Общая нагрузка на плиту (статическая нагрузка + динамическая нагрузка + собственный вес)
Помимо указанной выше нагрузки, на колонны также действуют изгибающие моменты, которые необходимо учитывать при окончательном проектировании.
Наиболее эффективным методом проектирования конструкций является использование передового программного обеспечения для проектирования конструкций, такого как ETABS или STAAD Pro.
Эти инструменты представляют собой упрощенный и трудоемкий метод ручных расчетов для проектирования конструкций, который в настоящее время настоятельно рекомендуется в полевых условиях.
для профессионального проектирования конструкций, есть несколько основных допущений, которые мы используем при расчетах нагрузок на конструкции.
Подробнее: H ow до C Расчетный размер колонны для строительства (конструкция колонны RCC )
Подробнее : Как рассчитать количество стали для плиты
1.Расчет нагрузки на колонну (расчет конструкции колонны):
мы знаем, что собственный вес бетона составляет около 2400 кг / м3, , что эквивалентно 240 кН, а собственный вес стали составляет около 8000 кг / м3.
Итак, если мы примем размер колонны 230 мм x 600 мм с 1% стали и стандартной высотой 3 метра, собственный вес колонны составит около 1000 кг на пол, что id равно 10 кН.
- Объем бетона = 0.23 x 0,60 x 3 = 0,414 м³
- Вес бетона = 0,414 x 2400 = 993,6 кг
- Вес стали (1%) в бетоне = 0,414 x 0,01 x 8000 = 33 кг
- Общий вес колонны = 994 + 33 = 1026 кг = 10KN
При расчетах конструкции колонны мы предполагаем, что собственный вес колонн составляет от 10 до 15 кН на пол.
Расчет нагрузки на колонну, балку и плиту :
2.Be am Расчет нагрузки:
Мы применяем тот же метод расчета для балки.
мы предполагаем, что каждый метр балки имеет размеры 230 мм x 450 мм без учета толщины плиты.
Предположим, что каждый (1 м) метр балки имеет размер
- 230 мм x 450 мм без плиты.
- Объем бетона = 0,23 x 0,60 x 1 = 0,138 м³
- Вес бетона = 0,138 x 2400 = 333 кг
- Вес стали (2%) в бетоне = = 0.138 x 0,02 x 8000 = 22 кг
- Общий вес колонны = 333 + 22 = 355 кг / м = 3,5 кН / м
Таким образом, собственный вес будет около 3,5 кН за погонный метр.
3. Расчет нагрузки на стену :
известно, что Плотность кирпича колеблется от 1500 до 2000 кг на кубический метр.
Для кирпичной стены толщиной 6 дюймов, высотой 3 метра и длиной 1 метр,
Нагрузка / погонный метр равняться 0.150 x 1 x 3 x 2000 = 900 кг,
, что эквивалентно 9 кН / метр.
Этот метод можно использовать для расчета нагрузки кирпича на погонный метр для любого типа кирпича с использованием этого метода.
Для газобетонных блоков и блоков из автоклавного бетона, таких как Aerocon или Siporex, вес на кубический метр составляет от 550 до 700 кг на кубический метр.
, если вы используете эти блоки для строительства, нагрузка на стену на погонный метр может быть всего 4 кН / метр , использование этого блока может значительно снизить стоимость проекта.
Расчет нагрузки на колонну
4.
Расчет нагрузки на перекрытие :
Допустим, плита имеет толщину 125 мм.
Таким образом, собственный вес каждого квадратного метра плиты составит
.
= 0,125 x 1 x 2400 = 300 кг, что эквивалентно 3 кН.
Теперь, если мы рассмотрим чистовую нагрузку, равную 1 кН на метр, а добавленную динамическую нагрузку, равную , 2 кН, на метр.
Итак, исходя из приведенных выше данных, мы можем оценить нагрузку на плиту примерно в от 6 до 7 кН на квадратный метр.
5. Фактор безопасности:
В конце, рассчитав всю нагрузку на колонну, не забудьте добавить коэффициент запаса прочности, который наиболее важен для любой конструкции здания для безопасной и удобной работы здания в течение его расчетного срока службы.
Это важно, когда выполняется расчет нагрузки на колонну.
Согласно IS 456: 2000 коэффициент запаса прочности равен 1,5.
Посмотреть видео: Расчет нагрузки на колонну
Подробнее:
Вам также может понравиться:
.