Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

12 вольт 80 ватт сколько ампер: 100 Ватт сколько ампер в 12 вольтах

Содержание

Полезная информация » Переводим Вольт-Амперы (ВА) в Ватты (Вт)


Нередко наши покупатели, видя в названии стабилизатора цифры, принимают их за мощность в Ваттах. На самом деле, как правило, производитель указывает полную мощность прибора в Вольт-Амперах, которая далеко не всегда равна мощности в Ваттах. Из-за этого нюанса возможны регулярные перегрузки стабилизатора по мощности, что в свою очередь приведет к его преждевременному выходу из строя.


Электрическая мощность включает в себя несколько понятий, из которых мы рассмотрим наиболее для нас важные:


Полная мощность (ВА) — величина, равная произведению силы тока (Ампер) на напряжение в цепи (Вольт). Измеряется в Вольт-Амперах.


Активная мощность (Вт) — величина, равная произведению силы тока (Ампер) на напряжение в цепи (Вольт) и на коэффициент нагрузки (cos φ). Измеряется в Ваттах.


Коэффициент мощности (cos φ) — величина, характеризующая потребитель тока. Говоря простым языком, этот коэффициент показывает, скольно нужно полной мощности (Вольт-Ампер), чтобы «запихнуть» требуемую на совершение полезной работы мощность (Ватт) в потребитель тока. Этот коэффициент можно найти в технических характеристиках приборов-потребителей тока. На практике он может принимать значения от 0.6 (например, перфоратор) до 1 (нагревательные приборы). Cos φ может быть близок к единице в том случае, когда потребителями тока выступают тепловые (тэны и т.п.) и осветительные нагрузки. В остальных случаех его значение будет варьироваться. Для простоты это значение принято считать равным 0.8.

Активная мощность (Ватты) = Полная мощность (Вольт-Амперы) * Коэффициент мощности (Cos φ)


Т.е. при выборе стабилизатора напряжения на дом или на дачу в целом, его полную мощность в Вольт-Амперах (ВА) следует умножить на коэффициент мощности Cos φ = 0.8. В результате мы получаем приблизительную мощностьв Ваттах (Вт) на которую рассчитан данный стабилизатор. Не забывайте в расчетах принять во внимание пусковые токи электродвигателей. В момент пуска их потребляемая можность может превысить номинальную от трёх до семи раз.

Для любознательных:


Электрическая мощность


Коэффициент мощности

80 Ампер сколько киловатт при 3 фазе

При проектировании схемы любой электрической установки и монтаже, выбор сечения проводов и кабелей является обязательным этапом. Чтобы правильно подобрать силовой провод нужного сечения, необходимо учитывать величину максимального потребления.

Сечения проводов измеряется в квадратных милиметрах или «квадратах». Каждый «квадрат» алюминиевого провода способен пропустить через себя в течение длительного времени нагреваясь до допустимых пределов максимум – только 4 ампера, а медный провода 10 ампер тока. Соответственно, если какой-то электропотребитель потребляет мощность равную 4 киловаттам (4000 Ватт), то при напряжении 220 вольт сила тока будет равна 4000/220=18,18 ампер и для его питания достаточно подвести к нему электричество медным проводом сечением 18,18/10=1,818 квадрата. Правда в этом случае провод будет работать на пределе своих возможностей, поэтому следует взять запас по сечению в размере не менее 15%. Получим 2,091 квадрата. И теперь подберем ближайший провод стандартного сечения. Т.е. к этому потребителю мы должны вести проводку медным проводом сечением 2 квадратных миллиметра именуемого нагрузкой тока. Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Алюминиевый провод будет соответственно в 2,5 раза толще.

Из расчета достаточной механической прочности открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться таблицами.

Медные жилы проводов и кабелей

Алюминиевые жилы проводов и кабелей

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами к примеру кабель МКЭШВнг

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,
найритовой или резиновой оболочке, бронированных и небронированных

* Токи относятся к кабелям и проводам с нулевой жилой и без нее.

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.

Сечение токопроводящей жилы, мм.Напряжение, 220 ВНапряжение, 380 В
ток, Амощность, кВтток, Амощность, кВт
1,5194,11610,5
2,5275,92516,5
4388,33019,8
64610,14026,4
107015,45033,0
168518,77549,5
2511525,39059,4
3513529,711575,9
5017538,514595,7
7021547,3180118,8
9526057,2220145,2
12030066,0260171,6
Сечение токопроводящей жилы, мм.Напряжение, 220 ВНапряжение, 380 В
ток, Амощность, кВтток, Амощность, кВт
2,5204,41912,5
4286,12315,1
6367,93019,8
105011,03925,7
166013,25536,3
258518,77046,2
3510022,08556,1
5013529,711072,6
7016536,314092,4
9520044,0170112,2
12023050,6200132,0
Сечение токопроводящей жилы, мм.ОткрытоТок, А, для проводов проложенных в одной трубе
Двух одножильныхТрех одножильныхЧетырех одножильныхОдного двухжильногоОдного трехжильного
0,511
0,7515
1171615141514
1,2201816151614,5
1,5231917161815
2262422202319
2,5302725252521
3343228262824
4413835303227
5464239343731
6504642404034
8625451464843
10807060505550
161008580758070
251401151009010085
35170135125115125100
50215185170150160135
70270225210185195175
95330275255225245215
120385315290260295250
150440360330
185510
240605
300695
400830
Сечение токопроводящей жилы, мм.ОткрытоТок, А, для проводов проложенных в одной трубе
Двух одножильныхТрех одножильныхЧетырех одножильныхОдного двухжильногоОдного трехжильного
2211918151714
2,5242019191916
3272422212218
4322828232521
5363230272824
6393632303126
8464340373832
10605047394238
16756060556055
251058580707565
3513010095859575
50165140130120125105
70210175165140150135
95255215200175190165
120295245220200230190
150340275255
185390
240465
300535
400645
Сечение токопроводящей жилы, мм.Ток*, А, для проводов и кабелей
одножильныхдвухжильныхтрехжильных
при прокладке
в воздухев воздухев землев воздухев земле
1,52319331927
2,53027442538
44138553549
65050704260
1080701055590
161009013575115
2514011517595150
35170140210120180
50215175265145225
70270215320180275
95325260385220330
120385300445260385
150440350505305435
185510405570350500
240605
Сечение токопроводящей жилы, мм.Ток, А, для проводов и кабелей
одножильныхдвухжильныхтрехжильных
при прокладке
в воздухев воздухев землев воздухев земле
2,52321341929
43129422738
63838553246
106055804270
1675701056090
251059013575115
3513010516090140
50165135205110175
70210165245140210
95250200295170255
120295230340200295
150340270390235335
185390310440270385
240465
Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки
Сечение медных жил проводов и кабелей, кв.ммДопустимый длительный ток нагрузки для проводов и кабелей, АНоминальный ток автомата защиты, АПредельный ток автомата защиты, АМаксимальная мощность однофазной нагрузки при U=220 BХарактеристика примерной однофазной бытовой нагрузки
1,51910164,1группа освещения и сигнализации
2,52716205,9розеточные группы и электрические полы
43825328,3водонагреватели и кондиционеры
646324010,1электрические плиты и духовые шкафы
1070506315,4вводные питающие линии

В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.

Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях
Наименование линийНаименьшее сечение кабелей и проводов с медными жилами, кв.мм
Линии групповых сетей1,5
Линии от этажных до квартирных щитков и к расчетному счетчику2,5
Линии распределительной сети (стояки) для питания квартир4

Надеемся данная информация была полезна для Вас. Мы же напоминаем что у нас Вы можете купить кабель МКЭКШВнг отличного качества по низкой цене.

Выбор защитных автоматических выключателей производится не только в ходе установки новой электрической сети, но и при модернизации электрощита, а также при включении в цепь дополнительных мощных приборов, повышающих нагрузку до такого уровня, с которым старые устройства аварийного отключения не справляются. И в этой статье речь пойдет о том, как правильно производить подбор автомата по мощности, что следует учитывать в ходе этого процесса и каковы его особенности.

Непонимание важности этой задачи может привести к очень серьезным проблемам. Ведь зачастую пользователи не утруждают себя, производя выбор автоматического выключателя по мощности, и берут в магазине первое попавшееся устройство, пользуясь одним из двух принципов – «подешевле» или «помощнее». Такой подход, связанный с неумением или нежеланием рассчитать суммарную мощность устройств, включенных в электросеть, и в соответствии с ней подобрать защитный автомат, зачастую становится причиной выхода дорогостоящей техники из строя при коротком замыкании или даже пожара.

Для чего нужны защитные автоматы и как они работают?

Современные АВ имеют две степени защиты: тепловую и электромагнитную. Это позволяет обезопасить линию от повреждения в результате длительного превышения протекающим током номинальной величины, а также короткого замыкания.

Основным элементом теплового расцепителя является пластина из двух металлов, которая так и называется – биметаллической. Если на нее в течение достаточно длительного времени воздействует ток повышенной мощности, она становится гибкой и, воздействуя на отключающий элемент, вызывает срабатывание автомата.

Наличием электромагнитного расцепителя обусловлена отключающая способность автоматического выключателя при воздействии на цепь сверхтоков короткого замыкания, выдержать которые она не сможет.

Расцепитель электромагнитного типа представляет собой соленоид с сердечником, который при прохождении сквозь него тока высокой мощности моментально сдвигается в сторону отключающего элемента, выключая защитное устройство и обесточивая сеть.

Это позволяет обеспечить защиту провода и приборов от потока электронов, величина которого намного выше расчетной для кабеля конкретного сечения.

Чем опасно несоответствие кабеля сетевой нагрузке?

Правильный подбор защитного автомата по мощности – очень важная задача. Неверно выбранное устройство не защитит линию от внезапного возрастания силы тока.

Но не менее важно правильно подобрать по сечению кабель электропроводки. В противном случае, если суммарная мощность превысит номинальную величину, которую способен выдерживать проводник, это приведет к значительному росту температуры последнего. В итоге изоляционный слой начнет плавиться, что может привести к возгоранию.

Чтобы более наглядно представить, чем грозит несоответствие сечения проводки суммарной мощности включенных в сеть устройств, рассмотрим такой пример.

Новые хозяева, купив квартиру в старом доме, устанавливают в ней несколько современных бытовых приборов, дающих суммарную нагрузку на цепь, равную 5 кВт. Токовый эквивалент в этом случае будет составлять около 23 А. В соответствии с этим в цепь включается защитный автомат на 25 А. Казалось бы, выбор автомата по мощности сделан верно, и сеть готова к эксплуатации. Но через некоторое время после включения приборов в доме появляется задымление с характерным запахом горелой изоляции, а через некоторое время возникает пламя. Автоматический выключатель при этом не будет отключать сеть от питания – ведь номинал тока не превышает допустимого.

Если хозяина в этот момент не окажется поблизости, расплавленная изоляция через некоторое время вызовет короткое замыкание, которое, наконец, спровоцирует срабатывание автомата, но пламя от проводки может уже распространиться по всему дому.

Причина в том, что хотя расчет автомата по мощности был сделан правильно, кабель проводки сечением 1,5 мм² был рассчитан на 19 А и не мог выдержать имеющейся нагрузки.

Чтобы вам не пришлось браться за калькулятор и самостоятельно высчитывать сечение электропроводки по формулам, приведем типовую таблицу, в которой легко найти нужное значение.

Защита слабого звена электроцепи

Итак, мы убедились, что расчет автоматического выключателя должен производиться, исходя не только из суммарной мощности включенных в цепь устройств (независимо от их количества), но и из сечения проводов. Если этот показатель неодинаков на протяжении электрической линии, то выбираем участок с наименьшим сечением и производим расчет автомата, исходя из этого значения.

Требования ПУЭ гласят, что выбранный автоматический выключатель должен обеспечивать защиту наиболее слабого участка электроцепи, или иметь номинал тока, который будет соответствовать аналогичному параметру включенных в сеть установок. Это также означает, что для подключения должны использоваться провода, поперечное сечение которых позволит выдержать суммарную мощность подключенных устройств.

Как выполняется выбор сечения провода и номинала автоматического выключателя – на следующем видео:

Если нерадивый хозяин проигнорирует это правило, то в случае аварийной ситуации, возникшей из-за недостаточной защиты наиболее слабого участка проводки, ему не стоит винить выбранное устройство и ругать производителя – виновником сложившейся ситуации будет только он сам.

Как рассчитать номинал автоматического выключателя?

Допустим, что мы учли все вышесказанное и подобрали новый кабель, соответствующий современным требованиям и имеющий нужное сечение. Теперь электропроводка гарантированно выдержит нагрузку от включенных бытовых приборов, даже если их достаточно много. Теперь переходим непосредственно к выбору автоматического выключателя по номиналу тока. Вспоминаем школьный курс физики и определяем расчетный ток нагрузки, подставляя в формулу соответствующие значения: I=P/U.

Здесь I – величина номинального тока, P – суммарная мощность включенных в цепь установок (с учетом всех потребителей электричества, в том числе и лампочек), а U – напряжение сети.

Чтобы упростить выбор защитного автомата и избавить вас от необходимости браться за калькулятор, приведем таблицу, в которой указаны номиналы АВ, которые включаются в однофазные и трехфазные сети, и соответствующие им мощности суммарной нагрузки.

Эта таблица позволит легко определить, сколько киловатт нагрузки какому номинальному току защитного устройства соответствуют. Как мы видим, автомату 25 Ампер в сети с однофазным подключением и напряжением 220 В соответствует мощность 5,5 кВт, для АВ на 32 Ампера в аналогичной сети – 7,0 кВт (в таблице это значение выделено красным цветом). В то же время для электрической сети с трехфазным подключением «треугольник» и номинальным напряжением 380 В автомату на 10 Ампер соответствует мощность суммарной нагрузки 11,4 кВт.

Наглядно про подбор автоматических выключателей на видео:

Заключение

В представленном материале мы рассказали о том, для чего нужны и как работают устройства защиты электрической цепи. Кроме того, учитывая изложенную информацию и приведенные табличные данные, у вас не вызовет затруднения вопрос, как выбрать автоматический выключатель.

При выборе автоматов постоянно допускается одна и та же ошибка — не учитывается температура окружающей среды.Номинальный ток автомата назначается по ПУЭ при температуре в + 30 градусов Цельсия,а номинальный ток кабеля или провода назначается по ПУЭ при температуре в + 25 ,а эксплуатироваться автомат и кабель будут при комнатной температуре,допустим в + 18 градусов Цельсия.Если номинальный ток двухжильного или трехжильного, с защитным проводником, кабель — провода сечением 2.5 миллиметра квадратного по меди в однофазной сети равно 25 ампер ( 27 ампер это для кабелей с дополнительной изоляцией в виде ПЭТ ленты или композитного стекломиканита или стеклоленты,заполнением пространства под общей оболочкой мелованной резиной и т. д.),то при + 18 градусов Цельсия это уже номинальный ток в 27 ампер,а номинальный ток автомата на 16 ампер уже фактически равен 18.3 ампера,если учесть что при токах в 1.13 номинального тока автомат не отключается гарантированного в течении более одного часа,то реальный предельный рабочий ток провода уже 20. 2.

Мощность в электрической цепи представляет собой энергию, потребляемую нагрузкой от источника в единицу времени, показывая скорость ее потребления. Единица измерения Ватт [Вт или W]. Сила тока отображает количество энергии прошедшей за величину времени, то есть указывает на скорость прохождения. Измеряется в амперах [А или Am]. А напряжение протекания электрического тока (разность потенциалов между двумя точками) измеряется в вольтах. Сила тока прямо пропорциональна напряжению.

Чтобы самостоятельно рассчитать соотношение Ампер / Ватт или Вт / А, нужно использовать всем известный закон Ома. Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения. Определяется одним из трех равенств: P = I * U = R * I² = U²/R.

Следовательно, чтобы определить мощность источника потребления энергии, когда известна сила тока в сети, нужно воспользоваться формулой: Вт (ватты) = А (амперы) x I (вольты). А чтобы произвести обратное преобразование, надо перевести мощность в ваттах на силу потребления тока в амперах: Ватт / Вольт. Когда же имеем дело с 3-х фазной сетью, то придется еще и учесть коэффициент 1,73 для силы тока в каждой фазе.

Сколько Ватт в 1 Ампере и ампер в вате?

Чтобы перевести Ватты в Амперы при переменном или постоянном напряжении понадобится формула:

I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтахесли сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз.

Когда же необходимо перевести ток в мощность (узнать, сколько в 1 ампере ватт), то применяют формулу:

P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.

А значит, если имеем дело с автомобильной сетью на 12 вольт, то 1 ампер — это 12 Ватт, а в бытовой электросети 220 V такая сила тока будет в электроприборе мощностью 220 Вт (0,22 кВт). В промышленном оборудовании, питающемся от 380 Вольт, целых 657 Ватт.

Таблица перевода Ампер – Ватт:

Еще больше полезных советов в удобном формате

Сколько ампер в 1 квт таблица

Амперы в киловатты: как рассчитать, таблица

Сегодня для грамотного подсчета суммарного количества используемого электрического оборудования в электроцепи, правильного подбора электросчетчика или измерения изоляции необходимо овладеть техникой перевода амперов в ватты и знать их соотношение. О том, как перевести амперы в киловатты, как это правильно делать в однофазной и трехфазной цепи и сколько ампер в киловатте в цепи 220 вольт — далее.

Соотношение ампер и киловатт

Ампер считается измерительной единицей электротока в международной системе или же силой электротока, проникающей через проводниковый элемент в количестве один кулон за одну секунду.

Определение ампера и киловатта


Киловатт является подъединицей ватта и измерительной мощностной единицей, а также тепловым потоком, потоком звуковой энергии, активной и полной мощностью переменного электротока. Все это скалярные измерительные единицы в международной системе, которые можно преобразовывать.

Обратите внимание! Что касается соотношения данных показателей, то в 1А находится 0,22 кВт для однофазной цепи и 0,38 для трехфазной.

Соотношение измерительных величин

Зачем переводить амперы в киловатты

Многие люди привыкли при работе с электрическими приборами использовать киловатты, поскольку именно они отражаются на считывающих приборах. Однако многие предохранители, вилки, розетки автомата имеют амперную маркировку, и не каждый обычный пользователь сможет догадаться, сколько в ампераже устройства киловаттовой энергии. Именно из-за этих возникающих проблем необходимо научиться делать перевод величин. Также нередко это нужно, чтобы четко пересчитать, сколько и какой прибор потребляет электроэнергии. Иногда это избавляет от лишних трат на электроэнергию.

Подсчет используемого электрооборудования дома как цель перевода

Переводы с амперов в киловатты и наоборот

Осуществлять переводы величин можно тремя способами: универсальной таблицей, онлайн калькулятором или формулой. Что касается использования калькулятора, нужно в соответствующие поля вставить исходные показатели и нажать кнопку. Использовать эту систему удобно в том случае, когда приходится сталкиваться с большими цифровыми значениями.

Обратите внимание! Согласно универсальной таблице и формуле можно узнать, что в одном А находится 0,22 кВт или 0,38 кВт. Сделать перевод величин, используя имеющиеся цифры, можно при помощи калькулятора или умножением на приведенное значение. К примеру, чтобы посчитать, сколько будет 6А в кВт, нужно умножить 0,6 на 0,22. В итоге выйдет 1,32 кВт.

В однофазной электрической цепи

Чтобы вычислить необходимые величины в однофазной сети, где номинальный ток автоматического выключателя, к примеру, равен 10 А и в нормальном состоянии через него не течет энергия выше указанного значения, необходимо вычислить максимальную электромощность. Нужно подставить в формулу нахождения мощности значения напряжения и силы электротока и перемножить их между собой. Получится, что мощность будет равна 220*10=2200 ватт. Для перевода в меньшие значения необходимо цифру поделить на 1000. Выйдет 5,5 кВт. Это вся сумма мощностей, питающихся от автомата.

Перевод в однофазной электроцепи

В трехфазной электрической цепи

Перевод показателей в трехфазной сети, рассчитанной на 380 вольт, можно сделать подобным образом. Разница заключается в формуле. Чтобы определить искомые данные, необходимо подставить корень из трех в произведение напряжения и силы электротока. К примеру, автомат рассчитан на 40 А. Подставив значения, можно получить 26327 Вт. После деления значения на 1000 выйдет 26,3 кВт. То есть выйдет, что автомат сможет выдержать нагрузку.

При известном мощностном показателе трехфазной цепи рассчитывать рабочий ток можно, преобразовав данную формулу. То есть электромощность нужно поделить на корень из 3, умноженный на напряжение. В итоге, если электромощность равна 10 кВт, выйдет значение автомата в 16А.

Перевод в трехфазной электроцепи

Расчет

Для подсчета величин используются специальные формулы. После их подсчета останется только вставить их в приведенные выше формулы. Чтобы отыскать электроток, стоит напряжение поделить на проводниковое сопротивление, а чтобы отыскать мощность, необходимо умножить напряжение на токовую силу или же двойное значение силы тока умножить на сопротивление. Также есть возможность поделить двойное значение напряжения на сопротивление.

Обратите внимание! Нередко все необходимые данные прописаны на коробке или технических характеристиках на сайте производителя. Часто информация указана в кВт и ее посредством конвертора легко можно перевести в ампераж. Еще одним простым вариантом, как определить потребление энергии и ампераж, будет изучение электросчетчика или автоматического выключателя потребителя. Но в таком случае необходимо подключать только один прибор к сети.

Формула расчета

Таблица перевода

На данный момент сделать перевод величин в прямом и обратном порядке можно без особых проблем благодаря специальной таблице с названием «100 ампер сколько киловатт». С помощью нее можно без проблем вычислить необходимые значения. Особо ее удобно использовать, когда нужно подсчитать большие числа. Интересно, что сегодня существуют таблицы, рассчитанные на подсчет ампеража и энергии автоматического выключателя однофазной и трехфазной цепи. Приводятся стандартные данные тех аппаратов, которые сегодня можно приобрести на рынке.

Таблица переводов киловатт и ампер

Чтобы узнать необходимые данные, нужно использовать приведенные выше формулы или применять таблицу переводов. Данные измерительные величины помогут посчитать используемую энергию конкретным аппаратом и произвести другие расчеты в области электрики.

Перевести киловатты (кВт) в амперы (А): онлайн-калькулятор, формула

Инструкция по использованию: Чтобы перевести киловатты (кВт) в амперы (А), введите мощность P в киловаттах (кВт), напряжение U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (для переменного тока), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение силы тока I в амперах (А).

Калькулятор кВт в А (1 фаза, постоянный ток)

Формула для перевода кВт в А

Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на напряжение U в вольтах (В).

Калькулятор кВт в А (1 фаза, переменный ток)

Формула для перевода кВт в А

Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF и напряжения U в вольтах (В).

Калькулятор кВт в А (3 фазы, переменный ток, линейное напряжение)

Формула для перевода кВт в А

Сила тока I в амперах (А) равна мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF, напряжения U в вольтах (В) и квадратного корня из трех.

Калькулятор кВт в А (3 фазы, переменный ток, фазное напряжение)

Формула для перевода кВт в А

Сила тока I в амперах (А) равна мощности P в киловаттах (кВт), умноженной на 1000 и деленной на утроенное произведение коэффициента мощности PF и напряжения U в вольтах (В).

Перевести Амперы в Киловатты | Сайт электрика

Всем привет. Сегодня поговорим о том, как перевести Амперы в Киловатты. Этот вопрос интересует многим людей, особенно в тот момент, когда появляется необходимость в ремонте электроприборов или при электромонтаже.
Содержание статьи:
1. Как перевести Амперы в Киловатты в однофазной сети
1 Киловатт сколько это Ампер
2. Как перевести Амперы в Киловатты в трёх фазной сети
Если взять к вниманию все электрические приборы, то обычному человеку в их технических характеристиках и маркировке разобраться довольно тяжело. Например, на автоматах, розетках, вилочках, предохранителях и так далее, маркировка указывается в Амперах. Зачастую пишется максимальный ток, на который рассчитано изделие.

А на самих электроприборах указывают потребляемую мощность, выраженную в Киловаттах или Ваттах. Отсюда появляется проблема с правильностью выбора защитной автоматики для определённых нагрузок.

Очевиден тот факт, что для освещения нужен один автомат, а для подключения бойлера или духовки, совсем другой. Вот тут появляется вопрос с переводом кВт в А.

Надеюсь, вы знаете, что дома у нас в розетках течёт переменный ток с напряжением 220 Вольт. Использую ниже написанные формулы, можно легко всё рассчитать.

Как перевести Амперы в Киловатты в однофазной сети

Вт – это А умноженный на В:

P = I * U

И наоборот – А равен Вт делённый на В:

I = P/U

P – мощность;

I – сила тока;

U – напряжение;

При расчётах, значение P должно браться исключительно в Вт. 1 кВт = 1000 Вт.

1 Киловатт сколько это Ампер

1 кВт = 1000 Вт/220 в = 4,54 А

Таблица подбора автомата по току и мощности.

Реальный пример. Необходимо заменить электрическую вилочку на стиральной машине мощностью 2,2 кВт. Используя формулу, подставляем значения:

I = 2200/220 = 10 А.

Для более долгосрочной и безопасной работы, к полученному числу необходимо прибавить запасу минимум 25%. 10 + 2,5 = 12,5. На такой номинал данное изделие, наверное, не выпускают, и при покупке округлять нужно в большую сторону. Оптимальным вариантом для замены будет вилочка на 16 А.

Как перевести Амперы в Киловатты в трёхфазной сети

Ватт =  √3 * U * I;

√3 = 1,732;

P = √3 * U * I;

Ампер = Вт /(√3 * В)

I = P / √3 * U

Задача. Рассчитать мощность трёхфазного водонагревателя. При его работе токоизмерительные клещи показывают нагрузку 3,8 А.

P = 1,732 * 380 * 3,8 = 2501

Ответ: мощность водонагревателя составляет 2,5 кВт.

Примечание. Цифры могут быть совсем другими, в зависимости от схемы управления нагревателем.

Подведём итоги. Используя выше приведённые формулы, подобрать материалы для ремонта или монтажа, не составит ни какого труда, даже людям, не имеющим электротехнического образования.

Для закрепления информации смотрите видеоролик по теме. Он создан немного старомодно, но зато полезный и познавательный.

Так же читайте: Расчёт мощности трёхфазной сети.

На этом буду заканчивать. Свои вопросы пишите в комментариях. Если статья была полезной, то жмите на кнопки социальных сетей. До новых встреч. Пока.

С уважением Семак Александр!

Читайте также статьи:

Калькулятор перевода силы тока в мощность

Мощность в электрической цепи представляет собой энергию, потребляемую нагрузкой от источника в единицу времени, показывая скорость ее потребления. Единица измерения Ватт [Вт или W]. Сила тока отображает количество энергии прошедшей за величину времени, то есть указывает на скорость прохождения. Измеряется в амперах [А или Am]. А напряжение протекания электрического тока (разность потенциалов между двумя точками) измеряется в вольтах. Сила тока прямо пропорциональна напряжению.

Чтобы самостоятельно рассчитать соотношение Ампер / Ватт или Вт / А, нужно использовать всем известный закон Ома. Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения. Определяется одним из трех равенств: P = I * U = R * I² = U²/R.

Следовательно, чтобы определить мощность источника потребления энергии, когда известна сила тока в сети, нужно воспользоваться формулой: Вт (ватты) = А (амперы) x I (вольты). А чтобы произвести обратное преобразование, надо перевести мощность в ваттах на силу потребления тока в амперах: Ватт / Вольт. Когда же имеем дело с 3-х фазной сетью, то придется еще и учесть коэффициент 1,73 для силы тока в каждой фазе.

Сколько Ватт в 1 Ампере и ампер в вате?

Чтобы перевести Ватты в Амперы при переменном или постоянном напряжении понадобится формула:

I = P / U, где

I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтахесли сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз.

Корень из трех приблизительно равен 1,73.

То есть, в одном ватте 4,5 мАм (1А = 1000мАм) при напряжении в 220 вольт и 0,083 Am при 12 вольтах.

Когда же необходимо перевести ток в мощность (узнать, сколько в 1 ампере ватт), то применяют формулу:

P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.

А значит, если имеем дело с автомобильной сетью на 12 вольт, то 1 ампер — это 12 Ватт, а в бытовой электросети 220 V такая сила тока будет в электроприборе мощностью 220 Вт (0,22 кВт). В промышленном оборудовании, питающемся от 380 Вольт, целых 657 Ватт.

Таблица перевода Ампер – Ватт:
61224220380Вольт
5 Ватт0,830,420,210,020,008Ампер
6 Ватт1,000,50,250,030,009Ампер
7 Ватт1,170,580,290,030,01Ампер
8 Ватт1,330,670,330,040,01Ампер
9 Ватт1,50,750,380,040,01Ампер
10 Ватт1,670,830,420,050,015Ампер
20 Ватт3,331,670,830,090,03Ампер
30 Ватт5,002,51,250,140,045Ампер
40 Ватт6,673,331,670,130,06Ампер
50 Ватт8,334,172,030,230,076Ампер
60 Ватт10,005,002,500,270,09Ампер
70 Ватт11,675,832,920,320,1Ампер
80 Ватт13,336,673,330,360,12Ампер
90 Ватт15,007,503,750,410,14Ампер
100 Ватт16,678,334,170,450,15Ампер
200 Ватт33,3316,678,330,910,3Ампер
300 Ватт50,0025,0012,501,360,46Ампер
400 Ватт66,6733,3316,71,820,6Ампер
500 Ватт83,3341,6720,832,270,76Ампер
600 Ватт100,0050,0025,002,730,91Ампер
700 Ватт116,6758,3329,173,181,06Ампер
800 Ватт133,3366,6733,333,641,22Ампер
900 Ватт150,0075,0037,504,091,37Ампер
1000 Ватт166,6783,3341,674,551,52Ампер

Зачем нужен калькулятор

Онлайн калькулятор позволит быстро перевести ток в мощность. Он позволяет пересчитать потребляемую силу тока 1 Ампер в Ватт мощности, какого-либо потребителя при напряжении 12 либо 220 и 380 Вольт.

Такой перевод мощности используют как при подборе генератора для потребителей тока в бортсети автомобиля 12 Вольт с постоянным током, так и в бытовой электронике, при прокладывании проводки.

Поэтому калькулятор перевода мощности в амперы или силу тока в ватты потребуется абсолютно всем электрикам или тем, кто занимается ею и хочет быстро перевести эти единицы. Но все же калькулятор главным образом предназначен для автовладельцев. С его помощью можно посчитать каждый электрокомпонент в автомобиле и использовать полученную сумму, чтобы понять, сколько электричества должен вырабатывать генератор или какой емкостью поставить аккумулятор.

Как пользоваться

Чтоб воспользоваться быстрым переводом и пересчитать Ампер в мощность Ватт необходимо будет:

  1. Ввести значение напряжения, которое питает источник.
  2. В одной ячейке указать значение потребляемого тока (в списке можно выбрать Ампер либо мАм).
  3. В другом поле сразу появится результат пересчета “ток в мощность” (по умолчанию отображается в Ватт, но есть возможность установить и кВт, тогда значение автоматически пересчитается в киловатты мощности).

Преобразование можно сделать как с амперов в ватты, так и на оборот с W в A, достаточно просто сразу ввести мощность потребителя, и тогда в другой ячейке отобразится сила потребляемого тока в сети с конкретно указанным напряжением.

Часто задаваемые вопросы

  • Сколько Ватт в Ампере?

    Если речь об автомобильной сети, то в одном ампере 12 Ватт при напряжении 12В. В бытовой электросети 220 Вольт, сила тока в 1 ампер будет равна мощности потребителя на 220 Ватт, но если речь идет о промышленной сети 380 Вольт, то 657 Ватт в ампере.

  • 12 ампер сколько ватт?

    Сколько ватт мощности при 12 амперах потребления тока будет зависеть от того в сети с каким напряжением работает сам потребитель. Так 12А это может быть: 144 Ватт в автомобильной сети 12V; 2640 Ватт в сети 220V; 7889 Ватт в электросети 380 Вольт.

  • 220 ватт сколько ампер?

    Сила тока потребителя мощностью 220 Ватт будет отличаться зависимо от сети, в которой он работает. Это может быть: 18A при напряжении 12 Вольт, 1A если напряжение 220 Вольт либо 6A, когда потребление тока происходит в сети 380 Вольт.

  • 5 ампер сколько ватт?

    Чтобы узнать сколько Ватт потребляет источник на 5 ампер достаточно воспользоваться формулой P = I * U. То есть если потребитель включен в автомобильную сеть где всего 12 Вольт, то 5А будет 60W. При потреблении 5 ампер в сети 220V означает что мощность потребителя составляет 1100W. Когда потребление пяти ампер происходит в двухфазной сети 380V, то мощность источника составляет 3290 Ватт.

Перевести амперы (А) в киловатты (кВт): онлайн-калькулятор, формула

Инструкция по использованию: Чтобы перевести амперы (А) в киловатты (кВт), введите значения силы тока I в амперах (A), напряжения U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (если требуется), затем нажмите кнопку “Рассчитать”. Таким образом будет получена мощность P в кВт. Чтобы сбросить введенные данные, нажмите соответствующую кнопку.

Калькулятор А в кВт (1 фаза, постоянный ток)

Формула для перевода А в кВт

Мощность P в киловаттах (кВт) однофазной сети с постоянным током равняется произведению силы тока I в амперах (А) и напряжения U в вольтах (В), деленному на 1000.

Калькулятор А в кВт (1 фаза, переменный ток)

Формула для перевода А в кВт

Мощность P в киловаттах (кВт) однофазной сети с переменным током равняется силе тока I в амперах (А), умноженной на напряжение U в вольтах (В), коэффициент мощности PF и деленной на 1000.

Калькулятор А в кВт (3 фазы, переменный ток, линейное напряжение)

Формула для перевода А в кВт

Мощность P в киловаттах (кВт) трехфазной сети с переменным током и линейным напряжением равняется силе тока I в амперах (А), умноженной на напряжение U в вольтах (В), коэффициент мощности PF, квадратный корень из трех (√3) и деленной на 1000.

Калькулятор А в кВт (3 фазы, переменный ток, фазное напряжение)

Формула для перевода А в кВт

Мощность P в киловаттах (кВт) трехфазной сети с переменным током и фазным напряжением равняется утроенному произведению силы тока I в амперах (А), напряжения U в вольтах (В) и коэффициента мощности PF, деленному на 1000.

Калькулятор перевода силы тока в мощность, ампер в ватты

Для расчёта нагрузки на электрическую сеть и затрат электроэнергии можно использовать специальный калькулятор перевода силы тока в мощность. Такая функция появилась недавно, значительно облегчив ручное определение.

Хотя формулы известны давно, далеко не все хорошо знают физику, чтобы самостоятельно определять силу тока в сети. Калькулятор помогает с этим, поскольку для работы достаточно знать напряжение и мощность.

Что такое мощность Ватт [Вт]

Мощность — величина, определяющая отношение работы, которую выполняет источник тока, за определённый промежуток времени. Один ватт соответствует произведению одного ампера на один вольт, но при определении трат на электроэнергию используется величина киловатт/час.

Она соответствует расходу одной тысячи ватт за 60 минут работы. Именно по этому показателю определяется стоимость услуг электроэнергии.

В большинстве случаев мощность, которую потребляет прибор, указана в технической документации или на упаковке. Указанное количество производится за один час работы.

Например, компьютер с блоком питания 500 Вт будет крутить 1 кВт за 2 часа работы.

Помочь определить силу тока при известной мощности поможет калькулятор, который делает перевод одной физической величины в другую.

Что такое Сила тока. Ампер [А]

Сила тока представляет собой скорость, с которой электрический заряд течёт по проводнику. Один ампер равен заряду в один кулон, который проходит через проводник за одну секунду. Один кулон представляет собой очень большой заряд, поэтому в большинстве устройств эта величина измеряется в миллиамперах.

Сила тока зависит от сечения проводника и его длины. Это необходимо учитывать при планировке сооружений, а также выборе электрических приборов. Хотя большинству не следует задумываться на этот счёт, поскольку это задача инженеров и проектировщиков.

Сколько Ватт в 1 Ампере?

Для определения мощности цепи также важно понятие напряжения. Это электродвижущая сила, перемещающая электроны. Она измеряется в вольтах. Большинство приборов имеют в документации эту характеристику.

Чтобы определить мощность при силе тока в один ампер, необходимо узнать напряжение сети. Так, для розетки в 220 вольт получится: P = 1*220 = 220 Вт. Формула для расчёта: P = I*U, где I — сила тока, а U — напряжение. В трёхфазной сети нужно учитывать поправочный коэффициент, отражающий процент эффективности работы. В большинстве случаев он составляет от 0,67 до 0,95.

Таблица перевода Ампер – Ватт

Для перевода ватт в амперы необходимо воспользоваться предыдущей формулой, развернув её. Чтобы вычислить ток, необходимо разделить мощность на напряжение: I = P/U. В следующей таблице представлена сила тока для приборов с различным напряжением — 6, 12, 24, 220 и 380 вольт.

Помните, что для сетей с высоким напряжением, указанная сила тока отличается в зависимости от коэффициента полезного действия.

Таблица соотношения ампер и ватт, в зависимости от напряжения.

12В24В220В380В
5 Вт0,83А0,42А0,21А0,02А0,008А
6 Вт1,00А0,5А0,25А0,03А0,009А
7 Вт1,17А0,58А0,29А0,03А0,01А
8 Вт1,33А0,66А0,33А0,04А0,01А
9 Вт1,5А0,75А0,38А0,04А0,01А
10 Вт1,66А0,84А0,42А0,05А0,015А
20 Вт3,34А1,68А0,83А0,09А0,03А
30 Вт5,00А2,5А1,25А0,14А0,045А
40 Вт6,67А3,33А1,67А0,13А0,06А
50 Вт8,33А4,17А2,03А0,23А0,076А
60 Вт10,00А5,00А2,50А0,27А0,09А
70 Вт11,67А5,83А2,92А0,32А0,1А
80 Вт13,33А6,67А3,33А0,36А0,12А
90 Вт15,00А7,50А3,75А0,41А0,14А
100 Вт16,67А3,33А4,17А0,45А0,15А
200 Вт33,33А16,66А8,33А0,91А0,3А
300 Вт50,00А25,00А12,50А1,36А0,46А
400 Вт66,66А33,33А16,7А1,82А0,6А
500 Вт83,34А41,67А20,83А2,27А0,76А
600 Вт100,00А50,00А25,00А2,73А0,91А
700 Вт116,67А58,34А29,17А3,18А1,06А
800 Вт133,33А66,68А33,33А3,64А1,22А
900 Вт150,00А75,00А37,50А4,09А1,37А
1000 Вт166,67А83,33А41,67А4,55А1,52А

Используя таблицу также легко определить мощность, если известны напряжение и сила тока. Это пригодится не только для расчёта потребляемой энергии, но и для выбора специальной техники, отвечающей за бесперебойную работу или предотвращающей перегрев.

Зачем нужен калькулятор

Онлайн-калькулятор применяется для перевода двух физических величин друг в друга. Перевести амперы в ватты при помощи такого калькулятора — минутное дело. Сервис позволит быстро вычислить необходимую характеристику прибора, определить электроэнергию, которую будет расходовать техника за час работы.

Как пользоваться

Чтобы перевести ток в мощность, достаточно ввести номинальное напряжение и указать вторую известную величину. Калькулятор автоматически рассчитает неизвестный показатель и выведет результат.

Узнать напряжение и стандартную силу тока можно в технической документации устройства. Для приборов бытовой техники обычно указывается мощность, из которой также легко вычислить ток. Для удобства в калькуляторе можно переключать ватты на киловатты, а ампера на миллиамперы.

Как рассчитать ампер для электродвигателя?

Обычно для размера электродвигателя он оценивается в лошадиных силах (л.с.) или киловаттах (кВт). Мы можем распознать размер электродвигателя, если обратиться к их киловаттам или лошадиным силам. Итак, исходя из мощности (кВт / л.с.), как мы можем узнать мощность ампер полной нагрузки для электродвигателя?

На этот раз я хочу рассказать о том, как рассчитать ампер при полной нагрузке (FLA) электродвигателя исходя из их номинальной мощности. Это несложно, если мы знаем правильную формулу, чтобы получить ответ.Из этого расчета мы можем только оценить значение тока полной нагрузки.

Мы не можем получить фактический ток при полной нагрузке, потому что он зависит от КПД двигателя. Если электродвигатели имеют более высокий КПД, они потребляют меньше ампер, например, двигатель мощностью 10 л.с. с КПД 60% будет потреблять около 65 А. 230 В переменного тока по сравнению с примерно 45 А для двигателя с номиналом 80%.

Как рассчитать мощность (кВт и л.с.) в амперах (I)?

1) киловатт (кВт) в ампер (л)

Для 3-х фазного питания; кВт = I x V x 1.732 х пф

Для однофазного питания; кВт = I x V x pf

Пример: 1 компрессор мощностью 37 кВт, 415 В переменного тока, 3 фазы и 80% мощности, рассчитать ампер при полной нагрузке?

Расчет:

кВт = I x V x 1,732 x pf

I = кВт / (В x 1,732 x пФ)

I = 37 / (415 х 1,732 х 0,8)

I = (37/575) x 1000

I = 64,4 ампера (ампер полной нагрузки)

2) Мощность в лошадиных силах (л.с.) в амперах (л)

Сначала мы должны преобразовать из л.с. в кВт, используя эту формулу:

1 л.с. = 0.746 кВт

После этого используйте формулу из кВт в ампер:

Для 3-х фазного питания; кВт = I x V x 1,732 x pf

Для однофазного питания; кВт = I x V x pf

Пример: —

Асинхронный двигатель на 1 блок мощностью 25 л.с., 200 В переменного тока, 3 фазы, коэффициент мощности 90%, рассчитан ток полной нагрузки.

Расчет: —

кВт = 25 л.с. x 0,746

кВт = 18,65

кВт = I x V x 1.732 x pf

I = кВт / В x 1,732 x пФ

I = 18,65 / (200 х 1,732 х 0,9)

I = (18,65 / 311,76) x 1000

I = 59,8 ампер (ампер полной нагрузки)

.

Киловатт (кВт) в BHP калькулятор преобразования

киловатт (кВт) для тормозной мощности (л.с.) калькулятор преобразования мощности и как преобразовать.

Калькулятор преобразования

кВт в л.с.

Введите мощность в киловаттах и ​​нажмите кнопку Преобразовать :

Преобразование

л.с. в кВт ►

Как преобразовать кВт в л.с.

Мощность одного механического тормоза равна 0,745699872 киловатт:

1 л.с. = 745,699872 Вт = 0,745699872 кВт

Таким образом, преобразование мощности в киловатт в л. С. Определяется по формуле:

P (л.с.) = P (кВт) /0.745699872

Пример

Преобразование 100 кВт в л. С.:

P (л.с.) = 100 кВт / 0,745699872 = 134,102 л.с.

Таблица преобразования

л.с. в кВт

Киловатт (кВт) Тормозная мощность (л.с.)
0,1 кВт 0.134 л.с.
1 кВт 1.341 л.с.
2 кВт 2.682 л.с.
3 кВт 4.023 л.с.
4 кВт 5.364 лс
5 кВт 6,705 л.с.
6 кВт 8.046 л.с.
7 кВт 9.387 л.с.
8 кВт 10.728 л.с.
9 кВт 12.069 л.с.
10 кВт 13.410 л.с.
20 кВт 26.820 л.с.
30 кВт 40.231 л.с.
40 кВт 53.641 лс
50 кВт 67.051 л.с.
60 кВт 80.461 л.с.
70 кВт 93.872 л.с.
80 кВт 107.282 л.с.
90 кВт 120.692 л.с.
100 кВт 134.102 л.с.
200 кВт 268.204 л.с.
300 кВт 402.307 л.с.
400 кВт 536.409 лс
500 кВт 670.511 л.с.
600 кВт 804.613 л.с.
700 кВт 938.715 л.с.
800 кВт 1072.818 л.с.
900 кВт 1206.920 л.с.
1000 кВт 1341.022 л.с.

Преобразование

л.с. в кВт ►


См. Также

.

Перевести кВт в л.с. — Перевод единиц измерения

›› Перевести киловатты в лошадиные силы [электрические]

Пожалуйста, включите Javascript использовать конвертер величин

›› Дополнительная информация в конвертере величин

Сколько кВт в 1 л.с.? Ответ 0,746.
Мы предполагаем, что вы конвертируете киловатт в лошадиных сил [электрическая] .
Вы можете просмотреть более подробную информацию по каждой единице измерения:
кВт или
л.с. Производная единица СИ для мощности — ватт.
1 ватт равен 0,001 кВт, или 0,0013404825737265 л.с.
Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать киловатты в лошадиные силы.
Введите ваши собственные числа в форму для преобразования единиц!

›› Таблица быстрой конвертации кВт в л.с.

1 кВт до л.с. = 1,34048 л.с.

5 кВт до л.с. = 6,70241 л.с.

10 кВт до л.с. = 13,40483 л.с.

15 кВт в л.с. = 20.10724 л.с.

от 20 кВт до 26 л.с.80965 л.с.

25 кВт / л.с. = 33,5 1206 л.с.

30 кВт до л.с. = 40,21448 л.с.

40 кВт до л.с. = 53,6193 л.с.

50 кВт до л.с. = 67.02413 л.с.

›› Хотите другие единицы?

Вы можете произвести обратное преобразование единиц измерения из л.с. в кВт, или введите любые две единицы ниже:

›› Преобразователи общей мощности

кВт до дина сантиметр / час
кВт до фунт-фут в час
кВт до миллиона британских тепловых единиц в час
кВт до сантиватта
кВт до калорий в секунду
кВт до pferdestarke
кВт до британских тепловых единиц / с
кВт до эргономичного вейпера
кВт в секунду
кВт в грамм-сила-сантиметр в час

›› Определение: Киловатт

Префикс СИ «килограмм» представляет собой коэффициент 10 3 , или в экспоненциальной записи 1E3.

Итак, 1 киловатт = 10 3 Вт.

Определение ватта следующее:

Ватт (обозначение: Вт) — производная единица измерения мощности в системе СИ. Это эквивалентно одному джоулю в секунду (1 Дж / с) или, в электрических единицах, одному вольт-ампера (1 ВА).

›› Определение:

лошадиных сил

Электрическая мощность, используемая в электротехнической промышленности для электрических машин, составляет ровно 746 Вт (при 100% КПД).

›› Метрические преобразования и др.

Конвертировать единицы.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

.

Преобразование кВт в Вт — Преобразование единиц измерения

›› Перевести киловатты в ватты

Пожалуйста, включите Javascript использовать конвертер величин

›› Дополнительная информация в конвертере величин

Сколько кВт в 1 Вт? Ответ — 0,001.
Мы предполагаем, что вы конвертируете киловатт и ватт .
Вы можете просмотреть более подробную информацию по каждой единице измерения:
кВт или w
Производная единица СИ для мощности — ватт.
1 кВт равен 1000 ватт.
Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать киловатты в ватты.
Введите ваши собственные числа в форму для преобразования единиц!

›› Таблица быстрой конвертации kw в

w

от 1 кВт до w = 1000 Вт

2 кВт до мощности = 2000 Вт

3 кВт до мощности = 3000 Вт

4 кВт до мощности = 4000 Вт

5 кВт до мощности = 5000 Вт

от 6 кВт до мощности = 6000 Вт

от 7 кВт до w = 7000 Вт

от 8 кВт до w = 8000 Вт

9 кВт до w = 9000 Вт

10 кВт до w = 10000 Вт

›› Хотите другие единицы?

Вы можете произвести обратное преобразование единиц измерения из w до кВт, или введите любые две единицы ниже:

›› Преобразователи общей мощности

кВт до килограмм-сила-метр в минуту
кВт до британских тепловых единиц в минуту
кВт до килопонд-метр в час
кВт до фут фунт-сила в минуту
кВт до декаватта
кВт до тонны
кВт до дина-сантиметра в час
кВт до калории в секунду
кВт в джоуль в секунду
кВт в зеттаватт

›› Определение: Киловатт

Префикс СИ «килограмм» представляет собой коэффициент 10 3 , или в экспоненциальной записи 1E3.

Итак, 1 киловатт = 10 3 Вт.

Определение ватта следующее:

Ватт (обозначение: Вт) — производная единица измерения мощности в системе СИ. Это эквивалентно одному джоулю в секунду (1 Дж / с) или, в электрических единицах, одному вольт-ампера (1 ВА).

›› Определение: Ватт

Ватт (обозначение: Вт) — производная единица измерения мощности в системе СИ. Это эквивалентно одному джоулю в секунду (1 Дж / с) или, в электрических единицах, одному вольт-ампера (1 ВА).

›› Метрические преобразования и др.

Конвертировать единицы.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

.

Перевести микроамперы в миллиамперы — Перевод единиц измерения

›› Перевести микроамперы в миллиамперы

Пожалуйста, включите Javascript использовать конвертер величин

›› Дополнительная информация в конвертере величин

Сколько микроампер в 1 миллиампере? Ответ — 1000.
Мы предполагаем, что вы конвертируете мкА в мкА .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
мкА или миллиампер
Основной единицей СИ для электрического тока является ампер.
1 ампер равен 1000000 микроампер, или 1000 миллиампер.
Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать микроампер в миллиампер.
Введите ваши собственные числа в форму для преобразования единиц!

›› Таблица преобразования микроампер в миллиампер

1 микроампер в миллиампер = 0,001 миллиампер

10 мкампер в миллиампер = 0,01 миллиампер

50 мкА в миллиампер = 0.05 миллиампер

100 микроампер в миллиампер = 0,1 миллиампер

200 микроампер в миллиампер = 0,2 миллиампер

500 микроампер в миллиампер = 0,5 миллиампер

1000 микроампер в миллиампер = 1 миллиампер

›› Хотите другие единицы?

Вы можете произвести обратное преобразование единиц измерения из миллиампер в микроампер, или введите любые две единицы ниже:

›› Преобразователи электрического тока общие

микроампер на сименс-вольт
микроампер на вольт / ом
микроампер на гауссовский
микроампер на гилбертовый
микроампер на абампер
микроампер на наноампер
микроампер на тераамп
микроампер на ватт / вольт от
микроампер на ватт / вольт от
микроампер на ватт / вольт
мкА

›› Определение: Микроампер

Префикс SI «micro» представляет собой коэффициент 10 -6 , или в экспоненциальной записи 1E-6.

Так 1 микроампер = 10 -6 ампер.

›› Определение: Миллиампер

Префикс системы СИ «милли» представляет собой коэффициент 10 -3 , или в экспоненциальной записи 1E-3.

Итак, 1 миллиампер = 10 -3 ампер.

›› Метрические преобразования и др.

ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных.Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

.

Преобразование кВт в пс — Преобразование единиц измерения

›› Перевести киловатты в пфердестарке

Пожалуйста, включите Javascript использовать конвертер величин

›› Дополнительная информация в конвертере величин

Сколько кВт в 1 л.с.? Ответ 0,73549875.
Предполагается, что вы конвертируете киловатт в киловатт .
Вы можете просмотреть более подробную информацию по каждой единице измерения:
кВт или пс
Производная единица СИ для мощности — ватт.
1 Вт равен 0,001 кВт, или 0,0013596216173039 пс.
Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как переводить киловатты в пферестарки.
Введите ваши собственные числа в форму для преобразования единиц!

›› Таблица быстрой конвертации кВт в пс

от 1 кВт до пс = 1,35962 л.с.

от 5 кВт до пс = 6,79811 л.с.

от 10 кВт до пс = 13,59622 л.с.

от 15 кВт до пс = 20,39432 л.с.

от 20 кВт до пс = 27.19243 л.с.

от 25 кВт до пс = 33,99054 л.с.

от 30 кВт до пс = 40,78865 л.с.

от 40 кВт до пс = 54,38486 л.с.

от 50 кВт до пс = 67.98108 л.с.

›› Хотите другие единицы?

Вы можете произвести обратное преобразование единиц измерения из пс в кВт или введите любые две единицы ниже:

›› Преобразователи общей мощности

кВт на гектоватт
кВт на фунт-фут в секунду
кВт на фунт-сила-фут в минуту
кВт на аттоват
кВт на нановатт
кВт на cheval vapeur
кВт на килопонд-метр / час
кВт на фунт-фунт-сила в час
кВт на я
кВт в грамм-сила сантиметр в секунду

›› Определение: Киловатт

Префикс СИ «килограмм» представляет собой коэффициент 10 3 , или в экспоненциальной записи 1E3.

Итак, 1 киловатт = 10 3 Вт.

Определение ватта следующее:

Ватт (обозначение: Вт) — производная единица измерения мощности в системе СИ. Это эквивалентно одному джоулю в секунду (1 Дж / с) или, в электрических единицах, одному вольт-ампера (1 ВА).

›› Метрические преобразования и др.

ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных.Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

.

Опять блок питания, на этот раз 12 Вольт 50 Ампер или 600 Ватт

Этот обзор планировался еще в начале апреля, но я все как-то откладывал и откладывал и вот наконец то дошли руки протестировать этот блок питания.
Как я писал в прошлый раз, блок питания заказывался по просьбам некоторых читателей, которым интересен обзор мощного БП, в основном для применения с 3D принтерами.
Заказал, осмотрел, протестировал, а теперь пришла очередь рассказать об этом.

Данный блок питания был заказан в паре с своим 24 Вольта 20 Ампер «собратом», а так как блоки питания ну очень похожи, то я буду иногда ссылаться на его обзор, потому сразу дам ссылку.

Данный обзор будет написан в более привычном для моих читателей стиле, хотя и с некоторыми изменениями.

Впрочем перейду к описанию.

Этот блок питания пришел в точно такой же упаковке, как и предыдущий, внешне они отличаются только надписью, которая видна сквозь окошко коробки.

Конструкция и размеры блока питания полностью совпадают с предыдущим, а также с блоком питания мощностью 360 Ватт, обзор которого я также недавно делал.

Слева направо — 360-480-600 Ватт.

В прошлый раз я написал, что крышка клеммника открывалась не полностью. Дело в том, что у предыдущего БП слегка погнулась сама металлическая часть крышки БП и не давала полностью открыть клеммник.

В этот раз все нормально, значит проблема была не в блоке питания, а в упаковке или доставке.

Кстати, не в первый раз замечаю, что у получаемых мною блоков питания гнется в процессе доставки один из выступающих углов нижней части корпуса, хотя я бы не сказал, что они хлипкие.

Судя по этикетке блок питания имеет мощность в 600 Ватт при 12 Вольт, собственно эта информация указана в заголовке обзора.

Но если посмотреть на вторую этикетку внимательно, то можно прочитать, что производитель не рекомендует нагружать его более 80% от максимальной мощности. Попросту говоря, можно сказать что 600 Ватт это максимальная, а 480 длительная, но к этому я еще вернусь.

Присутствует и гарантийная пломба, но в поврежденном виде. Я не думаю что блок питания кто-то открывал, скорее она пострадала в процессе перевозки. Произведен БП в январе, получен мною в марте, потому можно сказать, что вполне свеженький.

Клеммник имеет три пары выходов, хотя как по мне, то при таких токах это уже маловато, выходит около 16-17 Ампер на пару.

Слева от клеммника находится подстроечный резистор для установки выходного напряжения.

Как и в прошлый раз, блок питания оборудован активным охлаждением. Заявлена регулировка оборотов, но по факту работает он в двух режимах, малой и большой мощности, причем большая мощность включается при мощности нагрузки около 50 Ватт.

Вентилятор довольно мощный, по крайней мере для таких габаритов. По уровню шума тяжело сказать, он однозначно заметен, хотя и шумным назвать тяжело.

Выкручиваем пару винтов и снимаем верхнюю крышку.

Вообще у меня было подозрение, что предыдущий блок питания и этот очень похожи, но чтобы настолько… Они просто близнецы-братья.

Хотя нет, если посмотреть внимательно, то можно увидеть небольшой но при этом существенное отличие, выходной нагрузочный резистор перенесен в другое место, это должно сказаться на большей стабильности выходного напряжения от прогрева, в прошлом обзоре я указывал на эту недоработку. Впрочем проявлялось это при работе без вентилятора, в штатном режиме проблем не было.

Сравнительное фото блоков питания 360, 480 и 600 Ватт.

Первый собран по классической двухтактной схемотехнике с полумостом, второй и третий однотактные прямоходовые.

Наученный горьким опытом, перед дальнейшей разборкой я теперь всегда проверяю насколько качественно прижаты к корпусу транзисторы и диодные сборки. В данном случае проблем не было, также присутствует теплопроводящая паста между корпусом элементов и теплопроводящей резиной.

Но перейдем к конструкции.

Входной фильтр есть, правда сразу должен отметить, что входной диодный мост совсем в эконом варианте. Дискретные диоды рассчитанные на ток 3 Ампера и это при условии, что ток по входу у БП также около 3 Ампер. Правда на самом деле в мосте поочередно работают две пары диодов, но не буду лезть в дебри, скажу просто — диодный мост впритык.

Входной фильтр я бы также не назвал совсем уж хорошим, но сам факт, что он есть уже неплохо.

Как и в прошлый раз установлены конденсаторы с заявленной емкостью в 470мкФ. Установлены по схеме 2S2P, т.е. последовательно-параллельно. Емкость фильтра в таком включении равняется емкости одного конденсатора, т.е. 470мкФ, что для мощности в 600 Ватт мало.

В выходном фильтре используется три конденсатора емкостью 3300мкФ и напряжением 25 Вольт. Также на конденсаторах заявлено LowESR, правда производитель конденсаторов явно не относится к брендам, потому к указанному я отнесся с некоторой долей скепсиса.

Напряжение 25 Вольт это нормально, но вот емкость явно маловата, около 10000мкФ при токе в 50 Ампер.

Ладно, выковыриваем черепаху из панциря плату из корпуса и продолжаем осмотр.

В прошлый раз на этом этапе у меня из корпуса вывалился винтик, здесь все было нормально, что впрочем не отменяет необходимости предварительного осмотра любых безымянных блоков питания.

В цепях, ответственных за безопасность применены правильные Y конденсаторы, здесь вопросов нет. Но между минусом выхода и заземляющим проводником установлен простой высоковольтный (на фото он в самом верху), что также встречается довольно часто и в данном применении безопасно.

В инверторе использованы два высоковольтных транзистора SPW20N60S5 производства Infineon. Транзисторы неплохие, одно расстраивает, запаса по напряжению почти нет, так как транзисторы рассчитаны на 600 Вольт. И опять они разные. Хотя с другой стороны, в прошлый раз были IRFP460, которые вообще рассчитаны на 500 Вольт и БП нормально прошел тест.

А вот к выходным диодным сборкам есть вопросы. Установлены MBR4060PT, которые согласно даташиту рассчитаны на 60 Вольт и ток 40 Ампер. Вопрос в том, что я не смог найти информации насчет этих 40 Ампер, ток на всю сборку или на один диод, так как бывает по разному.

Вы конечно спросите, так сборок же две. Но все дело в том, что в блоках питания с такой топологией диодные сборки включены не параллельно, а работают поочередно и через каждую течет полный выходной ток и даже больше.

Если ток считать на каждый вывод, то запаса почти не будет, а если на всю сборку, то будет существенная перегрузка.

Хотя мощность блока питания заявлена как 600 Ватт, выходной дроссель имеет точно такие же габариты, что и 480 Ватт версии. Мало того, он также намотан в четыре провода примерно похожего сечения, вот только в прошлый раз ток был 20 Ампер, а сейчас 50.

Снизу изменений вообще нет, «сердцем» блока питания также является известный ШИМ контроллер UC2845.

Как и в прошлый раз, к схемотехнике входной части и цепи обратной связи вопросов не возникло, зато возник вопрос к безопасности.

На фото я выделил проблемный участок, он был и в прошлый раз, но я не обратил на него внимание.

Если присмотреться, то становится видно, что дорожки первичной части расположены довольно близко к минусовому проводнику выхода блока питания (он почти в центре выделенного участка).

Правее высоковольтная и низковольтная часть разделена земляным проводником и по большому счету безопасна при наличии заземления, но вот небольшой участок оставили незащищенным.

Зато в плане увеличения сечения дорожек производитель оторвался от души, поверх напаяно несколько проводов большого сечения.

В этот раз я не перечерчивал схему блока питания, так как она практически один в один соответствует 480 Ватт варианту. Отличия только в некоторых компонентах, я их отметил цветом.

Допускаю, что есть еще мелкие отличия, потому не могу гарантировать 100% соответствие, но большую часть я все таки проверил.

Конечно же тесты, но сначала предварительная проверка.

Напряжение при первом включении было немного завышено, но диапазон перестройки оказался довольно мал, меньше чем 12 Вольт выставить не получится.

Вверх также сильно поднять не удалось, при выходном напряжении выше чем 13.5 Вольта БП начинал издавать подозрительные звуки, хотя максимум смог выдать около 16 Вольт, но я делал это кратковременно, так как не хотелось вывести БП из строя раньше времени.

Из положительных изменений отмечу очень малый дрейф выходного напряжения, через пять минут напряжение изменилось всего на 0.003 Вольта.

Как я писал выше, емкость входных конденсаторов была заявлена как 470мкФ и я жаловался что «маловато будет». Реальная емкость оказалась еще меньше, всего около 350мкФ, что для 600 Ватт ну совсем грустно.

Емкость выходных конденсаторов соответствует указанному значению и в сумме показала около 10500мкФ.

Самой большой проблемой при подготовке обзора стал тест под нагрузкой. Моя штатная электронная нагрузка имеет длительную мощность около 350 Ватт, или до 500-600 кратковременно. Но кратковременный тест меня не интересовал и надо было чем то нагрузить блок питания.

Первая мысль была сделать четыре простейших стабилизатора тока на базе мощных транзисторов КТ825 и это было бы правильным решением. И я даже нашел дома эти транзисторы (хотя мне было удобнее применить КТ827, но он был один) и четыре больших радиатора, но нужны были еще низкоомные резисторы 0.1 Ома и мощностью около 5 Ватт, а их дома не оказалось.

И тут я вспомнил, что когда лет 9 назад делали ремонт и освещение, то я разжился про запас некоторым количеством галогенок. В итоге так вышло, что за эти 9 лет галогенки перегорать отказались и запас просто лежал.

В общем взял я четыре лампы на 12 Вольт и 50 Ватт, что в сумме должно было дать недостающие 200 Ватт.

В итоге получился у меня такой «стенд», даже радиаторы пригодились, правда в несколько другом качестве, в виде опоры для лампочек, чтобы не спалили чего случайно.

Первый тест без нагрузки, во втором я подключил четыре лампы.

Сначала нагрузка в виде ламп показала около 18.2 Ампера, но повторное измерение через несколько минут выдало ровно 18 Ампер, что при напряжении в 12 Вольт дает 216 Ватт.

Примерно через 20 минут в действие вступила электронная нагрузка, при помощи которой я добавил еще почти 16.8 Ампера. итого суммарный ток нагрузки составил 34.8 Ампера. Хотя через время я проводил тесты и склонен считать, что на самом деле ток был около 34.7 Ампера.

При напряжении 11.95 Вольта это дает 414 Ватт.

Еще через 20 минут я поднял ток нагрузки до максимального для этого блока питания.

Так как напряжение немного просело, то ток через лампы упал до 17.8 Ампера, именно это я и имел в виду как коррекцию при предыдущем измерении. Если изначально было 18, при полной нагрузке 17.8, то среднее 17.9.

В общем лампы давали 17.8 и при помощи электронной нагрузки я накрутил недостающие 32.2 итого 50 Ампер. Выходное напряжение снизилось до 11.91 и суммарная мощность была 595 Ватт.

В таком режиме я прогнал тест еще около 20 минут, всего получился 1 час тестирования.

Обычно в процессе теста я измеряю температуру компонентов, но в этот раз мне пришлось отступить от своей привычки, так как открывать крышку блока питания, который мало того что включен и лежит между электронной нагрузкой и четырьмя лампами, так еще и на время измерения останется без охлаждения. Скажу честно, я не стал это делать по двум причинам:

1. Как минимум это небезопасно

2. Как максимум это не имеет смысла, так как компоненты без охлаждения начинают сразу сильно нагреваться и измерю я все что угодно, только не реальную температуру.

Да и вообще, когда рядом на столе гудит 700 Ватт обогреватель и когда постоянно ждешь сюрпризов, то экспериментировать не очень тянет 🙂

Но в итоге измерения я все таки проводил, но чуть под другому.

Сначала я «посмотрел» тепловизором температуру через щелки в корпусе.

1. При мощности нагрузки около 400 Ватт

2. При максимальной мощности.

3. Уже в конце теста я снял нагрузку, быстро открыл крышку (она была не привинчена) и сделал несколько термофото.

Сначала просто общий вид.

Ну и затем прошелся по разным компонентам. Так как БП все таки уже остывал, то и измеренные температуры снижались.

1. Сердечник трансформатора 77 градусов, обмотка 107

2. Выходной дроссель 87.

3. Здесь я пытался посмотреть выходные диодные сборки, но их температура была заметно ниже, чем у остальных компонентов.

Общее впечатление по нагреву. Воздух из БП шел ощутимо теплый, также в работе присутствовал запах перегретого лака, но запах могли еще давать лампы и электронная нагрузка.

Проявлялось все это при максимальной мощности. При 2/3 от максимума все было в принципе вполне пристойно.

В плане пульсаций можно сначала сказать, что их уровень довольно высок и достигает 250мВ, но если учесть, что ток на выходе был 50 Ампер и мощность в 600 Ватт, то на мой взгляд даже вполне пристойно, я ожидал худшего.

1. Холостой ход.

2. 1/3 мощности

3. 2/3

4. Максимальная мощность.

И последний тест, или точнее расчет, в данном случае КПД блока питания.

1. Холостой ход.

2. 1/3 мощности — выходная 216 Ватт, входная 243, КПД 88%

3. 2/3 мощности — выходная 414 Ватт, входная 473, КПД 87%

4. 100% мощности — выходная 595 Ватт, входная 709, КПД 84%.

Конечно такое измерение имеет довольно большую погрешность, но как по мне, то КПД держится на довольно приличном уровне.

На этом с осмотром и тестами все, пора вывести резюме.

На мой взгляд производитель явно завысил мощность своего изделия и корректнее было бы сказать, что это блок питания с длительной мощностью 450-480 Ватт, но способный некоторое время отдавать до 600 Ватт. Как вариант применения, нагрев чего либо, где сначала тратится большая мощность на прогрев, а потом меньшая, на поддержание температуры.

Но стоит отметить не очень высокую долговременную надежность этого блока питания и первые кандидаты на выход из строя, это выходные конденсаторы и вентилятор. Как и многие другие бюджетные блоки питания, данный экземпляр также не имеет средств для контроля перегрева и работоспособности вентилятора. Выход из строя системы охлаждения под нагрузкой более 50% чреват печальными последствиями.

Несколько удивило то, что выходной дроссель работает явно с перегрузкой по току, так как сечение проводов его обмотки явно мало для токов в 40-50 Ампер, я бы даже сказал что его рабочий ток ближе к 30 Ампер, но блок питания прошел тест и это факт.

В плане электрических характеристик блок питания показал, что способен выдавать даже заявленные 600 Ватт, не говоря о оговорке насчет 80% от максимума, указанных на этикетке, но режим работы некоторых компонентов находится на грани безопасной работы.

Если дорабатывать такой блок питания, то следует:

1. Добавить емкость входного фильтра

2. Заменить диодный мост на более мощный

3. Перемотать выходной дроссель

4. Заменить выходные конденсаторы на более качественные, возможно попутно увеличив емкость.

Почему я это все расписал. Как по мне, то при цене в 27 долларов данный БП возможно заинтересует кого-то как объект для доработки, но это лично мое мнение.

Вот теперь все, как всегда жду вопросов и комментариев, надеюсь что обзор был полезен.

Небольшой бонус

Решил я снять небольшое видео на тему конденсаторов типа Y, возможно будет полезно. постарался ответить на самые популярные вопросы.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Конвертер ватт в амперы. Конвертер ватт в амперы Блок питания 12 вольт 15 ампер

Попал ко мне в руки блок питания с пассивным охлаждением и на привычные многим пользователям 12 Вольт, потому надеюсь, что обзор будет полезен пользователям принтеров и граверов.

Почему мне нравится ковырять блоки питания особо расписывать смысла нет, а вот почему именно 12 Вольт, напишу.

Так уж сложилось, но блоки питания с выходным напряжением в 12 Вольт являются одними из самых популярных наряду с 5 Вольт и 19 Вольт.

5 Вольт используется для питания небольших устройств, но больше популярности добавило то, что такое же напряжение дает порт USB, потому и начали «плодиться» такие БП.

19 Вольт используются в ноутбуках, а также такие БП используются энтузиастами радиолюбителями для разного рода паяльных станций и усилителей, в основном из-за приемлемой мощности и компактности.

Ну а 12 Вольт просто для начала является безопасным напряжением и при этом позволяет передавать довольно большую мощность. Конечно на мой взгляд зачастую его можно (а иногда и нужно) на 24 Вольта, но это напряжение больше используется в промышленных устройствах.

В быту же от 12 Вольт можно питать получившие распространение светодиодные ленты для декоративной подсветки и освещения, от 12 Вольт питаются также системы видеонаблюдения, иногда небольшие компьютеры, а также разные граверы, 3D принтеры и т.п.

Вообще у меня в планах сделать несколько обзоров подобных БП, но с разной мощностью и сегодня ко мне на стол попал блок питания на 240 Ватт с пассивной системой охлаждения.

На данный момент распространенные безвентиляторные БП имеют мощность до 240-300 Ватт, причем вторые встречаются куда реже и я бы скорее сказал, что 240 Ватт это уже почти максимум.

На этом я закончу краткое вступление и перейду к предмету обзора. Блок питания был куплен , вышел в итоге около 17 долларов.

БП в привычном металлическом корпусе, думаю многие видели подобные решения в продаже.

Упакован был в обычную белую коробку, на фото она не попала, да и не особо там есть на что смотреть.

Вход и выход выведены на один большой клеммник, сверху присутствует наклейка с указанием назначения контактов, но приклеили со сдвигом, что может сбить с толку неопытного пользователя.

Клеммник имеет защитную крышку, причем открывается она на 90 градусов, что является хоть и небольшим, но плюсом, так как есть варианты, где крышка не открывается полностью.

Справа от клеммника приютился подстроечный резистор и светодиод индикации включения блока питания.

Заявленные параметры — 12 Вольт 20 Ампер, реальный производитель неизвестен, маркировка стандартна для многих недорогих БП — S-240-12

Сбоку находится переключатель входного напряжения 110/200 Вольт, лучше перед первым включением проверить что он находится в правильном положении.

Дата выпуска конец 2016 года, так что БП можно сказать, свежий.

Для начала измеряем что на выходе у БП настроено.

Выставлено 12.3 Вольта, диапазон регулировки 10-14.5 Вольта. после проверки выставил что-то близкое к 12 Вольт.

Внешне осматривать больше нечего, потому снимаем верхнюю крышку и посмотрим что внутри.

А внутри блок питания ничем не отличается от других, подобных недорогих блоков.

Мне он сходу напомнил блок питания на я бы даже сказал что они один в один.

Даже наверное не так, фактически это тот же БП, просто на другое напряжение, потому я в самом начале и написал, что реальный производитель неизвестен.

Классический осмотр начинки.

1. Входной фильтр, присутствует, хотя и не в полном объеме, отсутствует конденсатор после дросселя и варистор. К сожалению это черта подавляющего большинства китайских БП.

2. Помехоподавляющие конденсаторы в опасной цепи — Y1, в менее опасной, обычный высоковольтный, можно сказать что нормально.

3. Входной диодный мост установлен с запасом, 8 Ампер 1000 Вольт, но радиатор отсутствует. В предыдущем варианте диодный мост был на 20 Ампер.

Также рядом видны два термистора, включенные параллельно.

4. Входные конденсаторы Rubicong
закос под Rubicon, если бы еще параметры соответствовали заявленным, но об этом позже.

5. Пара высоковольтных транзисторов прижатых к алюминиевому корпусу, который работает как радиатор.

6. Силовой трансформатор явно промаркирован как 240 Ватт 12 Вольт. На вид довольно неплох, видны следы пропитки лаком.

Китайские производители продолжают штамповать свои блоки питания на классической элементной базе. Я не скажу что это плохо, но более именитые производители уже гораздо реже делают БП на базе TL494.

По своему это имеет свои плюсы, ремонт такого БП довольно прост, комплектующие есть везде, да и документации по ним очень много.

Как и в варианте 48 Вольт, здесь также использован усиленный вариант радиатора, выходная диодная сборка прижата к ребристому радиатору, который уже отводит часть тепла на корпус. Если в 48 Вольт версии это было не особо и нужно, то при токах в 20 Ампер такое решение не лишнее.

1. Выходной дроссель при вполне нормальных габаритах намотан всего в два провода, причем сечение провода сопоставимо с тем, что использовалось в БП 48 Вольт.

2. Выходные конденсаторы имеют заявленную емкость в 2200мкФ, производитель также неизвестен, впрочем я и не ожидал здесь увидеть конденсаторы от Nichicon или хотя бы Samwha.

3,4. А вот момент с прижимом силовых элементов я проверил отдельно, так как в прошлый раз у меня были большие нарекания по поводу крепежа диодной сборки. В данном случае все в принципе нормально. Можно немного попридираться к прижиму транзисторов (слева), но практика показала, что все в порядке.

Вынимаем плату из корпуса и посмотрим на качество пайки и поищем «косяки» производителя.

Высоковольтные транзисторы применены с запасом, можно не беспокоиться. К тому же корпус TO247, в котором они выполнены, улучшает отвод тепла на радиатор.

Выходная диодная сборка MBR30200 представляет собой два высоковольтных диода Шоттки. Я немного скептически отношусь к применению высоковольтных диодов Шоттки, так как у них уже нет преимущества перед обычными в плане падения напряжения, но остается преимущество в большей скорости переключения, т.е. динамические потери меньше.

Общий вид печатной платы снизу.

Пайка на вид вполне нормальная, в этой части БП все нормально, даже чисто.

Силовые дорожки дополнительно покрыты припоем для увеличения сечения, здесь также нареканий особо нет, хотя в некоторым местах на мой взгляд припоя маловато.

Но один неприятный момент я все таки нашел. Один из силовых контактов не очень хорошо пропаян. Можно конечно сказать, что там по три контакта на полюс, но ведь может так попасть, что он как раз окажется нагруженным. Собственно потому я всегда советую при покупке блоков питания проверять как они собраны. Хотя нет, корректнее сказать — при покупке недорогих блоков питания всегда проверять качество сборки.

На плате присутствует не совсем понятная мне маркировка, очень похоже, что плата рассчитана под БП мощностью до 365 Ватт, но это уже скорее с активным охлаждением (на плате есть место под разъем вентилятора, но сам разъем и необходимые компоненты отсутствуют).

Попутно измерил емкость конденсаторов.

Входные имеют суммарную емкость 166мкФ (два по 330 соединенные последовательно), хотя указано 470мкФ (соответственно суммарная 235), маловато для мощности в 240 Ватт.

Выходные в сумме дают около 6600, соответственно как указано 2200х3. Здесь вопросов нет, для блоков питания с подобными характеристиками это нормально, даже для фирменных. Правда в фирменных блоках питания стоит более качественные конденсаторы.

Так как схема блока питания практически идентична модели на 48 Вольт, то я просто внес соответствующие коррективы, а не рисовал ее с нуля. Не гарантирую 100% совпадение, но 99% думаю есть:)

Вот теперь можно проводить тесты.

В качестве тестового стенда использовались

1. Электронная нагрузка
2. Мультиметр
3. Осциллограф
4. Тепловизор
5. Термометр
6. Ручка и бумажка. На бумагу ссылки нет.

1. Режим холостого хода.

1. Нагрузка 10 Ампер, напряжение лишь немного просело, пульсации остались на прежнем уровне

2. Нагрузка 15 Ампер, практически без изменений

Со времени проведения большого теста аккумуляторов я доработал нагрузку чтобы поднять максимальный ток до 30 Ампер. Но что-то пошло не совсем так, как было задумано и максимальный ток ограничен на уровне 16383мА (14 бит), потому для продолжения теста мне пришлось прибегнуть в обычным советским резисторам с сопротивлением 10Ом. при напряжении в 12 Вольт они обеспечивают ток нагрузки около 3.6 Ампера.

1. 20 Ампер, напряжение просело всего на 70мВ, уровень пульсация практически не отличается от предыдущих тестов и составляет 60мВ

2. В качестве дополнительного теста на нагрев я решил поднять выходное напряжение до 12.55 Вольта и погонять БП еще минут 15. Выходная мощность БП при этом была около 250 Ватт.

Как видно по фото, это практически никак не сказалось на результате.

В прошлом обзоре я был так удивлен качеством работы блока питания, что даже проводил тесты с полуторакратной перегрузкой. С БП мощностью 240 Ватт я снял 360 и только тогда начал откровенно волноваться по поводу перегрева.

Но в данном случае все немного печальнее. Для начала фото с тепловизора, снятое в самом конце теста при мощности 250 Ватт.

Самый горячий элемент — выходной дроссель, впрочем такая же картина была и при тесте БП 48 Вольт. Но как я тогда писал, на самом деле материал из которого изготовлен этот дроссель, не боится таких температур, ограничением является стойкость изоляции провода, которым он намотан.

Для компании сфотографировал нагрузочные резисторы, на которых рассеивалось всего около 50 Ватт. Электронная нагрузка при этом брала на себя около 200 Ватт, у нее температура радиаторов была 61 градус.

Как и раньше, я свел все данные в одну табличку.

Тестирование проходило при комнатной температуре, БП лежал горизонтально на столе, что несколько ухудшало тепловой режим, в вертикальном положении он охлаждался бы лучше.

Каждый этап длился 20 минут, затем шел замер температуры и повышение тока на одну ступень.

Последний этап был проведен как дополнительный и занял 15 минут, итого в сумме 20+20+20+20+15= 1ч 35мин.

Результаты заметно выше чем у БП на 48 Вольт, но я бы сказал что вполне терпимые. Самый нежный элемент — силовой трансформатор, не перегревается.

Как-то в комментариях затронули тему низкого КПД таких блоков питания и мне реально стало интересно, какой же КПД у них в реальности.

Конечно я не претендую на высокую точность, так как в процессе участвует много измерительных приборов и каждый имеет свою погрешность, но я постарался измерить максимально корректно.

И так. Я измерил потребляемую мощность БП без нагрузки, с нагрузкой 33, 66 и 100%, при этом у меня вышло:

Вход — Выход — КПД.

189,3 — 159 — 84%

290,4 — 238 — 82%

Говорили, что КПД подобных БП около 60-70%, честно, мне не верилось. Но до этого я судил по количеству выделяемого тепла, потому как не заметить «лишние» 100 Ватт тепла тяжело, вот и решил провести этот тест, думаю что не зря.

Конечно в комментариях могут начать писать — а как же MeanWell, почему не MeanWell? Да, я очень хорошо отношусь к блокам питания этой фирмы, и очень часто их использую, потому решил ради интереса сравнить обозреваемый БП и БП фирмы MeanWell. Но стоит отметить, что сравнивал я с БП серии RS, а точнее — RS-150-12, т.е. 12 Вольт 150 Ватт. На данный момент стоимость этого БП составляет около 36 долларов — ссылка.

Блоки питания этой серии отличные, надежность действительно на высоком уровне, БП который вы видите, отработал в составе системы видеонаблюдения около 3 лет при нагрузке близкой к 90% и был заменен планово на новый.

Производитель же заявляет что —

Особенности:

Долговечные 105°C электролитические конденсаторы

Комплекс защит от короткого замыкания, перегрузки, перенапряжения

Электромагнитная совместимость: EN50082-2/EN61000-6-2 для тяжелой промышленности

Высокая рабочая температура до 70°C

Вибрации 5G

Малые размеры, высокая удельная мощность

Высокие КПД, долговечность и надежность

Все модули проходят 100% прогон

Но это относится именно к RS серии, обычные же БП MenWell серий S-ххх-хх немного проще, правда и стоят меньше.

Входной фильтр более полный, чем у обозреваемого, но варистора на входе все равно нет.

1. Термистор упакован в термоусадку, но что интересно, уже когда разбирал фото, то заметил, что термисторов два, причем второй «голый», он стоит справа от переключателя.

2. Входные конденсаторы Rubicon, а не RubiconG. Суммарная емкость 165мкФ при выходной мощности в 150 Ватт.

3. Высоковольтный транзистор имеет дополнительную изоляцию. ШИМ контроллер применен другой, потому рядом совсем пусто.

4. Выходных диодных сборок две, причем у обоих на выводах присутствуют ферритовые бусины, что практически никогда не встречается в недорогих китайских БП. Такие же бусины есть и на некоторых конденсаторах.

5. А вот выходной дроссель изготовлен в лучших традициях Китая:) Намотка кривая, закатали в какой то клей.

6. Выходные конденсаторы фирменные, емкость 1000х3 мкФ, напряжение 35 Вольт, что весьма правильно. У обозреваемого конденсаторы на 25 Вольт, но в двухтактной схеме это нормально (в компьютерных БП вообще на 16).

Сегодня не буду выделять плюсы и минусы, а просто опишу мое впечатление о блоке питания.

На мой взгляд это типичный «среднестатистический» китайский блок питания. Нагрев в пределах допуска, среднее качество сборки, но при этом низкий уровень пульсаций и отсутствие «дрейфа» выходного напряжения от прогрева (это довольно важно). Производитель не особо волнуется насчет комплектующих, об этом говорят непонятные конденсаторы на входе, если судить по маркировке, то емкость достаточна, если измерить, то занижена. Я в подобной ситуации просто добавил один конденсатор 100мкФх400В выпаянный из платы монитора.

Самые критичные элементы, которые в данном БП будут влиять на срок службы — выходные конденсаторы.

В остальном вполне нормальный блок питания, все тесты прошел без проблем, но получить такие результаты как с его вариантом, я увы не смог. На мой взгляд средний блок питания за вполне приемлемые деньги.

Надеюсь что обзор был полезен, старался дать максимум информации.

Как я писал в самом начале, в планах сделать обзоры блоков питания 12 Вольт на другую мощность, но пока не знаю, какой мощности БП наиболее интересны.


Электрические системы часто требуют сложного анализа при проектировании, ведь нужно оперировать множеством различных величин, ватты, вольты, амперы и т.д. При этом точно необходимо высчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксированное, например, в домашней сети, а вот мощность и сила тока обозначают разные понятия, хоть и являются взаимозаменяемыми величинами.

Онлайн калькулятор по расчету ватт в амперы

Для получения результата обязательно указывать напряжение и потребляемую мощность.

В таких случая очень важно иметь помощника, дабы точно перевести ваты в амперы при постоянном значении напряжения.

Нам поможет перевести амперы в ватты калькулятор онлайн. Перед тем как воспользоваться интернет-программой по расчету величин, нужно иметь представление о значении необходимых данных.

  1. Мощность – это скорость потребления энергии. Например, лампочка в 100 Вт использует энергию – 100 джоулей за секунду.
  2. Ампер – величина измерения силы электрического тока, определяется в кулонах и показывает число электронов, которые прошли через определенное сечение проводника за указанное время.
  3. В вольтах измеряется напряжение протекания электрического тока.

Чтобы перевод ватт в амперы калькулятор используется очень просто, пользователь должен ввести в указанные графы показатель напряжения (В), далее потребляемую мощность агрегата (Вт) и нажать кнопку рассчитать. Через несколько секунд программа покажет точный результат силы тока в амперах. Формула сколько ватт в ампере

Внимание: если показатель величины имеет дробное число, значит его нужно вписывать в систему через точку, а не запятую. Таким образом, перевести ватты в амперы калькулятором мощности позволяет за считанное время, Вам не нужно расписывать сложные формулы и думать над их ре

шением. Все просто и доступно!

Таблица расчета Ампер и нагрузки в Ватт

В одном из своих я показал как сделать неплохой блок питания самому и жаловался, почему в продаже редко попадаются хорошие блоки питания. Этот блок питания мне понравился уже просто по картинке, но так как картинка бывает обманчива, я решил его рассмотреть поближе и испытать.
В обзоре будет описание, фотки, испытания и анализ небольшой ошибки при проектировке.
Продолжение читайте под катом.

Мои читатели наверняка помнят обзор «12 Вольт 5 Ампер блок питания или как это могло быть сделано.» Этот блок питания мне напомнил тот, что делал я в конце обзора:)

Но тесты и проверки это конечно хорошо, но начну я как всегда с того как это ехало и как приехало.
Приехал блок питания не один, про второй товар я расскажу в другой раз, думаю он будет не менее интересным. Ехал быстро, по треку добрался за 8 дней.
А вот к упаковке была претензия, но так как упаковку любят далеко не все, то я несколько фоток спрячу под спойлером.

Упаковка

Пришел заказ в обычном сером пакете, обмотанный поролоновой лентой.

Вот к такой упаковке у меня и были претензии. Упаковщик просто сложил два моих пакетика, обмотал лентой и склеил скотчем, но края остались открытыми.
В итоге пакетики и рулон ленты ехали отдельно. Очень повезло, что ехали недолго и сами по себе были упакованы в отдельные пакеты, иначе могли прорвать упаковку своими радиаторами и вылезти наружу.

Плата была упакована в привычный многим антистатический пакет, с не менее знакомой наклейкой.

Краткие характеристики:
Входное напряжение 85-265 Вольт
Выходное напряжение — 12 Вольт
Ток нагрузки — 6 Ампер номинальный, 8 Ампер максимальный.
Выходная мощность — 100 Ватт (максимальная)

Размеры платы не очень большие, 107х57х30мм.

Есть чертежик с более точными размерами, думаю он будет полезен.

Сама плата выглядит очень аккуратно, полностью соответствует фотографии в магазине, что меня приятно удивило.

На плате присутствуют довольно большие радиаторы, а сама плата выполнена в открытом исполнении, т.е. предназначена для установки в какое нибудь устройство и своего корпуса не имеет.
Брал я ее не просто так, а по делу:) Есть идея переделки одного из моих устройств, но так как я был не уверен в качестве данного блока питания, то решил сначала заказать и попробовать только его, так что будет продолжение. Ну по крайней мере я надеюсь на это.

На плате присутствует входной фильтр, ограничитель пускового тока и безвинтовой клеммник по входу 220 Вольт.
На силовом трансформаторе есть наклейка DC12V-8.
Выходная обмотка трансформатора намотана в 5 проводов

Пайка очень аккуратная, выводы обкушены довольно коротко, ничего не торчит, флюс смыт полностью. Отсутствующих компонетов нет.
Плата двухслойная с двухсторонним монтажом.
Но есть мелкое замечание, на каждом из радиаторов припаян только один крепежный вывод.
На мой взгляд это не очень хорошо. Что помешало припаять оба — непонятно.
Причем на фото магазина все абсолютно точно так же.
Отмечу то, что выходное напряжение измеряется в точке, максимально близкой к выходному разъему, за это плюс, влияет на точность удержания выходного напряжения.

Основные компоненты платы поближе.
Установлен ШИМ контроллер CR6842S, который является полным аналогом более известного контроллера
Почти все установленные резисторы точные, не хуже 1%, об этом говорит четырехзначная маркировка.

Силовой транзистор 600 Вольт 20 Ампер, 0.19 Ома производства Infineon.
Еще одно мелкое замечание, слишком сильно закрутили крепежный винт и он вжал изолирующую втулку. Транзистор остался изолированным от радиатора, да и сам радиатор изолирован от других компонентов, но впечатление несколько подпортило.
Транзистор изолирован от радиатора пластинкой из слюды.

Немного отвлекусь, на фото виден мелкий электролитический конденсатор, судя по пайке его или впаивали потом или меняли, на работоспособность это никак не повлияло (ну или почти никак).
Дело в том, что при резком изменении нагрузки от нуля до 4 Ампер или более, БП может отключиться на 0.5 секунды. Я бы советовал заменить этот электролит на что нибудь типа 47мкФх50 В.
Если такие режимы не планируются, то можно оставить и так.

Выходная диодная сборка 100 Вольт 2х20 Ампер производства ST.
Радиатор на самом деле ровный, это он на фото так вышел:)

Так же видно пару выходных конденсаторов 1000мкФ х 35 Вольт, дроссель выходного фильтра и светодиод индикации включения блока питания.
Здесь разъем уже установили обычный, винтовой.
Хотя как по мне, для встраиваемой платы разъемы вообще вещь лишняя.

Выходные конденсаторы установлены с хорошим запасом по напряжению, это очень хорошо.
Попутно я проверил емкость и ESR этих конденсаторов, вышло так же неплохо.
Прибор показал суммарную емкость и ESR, если пересчитать на каждый в отдельности, то будет примерно 1050мкФ и 30мОм.
Конденсаторы врядли фирменные, но характеристики вполне нормальные, порадовало рабочее напряжение в 35 Вольт, Я в своих БП обычно и то применяю конденсаторы на 25 Вольт.

Ну и «что бы два раза не бегать», проверил входной электролит.
Написано 82мкФ 400 Вольт 105 градусов.
Емкость почти в норме, ESR в норме.
Производитель конденсатора Taicon.

Ну и конечно начертил схему этого блока питания. Нумерация большинства компонентов соответствует печатной плате.

Для тестирования блока питания приготовил вот такую кучку всякого разного:)
Ничего необычного:
Нагрузочные резисторы 3 штуки 10 Ом и одна наборка дающая в сумме 3 Ома (5 шт по 15 Ом включенных параллельно) + вентилятор.
Мультиметр
Бесконтактный термометр
Осциллограф
Всякие соединители и провода.

Тестирование блока питания

Процесс тестирования включал в себя последовательное увеличение нагрузки, при этом после каждого повышения нагрузки я ждал около 15 минут, потом измерял температуру основных компонентов и переходил на следующий шаг увеличения нагрузки.
Делитель осциллографа все это время был в положении 1:1.

1. Режим холостого хода. Напряжение 12.29 Вольта.
2. Подключен один резистор 10 Ом, Напряжение немного просело до 12.28 Вольта.

1. Подключено 2 резистора 10 Ом, напряжение 12.28 Вольта.
2. Подключено 3 резистора 10 Ом, напряжение 12.27 Вольта.

1. Подключена наборка сопротивлением 3 Ома + вентилятор, напряжение 12.27 Вольта
2. Наборка 3 Ома + резистор 10 Ом, напряжение 12.27 Вольта.

Небольшое замечание, при подключении нагрузки более 4 ампер БП может отключиться на 0.5 секунды и потом включится опять. Это происходит только при переходе из режима холостого хода, хотя бы небольшая нагрузка убирает этот эффект полностью.

1. Наборка 3 Ома + 2 резистора 10 Ом, напряжение 12.27 Вольта.
2. Режим максимальной нагрузки, наборка 3 Ома + 3 резистора 10 Ом, напряжение 12.27 Вольта.

Как я писал выше, в процессе тестирования я измерял температуры разных компонентов.
Измерялись температуры:
Силового транзистора
Трансформатора
Выходного диода
Первого по схеме выходного конденсатора.

Для более точных показаний измерялась температура непосредственно транзистора и диодной сборки, а не их радиаторов.
При мощности нагрузки 80 Ватт температуру измерил два раза, второе измерение было после дополнительного 10 минутного прогрева.

Резюме:
Плюсы

Качественная сборка
Довольно качественные компоненты с запасом.
Соответствие заявленным параметрам.
Отличная точность стабилизации выходного напряжения
Не вижу необходимости в доработке.
Низкая цена.

Минусы

Замечание к упаковке (минус магазину)
Не пропаяно по одному крепежному контакту на радиаторе.

Мое мнение.
Если честно, то мне этот БП понравился уже внешне на фотке магазина, и была уже некоторая уверенность в том, что я получу в итоге, но одно дело видеть, а другое — попробовать.
БП оставил положительные эмоции, отлично подойдет как встраиваемый в какое то из самодельных устройств.
Конечно не обошлось и без минусов, но они очень малы, в сравнении с плюсами.

Блок питания для обзора был предоставлен магазином banggood.

Надеюсь, что мой обзор будет полезен.
Конечно можно сказать, что я расхваливаю товар, но могу сказать, что блоками питания я занимаюсь около 15 лет, собрал за это время более 1000 штук, сколько отремонтировал и переделал, счет потерял. Потому нормальную вещь не похвалить не могу. Видел вещи и получше, особенно БП пром серии, но там и ценник другой.
Так же можно рассмотреть такого БП, но на меньшую мощность.

Небольшое замечание китайским инженерам

Блок питания показал очень хорошие результаты, но есть небольшое замечание к конструкции, вернее к печатной плате.
Трассировка некоторых цепей выполнена неправильно, и если бы была как надо, то уровень пульсаций можно было бы еще уменьшить.
Покажу на примере.
1. Как сделано в блоке питания, этот участок можно увидеть на плате, я его немного упростил для наглядности.
2. Как это можно сделать лучше без перемещения компонентов на плате
3. как сделать еще лучше, но уже с перемещением компонентов.
Дело в том, что в силовых цепях нежелательно иметь участки, где ток может течь в двух направлениях, так как это увеличивает уровень помех.
Ток должен течь только в одном направлении.
В исходном варианте по одним и тем же дорожкам сначала течет ток заряда конденсатора, потом через них же течет ток разряда.

Планирую купить

+382

Добавить в избранное

Обзор понравился

+174

+380

Этот блок питания мне понравился уже просто по картинке, но так как картинка бывает обманчива, я решил его рассмотреть поближе и испытать.
В обзоре будет описание, фотки, испытания и анализ небольшой ошибки при проектировке.
Продолжение читайте под катом.

Начну я как всегда с того как это ехало и как приехало.
Приехал блок питания не один, про второй товар я расскажу в другой раз, думаю он будет не менее интересным. Ехал быстро, по треку добрался за 8 дней.

Пришел заказ в обычном сером пакете, обмотанный поролоновой лентой.

Вот к такой упаковке у меня и были претензии. Упаковщик просто сложил два моих пакетика, обмотал лентой и склеил скотчем, но края остались открытыми.
В итоге пакетики и рулон ленты ехали отдельно. Очень повезло, что ехали недолго и сами по себе были упакованы в отдельные пакеты, иначе могли прорвать упаковку своими радиаторами и вылезти наружу.

Плата была упакована в привычный многим антистатический пакет, с не менее знакомой наклейкой.

Краткие характеристики:
Входное напряжение 85-265 Вольт
Выходное напряжение — 12 Вольт
Ток нагрузки — 6 Ампер номинальный, 8 Ампер максимальный.
Выходная мощность — 100 Ватт (максимальная)

Размеры платы не очень большие, 107х57х30мм.

Есть чертежик с более точными размерами, думаю он будет полезен.

Сама плата выглядит очень аккуратно, полностью соответствует фотографии в магазине, что меня приятно удивило.

На плате присутствуют довольно большие радиаторы, а сама плата выполнена в открытом исполнении, т.е. предназначена для установки в какое нибудь устройство и своего корпуса не имеет.
Брал я ее не просто так, а по делу:) Есть идея переделки одного из моих устройств, но так как я был не уверен в качестве данного блока питания, то решил сначала заказать и попробовать только его, так что будет продолжение. Ну по крайней мере я надеюсь на это.

На плате присутствует входной фильтр, ограничитель пускового тока и безвинтовой клеммник по входу 220 Вольт.
На силовом трансформаторе есть наклейка DC12V-8.
Выходная обмотка трансформатора намотана в 5 проводов

Пайка очень аккуратная, выводы обкушены довольно коротко, ничего не торчит, флюс смыт полностью. Отсутствующих компонетов нет.
Плата двухслойная с двухсторонним монтажом.
Но есть мелкое замечание, на каждом из радиаторов припаян только один крепежный вывод.
На мой взгляд это не очень хорошо. Что помешало припаять оба — непонятно.
Причем на фото магазина все абсолютно точно так же.
Отмечу то, что выходное напряжение измеряется в точке, максимально близкой к выходному разъему, за это плюс, влияет на точность удержания выходного напряжения.

Основные компоненты платы поближе.
Установлен ШИМ контроллер CR6842S, который является полным аналогом более известного контроллера SG6842
Почти все установленные резисторы точные, не хуже 1%, об этом говорит четырехзначная маркировка.

Силовой транзистор 600 Вольт 20 Ампер, 0.19 Ома SPW20N60S5 производства Infineon.
Еще одно мелкое замечание, слишком сильно закрутили крепежный винт и он вжал изолирующую втулку. Транзистор остался изолированным от радиатора, да и сам радиатор изолирован от других компонентов, но впечатление несколько подпортило.
Транзистор изолирован от радиатора пластинкой из слюды.

Немного отвлекусь, на фото виден мелкий электролитический конденсатор, судя по пайке его или впаивали потом или меняли, на работоспособность это никак не повлияло (ну или почти никак).
Дело в том, что при резком изменении нагрузки от нуля до 4 Ампер или более, БП может отключиться на 0.5 секунды. Я бы советовал заменить этот электролит на что нибудь типа 47мкФх50 В.
Если такие режимы не планируются, то можно оставить и так.

Выходная диодная сборка 100 Вольт 2х20 Ампер производства ST.
Радиатор на самом деле ровный, это он на фото так вышел:)

Так же видно пару выходных конденсаторов 1000мкФ х 35 Вольт, дроссель выходного фильтра и светодиод индикации включения блока питания.
Здесь разъем уже установили обычный, винтовой.
Хотя как по мне, для встраиваемой платы разъемы вообще вещь лишняя.

Выходные конденсаторы установлены с хорошим запасом по напряжению, это очень хорошо.
Попутно я проверил емкость и ESR этих конденсаторов, вышло так же неплохо.
Прибор показал суммарную емкость и ESR, если пересчитать на каждый в отдельности, то будет примерно 1050мкФ и 30мОм.
Конденсаторы врядли фирменные, но характеристики вполне нормальные, порадовало рабочее напряжение в 35 Вольт, Я в своих БП обычно и то применяю конденсаторы на 25 Вольт.

Ну и «что бы два раза не бегать», проверил входной электролит.
Написано 82мкФ 400 Вольт 105 градусов.
Емкость почти в норме, ESR в норме.
Производитель конденсатора Taicon.

Ну и конечно начертил схему этого блока питания. Нумерация большинства компонентов соответствует печатной плате.

Для тестирования блока питания приготовил вот такую кучку всякого разного:)
Ничего необычного:
Нагрузочные резисторы 3 штуки 10 Ом и одна наборка дающая в сумме 3 Ома (5 шт по 15 Ом включенных параллельно) + вентилятор.
Мультиметр
Бесконтактный термометр
Осциллограф
Всякие соединители и провода.

Тестирование блока питания
Процесс тестирования включал в себя последовательное увеличение нагрузки, при этом после каждого повышения нагрузки я ждал около 15 минут, потом измерял температуру основных компонентов и переходил на следующий шаг увеличения нагрузки.
Делитель осциллографа все это время был в положении 1:1.

1. Режим холостого хода. Напряжение 12.29 Вольта.
2. Подключен один резистор 10 Ом, Напряжение немного просело до 12.28 Вольта.

1. Подключено 2 резистора 10 Ом, напряжение 12.28 Вольта.
2. Подключено 3 резистора 10 Ом, напряжение 12.27 Вольта.

1. Подключена наборка сопротивлением 3 Ома + вентилятор, напряжение 12.27 Вольта
2. Наборка 3 Ома + резистор 10 Ом, напряжение 12.27 Вольта.

Небольшое замечание, при подключении нагрузки более 4 ампер БП может отключиться на 0.5 секунды и потом включится опять. Это происходит только при переходе из режима холостого хода, хотя бы небольшая нагрузка убирает этот эффект полностью.

1. Наборка 3 Ома + 2 резистора 10 Ом, напряжение 12.27 Вольта.
2. Режим максимальной нагрузки, наборка 3 Ома + 3 резистора 10 Ом, напряжение 12.27 Вольта.

Как я писал выше, в процессе тестирования я измерял температуры разных компонентов.
Измерялись температуры:
Силового транзистора
Трансформатора
Выходного диода
Первого по схеме выходного конденсатора.

Для более точных показаний измерялась температура непосредственно транзистора и диодной сборки, а не их радиаторов.
При мощности нагрузки 80 Ватт температуру измерил два раза, второе измерение было после дополнительного 10 минутного прогрева.

Резюме:
Плюсы

Качественная сборка
Довольно качественные компоненты с запасом.
Соответствие заявленным параметрам.
Отличная точность стабилизации выходного напряжения
Не вижу необходимости в доработке.
Низкая цена.

Минусы

Замечание к упаковке (минус магазину)
Не пропаяно по одному крепежному контакту на радиаторе.

Мое мнение.
Если честно, то мне этот БП понравился уже внешне на фотке магазина, и была уже некоторая уверенность в том, что я получу в итоге, но одно дело видеть, а другое — попробовать.
БП оставил положительные эмоции, отлично подойдет как встраиваемый в какое то из самодельных устройств.
Конечно не обошлось и без минусов, но они очень малы, в сравнении с плюсами.

Блок питания для обзора был предоставлен магазином banggood.

Надеюсь, что мой обзор будет полезен.
Конечно можно сказать, что я расхваливаю товар, но могу сказать, что блоками питания я занимаюсь около 15 лет, собрал за это время более 1000 штук, сколько отремонтировал и переделал, счет потерял. Потому нормальную вещь не похвалить не могу. Видел вещи и получше, особенно БП пром серии, но там и ценник другой.

Небольшое замечание китайским инженерам
Блок питания показал очень хорошие результаты, но есть небольшое замечание к конструкции, вернее к печатной плате.
Трассировка некоторых цепей выполнена неправильно, и если бы была как надо, то уровень пульсаций можно было бы еще уменьшить.
Покажу на примере.
1. Как сделано в блоке питания, этот участок можно увидеть на плате, я его немного упростил для наглядности.
2. Как это можно сделать лучше без перемещения компонентов на плате
3. как сделать еще лучше, но уже с перемещением компонентов.
Дело в том, что в силовых цепях нежелательно иметь участки, где ток может течь в двух направлениях, так как это увеличивает уровень помех.
Ток должен течь только в одном направлении.
В исходном варианте по одним и тем же дорожкам сначала течет ток заряда конденсатора, потом через них же течет ток разряда.

Выбираем в магазине две вещи, которые должны использоваться «в тандеме», например, утюг и розетку, и внезапно сталкиваемся с проблемой — «электропараметры» на маркировке указаны в разных единицах.

Как же подобрать подходящие друг к другу приборы и устройства? Как амперы перевести в ватты?

Смежные, но разные

Сразу надо сказать, что прямого перевода единиц сделать нельзя, поскольку обозначают они разные величины.

Ватт — указывает на мощность, т.е. скорость, с которой потребляется энергия.

Ампер — единица силы, говорящая о скорости прохождения тока через конкретное сечение.

Чтобы электрические системы работали безотказно, можно рассчитать соотношение амперов и ваттов при определенном напряжении в электросети. Последнее — измеряется в вольтах и может быть:

  • фиксированным;
  • постоянным;
  • переменным.

С учетом этого и производится сопоставление показателей.

«Фиксированный» перевод

Зная, помимо величин мощности и силы, еще и показатель напряжения, перевести амперы в ватты можно по следующей формуле:

При этом P — это мощность в ваттах, I — сила тока в амперах, U — напряжение в вольтах.

Онлайн калькулятор

Для того, чтобы постоянно быть «в теме» можно составить для себя «ампер-ватт»-таблицу с наиболее часто встречаемыми параметрами (1А, 6А, 9А и т.п.).

Такой «график соотношений» будет достоверным для сетей с фиксированным и постоянным напряжением.

«Переменные нюансы»

Для расчета при переменном напряжении в формулу включается еще одно значение — коэффициент мощности (КМ). Теперь она выглядит так:

Сделать процесс перевода единиц измерения более быстрым и простым поможет такое доступное средство, как онлайн-калькулятор «ампер в ватты». Не забывайте, что если надо ввести в графу дробное число, производится это через точку, а не через запятую.

Таким образом, на вопрос «1 ватт — сколько ампер?», с помощью калькулятора можно дать ответ — 0,0045. Но он будет справедливым только для стандартного напряжения в 220в.

Используя представленные в интернете калькуляторы и таблицы, вы сможете не мучиться над формулами, а легко сопоставить разные единицы измерения.

Это поможет подобрать автоматические выключатели на разную нагрузку и не тревожиться за свои бытовые приборы и состояние электропроводки.

Ампер — ватт таблица:

612244864110220380Вольт
5 Ватт0,830,420,210,100,080,050,020,01Ампер
6 Ватт10,50,250,130,090,050,030,02Ампер
7 Ватт1,170,580,290,150,110,060,030,02Ампер
8 Ватт1,330,670,330,170,130,070,040,02Ампер
9 Ватт1,50,750,380,190,140,080,040,02Ампер
10 Ватт1,670,830,420,210,160,090,050,03Ампер
20 Ватт3,331,670,830,420,310,180,090,05Ампер
30 Ватт5,002,51,250,630,470,270,140,03Ампер
40 Ватт6,673,331,670,830,630,360,130,11Ампер
50 Ватт8,334,172,031,040,780,450,230,13Ампер
60 Ватт10,0052,501,250,940,550,270,16Ампер
70 Ватт11,675,832,921,461,090,640,320,18Ампер
80 Ватт13,336,673,331,671,250,730,360,21Ампер
90 Ватт15,007,503,751,881,410,820,410,24Ампер
100 Ватт16,673,334,172,081,56,0910,450,26Ампер
200 Ватт33,3316,678,334,173,131,320,910,53Ампер
300 Ватт50,0025,0012,506,254,692,731,360,79Ампер
400 Ватт66,6733,3316,78,336,253,641,821,05Ампер
500 Ватт83,3341,6720,8310,47,814,552,271,32Ампер
600 Ватт100,0050,0025,0012,509,385,452,731,58Ампер
700 Ватт116,6758,3329,1714,5810,946,363,181,84Ампер
800 Ватт133,3366,6733,3316,6712,507,273,642,11Ампер
900 Ватт150,0075,0037,5013,7514,068,184,092,37Ампер
1000 Ватт166,6783,3341,6720,3315,639,094,552,63Ампер
1100 Ватт183,3391,6745,8322,9217,1910,005,002,89Ампер
1200 Ватт200100,0050,0025,0078,7510,915,453,16Ампер
1300 Ватт216,67108,3354,227,0820,3111,825,913,42Ампер
1400 Ватт233116,6758,3329,1721,8812,736,363,68Ампер
1500 Ватт250,00125,0062,5031,2523,4413,646,823,95Ампер

Конвертер ватт в амперы. Конвертер ватт в амперы Онлайн калькулятор по расчету ватт в амперы


Электрические системы часто требуют сложного анализа при проектировании, ведь нужно оперировать множеством различных величин, ватты, вольты, амперы и т.д. При этом точно необходимо высчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксированное, например, в домашней сети, а вот мощность и сила тока обозначают разные понятия, хоть и являются взаимозаменяемыми величинами.

Онлайн калькулятор по расчету ватт в амперы

Для получения результата обязательно указывать напряжение и потребляемую мощность.

В таких случая очень важно иметь помощника, дабы точно перевести ваты в амперы при постоянном значении напряжения.

Нам поможет перевести амперы в ватты калькулятор онлайн. Перед тем как воспользоваться интернет-программой по расчету величин, нужно иметь представление о значении необходимых данных.

  1. Мощность – это скорость потребления энергии. Например, лампочка в 100 Вт использует энергию – 100 джоулей за секунду.
  2. Ампер – величина измерения силы электрического тока, определяется в кулонах и показывает число электронов, которые прошли через определенное сечение проводника за указанное время.
  3. В вольтах измеряется напряжение протекания электрического тока.

Чтобы перевод ватт в амперы калькулятор используется очень просто, пользователь должен ввести в указанные графы показатель напряжения (В), далее потребляемую мощность агрегата (Вт) и нажать кнопку рассчитать. Через несколько секунд программа покажет точный результат силы тока в амперах. Формула сколько ватт в ампере

Внимание: если показатель величины имеет дробное число, значит его нужно вписывать в систему через точку, а не запятую. Таким образом, перевести ватты в амперы калькулятором мощности позволяет за считанное время, Вам не нужно расписывать сложные формулы и думать над их ре

шением. Все просто и доступно!

Таблица расчета Ампер и нагрузки в Ватт

Собранным в том же корпусе.

Работает от любого источника постоянного тока напряжением от 12 до 24 вольт
. Соединив его, например, с аккумулятором 12V или 24V любого типа, Вы получите мобильный источник света довольно внушительной силы.

Особенности

  • Алюминиевый корпус и закалённое стекло.
  • Высокая светоотдача встроенной матрицы мощностью 20 ватт.
  • Широкий угол пучка света — 120 градусов.
  • Неизменная яркость в диапазоне от 12 до 24 вольт благодаря встроенному драйверу .
  • Регулируемое направление светового потока.

Назначение светодиодных прожекторов 12 вольт

  • Переносной источник большого количества света.
  • Охранные системы и аварийное освещение.
  • Энергонезависимый дом.
  • Специальные рабочие места и объекты, не допускающие использования высоких напряжений.
  • Установка в катер или автомобиль .

Как долго этот прожектор проработает от аккумулятора 12V?

Рабочий ток будет 20W / 12V = 1.7А. Если, например, использовать аккумулятор 7.2Ач, используемый в UPS, то получится, что предельное теоритическое время работы составит 4 с небольшим часа.

Будьте внимательны при таком подключении! Вы можете случайно допустить глубокий разряд аккумулятора, т.к. прожектор не будет менять яркость по мере разряда аккумулятора.

Предупреждение: подключение к напряжению выше 26 вольт недопустимо и является нарушением условий гарантийного обслуживания
.

Как то мне так понравилось экспериментировать со светодиодным освещением и переделывать светильники, что когда мне предложили выбрать товар для тестирования, то я не смог удержаться и решил попробовать светодиодный драйвер фабричного изготовления.
Кому интересно, развитие этой идеи под катом.

Как я дал понять в аннотации, драйвер был предоставлен бесплатно, впрочем особого значения в данном случае это не имеет, так как цель любого обзора — показать что вообще товар из себя представляет и стоит его покупать или нет. Обещаю быть не предвзятым и показать кто есть кто, да и обзора 20 Ватт драйвера я здесь еще не встречал.

Итак преамбула, давно стал замечать, что светильники с люминесцентными лампами, сделанные по принципу — чем дешевле- тем лучше, имеют характерный дефект, при частом включении\выключении они долго не живут, что лампы, что сами электронные балласты.
Дома есть пара светильников с фирменными балластами, Vossloh Schwabe и Philips, они работают отлично, но цена на них обычно несколько завышена, не говоря о том, что качественные Филлипсы из продажи пропали. И если для основного освещения я пока опасаюсь применять светодиоды, то для второстепенного вполне допускаю. Один из таких вариантов будет описан в обзоре.

Но буду последователен.
Приехал драйвер относительно быстро, примерно недели три, точно не скажу, так как ехал он без трека. Упакован был в стандартный желтый конвертик с пупырчатой пленкой внутри, сам драйвер лежал в пакетике с защелкой. Впрочем учитывая монолитную конструкцию драйвера поломать его сложно. В общем ничего особо интересного, упаковка как упаковка.

Длина входного кабеля и выходных проводов одинаковая, 27см, выходные провода в силиконовой изоляции, очень мягкие (где бы купить такого провода отдельно).
Размеры корпуса 75х30х20мм, длина с учетом крепежных лапок — 90мм.

С обратной стороны драйвер залит массой, похожей на эпоксидную смолу, разборке и ремонту он не подлежит. А жаль, интересно было бы попробовать изготовить такой драйвер самому или доработать этот. Но хотел именно IP65. В общем ешьте что заказали и не квакайте. 🙂

Характеристики драйвера заявленные производителем.

Основные характеристики драйвера.
Количество светодиодов 6-9.
Выходное напряжение драйвера — 28-40 Вольт.
Ток 600мА.
У продавца указано что 20-35V 600mAh 20W LED Driver (10 series 2 parallel)
Немного не сходится. Да и минимум 6 светодиодов дадут максимум 24 Вольта, здесь не сходится уже данными производителя, но эксперименты покажут кто прав.

Максимум, что мне удалось узнать из того, что у него внутри, это то, что емкость выходного конденсатора 100мкФ, и то предположительно.
Кстати включается драйвер с задержкой около 0.5-0.7 секунды, немного раздражает.

Дальше я начал испытания (самому было любопытно).
На холостом ходу драйвер дает около 44 Вольт (на всякий случай, сетевое входное было 230 Вольт)

Сначала я его нагрузил на 100 Ватт матрицу (схема 10х10), напряжение упало до 30,9 Вольта, ток составил 0.57 Ампера, соответственно мощность 17,6 Ватта.

После этого я перешел к испытаниям с той нагрузкой, с которой планировал использовать.
Светодиоды 10 Ватт (схема 3х3)

2 светодиода последовательно, напряжение 19.04 В, ток 0.58 А, мощность 11 Ватт.

3 светодиода последовательно, напряжение 28.11 В, ток 0.57 А, мощность 16 Ватт.

Ну и напоследок испытание того, что я планировал к нему подключать, 4 светодиода 10 Ватт последовательно, напряжение поднялось до 37.08 В, ток упал до 0.53 А, мощность составила 19,65 Ватта.

Фактически это максимум этого драйвера. Я считаю что довольно неплохо.
Нагрузка немного нештатная, но тем интереснее.

Кстати интересно что светодиоды немного разные, у трех штук четко видно кристаллы при работе, а у четвертого (на фото правый верхний) как бы смазаны, на фото меньше заметно, почему так, непонятно, вероятно другая партия

Для гурманов.

Осциллограммы напряжения и тока.

Пульсации напряжения с частотой 100 Гц, 3 светодиода, шкала 0.2 Вольта.

Пульсации напряжения с частотой 100Гц, 4 светодиода, шкала 0.2 Вольта

Пульсации тока с частотой 100Гц, 3 светодиода, шкала 0.1 Вольта, измерение на резисторе 1 Ом.

Пульсации напряжения ВЧ, частота около 57 КГц, 3 светодиода, шкала 0.2 Вольта.

На этом экспериментальная часть закончена и пора уже перейти к практической.
Как все понимают, драйвер, лежащий на полке, пользы не приносит, разве что если что-то подпирает:)
В одном из обзоров я переделывал светильник китайского производства. В этом ситуация очень похожа, тоже светильник, тоже китайского производства, и не менее распространенный, чем предыдущий. И так же «болеющий» проблемой ненадежной работы.

Описание переделки светильника.

В самом начале я написал, что есть хорошие фирменные электронные балласты для линейных люминесцентных ламп. Есть то они есть, но например в такой светильник они банально не влезут. Когда я несколько лет назад переделывал родной балласт на свой с драйвером на IR2520D, то еле всунул его в тот размер.
Надежд на долгую работу ламп он не оправдал, скорее всего виной частые включения\выключения, как и в первом случае, потому решено было переделать показанный ниже светильник под светодиоды. Наверняка он известен многим, производят их все, кому не лень.

Вообще хотел сначала переделать под светодиодную ленту, как в предыдущей переделке, но решил поэкспериментировать со светодиодами. Кстати, в целях повышения безопасности я выбрал именно вариант драйвера в залитом корпусе, даже в случае выхода из строя он не спалить мне что нибудь (а с учетом того, что потолок из пластика, то пожаробезопасность достаточно критична).
Светодиоды 10 Ватт работают в сильно облегченном режиме, 5 Ватт на сборку. Я на это пошел по нескольким причинам.
КПД и надежность светодиодов в таком режиме заметно выше.
Светодиоды у меня были.
Просто хотелось эксперимента. 🙂

Так как светодиоды надо чем то охлаждать, а корпус лампы изготовлен из металла чуть толще фольги, то в залежах всякого железа был откопан радиатор.
Вид у него немного страшноват, видно что лежал он довольно давно, возможно был скручен откуда то, возможно куплен для чего то, но он подходил очень удачно.

Наверняка многие радиолюбители, да и не только, помнят эти стандартные отверстия под транзисторы типа КТ808, 805 или аналогичные (эх ностальгия, самодельные усилители из журнала Радио, потом Радиотехника УКУ 020, как давно это было).
Но каково же было мое удивление, когда после примерки светодиодов я выяснил, что установочное место под такой транзистор идеально совпадает с размерами 10 Ватт светодиода, кроме того, при определенной доработке можно даже использовать родное крепление транзисторов. Так как радиаторов под такие транзисторы в свое время было произведено очень много, то возможно эта информация будет полезна.

Но всему свое время.
Радиатор был отмыт и распилен пополам, попутно отрезал крепежные элементы с обратной стороны, смысла в них нет, только мешают.

Так выглядит лампа после демонтажа всего лишнего.
Место под установку радиаторов и драйвера около 490х75мм (металлическая часть лампы).

В радиаторах просверлены крепежные отверстия для светодиодов и крепления радиатора к лампе, нарезана резьба М3. Для интереса прикрепил 2 светодиода винтами, как задумал производитель светодиодов, а другие 2 светодиода закреплены шайбами от старых КТ808, как задумывал советский инженер. К слову, для 10 Ватт светодиода расстояние между крепежными отверстиями 19мм (образуют квадрат со сторонами 19мм), вдруг кому пригодится, в интернете эта информация мне не попалась, выяснил экспериментально. Крепить шайбами от транизисторов было удобнее, никакого сверления, нарезания резьбы и т.п.
Естественно КПТ-8, куда же без нее.

Смонтировал радиаторы и драйвер, для клеммы заземления нашлось даже место с резьбой М4 на радиаторе, очень кстати. Драйвер не стал привинчивать, приклеил на двухсторонний скотч, посмотрим, если отвалится, привинчу. Светодиоды к радиаторам и радиаторы к корпусу привинчены винтами с прессшайбой, такими винтами комплектуются компьютерные корпуса, очень удобно.

Соединил светодиоды и драйвер, первое пробное включение.

Если честно, не скажу что понравилось. Но обо всем по порядку.

Погонял примерно с пол часика. Замерил температуру. Прибор думаю немного врёт, на ощупь скорее около 50. Вероятно из-за плохого теплового контакта (хотя датчик был прижат через пасту), на фото датчик вставлен в бывшее отверстие для ножки транзистора в радиаторе.

Драйвер нагрелся градусов до 60, напомню, работает он на своей максимальной мощности.

В общем могу сказать что светит ярко, мощнее чем предыдущий 2х18 Ватт люминесцентный светильник и свет нормальный, на вид примерно как галоген. Нагрев так же в норме, но вот внешне понравилось не очень.
Пластик рассеивателя слишком прозрачный, из-за этого получается некомфортно, когда светильник попадает в поле зрения, думаю что для вспомогательных помещений (мой светильник установлен в кладовке) вполне отлично, в остальных вариантах я лучше переделал бы под светодиодную ленту (вообще хотел изначально так сделать).
Но жене с дочкой новый светильник понравился, для меня то самое главное. 🙂
Хочу еще попробовать добавить матовую пленку, интересно как получится.
Пробовал сделать родной рассеиватель матовым, спирт его не берет, а от ацетона он начинает покрываться очень маленькими трещинками. Если кто знает еще способы, подскажите.

Резюме.
Драйвер вполне нормальный, ток немного занижен относительно декларируемого производителем, 550-580мА против 600 заявленных производителем.
Нагрев даже на максимальной мощности, да еще и в фактически нештатном режиме вполне нормальный, производитель заявляет макс 75 градусов, у меня в закрытом корпусе вышло около 60, посмотрим как будет работать.
Пульсации небольшие, «карандашный» тест проходит, но можно добавить емкость на выходе, скорее всего еще уменьшатся.
Немного напрягает включение с задержкой, но это уже индивидуально.

Покупать или нет, стоит он своих денег или нет, решать Вам, в обзоре я старался максимально показать его реальные характеристики, надеюсь что у меня это получилось.
Вроде ничего не забыл. Особое спасибо тем, кто смог дочитать до конца.

Драйвер был бесплатно предоставлен для тестирования и обзора магазином Chinabuye.

Планирую купить

+57

Добавить в избранное

Обзор понравился

+67

+141

Выбираем в магазине две вещи, которые должны использоваться «в тандеме», например, утюг и розетку, и внезапно сталкиваемся с проблемой — «электропараметры» на маркировке указаны в разных единицах.

Как же подобрать подходящие друг к другу приборы и устройства? Как амперы перевести в ватты?

Смежные, но разные

Сразу надо сказать, что прямого перевода единиц сделать нельзя, поскольку обозначают они разные величины.

Ватт — указывает на мощность, т.е. скорость, с которой потребляется энергия.

Ампер — единица силы, говорящая о скорости прохождения тока через конкретное сечение.

Чтобы электрические системы работали безотказно, можно рассчитать соотношение амперов и ваттов при определенном напряжении в электросети. Последнее — измеряется в вольтах и может быть:

  • фиксированным;
  • постоянным;
  • переменным.

С учетом этого и производится сопоставление показателей.

«Фиксированный» перевод

Зная, помимо величин мощности и силы, еще и показатель напряжения, перевести амперы в ватты можно по следующей формуле:

При этом P — это мощность в ваттах, I — сила тока в амперах, U — напряжение в вольтах.

Онлайн калькулятор

Для того, чтобы постоянно быть «в теме» можно составить для себя «ампер-ватт»-таблицу с наиболее часто встречаемыми параметрами (1А, 6А, 9А и т.п.).

Такой «график соотношений» будет достоверным для сетей с фиксированным и постоянным напряжением.

«Переменные нюансы»

Для расчета при переменном напряжении в формулу включается еще одно значение — коэффициент мощности (КМ). Теперь она выглядит так:

Сделать процесс перевода единиц измерения более быстрым и простым поможет такое доступное средство, как онлайн-калькулятор «ампер в ватты». Не забывайте, что если надо ввести в графу дробное число, производится это через точку, а не через запятую.

Таким образом, на вопрос «1 ватт — сколько ампер?», с помощью калькулятора можно дать ответ — 0,0045. Но он будет справедливым только для стандартного напряжения в 220в.

Используя представленные в интернете калькуляторы и таблицы, вы сможете не мучиться над формулами, а легко сопоставить разные единицы измерения.

Это поможет подобрать автоматические выключатели на разную нагрузку и не тревожиться за свои бытовые приборы и состояние электропроводки.

Ампер — ватт таблица:

612244864110220380Вольт
5 Ватт0,830,420,210,100,080,050,020,01Ампер
6 Ватт10,50,250,130,090,050,030,02Ампер
7 Ватт1,170,580,290,150,110,060,030,02Ампер
8 Ватт1,330,670,330,170,130,070,040,02Ампер
9 Ватт1,50,750,380,190,140,080,040,02Ампер
10 Ватт1,670,830,420,210,160,090,050,03Ампер
20 Ватт3,331,670,830,420,310,180,090,05Ампер
30 Ватт5,002,51,250,630,470,270,140,03Ампер
40 Ватт6,673,331,670,830,630,360,130,11Ампер
50 Ватт8,334,172,031,040,780,450,230,13Ампер
60 Ватт10,0052,501,250,940,550,270,16Ампер
70 Ватт11,675,832,921,461,090,640,320,18Ампер
80 Ватт13,336,673,331,671,250,730,360,21Ампер
90 Ватт15,007,503,751,881,410,820,410,24Ампер
100 Ватт16,673,334,172,081,56,0910,450,26Ампер
200 Ватт33,3316,678,334,173,131,320,910,53Ампер
300 Ватт50,0025,0012,506,254,692,731,360,79Ампер
400 Ватт66,6733,3316,78,336,253,641,821,05Ампер
500 Ватт83,3341,6720,8310,47,814,552,271,32Ампер
600 Ватт100,0050,0025,0012,509,385,452,731,58Ампер
700 Ватт116,6758,3329,1714,5810,946,363,181,84Ампер
800 Ватт133,3366,6733,3316,6712,507,273,642,11Ампер
900 Ватт150,0075,0037,5013,7514,068,184,092,37Ампер
1000 Ватт166,6783,3341,6720,3315,639,094,552,63Ампер
1100 Ватт183,3391,6745,8322,9217,1910,005,002,89Ампер
1200 Ватт200100,0050,0025,0078,7510,915,453,16Ампер
1300 Ватт216,67108,3354,227,0820,3111,825,913,42Ампер
1400 Ватт233116,6758,3329,1721,8812,736,363,68Ампер
1500 Ватт250,00125,0062,5031,2523,4413,646,823,95Ампер

Сколько ампер выдает блок питания компьютера

Бывает такое что надо в гараже например подкачать колеса на авто, или колеса при замене (летозима) или даже на велосипеде качнуть)
Для адекватной работы компрессора надо заводить авто.
можно и не заводить но мощность не та, и акб нагружать не хочется…
Решил замутить блок питания для компрессора.
Всякие блоки на 12 вольт с силой тока до 2А включительно не походят 100% проверено! компрессор высасывает весь ток мгновенно! и работает 0,2 сек потом 0,5 сек тишина потом 0,2 сек работает, 0,5 тишина…
Посмотрев сколько ампер выдает блок питания от компа на 12 вольт — 40А и больше
Решил из него и собрать такой блок
Вот что получилось:

Есть видео как все это работает:

блоком пользуюсь раз в месяц точно !

Блок питания на 350W
взял с бу компа который по сути просто списали)
Затрат с моей стороны разве что время и усилия)

просто и подробно о персональном компьютере,его устройстве, настройке и сборке.

Популярные сообщения

Pеклама

Реклама

четверг, 2 августа 2012 г.

Блок питания для компьютера

Основные характеристики современных блоков питания:

Самые распространенные БП для настольных компьютеров относятся к форм-фактору ATX с дополнительным 12-вольтовым разъемом питания и имеют стандартные габариты 150х86х140 мм. Они строго выдерживаются всеми производителями, следовательно можно легко менять один блок питания на другой. Однако модели повышенной мощности, как правило, имеют нестандартные, увеличенные габариты, что вызвано необходимостью установки двух силовых трансформаторов, способных выдать нужную мощность. Речь идет о блоках питания мощностью 1000 Вт и выше – они длиннее стандартных примерно на 40-50 мм.

На выходе блок питания выдает следующие напряжения +3.3 v, +5 v, +12 v и некоторые вспомогательные -12 v и + 5 VSB. Основная нагрузка ложится на линию +12 V.
Мощность (W – Ватт)расчитывается по формуле P = U x I, где U – это напряжение (V – Вольт), а I – сила тока (A – Ампер). Отсюда вывод, чем больше сила тока по каждой линии, тем больше мощность. Но не все так просто, допустим при большой нагрузке по комбинированной линии +3.3 v и +5 v, может уменьшиться мощность на линии +12 v. Разбирем пример на основе маркировки блока питания AEROCOOL E85-700.

Указано, что максимальная суммарная мощность по линиям +3.3V и +5V = 150W, также указано, что максимальная мощность по линии +12V = равна 648W. Обратите внимание, что указаны две виртуальные линии +12V1 и +12V2 по 30 Ампер каждая – это вовсе не означает, что общий ток 60А, так как при токе в 60А и напряжении 12V, мощность бы была 720W (12×60=720). На самом деле указан максимально возможный ток на каждой линии. Реальный же максимальный ток легко рассчитать по формуле I=P/U, I = 648 / 12 = 30 Ампер. Общая мощность 700W.

Для расчета мощности блока питания можете воспользоваться этим калькулятором , сервис на английском языке, но думаю разобраться можно.
По своему опыту могу заметить, что для офисного компьютера вполне достаточно блока питания на 350W. Для игрового хватит БП на 400 – 500W, для самых мощных игровых с мощной видеокартой или с двумя в режиме SLI или Crossfire – необходим блок на 600 – 700W.
Процессор обычно потребляет от 35 до 135W, выдеокарта от 30 до 340W, материнская плата 30-40W, 1 планка памяти 3-5W, жесткий диск 10-20W. Учитывайте также, что основная нагрузка ложится на линию 12V. Да, и не забудьте добавить запас 20-30% с расчетом на будущее.

Не маловажным будет КПД блока питания. КПД (коэффициент полезного действия) – это отношение выходной мощности к потребляемой. Если бы блок питания мог преобразовать электрическую энергию без потерь, то его КПД был 100%, но пока это невозможно.
Например, для того, чтобы блоку питания с КПД 80% обеспечить на выходе мощность 400W, он должен потреблять от сети не больше 500W. Тот же блок питания, но с КПД 70%, будет потреблять около 571W. Опять же, если блок питания не сильно нагружен, например на 200W, то и потреблять от сети он будет тоже меньше, 250W при КПД 80% и приблизительно 286 при КПД 70%.
Существует организация, которая тестирует блоки питания на соответствие определенному уровню сертификации. Сертификация 80 Plus проводилась только для электросети 115В распространенной, например в США. Начиная с уровня 80 Plus Bronze, блоки питания тестируются для использования в электросети 230В. Например, для прохождения сертификации уровня 80 Plus Bronze КПД блока питания должен быть 81% при нагрузке 20%, 85% при нагрузке 50% и 81% при нагрузке 100%.

Наличие одного из логотипов на блоке питания говорит о том, что блок питания соответствует определенному уровню сертификации.
Плюсы блока питания с высоким КПД:
Во-первых, меньше энергии выделяется в виде тепла, соответственно системе охлаждения блока питания нужно отводить меньше тепла, следовательно, и шума от работы вентилятора меньше. Во-вторых, небольшая экономия на электричестве. В-третьих, качество у данных БП высокое.

Активный и пассивный PFC

PFC (Power Factor Correction) – Коррекция фактора (коэффициента) мощности. Фактором мощности называется отношение активной мощности к полной (активной + реактивной).
Так как реальная нагрузка обычно имеет еще индуктивную и емкостную составляющие, то к активной мощности добавляется реактивная. Нагрузкой реактивная мощность не потребляется – полученная в течение одного полупериода сетевого напряжения, она полностью отдается обратно в сеть в течение следующего полупериода, впустую нагружая питающие провода. Получается, что от реактивной мощности толку ноль, и с ней по возможности борются, с помощью различных корректирующих устройств.
PFC – бывает пассивным и активным.
Преимущества активного PFC:
Активный PFC обеспечивает близкий к идеальному коэффициент мощности (у активного 0.95-0.98 против 0.75 у пассивного).
Активный PFC стабилизирует входное напряжение основного стабилизатора, блок питания становится менее чувствительным к пониженному сетевому напряжению.
Активный PFC улучшает реакцию блока питания во время кратковременных провалов сетевого напряжения.
Недостатки активного PFC:
Снижает надежность блока питания, так как усложняется устройство самого блока питания. Требуется дополнительное охлаждение. В целом преимущества активного PFC перевешивают его недостатки.
В принципе можно не обращать внимания на тип PFC. В любом случае, при покупке блока питания меньшей мощности, в нем, скорее всего, будет пассивный PFC, при покупке более мощного блока от 500 W – вы, скорее всего, получите блок с активным PFC.

Система охлаждения блоков питания.

Кабели и разъемы.
Обратите внимание на количество разъемов и длину кабелей идущих от блока питания, в зависимости от высоты корпуса нужно выбрать БП с соответствующими по длине кабелями. Для небольшого корпуса достаточно длины 40-45 см.

Современный блок питания имеет следующие разъемы:

124-х контактный разъем для питания материнской платы. Обычно раздельный 20 + 4 контакта, бывает и цельный.

23Разъем процессора. Обычно 4-х контактный, для более мощных процессоров используется 8-и контактный.
4Разъем для дополнительного питания видеокарты. 6-и и 8-и контактный. 8-и контактный иногда сборный 6+2 контакта.

6Разъем SATA для подключения жестких дисков и оптических приводов.

54-х контактный разъем (Molex) для подключения старых IDE жестких дисков и оптических приводов, вентиляторов.

74-х контактный разъем для подключения дисководов FDD.
Модульные кабели и разъемы.

Многие более мощные блоки питания сейчас используют модульное подключение кабелей с разъемами. Это удобно, тем, что нет надобности, держать неиспользуемые кабели внутри корпуса, к тому же меньше путаницы с проводами, просто добавляем по мере необходимости. Отсутствие лишних кабелей, также улучшает циркуляцию воздуха в корпусе. Обычно в этих блоках питания несъемные только разъемы для питания материнской платы и процессора.

Производители.
Производители блоков питания делятся на три группы:

1. Производят свою продукцию – это такие бренды, как FSP, Aerocool, Enermax, HEC, Seasonic, Delta, Hipro.
2. Производят свою продукцию, частично перекладывая производство на другие компании, например Corsair, Antec, Silverstone, Zalman.
3. Перепродают под собственной маркой – например Chiftec, Cooler Master, Gigabyte, OCZ, Thermaltake.
Можно смело приобретать продукцию этих брендов. В интернете можно найти обзоры и тесты многих блоков питания и ориентироваться по ним.

4 коммент.:

Господа, приветствую! Обнадёжте своими соображениями.
Есть светодиод из авторитетного магазина с Али (по заверениям опытных юзеров, диоды китаец продаёт качественные), мощность 3W, напряжение питания в диапазоне 3-3,4V, потребляемый ток 0,4-0,5A.
Хочу заставить его гореть. И так как у АТХ есть линия +3,3В, что вписывается в указанный диапазон у диода, думаю подключить диод к ней. На шильдике БП указано, что линия 3
+3,3В 28Ампер. Я конечно не профильный электротехник, но всегда думал, что 28 ампер (в данном случае 28) – это нагрузка, которую источник может потянуть.
Так вот вопрос в том, что если я подам +3,3В с БП на диод, у которого максимально допустимый ток 0,5А, он, этот диод, не сгорит?
[email protected]

10 марта 2019 г., 01:48 Сергей Ветров комментирует.

просто и подробно о персональном компьютере,его устройстве, настройке и сборке.

Популярные сообщения

Pеклама

Реклама

четверг, 2 августа 2012 г.

Блок питания для компьютера

Основные характеристики современных блоков питания:

Самые распространенные БП для настольных компьютеров относятся к форм-фактору ATX с дополнительным 12-вольтовым разъемом питания и имеют стандартные габариты 150х86х140 мм. Они строго выдерживаются всеми производителями, следовательно можно легко менять один блок питания на другой. Однако модели повышенной мощности, как правило, имеют нестандартные, увеличенные габариты, что вызвано необходимостью установки двух силовых трансформаторов, способных выдать нужную мощность. Речь идет о блоках питания мощностью 1000 Вт и выше – они длиннее стандартных примерно на 40-50 мм.

На выходе блок питания выдает следующие напряжения +3.3 v, +5 v, +12 v и некоторые вспомогательные -12 v и + 5 VSB. Основная нагрузка ложится на линию +12 V.
Мощность (W – Ватт)расчитывается по формуле P = U x I, где U – это напряжение (V – Вольт), а I – сила тока (A – Ампер). Отсюда вывод, чем больше сила тока по каждой линии, тем больше мощность. Но не все так просто, допустим при большой нагрузке по комбинированной линии +3.3 v и +5 v, может уменьшиться мощность на линии +12 v. Разбирем пример на основе маркировки блока питания AEROCOOL E85-700.

Указано, что максимальная суммарная мощность по линиям +3.3V и +5V = 150W, также указано, что максимальная мощность по линии +12V = равна 648W. Обратите внимание, что указаны две виртуальные линии +12V1 и +12V2 по 30 Ампер каждая – это вовсе не означает, что общий ток 60А, так как при токе в 60А и напряжении 12V, мощность бы была 720W (12×60=720). На самом деле указан максимально возможный ток на каждой линии. Реальный же максимальный ток легко рассчитать по формуле I=P/U, I = 648 / 12 = 30 Ампер. Общая мощность 700W.

Для расчета мощности блока питания можете воспользоваться этим калькулятором , сервис на английском языке, но думаю разобраться можно.
По своему опыту могу заметить, что для офисного компьютера вполне достаточно блока питания на 350W. Для игрового хватит БП на 400 – 500W, для самых мощных игровых с мощной видеокартой или с двумя в режиме SLI или Crossfire – необходим блок на 600 – 700W.
Процессор обычно потребляет от 35 до 135W, выдеокарта от 30 до 340W, материнская плата 30-40W, 1 планка памяти 3-5W, жесткий диск 10-20W. Учитывайте также, что основная нагрузка ложится на линию 12V. Да, и не забудьте добавить запас 20-30% с расчетом на будущее.

Не маловажным будет КПД блока питания. КПД (коэффициент полезного действия) – это отношение выходной мощности к потребляемой. Если бы блок питания мог преобразовать электрическую энергию без потерь, то его КПД был 100%, но пока это невозможно.
Например, для того, чтобы блоку питания с КПД 80% обеспечить на выходе мощность 400W, он должен потреблять от сети не больше 500W. Тот же блок питания, но с КПД 70%, будет потреблять около 571W. Опять же, если блок питания не сильно нагружен, например на 200W, то и потреблять от сети он будет тоже меньше, 250W при КПД 80% и приблизительно 286 при КПД 70%.
Существует организация, которая тестирует блоки питания на соответствие определенному уровню сертификации. Сертификация 80 Plus проводилась только для электросети 115В распространенной, например в США. Начиная с уровня 80 Plus Bronze, блоки питания тестируются для использования в электросети 230В. Например, для прохождения сертификации уровня 80 Plus Bronze КПД блока питания должен быть 81% при нагрузке 20%, 85% при нагрузке 50% и 81% при нагрузке 100%.

Наличие одного из логотипов на блоке питания говорит о том, что блок питания соответствует определенному уровню сертификации.
Плюсы блока питания с высоким КПД:
Во-первых, меньше энергии выделяется в виде тепла, соответственно системе охлаждения блока питания нужно отводить меньше тепла, следовательно, и шума от работы вентилятора меньше. Во-вторых, небольшая экономия на электричестве. В-третьих, качество у данных БП высокое.

Активный и пассивный PFC

PFC (Power Factor Correction) – Коррекция фактора (коэффициента) мощности. Фактором мощности называется отношение активной мощности к полной (активной + реактивной).
Так как реальная нагрузка обычно имеет еще индуктивную и емкостную составляющие, то к активной мощности добавляется реактивная. Нагрузкой реактивная мощность не потребляется – полученная в течение одного полупериода сетевого напряжения, она полностью отдается обратно в сеть в течение следующего полупериода, впустую нагружая питающие провода. Получается, что от реактивной мощности толку ноль, и с ней по возможности борются, с помощью различных корректирующих устройств.
PFC – бывает пассивным и активным.
Преимущества активного PFC:
Активный PFC обеспечивает близкий к идеальному коэффициент мощности (у активного 0.95-0.98 против 0.75 у пассивного).
Активный PFC стабилизирует входное напряжение основного стабилизатора, блок питания становится менее чувствительным к пониженному сетевому напряжению.
Активный PFC улучшает реакцию блока питания во время кратковременных провалов сетевого напряжения.
Недостатки активного PFC:
Снижает надежность блока питания, так как усложняется устройство самого блока питания. Требуется дополнительное охлаждение. В целом преимущества активного PFC перевешивают его недостатки.
В принципе можно не обращать внимания на тип PFC. В любом случае, при покупке блока питания меньшей мощности, в нем, скорее всего, будет пассивный PFC, при покупке более мощного блока от 500 W – вы, скорее всего, получите блок с активным PFC.

Система охлаждения блоков питания.

Кабели и разъемы.
Обратите внимание на количество разъемов и длину кабелей идущих от блока питания, в зависимости от высоты корпуса нужно выбрать БП с соответствующими по длине кабелями. Для небольшого корпуса достаточно длины 40-45 см.

Современный блок питания имеет следующие разъемы:

124-х контактный разъем для питания материнской платы. Обычно раздельный 20 + 4 контакта, бывает и цельный.

23Разъем процессора. Обычно 4-х контактный, для более мощных процессоров используется 8-и контактный.
4Разъем для дополнительного питания видеокарты. 6-и и 8-и контактный. 8-и контактный иногда сборный 6+2 контакта.

6Разъем SATA для подключения жестких дисков и оптических приводов.

54-х контактный разъем (Molex) для подключения старых IDE жестких дисков и оптических приводов, вентиляторов.

74-х контактный разъем для подключения дисководов FDD.
Модульные кабели и разъемы.

Многие более мощные блоки питания сейчас используют модульное подключение кабелей с разъемами. Это удобно, тем, что нет надобности, держать неиспользуемые кабели внутри корпуса, к тому же меньше путаницы с проводами, просто добавляем по мере необходимости. Отсутствие лишних кабелей, также улучшает циркуляцию воздуха в корпусе. Обычно в этих блоках питания несъемные только разъемы для питания материнской платы и процессора.

Производители.
Производители блоков питания делятся на три группы:

1. Производят свою продукцию – это такие бренды, как FSP, Aerocool, Enermax, HEC, Seasonic, Delta, Hipro.
2. Производят свою продукцию, частично перекладывая производство на другие компании, например Corsair, Antec, Silverstone, Zalman.
3. Перепродают под собственной маркой – например Chiftec, Cooler Master, Gigabyte, OCZ, Thermaltake.
Можно смело приобретать продукцию этих брендов. В интернете можно найти обзоры и тесты многих блоков питания и ориентироваться по ним.

4 коммент.:

Господа, приветствую! Обнадёжте своими соображениями.
Есть светодиод из авторитетного магазина с Али (по заверениям опытных юзеров, диоды китаец продаёт качественные), мощность 3W, напряжение питания в диапазоне 3-3,4V, потребляемый ток 0,4-0,5A.
Хочу заставить его гореть. И так как у АТХ есть линия +3,3В, что вписывается в указанный диапазон у диода, думаю подключить диод к ней. На шильдике БП указано, что линия 3
+3,3В 28Ампер. Я конечно не профильный электротехник, но всегда думал, что 28 ампер (в данном случае 28) – это нагрузка, которую источник может потянуть.
Так вот вопрос в том, что если я подам +3,3В с БП на диод, у которого максимально допустимый ток 0,5А, он, этот диод, не сгорит?
[email protected]

10 марта 2019 г., 01:48 Сергей Ветров комментирует.

Преобразователь

Ватт в Ампер

Используйте этот калькулятор для преобразования Вт в ампер. Выберите поток переменного (AC) или постоянного (DC) тока.

Нравится? Пожалуйста, поделитесь

Пожалуйста, помогите мне распространить информацию, поделившись этим с друзьями или на своем веб-сайте / в блоге. Спасибо.

Связь

Заявление об ограничении ответственности: Несмотря на то, что для создания этого калькулятора были приложены все усилия, мы не можем
несет ответственность за любой ущерб или денежные убытки, возникшие в результате или в связи с его использованием.Этот инструмент предназначен исключительно в качестве услуги для вас, пожалуйста, используйте его на свой страх и риск. Полный отказ от ответственности.
Не используйте расчеты для всего, что может привести к гибели людей, деньгам, имуществу и т. Д. Из-за неточных расчетов.

Как вы переводите ватты в амперы?

Формула преобразования ватт в амперы (при фиксированном напряжении):

амперы = ватты ÷ вольт

  • 1500 Вт /120 вольт = 12,5 ампер
  • 3000 Вт /120 вольт = 25 ампер
Преобразование ватт и ампер при 120 В (переменный ток)
Мощность Текущий Напряжение
50 Вт 0.417 ампер 120 вольт
100 Вт 0,833 А 120 вольт
150 Вт 1,25 ампер 120 вольт
200 Вт 1,667 ампер 120 вольт
250 Вт 2,083 ампер 120 вольт
300 Вт 2,5 ампер 120 вольт
350 Вт 2.917 ампер 120 вольт
400 Вт 3,333 ампер 120 вольт
450 Вт 3,75 ампер 120 вольт
500 Вт 4,167 ампер 120 вольт
600 Вт 5 ампер 120 вольт
700 Вт 5,833 ампер 120 вольт
800 Вт 6.667 ампер 120 вольт
900 Вт 7,5 ампер 120 вольт
1000 Вт 8,333 ампер 120 вольт
1100 Вт 9,167 ампер 120 вольт
1200 Вт 10 ампер 120 вольт
1300 Вт 10,833 ампер 120 вольт
1400 Вт 11.667 ампер 120 вольт
1500 Вт 12,5 ампер 120 вольт
1600 Вт 13,333 ампер 120 вольт
1700 Вт 14,167 ампер 120 вольт
1800 Вт 15 ампер 120 вольт
1900 Вт 15,833 А 120 вольт
2000 Вт 16.667 ампер 120 вольт
2100 Вт 17,5 ампер 120 вольт
2200 Вт 18,333 ампер 120 вольт
2300 Вт 19,167 ампер 120 вольт
2400 Вт 20 ампер 120 вольт
2500 Вт 20,833 ампер 120 вольт
Примечание. преобразований являются ориентировочными и округляются до максимум 3 десятичных знаков.
Преобразование в ваттах и ​​усилителях при 12 В (постоянный ток)
Мощность Текущий Напряжение
5 Вт 0,417 ампер 12 вольт
10 Вт 0,833 А 12 вольт
15 Вт 1,25 ампер 12 вольт
20 Вт 1,667 ампер 12 вольт
25 Вт 2.083 ампер 12 вольт
30 Вт 2,5 ампер 12 вольт
35 Вт 2,917 ампер 12 вольт
40 Вт 3,333 ампер 12 вольт
45 Вт 3,75 ампер 12 вольт
50 Вт 4,167 ампер 12 вольт
60 Вт 5 ампер 12 вольт
70 Вт 5.833 ампер 12 вольт
80 Вт 6,667 ампер 12 вольт
90 Вт 7,5 ампер 12 вольт
100 Вт 8,333 ампер 12 вольт
110 Вт 9,167 ампер 12 вольт
120 Вт 10 ампер 12 вольт
130 Вт 10.833 ампер 12 вольт
140 Вт 11,667 ампер 12 вольт
150 Вт 12,5 ампер 12 вольт
160 Вт 13,333 ампер 12 вольт
170 Вт 14,167 ампер 12 вольт
180 Вт 15 ампер 12 вольт
190 Вт 15.833 ампер 12 вольт
200 Вт 16,667 ампер 12 вольт
210 Вт 17,5 ампер 12 вольт
220 Вт 18,333 ампер 12 вольт
230 Вт 19,167 ампер 12 вольт
240 Вт 20 ампер 12 вольт
250 Вт 20.833 ампер 12 вольт
Примечание. преобразований являются ориентировочными и округляются до максимум 3 десятичных знаков.

Примеры преобразования ватт в амперы

Чтобы найти усилители, вы используете формулу закона Ватта и работаете в обратном направлении, разделив мощность (произведенная мощность / P) на напряжение (сила / E):

Ток (I) = Мощность (P) ÷ Напряжение (E)

Так…

амперы = ватты ÷ вольт

Пример: 600 Вт передается при 120 вольт.Какой ток?

Ток = Мощность ÷ Напряжение
Ток = 600Вт ÷ 120В
Ток = 5А

И…

Если вы работаете с более крупными агрегатами, вы должны помнить, что 1 киловатт равен 1000 ватт. Формула закона Ватта остается неизменной до тех пор, пока вы выражаете мощность в ваттах (ваша сумма будет неверной, если вы используете «5 Вт» для
означает «5 кВт»; вместо этого вам нужно использовать 5000 Вт).

Пример: 2,4 кВт передается при 120 вольт

Ток = Мощность ÷ Напряжение
Ток = 2400Вт ÷ 120В
Ток = 20А

Что такое ватты, амперы и вольт

Ампер

Амперы — это амперы, единица измерения электрического тока.Может быть полезно представить электрический ток как воду в шланге. По этой аналогии количество (объем) воды будет в амперах.

Вольт

Вольт — это единица измерения силы. Они измеряют силу, необходимую для протекания электрического тока (в амперах). В аналогии со шлангом вольт будет давлением воды. Дома в Северной Америке обычно используют 120 В для электроснабжения, в то время как 230 В.
многие другие страны.

Вт

Ватты представляют собой количество энергии, производимой усилителями и вольтами, работающими вместе.Умножение ампер (объема воды) на вольты (давление воды) дает вам мощность (результирующую мощность или энергию). Водяное колесо вращалось бы быстрее и дольше, производя больше энергии, если бы
он использует увеличенный объем воды и более высокое давление воды; то же самое относится к мощности при увеличении ампер и вольт.

переменного / постоянного тока

DC означает постоянный ток, когда ток течет в одном направлении. Фонарь с батареей использует постоянный ток.

AC означает переменный ток, когда ток периодически меняет направление.В Северной Америке и Западной Японии это обычно происходит 60 раз в секунду или 60 Гц / герц. В Европе, Великобритании, Восточной Японии и большей части Австралии, Южной Америки, Африки и
В Азии ток меняет направление 50 раз в секунду, что составляет 50 Гц. Для питания домов и предприятий используется источник переменного тока.

На самом деле это просто, но если после всех этих цифр вы чувствуете себя закороченным, просто воспользуйтесь нашим калькулятором преобразования в ваттах и ​​амперах в верхней части этой страницы.

Как часть нашей коллекции калькуляторов энергии, у нас также есть калькулятор люмен в ватт.

Преобразование ватт в амперы с помощью простого калькулятора (+ диаграмма)

Пример: кондиционер работает от 800 Вт. Сколько это ампер? Это 5 ампер.

Чтобы преобразовать электрическую мощность в электрический ток (ватты в амперы), нам нужно использовать уравнение электрической мощности:

P = I * V

где:

  • P — электрическая мощность, измеренная в ваттах (Вт)
  • I — электрический ток или сила тока, измеряемая в амперах (A).
  • В — электрический потенциал или напряжение, измеренное в вольтах (В). Стандартное напряжение для большинства электрических устройств составляет 110-120 В, а для мощных электрических устройств с повышенным напряжением используется 220 В.

Используя это уравнение, мы можем преобразовать ватты напрямую в амперы, если нам известно напряжение.

Калькулятор ватт в ампер (от W до A)

Здесь вы можете легко преобразовать ватты в амперы с помощью этого калькулятора:

Чтобы продемонстрировать, как ватты можно преобразовать в усилители, мы решили несколько примеров того, сколько ампер составляет 500 Вт, 1000 Вт и 3000 Вт.В конце концов, вы также найдете таблицу ватт-ампер при электрическом потенциале 120 В.

Вот небольшая полезная информация:

Сколько ватт в усилителе?

При 120 В, 120 Вт дают 1 ампер. Это означает, что 1 ампер = 120 Вт.

При 240 В, 240 Вт составляет 1 ампер.

Имея это в виду, давайте рассмотрим 3 примера:

Пример 1: Сколько ампер в 500 Вт?

Допустим, у нас есть вилка кондиционера мощностью 500 Вт на напряжение 120 В.

Вот как мы можем рассчитать, сколько ампер в 500 Вт:

I = P / V

Если мы введем P = 500 Вт и V = 120 В, мы получим:

I = 500 Вт / 120 В = 4,17 А

Короче говоря, 500 Вт равняются 4,17 А.

Пример 2: Сколько ампер в 1000 Вт?

Если мы повторим упражнение и спросим себя, сколько ампер равно 1000 Вт, мы получим:

I = 1000 Вт / 120 В = 8,33 А

Мы видим, что устройство на 1000 Вт потребляет в два раза больше ампер, чем устройство на 500 Вт.

Пример 3: 3000 ватт равняется сколько ампер?

Устройства мощностью 3000 Вт могут подключаться к сети 120 В или 220 В. В случаях с более высокой мощностью нет ничего необычного в использовании более высокого напряжения 220 В. Это сделано для уменьшения силы тока.

Например, 3000 Вт равно:

  • 25 Ампер, если использовать 120 В.
  • 13,64 А, при 220 В.

Например, для 25 ампер вам уже понадобится автоматический выключатель. Но если воткнуть такое устройство в 220 В, ток будет всего 13.64 А (автоматические выключатели не нужны).

Пример: Для более крупных многозонных мини-сплит-блоков обычно требуются автоматические выключатели. Вы можете проверить 2-зонную, 3-зонную, 4-зонную и 5-зонную мини-сплит-систему, чтобы узнать, на скольких усилителях они работают.

Таблица ватт в ампер (при 120 В)

Ватт: А (при 120 В):
100 Вт до ампер 0,83 А
200 Вт до ампер 1,67 А
300 Вт до ампер 2.50 ампер
400 Вт в ампер 3,33 А
500 Вт до ампер 4,17 А
600 Вт в амперы 5,00 ампер
700 Ватт в ампер 5,83 А
800 Вт в амперы 6,67 А
900 Вт в амперы 7,50 А
от 1000 Вт до ампер 8,33 А
1100 Вт в ампер 9.17 ампер
1200 Ватт в ампер 10,00 А
1300 Вт в ампер 10,83 А
1400 Ватт в ампер 11,67 А
1500 Вт в амперы 12,17 А
1800 Ватт в ампер 15,00 А
2000 Вт в амперы 16,67 А
2500 Ватт в ампер 20.83 Ампер
3000 Вт в амперы 25,00 А

Если у вас есть конкретный вопрос о том, как преобразовать ватты в амперы, вы можете использовать раздел комментариев ниже, и мы постараемся вам помочь.

Калькулятор

Ампер (А) в Ватт (Вт)

Этот калькулятор очень полезен для простого и быстрого преобразования ампер в ватты.

Как использовать этот калькулятор: сначала выберите «Выбрать тип тока» (DC = постоянный ток, AC = переменный ток, однофазный / трехфазный), затем введите значения ампер, напряжения и другие значения, затем нажмите кнопку «Рассчитать», чтобы получить значение мощности для генерации. Вт.

Как пересчитать амперы в ватты?

DC = постоянный ток

Расчет постоянного тока (А) — (Вт)

Формула P (Ш) = I (А) x В (В)

Мощность P в ваттах (Вт) равна току I в амперах (A), умноженному на напряжение V в вольтах.

AC = переменный ток

Расчет однофазного переменного тока (A) — (W)

Формула P (Ш) = ПФ x I (А) x В (В)

Расчет трехфазного переменного тока (А) — (Вт)
Линейное напряжение

Формула P (Ш) = 3 x ПФ x I (А) x В Л-Л (В)

Напряжение между фазой и нейтралью

Формула P (Ш) = 3 x ПФ x I (А) x В L-N (В)

Эквивалентные амперы и ватты при 12 В постоянного тока

Текущий Мощность Напряжение
0.4167 ампер 5 Вт 12 Вольт
0,8333 А 10 Вт 12 Вольт
1,25 А 15 Вт 12 Вольт
1,667 А 20 Вт 12 Вольт
2,083 А 25 Вт 12 Вольт
2,5 А 30 Вт 12 Вольт
2.917 ампер 35 Вт 12 Вольт
3,333 А 40 Вт 12 Вольт
3,75 А 45 Вт 12 Вольт
4,167 А 50 Вт 12 Вольт
5 ампер 60 Вт 12 Вольт
5,833 А 70 Вт 12 Вольт
6.667 ампер 80 Вт 12 Вольт
7,5 А 90 Вт 12 Вольт
8,333 А100 Вт 12 Вольт
9,167 А 110 Вт 12 Вольт
10 ампер120 Вт 12 Вольт
10,833 А130 Вт 12 Вольт
11.667 ампер140 Вт 12 Вольт
12,5 А150 Вт 12 Вольт
13,333 А 160 Вт 12 Вольт
14,167 А 170 Вт 12 Вольт
15 ампер 180 Вт 12 Вольт
15,833 А190 Вт 12 Вольт
16.667 ампер 200 Вт 12 Вольт
17,5 А 210 Вт 12 Вольт
18,333 А 220 Вт 12 Вольт
19,167 А 230 Вт 12 Вольт
20 ампер 240 Вт 12 Вольт
20,833 А 250 Вт 12 Вольт

Эквивалентные амперы и ватты при 120 В переменного тока

Текущий Мощность Напряжение
0.4167 ампер 50 Вт 120 Вольт
0,8333 А100 Вт 120 Вольт
1,25 А150 Вт 120 Вольт
1,667 А 200 Вт 120 Вольт
2,083 А 250 Вт 120 Вольт
2,5 А 300 Вт 120 Вольт
2.917 ампер 350 Вт 120 Вольт
3,333 А400 Вт 120 Вольт
3,75 А 450 Вт 120 Вольт
4,167 А 500 Вт 120 Вольт
5 ампер600 Вт 120 Вольт
5,833 А 700 Вт 120 Вольт
6.667 ампер 800 Вт 120 Вольт
7,5 А 900 Вт 120 Вольт
8,333 А 1000 Вт 120 Вольт
9,167 А 1100 Вт 120 Вольт
10 ампер 1200 Вт 120 Вольт
10,833 А 1300 Вт 120 Вольт
11.667 ампер 1400 Вт 120 Вольт
12,5 А 1500 Вт 120 Вольт
13,333 А 1600 Вт 120 Вольт
14,167 А 1700 Вт 120 Вольт
15 ампер 1800 Вт 120 Вольт
15,833 А 1900 Вт 120 Вольт
16.667 ампер 2000 Вт 120 Вольт
17,5 А 2100 Вт 120 Вольт
18,333 А 2200 Вт 120 Вольт
19,167 А 2300 Вт 120 Вольт
20 ампер 2400 Вт 120 Вольт
20,833 А 2500 Вт 120 Вольт

Вт, ампер, напряжение

ЗАКОН ОМ

В простой форме ……….

Ватт = Вольт x Ампер

(Ампер = Ватт / Вольт)

Итак, если у вас есть два числа (например, вольт, ампер), вы можете узнать другое (например, ватты).
Для получения дополнительной информации о законе Ома посетите http://en.wikipedia.org/wiki/Ohm%27s_law

Следующая формула применима к любым значениям ВАТТ, УСИЛИТЕЛЯ И НАПРЯЖЕНИЯ, которые применимы к вашей ситуации.

Основные напряжения для светодиодных приложений — 12 В и 24 В. LEDsignSupplies.com в настоящее время обрабатывает только 12 В.

Напряжение для бытовых электроприборов и вывесок составляет 240 В или 110 В в зависимости от стандарта конкретной страны.
Замените все, что применимо к вашей ситуации, на основе относительной формулы, показанной ниже.

Следующие расчеты основаны на внутреннем напряжении 240 В и напряжении светодиода 12 В.

Преобразование ватт в амперы

Преобразование ватт в амперы регулируется уравнением Амперы = ватты / вольт
Например, 12 ватт / 12 вольт = 1 ампер

Преобразование ампер в ватты

Преобразование ампер в ватты регулируется по уравнению Ватт = Ампер x Вольт
Например, 1 ампер x 240 Вольт = 240 Вт

Преобразование ватт в вольты

Преобразование ватт в вольты регулируется уравнением Вольт = Ватт / Ампер
Например, 100 Вт / 10 ампер = 10 вольт

Преобразование вольт в ватты

Преобразование вольт в ватты регулируется уравнением Ватты = Амперы x Вольт
Например, 1.5 ампер * 12 вольт = 18 ватт

Преобразование вольт в амперы при фиксированной мощности

Преобразование вольт в амперы регулируется уравнением Ампер = ватт / вольт
Например, 120 ватт / 240 вольт = 0,5 ампер

Преобразование ампер в Вольт при фиксированной мощности

Преобразование ампер в вольт регулируется уравнением Вольт = Ватт / Ампер
Например, 48 Вт / 12 А = 4 Вольта

Объяснение

Амперы — это количество электронов, проходящих через определенную точку за один второй.
Вольт — это мера силы, действующей на каждый электрон. Представьте себе воду в шланге. Пинта в минуту (представьте себе ампер) просто вытекает, если она находится под низким давлением (подумайте о низком напряжении). Но если вы сузите конец шланга, позволяя нарастать давлению, вода может иметь больше мощности (например, ватт), даже если это всего лишь одна пинта в минуту. Фактически, мощность может расти по мере роста давления до такой степени, что водяной нож может разрезать лист стекла. Точно так же, как увеличивается напряжение, небольшой ток может превратиться в много ватт.

Вольт, Ампер, Ампер-час, Ватт и Ватт-час: терминология и руководство

Мы понимаем, что вся эта терминология иногда может сбивать с толку, но если вы знаете, как она работает, все становится довольно просто. Ниже мы постараемся объяснить, что все это значит.

Вольт или напряжение (В):

Число вольт — это количество энергии, отдаваемое электронной схеме .Под схемой мы подразумеваем, например, электронное устройство. С устройством на 12 В от аккумулятора всегда «дается» 12 вольт. Аккумулятор всегда имеет фиксированное напряжение (например, 12, 36 или 24 В), а устройство всегда работает при определенном напряжении. Например, устройству, которое работает от 12 вольт, очевидно, нужна батарея, которая также питает 12 В.

Ток — Ампер (A):

Когда мы говорим об амперах (или амперах), мы говорим о , сколько электричества «течет» в секунду. Если количество ампер увеличивается, то ток, протекающий через устройство в секунду, также увеличивается.Электрическое устройство обычно работает от фиксированного напряжения, но количество потребляемых им ампер может варьироваться в зависимости, например, от положения вашего троллингового двигателя (например, троллинговый двигатель на полностью открытой дроссельной заслонке потребляет больше ампер, чем при половинной дроссельной заслонке).

Пример 1: Предположим, у меня есть Minn Kota Endura C2 50 LBS, на котором я работаю на настройке передачи / скорости 2. Двигатель малого хода работает от 12 В и в настоящее время потребляет 15 А. Я решаю ехать немного быстрее и переключаюсь на настройку передачи / скорости 4.Двигатель по-прежнему работает от 12 В, но теперь потребляет 25 А. Напряжение осталось прежним, но количество ампер увеличилось.

Мощность — Вт (Вт):

Мощность — это напряжение, умноженное на количество ампер, или W = V x A. Это количество энергии, потребляемое устройством, и, следовательно, показатель его мощности. Это возрастает, когда увеличивается количество ампер.

Пример 2: Предположим, у меня есть носовой двигатель Minn Kota Terrova, 80 фунтов, 24 В, который потребляет 30 ампер.Таким образом, потребляемая мощность составляет 24 x 30 = 720 Вт.

Пример 3: Предположим, у меня есть еще один Minn Kota Endura C2 50 фунтов, на котором я работаю с настройкой передачи / скорости 2. Двигатель работает от 12 В и потребляет 15 А и, таким образом, имеет потребляемую мощность 180 Вт (12 x 15). . Когда я переключаюсь на настройку передачи / скорости 4, двигатель потребляет 25 А и все еще работает от 12 В. Потребляемая мощность троллингового двигателя теперь составляет 300 Вт.

Емкость — Ампер-часы (Ач):

Емкость аккумулятора измеряется в Ач или Ампер-часах.Как следует из названия, это означает, сколько ампер батарея может обеспечить за час. Например, литиевая батарея на 12 В и емкостью 100 Ач может подавать 100 Ач на 12-вольтное устройство в течение одного часа. Та же батарея на 100 Ач могла обеспечивать питание устройства на 25 ампер в течение 4 часов (100/25 = 4). Если аккумулятор имеет напряжение 12 В 50, это означает, что аккумулятор работает от 12 Вольт и имеет емкость 50 Ач. Батарея 24V100 работает от 24 В с емкостью 100 Ач и т. Д. На практике для свинцово-кислотных аккумуляторов номинальная емкость (сколько ампер-часов может выдать батарея в соответствии со спецификациями) сильно отличается от эффективной емкости (как много ампер, которую батарея действительно может доставить во время использования).Мы объясним, как это работает, в нашей статье о разряде и емкости аккумулятора.

Пример 4: Я управляю своим Minn Kota Endura C2 50 фунтов при настройке передачи / скорости 2, потребляя 15 А при 12 В. У меня аккумулятор на 12 вольт на 70 ач. Мое общее время работы теперь составляет 70/15 = 4,7 часа. Когда я переключаюсь на настройку передачи / скорости 4, двигатель потребляет 25А. Моя общая продолжительность работы теперь составляет 70/25 = 2,8 часа.

Емкость — Ватт-час (Втч):

Еще один способ измерить емкость аккумулятора — в ватт-часах (Втч).Wh рассчитывается путем умножения количества ампер на напряжение батареи. Например, 12V100 (батарея на 12 В и емкостью 100 Ач) имеет емкость 12 х 100 = 1200 Втч. Батарея 24V50Ah имеет емкость 24 x 50 = 1200 Втч. Таким образом, эти батареи имеют одинаковую емкость, только одна работает от 12 вольт, а другая от 24 вольт. На практике вы заметите, что эти батареи будут примерно одинакового размера и веса.

Пример 5: У меня троллинговый двигатель мощностью 600 Вт и аккумулятор емкостью 1200 Вт · ч.Мое время работы на полном газу с этой батареей составляет 2 часа (1200/600 = 2). Мне даже не нужно знать, как напряжение двигателя или аккумуляторной батареи рассчитать это (если, конечно, они работают при одном и том же напряжении).

Внимательный читатель отмечает, что время работы аккумулятора с устройством можно рассчитать двумя способами. Либо разделив количество ампер батареи на потребляемую мощность A двигателя малого хода, либо разделив количество Втч батареи Втч на количество Вт двигателя малого хода.

Подключение аккумуляторов: последовательно и параллельно

Батареи можно соединять вместе для получения более высокого напряжения или большей емкости. Это делается путем соединения клемм аккумуляторных батарей с помощью кабелей.

Последовательное подключение: более высокое напряжение, равное количество ампер-часов

Когда мы говорим, что мы подключаем батареи последовательно, мы подключаем плюсовую клемму одной батареи к минусовой клемме другой батареи. Это означает, что у вас все еще есть минусовая клемма на одной батарее и плюсовая клемма на другой батарее.Электрическое устройство должно быть подключено к этим двум доступным клеммам аккумуляторной батареи. Если мы подключим батареи последовательно, напряжение возрастет, а емкость, измеренная в Ач, останется прежней.

На картинке выше мы видим две батареи 12В50Ач. Как видите, две батареи соединены последовательно: минусовая и плюсовая клеммы соединены вместе. Вы создали батарею 24V50: 24V (из-за последовательного соединения) с емкостью 50Ah (количество ампер осталось прежним).Если мы измеряем мощность в ватт-часах, общая мощность теперь составляет 24 x 50 = 1200 Втч.

Параллельное подключение: равное напряжение, большее количество ампер

При параллельном подключении аккумуляторов, мы соединяем минусовую клемму одной батареи с минусовой клеммой другой батареи, а плюсовую клемму одной батареи — с минусовой клеммой другой батареи. Подключаем минусовой провод электроприбора к одной из минусовых клемм, а плюсовой провод к плюсовой клемме другого аккумулятора (см. Рисунок ниже).Теперь подается такое же напряжение, но количество ампер увеличилось.

На рисунке выше минусовые клеммы обеих батарей подключены, а плюсовые клеммы подключены. Значит аккумулятор подключается параллельно. Есть еще 12 вольт, но количество ампер увеличилось с 50 до 100. Теперь мы создали аккумулятор на 12 В 100 Ач. Если мы измеряем мощность в ватт-часах, общая мощность теперь составляет 12 x 100 = 1200 Втч.

Таким образом, количество ватт-часов всегда остается неизменным, независимо от того, подключаете ли вы их последовательно или параллельно.

Внимание: всегда проверяйте, подходят ли батареи для соединения друг с другом. Подключайте только идентичные батареи (того же типа / модели, возраста и уровня заряда) и используйте кабели правильной толщины и длины. Мы рекомендуем вам не подключать батареи Rebelcell на 12 В последовательно, а выбрать батарею Rebelcell 24 В. Батареи Rebelcell 24 В можно без проблем подключать последовательно до 48 В.

Другая терминология, относящаяся к батареям

Техническая спецификация аккумуляторов часто включает много других терминов.Ниже мы постараемся объяснить, что означают самые важные из них.

Напряжение: это среднее напряжение, которое подает аккумулятор. Как объяснялось выше, батарея запускается с более высоким напряжением, чем когда она частично разряжена. Под этим мы подразумеваем среднее значение этой прогрессии или номинальное напряжение.

Химия: указывает, какая технология литиевых батарей используется.

C1, C5, C20: указывает емкость аккумулятора при разряде в течение определенного количества часов.C20 = 100Ah означает, что аккумулятор может работать до 100 ампер-часов, если он разряжается за 20 часов (при 5A). Свинцовые батареи имеют меньшую емкость, если они разряжаются быстрее. Например, свинцово-кислотная батарея может дать 100 Ач, если она разряжается за 20 часов (C20 = 100), но если та же батарея разряжается за 5 часов, она будет давать только 70 Ач (C5 = 70). С аккумуляторами Rebelcell не имеет значения, разрядите ли вы их за 20 часов, 5 часов или 1 час, они всегда имеют одинаковую емкость. Вот почему мы всегда называем нашу емкость Емкостью (C1-C20).Подробнее об этом читайте в нашей статье про эффективную емкость аккумулятора.

EqPb: означает «эквивалентная свинцовая батарея». Под этим мы подразумеваем, что эту батарею можно сравнить со свинцовой батареей указанной емкости при использовании в сочетании с электродвигателем. Часто литиевая батарея с гораздо более низкой Ач на практике может дать такое же количество, как свинцово-кислотная батарея с гораздо более высокой Ач. На практике, например, Rebelcell 12V50 можно сравнить с полутяговым аккумулятором 105 Ач по времени работы электродвигателя.Это также связано с полезной емкостью аккумулятора.

Номинальная энергия: это емкость аккумулятора, измеряемая в ватт-часах (объяснение см. Выше).

Максимальная непрерывная разрядка: это максимальное количество ампер, которое может непрерывно выдавать аккумулятор. Предположим, аккумулятор имеет максимальный непрерывный разряд 30А, тогда вы не можете подключить устройство, которое потребляет более 30А. Чем выше емкость аккумулятора, тем выше максимальная длительная разрядка.

Пиковая разрядка (10 миллисекунд): это максимальное количество ампер, которое батарея может выдать за 10 миллисекунд. Это всегда больше, чем максимальный непрерывный разряд. Некоторое оборудование имеет короткий пиковый разряд при запуске (так называемые «пусковые токи»). Это, например, случай, когда вы переходите от нуля до полного открытия дроссельной заслонки за один раз с электрическим подвесным двигателем. В этот момент двигателю на короткое время требуется больше ампер, чем номинальный максимум.

Срок службы (#charges) (@ 80% DoD): указывает, как часто вы можете разряжать и заряжать аккумулятор до определенного процента.Например, если написано «Срок службы (#charges) (@ 80% DoD): 1500», это означает, что аккумулятор может быть разряжен до 80% 1500 раз (то есть при оставшейся 20% емкости). Например, если написано «Срок службы (#charges) (@ 100% DoD): 1000», то аккумулятор может быть полностью разряжен 1000 раз.

Плотность энергии: с этим мы измеряем количество ватт-часов на килограмм батареи. Плотность энергии у литиевых батарей намного выше, чем у свинцово-кислотных. Высокая плотность энергии означает, что вы можете хранить больше энергии в том же пространстве.В результате получается более легкий и компактный аккумулятор.

Напряжение полосы пропускания: см. Объяснение разряда и емкости батарей. Это дает минимальное напряжение (при 0%) и максимальное напряжение (при 100%) батареи.

Температура зарядки: это минимальная и максимальная температура, при которой аккумулятор может заряжаться.

Температура разряда: указывает минимальную и максимальную температуру, при которой батарея может быть разряжена.

Температура хранения: Указывает минимальную и максимальную температуру, при которой аккумулятор можно безопасно хранить.

Максимальный ток заряда: Это дает максимальный ток в А, при котором аккумулятор может заряжаться. Чем выше это число, тем быстрее можно зарядить аккумулятор (с помощью подходящего зарядного устройства).

Интегрированная балансировка элементов: часть системы управления батареями. Функция балансировки ячеек обеспечивает выравнивание напряжения отдельных элементов литиевой батареи, поэтому все элементы имеют одинаковое состояние заряда / напряжение.Это необходимо для оптимального использования и производительности аккумулятора.

Температурная защита: часть системы управления батареями. Батарея отключается, когда температура становится слишком высокой или слишком низкой. Это защита от повреждений.

Защита от максимального тока разряда: часть системы управления батареями. Батарея отключается, когда потребляемая мощность вашего оборудования превышает допустимую. Это защита от повреждений.

Защита от перенапряжения: часть системы управления батареями. Батарея отключается, когда напряжение становится слишком высоким и батарея слишком заряжена. Это защита от повреждений.

Оценка ваших требований к мощности | Руководство по энергопотреблению

Преобразование ватт в амперы

Прежде чем вы сможете выбрать подходящий размер вашей солнечной панели, а также размер кабелей и аккумуляторной батареи, вам необходимо иметь хорошее представление о том, сколько электроэнергии требуется.Это можно сделать ручкой и бумагой (в этом случае, пожалуйста, читайте дальше) или с помощью нашего онлайн-калькулятора.

Есть три простых шага, чтобы определить среднесуточную нагрузку:

  1. Выберите, какие светильники и приборы будут использоваться.
  2. Узнайте, сколько ампер или ватт потребляет каждый из них.
  3. Определите, сколько часов в день (в среднем) будет использоваться каждое устройство.

Поскольку размер вашей аккумуляторной батареи измеряется в ампер-часах, а счетчик на распределительном / измерительном блоке измеряет мощность, поступающую от вашей системы зарядки, в амперах, имеет смысл преобразовать ватты в амперы.Я приведу вам несколько примеров:

  • У вас есть переносное радио на 12 вольт и кассетный проигрыватель с этикеткой на задней панели, на которой написано 12 вольт, 0,2 ампер. Для этого не нужно ничего рассчитывать, поскольку потребляемый ток уже указан в амперах при 12 вольт.
  • Вы хотите использовать лампочку на 12 В и 20 Вт. Чтобы рассчитать ампер, вы просто разделите 20 ватт на 12 вольт, и вы получите 1,67 ампера.
  • У вас есть соковыжималка на 230 вольт и 300 ватт. Если у вас есть твердотельный инвертор мощностью 400 Вт, вы можете рассчитывать на эффективность 85%.Итак, чтобы рассчитать ампер на 12 вольт, вы разделите 300 ватт на 12 вольт, и вы получите 25 ампер; Вдобавок к этому можно добавить эффективность инвертора. Разделите 25 на 0,85 (85%), и вы получите около 30 ампер.
  • У вас есть цветной телевизор на 230 вольт, который не имеет номинальной мощности, но дает номинальную мощность. Цифры, которые он дает, составляют 230 вольт, 50 герц, 0,3 ампер. Этот показатель использования ампер — потребляемая мощность при 230 вольт. Поскольку ампер, умноженный на вольт, равняется ваттам, получается 69 ватт (230 умножить на 0.3). Теперь, чтобы рассчитать ампер на 12 вольт, вы разделите 69 ватт на 12 вольт, и вы получите 5,75 ампер. Если вы запустите его с тем же инвертором мощностью 400 Вт, вы можете рассчитывать только на 70% эффективности (см. Данные инвертора, предоставленные вашим дилером). Разделите 5,75 ампера на 0,7 (70%), и вы получите 8,2 ампера.

Определите среднесуточную нагрузку

Выдержка из

А теперь приведу пример расчета суточного энергопотребления:

  • Вы слушаете радио или кассетный плеер в течение 6 часов каждый день.Ваша 12-вольтовая система рассчитана на 0,2 ампера при 12 вольт. Умножьте ампер на часы, и вы получите результат 1,2 ампер-часа в день.
  • Вы используете три 20-ваттных 12-вольтовых лампы примерно на четыре часа каждую ночь. Потребляемая мощность для каждого источника света, который мы разработали ранее, составляет 1,67 ампера. Итак, для трех ламп мы рассчитываем потребляемый ток в 5 ампер. Итак, чтобы рассчитать потребляемую мощность, мы умножаем 5 ампер на 4 часа, чтобы получить результат 20 ампер-часов в день.
  • Вы используете соковыжималку на 10 минут каждый день.Мы уже подсчитали, что инвертор потребляет 30 ампер при работающей соковыжималке. Разделите 30 на 6 (потому что вы используете соковыжималку в течение 1/6 часа), и вы получите результат около 5 ампер-часов в день.
  • Вы смотрите цветной телевизор около 2 часов каждую ночь. Ранее мы оценивали, что инвертор потребляет около 8,5 ампер при включенном цветном телевизоре. Умножьте 8,5 на 2, и вы получите 17 ампер-часов в день.

Вот эти цифры в табличной форме:

Устройство Ампер Используемые часы Ампер-часы
Радио / кассета 0.20 6,00 1,20
3 лампы 5,00 4,00 20,00
соковыжималка 30,00 0,17 5,00
цветной телевизор 8,50 2,00 17.00
ИТОГО 43.20

Мы можем спроектировать вашу систему для вас, используя компьютерное программное обеспечение для проектирования энергосистем.Нам потребуется подробная информация о предполагаемом потреблении энергии, включая номинальную мощность и количество часов в день использования света, бытовой техники и т. Д. Пожалуйста, заполните и отправьте запрос коммерческого предложения для солнечной системы для жилых помещений.

Типовые характеристики приборов AF

Выписка из

РУКОВОДСТВО ПО ПОТРЕБЛЕНИЮ ЭНЕРГИИ (230 В)
ПРИБОРЫ START WATTS Сплит-система)
(испарительная — мобильная)
500 — 2500
275 — 1000
Система сигнализации / безопасности 6
Одеяло (под) 60 — 120
Одеяло (поверх) 150 — 350
Открывалка для банок 100
Кассета (лента) Дека проигрывателя 30
CB (прием) 10
CD-плеер 30
Циркулярная пила (малая) 1350
Сушилка для одежды 2400
Кофемолка 75
Кофеварка 300-1500
Беспроводной телефон (использование или зарядка) 2-3
Компьютер (ноутбук или ноутбук) 40-60
Компьютер (рабочий стол + Экран)
офисное использование
игры
150-200
500-1000
Компьютерный принтер 30-50
Цифровой видеорегистратор 20-50
Блок утилизации 650
Сверло 250 — 500
Посудомоечная машина 1200 — 2500
Бытовой водяной насос 2000 500
Электрическая зубная щетка (подставка для зарядки) 6
Вытяжной вентилятор 40 — 75
Вентилятор 20 — 100
Факс (в режиме ожидания) 10
Факс (печать) 120
Пищевой миксер & Whiz 500
Полировщик полов 350
Морозильник 2500 500
Сковорода 1400

ПРИМЕЧАНИЕ: Эти цифры являются приблизительными, и номинальная мощность может сильно отличаться от одного устройства к другому.

Типовые характеристики устройств GZ

Выписка из

Сушилка для волос

900 48 —

РУКОВОДСТВО ПО ПОТРЕБЛЕНИЮ ЭЛЕКТРОЭНЕРГИИ (230 В)
ПРИБОРЫ START 7 WATTS 44

800 — 1800
Нагреватель 500 — 2400
Горячая вода 2500 — 5000
Инфракрасный гриль 2000
Утюг 800-2000
Соковыжималка / блендер 350-550
Чайник или кувшин 1600 — 2400
Светодиодное освещение 3-15
Освещение Fluoro 10- 20
Микроволновая печь 600 — 1800
Мобильный телефон (зарядка) 5-15
Модем / маршрутизатор 5-15
Модем NBN Satellite 35
Радио 15 — 60
Радиатор 1000 — 2500
Плеер 75
Холодильник 1500 300
Швейная машина 60
Космический обогреватель 2000
Плита 5000 — 10000
Планшет (зарядка) 10-25
Телевизор LED 30 — 120
Тостер 500 — 1500
Пылесос 700 — 1800
Стиральная машина 2500 600
Сварщик — 140A 4000

ПРИМЕЧАНИЕ: Эти цифры являются приблизительными, и номинальная мощность может сильно отличаться от одного устройства к другому.

Электродвигатели

Выписка из

Электродвигатели — Пусковой ток
Тип двигателя
Вт 40003 Индукция

Конденсатор Двухфазный
1/6 л.с. 275600 850 2050
1/4 л.с. 400 850 1050 2400
1/3 л.с. 450 975 1350 2700
1/2 л.с. 600 1300 1800 3600
1 л.с. 1100 1900 2600

ПРИМЕЧАНИЕ: Bru Двигатели типа sh без нагрузки не требуют значительно более высокого пускового тока, чем их номинальный постоянный ток.

Прочтите все о требованиях к питанию различных устройств, работающих от инвертора. Публикуются статьи о потребностях в электроэнергии телевизоров, звукового оборудования, хлебных печей, компьютеров, стиральных машин, насосов, принтеров, вентиляторов и т. Д.

c. 2021: Математика — Как рассчитать ватты, амперы, вольт, омы

Последнее обновление: 19 марта 2021 г. URL-адрес страницы указывает дату исходной публикации; Между тем времена меняются, а обновления продолжаются.
Удобное руководство по математике для ответов на вопросы по электрике и электронике.

  • Как быстро и легко найти ответы на вопросы электроники
  • Использование закона Ома и его производных
  • Решения для электроники и электротехники
  • Включает полные уроки и примеры

Сами по себе шаблоны формул могут незамедлительно предоставить решение.

Предполагается, что вы здесь, чтобы найти математический ответ на конкретную электрическую или электронную проблему.

Это место, где можно вычислить ватты, амперы, вольты или омы для любого из двух других, используя закон Ома и его производные.Математика на удивление проста. Вы получите ответ в кратчайшие сроки. Не забудьте шаблоны и оглавление.

В большинстве случаев единственная необходимая математика — это умножение и деление. В законе Ома и его производных используются некоторые основные буквы для обозначения ватт, ампер, вольт и омов.

  • « P » — это промышленный стандарт для обозначения мощности в ваттах. Иногда используется « W «.
  • « I » — это промышленный стандарт для обозначения силы тока в амперах.
  • « E » и « V » оба используются для обозначения электродвижущей силы единицей измерения
    измерение, вольт. Раньше промышленный стандарт формул был «E», но теперь «E» и «V» используются как синонимы.
  • « R » — это промышленный стандарт для обозначения сопротивления в единицах измерения, Ом.

Вот и все. Не требуется степени в области ракетной хирургии. Запоминать не нужно, определения перепечатываются по мере необходимости.

Если ваш запрос касается конкретного прибора, устройства и т. Д.; проверьте, нет ли там какой-либо этикетки со спецификациями, металлической пластины или даже просто наклейки. Даже если он не дает однозначного ответа, мы надеемся, что у него будет достаточно другой информации, чтобы вы могли рассчитать ответ на основе шаблонов. Если у вас есть руководство (может быть, оно все еще в сети?), То вам действительно может повезти. Например, если он сообщает вам, что потребляет 200 Вт, и вы знаете свой
напряжение в доме 120 вольт, тогда легко посчитать сколько ампер
он использует и / или какое у него будет внутреннее сопротивление в Ом.

Шаблоны и содержание

Вот список формул и шаблонов. Если повезет, вы найдете тот, который сможете использовать, и вам не придется беспокоиться о выборе соответствующего заголовка для включенных уроков и примеров. Это большой файл, если вы все же сделаете выбор, отображение правильного раздела может занять несколько секунд.

Подсчитайте, сколько ватт в вольтах, амперах, омах (примеры).

Шаблоны формул:
P = EI
Вольт * Ампер = Ватт

P = E 2 / R
Вольт в квадрате / = Вт

P = I 2 R
Ампер в квадрате * Ом = Вт

Посчитайте, сколько AMPS в ваттах, вольтах, омах (примеры).

Шаблоны формул:
I = P / E
Ватт / Вольт = Ампер

I = E / R
Вольт / Ом = Ампер

I = √ (P / R)
Квадратный корень ( Вт, / Ом ) = А

Подсчитайте, сколько ВОЛЬТ от ампер, ватт, омов (примеры).

Шаблоны формул:
E = P / I
Ватт / Ампер = Вольт

E = IR
Ампер * Ом = Вольт * Ом = Вольт

E = √ (PR)
Квадратный корень из ( Вт, * Ом ) = Вольт

Посчитайте, сколько Ом в вольтах, амперах, ваттах (примеры).

Шаблоны формул:
R = E / I
Вольт / Ампер = Ом

R = E 2 / P 92 3
Вольт в квадрате Ватт = Ом

R = P / I 2
Ватт / Ампер в квадрате = Ом

Уроки

На этой странице есть четыре независимых отдельных руководства.Просто выберите тот из оглавления шаблона, который конкретно относится к тому, что вы хотите найти. Каждый сегмент с практическими рекомендациями включает примеры. Благодаря законам физики; пытается ли он подсчитать, сколько ампер, ватт, омов или вольт; Закон Ома и его производные всегда предоставляют три различных возможных способа найти ответ.

Надеюсь, что между табличкой с техническими характеристиками устройства, руководством (-ями) и приведенной выше математикой; Вы сможете найти ответ на свой вопрос.Если требуется объяснение по алгебре, вот учебник Basic Algebra Tutorial .

Что такое VOM (определение электроники) и некоторые общие примечания …

VOM — это аббревиатура от миллиамперметра Volt Ohm, точнее, он известен как мультиметр или мультитестер. Обычный VOM может измерять переменное и постоянное напряжение, ток в миллиамперах и сопротивление в омах и мегаомах. Для целей этой страницы обычно требуется найти сопротивление. Как только количество Ом известно, можно использовать больше шаблонов и формул, когда обычные значения вольт / ампер / ватт недоступны.

Когда дело доходит до тестовых инструментов, откажитесь от дешевых. То, что вам сообщает тестовый прибор, в свою очередь, приведет к принятию важных решений. Таким образом, инструмент для проверки качества намного важнее, чем обычная бывшая игрушка-новинка RadioShack, кусок проводки, батарейки и т. Д. И что бы вы ни делали, не покупайте комплект для изготовления собственного инструмента для тестирования. Покупка и сборка комплектов для других вещей — это нормально, но оставьте производство VOM профессионалам с хорошей репутацией (это голос личного опыта).

Не покупайте ВОМ, пока вы действительно не знаете, что делаете. Более дешевые метры
крайне неточны при измерении определенных диапазонов
сопротивление и т. д. Даже измерения напряжения и миллиампер могут вызывать подозрение. Сначала действительно исследуйте предмет.

Вот статья из журнала Wired Magazine, которая мне очень понравилась, она затрагивает больше эзоторических и физических аспектов: как вы определяете электрическое поле, напряжение и ток? В статье даже рассказывается, что делать, если вы случайно оказались рядом с неисправной линией электропередачи.

Уроки и примеры математики по закону Ома следуют или выбирают ссылки примеров из приведенных выше шаблонов формул.


(P = ватты, E = вольты, I = амперы, R = омы)

Включает амперы в ватты и вольт в ватты.

Вт — это комбинированное измерение электродвижущей силы и тока, также известное как напряжение и сила тока. Так мы количественно оцениваем количество и потребление электроэнергии.

Три способа определить количество электроэнергии, измеренное в ваттах …

№1. P = EI — ватты равны вольт, умноженному на ампер

(P = ватты, E = вольт, I = амперы, R = ом)

Некоторые примеры …
  • Лампа накаливания с вольфрамовой нитью. 120 В, умноженное на 0,8333 А, равняется 100 Вт. 120 * 0,8333 = 100
  • Микроволновая печь. 120 вольт умноженное на 5,8333 ампер, равняется 700 ваттам. 120 * 5,8333 = 700
  • Микроволновая печь. 120 вольт, умноженное на 9,1666 ампер, равняется 1100 ваттам.120 * 9,1666 = 1100
  • Некоторые кондиционеры. 240 вольт, умноженное на 4 ампера, равняется 960 ваттам. 240 * 4 = 960
  • Автомобильный аккумулятор. 12 вольт, умноженное на 3 ампера, равняется 36 ваттам. 12 * 3 = 36
  • Напряжение в автомобиле при работающем двигателе. 14,5 В, умноженные на 3 А, равняются 43,5 Вт. 14,5 * 3 = 43,5
  • Автомобильный аккумулятор. 12 вольт, умноженное на 15 ампер, равняется 180 ваттам. 12 * 15 = 180
  • Напряжение в автомобиле при работающем двигателе. 14,5 вольт, умноженное на 15 ампер, равняется 217,5 ватт. 14,5 * 15 = 217,5
  • Большинство аккумуляторов для ноутбуков.19 вольт, умноженное на 3,5 ампера, равняется 66,5 ватт. 19 * 3,5 = 66,5

Примечание: приставка «милли» означает одну тысячную.

  • В ватте 1000 милливатт.
  • В вольте 1000 милливольт.
  • Есть в усилке 1000 миллиампер.
Еще примеры …
  • Игрушка, использующая 9-вольтовый аккумулятор, потребляет 250 мА (0,25 А). Умножение 9
    вольт на 250 миллиампер дает 2,25 Вт. 9 * 0,25 = 2.25
  • Подсхема на 350 милливольт потребляет 455 миллиампер (0,455 ампера). Умножение 350
    милливольт на 455 миллиампер означает, что часть схемы использует 159 милливатт (округленно) энергии. 350 * 455 = 159,25
  • Светодиодная матрица на 4,5 В потребляет 75 мА. Умножение 4,5 В на 0,075 показывает, что светодиодная матрица потребляет 337,5 милливатт. 4,5 * 0,075 = 337,5

№2. P = E² / R — Ватты равны квадрату вольт, разделенному на Ом

(P = ватты, E = вольт, I = амперы, R = ом)

Некоторые примеры…
  • 110 вольт в квадрате, затем разделенное на 65 Ом, равно 186,15 Вт. 110² / 65 = 12100/65 = 186,15
  • 120 В в квадрате, затем разделенное на 125 Ом, дает 115,2 Вт. 120² / 125 = 14400/125 = 115,2
  • 70 В в квадрате, затем разделенное на 42 Ом, получится 116,67 Вт. 70² / 42 = 4900/42 = 116,67
  • 12 вольт в квадрате, затем разделенные на 24 Ом, равны 6 ваттам. 12² / 24 = 144/24 = 6
  • 12 вольт в квадрате, затем разделенное на 100 Ом, равняется 1,44 Вт. 12² / 100 = 144/100 = 1.44
  • 6 вольт в квадрате, затем разделенные на 100 Ом, равняются 360 милливаттам. 6² / 100 = 36/100 = 0,36
  • Двигатель требует 40 вольт и имеет внутреннее сопротивление 25 Ом. 40 вольт
    В квадрате, затем деленном на 25 Ом, общее потребление энергии составляет 64 Вт. 40² / 25 = 1600/25 = 64
  • Через компонент с сопротивлением 5 Ом проходит 7,5 Вольт. Его мощность составит 11,25 Вт. 7,5² / 5 = 56,25 / 5 = 11,25

№3. P = I²R — Ватты равны Ампер в квадрате, умноженном на Ом

(P = ватты, E = вольт, I = амперы, R = ом) точка остановки

Некоторые примеры…
  • 1 ампер в квадрате, умноженный на 30 Ом, равняется 30 Вт. 1² * 30 = 1 * 30 = 30
  • 5 ампер в квадрате, умноженные на 30 Ом, равны 750 Вт. 5² * 30 = 25 * 30 = 750
  • 14 ампер в квадрате, умноженные на 2 Ом, равны 392 Вт. 14² * 2 = 196 * 2 = 392
  • 100 миллиампер в квадрате, умноженное на 30 Ом, равняется 30 милливатт. 0,100² * 30 = 0,01 * 30 = 0,03
  • 334 миллиампера в квадрате, умноженное на 15 Ом, равняется 1,6725 Вт. 0,334² * 15 = 0,115 * 15 = 1.6725
  • 750 миллиампер в квадрате, умноженное на 5 Ом, равняется 2,8125 Вт. 0,750² * 5 = 0,5625 * 5 = 2,8125


(I = амперы, E = вольт, P = ватты, R = омы)

Включает вольт в амперы и ватты в амперы.

Это ток и сила тока, которые заставляют эти измерители мощности вращать и включать переключатели блока предохранителей и автоматические выключатели. случай. Нагреватель на 1500 ватт — хороший тому пример. Микроволновые печи могут быть на втором месте. Неожиданное короткое замыкание в приборе или домашней электропроводке — это то, что вызывает возгорание зданий, если автоматический выключатель не выполняет свою работу.

Три способа определения силы тока в амперах …

№1. I = P / E — амперы равны ваттам, разделенным на

вольт
(I = амперы, E = вольт, P = ватты, R = омы)

Некоторые примеры …
  • Вышеупомянутый обогреватель. 1500 Вт, разделенные на 120 вольт, равняются току 12,5 ампер. 1500/120 = 12,5
  • Вышеупомянутая микроволновая печь. 1100 Вт, разделенные на 120 вольт, равняются току 9,17 ампер. 1100/120 = 9,17

Одновременное включение обоих переключит автоматический выключатель на 15 А.Автоматический выключатель на 20 ампер тоже не будет в восторге от этого.

Другие примеры …
  • 2 Вт, разделенные на 6 вольт, равняются току 0,33333 ампера. 2/6 = 0,34
  • 5 Вт, разделенные на 12 вольт, равняются току 0,416666 ампер. 5/12 = 0,417

Примечание: приставка «милли» означает одну тысячную.

  • Есть в вольте 1000 милливольт.
  • Есть в усилке 1000 миллиампер.
  • В ватте 1000 милливатт.
Еще примеры…
  • Компьютерная плата мощностью 140 Вт потребляет 360 вольт от повышающего трансформатора. Это не та печатная плата, с которой вы хотите возиться. Разделив 140 Вт на 360 вольт, мы получим, что через него проходит ток в 389 миллиампер. 140/360 = 0,389 ампер (или 389 миллиампер)
  • Печатная плата на 300 мВт подключена к источнику питания 3 В. Разделив 300 милливатт на 3 вольта, значит, что печатной плате требуется ток в 100 миллиампер (0,1 ампера). .3 / 3 = .1
  • 20-ваттное устройство использует стандартный 120-вольтный домашний ток.Разделив 20 ватт на 120 вольт, мы получим, что устройство потребляет 0,1666 ампер или 167 миллиампер. 20/120 = 0,167

№2. I = E / R — Амперы равны вольтам, разделенным на Ом

(I = амперы, E = вольт, P = ватты, R = омы)

Некоторые примеры …
  • 240 вольт, разделенное на 500 Ом, дает ток в 480 миллиампер. 240/500 = 0,480
  • 110 вольт, разделенное на 2000 Ом, дает ток в 55 миллиампер. 110/2000 = 0,055
  • 12 вольт, разделенное на 250 Ом, дает ток в 48 миллиампер.12/250 = 0,048
  • Крошечный моторчик для хобби требует для работы 3 вольт и имеет внутреннее сопротивление 40 Ом. 3 вольта, разделенные на 40 Ом, указывают на использование 75 мА. 3/40 = 0,075
  • Через контроллер проходит 9 вольт с внутренним сопротивлением 135 Ом. 9, разделенное на 135, равняется текущему потреблению 67 миллиампер. 9/135 = 0,066666

№3. I = √ (P / R) — Амперы равны квадратному корню из отношения ватт, разделенных на Ом

(I = амперы, E = вольт, P = ватты, R = омы)

В отличие от общего введения, это третье и последнее средство
предполагают использование квадратных корней; так выломай калькулятор,
электронную таблицу или поисковую систему, если вы еще этого не сделали.

По сути, все, что нужно сделать, это разделить ватты на Ом; затем просто найдите квадратный корень из частного, чтобы определить силу тока.

«» — символ квадратного корня.

Некоторые примеры …
  • 100 Вт, разделенные на 4 Ом, дают частное 25. Квадрат
    корень из 25 составляет 5 ампер. √ (100/4) = √25 = 5
  • 900 Вт, разделенные на 5 Ом, дают нам частное 180. Квадрат
    корень 180 равен 13,42 ампер (округленно). √ (900/5) = √180 = 13.4164
  • 40 Вт, разделенные на 40 Ом, дают нам частное 1. Квадрат
    корень из 1 равен 1 ампер. √ (40/40) = √1 = 1
  • 5 Вт, разделенные на 100 Ом, дают нам коэффициент 0,05. Квадрат
    корень из 0,05 дает ответ 224 миллиампер (округлено). √ (5/100) = √ (0,05) = 0,2236 Квадратные корни из чисел меньше 1,0 в этом случае будут нечетными.


(E = вольты, P = ватты, I = амперы, R = омы)

Включает амперы в вольты и ватты в вольты.

В отличие от большинства вопросов о ваттах и ​​усилителях, вопросы о напряжении и падении напряжения обычно связаны с печатными платами и их вспомогательными компонентами.Тем не менее, вот некоторые основы …

  • Типичное напряжение в доме в США составляет 120 вольт; хотя для некоторых приборов напряжение повышается до 240 вольт.
  • Стандартный автомобильный аккумулятор — 12 вольт.
  • Стандарт ноута чаще всего 19 вольт.
  • Стандартные угольные или щелочные батареи (типоразмеров D, C, aa, aaa и т. Д.) На 1,5 вольта каждая. Соединение их последовательно — это просто добавка. Например, если вы видите, что рекламируется фонарик на 6 вольт, вы знаете, что для этого потребуется четыре батарейки.

Три способа определения вольт …

№1. E = P / I — Вольт равны ваттам, разделенным на ток

(E = вольт, P = ватты, I = амперы, R = ом)

Некоторые примеры …
  • 500 Вт, разделенные на 5 ампер, равны 100 вольт. 500/5 = 100
  • 12 Вт, разделенные на 0,1 ампера, равняются 120 вольт. 12 / .1 = 120
  • 150 Вт, разделенные на 2 ампера, равняются 75 вольт. 150/2 = 75
  • Через 6-ваттную автомобильную приборную панель проходит половина усилителя. Двигатель автомобиля работает или нет? Разделив 6 Вт на.5 ампер дают нам 12 вольт. Двигатель выключен (при работающем двигателе напряжение в системе колеблется от 14 до 14,5 вольт). 6 / .5 = 12
  • Стартер мощностью 600 ватт для небольшого двигателя требует 50 ампер. Разделение 600 Вт на 50 ампер показывает, что 12-вольтовая батарея действительно может справиться с этой задачей. 600/50 = 12

Примечание: приставка «милли» означает одну тысячную.

  • Есть в вольте 1000 милливольт.
  • Есть в усилке 1000 миллиампер.
  • В ватте 1000 милливатт.
Еще примеры …
  • Печатная плата мощностью 400 милливатт (0,4 Вт) потребляет 80 мА (0,080 ампер). Разделив 400 милливатт на 80 миллиампер, вы увидите, что он подключен к 5-вольтовому входу. 400/80 = 5
  • Компонент на 180 милливатт потребляет 45 миллиампер. Разделив 180 милливатт на 45 миллиампер, получим 4 вольта. 180/45 = 4

№2. E = IR — Вольты равны амперам, умноженным на Ом

(E = вольт, P = ватт, I = ампер, R = ом)

Некоторые примеры…
  • 10 ампер, умноженных на 12 Ом, равняются 120 вольт. 10 * 12 = 120
  • 35 ампер, умноженные на 42 Ом, равны 1470 вольт. 35 * 42 = 1470
  • ,5 ампер, умноженные на 6 Ом, равны 3 вольтам. 0,500 * 6 = 3
  • Для кондиционера требуется 50 ампер. Мотор, насос и другие схемы имеют полное сопротивление 4,8 Ом (на самом деле удивительно низкое). Для работы этого кондиционера требуется 240 вольт. 50 * 4,8 = 240
  • Через цепь с измеренным
    сопротивление 5 Ом.Это будет 600 миллиампер на 5 Ом, что даст вам 3
    вольт. 600 * 5 = 3

№3. E = √ (PR) — Вольт равны квадратному корню произведения ватт на ом

(E = вольты, P = ватты, I = амперы, R = Ом)

В отличие от общего введения, это третье и последнее средство действительно включает использование квадратных корней; так что откройте калькулятор, электронную таблицу или поисковую систему, если вы еще этого не сделали.

По сути, все, что нужно сделать, это умножить ватты на ом; затем просто найдите квадратный корень из произведения, чтобы определить напряжение.

«» — символ квадратного корня.

Некоторые примеры …
  • 14 Вт, умноженные на 10,285 (округленно) Ом, равняются произведению 144. Корень квадратный из 144 составляет 12 вольт. √ (144 * 10,285) = √144 = 12
  • 300 Вт, умноженное на 20 Ом, равняется произведению 6000. Корень квадратный из 6000 составляет 77,46 вольт (округлено). √ (300 * 20) = √6000 = 77,46
  • Магнетрон для микроволновой печи мощностью 900 Вт имеет внутреннее сопротивление 15 Ом. 900 Вт умножить на 15 Ом дает произведение 13 500.Квадратный корень из 13 500 составляет 116 вольт (округлено). √ (900 * 15) = √13500 = 116,2. Что с домашним напряжением от 110 до 120 вольт, это будет работать нормально.

Примечание: приставка «килограмм» означает тысячу.

  • В киловольте (кв) 1000 вольт.
  • В килоампере (КА) 1000 ампер.
  • В киловатте 1000 Вт. (кВт).
Пример …
  • 1 000 Вт (1 кВт), умноженная на 10 Ом, равняется произведению 10 000.Корень квадратный из 10 000 составляет 100 вольт. √ (1000 * 10) = √10000 = 100


(R = ом, E = вольт, I = ампер, P = ватт)

В отличие от большинства вопросов о ваттах и ​​усилителях, вопросы сопротивления и сопротивления обычно связаны с печатными платами и их вспомогательными компонентами. Однако внутреннее сопротивление прибора или устройства сильно влияет на то, сколько энергии оно потребляет. Классическим примером этого является лампа накаливания с вольфрамовой нитью. Для одной 100-ваттной лампы требуется почти полный ампер при напряжении 120 вольт.Со временем это может накапливаться довольно быстро. Счетчики мощности это любят, а все остальные ненавидят.

Три способа определения сопротивления в омах …

№1. R = E / I — Ом равняется вольт, разделенному на ток

(R = Ом, E = вольт, I = амперы, P = ватты)

Некоторые примеры …
  • Вышеупомянутая лампочка. 120 вольт, разделенное на 0,8333 ампера, равняется сопротивлению 144 Ом. 120 / .8333 = 144
  • 240 В, разделенные на 3 ампера, равняются сопротивлению 80 Ом. 240/3 = 80
  • 12 вольт, деленное на 1.50 ампер равны сопротивлению 8 Ом. 12 / 1,5 = 8
  • 19 вольт, деленное на 2,3 ампера, равняется сопротивлению 8,26 Ом. 19 / 2,3 = 8,26

Примечание: приставка «милли» означает одну тысячную.

  • Есть в вольте 1000 милливольт.
  • Есть в усилке 1000 миллиампер.
  • В ватте 1000 милливатт.
Еще примеры …
  • Печатная плата с напряжением 9 В потребляет 140 мА (0,140 А). Разделив 9 вольт на 140 миллиампер, вы получите внутреннее сопротивление платы 64.29 Ом (округлено). 9 / 0,14 = 64,29
  • Компонент на 500 милливольт потребляет 120 миллиампер. Разделив 500 милливольт на 120 миллиампер, мы получим, что компонент имеет сопротивление 4,17 (округлено) Ом. 500/120 = 4,17
  • Светодиодная матрица на 4,5 В потребляет 15 мА. Разделив 4,5 на 0,015, мы получим сопротивление 300 Ом. 4,5 / 0,015 = 300

№2. R = E² / P — Ом равняется квадрату вольт, разделенному на ватты

(R = Ом, E = вольт, I = амперы, P = ватты)

Некоторые примеры…
  • 120 вольт в квадрате, затем разделенное на 100 ватт, дает сопротивление 144 Ом. 120² / 100 = 14400/100 = 144
  • Возведенное в квадрат 50 вольт, затем разделенное на 35 ватт, получится сопротивление 71,43 Ом. 50² / 35 = 2500/35 = 71,43
  • 6 вольт в квадрате, затем разделенные на 4 ватта, показывают сопротивление 9 Ом. 6² / 4 = 36/4 = 9
  • Двигатель требует 36 вольт и потребляет 40 ватт мощности. 36 вольт в квадрате, затем разделенные на 40 ватт, имеют общее сопротивление 32,4 Ом.36² / 40 = 1296/40 = 32,4
  • Через компонент, потребляющий 2 Вт, проходит 1,5 Вольт. Его сопротивление составит 1,125 Ом. 1,5² / 2 = 2,25 / 2 = 1,125
  • .

№3. R = P / I² — Ом равняется ваттам, разделенным на квадрат ампер

(R = Ом, E = вольт, I = амперы, P = ватты)

Некоторые примеры …
  • 150 Вт разделить на 7 ампер в квадрате. 7 ампер в квадрате — это 49, поэтому мы имеем 150 ватт, разделенных на 49; давая нам ответ 3,06 Ом. 150 / 7² = 150/49 = 3.06
  • 40 Вт разделить на 20 ампер в квадрате. В квадрате 20 ампер получается 400, поэтому у нас есть 40 ватт, разделенных на 400, что дает нам ответ 0,1 Ом или 100 миллиом. 40 / 20² = 40/400 = 0,1. Мы в значительной степени наблюдаем короткое замыкание на 2 вольта на плате, которая требует ремонта, возможно, закороченный конденсатор.
  • Холодильник мощностью 500 Вт, разделенный на 11 ампер в квадрате. 11 ампер в квадрате равно 121, то есть 500 ватт разделить на 121, что дает нам ответ 4,13 Ом (округленно).
  • 5-ваттная дополнительная плата потребляет 300 миллиампер.Таким образом, уравнение 5 / .3² дает нам сопротивление в омах. .3² составляет 0,09, поэтому мы имеем 5 / 0,09 = 55,56 Ом (округлено) в расчетном сопротивлении.


Последняя мысль …

Будьте осторожны. Законы физики неумолимы.

— Конец статьи —

Re: Используете мобильный телефон?
Домашняя страница : вступление к сайту и избранные статьи / ресурсы.
Просмотр веб-версии : отображает категории статей в главном меню (будут расположены ниже), дополнительную информацию о сайте (внизу и сбоку), функцию поиска, функцию перевода.

.