Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Дом

Стравливание воздуха из системы отопления многоквартирного дома: Сброс воздуха из системы отопления многоквартирного дома

Содержание

как развоздушить, удалить воздух и воздущную пробку, спуск воздуха для развоздушивания на примерах фото и видео

Содержание:

1. Причины завоздушивания системы отопления

2. Как развоздушить систему отопления

3. Кран Маевского для избежания воздушных пробок

4. Устройство и назначение сепаратора воздуха — воздухозаборника

5. Принцип работы автоматического воздухозаборника

Для того чтобы система теплоснабжения функционировала без каких-либо проблем, очень важно, чтобы все ее структурные части работали стабильно и без перебоев. Однако одной из частых проблем, которой не получается избежать у многих хозяев, является завоздушивание системы отопления, что означает накопление избытка воздуха.

Подобный дефект может стать причиной возникновения следующих проблем:

  • передача тепла значительно ухудшается из-за появления пустот в теплоносителе;
  • циркуляция воды может полностью остановиться.

В том случае, если вовремя не выполнить сброс воздуха из системы отопления, может появиться необходимость ремонта, что порой бывает очень недешево. Поэтому далее речь пойдет о том, как развоздушить систему отопления и обеспечить ей нормальную работу.

Причины завоздушивания системы отопления

Наиболее частыми причинами накопления слишком большого объема воздушных масс в отопительной системе обычно выступают следующие:

  • разгерметизация системы, наиболее часто совершаемая при выполнении любого рода ремонтных работ;
  • полное откачивание воды из отопительной системы;
  • повреждение внешнего корпуса частей системы;
  • неправильная замена отопительного оборудования, в том числе и стояков.

Подобные действия могут привести к образованию внутри конструкции системы явления, которое именуется не иначе как воздушная пробка в системе отопления. Кроме всех вышеперечисленных проблем, к которым может привести избыток воздуха, стоит сказать и о вредном для металлических конструкций кислороде, находящемся в составе попадающего внутрь воздуха.  Читайте также: «Почему возникает завоздушивание системы отопления – причины и варианты решения проблемы».

Этот элемент, как известно, является основной причиной окисления деталей и неизменно приводит к сокращению эксплуатационного срока отопительного оборудования.

Дренаж воды, то есть ее полное откачивание, может выполняться в следующих ситуациях:

  • для ремонта системы;
  • при промывке функциональных частей;
  • во время выполнения опрессовки и т.д.


Если завоздушило систему отопления, то причиной этому также может стать нарушение конструктивной целостности приборов, то есть воздух попадает внутрь через поврежденную часть трубопровода.

Как развоздушить систему отопления

Особенно часто с вопросом касательно того, как выгнать воздух из системы отопления, сталкиваются не только хозяева частных построек, но и жильцы многоэтажных сооружений, живущие наверху. Связано это, в первую очередь, с малым весом воздуха по сравнению с водой, в результате чего его излишки гораздо чаще скапливаются на верхних этажах.


Для того чтобы каким-либо образом бороться с этой проблемой, специалистами был разработан специальный автоматический воздушный клапан для отопления, позволяющий удалять избыток воздуха без вреда для оборудования. Читайте также: «Правильное удаление воздуха из системы отопления – варианты, как удалить воздух».

Однако подобное приспособление стало популярным лишь недавно. Гораздо более традиционным механизмом, помогающим осуществить спуск воздуха из системы отопления, является особое устройство, известное в народе как кран Маевского, а для частных домов более характерно считалось применять воздушный сепаратор. Читайте также: «Как спустить воздух из батареи – возможные варианты».

Кран Маевского для избежания воздушных пробок

Подобный механизм очень часто можно встретить в домах многоквартирного типа, особенно это касается построек старого образца.

Принцип установки отопительной системы в таких сооружениях отличался устройством нижней разводки, подключение которой к теплоцентрали выполнялось посредством элеватора.  Читайте также: «Зачем нужен воздушный клапан для отопления – принцип работы, когда необходим клапан сброса воздуха».

Однако в процессе обслуживания в такой системе выявился один большой минус – это накопление воздуха в системе на верхних этажах, что неизбежно приводило к появлению проблем с циркуляцией теплоносителя и негативно сказывалось на работе всей системы в целом.


С целью предотвращения данного недостатка конструкторами было разработано специальное устройство, помогающие выполнить развоздушивание системы отопления. Это устройство представляет собой кран, который получил свое название в честь разработавшего его специалиста.

Кран Маевского можно установить на любой отопительный прибор. На торцах радиатора концы коллекторов являются глухими, что достигается посредством применения футорок. Читайте также: «Какой клапан для спуска воздуха из системы отопления лучше выбрать – виды и особенности».

В результате вместо верхней футорки было решено монтировать именно этот прибор, что означало его установку на самом верхнем участке системы отопления.

Эксплуатация такого изделия приобрела широкое распространение среди потребителей, что можно было объяснить функциональностью и надежностью его работы. Применение такого крана позволяет жильцам самостоятельно удалять излишки воздуха, причем весь процесс не отличается какой бы то ни было сложностью.


Важно помнить, что перед тем, как удалить воздух из системы отопления с помощью крана Маевского, не стоит слишком сильно затягивать на нем резьбу, иначе есть вероятность ее повреждения.

Главное отрицательная сторона такого способа – необходимость постоянного контроля над появлением в системе воздуха. Чтобы каким-либо образом избежать постоянного присутствия человека, было принято решение разработать особые патрубки с арматурой запорного типа, монтируемые в самом верху системы теплоснабжения, то есть на верхних этажах.

Подобный способ дает возможность работникам коммунальных служб самостоятельно удалять воздух, не привлекая при этом самих жильцом.

Устройство и назначение сепаратора воздуха — воздухозаборника

Еще один хороший воздухосборник для системы отопления – это так называемый сепаратор воздуха, основное отличие которого от крана Маевского заключается в том, что суть первого состоит в удалении накоплений с верхних участков, а второй выводит уже растворенный в воде воздух. Это значит, что с помощью сепаратора воздух отдирается, переходит в пузыри и удаляется.

Часто можно встретить такие устройства, где под одним корпусом скрывается не только воздушный сепаратор, но и сепаратор шлама, который призван определять находящиеся в составе теплоносителя вредные смеси наподобие ржавчины, песка и т.п.

Некоторые хозяева часто задают следующий вопрос: почему завоздушивается система отопления, если она оснащена сепаратором? Это может быть связано с самим размером отопительной системы, поскольку в небольших коммуникациях спуск воздуха часто можно выполнить собственноручно, в то время как в объемных системах теплоснабжения сделать это зачастую бывает весьма непросто.  Читайте также: «Как спустить воздух в батареях системы отопления – проверенные способы».

Принцип работы автоматического воздухозаборника

Этот удобный и очень функциональный аппарат позволяет хозяевам забыть о необходимости самостоятельного удаления воздуха из системы.

Функционируют автоматические воздухосборники для систем отопления следующим образом:

  1. Вода попадает внутрь механизма с поплавком из пластмассы.
  2. Оборудованный флажком поплавок оказывает давление на подпружиненный шток.
  3. Воздух получает свободный выход наружу.
  4. Аппарат вновь заполняется водой и цикл повторяется.

Использование одного из вышеописанных устройств, фото которых всегда можно найти у специалистов по монтажу подобного оборудования, позволит забыть о такой проблеме, как завоздушивание системы и сохранит время и деньги жильцов.

О завоздушивании системы отопления на видео:


Самые лучшие посты

Воздух в системе отопления: причины появления, клапаны

Нормально работающее отопление зимой — жизненная необходимость. Без подогрева в нашем климате не выжить. Но периодически ранее нормально работающая система начинает сбоить — не греются или плохо греются радиаторы, появляется посторонний шум (бульканье). Все это признаки того, что появился воздух в системе отопления. Ситуация далеко не редкая, но приносящая дискомфорт. 

Содержание статьи

Чем грозит воздух в системе отопления

Все, наверное, не раз встречались с тем, что отопление включено, а какой-то радиатор или целая группа нагреваются плохо или вообще стоят холодные. Причина этому — воздух в системе отопления. Он обычно скапливается в самой высокой точке, вытесняя из этого места теплоноситель. Если его скапливается достаточно много, циркуляция теплоносителя вообще может остановиться. Тогда говорят о том, что в системе отопления образовалась воздушная пробка. Профессионалы в таком случае говорят, что система завоздушилась.

Чтобы возобновить нормальную работу отопления необходимо скопившийся воздух удалить. Для этого есть два варианта. Первый чаще используется в системах централизованного отопления. На крайних радиаторах в ветке устанавливают краны. Они называются спускными. Это обычный вентильный кран. После заполнения системы теплоносителем его открывают, держат открытым до тех пор, пока не пойдет ровная струйка воды без воздушных пузырей (тогда вода льется рывками). Если говорить о многоэтажных домах, то во время запуска системы сначала должны открываться воздухосбросники на стояках, а остатки уже можно выводить по квартирам.

Воздух в радиаторе отопления мешает нормальной циркуляции теплоносителя. Это приводит к тому, что батарея плохо греется

В частных системах или после замены радиаторов в квартирах, для стравливания воздуха ставят не обычные краны,  а специальные воздушные клапаны. Они бывают ручными и автоматическими. Ставятся они в верхний свободный коллектор на каждый радиатор (желательно) и/или в самой высокой точке системы.

Чем еще грозит воздух в системе отопления? Он способствует более быстрому разрушению компонентов системы отопления. Хоть сегодня все больше используются полимеры, металлических частей все еще достаточно. Наличие кислорода способствует активизации окисления (черный металл ржавеет).

Причины появления

Воздух в системе отопления может появиться по разным причинам. Если это проблема разовая — можно просто удалить его и не заниматься поисками источника. Если развоздушивание требуется несколько раз за сезон, придется искать причину. Вот наиболее распространенные:

  • Ремонт, модернизация системы отопления. При ремонтных работах воздух в трубопровод попадает практически всегда. Это естественно.
  • Заполнение системы теплоносителем. Если заливать воду в систему медленно, воздуха она с собой несет немного, попутно вытесняя тот, который имеется в трубах и радиаторах. Это тоже процесс понятный, особых мер тоже не требует.
  • Разгерметизация стыков и сварных швов. Этот дефект требует устранения, так как завоздушивание будет происходить постоянно. В индивидуальных системах отопления данное явление (негерметичные соединения) сопровождается также падением давления. И это — еще одна причина искать неисправности. Наиболее вероятное место — соединения труб и радиаторов. Они могут быть негерметичны. Искать их очень сложно, так как внешне они далеко не всегда проявляются. Если вы заметили, что какое-то из соединения «подкапываеет» все намного проще — устраняете капель. Но если внешне все нормально, а воздух все время скапливается, приходится обмазывать стыки и швы мыльной пеной и наблюдать — появятся ли новые пузыри. После нахождения каждого «подозрительного» соединения их подтягивают, обмазывают герметиком или перепаковывают (способ зависит от типа соединений).

    Скапливаться воздух может в изгибах труб

  • Если в системе отопления уже стоят воздухоотводчики (клапана для сброса воздуха) и в ней начали появляться пробки, надо проверить исправность клапанов, а также герметичность соединений.
  • Появление воздуха в системе отопления может быть связано с разрывом мембраны расширительного бака. В этом случае придется менять мембрану, а для этого надо останавливать всю систему.

Это наиболее распространенные места и способы, какими воздух попадает в радиаторы и батареи. Выгонять его оттуда надо время от времени, но при осеннем пуске отопления  — обязательно.

Устанавливаем клапана для сброса воздуха

Для отвода воздуха из отопления на радиаторах ставят воздухоотводчики — ручные и автоматические воздушные клапана. Их называют по-разному: спускник, воздухосбросник, спускной или воздушный клапан, воздушник и т.п. Суть от этого не меняется.

Воздушный клапан Маевского

Это небольшое устройство для стравливания воздуха из радиаторов отопления вручную.  Устанавливается оно в верхний свободный коллектор радиатора. Есть разных диаметров под разное сечение коллектора.

Ручной воздухоотводчик — кран Маевского

Представляет собой металлический диск со сквозным отверстием конической формы. Это отверстие закрывается винтом конусообразной формы. Выкручивая винт на несколько оборотов, предоставляем возможность воздуху выйти из радиатора.

Устройство для отвода воздуха из радиаторов

Для облегчения выхода воздуха перпендикулярно к основному каналу сделано дополнительное отверстие. Через него собственно, воздух и выходит. Во время развоздушивания при помощи крана Маевского, направьте это отверстие вверх. После этого можно винт откручивать. Откручивайте на несколько оборотов, сильно не выкручивайте. После того, как прекратиться шипение, винт возвращаете в исходное положение, переходите к следующему радиатору.

При пуске системы может потребоваться обход всех воздухосборников по нескольку раз — пока воздух вообще перестанет выходить. После этого радиаторы должны греться равномерно.

Автоматический клапан сброса воздуха

Эти небольшие устройства ставятся как на радиаторы, так и в других точках системы. Отличаются они тем, что позволяют стравливать воздух в системе отопления в автоматическом режиме. Чтобы понять принцип работы рассмотрим строение одного из автоматических воздушных клапанов.

Принцип работы автоматического спускника такой:

  • В нормальном состоянии теплоноситель заполняет камеру процентов на 70. Поплавок находится вверху, поджимает шток.
  • При попадании в камеру воздуха, теплоноситель вытесняется из корпуса, поплавок опускается.
  • Он давит выступом-флажком на жиклер, отжимая его.

    Принцип работы автоматического клапана для спуска воздуха

  • Отжатый жиклер открывает небольшую щель, которой достаточно для выхода воздуха, который скопился в верхней части камеры.
  • По мере выхода воды корпус воздухоотводчика заполняется водой.
  • Поплавок поднимается, освобождая шток. Он за счет пружины возвращается на место.

По этому принципу работают разные конструкции автоматических воздушных клапанов. Они могут быть прямыми, угловыми. Ставятся в наивысших точках системы, присутствуют в группе безопасности. Могут быть установлены в выявленных проблемных местах — где трубопровод имеет неправильный уклон, из-за чего там скапливается воздух.

Вместо ручных кранов Маевского можно поставить автоматический спускник для радиаторов. По размерам он лишь чуть больше, но работает в автоматическом режиме.

Автоматический воздушный клапан для отвода воздуха

Чистка от солей

Основная беда автоматических клапанов для сброса воздуха из системы отопления — отверстие для отвода воздуха часто зарастает кристаллами соли. В этом случае или воздух не выходит или клапан начинает «плакать». В любом случае требуется его снять и прочистить.

Автоматический воздухоотоводчик в разобранном виде

Чтобы это можно было делать без остановки отопления, ставят автоматические воздушные клапана в паре с обратными. Первым монтируют обратный клапан, на него — воздушный. При необходимости автоматический воздухосборник для системы отопления просто откручивают, разбирают (откручивают крышку), чистят и собирают снова. После этого устройство снова готово стравливать воздух из системы отопления.

Как избавиться от воздушной пробки

К сожалению, не всегда воздушная пробка находится в легко доступном месте. При ошибках проектирования или укладки, воздух может скапливаться в трубах. Стравливать его оттуда очень нелегко. Сначала определяем местоположение пробки. В месте пробки трубы холодные и слышно журчание. Если явных признаков нет, проверяют трубы по звуку — постукивают по трубам. В месте скопления воздуха звук будет более звонким и громким.

Найденную воздушную пробку надо выгнать. Если речь идет о системе отопления частного дома, для этого поднимают температуру и/или давление. Начнем с давления. Открывают ближайший спускной клапан (по ходу движения теплоносителя) и подпиточный кран. В систему начинает поступать вода, поднимая давление. Оно вынуждает пробку двигаться вперед. Когда воздух попадает к спускнику, он выходит. Прекращают подпитку после того как весь воздух выйдет —  спускной клапан перестанет шипеть.

Это группа безопасности. На среднем выходе установлен автоматический воздухоотводчик

Не все воздушные пробки так легко сдаются. Для особой упорных надо одновременно поднимать температуру и давление. Эти параметры доводятся до значений, близких к максимальным. Превышать их нельзя — слишком опасно. Если в после этого пробка не ушла, можно попытаться открыть одновременно спускной кран (для слива системы) и подпиточный. Может, таким образом удастся сдвинуть воздушную пробку или вообще избавиться от нее.

Если подобная проблема возникает постоянно в одном месте — налицо ошибка в проектировании или разводке. Чтобы не мучится каждый отопительный сезон, в проблемном месте устанавливают клапан для отвода воздуха. В магистраль можно врезать тройник и на свободный вход установить воздухоотводчик. В таком случае проблема будет решаться просто.

причины завоздушивания и удаление воздуха

Правильный расчет и соблюдение технологии монтажа отопительной системы не гарантирует, что она будет эффективно работать на протяжении всего времени эксплуатации. Нередко сбои в работе и снижение эффективности отопления возникают не из-за выхода из строя составляющих элементов сети, а по причине скопления воздуха. Воздушные пробки ухудшают теплоотдачу приборов, в магистрали появляется шум, помещение или дом прогревается неравномерно. Для решения проблемы полезно знать, как развоздушить систему отопления.

Почему появляется воздух в отопительной системе?

Для начала разберемся, откуда в системе отопления воздух, ведь все трубы и приборы полностью герметичны, а сам контур закольцован от котельной или нагревательного оборудования. Конечно, этот вопрос не относится к автономным системам открытого типа.

Основные причины завоздушивания системы отопления:

  1. В контурах с естественным движением теплоносителя обязательно делают уклон обратного трубопровода в сторону котла. Если этот уклон неправильный, то скорость движения теплоносителя будет ниже, что приведет к скоплению воздуха.
  2. Если сети неправильно заполнять тепловым носителем, то появится та же проблема.
  3. Воздух в систему отопления может проникать через негерметичные соединения трубопроводов и различных составляющих элементов сети.
  4. Завоздушивание сети и ее некорректная работа часто возникают из-за отсутствия воздухоотводчиков или кранов Маевского на радиаторах.
  5. Если проводились любые ремонтные работы в сети отопления, то воздух неизбежно попадает в систему.
  6. Некачественный теплоноситель с большим содержанием растворенного кислорода начнет его высвобождать при нагревании. В итоге образуются пузырьки воздуха.
  7. Когда некоторые участки трубопроводов или отопительные приборы повреждены коррозией, то через них в контур проникают воздушные массы.
  8. Если по той или иной причине полностью сливали теплоноситель из сети, то это тоже приводит к завоздушиванию.

Влияние воздушных пробок на работу системы

Для нормальной циркуляции теплоносителя нужна полная герметичность сетей и приборов. Если в системе отопления воздух, то нагретая жидкость может проникать не во все участки отопительных приборов или контура. В итоге горячая вода на определенных отрезках сети не отдает тепло отопительным агрегатам. Из-за этого помещение не обогревается либо температура в нем ниже нормируемого значения.

Негативные последствия воздушных пробок в сети:

  • Во время движения теплового носителя в трубах и радиаторах слышен шум. Также это может приводить к вибрациям, которые становятся виновниками быстрого износа оборудования на участках соединений. Из-за вибраций ослабляются сварные стыки.
  • Воздушные пробки не позволяют теплоносителю циркулировать по отопительным приборам. Своевременный спуск воздуха из системы отопления позволит защититься от снижения теплоотдачи батарей.
  • Из-за ухудшения циркуляции теплоносителя нагревательное оборудование в автономной сети начинает расходовать больше топлива.
  • Кислород в отопительном контуре способствует коррозии элементов из стали. Это уменьшает срок службы отопительного оборудования либо способствует его преждевременному выходу из строя.

Признаки завоздушивания системы

Перед тем как развоздушить батарею, нужно убедиться, что система действительно завоздушена.

На наличие воздушных пробок в отопительной сети указывают следующие признаки:

Рекомендуем к прочтению:

  1. В отопительном контуре появляются посторонние шумы. Как правило, бульканье воды или характерный гул всегда указывают на наличие воздуха в трубах.
  2. Еще один признак попадания воздушных масс – неравномерный прогрев радиатора. Это бывает при завоздушивании или засорении прибора примесями. Понять, почему это произошло, очень просто. Если секции и трубопроводы холодные, значит причина в попадании воздуха. Если секции холодные, а трубы горячие, то проблема кроется в засорении отложениями.
  3. В отопительном контуре может критически снижаться давление. Если воздушные карманы образуются из-за разгерметизации, то найти это место можно по протечкам. Именно снижение давления указывает на разгерметизацию контура. Обязательно проверьте соединительные узлы и плотнее подтяните все элементы. Если в местах соединения течи нет, то, скорее всего, она есть на протяжении трубопроводов или в радиаторах.

На заметку! Чтобы определить место, где локализуется воздушная пробка, нужно постучать по трубам. На завоздушенном участке будет более звонкий звук при ударе.

Спуск воздуха из отопительной сети

Теперь разберемся, как убрать завоздушенность системы отопления. Чтобы можно было спускать воздух из отопительной сети, на этапе монтажа устанавливаются специальные приспособления и краны.

Воздушный сепаратор

Сепаратор предназначен не для спуска воздуха, а для выделения из теплоносителя растворенного кислорода. При нагревании воды кислород образует мелкие пузырьки. Сепаратор можно установить в любой точке сети. При прохождении теплового носителя через это приспособление растворенный кислород преобразуется в мелкие пузырьки, которые собираются и выводятся из контура.

Воздушный сепаратор является составным элементом сепараторного узла. Он монтируется в подвале многоэтажного дома. Усовершенствованные сепараторы выводят из теплоносителя воздух и очищают его от различных примесей и загрязняющих частиц. Эти приспособления чаще устанавливаются в домах с централизованными отопительными сетями.

Кран Маевского

Арматура устанавливается на отопительные приборы специально для развоздушивания контура. Достаточно просто открыть кран и стравить воздух.

Краны Маевского имеют штуцер. При его открывании обеспечивается доступ в отопительные сети. Поскольку пробки собираются в верхней точки сети или радиатора, этот кран устанавливается только на верхний патрубок. В многоэтажках краны Маевского монтируют на приборы, установленные в квартирах на последнем этаже.

Чаще эту разновидность арматуры используют в системах открытого типа с естественной циркуляцией, но и контуры с принудительным током теплоносителя не застрахованы от образования воздушных пробок. Краны защищают от снижения эффективности обогрева многоквартирного дома.

Для использования устройства не нужно привлекать специалистов. Чтобы провести спуск воздуха, под кран на пол подставляют ведро или таз. Вместо этого можно надеть на кран шланг подходящей длины и опустить один его конец в раковину или ванную. Это делают потому, что вместе с воздушными пробками выходит некоторое количество теплового носителя.

Рекомендуем к прочтению:

Автоматический воздухоотводчик

Эти устройства предназначены для спуска воздуха в автоматическом режиме (без участия человека).

Принцип работы автоматического воздухоотводчика следующий:

  1. Внутри прибора есть специальный поплавок, соединенный со штоком. Последнее устройство поджимается специальной пружиной.
  2. При заполнении корпуса воздухоотводчика теплоносителем поплавок оказывает давление на шток, перекрывающий поступление воздуха в отопительные сети. То есть при прохождении теплоносителем поплавка исключено завоздушивание системы.
  3. Если в корпус попадает воздушная пробка, которая движется по сети вместе с жидкостью, то шток открывает отверстие, и воздух выходит из контура.

Подобный принцип работы используется во всех автоматических воздухоотводчиках. При условии правильного монтажа устройство долго и исправно работает.

Но иногда даже такие простые и надежные конструкции дают сбой в работе:

  • Если в сети циркулирует тепловой носитель низкого качества, то на штоке откладывается солевой налет. Из-за этого устройство неплотно закрывает проход, что вызывает протечки. Для решения проблемы достаточно снять крышку и тщательно очистить шток от налета.
  • Иногда наблюдается подтекание теплоносителя в месте крепления крышки к корпусу. Такое бывает, если резиновая прокладка износилась. Для устранения течи просто замените прокладку.

Теперь вы знаете, как устранить завоздушивание системы отопления с помощью специальных приспособлений. Но иногда бывают такие ситуации, когда выявить место формирования воздушной пробки невозможно.

В этом случае воздух стравливают в процессе эксплуатации сети следующим образом:

  1. Если повысить температуру воды и давление в сети, то воздушные пробки перемещаются к месту, где их проще обнаружить и стравить с помощью специальных приспособлений.
  2. Сантехники с опытом работы могут ударами по трубопроводам выгнать пробку. Но этот способ могут использовать только опытные специалисты, потому что необходимо знать, где и как ударить по трубе. Более того, эта методика не всегда помогает решить проблему.

Если автономный отопительный контур часто завоздушивается, то проблему можно решить установкой автоматического воздухоотводчика. Некоторые разновидности систем нуждаются в обязательном монтаже кранов Маевского на каждый радиатор. Благодаря регулярному стравливанию воздуха отопительная система будет эффективно и бесперебойно работать.

5 способов, как сделать правильно своими руками


На чтение 8 мин.
Обновлено

В погоне за комфортом,
большинство владельцев частных домов или квартир, устанавливают тёплые полы.

Однако стоит заметить, что в случае наличия воздуха в конструкции (если его не стравить), качество работы всей системы существенно снижается. Кроме того, это приводит к выходу из строя оборудования, стоимость которого достаточно высока.

Чтобы избежать данных проблем и дополнительных финансовых трат, следует знать, как спустить воздух с тёплых полов.

Причины возникновения воздуха

Главная причина, из-за которой происходит завоздушивание водяных контуров — нарушения при составлении проекта; при проведении монтажных работах; вследствие эксплуатации пола.

Скопление воздушных
масс в змеевике бывает вызвано:

  1. Неточным
    вычислением тепловой нагрузки;
  2. Ошибками
    сделанными при расчёте размера и количества петель, а также диаметра труб;
  3. Неправильным
    выбором насоса, предохранительных и регулирующих комплектующих;
  4. Укладкой
    магистрали с большим количеством перепадов по высоте;
  5. Не
    качественным материалом;
  6. Плохим
    монтажом — отсутствие герметичности стыков и резьбовых соединений;
  7. Нарушениями
    правил при первом запуске пола;
  8. Несоблюдением
    температурного уровня при эксплуатировании;
  9. Разгерметизацией
    трубопровода при поломке или наличии дефекта;
  10. Нарушением циркуляции жидкости в
    контуре, которое вызвано снижением напора из-за неисправности насоса;
  11.  Поломкой автоматического воздухоотводчика, а
    также предохранительного и запорного клапана;
  12.  Выделением газов при нагреве теплоносителя,
    которые содержатся в нём.

Важно! Прежде, чем осуществлять первый запуск устройства следует выгнать воздух из контуров тёплого пола.

Чем грозит появление воздушных пробок

При наличии пустот в
трубах, греть пол будет менее эффективно. Если не прокачивать трубопровод, то
пустотные участки будут увеличиваться и приведут к снижению давления.

 В зависимости от конструктивных особенностей
устройства, завоздушенность может привести:

  • к замораживанию труб в угловых комнатах — при обустройстве полов от центрального отопления;
  • к полному или частичному прекращению обогрева — при наличии нагревательных гидрополов и радиаторного отопления работающих от центрального отопления всего дома расположенных в подвале;
  • к частичному или полному прекращению обогрева, возникновению аварийных остановок котла и заморозки СО — при полах, работающих от автономной нагревательной системы;
  • к полной или частичной остановке обогрева, а так же к частым перебоям в работе котла — если в доме имеются тёплые полы и радиаторные приборы, которые работают от индивидуального отопительного источника.

К сведению! Беря во внимание все особенности конструкции: количество петлей в помещении, наличие отдельной разводки для каждой комнаты, можно с уверенностью сказать, что полное прекращение циркуляции в трубопроводе не может произойти.

Только при закупорке пробками одновременно всех петель контура, вода прекратит двигаться по магистрали по всем комнатам и этажам дома, вследствие чего все отопление перестанет функционировать.

Виды воздухоотводчиков

Чтобы стравить воздух из тёплого пола, чаще используются отводчики, которые бывают ручными и автоматическими.

Устройства ручного действия в основном ставятся на теплообменниках, а автоматические на верхнем участке коллектора или трубопровода.

Автоматические модели

Данные приборы
выпускают как отечественные, так и зарубежные производители, и каждый вид имеет
свои особенности в конструкции — это зависит от марки. Устройства бывают:

  1. С отражающей пластиной внутри корпуса
    — она устанавливается у входа в рабочую камеру, и предназначена для защиты
    внутренних деталей от гидроударов.
  2. С пружинным отсекающим клапаном,
    который оснащён воздухоотводчиком, через него можно стравлять воздух.
  3. С боковыми резьбовыми патрубками.
  4. Сепараторы микропузырьков —
    устанавливаются в трубопроводе на два входных патрубка. Жидкость, проходя через
    трубку с медной сеткой, образует водяной вихрь, он притормаживает воздух и
    направляет его вверх. После чего, происходит выпуск воздушных пузырьков через
    автоматический клапан.
  5. С кулисным механизмом — в их камере
    размещён пластиковый поплавок, связанный с запорной спускной иглой. Когда он
    опускается в завоздушенную среду, при помощи иглы происходит открывание
    спускового отверстия для выхода воздушных потоков.

Ручные

Ручные устройства — это краны Маевского. Конструкция простая, поэтому наиболее часто устанавливаются в отоплении. Механический воздушник при эксплуатации хорошо герметизирует выход из корпуса.

При необходимости
удаления воздуха вентиль поворачивается на несколько оборотов, в результате
чего начинается процесс развоздушки.

Как самостоятельно стравить воздух

Прокачать водяной пол — это несложно, данную процедуру под силу произвести самостоятельно.

Однако стоит заметить, что в зависимости от конструкции сооружения, процесс отвода воздушного потока из труб различается.

Как стравить  воздух с контура, функционирующего от циркуляционного насоса

Чтобы прогнать воздух из полового контура, оснащённого насосом, требуется выполнить действия в следующей последовательности:

  • Нужно закрыть на коллекторе
    расходомеры ведущие ко всем петлям.
  • Развоздушить циркуляционный насос.
  • Открыть шаровой или кран Маевского на
    гребёнке, и одну петлю пола.

Процесс открытия крана Маевского — одной рукой держать белую часть вентиля, чтоб не болталась. Второй следует откручивать вентиль расположенный посредине.

  • Затем нужно включить циркуляционный
    насос на небольших оборотах. Давление должно превышать обычное на 20%.
  • Выключать насос и закрывать вентиль
    следует после того, как появится вода из воздухоотводчика.
  • Данную процедуру надо повторять
    неоднократно, с интервалом в несколько минут, пока не спустится весь воздух.
  • Такое действие нужно проводить с
    каждой петлёй. Процесс повторять на протяжении 2 — 3 дней, до полного
    стравливания воздуха.
  • Затем насос нужно включить на
    максимум, и произвести продувку всего трубопровода.

Только после полного стравливания воздушных масс, следует запускать нагревательный пол. В процессе работы, контур может снова завоздушиться, поэтому рекомендовано периодически продавливать воздух.

Стравить
из самотечной
системы

При наличии самотечной конструкции, в которой нет спусковых клапанов, возникает вопрос — как выгнать воздух из системы тёплого пола? Придётся ждать пока воздушные массы сами не выйдут через расширительный бак.

При этом устройство не должно работать и вода в нём должна быть охлаждённой. Процесс может занять несколько дней.

Одним словом, чтобы стравить пузырьки воздуха из такой магистрали, требуется выключить котёл и мотор, и дать гидрополу остыть.

Как стравить воздух с помощью автоматических отводчиков

В настоящее время есть специальные отводчики или сепараторы, которые автоматически выгоняют  воздушные массы из контура.

С их помощью легко стравить пробки, при этом они не нуждаются в проведении специальных работ по обслуживанию и уходу.

Устанавливать автоматические отводчики следует на самом высоком месте отопительного трубопровода, потому что именно там скапливается воздух.

Их нет необходимости включать в группу безопасности, так как там не бывает сосредоточения воздушных масс.

Выгоняем воздуха при помощи сильного напора воды

Большим напором воды стравить
воздух теоретически можно, но сделать это достаточно сложно. Потребуется мощный
насос, с давлением больше 2 атмосфер, чтобы продувать трубы.

Но устранять пробки
таким методом можно только из открытой системы, с небольшим количеством ветвей.
Кроме того, данный способ приводит к переливанию расширительного бочка.
Поэтому, пользоваться им советуют лишь при наличии опыта проведения аналогичных
работ.

Продавливание пробок сливом воды

Этот способ
рекомендовано применять, если будет воздушить самотечная конструкция.
Производится слив большого количества воды снизу, и одновременно осуществляется
заливка сверху.

Таким способом можно стравить пробки. Они сдвигаются, разбиваются и выдавливаются из трубопровода.

Как не допустить возникновения
воздушных пробок?

Основной недостаток водяных полов — образование воздушных пробок, в остальном они имеют отличные эксплуатационные характеристики и просты в пользовании.

Даже несмотря на
правильность произведённых монтажных работ, водяная система может завоздушивать
в процессе эксплуатации. Чтобы не допустить этого, необходимо придерживаться
следующих правил:

  • проводить регулярный профилактический осмотр конструкции на предмет наличия дефектов и протечки;
  • осуществлять контроль за уровнем температуры и давления теплоносителя, так как резкие скачки приводят к закупорке труб;
  • периодически проводить прокачку воздуха в корпусе насоса и коллектора;
  • если вы не можете провести обслуживание устройства или замену вышедшего из строя оборудования самостоятельно, следует приглашать специалистов;
  • устанавливать циркуляционный насос только на подачу воды, это исключит проникновение воздуха в трубопровод по вине насоса;
  • монтировать на обратном шланге перед коллектором сепаратор, с его помощью можно будет выгнать воздух;
  • не следует спускать теплоноситель из трубопровода гидропола, так как небольшие воздушные закупорки можно легко удалить при помощи сепаратора или коллекторных клапанов;
  • для настроя коллектора лучше пригласить мастера.

К сведению! Если применяется циркуляционный насос, то его рекомендовано подключать к источнику бесперебойного питания, в этом случаи поток воды в петлях пола будет неизменным.

Советы и рекомендации

Как известно, чем оборудование сложней, тем больше его стоимость, при этом такое устройство является менее надёжным. Поэтому, чтобы гидропол работал исправно, нужно покупать и устанавливать комплектующие высокого качества.

Сегодня на рынке огромный ассортимент комплектов для обустройства водяных полов. При выборе следует внимательно ознакомиться с их характеристиками и  особенностями.

Можно использовать
устройство с механическим приводом, которое имеет приемлемую цену. Кроме того,
функционирование отработано многолетней практикой, поэтому ломается редко.
Приборы с сероприводом дороже, да и элементов, которые могут выйти из строя, в
такой конструкции больше.

Выбирая устройство
для спуска воздуха, специалисты рекомендуют обращать внимание на краны
Маевского — они надёжны, долговечны и не нуждаются в регулировке.

Автоматические приборы имеют более сложную конструкцию и по цене дороже. Помимо этого, они приходят в негодность при загрязнении.  

Как видите, воздушные пробки приводят к сбою в работе, однако эту проблему легко решить. Главное вовремя стравить воздух из трубопровода, а делать это необходимо правильно и регулярно. 

Видео пособия

Выгоняем воздух из водяного теплого пола правильно

 

Скопление воздуха в системе отопления препятствует ее правильному функционированию. Если не удалить его вовремя, ухудшатся эксплуатационные показатели. В таких условиях увеличивается вероятность поломок дорогостоящего оборудования. Чтобы исключить ненужные риски и лишние затраты, надо знать, как самому прокачать теплый пол. Методика достаточно проста, поэтому в большинстве случаев обращение к профильным специалистам не требуется.

Проверку и устранение неисправностей следует выполнить до начала регулярного отопительного сезона

Как появляются проблемы

 

В частях системы, которые подключены к радиаторам, обнаружить неполадки можно быстро. Они расположены в помещениях, поэтому при прохождении воздуха слышны шумы. На ощупь определяют пониженную температуру отдельных участков батарей, где образовались газовые «пробки».

Но трубопровод, скрытый в глубине бетонной стяжки, хорошо изолирован. Если шкаф с коллекторной гребенкой и насосом установлен вдали от жилых комнат, посторонние звуки не будут слышны. Неисправности выявляют по существенной разнице нагрева в разных контурах.

В следующем перечне приведены причины, которые способствуют проникновению воздуха в теплоноситель:

  • Замена кранов, других элементов системы;
  • Неисправное состояние автоматических устройств, которые предназначены для удаления воздуха из системы;
  • Прокладка трассы трубопровода с большими перепадами по высоте;
  • Существенное изменение уровня давления в процессе эксплуатации. При малом напоре возможно образование пустот в верхних точках;
  • Чрезмерный нагрев теплоносителя, сопровождающийся выделением газов. Аналогичные негативные процессы способны вызывать некоторые виды химических соединений;
  • Процесс наполнения системы после летнего периода выполнялся слишком быстро, поэтому не весь воздух был удален;
  • При монтаже системы либо позднее нарушена герметичность соединений. В самом плохом варианте – течи образовались внутри бетонной стяжки. По этой причине после монтажа теплых полов выполняют тщательную проверку с применением повышенного давления.

Почему надо удалять воздух

Образование пустот снижает КПД системы отопления. Насосное оборудование, как и другие компоненты, работает менее эффективно. Чтобы обеспечить комфортные для пользователей температурные условия в помещениях, приходится тратить больше ресурсов.

При увеличении таких пустот постепенно падает давление. После достижения предельного минимального уровня соответствующий сигнал поступает в блок управления котла. Кроме электронных устройств, применяют механические средства аналогичного назначения. Это – аварийная ситуация, поэтому автоматика отключает подачу газа или другого топлива.

Для последующего включения приходится вручную поднимать давление. Но в свежей воде газообразных включений много, поэтому негативные процессы ускоряются. Оборудование будет отключаться чаще.

Опасно оставлять его в таком состоянии без постоянного присмотра. Если не удалить воздух с одновременным устранением первоначальных причин, техника полностью утратит функциональность.

Следует помнить, что окисление, разрушающее металлы, происходит при наличии воды и кислорода. Добавление нового теплоносителя активизирует соответствующие негативные процессы. В таком режиме работы снижается долговечность отопительного оборудования.

Следует исключить появление воздушных «пробок» в узлах теплообмена котлов. Эти части подвергаются воздействию очень высоких температур.

При недостаточно равномерном нагреве теплообменник будет испорчен без возможности восстановления

Перечисленных выше причин достаточно, чтобы понять необходимость выполнения профилактических мероприятий. Их проведение предотвратит сложные поломки и затраты, сопряженные с восстановительными работами.

Конструктивные особенности

Заранее надо учесть детали, которыми отличается определенное оборудование. Так, в некоторых ситуациях для циркуляции теплоносителя по всем контурам используют встроенный насос котла. Для крупного объекта его производительности может быть недостаточно, поэтому понадобится установка отдельного силового агрегата.

При использовании радиаторного отопления создают трассы с минимальным числом поворотов, без острых углов. Добавлением наклонов в сторону котла можно обеспечить естественную циркуляцию, под воздействием силы тяжести.

В теплых полах устанавливают длинные трубопроводы с большим количеством изгибов

Прокачивать воду по такой системе тяжелее. Здесь используют исключительно принудительные методики. При ошибках в расчетах мощности отдельного насоса будет недостаточно для дальних контуров. В этом случае их плохой нагрев не устранить удалением воздушных пробок. Понадобится модернизация системы.

Предварительно должны быть правильно настроены регуляторы гребенки. Помимо механических расходомеров устанавливают вентили с электрическими приводами. Такие устройства изменяют скорость подачи теплоносителя с учетом показаний температурных датчиков.

Автоматизированная система регулировки

Алгоритм удаления воздуха

В процессе перемещения теплоносителя по системе газ накапливается в самых верхних точках. Для системы теплого пола – это коллекторный распределитель (гребенка). В них ввинчивают при установке краны Маевского или автоматические устройства отведения воздуха.

Может быть интересно

Ниже приведена стандартная последовательность правильных действий:

  • Многие современные насосы этого типа оснащают ступенчатым регулятором скорости. Его устанавливают в положение «1», которое соответствует минимальной производительности. Придется затратить больше времени, зато удаление газов будет аккуратным.
  • Перекрывают все контуры, кроме одного. Далее аналогичные операции выполняют последовательно на других участках.
  • Винт крана Маевского первого контура поворачивают шлицевой отверткой по направлению против часовой стрелки. Полимерную вставку перед этим поворачивают отверстием вниз, подставляют подходящую емкость для сбора жидкости.
  • После того, как воздух вышел, винт поворачивают в обратном направлении, до полного закрытия крана.
  • Несмотря на то, что установлены минимальные обороты двигателя, прокачивать контур придется неоднократно. После первого выпуска газов насос выключают. Дожидаются скопления воздуха в кране, открывают кран. Далее опять подают питание на электропривод, несколько минут прогоняют теплоноситель на медленной скорости.
  • Данную процедуру повторяют 3-4 раза. После – перекрывают краном этот контур и переходят к следующему.

Типовой насос с красной рукояткой регулировки скорости вращения вала

Если насос установлен выше гребенки, либо используется только штатный агрегат (котла отопления), из него также можно выпустить воздух. Для этого слегка ослабляют винт, расположенный в центре крышки. На рисунке выше он отмечен стрелкой.

После завершения всего комплекса рабочих действий понадобится поднятие давления до номинального уровня. Следует понимать, что в ходе этой процедуры в систему опять попадет воздух. Поэтому не исключено, что придется выпустить его еще раз.

Составные элементы оборудования

Стоит рассмотреть подробнее части системы, которые были упомянуты выше.

Кран в разобранном состоянии

Принцип действия описан в инструкции по выпуску воздуха. Конструкцию крана Маевского проще изучать с помощью этого рисунка. Такое миниатюрное изделие устанавливают вместо заглушки в верхней части коллекторной гребенки. В центральной части сделана резьба. Туда вворачивают винт, прижимающий пластиковый уплотнитель.

Для обеспечения герметичности соединения используют резиновое кольцо. Все перечисленные детали входят в стандартную комплектацию изделия. Никаких дополнительных расходных материалов для монтажа и эксплуатации не требуется.

Значительно упрощает выполнение поставленной задачи применение автоматизированных устройств. Они без тщательного контроля со стороны пользователя и дополнительных настроек способны выполнять свои функции на протяжении длительного срока службы.

Автоматический отводчик газов

Здесь приведена принципиальная схема одного из устройств этой категории:

  • Узел (1) создает жесткое крепление штанги (2) к внутренней части корпуса с нужным углом. Им регулируют уровень открытия выпускного клапана.
  • В ходе эксплуатации воздух накапливается в верхней части. Поплавок опускается вниз. В определенном положении он откроет запорное устройство, которое выпустит газ наружу.
  • Далее поплавок поднимается в исходное положение, цикл повторяется снова.
  • В нижней части установлен мягкий уплотнитель (4), обеспечивающий герметичность соединения.

Сепаратор

Более эффективно выполняет аналогичные функции такое устройство:

  • Тут приведен пример проточного сепаратора. Его устанавливают в верхней точке в разрезе трубопровода с применением резьбовых соединений (4, 5).
  • В центральной части закреплена сетка (3). При прохождении потока воды через такую конструкцию из него высвобождаются пузырьки воздуха (2).
  • Они устремляются вверх. В этой части установлен такой же узел, как и в автоматическом отводчике газов. Когда поплавок опустится ниже определенного уровня, тяга откроет клапан (1) для выпуска воздуха наружу.
  • Размеры ячеек и другие параметры сетки подбирают так, чтобы не создавать излишних препятствий перемещению теплоносителя. Однако такая конструкция задерживает частицы ржавчины (6). Они накапливаются в нижней части (7). Здесь есть отвинчивающаяся крышка, которую открывают для удаления загрязнений при выполнении регламентного обслуживания.

Удаление механических примесей снижает нагрузки на разные части системы отопления. Если установить простейший фильтр на основной магистрали подачи воды, будет предотвращено засорение протоков радиаторов, теплообменников котлов. Это же продлит долговечность жиклеров клапанов автоматических отводчиков воздуха.

Дополнительные рекомендации

При увеличении сложности увеличивается стоимость, но снижается общая надежность техники. В качестве примера можно использовать регулирующие вентили на коллекторной гребенке. Конструкции с механическими приводами стоят немного.

Их характеристики отработаны многолетней практикой, поэтому поломки появляются редко. Сервоприводы – дороже. В соответствующих системах есть электронные блоки, миниатюрные электромоторы, проводные соединения, датчики. Тут больше компонентов, которые способны выйти из строя.

Выбирать составляющие для удаления воздуха из системы следует с учетом конструктивных особенностей. Простые краны Маевского способны выполнять безупречно свои функции длительное время. Их не надо регулировать в процессе эксплуатации. Автоматические устройства сложнее и дороже. Они могут быть испорчены загрязнениями, поэтому нужна защита от механических примесей.

Иногда интенсивное образование воздушных пробок свидетельствует о нарушениях целостности соединений, иных повреждениях. Автоматические отводчики настолько эффективны, что не получится заметить появление проблем на ранних стадиях.

Видео

В любом случае осмотр системы отопления следует выполнять регулярно. Для удаления воздуха надо точно выполнять приведенные инструкции. Если инженерное сооружение отличается повышенной сложностью, а самостоятельные действия вызывают затруднения, нужно обратиться за помощью к профильным специалистам. Помимо удаления воздуха, им можно поручить настройку коллекторной гребенки.

 

Загляните в систему отопления вашего здания — тепло включено

Есть места похуже, чем Нью-Йорк в
зимой — Миннеаполис, например, или Анкоридж. Спасибо Северу
Атлантическое течение, Большое Яблоко не замерзает так сильно, как
некоторые другие северные города, но все равно чертовски холодно, и если ваш
в доме проблемы с отоплением, достаточно холодно, черт возьми. Наиболее
менеджеры и члены правления обычно оставляют вопросы отопления своим руководителям или
обслуживающий персонал, но когда трубы шипят и жители
ополчены и страдают от переохлаждения, может быть полезно
понять, в чем проблема и как ее можно исправить.

Горячая зона

Даже в небольшом здании, производящем достаточно тепла, чтобы
Всем комфортно требуется довольно много топлива. Этим топливом может быть нефть, газ,
или электрический. Подавляющее большинство зданий Нью-Йорка — это
с паровым нагревом, что означает, что масло или газ нагревается в котле, а
образующийся пар распространяется по всему зданию.

«Электрическое тепло требует меньше всего
техническое обслуживание », — говорит Питер Греч из Нью-Йоркского суперинтенданта.
Техническая ассоциация (STA).«А с электричеством нет
утечки и никакого беспорядка. В большинстве случаев проблем с электрическим обогревом не возникает.
влияет на все здание — если что-то пойдет не так, тепло обычно
гаснет только в одной квартире за раз. Так что с точки зрения обслуживания, электрический
тепло — это и ежу понятно, но его производство стоит так дорого, что редко
используемый. Даже если принять во внимание техническое обслуживание, утечки и
ремонт, связанный с паровым отоплением, электрическое отопление будет стоить
Больше.»

Вот почему у большинства из нас большие, неповоротливые
котлы в наших подвалах.В самом типичном жилом доме Нью-Йорка
установка, топливо — обычно нефть или природный газ — воспламеняется в
камеру сгорания котла и вырабатывает горячие газы, которые затем проходят
через металлические «пожарные трубы», нагревая воду с другой стороны
камеру и производящий пар. Затем пар естественным образом поднимается через
тепловые трубы и стояки здания, на индивидуальные радиаторы, отопление
их и устраивая все уютно.

Сжигание ископаемого топлива для тепла и горячей воды идет с
однако есть свой набор проблем с обслуживанием.И как любой, кто
даже одной январской ночью без жары дрожала, знает, когда
проблема с котлом, это большая проблема.

Чаще всего проблемы с котлом связаны с плохой
поддержание. По словам Майкла Костелло из Teitelbaum Inc. в Квинсе,
Регулярное техническое обслуживание котла является ключом к минимизации проблем с котлом. На
в межсезонье важно иметь профессиональное обслуживание котла
компания приходит и делает полную очистку труб и горения
камера.Также рекомендуется регулярно проверять
горелку, а также все приборы и органы управления на котле, чтобы убедиться
они все в рабочем состоянии и не были нарушены
копоть и копоть.

«Поскольку горячие газы проходят через трубы,
они также приносят с собой дым и сажу », — добавляет
Костелло. «Сажа накапливается на внутренних стенках трубок и
действует как изолятор ».

Хотя большинство из нас считает изоляцию хорошей вещью,
когда дело доходит до котлов, это очень нежелательно.Накопление
сажистая изоляция снижает эффективность прохождения горячих газов
через трубы для нагрева окружающей воды, заставляя горелку загораться
чаще, чтобы производить необходимое тепло, что, в свою очередь, означает, что он
чтобы сжигать больше топлива, чтобы делать свою работу. По словам Дика Корала, который также
STA и директор Технического колледжа Нью-Йорка
Институт многоквартирных домов, «Накопление сажи всего 1/32.
дюйма повысит ваш счет на топливо примерно на два процента.”

Умножьте это число на предполагаемые 30–50 процентов.
этой зимой расходы на отопительное топливо увеличиваются, и вы можете быстро увидеть
последствия: сверхактивная горелка будет значительным финансовым оттоком
ваше здание. Итак, если вы не прошли полную проверку котла
недавно, говорит Корал, сделай это сейчас.

Чтобы быть уверенным, что ваш котел исправен
в течение года Костелло рекомендует проводить основную уборку весной или
летняя и дополнительная уборка, в том числе пылесос
также — раз в месяц в зимние месяцы.

«Когда мы заходим [в камеру сгорания] и
почистить его, — говорит Костелло, — это дает суперинтенданту
возможность проверить теплоизоляционный материал, покрывающий камеру,
который обычно представляет собой огнеупорный кирпич или пластиковую огнеупорную глину. Из-за интенсивного
При нагревании кирпичи со временем начинают распадаться. Капитальные уборки позволяют нам
чтобы сделать визуальный осмотр, чтобы увидеть, как обстоят дела с кирпичом ».

Приготовление на пару

Распространенная жалоба — внезапное, громкое, часто пугающее
стук и лязг, эхом разносящийся по паропроводам в отопительный сезон.

Прежде всего, говорит Костелло, трубы, идущие из
котельная к квартирам должна быть хорошо утеплена. Если они
а не «Это нехорошо по нескольким причинам. Во-первых, вы
теряя тепло в котельной, которое должно попадать в
квартиры. Во-вторых, когда этот пар поднимается, он автоматически
начинает остывать. Это означает, что у вас есть проблема конденсации еще до того, как она
добирается до радиаторов ».

Звучит безобидно, но все готово.
шум — то, что в отрасли называется «вода
молоток.”Когда вода конденсируется и не выходит из
паровая система, она сидит в трубах, — говорит Греч. Когда горячий пар попадает в
воды, происходит резкое изменение температуры и давления, и
капли собранной воды стреляют по стенкам труб, как
пули, что приводит к громким ударам, лязгам и гудкам.

По словам Греча, вся ракетка — это больше, чем просто
неприятность. «Вопреки распространенному мнению, — говорит Греч, —
«Гидравлический удар — ненормальное состояние.Вы можете жить с этим, но
со временем это вредно для труб. Решение проблемы со стуком
зависит от того, какой тип системы существует в здании, и решение
проблема означает выполнение некоторой детективной работы — начинается ли стучать
запуск пара, во время распределения пара или при отключении? Ответ может
диктовать, как подходить к основной проблеме изоляции ».

Здесь жарко, или это только мне?

Еще одна распространенная жалоба на отопление в зимнее время —
что в здании либо слишком жарко, либо слишком холодно, — говорит Винсент Толинс из
Сантехника Pro-Tech в Уайтстоне.Иногда это
оба — на третьем этаже все стучат зубами, а
до шести все открывают окна, потому что это так
тепло.

«Когда наступает зима, многие довоенные постройки
проблемы с неравномерным распределением пара », — говорит Толинс. «Некоторые
квартиры будут получать много пара — может быть, даже слишком много — и
другим не хватит «. Инженер может оценить
ситуации в вашем здании и проинформирует вас, как ее отремонтировать.

По словам Билла Джебейли из Бруклина
Агрессивный нагрев, решение часто заключается в простом регулировании некоторых
оборудование.«Ваш таймер нагрева, который обычно используется в
многоквартирные дома — могут выйти из строя. Техник
должен войти и проверить настройки и внести изменения в
датчик обратной линии, регулятор давления обратного действия или даже
утеплитель снаружи здания, который чувствует температуру и посылает
сигнал на сам таймер нагрева для включения или выключения. Там много
больше, чем просто таймер нагрева, но это некоторые ключевые элементы
смотреть на.»

Плохое распределение тепла является наиболее частой причиной высокого
счета за энергию, добавляет Корал.Если ваша система отопления работает сверхурочно до
поддерживать комфортную температуру в квартирах, где обычно бывает прохладно
в то время как другие перегреваются, стоимость вашего здания высока.

«На каждый градус среднего
температура в здании выше, допустим, 72 градуса », — предупреждает Корал.
«Расход топлива в здании увеличивается примерно на три процента. Если,
перегрев составляет пять градусов, ваш счет за отопление составляет около 15 процентов
выше, чем должно быть.”

Горячие советы

Первая линия защиты — это ваш супер и строительный
штат сотрудников. «Строительный персонал и суперинтенданты должны знать свою систему
очень хорошо, — советует Греч. «Им следует пройти курсы или
мастерские, чтобы не отставать от новейших технологий, оборудования и
технологии.»

И применение небольшой технологии не повредит
либо. «Легче обнаружить проблемы, если у вас
Конечно же, самое современное термостатическое оборудование », — говорит Джебайли.«Но старое оборудование не обязательно плохое. Если оборудование
работает, вам не нужно менять его только потому, что он старый. Если
у вас есть оборудование, которое доставляет вам проблемы и
неэффективен, однако его необходимо заменить. Учитывая сегодняшнюю стоимость топлива,
будь то природный газ или нефть, это непомерно дорого обходится
получить максимальную эффективность от вашего оборудования ».

Один из вариантов обновления вашего оборудования — установить
термодатчики на стенах жилых домов.Маленькие датчики отправляют
постоянный поток информации о температуре на главный компьютер, который
очередь подключается к системе котла / горелки. Компьютер обрабатывает
информация и циклически включается и выключается по мере необходимости до достижения средней температуры
датчиков достигает заданного уровня комфорта. В этот момент компьютер
дает команду котлу выключиться. Цикл работает 24/7, поддерживая
комфортная температура во всем здании.

Старт цен на компоненты компьютеризированной системы отопления
около 4500 долларов за самые базовые обновления и выше, в зависимости от
количество опций и датчиков, которые здание выбирает для установки.В соответствии с
Некоторым компаниям новые системы мониторинга котлов могут спасти здания
от 15 до более 30 процентов на отопление
— потенциально окупается в течение первых двух лет.

«Суть в следующем», — говорит Джебайли,
«Три года назад топочный мазут стоил менее доллара за галлон. это было
Проще не беспокоиться о максимальной эффективности вашего оборудования.
Сегодня, когда печное топливо составляет два доллара за галлон, это очень
рентабельнее тратить деньги на модернизацию оборудования, чтобы получить
что эффективность.Окупаемость намного быстрее ».

По словам Греча, «наиболее распространенное отопление
проблема на самом деле просто в нехватке знаний и в нехватке денег, вложенных в
поддержание системы. Как только ваш супервайзер или менеджер-резидент узнает, что
делать и на это есть деньги, не должно быть больших
проблемы — просто мелкие сбои ».

Майкл Макдонаф — писатель-фрилансер, а Ханна Фонс
является заместителем редактора The Cooperator.

Анализ тепловых характеристик конструкции железобетонного пола с системой лучистого теплого пола в многоквартирном доме

Использование эластичных материалов в системах лучистого теплого пола для железобетонного пола в многоквартирном доме тесно связано с уменьшением ударного шума пола и потеря тепловой энергии. В этом исследовании изучалась теплопроводность пенополистирола (EPS), используемого в качестве упругого материала в Южной Корее, и анализировалась теплопередача железобетонной конструкции пола в соответствии с теплопроводностью упругих материалов.Для измерения теплопроводности использовалось 82 образца EPS. Измеренная кажущаяся плотность упругих материалов EPS составляет от 9,5 до 63,0 кг / м 3 , а теплопроводность — от 0,030 до 0,046 Вт / (м · К). По мере увеличения плотности упругих материалов из пенополистирола теплопроводность имеет тенденцию пропорционально уменьшаться. Чтобы установить разумные требования к теплоизоляции для систем теплого пола, необходимо определить термические свойства конструкции пола в соответствии с теплоизоляционными материалами.Моделирование теплопередачи было выполнено для анализа температуры поверхности, потерь тепла и теплового потока конструкции пола с системой лучистого отопления. Поскольку теплопроводность эластичного материала EPS увеличилась в 1,6 раза, потери тепла увеличились на 3,4%.

1. Введение

В Корее многоквартирные дома занимали наибольшее количество жилых домов — 86,4%. На многоквартирные дома приходится более 50% всех типов жилья, и с 1990-х годов были построены многоэтажные многоквартирные дома выше 15 этажей, иногда 30 этажей, чтобы эффективно использовать относительно небольшую площадь земельного участка (99 373 км, 2 ). Корея с высокой плотностью населения [1].Некоторые семьи живут по соседству друг с другом, разделенные только стеной или полом. Поскольку одна железобетонная плита разделяет домохозяйства в квартирах, ударный шум пола и потери тепла сверху могут быть легко перенесены в дом внизу и за пределы дома. Так что возникает много проблем, связанных с теплоизоляцией и звукоизоляцией. В частности, звук удара пола вызывает раздражение у жителей и вызывает множество жалоб в жилых домах, таких как квартиры.Энергия для отопления помещений и нагрева воды является самым большим потреблением энергии в жилых зданиях.

Конструкция железобетонного перекрытия с системой лучистого теплого пола (ONDOL) традиционно используется для жилых домов в Корее [2, 3]. Эта конструкция пола из железобетона (ЖБИ) состоит из железобетонной плиты, изоляционного слоя с упругими материалами, слоя лучистого теплого пола, слоя аккумулирования тепла и материалов для отделки пола. Горячая вода из бойлера подается в пластиковую трубу в слое лучистого теплого пола под поверхностью пола.Горячая вода циркулирует по встроенной пластиковой трубе, нагревая пол для обогрева помещения. Установка упругих материалов между бетонной плитой и слоем лучистого теплого пола в системе лучистого теплого пола известна как самый популярный метод снижения ударного шума пола и потери тепла в жилых домах в Корее. Обычно толщина упругих материалов составляет 10–20 мм.

Использование эластичных материалов в системах напольного отопления тесно связано с уменьшением ударного шума пола и потерь тепловой энергии.В Корее характеристики теплоизоляции ограждающих конструкций здания просто включают в себя толщину изоляционных материалов и свойства теплопередачи систем стен и полов по регионам [4, 5]. Конструкция пола в многоквартирных домах должна обладать определенными характеристиками звукоизоляции пола (легкий ударный звук составляет 58 дБ или меньше, а тяжелый ударный звук составляет 50 дБ или меньше) и термическое сопротивление (1,23 м 2 K / Вт). В предыдущем исследовании Kim et al. [1] опубликовали исследование, в котором утверждается, что по мере уменьшения динамической жесткости упругих материалов уровень шума от удара в пол также снижался в системе подогрева пола.Была корреляция между динамической жесткостью и ударным звуком тяжелого веса. Jeong et al. [6] измерили теплопроводность и плотность упругих материалов и исследовали их корреляцию. Но не было исследований, которые бы пытались проанализировать теплопередачу конструкции пола из ЖБИ с системой лучистого теплого пола как тепловое свойство упругих материалов.

Было проведено несколько исследований эффектов теплопередачи и методов ее анализа в области энергетики зданий.Сонг [2] рекомендовал выбирать материалы для отделки пола над системой подогрева пола в Корее по тепловому потоку, исходя из тепловой нагрузки, и они должны быть теплофизиологически комфортными. Ли и др. [3] опубликовали исследование, показывающее, что тонкие панели пола с повышенной тепловой эффективностью в системе лучистого теплого пола обеспечивают снижение энергии на 7,2% по сравнению с традиционными деревянными панелями пола в многоквартирных домах. Лю и др. [7] разработали двухпотоковую модель существующего процесса теплопередачи для внутриплитного теплого пола.Исследование Jin et al. В [8] представлен метод расчета температуры поверхности пола в системе водяного отопления / охлаждения на основе численной модели. Ларби [9] представляет регрессионные модели коэффициента теплопередачи для трех типов строительных стен (стык перекрытия и стены, стык перекрытия и стены и стык кровля-стена) 2D тепловых мостов. Теодосиу и Пападопулос [10] рекомендовали, чтобы тепловые мосты не учитывались в процедуре расчета потребности зданий в энергии; фактические тепловые потери в таких зданиях до 35% выше первоначально предполагаемых.Song et al. [11] проанализировали теплопередачу через тепловой мост стыка стена-плита на годовые потери тепла в многоквартирных домах с трехмерным моделированием переходной теплопередачи. Кайнаклы [12] провел исследование влияния различных параметров на оптимальную толщину изоляции для наружных стен с учетом затрат и экономии энергии.

В этом исследовании изучается теплопроводность упругого материала, используемого в конструкции пола из ж / б с системами лучистого теплого пола в Корее, и проведен анализ теплопередачи систем пола в соответствии с теплопроводностью упругих материалов в многоквартирном доме.

2. Материалы и методы
2.1. Подготовка образца

Упругие материалы, которые в настоящее время используются в Корее, изготовлены из пенополистирола (EPS), вспененного полипропилена (EPP), уретана, сополимера этилена и винилацетата (EVA), полиэтилена (PE), стекловаты (GW), минеральная вата (MW), экструдированный полистирол (XPS), экструдированные полиэфирные волокна и другие композитные материалы [1, 5]. Упругим материалом, который использовался для измерений в этом исследовании, был пенополистирол (EPS), который широко используется в Южной Корее в качестве строительного изоляционного материала.Пенополистирол — это термопласт, который получают путем сплавления небольших шариков материалов. Обычно он белый и сделан из гранул из предварительно вспененного полистирола. Это жесткая и прочная конструкция с закрытыми ячейками, достаточно прочная для использования во многих приложениях [13].

В этом исследовании были собраны упругие материалы EPS, которые продавались на рынке строительных материалов Южной Кореи с 2008 по 2010 годы. Из 93 испытательных образцов, собранных в этом исследовании, 82 пенопласта из упругого материала EPS были окончательно выбраны и использовались для проверки теплопроводности. .В этом исследовании были подготовлены образцы для испытаний, размеры которых составляли 300 × 300 мм на плоской доске, а их толщина составляла 20 мм, 30 мм, 50 мм и 90 мм. Для каждой толщины были испытаны по три образца. Им позволили стабилизировать гидротермальные условия при лабораторной температуре (20 ° C) в течение 3 дней. Все испытуемые образцы были протестированы через 3 дня в этом исследовании.

Исследование под микроскопом проводилось с использованием поляризационного микроскопа для фотографирования состояния поверхности исследуемого образца.Мы наблюдали за состоянием поверхности и формой ячеек пенопласта из упругого материала EPS. Изображение под микроскопом типичного пенополистирола показано на рисунке 1. Как показано на этом рисунке, упругий материал EPS имеет гладкую поверхность, однородную структуру и структуру с закрытыми ячейками. Эта структура с закрытыми ячейками действует как теплоизолятор.

2.2. Экспериментальное испытание

Методы измерения, применяемые для испытания теплопроводности в этом исследовании, — это метод KS L 9016 [14] для измерения теплопроводности изолятора и ISO 8301 [15].Измерения проводились методом теплового расходомера (HFM, рисунок 2 (а)). Средняя температура для измерения теплопроводности составляла 20 ± 1 ° C. Результатом измерения значения теплопроводности было среднее значение трех образцов одинаковой толщины. Объем и вес образцов измеряли с помощью цифрового микрометра (рис. 2 (b)) с разрешением 0,001 мм, а кажущуюся плотность измеряли с помощью цифровой шкалы (рис. 2 (c)) с разрешением 0,001 г. Кажущаяся плотность может быть определена с помощью веса, основанного на единице объема, когда образец для испытаний включает кожуру во время производства.Во время проведения экспериментов испытательное оборудование и образцы для испытаний выдерживают в условиях окружающей среды при температуре 23 ± 2 ° C и относительной влажности 50 ± 5%.

2.3. Численное моделирование

Конфигурация материалов конструкции пола была смоделирована на основе типового пола [4, 16], применимого к большинству домов в Южной Корее. Типичная конструкция пола из железобетона для дома состоит из четырех слоев: отделочного слоя, слоя обогрева, слоя изоляции и слоя конструкции.Нагревательный слой имеет теплоаккумулирующий слой и трубу для горячей воды в виде пластиковой трубы. Для этого численного моделирования конструкции пола представляли собой пол из ПВХ (мм), цементный раствор (мм), трубу для горячей воды, легкий бетон (мм), упругий материал (мм) и железобетонную плиту толщиной 210 ​​мм. Для обогрева помещения была установлена ​​труба диаметром 15 мм с узким шагом 230 мм в цементном растворе толщиной 40 мм. Геометрическая модель и конфигурация материала представлены на рисунке 3. В таблице 1 показаны тепловые характеристики каждого строительного материала.Как показано в таблице 1, значение теплопроводности упругого материала было получено на основе результатов эксперимента, который проводился в этом исследовании.

)

9011

9011

9011

9011


Материал Толщина Плотность Теплопроводность
(мм) (кг / м

/ W) (м

)

Пол из листов ПВХ 2 1,500 0.19
Цементный раствор 40 2,000 1,4
Труба горячего водоснабжения 15 930 0,324
650 Упругий материал 20 9,5–63
Бетон 210 2,240 1,6
Гипсовая плита 9 918

Для анализа тепловых характеристик напольных систем использовалось программное обеспечение Physibel, поскольку оно позволяет анализировать стационарный режим теплопередачи. Программа Physibel TRISCO предназначена для моделирования теплопередачи, ориентированного на физику строительства [17]. Эта программа позволяет рассчитывать трехмерный (3D) установившийся теплообмен на основе метода конечных разностей в объектах, описываемых в прямоугольной сетке.Таким образом, он вычисляет распределение теплового потока и температуры в установившемся режиме через сетку. Эта программа позволяет моделировать в полном соответствии со стандартом EN ISO 10211-1 [18]. На Рисунке 3 (b) показана имитационная модель, а на Рисунке 3 (c) показано вертикальное сечение стыков наружной стены с железобетонным полом и материалов конструкции. Моделирование проводилось на основе модели размером 2,0 м (высота) × 1,2 м (ширина) × 1,0 м (глубина), которая определяет средний этаж многоквартирного дома в Корее.Трехмерное моделирование неустановившейся теплопередачи было выполнено с интервалом временного шага 30 минут. Параметры расчета для моделирования показаны в Таблице 2.

901 30 минут


Параметр Присвоенное значение

Интервал временного шага 901 30 минут итераций 10,000
Максимальный перепад температур 0.0001 ° C
Расхождение теплового потока для всего объекта 0,001%
Расхождение теплового потока для наихудшего узла 1%
Теплопроводность упругого материала пола 0,029, 0,031, 0,037, 0,037 0,046 Вт / (м · К)

Граничные условия задаются как температура поверхности на внешней и внутренней границах, а на периферии стены и пола налагается адиабатический режим.Материалы каждого слоя в этом исследовании однородны, а параметры свойств остаются постоянными. Температура окружающей среды была выбрана в соответствии с фактической температурой наружного воздуха (° C) и температурой отопления помещения (° C) в зимний сезон в Южной Корее. Температура горячей воды составляла 60 ° C, которая поступала в трубопровод горячей воды в нагревательном слое системы пола. Скорость горячей воды в трубе была установлена ​​на уровне 3 л / мин. Установленная температура для обогрева помещения составляла 20 ° C. Все факторы окружающей среды контролировались в идеальных тепловых и физиологических условиях.

3. Результаты и обсуждение
3.1. Плотность и теплопроводность эластичного материала EPS

Измеренная кажущаяся плотность эластичного материала EPS составляла от 9,5 до 63,0 кг / м 3 , а коэффициент теплопроводности — от 0,030 до 0,046 Вт / (м · К). На рисунке 4 показана взаимосвязь между теплопроводностью и кажущейся плотностью. Как показано на рисунке 4, измеренная теплопроводность и плотность показывают линейную корреляцию, где — теплопроводность и плотность упругих материалов EPS.Эта пунктирная линия показывает коэффициент корреляции взрывчатых веществ 0,786. Результаты эксперимента показали тесную корреляцию между кажущейся плотностью и теплопроводностью. По мере увеличения плотности эластичных материалов из пенополистирола теплопроводность имеет тенденцию к пропорциональному снижению. Полученная пунктирная линия имеет наклон, который быстро уменьшается в сторону высокой плотности.

На основании этих результатов было установлено, что плотность является важным фактором тепловых свойств упругих материалов, которые используются в системах полов жилых домов.Чтобы предотвратить большие потери тепла из системы пола из-за разницы температур в помещении и на улице, строительные изоляционные материалы должны выбираться на основе соотношения между плотностью и теплопроводностью. Но при одной и той же плотности теплопроводность варьировалась из-за других факторов, влияющих на тепловые свойства, то есть физическая структура ячеек материалов варьировалась в зависимости от метода производства, размера и типа внутренних воздушных зазоров, лучистого тепла скорость потока и т. д.

3.2. Характеристики теплопередачи

Численное моделирование было проведено для исследования влияния и характеристик теплопередачи системы лучистого теплого пола на основе теплопроводности упругого материала. В методе моделирования использовалось установившееся состояние модели теплового баланса, основанное на самой низкой внешней температуре окружающей среды, а значения теплопроводности упругого материала EPS были максимальным, минимальным, средним и медианным.

В таблице 3 и на рисунке 5 приведены результаты численного моделирования. Как показано в Таблице 3, на величину потерь тепла в каждом случае влияли тепловые свойства упругого материала EPS. Поскольку теплопроводность эластичного материала EPS увеличилась в 1,6 раза, потери тепла в системе теплого пола увеличились на 3,4%. На рис. 5 показано распределение температуры и тепловой поток при самой низкой внешней температуре. Из рисунка 5 видно, что потеря тепла произошла из трубы теплоносителя в системе лучистого теплого пола, предназначенной для обогрева пространства во внешней конструкции.Теплопотери произошли в стыке Ж / Б пола и внешней стены. Причина теплопотерь — тепловой мост железобетонной конструкции пола в многоквартирном доме. Зависимость от теплопроводности эластичного материала EPS была снижена, а изоляционные свойства пола увеличены. Поскольку поток теплового потока через стык стены и пола к внешней стене уменьшается, потери тепла уменьшаются. Понятно, что теплопроводность упругого материала конструкции пола из Ж / Б с системами лучистого теплого пола в многоквартирном доме в Корее может быть важным фактором.

0,0670


Теплопроводность Теплопотери Коэффициент экономии
(Вт / (м · К)) 10 (Вт) (Вт)
Корпус 0,029 46,83 3,4
Корпус 0,031 47,07 2,9
1,6
Корпус 0,046 48,46 0,0

В Корее энергосберегающее и звуковое проектирование жилых домов должно соответствовать нормам энергосберегающего и звукового оформления квартир. Этот код требует, чтобы конструкция пола из ж / б с системой лучистого теплого пола имела значение теплопроизводительности меньше или равное 0,81 Вт / (м 2 · K). Коэффициент теплопроводности упругого материала EPS в конструкции пола должен быть менее 0.031 Вт / (м · К), как в данном исследовании. Когда теплопроводность упругого материала EPS составляет более 0,31 Вт / (м · К) как для корпуса, так и для корпуса, толщина упругого материала EPS также должна быть более 20 мм. Корпус (Вт / (м · К)) должен иметь толщину 24 мм, а корпус (Вт / (м · К)) должен быть толщиной более 30 мм, чтобы сохранить код конструкции.

4. Выводы

Мы исследуем изменения теплопроводности типичных упругих материалов, пенополистирола, в зависимости от их кажущейся плотности.Из результатов мы получаем эмпирическую формулу, которая имеет соотношение между теплопроводностью и плотностью. Чтобы установить разумные требования к теплоизоляции для систем теплого пола из железобетона, необходимо выяснить свойства теплопередачи систем пола в соответствии с характеристиками теплоизоляции. Таким образом, моделирование теплопередачи было выполнено для анализа температуры поверхности и теплопотерь конструкции пола с системой лучистого теплого пола.

Упругие материалы — пенополистирол; по мере увеличения плотности теплопроводность имела тенденцию к снижению. Результаты эксперимента показали корреляционное выражение между теплопроводностью и плотностью, что позволило определить подходящие изоляционные материалы и их теплопроводность в соответствии с энергетическим кодексом здания. Когда изоляционные материалы устанавливаются в стенах, полах и крышах здания для предотвращения потерь тепла и снижения шума в зданиях, материалы должны использоваться с учетом не только физических свойств материалов, но и их тепловых свойств [6 ].Исследование показало, что проводимость упругих материалов в конструкции железобетонного пола с системой лучистого теплого пола влияет на энергосбережение.

Тепловые характеристики играют важную роль в тепловых потерях здания. Относительная важность тепловых мостов возрастает в энергетическом балансе недавних зданий с высокой изоляцией [19]. Результаты моделирования показали, что температуры внешней поверхности и внутренней поверхности стыковых частей термомоста и нормальной части существенно различаются по конструкции пола.Таким образом, упругие материалы на трубе горячей воды в системе лучистого теплого пола являются важным фактором не только для снижения уровня шума от удара пола, но и для предотвращения потерь тепла на отопление помещений.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи.

Системы отопления, вентиляции и кондиционирования, часть инструментов для проектирования качества воздуха в помещениях для школ | Обеспечение здорового качества воздуха в помещениях школ

Основное назначение системы отопления, вентиляции и кондиционирования (HVAC) — поддержание хорошего качества воздуха в помещении за счет соответствующей вентиляции с фильтрацией и обеспечения теплового комфорта.Системы HVAC — одни из крупнейших потребителей энергии в школах. Выбор и конструкция системы HVAC также может повлиять на многие другие цели, связанные с высокими эксплуатационными характеристиками, включая потребление воды (оборудование для кондиционирования воздуха с водяным охлаждением) и акустику.

Следующие действия подробно описывают, как инженеры могут разработать систему качества, которая будет конкурентоспособна по стоимости с традиционными системами вентиляции, при этом успешно обеспечивая соответствующее количество и качество наружного воздуха, более низкие затраты на электроэнергию и более простое обслуживание.

На этой странице:


Нормы и стандарты

Национальным стандартом для вентиляции наружным воздухом является стандарт ASHRAE 62.1-2010 «Вентиляция для обеспечения приемлемого качества воздуха в помещении» и опубликованные дополнения к нему. Этот стандарт часто включается в государственные и местные строительные нормы и правила и определяет количество наружного воздуха, которое должно подаваться системами естественной или механической вентиляции в различные помещения школы, включая классные комнаты, спортзалы, кухни и другие зоны особого использования.

Многие государственные кодексы также определяют минимальные требования к энергоэффективности, средства управления вентиляцией, изоляцию и герметизацию труб и каналов, а также размер системы, среди других факторов. Кроме того, в некоторых штатах и ​​населенных пунктах установлены требования, касающиеся вентиляции и / или других требований к качеству воздуха в помещениях, которые также необходимо соблюдать.

  • Проектирование в соответствии со стандартами ASHRAE Проектирование систем для обеспечения вентиляции наружным воздухом в соответствии со стандартом ASHRAE 62.1-2007 и теплового комфорта в соответствии со стандартом ASHRAE 55–1992 (с приложениями 1995 г.) Тепловые условия окружающей среды для людей.
  • Убедитесь, что вы знакомы со всеми государственными и местными строительными нормами и стандартами и соблюдаете их.

Стандарты доступны на выходе ASHRAE

Начало страницы


Возможность естественной вентиляции и работоспособных окон

В некоторых частях страны, где позволяют уровни температуры и влажности, естественная вентиляция через работающие окна может быть эффективным и энергоэффективным способом дополнить системы HVAC для обеспечения вентиляции наружным воздухом, охлаждения и теплового комфорта, когда позволяют условия (например,г., температура, влажность, уровни загрязнения атмосферного воздуха, осадки). Окна, которые открываются и закрываются, могут улучшить чувство благополучия пассажиров и чувство контроля над окружающей средой. Они также могут обеспечить дополнительную вытяжную вентиляцию во время ремонтных работ, которые могут привести к попаданию загрязняющих веществ в помещение.

Однако герметичные здания с надлежащим образом спроектированными и эксплуатируемыми системами отопления, вентиляции и кондиционирования воздуха часто могут обеспечивать лучшее качество воздуха в помещении, чем здания с открывающимися окнами. Неконтролируемая вентиляция наружным воздухом может позволить загрязнителям наружного воздуха обойти фильтры, потенциально.

Следует ли чистить воздуховоды в вашем доме? | Качество воздуха в помещении (IAQ)

На этой странице:


Сводка

Знания об очистке воздуховодов находятся на ранней стадии, поэтому невозможно дать рекомендации относительно того, следует ли чистить воздуховоды в доме.Агентство по охране окружающей среды США (EPA) настоятельно рекомендует вам полностью прочитать этот документ, поскольку он содержит важную информацию по этому вопросу.

Никогда не было доказано, что очистка воздуховодов действительно предотвращает проблемы со здоровьем. Исследования также не убедительно демонстрируют, что уровни частиц (например, пыли) в домах увеличиваются из-за грязных воздуховодов. Это связано с тем, что большая часть грязи в воздуховодах прилипает к поверхности воздуховодов и не обязательно попадает в жилое пространство. Важно помнить, что грязные воздуховоды — лишь один из многих возможных источников частиц, которые присутствуют в домах.Загрязняющие вещества, попадающие в дом как снаружи, так и в помещении, такие как приготовление пищи, уборка, курение или просто передвижение, могут вызывать большее воздействие загрязнителей, чем грязные воздуховоды. Более того, нет никаких доказательств того, что небольшое количество домашней пыли или других твердых частиц в воздуховодах представляет какой-либо риск для вашего здоровья.

Вам следует подумать о чистке воздуховодов в вашем доме, если:

Внутри твердой поверхности наблюдается значительный видимый рост плесени (например,g., листовой металл) воздуховоды или на других компонентах вашей системы отопления и охлаждения. При обнаружении плесени в системах отопления и охлаждения необходимо понимать несколько важных моментов:

  • Многие секции вашей системы отопления и охлаждения могут быть недоступны для визуального осмотра, поэтому попросите поставщика услуг показать вам любую форму, которая, по их словам, существует.
  • Вы должны знать, что, хотя вещество может выглядеть как плесень, положительное определение того, является ли оно плесенью, может быть сделано только экспертом и может потребоваться лабораторный анализ для окончательного подтверждения.Примерно за 50 долларов некоторые микробиологические лаборатории могут сказать вам, является ли образец, отправленный им на прозрачной полоске липкой ленты, плесенью или просто веществом, похожим на нее.
  • Если у вас есть изолированные воздуховоды, и изоляция намокнет или заплесневелая, ее нельзя эффективно очистить, и ее следует удалить и заменить.
  • Если условия, вызывающие рост плесени, не будут устранены, рост плесени будет повторяться.

Протоки заражены паразитами, например.грамм. (грызуны или насекомые).

Воздуховоды забиты чрезмерным количеством пыли и мусора и / или частиц, которые фактически попадают в дом из ваших регистров снабжения.

Если какое-либо из перечисленных выше состояний существует, это обычно указывает на одну или несколько основных причин. Перед любой очисткой, модернизацией или заменой воздуховодов необходимо устранить причину или причины, иначе проблема, скорее всего, повторится.

Некоторые исследования показывают, что очистка компонентов системы отопления и охлаждения (например,g., охлаждающие змеевики, вентиляторы и теплообменники) могут повысить эффективность вашей системы, что приведет к увеличению срока службы, а также к некоторой экономии энергии и затрат на техническое обслуживание. Однако существует мало доказательств того, что очистка только воздуховодов повысит эффективность системы.

Вы можете подумать о чистке ваших воздуховодов просто потому, что кажется логичным, что воздуховоды получат

Экологичное отопление: как оставаться в тепле без ископаемого топлива | Окружающая среда | Все темы от изменения климата до сохранения | DW

На отопление с помощью угля, нефти и природного газа приходится около четверти мировых выбросов парниковых газов.Но это то, что мы можем изменить, — говорит Вольфганг Файст, основатель Института пассивного дома в западногерманском городе Дармштадт.

«Здания могут питаться климатически нейтральным способом, и это возможно во всем мире с помощью возобновляемых источников энергии», — сказал он DW, добавив, что решающим фактором является повышение эффективности зданий, чтобы энергия не тратилась впустую.

«При наличии хороших систем изоляции и вентиляции можно достичь экономии энергии — по сравнению с обычными зданиями — на 80-90% в новых зданиях и на 75-80% за счет энергоэффективного ремонта старых зданий.«

Остающийся спрос может быть удовлетворен за счет сочетания возобновляемых источников энергии. И это сочетание может варьироваться в зависимости от региона, — говорит Файст, профессор физики и пионер эффективных методов строительства.

« Я вижу центральное отопление с использованием возобновляемых источников энергии и отопление с использованием тепла окружающей среды и тепловых насосов в качестве важных источников здесь », — говорит он.

Подробнее : Кельн и Дортмунд свинцовая плата за немецкие умные города

Использование древесины или древесных гранул — еще одно По словам Файста, способ удовлетворить потребности в отоплении отдельных зданий, однако, добавив, что это «неразумный вариант» для целых городов или промышленных предприятий, поскольку он неустойчив и приведет к чрезмерному спросу на биомассу.

Финансовая столица Германии имеет большие экологические планы

В этих пассивных домах во Франкфурте используется солнечная энергия и тепловые насосы для обеспечения экологически безопасного отопления круглый год

Франкфурт стремится к климатической нейтральности

Немецкий город Франкфурт стремится к тому, чтобы стать климатически нейтральным к 2050 году. Для достижения этой цели финансовый центр полагается на ряд технологий, — говорит Пол Фэй из городского департамента энергетики, который координирует переход.С помощью ученых город составил генеральный план, включающий пассивные дома и энергоэффективный ремонт старых построек.

Солнечные панели на крышах зданий Франкфурта будут вырабатывать часть тепловой энергии города. Еще одна доля поступит от теплотрасс, обслуживающих районы города, где тепло будет создаваться за счет сжигания отходов и древесины или за счет отработанного тепла из центров обработки данных. Окружающую энергию земли также можно использовать с помощью тепловых насосов.

Подробнее : Энергоэффективный дом в Южном Тироле

Как работает тепловой насос?

Теоретически тепловой насос работает как холодильник: в замкнутой многоступенчатой ​​системе тепло вырабатывается в компрессоре, а холодный воздух создается в испарителе.

Жидкий теплоноситель отводит тепло из окружающей среды для обогрева зданий или воды. Тепловой насос получает энергию из земли, грунтовых вод или воздуха.

Тепловым насосам в качестве рабочей энергии требуется электричество, и их эффективность в основном зависит от источника тепла.

«Мы исследовали 60 тепловых насосов в старых зданиях в Германии, — говорит Марек Миара, исследователь из Института солнечных энергетических систем им. Фраунгофера (ISE) во Фрайбурге.

«Тепловые насосы в старых зданиях, которые используют воздух в качестве источника тепла, вырабатывают в среднем около 3 киловатт-часов тепла из 1 киловатта электроэнергии. А тепловые насосы, использующие грунтовые воды и почву в качестве источников тепла, вырабатывают в среднем в 3,9 раза больше тепла «, — сказала Миара DW, добавив, что системы в новых зданиях в целом более эффективны.

Рост ключевых технологий

Тепловые насосы являются ключевым компонентом планов климатически нейтральных источников энергии и отопления в будущем, и эти технологии все чаще заменяют системы отопления, работающие на ископаемом топливе, во всем мире.

«Мы наблюдаем очень позитивную глобальную тенденцию», — говорит Томас Новак из лоббистской организации Европейской ассоциации тепловых насосов (EHPA). «Мы переживаем золотой век тепловых насосов, они становятся массовым рынком».

Согласно отчету EHPA, в 2018 — 1 во всем мире было продано 18 миллионов тепловых насосов.3 миллиона из них в Европе. Мировые продажи растут на 10% каждый год, по

RentSafeTO для владельцев зданий — Город Торонто

Чтобы жильцы были в курсе последних событий, необходимо разместить доску уведомлений в центре здания. См. Бюллетень интерпретации Совета по уведомлению арендаторов.

Доступен образец доски объявлений для арендаторов, чтобы проиллюстрировать информацию, которую необходимо опубликовать. Это не обязательный макет, а пример, который можно настроить.

На доске должна быть размещена следующая информация:

Информация о программе RentSafeTO

Вы должны опубликовать информацию о программе RentSafeTO и сообщить арендаторам, что они могут связаться с командой RentSafeTO по телефону 311. Загрузите брошюру RentSafeTO: Программа стандартов жилищного строительства для своих арендаторов.

Результат оценки здания

Вам необходимо разместить копии последних результатов оценки здания, полученных от города, на доске объявлений арендатора.Вы можете распечатать копию последнего оценочного письма через онлайн-портал RentSafeTO.

Запланированные или незапланированные перебои в обслуживании

Это включает отопление, воду, системы безопасности, электричество и лифты. Подробная информация должна включать: что не работает, как долго оно будет отключено и какие блоки затронуты.

Контактная информация для экстренных случаев

Укажите имя, адрес и номер телефона (доступен круглосуточно) владельца или управляющего недвижимостью.Высота надписи должна быть 12,7 мм.

Примечание. По номеру телефона не должна взиматься комиссия.

Ближайшее место охлаждения

Информация должна быть предоставлена ​​для:

  • Ближайшее кондиционированное место в здании, которое могут использовать арендаторы
  • ближайшего общественного холодоснабжения с указанием названия, адреса и карты.

Примечание. В 2020 году «общественные точки охлаждения» станут одним из 15 центров аварийного охлаждения, которые будут работать только во время оповещения о перегреве.

Уведомление о безопасности при летней жаре предоставляет всю эту информацию.

Подробная информация о местах в собственности, которые помогают избавиться от некомфортно высоких температур в помещении, например, о затененных местах, также должна быть размещена на доске объявлений арендатора.

Предстоящие даты аудита зданий

Город Торонто уведомит владельца здания о любых предстоящих аудитах здания.

Размещайте уведомления арендаторам о предстоящих плановых проверках зданий сотрудниками RentSafeTO.Эта информация должна быть опубликована как минимум за 30 дней до даты аудита.

Крупные капитальные проекты

Информация о крупных капитальных проектах должна включать: название проекта, сколько времени он займет и какие подразделения будут затронуты.

Основные элементы включают, но не ограничиваются ими: крышу, лифты, фасад, окна, механические системы, подземный гараж, внутренние полы, внутреннюю отделку стен, ограждения балконов и поручни.

Обследование и обработка вредителей

Опубликовать подробную информацию о любых мероприятиях по обработке вредителей, в том числе:

  • дата обращения
  • имя лицензированного оператора по борьбе с вредителями, проводящего обработку
  • и вид обработки
  • планов борьбы с вредителями, включая
    • документация служб по борьбе с вредителями и перечень
    • стандарты обслуживания и продукт
    • информация, относящаяся к деятельности по борьбе с вредителями.

План уборки

План уборки — это список всех мест общего пользования (например, складские помещения для мусора и вторичного сырья, стены, полы, прачечная и т. Д.) В здании, а также то, как часто эти зоны будут убираться.

Городские извещения и распоряжения

Копия любого уведомления и распоряжения, выданного городскими властями в отношении мест общего пользования в зданиях, таких как стандарты собственности, граффити, мусор или распоряжения, изданные пожарной службой Торонто, должна быть размещена на доске объявлений арендатора.

Размещать информацию о любых нарушениях Пожарного кодекса Онтарио, выявленных пожарной службой Торонто.

Обжалование постановлений о нормах собственности

Вы должны опубликовать уведомления о том, что апелляция была подана в Апелляционный комитет по стандартам собственности (PSAC), а также подтверждение того, что апелляция была получена городскими властями. Также приложите копию полученного городскими властями письма, подтверждающего дату вашей апелляции в PSAC.

Управление отходами

Разместите информацию о мусоре, переработке и, если применимо, органике, например о принятых предметах и ​​местонахождении мусорных баков (если они не размещены где-нибудь в общем месте).

.