На сколько киловатт рассчитан автомат 32 ампера: 32а сколько квт
Сколько киловатт выдержит автомат на 16 Ампер, на 25, на 32, на 50 Ампер?
Чтобы ответить на вопрос о мощности определённого автомата, знание его силы тока не достаточно, необходимы ещё некоторые параметры.
На личном опыте столкнулся с ситуацией когда один и тот же автомат (в моём случае 25 ампер) выдерживал разную мощность, о чём постараюсь растолковать ниже.
Я уже как-то описывал систему вычисления такого значения, как Ампер в Вашем вопросе.
Напомню, что для однофазного тока, амперы рассчитываются от напряжения в сети (Вольты) и мощности (Ватты). Для этого расчета применяют простейшую формулу:
В которой обозначения соответствуют: А — амперы, В — вольты, Вт — ватты (можно перевести в кВт)
Так как при подключении автомата мы имеем следующие значения:
А (амперы) — написаны на самом автомате (16, 25, 32, 50 и т.д)
В (вольты) — мы всегда знаем какое напряжение будет использоваться, в данном случае в России распространено 220 Вольт)
А вот мощность, выраженную в Вт (ваты) мы не знаем и хотим её узнать.
Для этого переставляем в формуле значения и останется только вычислить цифру, подставив туда наши значения.
Потом полученный результат делим на 1000 и получаем значение в кВт.
!Но тут есть один нюанс, мы все привыкли к тому, что в сети 220 Вольт, а на самом деле там скорее всего окажется 230 Вольт, это опять же с тем условием, что нет перепада в напряжении.
Так что давайте рассмотрим четыре варианта на примере с автоматом 16 ампер.
1 вариант (сеть 220 Вольт) 16*220=3520/1000=3,52 кВт
2 вариант (сеть 230 Вольт) 16*230=3520/1000=3,68 кВт
3 вариант (сеть 210 Вольт, пониженное) 16*210=3360/1000=3,36 кВт
4 вариант (сеть 240 Вольт, повышенное) 16*240=3840/1000=3,84 кВт
Как видим, результат от 3,36 до 3,84 и чем ниже напряжение, тем меньшую мощность может выдержать, по этой причине лучше всего ориентироваться исходя из минимального напряжения в сети, чем максимального.
По общепринятым условиям мощность вычисляют исходя из напряжения в 220 Вольт, а именно получаться следующие результаты:
1 Ампера — выдержат в среднем 0,22 кВт
2 Ампера — выдержат в среднем 0,44 кВт
3 Ампера — выдержат в среднем 0,66 кВт
6 Ампера — выдержат в среднем 1,32 кВт
10 Ампера — выдержат в среднем 2,2 кВт
16 Ампера — выдержат в среднем 3,52 кВт
20 Ампера — выдержат в среднем 4,4 кВт
25 Ампера — выдержат в среднем 5,5 кВт
32 Ампера — выдержат в среднем 7,04 кВт
40 Ампера — выдержат в среднем 8,8 кВт
50 Ампера — выдержат в среднем 11,0 кВт
63 Ампера — выдержат в среднем 13,86 кВт
Как видите, всё достаточно просто.
Но выше значения только для переменного тока на 220 Вольт, а для 380 вольт рассчитывать надо по другой формуле, исходя из
Для расчёта мощности, переставляем значения:
Если исходить также из стандартов в напряжении сети, то получим результаты (для 380 Вольт «Звезда»):
1 Ампера — выдержат в среднем 0,66 кВт
2 Ампера — выдержат в среднем 1,32 кВт
3 Ампера — выдержат в среднем 1,97 кВт
6 Ампера — выдержат в среднем 3,95 кВт
10 Ампера — выдержат в среднем 6,58 кВт
16 Ампера — выдержат в среднем 10,53 кВт
20 Ампера — выдержат в среднем 13,16 кВт
25 Ампера — выдержат в среднем 16,45 кВт
32 Ампера — выдержат в среднем 21,06 кВт
40 Ампера — выдержат в среднем 26,32 кВт
50 Ампера — выдержат в среднем 32,91 кВт
63 Ампера — выдержат в среднем 41,46 кВт
Сколько киловатт выдержит автомат на 32 Ампера?
Как известно из начального курса Физики
Поэтому
220 Вольт × 32 Ампер= 7 040 Вт, что примерно равно 7 кВт
Лично я столкнулся с тем, что китайские защитные автоматы не срабатывали при перегрузке. Стоял автомат на 10 Ампер, возникло, фактически, короткое замыкание, а автомат не сработал. Как потом мне рассказывали инженеры с большим практическим опытом эксплуатации электроприборов, зачастую автомат на 10 Ампер срабатывает только при токе в 15….18 Ампер. Что очень плохо. Они мне посоветовали выкинуть вон китайский автомат, а купить французский Легранд или немецкий Шнайдер.
Лично я давно не работал с напряжением, но в 1990-е годы имел (непродолжительное время) допуск к напряжению свыше 1000 Вольт, хотя и не работал с таким высоким напряжением.
Таким образом, автомат на 16 Ампер можно поставить, если нагрузка не будет превышать 6…6,5 кВт, но при этом нужно после монтажа обязательно проверить, что подключив нагрузку около 8….10 кВт (при нагрузке 10 кВт ток должен быть 45 Ампер, провода должны быть толстыми не менее 4 квадратов из меди), обязательно автоматы должны сработать.
Технические характеристики и маркировка автоматического выключателя на 32 ампера
Автомат С32 – это автоматический выключатель, который защищает сеть от перегрузок и коротких замыканий. Также предназначен для включения и отключения вручную токов нагрузки. Автомат является модульным, т.к. состоят из отдельных однополюсных блоков, которые можно использовать как однофазные или объединять несколько в двух- или трехфазные. Такая конструкция позволяет легко собрать требуемый аппарат необходимой конфигурации. В случае поломки можно заменить отдельный поврежденный элемент.
Общие характеристики и маркировка автоматических выключателей С32
Однополюсный автоматический выключатель С32
Многие характеристики выключателя указываются на его корпусе. Основная из них – номинальный ток. Это максимальный ток, который пропускает аппарат в нормальном режиме и длительное время. Для автомата С32 он составляет 32 Ампера.
Еще одна важная характеристика – способность защитного устройства отключать токи короткого замыкания определенного значения (коммутационная). После срабатывания аппарат должен оставаться полностью работоспособным. Сила тока короткого замыкания обычно указывается в прямоугольной рамочке. Для автомата 32 Ампера она составляет 4500 А, или 6500 А.
В промышленных аппаратах используются дополнительные характеристики:
- предельная отключающая способность Icu – ток двукратного срабатывания, не выводящий из строя прибор;
- рабочая отключающая способность Ics – ток трехкратного срабатывания.
Чем выше отключающая способность, тем надежнее и долговечнее аппарат.
В процессе отключения короткого замыкания между контактами выключателя вспыхивает электрическая дуга. Она обладает высокой температурой и способна разрушить аппарат. Гаснет с помощью дугогасительных камер. Чем быстрее это произойдет, тем выше класс токоограничения аппарата:
- для первого класса – выше 10 миллисекунд;
- для второго – менее 10 миллисекунд;
- для третьего класса – от 3 до 6 миллисекунд.
Данная характеристика маркируется цифрами 2 или 3 в квадратной рамке. Если такой маркировки нет, это автомат 1 класса.
Во время работы в электрической сети могут появляться кратковременные всплески тока или нагрузки. Связано это, например, с включением или отключением мощных электроприемников. Может привести к ложным срабатываниям защиты. Чтобы избежать такой ситуации, используются времятоковые характеристики: отношение тока срабатывания ко времени отключения.
В любом автомате существуют два автоматических отключающих элемента.
- Электромагнитный расцепитель. Предназначен для срабатывания при появлении токов короткого замыкания. Приводится в действие токовым реле.
- Тепловой расцепитель. Срабатывает при нагреве из-за перегрузки защищаемого участка. Основан на работе биметаллического контакта.
Времятоковые характеристики рассчитываются для каждого отдельно. Обозначаются латинскими буквами A, B, C, D и указываются вместе с номинальным током. У автомата С32 это характеристика «С».
С целью защиты от токов перегрузки тепловой расцепитель настраивается на определенные величины. Для автоматического выключателя С32 времятоковая характеристика составляет 1,13-1,45 от номинального тока. Это значит, что аппарат с номиналом 32 Ампера отключится через час при токе 1,13×32A=36,2 Ампера. При протекании 1,45×32=46 Ампер, отключится менее чем через час. С увеличением перегрузки скорость отключения будет уменьшаться, пока не начнет срабатывать электромагнитный расцепитель.
Электромагнитный расцепитель С32 будет срабатывать при увеличении тока выше номинального в 5 раз – через 0,1 секунды; если ток превысит номинальный в 10 раз, быстрее чем 0,1 секунды.
Сечение проводов и кабелей
Сечение проводов для автомата на 32а также выбирается по времятоковым характеристикам. Медная жила сечением 6 мм и алюминиевая 10 мм длительно выдерживает перегрузки до 42 Ампер. При увеличении нагрузки проводники будут нагреваться, но здесь запускаются защиты автоматов, поэтому такие режимы непродолжительны и их можно не учитывать.
Номинальное напряжение и мощность нагрузки
Благодаря модульному исполнению автомат на 32 ампера может собираться в блоки различных конфигураций. В однофазной схеме может быть одно- или двухполюсным. В трехфазной на 380 Вольт – трехполюсным и четырехполюсными. Двухполюсные могут применяться и в двухфазной схеме, но такие сети нечасто используются. Защита обычно устанавливается на фазные провода. При установке на фазные с нулем (2-х и 4-х полюсные) переключатели механически соединяются для одновременного отключения.
Автомат 32 А рассчитан на напряжение переменного тока ∼230/400 V. Аппарат способен длительно работать при заданном уровне. При использовании одного полюса номинальное напряжение 230 Вольт. При использовании в двух- или трехфазной схеме, когда модули объединяются в многополюсные аппараты – 400 Вольт.
Мощность нагрузки рассчитывается по формуле P=U×I, где P – мощность, U – напряжение сети, I – номинальный ток. Для однофазной сети 230 Вольт × 32 Ампера, получаем 7360 Ватт.
Трехполюсный автомат 32 А рассчитывается для трехфазной сети: 400 Вольт × 32 Ампера = 12800 Ватт. Так как значения напряжения усредненные, выбирать нагрузку нужно на 10% меньше расчетов: 7 кВт для одной фазы, 12 кВт для трех.
Применение автоматов С32
Автомат 32 ампера устанавливается в жилых и административных зданиях. Смешанная нагрузка, нагревательные и осветительные приборы, бытовая техника и электроника – основная сфера их применения. С защитой бытовой техники и электроники справляются отлично. Используются в качестве вводных – устанавливаться до счетчиков, либо как защита отдельных потребителей.
Через аппараты С32 не рекомендуется включать мощные электродвигатели, даже если они подходят по нагрузке. Времятоковая характеристика «С» указывает на то, что от пусковых токов может ложно сработать защита.
Схема подключения
Схема подключения
Провод, питающий выключатель, подсоединяется на неподвижный контакт, который обычно находится сверху. Провод к приемнику электроэнергии присоединяется внизу. Чтобы не было путаницы, на корпусе нарисована элементарная схема с обозначением контактов. Подписаны они цифрами 1-вход, 2-выход. При трехфазном исполнении аналогично: четные – питающие контакты, нечетные – выходы.
В современных электроустановках совместно с автоматами используются дополнительные устройства: УЗО (устройство защитного отключения), дополнительные контакты, выключатели нагрузки, устройства автоматического включения. Для надежной работы рекомендуется устанавливать аппараты одинаковой серии одного производителя.
Выбор производителей защитных аппаратов огромен. Отечественные предприятия могут предложить надежное оборудование, но ассортимент крайне узок. Производство дополнительных устройств – большая редкость. Среди зарубежных компаний выделяется АВВ, имеющая серьезную научную и техническую базу. Также заслуживают внимания такие бренды, как Legrand, Siemens, GE, Schneider, Electric, Hager. Выбор оборудования следует проводить под конкретный проект, глядя на ассортимент, который часто бывает ограничен.
Именно по этой формуле и вычислены все значения в таблице 1.3.3 ПУЭ.
И тут пришли к еще одному нюансу – в ПУЭ нет значений для кабелей для сшитого полиэтилена, вроде ППГнг. В быту он, конечно, почти неприменим ввиду дороговизны, но если уж очень хочется разориться, то допустимый ток нужно смотреть у производителя, ибо в ПУЭ есть цифры только для простой полиэтиленовой изоляции с допустимой температурой 60 градусов. Допустимый ток у сшитого полиэтилена реально выше, чем у нашего ПВХ.
Доводилось тут недавно спорить на тему – «как же вспыхнет пламенем провод 2,5 квадрата при нагрузке в 30 ампер». #comment_79188150
Я уже писал пост о допустимых токах, подытожу вкратце – небольшой перегруз всего лишь сокращает срок службы изоляции, кабель сечением тех же 2,5 квадрата держат 27 ампер на протяжении своих 25-30 лет нормируемого срока службы. Опять же при условии честных 2,5 квадрата. Срок службы кабеля при перегреве сокращается по правилу «6 градусов» — то есть, если у кабеля допустимая температура нагрева 65 градусов, то при температуре в 71 градус он служит 12,5 лет вместо 25. А с учетом того, что колоссальную часть времени кабель находится просто в диком недогрузе, то кратковременные перегрузы ему ни капли не вредят.
А хотя чего распинаться, пункт 1.3.6 ПУЭ «На период ликвидации послеаварийного режима для кабелей с полиэтиленовой изоляцией допускается перегрузка до 10%, а для кабелей с поливинилхлоридной изоляцией до 15% номинальной на время максимумов нагрузки продолжительностью не более 6 ч в сутки в течение 5 сут., если нагрузка в остальные периоды времени этих суток не превышает номинальной».
То есть наш условный ВВГ держит перегруз в 15% до 6 часов в сутки, если до этого перегруза не было. А как часто и долго вы перегружаете кабели в быту?
Ладно, на самом деле у меня «Х*я пичот», а так подытожу:
— важны не только табличные значения, но и условия прокладки. Прокладка в гофре супер отягчающим обстоятельством не является, считается как для прокладки в воздушной среде. Если кабель замурован в бетоне без гофры, то еще лучше – теплоотвод бетона куда лучше, чем у воздуха. Если кабели проложены пучком несколько штук, то, конечно же, допустимый ток снижается.
— необходимо уточнять данные по допустимому току у производителя кабеля, ПУЭ немного старые, их данные тоже
— небольшие кратковременные перегрузы кабелю не помеха, не вспыхнет он заревом от того, что его на 10% на часик перегрузили
2. Расчет нагрузки
Правилами «хорошего» тона порой у электриков с околостроительных форумов считается при расчете суммировать
«А вот у вас микроволновка в 1 кВт, чайник 2 кВт, плита аж 8 кВт и духовка 2,5 кВт. Так-с так-с, а еще стиралка 2 кВт, утюг 1,5 кВт, освещение 1 кВт, ну и по мелочи набегает еще пару кВт. Ну а вдруг у вас балаган и все одновременно все включите? Нужен, б**ть, запас, ведь я делаю надежно и на 100500 лет срока службы. Итого у вас 20 кВт, вам нужен трехфазный ввод. Ну так уж и быть 15 кВт, ибо больше вам не дадут».
И тут оказывается, что человеку энергосбыт поставил максимум 50 ампер (11-11,5 кВт) однофазный автомат в щите учета.
Внезапно выясняется, что люди с суммарной мощностью электроприборов куда выше этих 20 кВт живут с выделенной мощностью в 10 кВт и автомат не вышибает каждые 5 минут. В силу попыток выполнить сверхнадежно и с превеликим запасом люди иногда не желают учитывать такие «маловажные факторы» как: теорию вероятности, физические свойства электрооборудования, режимы работы электроприемников. И пытаются изобрести велосипед, т.е. просчитать нагрузки в, в общем то, типовых домах и квартирах. Есть смысл это делать только в реально больших домах и квартирах (свыше 150 кв.м.), а в нашем быту приборы у всех одинаковые: плита (если электрическая), духовка, стиралка, бойлер, ну и прочее. Ничего сверхъестественного нет. И поэтому нагрузка типовой квартиры давно посчитана. Ну чего там разусоливать, приведу исходные данные, применяемые в РД 34.20.184 с редакции 1999 года и СП 31-110-2003:
1. Средняя площадь квартиры (общая), м2:
в типовых зданий массовой застройки . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
в зданиях с квартирами повышенной комфортности
(элитные) по индивидуальным проектам . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
2. Площадь (общая) коттеджа, м2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 – 600
3. Средняя семья, чел . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3,1
4. Установленная мощность, кВт:
квартир с газовыми плитами . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21,4
квартир с электрическими плитами в типовых зданиях . . . . . . . . . . . . . . . .32,6
квартир с электрическими плитами в элитных зданиях . . . . . . . . . . . . . . . .39,6
коттеджей с газовыми плитами . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35,7
коттеджей с газовыми плитами и электрическими саунами . . . . . . . . .. . . .48,7
коттеджей с электрическими плитами . . . . . . . . . . . . . . . . . . . . . . . . . . . .47,9
А что имеем на выходе? Открываем тот же СП31-110-2003 таблицу 6.1 и видим, что стандартная квартира с электроплитой имеет расчетную нагрузку 10 кВт, а с газовой плитой – 4,5 кВт.
Оно и верно, ибо, как выясняется, что чайник кипит за 5 минут, ТЭН стиралки нагревает воду минут за 10-15, микроволновка в режиме 50-80% от максимума нагреет пищу за 5-10 минут, утюг тратит много мощности только на первичный нагрев, а далее тратит чуть-чуть на поддержание температуры, как и бойлер. Плиту часто включаете на максимум на все 4 конфорки и на долгое время? К тому же, вся эта нагрузка не включается одновременно.
Я уже писал что-то подобное несуразное http://pikabu.ru/story/raschetnyie_nagruzki_4339898
Отсюда и получается, что не так страшен черт, как его малюют. Не стоит излишне заморачиваться над этой проблемой, тем более, что энергосбыты в курсе всех этих значений и выделить больше могут только от собственных щедрот, но не факт, что понадобится. Сугубо личное – жил в двухэтажном доме (140 кв.м) с газовым подключением, однофазный автомат на 25 ампер (около 5,5 кВт) не выбило не разу, в квартире с электроплитой ни разу за 6 лет не выбило 40 ампер (около 9 кВт) автомат на вводе.
3. Выбор аппаратов защиты
Вот самая мякотка, начнем со стандартного:
16А – на розетки;
10А – на свет, а иногда и 6А.
В целом, я с эти согласен, но зачастую эти значения экстраполируются вообще на все случаи, когда применяется кабель 2,5 и 1,5 квадрата сечения. На розетках то ясно – сами клеммные соединения розеток не выдержат более 16 ампер, а т.к. розетки зачастую соединены шлейфом, то это необходимо учитывать, 16 ампер вполне может в сумме набежать в «ближайшей» к щиту розетке группы. Но ведь бывают и стационарные нагрузки, где подобная безапелляционность уже не проходит, хоть и используется чаще всего.
Со светом я тоже сторонник автоматов на 10 ампер, но (не закидывайте камнями) не против того, когда в некоторых ситуациях ставят 16-20А (неважно по каким причинам). А все потому, что освещение – это заранее (в отличие от отдельной группы розеток) известная нагрузка. Ну накидали вы в комнате ламп накаливания ватт так на 500-800 (на самом деле это перебор) и будет у вас ток 3-4 ампера, какого такого внезапного перегруза вы ожидаете? «Жулика» что ли вкрутите и масляный обогреватель в него впулите? А на самом деле, реальная нагрузка будет и того ниже, автомат защищает только от КЗ. При том, что значения токов КЗ в квартире в любых новостройках и домах с электроплитами выйдет порядка 300-800 ампер, то и 10А и 16А отработают нормально, а при старых изношенных сетях важнее характеристику «В» автомата взять.
Еще одно ох**но важное замечание, которым козыряют все кому не лень, начитавшись всяких каталогов, форумов и блогов электриков:
«Ко-ко-ко, условный ток несрабатывания (срабатывание от бесконечности до часа) равен 1,13 от номинала автомата, а условный ток срабатывания (максимум за один час, а то и за несколько минут) равен 1,45 от номинала. Нужно срочно это учесть при выборе кабелей и номинала УЗО, как жили до этого без столь важной информации».
Кто-то правда думает, что составители ПУЭ и других нормативных документов не в курсе? Лично меня такая уверенность в «собственной догадке» отдельных советчиков и исполнителей несколько угнетает, опять изобретение велосипеда, а у меня «х*я пичот».
Табличные значения допустимых токов кабелей учитывают характеристики срабатывания автоматов!!! Да и не только автоматов, но и предохранителей с плавкими вставками, которые чувствительностью не отличаются. Нагрев – процесс довольно инерционный, и кабель вполне может с небольшим перегрузом подождать срабатывания аппарата защиты. Ну кроме случаев откровенно криминальных, типа «повесим 40А автомат на кабель 2,5 квадрата, чтобы не выбивало». Считаешь по правилам допустимый ток кабеля (со всеми коэффициентами), берешь номинал аппарата ниже и вуаля – них*я с ним не будет (при условии реального сечения), 1,13-1,45 учли уже до нас куда более умные и разбирающиеся люди.
Как я уже приводил пункт ПУЭ – наши распространенные кабели с ПВХ изоляцией и оболочкой спокойно держат перегруз 1,15 в течение 6 часов. Как думаете – автомат успеет сработать? Особенно с учетом того, что его номинал берем все же чуть ниже, чем допустимый ток кабеля.
Также это касается выбора УЗО. Неоднократно выслушивал
«номинальный рабочий ток УЗО нужно брать на ступень выше, чем у автомата, ведь 1,13 и все такое».
Опять же вопрос – производители УЗО, которые и выпускают автоматические выключатели, не в курсе этих «сенсационных догадок»? Людям специально упростили все донельзя, привели все к стандартным значениям для удобства выбора и технического подбора, но нет – надо самим себе жизнь усложнять и под 40А автомат покупать 63А УЗО. Поверьте, УЗО с номинальным рабочим током 40А спокойно выдержит перегруз, пока отработает автомат. Оно рассчитано на реальный ток больше 40А, число на корпусе – для удобства подбора.
Ну а теперь еще один момент – в советах в Лиге упоминают и взаимный нагрев кабелей в пучке, и вот эти «1,13-1,45» токи срабатывания автоматов. Но что-то никто не сложил 2 и 2, и не стал учитывать взаимный нагрев автоматов в щитке. Внезапно оказывается, что при протекании по ним токов, они нагреваются, что в целом влияет на характеристики тепловых расцепителей «соседей». И что мы получаем? А то, что автомат в 16 ампер при стоящих рядом нескольких автоматов может сработать в диапазоне 0,85-0,95 от номинала, в зависимости от их загрузки. То есть условный ток несрабатывания для автомата, стоящего в ряду в щитке, может быть 0,95-1,05 от указанного номинала на корпусе аппарата. Да и тепловой расцепитель «отзывается» куда быстрей, если до перегруза автомат и так был прилично нагружен. Или часто в быту приходит в голову дать внезапно лишние 5-6 кВт на розетки? И получается, что коэффициент 1,13 нивелируется другими условиями, либо он незначителен. Уфф, накипело.
А теперь еще один момент – буржуйский:
«домашние серии –фуфло, нужно брать промку, она на 6кА, она надежнее, крепче и ля-ля-ля».
Конкретно по производителям:
1. АВВ S200 – 6кА, Sh300 (Home) – 6кА, Sh300L (Home, Loh Edition) – на 4,5кА. Непонятно почему к нам не завозят просто Sh300.
2. Legran DX3 – 6кА, TX3 (бытовая) – 6кА.
3. Schneider Electric iC60N – 6кА, iK60N – 6кА
4. Eaton PL6 – 6кА, PL4 – 4,5кА (на самом деле механизм на 6 кА, просто надо оправдать разницу в цене, на самом деле отдельную линию никто не запускает).
Производители устали лепить специально для СНГ версии 4,5кА и делают все на 6кА. Домашние серии лишены только возможности использования дополнительных аксессуаров и у них скудный выбор номиналов и характеристик. В случае с Eaton – он только на корпусе пишет 4500, вставляя механизм от PL6 в упрощенный корпус. Нас не уважает только АББ, продавая Sh300L по завышенной цене. Также Шнайдер лепит в Китае серию Easy9 с 4,5кА и электронными УЗО и толкает на рынке СНГ успешно вживаясь в бюджетную нишу.
А так – реальные токи КЗ в квартирах на уровне сотен ампер, даже не в каждом ВРУ будет 6кА, лично просчитано неоднократно. И считаю, что тех 4,5кА вполне достаточно и не стоит идти на поводу паранои, начитавшись форумов, и бежать искать и покупать втридорога аппараты, чей потенциал все равно не будет использован в полной мере, ну не будет же допконтакты и сигнальные контакты ставить и моторные приводы?
И лично мое наблюдение – получив на рынок таких гигантов, как ABB, Siemens, Schneider Electric, Eaton (бывш. Moeller) (Legrand в промке полное днище и брак, пусть розетки «валена» клепают и модульку), мы немного сошли с ума и стали применять какие то свои скорее промышленные требования к простой бытовой сфере. Сколько был за границей у «загнивающих» – ни у кого не видел, чтобы домашний щит состоял из 3-4 УЗО 20 автоматов или тупо из 15-20 дифавтоматов, чтобы собирали огромных 48-72 модульных «монстров» в квартиру, чтобы прям каждую комнату на отдельную группу сажали. А мы порой вбухиваем огромные средства, тратя на 50-100% больше, чем нужно, чтобы повысить надежность и удобство на 5-15%. Я ни в коем случае не призываю использовать некачественное оборудование и материалы, я предлагаю быть проще в данной «простой» сфере и не изобретать велосипеды, думать за тех, кто уже за нас подумал)) Понимаю, что разгул творчества и знаний хочется вылить в полной мере, сдерживайтесь, во всем хороша разумная достаточность.
Но коли творчество рвется наружу, то скоро обвешаемся в своих квартирках щитами, как на случайной картинке из интернета.
16 Ампер автомат: Плюсы и минусы. Часть 1. Амперы и Киловатты
Электрики любят автомат 16 Ампер. Особенно не опытные. С16А — как часто я вижу его в щитах. А еще чаще только его. Кто додумался ставить один автомат на все случаи жизни и есть ли в этом какой-то смысл? Разберемся по порядку..
1. Автомат С16 — сколько Ампер потянет?
Если воспользоваться простой формулой, мы получим 220В * 16А = 3520 Вт. Этого достаточно, чтобы включить 2 кВт чайник и еще 1.5 кВт обогреватель. Более того — автомат С16 не выключается при 16 Амперах! Может быть для кого-то это будет новостью, но он так может работать достаточно долго. А для тока 20 Ампер? Чтобы ответить на этот вопрос нужно посмотреть Время-Токовую Характеристику.
Время-токовые характеристики автоматических выключателей
Время-токовые характеристики Автоматических выключателей B C D
Представленная выше картинка — это стандартные время-токовые характеристики. Пользоваться ими нужно уметь, поэтому для удобства я перевел их в табличный вид и рассчитал для номинала автомата 16 Ампер.
2. Сколько же мы можем «взять» киловатт с С16А?
В первом столбце отношение токов, во втором ток в цепи, протекающий через автоматический выключатель, в третьем время отключения, в четвертом — мощность в однофазной нагрузке без учета коэффициента мощности и гармоник.
Время-Токовая Характеристика С — таблица с мощностью
3. Какие выводы мы можем сделать из таблицы время-токовых характеристик?
Оказывается, на Автоматический Выключатель С16 вы можете подключить нагрузку 32 Ампера на 1-2 минуты. А это уже не мало — 220В * 32А = 7040 Вт! То есть 3 чайника одновременно, без учета пусковых токов.
На 4-20 секунд, через автоматический выключатель 16 Ампер, может протекать ток 64 Ампера. Согласитесь, не мало! И учтите, что это при 30 градусах по Цельсию. А при морозе — эти токи дополнительно увеличатся!
Отключится наш Автомат С16А — при токе 128-160 Ампер за время около секунды и менее. То есть целую секунду ваш кабель может греть током порядка 100 Ампер! Вспомните, когда вы ставили автомат С16 на кабель 3х1.5 — я предпочитаю так никогда не делать.
Обратите внимание, что автоматические выключатели разных производителей будут вести себя по-разному. И если они находятся в разных щитах, то температура в них тоже может быть разная.
4. А сколько ампер вы хотите?
Токи короткого замыкания
Я знаю очень хороших электриков-монтажников, которые собирают щиты по принципу — «ставим автомат с запасом, мало-ли что, чтобы автомат не выбило!». Крайне ошибочное заблуждение. Не обладая знаниями в проектировании, таким монтажникам не приходит в голову, что токи КЗ — короткого замыкания, в более чем 10 раз больше номинала для характеристики С. Также они не очень хорошо учитывают селективность и реальную нагрузку в линии.
Короткое замыкание сопровождается вспышкой, и чем больше номинал автомата, тем эта вспышка мощнее При использовании больших номиналов дополнительно подвергается риску проводка. Ведь если есть ослабленное место или плохой контакт в цепи, при коротком замыкании, именно в этом месте будет больший нагрев. Что может привести к дополнительному окислению, и еще большему нагреву в будущем.
Чтобы узнать о наличии таких месть — проводите замер сопротивления петли Фаза-Нуль!
Токи на группы освещения
Для освещения многих помещений достаточно 6 Ампер. Более того, если пусковые токи не велики для современного освещения было бы достаточно 4 Ампер и менее. Даже в больших квартирах и коттеджах, разделяют группы освещения для удобства обслуживания. И, следовательно, каждая группа не имеет большой нагрузки.
4 Ампера * 220 Вольт = 880 Ватт.
Представьте сколько нужно светодиодных ламп, чтобы использовать 880 Ватт. Отвечу — порядка 100 штук для стандартных цоколей Е27. И сколько это даст света?! Читайте в нашей статье
5. А плюсы-то у автомата С16А будут?
Конечно! Где есть минусы, всегда должны быть плюсы, это же законы электрики! Плюсы автоматического выключателя на 16 Ампер в том, что его очень легко купить в силу традиции его использования. Исторически квартиры на вводе имели 16А и это было примерно 3 Киловатта на квартиру. На ВСЮ квартиру, Карл! А сейчас имея на вводе 50 Ампер и щиток на 36 модулей, некоторые умудряются ставить с десяток-другой С16А.
Обосновано применение С16 для нагрузок, имеющих порядка 3х киловатт суммарной мощности, — в магазинах, офисах, промышленности. Обычно такие объекты строят по проектам, и проектировщики электроснабжения и электроосвещения все-таки лучше разбираются в вопросах выбора номиналов автоматов и расчетах нагрузок, нежели монтажники-самоучки.
Адекватно применение С16А для:
- Варочной поверхности 3 кВт, иногда даже нужно больше
- Розеток кухни для тостеров, грилей, микроволновок
- Стиральной машины — только там нужен дифавтомат или дополнительно УЗО
- Полноразмерной посудомоечной машины — диф или УЗО
- Теплых полов большой площади и мощности — для 200 Вт/м2 — более 18 кв.м.
Прежде чем использовать автоматический выключатель С16 — подумайте, вы действительно хотите подключать в этой линии мощность более 3х-4х киловатт одновременно. Или вам просто лень подумать сколько там реально нужно? Учтите, что в большинстве случаев меньший номинал автомата окажется безопаснее и комфортнее в эксплуатации!
О других особенностях применения автоматических выключателей и том, что такое селективность и чем еще хороши автоматы С16 читайте в следующих частях!
Спасибо за внимание!
PS Вам будет полезно и интересно!
- Обращайтесь к нам длятщательной и независимой проверки вашей электрики в Санкт-Петербурге на самом высоком уровне!
- Читайте наши статьи на канале — АВБ Электрика. Профессионально
- Ставьте лайки, если почерпнули что-то полезное — я пишу свой опыт и делюсь с Вами своими знаниями
- Заходите на наш сайт, чтобы заказать качественный проект электрики или электромонтажные работы в Санкт-Петербурге- AVB.SPB.RU
- Оставляйте комментарии — я отвечаю на каждый из них! И открываю их для свободного и конструктивного общения
Публикации по теме:
- Дом дубрава
Дома из бруса 5х6 Главная / Дома из бруса / 5х6 Прокрутить к проектам Этажность…
- Разведение осетра в пруду
Разведение стерляди в домашних условиях: рекомендации для начинающихРазведение стерляди – относительно простая бизнес-идея для начинающих…
- Реми мартин роза
Роза Реми Мартин (Remy Martin)Королева цветов с бутонами ярких оттенков способна поднять настроение, даже если…
- Брикеты из торфа
Как правильно топить твердотопливный котелТвердотопливные котлы — популярный вид котельного оборудования. Они широко применяются для…
Автомат на 50 ампер сколько киловатт выдержит: номиналы ав
Сколько киловатт выдержит автомат на 16 Ампер, на 25, на 32, на 50 Ампер?
Чтобы ответить на вопрос о мощности определённого автомата, знание его силы тока не достаточно, необходимы ещё некоторые параметры.
На личном опыте столкнулся с ситуацией когда один и тот же автомат (в моём случае 25 ампер) выдерживал разную мощность, о чём постараюсь растолковать ниже.
Я уже как-то описывал систему вычисления такого значения, как Ампер в Вашем вопросе.
Напомню, что для однофазного тока, амперы рассчитываются от напряжения в сети (Вольты) и мощности (Ватты). Для этого расчета применяют простейшую формулу:
В которой обозначения соответствуют: А — амперы, В — вольты, Вт — ватты (можно перевести в кВт)
Так как при подключении автомата мы имеем следующие значения:
А (амперы) — написаны на самом автомате (16, 25, 32, 50 и т.д)
В (вольты) — мы всегда знаем какое напряжение будет использоваться, в данном случае в России распространено 220 Вольт)
А вот мощность, выраженную в Вт (ваты) мы не знаем и хотим её узнать.
Для этого переставляем в формуле значения и останется только вычислить цифру, подставив туда наши значения.
Потом полученный результат делим на 1000 и получаем значение в кВт.
!Но тут есть один нюанс, мы все привыкли к тому, что в сети 220 Вольт, а на самом деле там скорее всего окажется 230 Вольт, это опять же с тем условием, что нет перепада в напряжении.
Так что давайте рассмотрим четыре варианта на примере с автоматом 16 ампер.
1 вариант (сеть 220 Вольт) 16*220=3520/1000=3,52 кВт
2 вариант (сеть 230 Вольт) 16*230=3520/1000=3,68 кВт
3 вариант (сеть 210 Вольт, пониженное) 16*210=3360/1000=3,36 кВт
4 вариант (сеть 240 Вольт, повышенное) 16*240=3840/1000=3,84 кВт
Как видим, результат от 3,36 до 3,84 и чем ниже напряжение, тем меньшую мощность может выдержать, по этой причине лучше всего ориентироваться исходя из минимального напряжения в сети, чем максимального.
По общепринятым условиям мощность вычисляют исходя из напряжения в 220 Вольт, а именно получаться следующие результаты:
1 Ампера — выдержат в среднем 0,22 кВт
2 Ампера — выдержат в среднем 0,44 кВт
3 Ампера — выдержат в среднем 0,66 кВт
6 Ампера — выдержат в среднем 1,32 кВт
10 Ампера — выдержат в среднем 2,2 кВт
16 Ампера — выдержат в среднем 3,52 кВт
20 Ампера — выдержат в среднем 4,4 кВт
25 Ампера — выдержат в среднем 5,5 кВт
32 Ампера — выдержат в среднем 7,04 кВт
40 Ампера — выдержат в среднем 8,8 кВт
50 Ампера — выдержат в среднем 11,0 кВт
63 Ампера — выдержат в среднем 13,86 кВт
Как видите, всё достаточно просто.
Но выше значения только для переменного тока на 220 Вольт, а для 380 вольт рассчитывать надо по другой формуле, исходя из
Для расчёта мощности, переставляем значения:
Если исходить также из стандартов в напряжении сети, то получим результаты (для 380 Вольт «Звезда»):
1 Ампера — выдержат в среднем 0,66 кВт
2 Ампера — выдержат в среднем 1,32 кВт
3 Ампера — выдержат в среднем 1,97 кВт
6 Ампера — выдержат в среднем 3,95 кВт
10 Ампера — выдержат в среднем 6,58 кВт
16 Ампера — выдержат в среднем 10,53 кВт
20 Ампера — выдержат в среднем 13,16 кВт
25 Ампера — выдержат в среднем 16,45 кВт
32 Ампера — выдержат в среднем 21,06 кВт
40 Ампера — выдержат в среднем 26,32 кВт
50 Ампера — выдержат в среднем 32,91 кВт
63 Ампера — выдержат в среднем 41,46 кВт
Номинал автоматических выключателей (АВ) по току — таблица и расчет величины
Для защиты электрических цепей применяются различные предохранительные устройства – УЗО, АВ, дифференциальные автоматы – которые по своему назначению и принципу срабатывания во многом схожи. Некоторые представляют собою «комплект», состоящий из нескольких приборов, помещенных в одном корпусе.
Но все их объединяет общий признак – предохранение линий и присоединяемого оборудования от токовых «сюрпризов», точнее, превышений расчетного значения данного параметра для конкретной «нитки» или всей схемы. В данной статье разберемся с существующими номиналами автоматических выключателей по току.
Люди, не понимающие истинного предназначения АВ и смысла токовой защиты, нередко руководствуются принципом «больше – лучше» (в данном случае подразумевается величина уставки). Такой подход может привести к тому, что образно говоря, все вокруг расплавится и воспламенится, а автоматический выключатель так и не сработает. Именно поэтому для каждой цепи АВ выбирается индивидуально, после определения ее параметров.
Расчет величины номинального тока
Что учитывается:
- Напряжение (В). В быту в основном это 220/50.
- Совокупная нагрузка на линии (Вт). Она определяется сложением мощностей всех присоединенных устройств (приборов).
Далее просто, по формуле, известной со школы – P/U = Iн (для однофазной цепи).
Номиналы АВ
Все значения тока – в А.
- Неперестраиваемые АВ. Это самые простые автоматы, устанавливаемые в основном на отдельных нитках. Их номиналы задаются производителем – 6, 10 и 16.
- Регулируемые АВ. За редким исключением, в них можно менять ток, выбирая требуемое его значение. Номиналы АВ – 20, 25, 32, 40, 50, 63, 80 и 100.
При выборе автоматического выключателя следует знакомиться с его паспортом. В нем указывается, кроме основных характеристик, поправочный коэффициент. Он имеет значение, если возможен перегрев устройства. Например, установка в помещениях с высокой температурой, плотная компоновка силового щита и так далее.
Автомат c25 Автоматический выключатель – характеристики, маркировка, применение, схема подключения, компания-производитель, цена
Автоматический выключатель – автомат c25 служит для защиты электрической линии от короткого замыкания и токов перегрузки. А также он является коммутационным аппаратом. То есть им можно включать и отключать нагрузку.
Как правило, цена автомата c25 складывается из его характеристик, количества полюсов и “раскручености” бренда. Как можно увидеть, цены на автоматы C25 одного бренда и с одинаковым количеством полюсов различаются. Безусловно, цена зависит от коммутационной отключающей способности автомата.
Модульный автомат C25a
В этой статье рассматривается модульный автомат C25. Несомненно, автомат называется модульным потому, что каждый его полюс представляет собой отдельный стандартный модуль. По существу, изготовление многополюсных автоматов осуществляется соединением нескольких однополюсных модулей друг с другом. Таким образом, модульный автомат отличаются от других видов автоматов методом изготовления корпуса и его сборкой. Например, автомат в литом корпусе представляет собой цельный монолитный прибор. Его нельзя разобрать на отдельные полюса. Соответственно, из нескольких однополюсных автоматов нельзя собрать автомат многополюсный.
Общие характеристики автоматического выключателя c25, их маркировка
При любом количестве полюсов автомат c25 имеет общие характеристики. То есть номинальный ток, коммутационная способность, класс токоограничения. Значение этих характеристик промаркированы на автоматическом выключателе.
Номинальный ток автомата c25
Номинальный ток In автомата c25 равен 25 амперам. То есть автомат может длительное время не отключаясь пропускать через себя ток силой не более 25 ампер. При средней температуре 30°C. Однако, стоит учитывать температурные изменения. С одной стороны, при снижении температуры номинальный ток будет увеличиваться. С другой стороны, в случае увеличения температуры номинальный ток будет снижаться.
Коммутационная или отключающая способность автомата c25
Коммутационная или номинальная отключающая способность обозначаются аббревиатурой Icn. Icn – это возможность автомата отключатся при токе короткого замыкания (КЗ) определенной силы. Естественно, автоматический выключатель должен при отключении остаться работоспособным. Как правило, маркировка силы тока указана в прямоугольной рамке на корпусе автомата. Бытовые модульные автоматы обычно имеют коммутационную способность 4500A (4,5 kA), 6000A (6 kA). На промышленных сериях может указываться без рамки. Чем коммутационная способность больше, тем автомат качественней и дороже. Про отключающую способность более подробно.
Класс токоограничения автомата c25
Класс токоограничения автоматического выключателя показывает, за какое время происходит гашение дуги. Соответственно, существует три класса токоограничения автоматических выключателей. Третий класс токоограничения означает, что дуга гасится за 3-5 миллисекунд (0,003-0,005 секунды). В свою очередь, при втором классе гашение дуги происходит за 5-10 миллисекунд (0,005-0,01 секунды). На первый класс ограничение не установлены и гашение происходит за 10 миллисекунд и более.
Маркировка класса токоограничения нанесена на автомат в виде квадратной рамки с цифрами 3 или 2. По обыкновению, она расположена под прямоугольной рамкой коммутационной способности или рядом с ней. В частности, если маркировки нет, то это автомат с первым классом токоограничения. Про токоограничение более подробно.
Времятоковые характеристики электромагнитного и теплового расцепителей автомата C25
Каждый автомат имеет два расцепителя – тепловой (биметаллическая пластина) и электромагнитный (реле максимального тока). По сути, при помощи этих расцепителей происходит автоматическое отключение. По замыслу, тепловой расцепитель отключает автомат при длительном превышении мощности на участке сети, защищенного этим автоматом. С другой стороны, электромагнитный расцепитель отключает автомат при коротком замыкании. Однако, может быть и наоборот. Такое может произойти при установке автомата, с неверно подобранными характеристиками. Параметры силы тока, при котором происходит отключение, и времени, за которое отключение происходит, называются времятоковыми характеристиками автомата.
Времятоковые характеристики электромагнитного и теплового расцепителей автомата C25 промаркированы на автомате в виде буквы C. Соответственно, эта буква изображена перед числом, обозначающим номинальный ток. Например, в данном случае перед числом 25.
Времятоковые характеристики теплового расцепителя для автомата c25
Несомненно, чем больше мощность нагрузки подключенной к автомату, тем больше сила тока проходящая через автомат. Соответственно, слишком большая сила тока способна повредить кабель, идущий от автомата к электроприбору. Значит, задача автомата отключить ток до того, как его сила достигнет величин, способных повредить кабель.
Времятоковые характеристики теплового расцепителя для автомата c25 составляют интервал от 1,13 In до 1,45 In. Строго говоря, при прохождении через тепловой расцепитель автомата C25 тока, равному 1,13 от номинального, он выключится за время, равное или более часа. Во время прохождения тока 1,45 от номинального выключится менее, чем за час.
Так или иначе, автомат c25 выключится тепловым расцепителем в течении часа или боле. При условии что ток проходящий через автомат составит 28,25 Ампер (1,13×25A=28,25A). А также выключится за время менее часа при токе 36,25 Ампер (1,45×25A=36,25A).
При повышении силы тока более 36,25 Ампер время отключения автомата будет уменьшаться. Если сила тока достигнет значений достаточных для отключения электромагнитного расцепителя, то отключать автомат будет уже этот расцепитель.
Времятоковые характеристики электромагнитного расцепителя автомата C25
Автомат C25 отключается электромагнитным расцепителем при определенных условиях. То есть когда ток, протекающий через автомат, станет в пять раз больше номинального тока. Время отключения составит более 0,1 секунды. При токе, превышающий номинальный в десять раз, автомат отключится за 0,1 секунды или менее. При силе тока (25×5=125) 125 Ампер автомат c25 отключится за время более 0,1 секунды. Когда сила тока достигнет (25×10=250) 250 Ампер – за 0,1 секунды или еще быстрее.
Сечение кабеля для автомата c25
Сечение кабеля для автомата c25 обусловлено времятоковыми характеристиками его теплового расцепителя. С одной стороны, через автомат c25 более, чем час времени может протекать ток 28,25 Ампер. Значит, сечение проводника, подключаемого после автомата, должно быть не менее 4 мм² меди. Кабель с медными жилами сечением 4 мм², в не лучших для себя условиях, может длительно выдерживать протекание тока силой около 35 Ампер. Понятное дело, что это зависит от количества жил, материала изоляции и условий прокладки кабеля.
С другой стороны, через автомат c25, примерно, в течении часа может протекать ток 36,25 Ампер. Бесспорно, что такой ток при неблагоприятных обстоятельствах уже может нагревать медный проводник сечением 4 мм². Очевидно, это не полезно для кабеля. Однако, кратковременно такой ток проводник выдержать сможет. Само собой разумеется, что такое повышение тока не должно быть частым явлением. Следовательно, не надо перегружать автомат и кабель подключением слишком большой нагрузки. Иначе, от постоянного перегрева кабель быстро выйдет из строя.
Несомненно, при применении алюминиевого проводника сечение жил должно быть увеличено. До и после автомата c25 сечение его должно составлять 6 мм². Но применять в быту кабели с алюминиевыми жилами не нужно. Алюминий обладает большой текучестью. Потому требует частого осмотра и обслуживания. Единственное исключение провод СИП от опоры до ввода в дом.
Другие характеристики для одно-1p(п) двух-2p(п) трех-3p(п) и четырехполюсного 4p(п) автомата c25
Некоторые характеристики автомата c25 изменяются в зависимости от количества фаз сети, в которой используется автомат. Точнее, изменяется номинальная напряжение и мощность подключаемой к автомату нагрузки.
Безусловно, для однофазной сети, где используются однополюсные или двухполюсные автоматы C25, характеристики будут иметь свои определенные значения. Для трехфазной сети, где используются трехполюсные или четырехполюсные автоматы C25, эти характеристики будут другими. Разумеется, изменяется также схема подключения автомата.
Итак, однополюсные и двухполюсные автоматы применяются в однофазной сети. Трехполюсные и четырехполюсные используются в трехфазной сети. Бывает, что двухполюсные автоматы используются в двухфазной сети. Однако, в быту двухфазные сети обычно отсутствуют. Исключением могут быть признаны не заземленные выходы однофазного генератора и разделительного трансформатора. Однополюсные и трехполюсные автоматы отключают фазные проводники, а нулевой оставляют не разомкнутым. С другой стороны, двухполюсные и четырехполюсные автоматы размыкают и фазные и нулевой проводник одновременно.
По сути, существуют две разновидности двухполюсных автоматов – 2п и 1п+n. Двухполюсные 2п автоматы состоят из двух одинаковых однополюсных автоматов, соединенных механически. Стало быть, в этом случае оба полюса имеют защиту. Двухполюсные 1п+n состоят из однополюсного автомата и однополюсного рубильника, также механически соединенных. Иначе говоря, полюс размыкающий нулевой проводник не содержит автоматических расцепителей, а только механизм, размыкающий контакты. Контакты размыкаются с помощью механического привода при отключении автомата, размыкающего фазный проводник. Другими словами, полюс n защиты не имеет. Соответственно, четырехполюсные автоматы 4п состоят из четырех полноценных однофазных автоматов. А к примеру, автоматы 3п+n из трех однополюсных автоматов и однополюсного рубильника.
Номинальное напряжение автоматического выключателя C25
Во-первых, для автомата C25 на корпусе промаркировано Ue номинальное напряжение. Иначе говоря, такое напряжение при котором автомат длительно может пропускать через себя номинальный ток. Так, для однополюсных и двухполюсных автоматов оно обычно составляет 230 – 400 вольт. В свою очередь, для трехполюсных и четырехполюсных 400 вольт. Во-вторых, может быть промаркировано максимальное Umax и минимальное Umin напряжение при котором автомат сохраняет работоспособность. В-третьих, Ui номинальное напряжение изоляции. То есть напряжение которое не может пробить сопротивление материала из которого изготовлен автомат. Другими словами, при данном напряжение, человеку который прикоснется к автоматическому выключателю, ни грозит поражение электротоком.
Маркировка на автомате в виде волнистой линии ∼ или ≈. Это означает что он предназначен для использования в цепи переменного тока. Нанесена маркировка обычно перед обозначением номинального напряжения. С другой стороны, для цепей постоянного тока применяются автоматы с немного другим устройством. Такие автоматы имеют маркировку в виде прямой линии – .
Иногда на автомате указывается номинальное импульсное выдерживаемое напряжение Uimp в КилоВольтах. То есть, пиковое значение импульсного (чрезвычайно кратковременного) напряжения заданной формы и полярности. Безусловно, автомат должен выдержать это напряжение без повреждений при определенных условиях.
Мощность нагрузки (На сколько киловатт автомат C25?)
Итак, мощность нагрузки автоматического выключателя c25 зависит от количества фаз сети. Как видно, в трехфазной сети к автомату можно подключить нагрузку большей мощности чем в однофазной.
Как полагается, однополюсный и двухполюсные автоматы c25 предназначены для однофазной сети. Напряжение в бытовой однофазной сети составляет 220-230 вольт. Соответственно, пользуясь простой формулой P=U×I, можно определить мощность нагрузки, которую можно подключить к автомату. P=220×25=5500 Ватт. P=230×25=5750 Ватт.
Мощность нагрузки для однополюсного и двухполюсного автоматов c25 равна 5500 – 5750 Ватт. Безусловно, лучше ограничить мощность подключенного к автомату c25 электроприбора в однофазной сети до 5,5 КилоВатт. Это позволит не перегревать кабель и не вызывать частое отключение автомата. Тем более, что ни говори, напряжение в сети обычно понижено. По новому госту напряжение однофазной сети должно быть 230 вольт ± 10%. Соответственно, в трехфазной сети 400 вольт ± 10%. Но обычно оно минус 10% или ниже и намного реже плюс.
Трехполюсные и четырехполюсные автоматы предназначены для трехфазной сети. Напряжение бытовой трехфазной сети составляет 380-400 вольт. По формуле P=U×I выясняем мощность нагрузки. В результате для трех- и четырехполюсных автоматов c25 мощность составляет 9500 – 10000 Ватт. Определенно, как и для однофазной сети лучше взять нижний предел. Соответственно, ограничить мощность электроприемника, подключенного к автомату C25 в трехфазной сети, до 9,5 КилоВатт.
Где применяется автомат c25
Само собой, в быту автомат C25 чаще всего применяется как вводной, до счетчика. Разумеется, если выделенная мощность составляет 5,5кВт для однофазной сети или 9,5кВт для трехфазной. Количество полюсов вводного автомата определяется количеством фаз сети и требованиями энергоснабжающей компании.
Однополюсные и двухполюсные автоматы c25 могут быть применены как автоматы на отдельный электроприбор мощностью около 5,5килоВатт. Безусловно, только если вводной автомат выше по номинальному току.
Трехполюсные и четырехполюсные автоматы c25 также могут применяться для отдельного электроприемника мощностью 9,5КилоВатт. Чаще всего автомат C25a применяется для защиты электроплит и других нагревательных приборов.
Автомат c25 может быть установлен для защиты сети с активной, индуктивной или ёмкостной нагрузкой. То есть, применяется для защиты сети с подключенными осветительными и нагревательными приборами. С другой стороны может служить для защиты сети с двигателями, трансформаторами. А также различными электронными электроприборами. Однако, настоящее его применение – это сеть со смешанной нагрузкой.
По сути, автомат с характеристикой C предназначен для защиты сети, с подключением разных видов нагрузок. Однако для более корректной защиты сети нередко приходится применять автоматы с другими характеристиками. К примеру, иногда в сеть подключен двигатель с большим пусковым током. В этом случае для защиты устанавливается автомат с характеристиками D.
Автомат c25 – схема подключения
Как подключить автомат, сверху или снизу? По определению, питающий проводник подключается к неподвижному контакту автомата. Обычно, это означает подключение сверху. Но могут быть и исключения. Другими словами, нужно всегда смотреть схему подключения, нанесенную на корпус автомата.
Так, цифра 1 на схеме показывает, куда подключается вход первого фазного проводника. Цифра 2 показывает выход первого фазного проводника. Соответственно, 3 – вход, 4 – выход у двухполюсного автомата. Цифры 5 – вход, 6 – выход у трехполюсного; 7 – вход, 8 – выход у четырехполюсного.
Кроме цифр на схеме и (или) на контактах может быть обозначение буквы N. То есть на эти контакты подключается нулевой проводник. Когда обозначения буквы N нет, то нулевой проводник подключается на контакты, обозначенные наибольшими цифрами. Если фазные проводники подключаются сверху, то и нулевой проводник подключается сверху же. С другой стороны, если фазные проводники подключаются снизу, то нулевой, соответственно, снизу.
Без всякого сомнения, автомат c25 используется в быту чаще всего в качестве вводного. Так, в бытовых условиях редко используются электроприборы с мощностью, которая бы потребовала автомата на номинальный ток 25 ампер. На выше расположенной схеме показано использование однополюсного автоматического выключателя C25 в качестве вводного автомата.
На данной схеме показано применение автомата c25 для отдельной цепи. Стоит обратить внимание, что вводной автомат должен быть минимум на два номинала больше нижестоящего автомата. Это нужно для селективности по тепловому расцепителю. То есть чтобы нижестоящий автомат отключался первым при тепловой перегрузке сети.
Бренд – Компания производитель. Купить автоматический выключатель C25. Цена автомата c25
Наиболее известные зарубежные компании производящие модульные автоматические выключатели ABB, Schneider Electric, Legrand. Из отечественных КЭАЗ, IEK, EKF.
Безусловно, модульный автомат зарубежных брендов бытовой серии удовлетворяет нормам, предъявляемым к автоматам в быту. Но промышленные серии модульных автоматов, несомненно, качественнее, надежнее и удобнее для монтажа, чем бытовые.
Как водится, модульные автоматы отечественных компаний сделаны в Китае. К слову, это не признак их ненадежности. Грубо говоря, по качеству они не сильно отличаются от бытовых серий зарубежных компаний. Мало того, но и стоить они могут дешевле. И кроме того, тоже удовлетворяют нормам для бытовых автоматов. Жаль, но они обычно не имеют серий, похожих на промышленные серии зарубежных брендов.
Среди отечественных производителей выделяется КЭАЗ. Факт, они действительно сами производят в России автоматы в литом корпусе. Модульные автоматы, как и все, заказывают в Китае. Но заказать производство товара и проконтролировать его качество тоже можно по разному. Их познание в практическом производстве автоматов дает надежду на более высокий уровень в этом плане.
УЗО и дополнительные приспособления для автомата C25
Выбирая автоматичекий выключатель, не стоит рассматривать его отдельно от других компонентов электрощита. Покупая автомат, надо иметь в виду то, что он будет монтироваться вместе с УЗО. Применять УЗО нужно одного производителя с автоматическим выключателем. А также одной серии с ним. Во всяком случае, при этом можно быть уверенным в наилучшем их взаимодействии друг с другом.
К слову сказать, у отечественных производителей УЗО по качеству уступают зарубежным. Действительно, часто они не имеют в серии электромеханических УЗО. И кроме того, они имеют намного меньшее разнообразие в характеристиках. Обычно минимальный номинал УЗО 16 ампер. Потому с автоматом C0,5 применяется УЗО на номинальный ток 16 ампер.
Применяя зарубежные автоматические выключатели промышленных серий, можно использовать различные вспомогательные приспособления. Это и разнообразные гребенки, дополнительные контакты и устройства автоматического включения. К огорчению, у отечественного производителя этих приспособлений или нет совсем, или ассортимент сильно ограничен. По чести говоря, зарубежные бытовые серии тоже не предназначены для совместного использования с дополнительными устройствами.
Автомат c25 Выбор производителя
Безусловно, среди зарубежных брендов рекомендовать к применению стоит компанию ABB. Как водится, все бренды стараются по возможности сэкономить и удешевить свою продукцию. Само собой, ABB не исключение. Однако, за выбор именно этой компании говорит то, что они наименее подвержены этой тенденции. Например, в сериях их продукции вообще нет электронных УЗО. А как известно, электромеханическое УЗО лучше электронного. Поскольку защищает от удара током даже при обрыве нуля и пониженном напряжении. Несомненно, автоматы и сопутствующие им аксессуары этой фирмы удобны для монтажа и отличаются разнообразием. Также у них неплохо развита логистика. Другими словами, если чего то нет на местном складе в данный момент, всегда можно заказать. И товар доставят с другого склада.
Несомненно, Schneider Electric и Legrand тоже имеют в ассортименте аппараты не уступающие по качеству ABB. Причем, многим людям удобнее использовать в монтаже продукцию этих компаний. Бесспорно, это дело личных предпочтений и привычки.
К сожалению, некоторые компании часто не представлены на отечественном рынке в своем полном ассортименте. Например, Siemens, Hager, GE. Вероятно, возможно купить какие-то автоматы этих производителей. Однако не найти в продаже УЗО. Тем более трудно приобрести различные дополнительные устройства для сборки щитов.
Без сомнения, речь идет только о промышленных сериях автоматов с коммутационной способностью от 6000 Ампер. В сущности, бытовые серии разных зарубежных производителей примерно схожи друг с другом. Пожалуй, они не представляют собой ничего выдающегося.
Автомат C25 – цена и где купить
Как правило, цена автомата c25 складывается из его характеристик, количества полюсов и “раскручености” бренда.
Узнать цену или купить автоматический выключатель c25 можно, перейдя по нижеприведенным ссылкам. Как можно увидеть, цены на автоматы C25 одного бренда и с одинаковым количеством полюсов различаются. В итоге цена зависит от коммутационной отключающей способности автомата.
Однополюсный автоматический выключатель C25
Двухполюсный автоматический выключатель C25
Трехполюсный автоматический выключатель C25
Четырехполюсный автоматический выключатель C25
Рекомендуем прочитать
Коммутационная или отключающая способность автоматического выключателя
Коммутационная или отключающая способность автомата – это возможность автомата отключатся определенное количество раз, при токе короткого замыкания (КЗ) определенной силы. Бытовые автоматы маркируются по стандарту IEC 23-3/EN 60898. Международный стандарт-“Выключатели автоматические для защиты от сверхтоков электроустановок бытового и аналогичного назначения”. Натурально, по правилам этого стандарта на автоматическом выключателе указывается номинальная наибольшая отключающая способность Icn Читать далее…
Класс токоограничения автоматического выключателя
Класс токоограничения автоматического выключателя определяется скоростью гашения электрической дуги, возникающей при отключении автомата в случае короткого замыкания. По определению, во время короткого замыкания автомат разрывает контакты и соответственно, отключается. Факт, сила тока при коротком замыкании может достигать несколько тысяч ампер. Понятное дело, между размыкающимися контактами образуется электрическая дуга. Помимо всего прочего, дуга имеет высокую температуру. Следовательно, из-за данного обстоятельства автомат может выйти из строя. Значит, дуга должна быть как можно быстрее погашена. Гасится дуга с помощью дугогасительной камеры Читать далее…
Характеристики автоматических выключателей – обозначения на корпусе
Характеристики автоматических выключателей важный фактор при выборе защиты электроприборов в каждом конкретном случае. Автоматический выключатель необходимо выбирать учитывая характеристики автоматических выключателей, обозначения которых нанесены на корпусе автомата Читать далее…
Подбор автоматического выключателя по мощности
Выбор защитных автоматических выключателей производится не только в ходе установки новой электрической сети, но и при модернизации электрощита, а также при включении в цепь дополнительных мощных приборов, повышающих нагрузку до такого уровня, с которым старые устройства аварийного отключения не справляются. И в этой статье речь пойдет о том, как правильно производить подбор автомата по мощности, что следует учитывать в ходе этого процесса и каковы его особенности.
Непонимание важности этой задачи может привести к очень серьезным проблемам. Ведь зачастую пользователи не утруждают себя, производя выбор автоматического выключателя по мощности, и берут в магазине первое попавшееся устройство, пользуясь одним из двух принципов – «подешевле» или «помощнее». Такой подход, связанный с неумением или нежеланием рассчитать суммарную мощность устройств, включенных в электросеть, и в соответствии с ней подобрать защитный автомат, зачастую становится причиной выхода дорогостоящей техники из строя при коротком замыкании или даже пожара.
Для чего нужны защитные автоматы и как они работают?
Современные АВ имеют две степени защиты: тепловую и электромагнитную. Это позволяет обезопасить линию от повреждения в результате длительного превышения протекающим током номинальной величины, а также короткого замыкания.
Основным элементом теплового расцепителя является пластина из двух металлов, которая так и называется – биметаллической. Если на нее в течение достаточно длительного времени воздействует ток повышенной мощности, она становится гибкой и, воздействуя на отключающий элемент, вызывает срабатывание автомата.
Наличием электромагнитного расцепителя обусловлена отключающая способность автоматического выключателя при воздействии на цепь сверхтоков короткого замыкания, выдержать которые она не сможет.
Расцепитель электромагнитного типа представляет собой соленоид с сердечником, который при прохождении сквозь него тока высокой мощности моментально сдвигается в сторону отключающего элемента, выключая защитное устройство и обесточивая сеть.
Это позволяет обеспечить защиту провода и приборов от потока электронов, величина которого намного выше расчетной для кабеля конкретного сечения.
Чем опасно несоответствие кабеля сетевой нагрузке?
Правильный подбор защитного автомата по мощности – очень важная задача. Неверно выбранное устройство не защитит линию от внезапного возрастания силы тока.
Но не менее важно правильно подобрать по сечению кабель электропроводки. В противном случае, если суммарная мощность превысит номинальную величину, которую способен выдерживать проводник, это приведет к значительному росту температуры последнего. В итоге изоляционный слой начнет плавиться, что может привести к возгоранию.
Чтобы более наглядно представить, чем грозит несоответствие сечения проводки суммарной мощности включенных в сеть устройств, рассмотрим такой пример.
Новые хозяева, купив квартиру в старом доме, устанавливают в ней несколько современных бытовых приборов, дающих суммарную нагрузку на цепь, равную 5 кВт. Токовый эквивалент в этом случае будет составлять около 23 А. В соответствии с этим в цепь включается защитный автомат на 25 А. Казалось бы, выбор автомата по мощности сделан верно, и сеть готова к эксплуатации. Но через некоторое время после включения приборов в доме появляется задымление с характерным запахом горелой изоляции, а через некоторое время возникает пламя. Автоматический выключатель при этом не будет отключать сеть от питания – ведь номинал тока не превышает допустимого.
Если хозяина в этот момент не окажется поблизости, расплавленная изоляция через некоторое время вызовет короткое замыкание, которое, наконец, спровоцирует срабатывание автомата, но пламя от проводки может уже распространиться по всему дому.
Причина в том, что хотя расчет автомата по мощности был сделан правильно, кабель проводки сечением 1,5 мм² был рассчитан на 19 А и не мог выдержать имеющейся нагрузки.
Чтобы вам не пришлось браться за калькулятор и самостоятельно высчитывать сечение электропроводки по формулам, приведем типовую таблицу, в которой легко найти нужное значение.
Защита слабого звена электроцепи
Итак, мы убедились, что расчет автоматического выключателя должен производиться, исходя не только из суммарной мощности включенных в цепь устройств (независимо от их количества), но и из сечения проводов. Если этот показатель неодинаков на протяжении электрической линии, то выбираем участок с наименьшим сечением и производим расчет автомата, исходя из этого значения.
Требования ПУЭ гласят, что выбранный автоматический выключатель должен обеспечивать защиту наиболее слабого участка электроцепи, или иметь номинал тока, который будет соответствовать аналогичному параметру включенных в сеть установок. Это также означает, что для подключения должны использоваться провода, поперечное сечение которых позволит выдержать суммарную мощность подключенных устройств.
Как выполняется выбор сечения провода и номинала автоматического выключателя – на следующем видео:
Если нерадивый хозяин проигнорирует это правило, то в случае аварийной ситуации, возникшей из-за недостаточной защиты наиболее слабого участка проводки, ему не стоит винить выбранное устройство и ругать производителя – виновником сложившейся ситуации будет только он сам.
Как рассчитать номинал автоматического выключателя?
Допустим, что мы учли все вышесказанное и подобрали новый кабель, соответствующий современным требованиям и имеющий нужное сечение. Теперь электропроводка гарантированно выдержит нагрузку от включенных бытовых приборов, даже если их достаточно много. Теперь переходим непосредственно к выбору автоматического выключателя по номиналу тока. Вспоминаем школьный курс физики и определяем расчетный ток нагрузки, подставляя в формулу соответствующие значения: I=P/U.
Здесь I – величина номинального тока, P – суммарная мощность включенных в цепь установок (с учетом всех потребителей электричества, в том числе и лампочек), а U – напряжение сети.
Чтобы упростить выбор защитного автомата и избавить вас от необходимости браться за калькулятор, приведем таблицу, в которой указаны номиналы АВ, которые включаются в однофазные и трехфазные сети, и соответствующие им мощности суммарной нагрузки.
Эта таблица позволит легко определить, сколько киловатт нагрузки какому номинальному току защитного устройства соответствуют. Как мы видим, автомату 25 Ампер в сети с однофазным подключением и напряжением 220 В соответствует мощность 5,5 кВт, для АВ на 32 Ампера в аналогичной сети – 7,0 кВт (в таблице это значение выделено красным цветом). В то же время для электрической сети с трехфазным подключением «треугольник» и номинальным напряжением 380 В автомату на 10 Ампер соответствует мощность суммарной нагрузки 11,4 кВт.
Наглядно про подбор автоматических выключателей на видео:
В представленном материале мы рассказали о том, для чего нужны и как работают устройства защиты электрической цепи. Кроме того, учитывая изложенную информацию и приведенные табличные данные, у вас не вызовет затруднения вопрос, как выбрать автоматический выключатель.
6 важных критериев выбора автоматического выключателя
Основное назначение автоматического выключателя – защита электропроводки от токов короткого замыкания (в дальнейшем КЗ) и перегрузок электросети. Если произойдет аварийная ситуация и по домашней проводке пройдет сверхток, изоляция кабеля мгновенно расплавится, а сама проводка вспыхнет, как бенгальские огни. Результат будет, как Вы понимаете, плачевный – возникновения пожара и что еще хуже – поражение электрическим током. Чтобы такого не произошло, в квартирном щитке нужно обязательно установить автомат (а лучше несколько) с подходящими характеристиками. О том, как выбрать автоматический выключатель по току, сечению кабеля и остальным техническим характеристикам, читайте дальше! Сразу же советуем обязательно просмотреть видео инструкцию, предоставленную ниже, в которой наглядно показывается методика расчета нужных параметров автоматики.
Основные критерии выбора
Итак, рассмотрим, как правильно подобрать наиболее важные параметры устройства для защиты проводки в доме и квартире.
- Ток КЗ. Чтобы выбрать автоматический выключатель по току короткого замыкания, необходимо учитывать важное условие – правилами ПУЭ автоматы с наибольшей отключающей способностью менее 6 кА запрещаются. На сегодняшний день устройства могут иметь номиналы 3; 4,5; 6 и 10 кА. Если Ваш дом размещен рядом с трансформаторной подстанцией, нужно выбрать автоматический выключатель, срабатывающий при предельном коротком замыкании в 10 кА. В остальных случаях вполне достаточно подобрать коммутационный аппарат номиналом 6000 Амер.
- Номинальный ток (рабочий). Следующий, не менее важный критерий выбора автомата для дома – по номинальному току. Данная характеристика отображает значение тока, свыше которого произойдет разъединение цепи и, соответственно, защита электропроводки от перегрузок. Чтобы выбрать подходящее значение (оно может быть 10, 16, 32, 40А и т.д.), необходимо опираться на сечение кабеля домашней проводки и мощность потребителей электроэнергии. Именно от того, насколько большой ток способны пропустить жилы через себя и в то же время, какая суммарная мощность всей бытовой техники, будет зависеть рабочий ток устройства коммутации. В данном случае для выбора подходящей характеристики автоматического выключателя рекомендуем сначала определить сечение кабеля в Вашем доме либо квартире, после чего руководствоваться данными таблицами:
- Ток срабатывания. Одновременно с рабочим током автомата нужно подобрать его номинал по току срабатывания. Как Вы знаете, при включении мощных электроприборов пусковой ток может быть значительно Выше номинального (вплоть до 12 кратного значения). Чтобы автоматический выключатель не сработал, восприняв включение двигателя, как короткое замыкание, нужно правильно выбрать класс коммутационного аппарата. На сегодняшний день для бытового применения могут использоваться классы B, C и D. Для дома и квартиры лучше всего выбрать устройство класса B, если в кухне установлена газовая плита и нет мощных потребителей электроэнергии. Если установлена электроплита либо мощный электрический котел, лучше подобрать подходящий автомат класса C. Ну и если у Вас в частном доме задействованы электродвигатели большой мощности, необходимо осуществить выбор коммутационного аппарата с маркировкой «D».
- Селективность. Данный термин подразумевает отключение в аварийной ситуации только определенного, проблемного участка, а не всей электроэнергии в доме. Тут уже нужно немного вникнуть в логическую цепочку и выбрать номиналы автоматических выключателей согласно обслуживающей линии. Вершину так называемого разветвления должен занимать вводной автомат, номинал которого не должен превышать максимально допустимую нагрузку на электропроводку, исходя из сечения провода. Номинальный ток вводного коммутационного аппарата должен превышать значение рабочего тока всех остальных, нижестоящих автоматических выключателей в щитке. Для частного дома рекомендуется на ввод выбрать аппарат на 40А, на электроплиту – 32А, на электроприборы до 5 кВт – 25А, розетки – 16А и освещение – 10А. При выборе такого варианта сборки распределительного щитка условие селективности будет удовлетворено.
- Количество полюсов. Еще один, не менее важный критерий выбора, с которым, как правило, возникает меньше всего вопросов. Итак, для однофазной сети 220 Вольт на ввод рекомендуется выбрать двухполюсный однофазный автомат. На освещение и отдельно подключаемую бытовую технику (к примеру, стиральную машину, водонагреватель, кондиционер) нужно подобрать подходящий однополюсный автоматический выключатель. Если у Вас в доме трехфазная электросеть, на ввод купите четырехполюсный коммутационный аппарат. Ну и для защиты двигателя от сверхтоков нужно выбрать трехполюсный автомат на 380 Вольт.
- Завод изготовитель. Очень важно правильно выбрать фирму автомата, иначе при покупке подделки далеко не факт, что указанные выше параметры по факту являются такими же. В результате, при токе КЗ электромагнитный расцепитель может не сработать и как следствие – пожар в доме. Чтобы такого не произошло рекомендуется осуществлять подбор коммутационных аппаратов и другой автоматики только от качественных фирм. Рейтинг лучших производителей автоматических выключателей мы предоставили в соответствующей статье!
Рекомендуем также просмотреть видео инструкцию, в которой предоставлены все необходимые таблицы и формулы для выбора автоматического выключателя по току, мощности и сечению кабеля:
Как правильно подобрать подходящий номинал коммутационного аппарата для дома и квартиры?
Перечисленные критерии выбора автоматического выключателя являются основными, и первым делом обращайте внимание на данные параметры. Следует отметить, что экономить на автоматах очень глупо! Разница между качественным изделием (от производителя ABB либо Schneider Electric) и подделкой не слишком велика, если учитывать, что на кону стоит Ваш дом и, что более важно – жизнь!
Недопустимые ошибки при покупке
Существует несколько ошибок, которые могут допустить электрики-новички при выборе автоматического выключателя по силе тока и нагрузке. Если Вы неправильно выберите защитную автоматику, даже немного «промахнувшись» с номиналом, это может повлечь за собой множество неблагоприятных последствий: срабатывание автомата при включении электроприбора, электропроводка не выдержит токовые нагрузки, срок службы выключателя быстро сократиться и т.д.
Чтобы такого не произошло, рекомендуем ознакомиться со следующими ошибками, что позволит в будущем правильно выбрать автоматический выключатель для своего дома либо квартиры:
- Первое и самое важное, что вы должны знать — во время заключения договора новые абоненты заказывают энергетическую мощность своего присоединения. От этого технический отдел производит расчет и выбирает в каком месте будет происходить подключение и сможет ли оборудование, линии, ТП выдержать нагрузку. Также по заявленной мощности рассчитывается сечение кабеля и номинал защитного автомата. Для квартирных абонентов недопустимо самовольное увеличение нагрузки на ввод без его модернизации, поскольку по проекту уже заявлена мощность и проложен питающей кабель. В общем номинал вводного автомата выбираете не вы, а технический отдел. Если в итоге вы захотите выбрать более мощный автоматический выключатель, все должно согласовываться.
- Всегда ориентируйтесь не на мощность бытовой техники, а на электропроводку. Не стоит осуществлять выбор автомата только по характеристикам электроприборов, если проводка старая. Опасность в том, что если, к примеру, для защиты электроплиты Вы выберите модель на 32А, а сечение старого алюминиевого кабеля способно выдержать только ток в 10А, то Ваша проводка не выдержит и быстро расплавиться, что станет причиной короткого замыкания в сети. Если же Вам нужно выбрать мощный коммутационный аппарат для защиты, первым делом замените электропроводку в квартире на новую, более мощную.
- Если, к примеру, при расчете подходящего номинала автомата по рабочему току у Вас вышло среднее значение между двумя характеристиками – 13,9А (не 10 и не 16А), отдавайте предпочтение большему значению только в том случае, если Вы знаете, что проводка выдержит токовую нагрузку в 16А.
- Для дачи и гаража лучше выбрать автоматический выключатель помощнее, т.к. здесь могут использоваться сварочный аппарат, мощный погружной насос, асинхронный двигатель и т.д. Лучше заранее предусмотреть подключение мощных потребителей, чтобы потом не переплачивать на покупке коммутационного аппарата большего номинала. Как правило, 40А вполне хватает для защиты линии в бытовых условиях применения.
- Желательно подобрать всю автоматику от одного, качественного производителя. В этом случае вероятность какого-либо несоответствия сводится к минимуму.
- Покупайте товар только в специализированных магазинах, а еще лучше – у официального дистрибьютора. В этом случае Вы вряд ли выберите подделку и к тому же, стоимость изделий у прямого поставщика, как правило, немного ниже, чем у посредников.
Вот и вся методика правильного выбора автомата для собственного дома, квартиры и дачи! Надеемся, что теперь Вы знаете, как выбрать автоматический выключатель по току, нагрузке и остальным, не менее важным характеристикам, а также какие ошибки не следует допускать при покупке!
Рекомендуем прочитать:
- Выбивает автомат — что делать
- Как подключить стабилизатор напряжения
- Почему срабатывает УЗО в щитке
Автомат 25 ампер 3 фазный сколько квт
Для расчета мощности номинала трехфазного автомата необходимо суммировать всю мощность электроприборов, которые будут подключены через него. Например, нагрузка по фазам одинакова:
L1 5000 W + L2 5000 kW + L3 5000W = 15000 W
Полученные ваты переводим в киловатты:
15000 W / 1000 = 15 kW
Полученное число умножаем на 1,52 и получаем рабочий ток А.
15 kW * 1,52 = 22,8 А.
Номинальный ток автомата должен быть больше рабочего. В нашем случае рабочий ток 22,8 А, поэтому мы выбираем автомат 25 А.
Номинал автоматов по току: 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100.
Уточняем сечение жил кабеля на соответствие нагрузке здесь.
Данная формула справедлива при одинаковой нагрузке по трем фазам. Если потребление по одной из фаз значительно больше, то номинал автомата подбирается по мощности этой фазы:
Например, нагрузка по фазам: L1 5000 W; L2 4000 W; L3 6000 W.
Ваты переводим в киловатты для чего 6000 W / 1000 = 6 kW.
Теперь определяем рабочий ток по этой фазе 6 kW * 4,55 = 27,3 А.
Номинальный ток автомата должен быть больше рабочего в нашем случае рабочий ток 27,3 А мы выбираем автомат 32 А.
В приведенных формулах 1,52 и 4,55 – коэффициенты пропорциональности для напряжений 380 и 220 В.
Материалы, близкие по теме:
Выбор защитных автоматических выключателей производится не только в ходе установки новой электрической сети, но и при модернизации электрощита, а также при включении в цепь дополнительных мощных приборов, повышающих нагрузку до такого уровня, с которым старые устройства аварийного отключения не справляются. И в этой статье речь пойдет о том, как правильно производить подбор автомата по мощности, что следует учитывать в ходе этого процесса и каковы его особенности.
Непонимание важности этой задачи может привести к очень серьезным проблемам. Ведь зачастую пользователи не утруждают себя, производя выбор автоматического выключателя по мощности, и берут в магазине первое попавшееся устройство, пользуясь одним из двух принципов – «подешевле» или «помощнее». Такой подход, связанный с неумением или нежеланием рассчитать суммарную мощность устройств, включенных в электросеть, и в соответствии с ней подобрать защитный автомат, зачастую становится причиной выхода дорогостоящей техники из строя при коротком замыкании или даже пожара.
Для чего нужны защитные автоматы и как они работают?
Современные АВ имеют две степени защиты: тепловую и электромагнитную. Это позволяет обезопасить линию от повреждения в результате длительного превышения протекающим током номинальной величины, а также короткого замыкания.
Основным элементом теплового расцепителя является пластина из двух металлов, которая так и называется – биметаллической. Если на нее в течение достаточно длительного времени воздействует ток повышенной мощности, она становится гибкой и, воздействуя на отключающий элемент, вызывает срабатывание автомата.
Наличием электромагнитного расцепителя обусловлена отключающая способность автоматического выключателя при воздействии на цепь сверхтоков короткого замыкания, выдержать которые она не сможет.
Расцепитель электромагнитного типа представляет собой соленоид с сердечником, который при прохождении сквозь него тока высокой мощности моментально сдвигается в сторону отключающего элемента, выключая защитное устройство и обесточивая сеть.
Это позволяет обеспечить защиту провода и приборов от потока электронов, величина которого намного выше расчетной для кабеля конкретного сечения.
Чем опасно несоответствие кабеля сетевой нагрузке?
Правильный подбор защитного автомата по мощности – очень важная задача. Неверно выбранное устройство не защитит линию от внезапного возрастания силы тока.
Но не менее важно правильно подобрать по сечению кабель электропроводки. В противном случае, если суммарная мощность превысит номинальную величину, которую способен выдерживать проводник, это приведет к значительному росту температуры последнего. В итоге изоляционный слой начнет плавиться, что может привести к возгоранию.
Чтобы более наглядно представить, чем грозит несоответствие сечения проводки суммарной мощности включенных в сеть устройств, рассмотрим такой пример.
Новые хозяева, купив квартиру в старом доме, устанавливают в ней несколько современных бытовых приборов, дающих суммарную нагрузку на цепь, равную 5 кВт. Токовый эквивалент в этом случае будет составлять около 23 А. В соответствии с этим в цепь включается защитный автомат на 25 А. Казалось бы, выбор автомата по мощности сделан верно, и сеть готова к эксплуатации. Но через некоторое время после включения приборов в доме появляется задымление с характерным запахом горелой изоляции, а через некоторое время возникает пламя. Автоматический выключатель при этом не будет отключать сеть от питания – ведь номинал тока не превышает допустимого.
Если хозяина в этот момент не окажется поблизости, расплавленная изоляция через некоторое время вызовет короткое замыкание, которое, наконец, спровоцирует срабатывание автомата, но пламя от проводки может уже распространиться по всему дому.
Причина в том, что хотя расчет автомата по мощности был сделан правильно, кабель проводки сечением 1,5 мм² был рассчитан на 19 А и не мог выдержать имеющейся нагрузки.
Чтобы вам не пришлось браться за калькулятор и самостоятельно высчитывать сечение электропроводки по формулам, приведем типовую таблицу, в которой легко найти нужное значение.
Защита слабого звена электроцепи
Итак, мы убедились, что расчет автоматического выключателя должен производиться, исходя не только из суммарной мощности включенных в цепь устройств (независимо от их количества), но и из сечения проводов. Если этот показатель неодинаков на протяжении электрической линии, то выбираем участок с наименьшим сечением и производим расчет автомата, исходя из этого значения.
Требования ПУЭ гласят, что выбранный автоматический выключатель должен обеспечивать защиту наиболее слабого участка электроцепи, или иметь номинал тока, который будет соответствовать аналогичному параметру включенных в сеть установок. Это также означает, что для подключения должны использоваться провода, поперечное сечение которых позволит выдержать суммарную мощность подключенных устройств.
Как выполняется выбор сечения провода и номинала автоматического выключателя – на следующем видео:
Если нерадивый хозяин проигнорирует это правило, то в случае аварийной ситуации, возникшей из-за недостаточной защиты наиболее слабого участка проводки, ему не стоит винить выбранное устройство и ругать производителя – виновником сложившейся ситуации будет только он сам.
Как рассчитать номинал автоматического выключателя?
Допустим, что мы учли все вышесказанное и подобрали новый кабель, соответствующий современным требованиям и имеющий нужное сечение. Теперь электропроводка гарантированно выдержит нагрузку от включенных бытовых приборов, даже если их достаточно много. Теперь переходим непосредственно к выбору автоматического выключателя по номиналу тока. Вспоминаем школьный курс физики и определяем расчетный ток нагрузки, подставляя в формулу соответствующие значения: I=P/U.
Здесь I – величина номинального тока, P – суммарная мощность включенных в цепь установок (с учетом всех потребителей электричества, в том числе и лампочек), а U – напряжение сети.
Чтобы упростить выбор защитного автомата и избавить вас от необходимости браться за калькулятор, приведем таблицу, в которой указаны номиналы АВ, которые включаются в однофазные и трехфазные сети, и соответствующие им мощности суммарной нагрузки.
Эта таблица позволит легко определить, сколько киловатт нагрузки какому номинальному току защитного устройства соответствуют. Как мы видим, автомату 25 Ампер в сети с однофазным подключением и напряжением 220 В соответствует мощность 5,5 кВт, для АВ на 32 Ампера в аналогичной сети – 7,0 кВт (в таблице это значение выделено красным цветом). В то же время для электрической сети с трехфазным подключением «треугольник» и номинальным напряжением 380 В автомату на 10 Ампер соответствует мощность суммарной нагрузки 11,4 кВт.
Наглядно про подбор автоматических выключателей на видео:
Заключение
В представленном материале мы рассказали о том, для чего нужны и как работают устройства защиты электрической цепи. Кроме того, учитывая изложенную информацию и приведенные табличные данные, у вас не вызовет затруднения вопрос, как выбрать автоматический выключатель.
При выборе автоматов постоянно допускается одна и та же ошибка — не учитывается температура окружающей среды.Номинальный ток автомата назначается по ПУЭ при температуре в + 30 градусов Цельсия,а номинальный ток кабеля или провода назначается по ПУЭ при температуре в + 25 ,а эксплуатироваться автомат и кабель будут при комнатной температуре,допустим в + 18 градусов Цельсия.Если номинальный ток двухжильного или трехжильного, с защитным проводником, кабель — провода сечением 2.5 миллиметра квадратного по меди в однофазной сети равно 25 ампер ( 27 ампер это для кабелей с дополнительной изоляцией в виде ПЭТ ленты или композитного стекломиканита или стеклоленты,заполнением пространства под общей оболочкой мелованной резиной и т. д.),то при + 18 градусов Цельсия это уже номинальный ток в 27 ампер,а номинальный ток автомата на 16 ампер уже фактически равен 18.3 ампера,если учесть что при токах в 1.13 номинального тока автомат не отключается гарантированного в течении более одного часа,то реальный предельный рабочий ток провода уже 20.7 амер,то есть автомат на 16 ампер превращается уже в автомат на 20 ампер,при этом ,согласно DIN стандарту на модульные автоматы ,изготовленные по этому стандарту,номинальный ток кабеля или провода должен быть в полтора раза больше номинального тока автомата или 20. 2.
Ни одно электрическое устройство, ни один электроприбор, не должны использоваться без защитной автоматики. Автоматический выключатель (АВ) устанавливается для конкретного устройства, или для группы потребителей подключаемых к одной линии. Для того чтобы правильно ответить на вопрос, какая мощность соответствует, например, автомату с номиналом 25А, стоит сначала познакомиться с устройством автоматического выключателя и типами защитных устройств.
Конструктивно АВ объединяет механический, тепловой и электромагнитный расцепители, работающие независимо друг от друга.
Механический расцепитель
Предназначен для включения/выключения автомата вручную. Позволяет использовать его как коммутационное устройство. Применяется при ремонтных работах для обесточивания сети.
Тепловой расцепитель (ТР)
Эта часть автоматического выключателя защищает цепь от перегрузки. Ток проходит по биметаллической пластине, нагревая ее. Тепловая защита инерционна, и может кратковременно пропускать токи, превышающие порог срабатывания (In). Если ток длительное время превышает номинальный, пластина нагревается настолько, что деформируется и отключает АВ. После остывания биметаллической пластины (и устранения причины перегрузки), автомат включается вручную. В автомате на 25А, цифра 25 обозначает порог срабатывания ТР.
Электромагнитный расцепитель (ЭР)
Разрывает электрическую цепь при коротком замыкании. Образующиеся при КЗ сверхтоки требуют мгновенной реакции защитного аппарата, поэтому, в отличие от теплового, электромагнитный расцепитель срабатывает моментально, за доли секунды. Отключение происходит за счет прохождения тока через обмотку соленоида с подвижным стальным сердечником. Соленоид, срабатывая, преодолевает сопротивление пружины и отключает подвижный контакт автоматического выключателя. Для отключения по КЗ, требуются токи превышающие In от трех до пятидесяти раз, в зависимости от типа АВ.
Типы АВ по токо-временной характеристике
Обойдем вниманием аппараты защиты промышленной электроники и двигателей со встроенными тепловыми реле, и рассмотрим наиболее распространенные типы автоматов:
- Характеристика В – при трехкратном превышении In, ТР срабатывает через 4-5с. Срабатывание ЭР при превышении In от трех до пяти раз. Применяются в осветительных сетях или при подключении большого количества маломощных потребителей.
- Характеристика С – наиболее распространенный тип АВ. ТР срабатывает за 1,5с при пятикратном превышении In, срабатывание ЭР при 5-10-кратном превышении. Применяются для смешанных сетей, включающих приборы разного типа, в том числе с небольшими пусковыми токами. Основной тип автоматических выключателей для жилых и административных зданий.
- Характеристика D – автоматы с наибольшей перегрузочной способностью. Используются для защиты электродвигателей, энергопотребителей с большими пусковыми токами.
Соотношение номиналов АВ и мощностей потребителей
Чтобы определить, сколько киловатт можно подключить через автоматический выключатель определенной мощности, воспользуйтесь таблицей:
автомат 220v, А | мощность, кВт | |
---|---|---|
однофазный | трехфазный | |
2 | 0,4 | 1,3 |
6 | 1,3 | 3,9 |
10 | 2,2 | 6,6 |
16 | 3,5 | 10,5 |
20 | 4,4 | 13,2 |
25 | 5,5 | 16,4 |
32 | 7,0 | 21,1 |
40 | 8,8 | 26,3 |
50 | 11,0 | 32,9 |
63 | 13,9 | 41,4 |
Для расчета мощности вводного автомата дома, используйте коэффициент 0,7 от общей мощности потребителей.
При определении нагрузочной способности автоматического выключателя, важно учитывать не только его номинал, но и перегрузочную характеристику. Это поможет избежать ложных срабатываний во время пуска мощных электроприборов.
Сколько квт выдерживает автомат на 16 ампер?
Сколько киловатт выдерживает автомат?
Сколько киловатт выдержит автомат на 16 Ампер, на 25, на 32, на 50 Ампер?
Сколько киловатт выдерживают электроавтоматы для разных значений силы тока?
Сила тока указанная на автомате в Амперах, означает что тепловой расцепитель разомкнет цепь если ток в цепи станет больше этого значения -10 Ампер, 16 Ампер, 25 Ампер, 32 Ампера и т.д.
Для однофазной сети в основном используются однополюсные и двухполюсные автоматические выключатели, номиналом от 1 до 50 Ампер (последние являются вводными на квартиру или дом) За редким исключением, по согласованию с энергоснабжающей организацией, и при технической возможности, на частные домовладения (дома, коттеджи) могут ставится автоматы и большего номинала, но чаще домашние мастера сталкиваются с автоматами имеющими ток отсечки от 1 до 50 Ампер, вот их возможности и рассмотрим.
Автоматический выключатель на 1 Ампер выдерживает 200 Ватт. (0.2 кВт)
Автоматический выключатель на 2 Ампера выдерживает 400 Ватт. (0.4 кВт)
Автоматический выключатель на 3 Ампера выдерживает 700 Ватт. (0.7 кВт)
Автоматический выключатель на 6 Ампер выдерживает 1300 Ватт (1.3 кВт)
Автоматический выключатель на 10 Ампер выдерживает 2200 Ватт (2.2 кВт)
Автоматический выключатель на 16 Ампер выдерживает 3500 Ватт (3.5 кВт)
Автоматический выключатель на 20 Ампер выдерживает 4400 Ватт (4.4 кВт)
Автоматический выключатель на 25 Ампер выдерживает 5500 Ватт (5.5 кВт)
Автоматический выключатель на 32 Ампера выдерживает 7000 Ватт (7.0 кВт)
Автоматический выключатель на 40 Ампер выдерживает 8800 Ватт (8.8 кВт)
Автоматический выключатель на 50 Ампер выдерживает 11000 Ватт (11кВт)
Но это продолжительная нагрузка, при привышении которой автомат должен отключится. При коротком же замыкании автомат отключится и при гораздо меньшей мощности потребителя. За это отвечает уже электромагнитный расцепитель.
Значения мощности в киловаттах одинаковы и для однополюсных и для двухполюсных автоматов рассчитанных на одинаковую силу тока используемых в однофазной сети 220 вольт.
Источник: http://www.remotvet.ru/questions/32011-skolko-kilovatt-vyderzhit-avtomat-na-16-amper-na-25-na-32-na-50-amper.html
32А сколько киловатт выдержит – Тарифы на сотовую связь
1683 пользователя считают данную страницу полезной.
Информация актуальна! Страница была обновлена 16.12.2019
Сколько киловатт выдержит автомат для силы тока 16 Ампер, на 25, 32, 40, 50, 63 Ампер?
Сколько киловатт нагрузки выдерживают автоматические выключатели для на 1, на 2, на 3, на 6, на 10, на 20 Ампер?
Те самые автоматы могут быть однополюсными, двухполюсными, трёхполюсными 4-х полюсными.
Виды подключения автоматов разные, напряжение в сети может быть и 220-ь Вольт и 380-т.
То есть в начале надо определиться с этими показателями.
Ампер, это единица измерения силы тока (электрического).
Достаточно Амперы умножить на Вольты чтобы выяснить сколько кВт выдерживает автомат.
Та самая мощность, это сила тока умноженная на напряжение.
Автомат 16-ь Ампер, напряжение в сети 220-ь Вольт, подключение однофазное, автомат однополюсной:
Выдержит нагрузку 16 х 220 = 3520 Ватт, округляем в меньшую сторону и получаем 3,5 кВт.
Автомат 25 Ампер, 25 х 220 = 5 500-т Ватт, округляем 5,5 кВт.
32-а Ампера 7040 Ватт, или 7-ь кВт.
50-т Ампер 11000-ь Ватт, или 11 кВт (киловатт).
Или можно воспользоваться специальными таблицами (при выборе автоматов) с учётом мощности и вида подключения, вот одна из них, для ознакомления.
Сколько киловатт выдерживают электроавтоматы для разных значений силы тока?
Сила тока указанная на автомате в Амперах, означает что тепловой расцепитель разомкнет цепь если ток в цепи станет больше этого значения -10 Ампер, 16 Ампер, 25 Ампер, 32 Ампера и т.д.
Для однофазной сети в основном используются однополюсные и двухполюсные автоматические выключатели, номиналом от 1 до 50 Ампер (последние являются вводными на квартиру или дом) За редким исключением, по согласованию с энергоснабжающей организацией, и при технической возможности, на частные домовладения (дома, коттеджи) могут ставится автоматы и большего номинала, но чаще домашние мастера сталкиваются с автоматами имеющими ток отсечки от 1 до 50 Ампер, вот их возможности и рассмотрим.
Автоматический выключатель на 1 Ампер выдерживает 200 Ватт. (0.2 кВт)
Автоматический выключатель на 2 Ампера выдерживает 400 Ватт. (0.4 кВт)
Автоматический выключатель на 3 Ампера выдерживает 700 Ватт. (0.7 кВт)
Автоматический выключатель на 6 Ампер выдерживает 1300 Ватт (1.3 кВт)
Автоматический выключатель на 10 Ампер выдерживает 2200 Ватт (2.2 кВт)
Автоматический выключатель на 16 Ампер выдерживает 3500 Ватт (3.5 кВт)
Автоматический выключатель на 20 Ампер выдерживает 4400 Ватт (4.4 кВт)
Автоматический выключатель на 25 Ампер выдерживает 5500 Ватт (5.5 кВт)
Автоматический выключатель на 32 Ампера выдерживает 7000 Ватт (7.0 кВт)
Автоматический выключатель на 40 Ампер выдерживает 8800 Ватт (8.8 кВт)
Автоматический выключатель на 50 Ампер выдерживает 11000 Ватт (11кВт)
Но это продолжительная нагрузка, при привышении которой автомат должен отключится. При коротком же замыкании автомат отключится и при гораздо меньшей мощности потребителя. За это отвечает уже электромагнитный расцепитель.
Значения мощности в киловаттах одинаковы и для однополюсных и для двухполюсных автоматов рассчитанных на одинаковую силу тока используемых в однофазной сети 220 вольт.
Сколько киловатт выдержит автомат для силы тока 16 Ампер, на 25, 32, 40, 50, 63 Ампер?
Сколько киловатт нагрузки выдерживают автоматические выключатели для на 1, на 2, на 3, на 6, на 10, на 20 Ампер?
Те самые автоматы могут быть однополюсными, двухполюсными, трёхполюсными 4-х полюсными.
Виды подключения автоматов разные, напряжение в сети может быть и 220-ь Вольт и 380-т.
То есть в начале надо определиться с этими показателями.
Ампер, это единица измерения силы тока (электрического).
Достаточно Амперы умножить на Вольты чтобы выяснить сколько кВт выдерживает автомат.
Та самая мощность, это сила тока умноженная на напряжение.
Автомат 16-ь Ампер, напряжение в сети 220-ь Вольт, подключение однофазное, автомат однополюсной:
Выдержит нагрузку 16 х 220 = 3520 Ватт, округляем в меньшую сторону и получаем 3,5 кВт.
Автомат 25 Ампер, 25 х 220 = 5 500-т Ватт, округляем 5,5 кВт.
32-а Ампера 7040 Ватт, или 7-ь кВт.
50-т Ампер 11000-ь Ватт, или 11 кВт (киловатт).
Или можно воспользоваться специальными таблицами (при выборе автоматов) с учётом мощности и вида подключения, вот одна из них, для ознакомления.
Сколько киловатт выдерживают электроавтоматы для разных значений силы тока?
Сила тока указанная на автомате в Амперах, означает что тепловой расцепитель разомкнет цепь если ток в цепи станет больше этого значения -10 Ампер, 16 Ампер, 25 Ампер, 32 Ампера и т.д.
Для однофазной сети в основном используются однополюсные и двухполюсные автоматические выключатели, номиналом от 1 до 50 Ампер (последние являются вводными на квартиру или дом) За редким исключением, по согласованию с энергоснабжающей организацией, и при технической возможности, на частные домовладения (дома, коттеджи) могут ставится автоматы и большего номинала, но чаще домашние мастера сталкиваются с автоматами имеющими ток отсечки от 1 до 50 Ампер, вот их возможности и рассмотрим.
Автоматический выключатель на 1 Ампер выдерживает 200 Ватт. (0.2 кВт)
Автоматический выключатель на 2 Ампера выдерживает 400 Ватт. (0.4 кВт)
Автоматический выключатель на 3 Ампера выдерживает 700 Ватт. (0.7 кВт)
Автоматический выключатель на 6 Ампер выдерживает 1300 Ватт (1.3 кВт)
Автоматический выключатель на 10 Ампер выдерживает 2200 Ватт (2.2 кВт)
Автоматический выключатель на 16 Ампер выдерживает 3500 Ватт (3.5 кВт)
Автоматический выключатель на 20 Ампер выдерживает 4400 Ватт (4.4 кВт)
Автоматический выключатель на 25 Ампер выдерживает 5500 Ватт (5.5 кВт)
Автоматический выключатель на 32 Ампера выдерживает 7000 Ватт (7.0 кВт)
Автоматический выключатель на 40 Ампер выдерживает 8800 Ватт (8.8 кВт)
Автоматический выключатель на 50 Ампер выдерживает 11000 Ватт (11кВт)
Но это продолжительная нагрузка, при привышении которой автомат должен отключится. При коротком же замыкании автомат отключится и при гораздо меньшей мощности потребителя. За это отвечает уже электромагнитный расцепитель.
Значения мощности в киловаттах одинаковы и для однополюсных и для двухполюсных автоматов рассчитанных на одинаковую силу тока используемых в однофазной сети 220 вольт.
Электромонтажные работы проводимые нами всегда качественные и доступные.
Мы сможем помочь в расчете мощности автоматов (автоматических выключателей) и в их монтаже.
Как выбрать автомат?
Что нужно учитывать?
- первое, при выборе автомата его мощность,
определяется суммарная мощность подключаемых на постоянной основе к защищаемой автоматом проводке/сети нагрузок. Полученная суммарная мощность увеличивается на коэффициент потребления, определяющий возможное временное превышение потребляемой мощности за счет подключения других, первоначально неучтенных электроприборов.
Пример того как можно просчитать нагрузку в кухни
- электрочайник (1,5кВт),
- микроволновки (1кВт),
- холодильника (500 Ватт),
- вытяжки (100 ватт).
Суммарная потребляемая мощность составит 3,1 кВт. Для защиты такой цепи можно применить автомат 16А с номинальной мощностью 3,5кВт. Теперь представим, что на кухню поставили кофе машину (1,5 кВт) и подключили к этой же электропроводке.
Суммарная мощность снимаемая с проводки при подключении всех указанных электроприборов в этом случае составит 4,6кВт, что больше мощности 16 Амперного авто выключателя, который, при включении всех приборов просто отключится по превышению мощности и оставит все приборы без электропитания, Включая холодильник.
Выбор автоматов по мощности и подключению
Вид подключения | Однофазное | Однофазн. вводный | Трехфзн. треуг-ом | Трехфазн. звездой | |
Полюсность автомата | Однополюсный автомат | Двухполюсный автомат | Трехполюсный автомат | Четырех-сный автомат | |
Напряжение питания | 220 Вольт | 220 Вольт | 380 Вольт | 220 Вольт | |
V | V | V | V | ||
Автомат 1А | 0.2 кВт | 0.2 кВт | 1.1 кВт | 0.7 кВт | |
Автомат 2А | 0.4 кВт | 0.4 кВт | 2.3 кВт | 1.3 кВт | |
Автомат 3А | 0.7 кВт | 0.7 кВт | 3.4 кВт | 2.0 кВт | |
Автомат 6А | 1.3 кВт | 1.3 кВт | 6.8 кВт | 4.0 кВт | |
Автомат 10А | 2.2 кВт | 2.2 кВт | 11.4 кВт | 6.6 кВт | |
Автомат 16А | 3.5 кВт | 3.5 кВт | 18.2 кВт | 10.6 кВт | |
Автомат 20А | 4.4 кВт | 4.4 кВт | 22.8 кВт | 13.2 кВт | |
Автомат 25А | 5.5 кВт | 5.5 кВт | 28.5 кВт | 16.5 кВт | |
Автомат 32А | 7.0 кВт | 7.0 кВт | 36.5 кВт | 21.1 кВт | |
Автомат 40А | 8.8 кВт | 8.8 кВт | 45.6 кВт | 26.4 кВт | |
Автомат 50А | 11 кВт | 11 кВт | 57 кВт | 33 кВт | |
Автомат 63А | 13.9 кВт | 13.9 кВт | 71.8 кВт | 41.6 кВт |
Лучше обратится к специалистам чем допустить ошибку
На все виды услуг мы предоставляем гарантию.
Вызов электрика в городе Черкассы, все виды электромонтажа.
тел. (067)473-66-78
тел. (093)251-57-61
тел. (0472)50-19-75
Станьте нашим клиентом и вы убедитесь в качестве наших услуг.
16 Ампер – сколько это киловатт? | Электрика для начинающих
Прежде чем вдаваться в терминологию и подсчёты следует отметить, что кВт и Амперы — это те величины, которые не совсем соизмеримы. В Амперах измеряется сила тока, а в киловаттах мощность, которая к слову бывает разной: реактивной, активной и т. д.
И, тем не менее, многие задают один и тот же вопрос, сколько кВт в 16, 25 или 32 Амперах. Возможно, кому-то так легче ориентироваться в расчете нагрузки на электропроводку или в подборе автоматических выключателей.
Как бы там ни было, в статье будет рассказано о том, сколько ампер в 1 кВт и наоборот.
16 Ампер — сколько это киловатт?
1 Ампер — это 0,22 кВт для однофазной сети 220 Вольт. Для трехфазных сетей данное значение другое, порядка 0,7 кВт, если сеть «Звезда» и 1,1 кВт, если сеть «Треугольник».
Следовательно, 10 Ампер — это уже 2,2 кВт нагрузки, если речь идёт про однофазную сеть 220 Вольт. А вообще, если нужно рассчитать, какой автоматический выключатель ставить или сколько кВт в определённом количестве ампер, необходимо использовать следующую формулу, где:
например, мощность прибора 2 кВт, сеть 220 Вольт — необходимо 2 разделить на 220, что в итоге будет составлять порядка 9 Ампер. Именно столько будет потреблять электрический чайник мощностью в 2 кВт.
Соответственно зная данные показатели можно без особого труда высчитать, какой автоматический выключатель нужен для безопасной работы конкретного электропотребителя. И, таким образом, можно рассчитать силу тока в сети 220 Вольт.
Амперы и киловатты — в чем разница?
Амперы и киловатты являются совершенно разными величинами. Как было сказано выше, в амперах измеряется сила тока, а в киловаттах — мощность. То есть, амперы могут быть в киловаттах, только как составляющая, и, не более того.
Куда важно при расчете силы тока и мощности знать рабочее напряжение сети. Именно оно и несёт в себе главные составляющие для всех последующих расчетов. От того, какая сеть — трехфазная или однофазная и зависит ампераж. Для этих двух сетей он будет совершенно разным.
Например, на обычной розетке написано 16 Ампер. Зная этот параметр и напряжение сети, в данном случае 220 Вольт, можно более менее точно рассчитать, какую мощность (нагрузку) может выдержать данная розетка.
Для этого нужно лишь умножить 16 на 220 (напряжение сети). В итоге получится значение в 3520 Ватт, то есть, 3,5 кВт. Именно такую нагрузку и способна выдержать обычная розетка на 16 Ампер. К ней можно одновременно будет подключить, например, электрочайник на 2 кВт и фен, который потребляет не более 1,5 кВт.
При этом очень важно, чтобы и провода, которыми была подключена розетка, также способны были выдержать такую нагрузку, то есть в 3,5 кВт.
Однако учитывая то, что кабель сечением 1,5 мм способен выдержать порядка 3,3 кВт, лучше всё-таки подключать розетки кабелем, сечение которого не менее 2,5 мм². Вот почему данный кабель чаще всего и используется электриками для подключения бытовых розеток на 16 Ампер.
Читайте также:
1 ампер сколько квт
Перевести Амперы в Киловатты | Сайт электрика
Всем привет. Сегодня поговорим о том, как перевести Амперы в Киловатты. Этот вопрос интересует многим людей, особенно в тот момент, когда появляется необходимость в ремонте электроприборов или при электромонтаже.
Содержание статьи:
1. Как перевести Амперы в Киловатты в однофазной сети
1 Киловатт сколько это Ампер
2. Как перевести Амперы в Киловатты в трёх фазной сети
Если взять к вниманию все электрические приборы, то обычному человеку в их технических характеристиках и маркировке разобраться довольно тяжело. Например, на автоматах, розетках, вилочках, предохранителях и так далее, маркировка указывается в Амперах. Зачастую пишется максимальный ток, на который рассчитано изделие.
А на самих электроприборах указывают потребляемую мощность, выраженную в Киловаттах или Ваттах. Отсюда появляется проблема с правильностью выбора защитной автоматики для определённых нагрузок.
Очевиден тот факт, что для освещения нужен один автомат, а для подключения бойлера или духовки, совсем другой. Вот тут появляется вопрос с переводом кВт в А.
Надеюсь, вы знаете, что дома у нас в розетках течёт переменный ток с напряжением 220 Вольт. Использую ниже написанные формулы, можно легко всё рассчитать.
Как перевести Амперы в Киловатты в однофазной сети
Вт – это А умноженный на В:
P = I * U
И наоборот – А равен Вт делённый на В:
I = P/U
P – мощность;
I – сила тока;
U – напряжение;
При расчётах, значение P должно браться исключительно в Вт. 1 кВт = 1000 Вт.
1 Киловатт сколько это Ампер
1 кВт = 1000 Вт/220 в = 4,54 А
Таблица подбора автомата по току и мощности.
Реальный пример. Необходимо заменить электрическую вилочку на стиральной машине мощностью 2,2 кВт. Используя формулу, подставляем значения:
I = 2200/220 = 10 А.
Для более долгосрочной и безопасной работы, к полученному числу необходимо прибавить запасу минимум 25%. 10 + 2,5 = 12,5. На такой номинал данное изделие, наверное, не выпускают, и при покупке округлять нужно в большую сторону. Оптимальным вариантом для замены будет вилочка на 16 А.
Как перевести Амперы в Киловатты в трёхфазной сети
Ватт = √3 * U * I;
√3 = 1,732;
P = √3 * U * I;
Ампер = Вт /(√3 * В)
I = P / √3 * U
Задача. Рассчитать мощность трёхфазного водонагревателя. При его работе токоизмерительные клещи показывают нагрузку 3,8 А.
P = 1,732 * 380 * 3,8 = 2501
Ответ: мощность водонагревателя составляет 2,5 кВт.
Примечание. Цифры могут быть совсем другими, в зависимости от схемы управления нагревателем.
Подведём итоги. Используя выше приведённые формулы, подобрать материалы для ремонта или монтажа, не составит ни какого труда, даже людям, не имеющим электротехнического образования.
Для закрепления информации смотрите видеоролик по теме. Он создан немного старомодно, но зато полезный и познавательный.
Так же читайте: Расчёт мощности трёхфазной сети.
На этом буду заканчивать. Свои вопросы пишите в комментариях. Если статья была полезной, то жмите на кнопки социальных сетей. До новых встреч. Пока.
С уважением Семак Александр!
Читайте также статьи:
Калькулятор перевода силы тока в мощность (амперы в киловатты)
Мощность — энергия, потребляемая нагрузкой от источника в единицу времени (скорость потребления, измеряется в Ватт). Сила тока — количество энергии, прошедшей за величину времени (скорость прохождения, измеряется в амперах).
Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения.
Чтобы перевести Ватты в Амперы, понадобится формула: I = P / U, где I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтах.
Если сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз. Корень из трех приблизительно равен 1,73. Чтобы перевести ток в мощность (узнать, сколько в 1 ампере ватт), надо применить формулу:
P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.
Таблица перевода Ампер – Ватт:
220 В | 380 В |
| |
100 Ватт | 0,45 | 0,15 | Ампер |
200 Ватт | 0,91 | 0,3 | Ампер |
300 Ватт | 1,36 | 0,46 | Ампер |
400 Ватт | 1,82 | 0,6 | Ампер |
500 Ватт | 2,27 | 0,76 | Ампер |
600 Ватт | 2,73 | 0,91 | Ампер |
700 Ватт | 3,18 | 1,06 | Ампер |
800 Ватт | 3,64 | 1,22 | Ампер |
900 Ватт | 4,09 | 1,37 | Ампер |
1000 Ватт | 4,55 | 1,52 | Ампер |
Допустим, что вы живете в квартире со старым электросчетчиком, и у вас установлена автоматическая пробка на 16 Ампер. Чтобы определить, какую мощность «потянет» пробка, нужно перевести Амперы в киловатты. Для удобства расчетов принимаем cosФ за единицу. Напряжение нам известно – 220 В, ток тоже, давайте переведем: 220*16*1=3520 Ватт или 3,5 киловатта – ровно столько вы можете подключить единовременно.
Сложнее дело обстоит с электродвигателями, у них есть такой показатель как коэффициент мощности. Если полная мощность двигателя 5,5 киловатт, то потребляемая активная мощность 5,5*0,87= 4,7 киловатта. Стоит отметить, что при выборе автомата и кабеля для электродвигателя нужно учитывать полную мощность, поэтому нужно брать ток нагрузки, который указан в паспорте к двигателю. И также важно учитывать пусковые токи, так как они значительно превышают рабочий ток двигателя.
Перевести киловатты (кВт) в амперы (А): онлайн-калькулятор, формула
Инструкция по использованию: Чтобы перевести киловатты (кВт) в амперы (А), введите мощность P в киловаттах (кВт), напряжение U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (для переменного тока), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение силы тока I в амперах (А).
Калькулятор кВт в А (1 фаза, постоянный ток)
Формула для перевода кВт в А
Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на напряжение U в вольтах (В).
Калькулятор кВт в А (1 фаза, переменный ток)
Формула для перевода кВт в А
Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF и напряжения U в вольтах (В).
Калькулятор кВт в А (3 фазы, переменный ток, линейное напряжение)
Формула для перевода кВт в А
Сила тока I в амперах (А) равна мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF, напряжения U в вольтах (В) и квадратного корня из трех.
Калькулятор кВт в А (3 фазы, переменный ток, фазное напряжение)
Формула для перевода кВт в А
Сила тока I в амперах (А) равна мощности P в киловаттах (кВт), умноженной на 1000 и деленной на утроенное произведение коэффициента мощности PF и напряжения U в вольтах (В).
Перевод ампер в киловатты и киловатт в амперы
Быстрая оценка токов и мощностей
Предельная простота исходных соотношений (1) и (2) позволяет заметно упростить выполнение текущих расчетов при дополнительном условии задания мощности в киловаттах.
В основу упрощения расчетов положен факт того, что с учетом примерного постоянства напряжения в бытовой однофазной 220-вольтовой сети пересчет мощности в ток можно выполнить умножением мощности на постоянный коэффициент.
Для определения такого коэффициента целесообразно воспользоваться тем, что при задании W в кВт имеем довольно точную оценку I = W*1000/220 = 4,5*W.
Например, при W = 2,8 кВт получаем 4,5*2,8= 12,6 А, т.е. выкладки выполняются быстрее и существенно удобнее по сравнению с “правильным” расчетом при незначительной потерей точности.
Аналогичным образом столь же легко показать, что W = 0,22*I кВт. Необходимо помнить о том, что ток I указывается в амперах.
Таким образом, получаем простые правила:
- один кВт соответствует 4,5 А тока;
- один ампер соответствует мощности 0,22 кВт.
Последнее правило часто закругляют до уровня один ампер эквивалентен 0,2 кВт.
Как вычислить напряжение и мощность тока
Выше были показаны формулы, по каким можно высчитать какую-либо величину на основании значения известных.
Известна формула для определения мощности, исходя из тока и напряжения. Перед тем, как найти ампер формула должна быть преобразована следующим образом:
I=P/U
Если на устройстве указано, какая потребляемая мощность и сила тока в цепи, то можно определить, на работу с каким напряжением рассчитано устройство:
U=P/I
Также, пользуясь дополнительно законом Ома, можно определить значение сопротивления нагрузки. Чтобы не путаться в формулах, можно воспользоваться мнемонической записью, которая позволяет легко вычислить любое из значений, когда известны любые два других.
Мнемоническая запись электрических величин
Как правильно рассч
Калькулятор перевода силы тока в мощность
Мощность в электрической цепи представляет собой энергию, потребляемую нагрузкой от источника в единицу времени, показывая скорость ее потребления. Единица измерения Ватт [Вт или W]. Сила тока отображает количество энергии прошедшей за величину времени, то есть указывает на скорость прохождения. Измеряется в амперах [А или Am]. А напряжение протекания электрического тока (разность потенциалов между двумя точками) измеряется в вольтах. Сила тока прямо пропорциональна напряжению.
Чтобы самостоятельно рассчитать соотношение Ампер / Ватт или Вт / А, нужно использовать всем известный закон Ома. Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения. Определяется одним из трех равенств: P = I * U = R * I² = U²/R.
Следовательно, чтобы определить мощность источника потребления энергии, когда известна сила тока в сети, нужно воспользоваться формулой: Вт (ватты) = А (амперы) x I (вольты). А чтобы произвести обратное преобразование, надо перевести мощность в ваттах на силу потребления тока в амперах: Ватт / Вольт. Когда же имеем дело с 3-х фазной сетью, то придется еще и учесть коэффициент 1,73 для силы тока в каждой фазе.
Сколько Ватт в 1 Ампере и ампер в вате?
Чтобы перевести Ватты в Амперы при переменном или постоянном напряжении понадобится формула:
I = P / U, где
I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтахесли сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз.
Корень из трех приблизительно равен 1,73.
То есть, в одном ватте 4,5 мАм (1А = 1000мАм) при напряжении в 220 вольт и 0,083 Am при 12 вольтах.
Когда же необходимо перевести ток в мощность (узнать, сколько в 1 ампере ватт), то применяют формулу:
P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.
А значит, если имеем дело с автомобильной сетью на 12 вольт, то 1 ампер — это 12 Ватт, а в бытовой электросети 220 V такая сила тока будет в электроприборе мощностью 220 Вт (0,22 кВт). В промышленном оборудовании, питающемся от 380 Вольт, целых 657 Ватт.
Таблица перевода Ампер – Ватт:
6 | 12 | 24 | 220 | 380 | Вольт | |
5 Ватт | 0,83 | 0,42 | 0,21 | 0,02 | 0,008 | Ампер |
6 Ватт | 1,00 | 0,5 | 0,25 | 0,03 | 0,009 | Ампер |
7 Ватт | 1,17 | 0,58 | 0,29 | 0,03 | 0,01 | Ампер |
8 Ватт | 1,33 | 0,67 | 0,33 | 0,04 | 0,01 | Ампер |
9 Ватт | 1,5 | 0,75 | 0,38 | 0,04 | 0,01 | Ампер |
10 Ватт | 1,67 | 0,83 | 0,42 | 0,05 | 0,015 | Ампер |
20 Ватт | 3,33 | 1,67 | 0,83 | 0,09 | 0,03 | Ампер |
30 Ватт | 5,00 | 2,5 | 1,25 | 0,14 | 0,045 | Ампер |
40 Ватт | 6,67 | 3,33 | 1,67 | 0,13 | 0,06 | Ампер |
50 Ватт | 8,33 | 4,17 | 2,03 | 0,23 | 0,076 | Ампер |
60 Ватт | 10,00 | 5,00 | 2,50 | 0,27 | 0,09 | Ампер |
70 Ватт | 11,67 | 5,83 | 2,92 | 0,32 | 0,1 | Ампер |
80 Ватт | 13,33 | 6,67 | 3,33 | 0,36 | 0,12 | Ампер |
90 Ватт | 15,00 | 7,50 | 3,75 | 0,41 | 0,14 | Ампер |
100 Ватт | 16,67 | 8,33 | 4,17 | 0,45 | 0,15 | Ампер |
200 Ватт | 33,33 | 16,67 | 8,33 | 0,91 | 0,3 | Ампер |
300 Ватт | 50,00 | 25,00 | 12,50 | 1,36 | 0,46 | Ампер |
400 Ватт | 66,67 | 33,33 | 16,7 | 1,82 | 0,6 | Ампер |
500 Ватт | 83,33 | 41,67 | 20,83 | 2,27 | 0,76 | Ампер |
600 Ватт | 100,00 | 50,00 | 25,00 | 2,73 | 0,91 | Ампер |
700 Ватт | 116,67 | 58,33 | 29,17 | 3,18 | 1,06 | Ампер |
800 Ватт | 133,33 | 66,67 | 33,33 | 3,64 | 1,22 | Ампер |
900 Ватт | 150,00 | 75,00 | 37,50 | 4,09 | 1,37 | Ампер |
1000 Ватт | 166,67 | 83,33 | 41,67 | 4,55 | 1,52 | Ампер |
Зачем нужен калькулятор
Онлайн калькулятор позволит быстро перевести ток в мощность. Он позволяет пересчитать потребляемую силу тока 1 Ампер в Ватт мощности, какого-либо потребителя при напряжении 12 либо 220 и 380 Вольт.
Такой перевод мощности используют как при подборе генератора для потребителей тока в бортсети автомобиля 12 Вольт с постоянным током, так и в бытовой электронике, при прокладывании проводки.
Поэтому калькулятор перевода мощности в амперы или силу тока в ватты потребуется абсолютно всем электрикам или тем, кто занимается ею и хочет быстро перевести эти единицы. Но все же калькулятор главным образом предназначен для автовладельцев. С его помощью можно посчитать каждый электрокомпонент в автомобиле и использовать полученную сумму, чтобы понять, сколько электричества должен вырабатывать генератор или какой емкостью поставить аккумулятор.
Как пользоваться
Чтоб воспользоваться быстрым переводом и пересчитать Ампер в мощность Ватт необходимо будет:
- Ввести значение напряжения, которое питает источник.
- В одной ячейке указать значение потребляемого тока (в списке можно выбрать Ампер либо мАм).
- В другом поле сразу появится результат пересчета “ток в мощность” (по умолчанию отображается в Ватт, но есть возможность установить и кВт, тогда значение автоматически пересчитается в киловатты мощности).
Преобразование можно сделать как с амперов в ватты, так и на оборот с W в A, достаточно просто сразу ввести мощность потребителя, и тогда в другой ячейке отобразится сила потребляемого тока в сети с конкретно указанным напряжением.
Часто задаваемые вопросы
Сколько Ватт в Ампере?
Если речь об автомобильной сети, то в одном ампере 12 Ватт при напряжении 12В. В бытовой электросети 220 Вольт, сила тока в 1 ампер будет равна мощности потребителя на 220 Ватт, но если речь идет о промышленной сети 380 Вольт, то 657 Ватт в ампере.
12 ампер сколько ватт?
Сколько ватт мощности при 12 амперах потребления тока будет зависеть от того в сети с каким напряжением работает сам потребитель. Так 12А это может быть: 144 Ватт в автомобильной сети 12V; 2640 Ватт в сети 220V; 7889 Ватт в электросети 380 Вольт.
220 ватт сколько ампер?
Сила тока потребителя мощностью 220 Ватт будет отличаться зависимо от сети, в которой он работает. Это может быть: 18A при напряжении 12 Вольт, 1A если напряжение 220 Вольт либо 6A, когда потребление тока происходит в сети 380 Вольт.
5 ампер сколько ватт?
Чтобы узнать сколько Ватт потребляет источник на 5 ампер достаточно воспользоваться формулой P = I * U. То есть если потребитель включен в автомобильную сеть где всего 12 Вольт, то 5А будет 60W. При потреблении 5 ампер в сети 220V означает что мощность потребителя составляет 1100W. Когда потребление пяти ампер происходит в двухфазной сети 380V, то мощность источника составляет 3290 Ватт.
Амперы в киловатты: как рассчитать, таблица
Сегодня для грамотного подсчета суммарного количества используемого электрического оборудования в электроцепи, правильного подбора электросчетчика или измерения изоляции необходимо овладеть техникой перевода амперов в ватты и знать их соотношение. О том, как перевести амперы в киловатты, как это правильно делать в однофазной и трехфазной цепи и сколько ампер в киловатте в цепи 220 вольт — далее.
Соотношение ампер и киловатт
Ампер считается измерительной единицей электротока в международной системе или же силой электротока, проникающей через проводниковый элемент в количестве один кулон за одну секунду.
Определение ампера и киловатта
Киловатт является подъединицей ватта и измерительной мощностной единицей, а также тепловым потоком, потоком звуковой энергии, активной и полной мощностью переменного электротока. Все это скалярные измерительные единицы в международной системе, которые можно преобразовывать.
Обратите внимание! Что касается соотношения данных показателей, то в 1А находится 0,22 кВт для однофазной цепи и 0,38 для трехфазной.
Соотношение измерительных величин
Зачем переводить амперы в киловатты
Многие люди привыкли при работе с электрическими приборами использовать киловатты, поскольку именно они отражаются на считывающих приборах. Однако многие предохранители, вилки, розетки автомата имеют амперную маркировку, и не каждый обычный пользователь сможет догадаться, сколько в ампераже устройства киловаттовой энергии. Именно из-за этих возникающих проблем необходимо научиться делать перевод величин. Также нередко это нужно, чтобы четко пересчитать, сколько и какой прибор потребляет электроэнергии. Иногда это избавляет от лишних трат на электроэнергию.
Подсчет используемого электрооборудования дома как цель перевода
Переводы с амперов в киловатты и наоборот
Осуществлять переводы величин можно тремя способами: универсальной таблицей, онлайн калькулятором или формулой. Что касается использования калькулятора, нужно в соответствующие поля вставить исходные показатели и нажать кнопку. Использовать эту систему удобно в том случае, когда приходится сталкиваться с большими цифровыми значениями.
Обратите внимание! Согласно универсальной таблице и формуле можно узнать, что в одном А находится 0,22 кВт или 0,38 кВт. Сделать перевод величин, используя имеющиеся цифры, можно при помощи калькулятора или умножением на приведенное значение. К примеру, чтобы посчитать, сколько будет 6А в кВт, нужно умножить 0,6 на 0,22. В итоге выйдет 1,32 кВт.
В однофазной электрической цепи
Чтобы вычислить необходимые величины в однофазной сети, где номинальный ток автоматического выключателя, к примеру, равен 10 А и в нормальном состоянии через него не течет энергия выше указанного значения, необходимо вычислить максимальную электромощность. Нужно подставить в формулу нахождения мощности значения напряжения и силы электротока и перемножить их между собой. Получится, что мощность будет равна 220*10=2200 ватт. Для перевода в меньшие значения необходимо цифру поделить на 1000. Выйдет 5,5 кВт. Это вся сумма мощностей, питающихся от автомата.
Перевод в однофазной электроцепи
В трехфазной электрической цепи
Перевод показателей в трехфазной сети, рассчитанной на 380 вольт, можно сделать подобным образом. Разница заключается в формуле. Чтобы определить искомые данные, необходимо подставить корень из трех в произведение напряжения и силы электротока. К примеру, автомат рассчитан на 40 А. Подставив значения, можно получить 26327 Вт. После деления значения на 1000 выйдет 26,3 кВт. То есть выйдет, что автомат сможет выдержать нагрузку.
При известном мощностном показателе трехфазной цепи рассчитывать рабочий ток можно, преобразовав данную формулу. То есть электромощность нужно поделить на корень из 3, умноженный на напряжение. В итоге, если электромощность равна 10 кВт, выйдет значение автомата в 16А.
Перевод в трехфазной электроцепи
Расчет
Для подсчета величин используются специальные формулы. После их подсчета останется только вставить их в приведенные выше формулы. Чтобы отыскать электроток, стоит напряжение поделить на проводниковое сопротивление, а чтобы отыскать мощность, необходимо умножить напряжение на токовую силу или же двойное значение силы тока умножить на сопротивление. Также есть возможность поделить двойное значение напряжения на сопротивление.
Обратите внимание! Нередко все необходимые данные прописаны на коробке или технических характеристиках на сайте производителя. Часто информация указана в кВт и ее посредством конвертора легко можно перевести в ампераж. Еще одним простым вариантом, как определить потребление энергии и ампераж, будет изучение электросчетчика или автоматического выключателя потребителя. Но в таком случае необходимо подключать только один прибор к сети.
Формула расчета
Таблица перевода
На данный момент сделать перевод величин в прямом и обратном порядке можно без особых проблем благодаря специальной таблице с названием «100 ампер сколько киловатт». С помощью нее можно без проблем вычислить необходимые значения. Особо ее удобно использовать, когда нужно подсчитать большие числа. Интересно, что сегодня существуют таблицы, рассчитанные на подсчет ампеража и энергии автоматического выключателя однофазной и трехфазной цепи. Приводятся стандартные данные тех аппаратов, которые сегодня можно приобрести на рынке.
Таблица переводов киловатт и ампер
Чтобы узнать необходимые данные, нужно использовать приведенные выше формулы или применять таблицу переводов. Данные измерительные величины помогут посчитать используемую энергию конкретным аппаратом и произвести другие расчеты в области электрики.
Ампер-часов (Ач) в Киловатт-часы (кВтч) калькулятор преобразования
Преобразуйте ампер-часы в киловатт-часы с помощью калькулятора ниже и введите заряд в Ач вместе с напряжением.
Вы хотите вместо этого перевести кВтч в Ач?
Как преобразовать ампер-часы в киловатт-часы
Ампер-часы , часто выражаемые как А · ч или А · ч, являются мерой электрического заряда. Например, ампер-часы часто используются для измерения заряда аккумулятора.Заряд в один Ач обеспечит один ампер тока на один час.
Киловатт-час , выраженный в кВтч или кВт · час, используются для измерения электрической энергии. Один кВтч равен одному киловатту или тысяче ватт энергии, потребляемой за один час времени.
Чтобы преобразовать электрический заряд в энергию, используйте приведенную ниже формулу вместе с напряжением.
Ач в кВтч Формула преобразования
кВтч = Ач × В1,000
Электрическая энергия в киловатт-часах равна заряду в ампер-часах, умноженному на напряжение, затем деленному на 1000.
Например, преобразует 20 Ач при 120 В в кВтч.
кВтч = (20 Ач × 120 В) ÷ 1000
кВтч = 2400 ÷ 1000
кВтч = 2,4 кВтч
Возможно, вас заинтересует наш калькулятор из миллиампер-часов в ватт-часы.
.
Киловатт (кВт) в ампер калькулятор преобразования электрической энергии
Как преобразовать киловатты в амперы
Для однофазной цепи переменного тока формула преобразования киловатт (кВт) в амперы выглядит так:
амперы = (кВт × 1000) ÷ вольт
Можно найти силу тока в киловаттах, если вы знаете напряжение в цепи, используя закон Ватта. Закон Ватта гласит, что ток = мощность ÷ напряжение. По закону Ватта мощность измеряется в ваттах, а напряжение — в вольтах.Формула найдет ток в амперах.
Сначала начните с преобразования киловатт в ватты, что можно сделать, умножив мощность в кВт на 1000, чтобы получить количество ватт.
Наконец, примените формулу закона Ватта и разделите количество ватт на напряжение, чтобы найти амперы.
Например, , найдите ток в цепи мощностью 1 кВт при 120 вольт.
ампер = (кВт × 1000) ÷ вольт
ампер = (1 × 1000) ÷ 120
ампер = 1000 ÷ 120
ампер = 8.33А
Преобразование киловатт в амперы с использованием коэффициента мощности
Оборудование часто не на 100% эффективно с точки зрения энергопотребления, и это необходимо учитывать, чтобы определить количество доступных ампер. Например, большинство генераторов имеют КПД 80%. КПД устройства можно преобразовать в коэффициент мощности, переведя процент в десятичную дробь, это коэффициент мощности.
Чтобы узнать коэффициент мощности вашей цепи, попробуйте наш калькулятор коэффициента мощности.
Формула для определения силы тока с использованием коэффициента мощности:
амперы = (кВт × 1000) ÷ (PF × вольт)
Например, , найдите ток генератора мощностью 5 кВт с КПД 80% при 120 вольт.
амперы = (кВт × 1000) ÷ (PF × вольт)
ампер = (5 × 1000) ÷ (0,8 × 120)
ампер = 5000 ÷ 96
ампер = 52,1 A
Как найти ток в трехфазной цепи переменного тока
Формула для определения силы тока для трехфазной цепи переменного тока немного отличается от формулы для однофазной цепи:
амперы = (кВт × 1000) ÷ (√3 × PF × вольт)
Например, , найдите ток трехфазного генератора мощностью 25 кВт с КПД 80% при 240 вольт.
Ампер = (кВт × 1000) ÷ (√3 × PF × В)
А = (25 × 1000) ÷ (1,73 × 0,8 × 240
А = 75,18 А
Для преобразования ватт в амперы используйте наш калькулятор преобразования ватт в амперы.
Номинальный ток генератора (трехфазный переменный ток)
Мощность | Ток при 120 В | Ток при 208 В | Ток при 240 В | Ток при 277В | Ток при 480 В |
---|---|---|---|---|---|
1 кВт | 6.014 A | 3,47 А | 3,007 А | 2,605 А | 1,504 А |
2 кВт | 12.028 А | 6,939 А | 6,014 А | 5,211 А | 3,007 А |
3 кВт | 18.042 А | 10,409 А | 9.021 А | 7,816 А | 4,511 А |
4 кВт | 24,056 А | 13,879 А | 12.028 А | 10.421 A | 6,014 А |
5 кВт | 30,07 А | 17,348 А | 15.035 А | 13,027 А | 7,518 А |
6 кВт | 36.084 А | 20,818 А | 18.042 А | 15,632 А | 9.021 А |
7 кВт | 42,098 А | 24,288 А | 21.049 А | 18,238 А | 10,525 А |
8 кВт | 48.113 А | 27,757 А | 24,056 А | 20,843 А | 12.028 А |
9 кВт | 54,127 А | 31,227 А | 27.063 А | 23,448 А | 13,532 А |
10 кВт | 60,141 А | 34,697 А | 30,07 А | 26.054 А | 15.035 А |
15 кВт | 90,211 А | 52.045 А | 45,105 А | 39.081 A | 22,553 А |
20 кВт | 120,28 А | 69,393 А | 60,141 А | 52,107 А | 30,07 А |
25 кВт | 150,35 А | 86,741 А | 75,176 А | 65.134 А | 37,588 А |
30 кВт | 180,42 А | 104,09 А | 90,211 А | 78,161 А | 45,105 А |
35 кВт | 210.49 А | 121,44 А | 105,25 А | 91.188 А | 52,623 А |
40 кВт | 240,56 А | 138,79 А | 120,28 А | 104,21 А | 60,141 А |
45 кВт | 270,63 А | 156,13 А | 135,32 А | 117,24 А | 67.658 А |
50 кВт | 300,7 А | 173,48 А | 150,35 А | 130.27 А | 75,176 А |
55 кВт | 330,77 А | 190,83 А | 165,39 А | 143,3 А | 82,693 А |
60 кВт | 360,84 А | 208,18 А | 180,42 А | 156,32 А | 90,211 А |
65 кВт | 390,91 А | 225,53 А | 195,46 А | 169,35 А | 97,729 А |
70 кВт | 420.98 А | 242,88 А | 210,49 А | 182,38 А | 105,25 А |
75 кВт | 451,05 А | 260,22 А | 225,53 А | 195,4 А | 112,76 А |
80 кВт | 481,13 А | 277,57 А | 240,56 А | 208,43 А | 120,28 А |
85 кВт | 511,2 А | 294,92 А | 255,6 А | 221.46 А | 127,8 А |
90 кВт | 541,27 А | 312,27 А | 270,63 А | 234,48 А | 135,32 А |
95 кВт | 571,34 А | 329,62 А | 285,67 А | 247,51 А | 142,83 А |
100 кВт | 601,41 А | 346,97 А | 300,7 А | 260,54 А | 150,35 А |
125 кВт | 751.76 А | 433,71 А | 375,88 А | 325,67 А | 187,94 А |
150 кВт | 902,11 А | 520,45 А | 451,05 А | 390,81 А | 225,53 А |
175 кВт | 1052,5 А | 607,19 А | 526,23 А | 455,94 А | 263,12 А |
200 кВт | 1 202,8 А | 693,93 А | 601,41 А | 521.07 A | 300,7 А |
225 кВт | 1353,2 А | 780,67 А | 676,58 А | 586,21 А | 338,29 А |
250 кВт | 1 503,5 А | 867,41 А | 751,76 А | 651,34 А | 375,88 А |
275 кВт | 1653,9 А | 954,15 А | 826,93 А | 716,48 А | 413,47 А |
300 кВт | 1 804.2 А | 1040,9 А | 902,11 А | 781,61 А | 451,05 А |
325 кВт | 1 954,6 А | 1 127,6 А | 977,29 А | 846,75 А | 488,64 А |
350 кВт | 2104,9 А | 1214,4 А | 1052,5 А | 911,88 А | 526,23 А |
375 кВт | 2255,3 А | 1 301,1 А | 1,127.6 А | 977.01 А | 563,82 А |
400 кВт | 2405,6 А | 1387,9 А | 1 202,8 А | 1042,1 А | 601,41 А |
425 кВт | 2,556 А | 1474,6 А | 1 278 A | 1 107,3 А | 638,99 А |
450 кВт | 2706,3 А | 1561,3 А | 1353,2 А | 1172,4 А | 676.58 А |
475 кВт | 2 856,7 А | 1648,1 А | 1428,3 А | 1237,6 А | 714,17 А |
500 кВт | 3 007 А | 1734,8 А | 1 503,5 А | 1 302,7 А | 751,76 А |
525 кВт | 3 157,4 А | 1821,6 А | 1578,7 А | 1367,8 А | 789,35 А |
550 кВт | 3 307.7 А | 1 908,3 А | 1653,9 А | 1433 А | 826,93 А |
575 кВт | 3 458,1 А | 1 995,1 А | 1729 А | 1498,1 А | 864,52 А |
600 кВт | 3608,4 А | 2081,8 А | 1804,2 А | 1563,2 А | 902,11 А |
625 кВт | 3758,8 А | 2168,5 А | 1,879.4 А | 1628,4 А | 939,7 А |
650 кВт | 3 909,1 А | 2255,3 А | 1 954,6 А | 1693,5 А | 977,29 А |
675 кВт | 4 059,5 А | 2342 А | 2029,7 А | 1758,6 А | 1014,9 А |
700 кВт | 4209,8 А | 2428,8 А | 2104,9 А | 1823,8 А | 1052.5 А |
725 кВт | 4360,2 А | 2515,5 А | 2180,1 А | 1888,9 А | 1090 А |
750 кВт | 4510,5 А | 2 602,2 А | 2255,3 А | 1 954 А | 1 127,6 А |
775 кВт | 4 660,9 А | 2 689 А | 2330,5 А | 2019,2 А | 1165,2 А |
800 кВт | 4811.3 А | 2775,7 А | 2405,6 А | 2084,3 А | 1 202,8 А |
825 кВт | 4961,6 А | 2 862,5 А | 2480,8 А | 2149,4 А | 1240,4 А |
850 кВт | 5112 А | 2949,2 А | 2,556 А | 2214,6 А | 1 278 A |
875 кВт | 5 262,3 А | 3035,9 А | 2 631.2 А | 2279,7 А | 1315,6 А |
900 кВт | 5 412,7 А | 3 122,7 А | 2706,3 А | 2344,8 А | 1353,2 А |
925 кВт | 5 563 А | 3 209,4 А | 2781,5 А | 2,410 А | 1390,8 А |
950 кВт | 5713,4 А | 3296,2 А | 2 856,7 А | 2475,1 А | 1,428.3 А |
975 кВт | 5863,7 А | 3382,9 А | 2 931,9 А | 2540,2 А | 1465,9 А |
1000 кВт | 6 014,1 А | 3469,7 А | 3 007 А | 2605,4 А | 1 503,5 А |
Номинальный ток генератора (однофазный переменный ток)
Мощность | Ток при 120 В | Ток при 240 В |
---|---|---|
1 кВт | 10,417 А | 5,208 А |
2 кВт | 20,833 А | 10,417 А |
3 кВт | 31,25 А | 15,625 А |
4 кВт | 41,667 А | 20,833 А |
5 кВт | 52.083 А | 26.042 A |
6 кВт | 62,5 А | 31,25 А |
7 кВт | 72,917 А | 36,458 А |
8 кВт | 83.333 А | 41,667 А |
9 кВт | 93,75 А | 46,875 А |
10 кВт | 104,17 А | 52.083 А |
15 кВт | 156,25 А | 78,125 А |
20 кВт | 208.33 А | 104,17 А |
25 кВт | 260,42 А | 130,21 А |
30 кВт | 312,5 А | 156,25 А |
35 кВт | 364,58 А | 182,29 А |
40 кВт | 416,67 А | 208,33 А |
45 кВт | 468,75 А | 234,38 А |
50 кВт | 520,83 А | 260.42 А |
55 кВт | 572,92 А | 286,46 А |
60 кВт | 625 А | 312,5 А |
65 кВт | 677.08 А | 338,54 А |
70 кВт | 729,17 А | 364,58 А |
75 кВт | 781,25 А | 390,63 А |
80 кВт | 833,33 А | 416,67 А |
85 кВт | 885.42 А | 442,71 А |
90 кВт | 937,5 А | 468,75 А |
95 кВт | 989,58 А | 494,79 А |
100 кВт | 1041,7 А | 520,83 А |
125 кВт | 1 302,1 А | 651,04 А |
150 кВт | 1562,5 А | 781,25 А |
175 кВт | 1822,9 А | 911.46 А |
200 кВт | 2083,3 А | 1041,7 А |
225 кВт | 2343,8 А | 1171,9 А |
250 кВт | 2 604,2 А | 1 302,1 А |
275 кВт | 2 864,6 А | 1432,3 А |
300 кВт | 3,125 А | 1562,5 А |
325 кВт | 3385,4 А | 1692,7 А |
350 кВт | 3 645.8 А | 1822,9 А |
375 кВт | 3906,3 А | 1 953,1 А |
400 кВт | 4 166,7 А | 2083,3 А |
425 кВт | 4 427,1 А | 2213,5 А |
450 кВт | 4687,5 А | 2343,8 А |
475 кВт | 4947,9 А | 2474 А |
500 кВт | 5 208,3 А | 2 604.2 А |
525 кВт | 5468,8 А | 2734,4 А |
550 кВт | 5729,2 А | 2 864,6 А |
575 кВт | 5 989,6 А | 2994,8 А |
600 кВт | 6250 А | 3,125 А |
625 кВт | 6 510,4 А | 3 255,2 А |
650 кВт | 6770,8 А | 3385,4 А |
675 кВт | 7 031.3 А | 3515,6 А |
700 кВт | 7 291,7 А | 3645,8 А |
725 кВт | 7 552,1 А | 3776 А |
750 кВт | 7 812,5 А | 3906,3 А |
775 кВт | 8 072,9 А | 4036,5 А |
800 кВт | 8 333,3 А | 4 166,7 А |
825 кВт | 8 593,8 А | 4296.9 А |
850 кВт | 8 854,2 А | 4 427,1 А |
875 кВт | 9 114,6 А | 4557,3 А |
900 кВт | 9 375 А | 4687,5 А |
925 кВт | 9 635,4 А | 4817,7 А |
950 кВт | 9895,8 А | 4947,9 А |
975 кВт | 10 156 А | 5 078,1 А |
1000 кВт | 10 417 А | 5,208.3 А |
.
Ампер (А), электрический блок
Определение ампер
Ампер или ампер (обозначение: A) — это единица измерения электрического тока.
Устройство Ampere названо в честь Андре-Мари Ампера из Франции.
Один ампер определяется как ток, протекающий с электрическими заряд одного кулона в секунду.
1 А = 1 К / с
Амперметр
Амперметр или амперметр — это электрический прибор, который используется для измерения электрического тока в амперах.
Когда мы хотим измерить электрический ток на нагрузке, амперметр подключается последовательно к нагрузке.
Сопротивление амперметра близко к нулю, поэтому он не будет влияют на измеряемую цепь.
Таблица префиксов единиц ампер
наименование | символ | преобразование | , пример |
---|---|---|---|
микроампер (микроампер) | мкА | 1 мкА = 10 -6 А | I = 50 мкА |
миллиампер (миллиампер) | мА | 1 мА = 10 -3 А | I = 3 мА |
ампер (амперы) | А | – | I = 10A |
килоампер (килоампер) | кА | 1кА = 10 3 А | I = 2кА |
Как преобразовать ампер в микроампер (мкА)
Ток I в микроамперах (мкА) равен току I в амперах (А), деленному на 1000000:
I (мкА) = I (A) /1000000
Как преобразовать амперы в миллиампера (мА)
Ток I в миллиамперах (мА) равен току I в амперах (А), деленному на 1000:
I (мА) = I (A) /1000
Как перевести ампер в килоампер (кА)
Ток I в килоамперах (мА) равен току I в амперах (А), умноженному на 1000:
I (кА) = I (A) ⋅ 1000
Как преобразовать амперы в ватты (Вт)
Мощность P в ваттах (Вт) равна току I в амперах (A), умноженному на напряжение V в вольтах (В):
P (W) = I (A) ⋅ V (V)
Как преобразовать амперы в вольты (В)
Напряжение V в вольтах (В) равно мощности P в ваттах (Вт), деленной на ток I в амперах (A):
В (В) = P (Ш) / I (A)
Напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):
В (В) = I (A) ⋅ R (Ом)
Как преобразовать амперы в Ом (Ом)
Сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (A):
R (Ом) = В (В) / I (A)
Как перевести амперы в киловатты (кВт)
Мощность P в киловаттах (кВт) равна току I в амперах (A), умноженному на напряжение V в вольтах (В), деленному на 1000:
P (кВт) = I (A) ⋅ В (В) /1000
Как перевести ампер в киловольт-ампер (кВА)
Полная мощность S в киловольт-амперах (кВА) равна действующему току I RMS в амперах (A), умноженное на действующее значение напряжения V RMS в вольтах (В), деленное на 1000:
S (кВА) = I RMS (A) ⋅ В СКЗ (В) /1000
Как преобразовать амперы в кулоны (К)
Электрический заряд Q в кулонах (C) равен току I в амперах (A), умноженному на время протекания тока t в секундах (с):
Q (C) = I (A) ⋅ т (с)
См. Также
.Калькулятор преобразования
Вт / В / А / Ом
Ватт (Вт) — вольт (В) — амперы (А) — калькулятор Ом (Ом).
Рассчитывает мощность / вольтаж / текущий / сопротивление.
Введите 2 значений , чтобы получить другие значения, и нажмите кнопку Calculate :
Калькулятор ампер в ватт ►
Расчет Ом
Сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (A):
Сопротивление R в омах (Ом) равно квадрату напряжения V в вольтах (В), деленному на мощность P в ваттах (Вт):
Сопротивление R в омах (Ом) равно мощности P в ваттах (Вт), деленной на квадрат тока I в амперах (A):
Расчет ампер
Ток I в амперах (A) равен напряжению V в вольтах (V), деленному на сопротивление R в омах (Ω):
Ток I в амперах (A) равен мощности P в ваттах (Вт), деленной на напряжение V в вольтах (В):
Ток I в амперах (A) равен квадратному корню из мощности P в ваттах (Вт), деленному на сопротивление R в омах (Ом):
Расчет вольт
Напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):
Напряжение V в вольтах (В) равно мощности P в ваттах (Вт), деленной на ток I в амперах (A):
Напряжение V в вольтах (В) равно квадратному корню из мощности P в ваттах (Вт), умноженной на сопротивление R в омах (Ом):
Расчет ватт
Мощность P в ваттах (Вт) равна напряжению V в вольтах (В), умноженному на ток I в амперах (A):
Мощность P в ваттах (Вт) равна квадрату напряжения V в вольтах (В), деленному на сопротивление R в омах (Ом):
Мощность P в ваттах (Вт) равна квадрату тока I в амперах (А), умноженному на сопротивление R в омах (Ом):
Калькулятор закона Ома ►
См. Также
.
Ватт (Вт) электрический блок
Ватт разрешения
Ватт — это единица измерения мощности (обозначение: Вт).
Блок ватт назван в честь Джеймса Ватта, изобретателя паровой машины.
Один ватт определяется как расход энергии один джоуль в секунду.
1 Вт = 1 Дж / 1 с
Один ватт также определяется как ток в один ампер при напряжении в один вольт.
1 Вт = 1 В × 1 А
Калькулятор преобразования Ватт в мВт, кВт, МВт, ГВт, дБм, дБВт
Перевести ватт в милливатт, киловатт, мегаватт, гигаватт, дБм, дБВт.
Введите мощность в одно из текстовых полей и нажмите кнопку Convert :
Таблица префиксов единиц ватт
наименование | символ | преобразование | , пример |
---|---|---|---|
пиковатт | полувт | 1пВт = 10 -12 Вт | P = 10 полувольт |
нановатт | nW | 1нВт = 10 -9 Вт | P = 10 нВт |
микроватт | мкВт | 1 мкВт = 10 -6 Вт | P = 10 мкВт |
милливатт | мВт | 1 мВт = 10 -3 Вт | P = 10 мВт |
ватт | Вт | – | P = 10 Вт |
киловатт | кВт | 1кВт = 10 3 Вт | P = 2 кВт |
мегаватт | МВт | 1 МВт = 10 6 Вт | P = 5 МВт |
гигаватт | ГВт | 1ГВт = 10 9 Вт | P = 5 ГВт |
Как преобразовать ватт в киловатт
Мощность P в киловаттах (кВт) равна мощности P в ваттах (Вт), деленной на 1000:
P (кВт) = P (Вт) /1000
Как преобразовать ватт в милливатт
Мощность P в милливаттах (мВт) равна мощности P в ваттах (Вт), умноженной на 1000:
P (мВт) = P (Вт) ⋅ 1000
Как преобразовать ватт в дБм
Мощность P в децибел-милливаттах (дБм) равна десятикратному логарифму мощности P в милливатт (мВт), деленному на 1 милливатт:
P (дБм) = 10 ⋅ log 10 ( P (мВт) /1 мВт)
Как перевести ватты в амперы
Ток I в амперах (A) равен мощности P в ваттах (Вт), деленной на напряжение V в вольтах (В):
I (A) = P (W) / V (V)
Как преобразовать ватты в вольты
Напряжение V в вольтах (В) равно мощности P в ваттах (Вт), деленной на ток I в амперах (A):
В (В) = P (Ш) / I (А)
Как преобразовать ватты в Ом
R (Ом) = P (Вт) / I (A) 2
R (Ом) = В (В) 2 / P (Вт)
Как преобразовать ватт в BTU / час
P (БТЕ / час) = 3.412142 ⋅ P (Ш)
Как преобразовать ватт в джоули
E (Дж) = P (Ш) ⋅ т (с)
Как перевести ватты в лошадиные силы
P (л.с.) = P (Вт) /746
Как преобразовать ватт в кВА
Реальная мощность P в ваттах (Вт) равна 1000-кратной полной мощности S в киловольт-амперах (кВА), умноженной на коэффициент мощности (PF) или косинус фазового угла φ:
P (Вт) = 1000 S (кВА) ⋅ PF = 1000 ⋅ S (кВА) ⋅ cos φ
Как преобразовать ватт в VA
Реальная мощность P в ваттах (Вт) равна полной мощности S в вольтамперах (ВА), умноженной на коэффициент мощности (PF) или косинус фазового угла φ:
P (Вт) = S (ВА) ⋅ PF = S (ВА) ⋅ cos φ
Потребляемая мощность некоторых электрических компонентов
Сколько ватт потребляет дом? Сколько ватт потребляет телевизор? Сколько ватт потребляет холодильник?
Электрический компонент | Типичная потребляемая мощность в ваттах |
---|---|
ЖК телевизор | 30..300 Вт |
ЖК-монитор | 30..45 Вт |
ПК настольный компьютер | 300..400 Вт |
Портативный компьютер | 40..60 Вт |
Холодильник | 150..300 Вт (в активном состоянии) |
Лампочка | 25..100 Вт |
Люминесцентный свет | 15..60 Вт |
Галогенная лампа | 30..80 Вт |
Динамик | 10..300 Вт |
Микроволновая печь | 100..1000 Вт |
Кондиционер | 1..2 кВт |
Киловатт (кВт) ►
См. Также
.Преобразователь
кВт в А | Киловатт в Ампер
Киловатты и амперы — единицы измерения двух различных параметров электричества. В то время как первый количественно определяет количество мощности, потребляемой нагрузкой в любой момент времени, последний количественно определяет количество тока, потребляемого нагрузкой. Вы можете использовать следующий калькулятор для преобразования киловатт в амперы (квт в амперы). Введите кВт, напряжение, , тип напряжения и коэффициент мощности для расчета.
киловатт в ампер конвертер единиц
Как преобразовать киловатты в амперы?
Поскольку киловатт (кВт) является мерой мощности, а ампер (ампер или А) — мерой тока, кВт нельзя напрямую преобразовать в ампер или наоборот.Ниже приведены формулы, используемые для преобразования киловатт в амперы (кВт в амперы) .
Один киловатт = 1000 Вт
DC — киловатты (кВт) в амперы (амперы)
Для любой цепи постоянного тока, Ток, I = 1000 x кВт / В постоянного тока
Где Vdc — приложенное постоянное напряжение.
Следовательно, ток можно рассчитать из DC — кВт, разделив киловатт на напряжение и умножив его на 1000.
Однофазный переменный ток — от кВт до А
Для любой однофазной цепи переменного тока, Ток, I = 1000 x кВт / (Vac x P.F.)
Где Vac — это среднеквадратичное значение приложенного переменного напряжения, а P.F. коэффициент мощности нагрузки
Следовательно, ток может быть рассчитан из переменного тока — кВт путем деления кВт на произведение среднеквадратичного значения приложенного напряжения переменного тока и коэффициента мощности и умножения его на 1000.
Трехфазный переменный ток — от кВт до А
Для трехфазной цепи переменного тока , если линейное напряжение известно , ампер можно рассчитать из кВт по следующей формуле.
Для любой трехфазной цепи переменного тока, Ток, I = 1000 x кВт / (√3 x V L x P.F.)
Где V L — среднеквадратичное значение приложенного сетевого напряжения, а P.F. коэффициент мощности нагрузки
Следовательно, ампер можно рассчитать из переменного тока — кВт, разделив кВт на √3, умноженное на произведение действующего значения приложенного сетевого напряжения на коэффициент мощности, и умножив его на 1000.
Для трехфазной цепи переменного тока , если известно фазное напряжение , ампер можно рассчитать из кВт по следующей формуле.
Для любой трехфазной цепи переменного тока, Ток, I = 1000 x кВт / (3 x В ф. x P.F.)
Где V ph — среднеквадратичное значение приложенного фазного напряжения, а P.F. коэффициент мощности нагрузки
Следовательно, ток может быть рассчитан из переменного тока — кВт путем деления кВт на 3 произведения среднеквадратичного значения приложенного фазного напряжения на коэффициент мощности и умножения его на 1000.
КВт в Ампер справочная таблица
DC киловатт в амперы (кВт в амперы)
1136,36 A
Киловатт | Ампер при 110 В постоянного тока | Ампер при 220 В постоянного тока |
---|---|---|
1.0 кВт | 9,09 A | 4,55 A |
1,1 кВт | 10,00 A | 5,00 A |
1,5 кВт | 13,64 A | 6,82 A |
2,0 кВт | 18,18 A | 9,09 A |
2,2 кВт | 20,00 A | 10,00 A |
3,0 кВт | 27,27 A | 13,64 A |
4,0 кВт | 36,36 A | 18,18 A |
5.5 кВт | 50,00 A | 25,00 A |
7,5 кВт | 68,18 A | 34,09 A |
11,0 кВт | 100,00 A | 50,00 A |
15,0 кВт | 136,36 A | 68,18 A |
18,5 кВт | 168,18 A | 84,09 A |
22,0 кВт | 200,00 A | 100,00 A |
30,0 кВт | 272,73 A | 136.36 A |
37,0 кВт | 336,36 A | 168,18 A |
45,0 кВт | 409,09 A | 204,55 A |
55,0 кВт | 500,00 A | 250,00 A |
75,0 кВт | 681,82 A | 340,91 A |
90,0 кВт | 818,18 A | 409,09 A |
110,0 кВт | 1000,00 A | 500,00 A |
132.0 кВт | 1200,00 A | 600,00 A |
160,0 кВт | 1454,55 A | 727,27 A |
200,0 кВт | 1818,18 A | 909.09 A |
25093 кВт | 2272,73 A | |
315,0 кВт | 2863,64 A | 1431,82 A |
355,0 кВт | 3227,27 A | 1613,64 A |
400,0 кВт | 3636.36 A | 1818,18 A |
500,0 кВт | 4545,45 A | 2272,73 A |
560,0 кВт | 5090,91 A | 2545,45 A |
630,0 кВт | 5727,27 A 9004 | |
710,0 кВт | 6454,55 A | 3227,27 A |
800,0 кВт | 7272,73 A | 3636,36 A |
900,0 кВт | 8181,82 A | 4090.91 A |
1000,0 кВт | 9090,91 A | 4545,45 A |
Однофазные киловатты в амперы (кВт в амперы) при P.F. из 0,95
45,0 кВт132,0 кВт
355,0 кВт
710,0 кВт
Киловатт | Ампер при 120 В переменного тока | Ампер при 220 В переменного тока | Ампер при 230 В переменного тока | |||
---|---|---|---|---|---|---|
1,0 кВт | 8,77 A | 4,78 A | 4,58 A | |||
1,1 кВт | 9,65 A | 5,26 А | 5.03 A | |||
1,5 кВт | 13,16 A | 7,18 A | 6,86 A | |||
2,0 кВт | 17,54 A | 9,57 A | 9,15 A | |||
2,2 кВт | 19,30 A | 10,53 A | 10,07 A | |||
3,0 кВт | 26,32 A | 14,35 A | 13,73 A | |||
4,0 кВт | 35,09 A | 19,14 A | 18,31 A | |||
5.5 кВт | 48,25 A | 26,32 A | 25,17 A | |||
7,5 кВт | 65,79 A | 35,89 A | 34,32 A | |||
11,0 кВт | 96,49 A | 52,63 A | 50,34 A | |||
15,0 кВт | 131,58 A | 71,77 A | 68,65 A | |||
18,5 кВт | 162,28 A | 88,52 A | 84,67 A | |||
22,0 кВт | 192.98 A | 105,26 A | 100,69 A | |||
30,0 кВт | 263,16 A | 143,54 A | 137,30 A | |||
37,0 кВт | 324,56 A | 177,03 A | 169,34 A | |||
394,74 A | 215,31 A | 205,95 A | ||||
55,0 кВт | 482,46 A | 263,16 A | 251,72 A | |||
75,0 кВт | 657.89 A | 358,85 A | 343,25 A | |||
90,0 кВт | 789,47 A | 430,62 A | 411,90 A | |||
110,0 кВт | 964,91 A | 526,32 A | 503,43 A | 1157,89 A | 631,58 A | 604,12 A |
160,0 кВт | 1403,51 A | 765,55 A | 732,27 A | |||
200,0 кВт | 1754.39 A | 956,94 A | 915,33 A | |||
250,0 кВт | 2192,98 A | 1196,17 A | 1144,16 A | |||
315,0 кВт | 2763,16 A | 1507,18 A | ||||
3114,04 A | 1698,56 A | 1624,71 A | ||||
400,0 кВт | 3508,77 A | 1913,88 A | 1830,66 A | |||
500,0 кВт | 4385.96 A | 2392,34 A | 2288,33 A | |||
560,0 кВт | 4912,28 A | 2679,43 A | 2562,93 A | |||
630,0 кВт | 5526,32 A | 3014,35 A | 2883,30 | |||
6228,07 A | 3397,13 A | 3249,43 A | ||||
800,0 кВт | 7017,54 A | 3827,75 A | 3661,33 A | |||
900.0 кВт | 7894,74 A | 4306,22 A | 4118,99 A | |||
1000,0 кВт | 8771,93 A | 4784,69 A | 4576,66 A |
Трехфазные киловатты в амперы (от кВт до ампер) при из 0,95
Киловатт | Ампер при 208 В переменного тока | Ампер при 280 В переменного тока | Ампер при 415 В переменного тока | Ампер при 440 В переменного тока | Ампер при 690 В переменного тока |
---|---|---|---|---|---|
1.0 кВт | 2,76 A | 2,17 A | 1,46 A | 1,38 A | 0,88 A |
1,1 кВт | 3,04 A | 2,39 A | 1,61 A | 1,52 A | 0,97 A |
1,5 кВт | 4,14 A | 3,26 A | 2,20 A | 2,07 A | 1,32 A |
2,0 кВт | 5,53 A | 4,34 A | 2,93 A | 2,76 A | 1.76 A |
2,2 кВт | 6,08 A | 4,78 A | 3,22 A | 3,04 A | 1,94 A |
3,0 кВт | 8,29 A | 6,51 A | 4,39 A | 4,14 A | 2,64 A |
4,0 кВт | 11,05 A | 8,68 A | 5,86 A | 5,53 A | 3,52 A |
5,5 кВт | 15,19 A | 11,94 A | 8,05 A | 7.60 A | 4,84 A |
7,5 кВт | 20,72 A | 16,28 A | 10,98 A | 10,36 A | 6,61 A |
11,0 кВт | 30,39 A | 23,88 A | 16,11 A | 15,19 A | 9,69 A |
15,0 кВт | 41,44 A | 32,56 A | 21,97 A | 20,72 A | 13,21 A |
18,5 кВт | 51,11 A | 40.16 A | 27,09 A | 25,55 A | 16,29 A |
22,0 кВт | 60,78 A | 47,75 A | 32,22 A | 30,39 A | 19,38 A |
30,0 кВт | 82,88 A | 65,12 A | 43,93 A | 41,44 A | 26,42 A |
37,0 кВт | 102,21 A | 80,31 A | 54,19 A | 51,11 A | 32,59 A |
45.0 кВт | 124,31 A | 97,67 A | 65,90 A | 62,16 A | 39,64 A |
55,0 кВт | 151,94 A | 119,38 A | 80,55 A | 75,97 A | 48,44 A |
75,0 кВт | 207,19 A | 162,79 A | 109,84 A | 103,59 A | 66,06 A |
90,0 кВт | 248,63 A | 195,35 A | 131.80 A | 124.31 A | 79,27 A |
110,0 кВт | 303,88 A | 238,76 A | 161,09 A | 151,94 A | 96,89 A |
132,0 кВт | 364,65 A | 286,53 A | 182,33 A | 116,27 A | |
160,0 кВт | 442,00 A | 347,29 A | 234,32 A | 221,00 A | 140,93 A |
200,0 кВт | 552.50 A | 434,11 A | 292,89 A | 276,25 A | 176,16 A |
250,0 кВт | 690,63 A | 542,64 A | 366,12 A | 345,32 A | 220.20 A |
315 315 315 315 | 870,19 A | 683,72 A | 461,31 A | 435,10 A | 277,45 A |
355,0 кВт | 980,70 A | 770,55 A | 519,89 A | 490.35 A | 312,69 A |
400,0 кВт | 1105,01 A | 868,22 A | 585,79 A | 552,50 A | 352,32 A |
500,0 кВт | 1381,26 A | 1085,28 A | 690,63 A | 440,40 A | |
560,0 кВт | 1547,01 A | 1215,51 A | 820,10 A | 773,51 A | 493,25 A |
630.0 кВт | 1740,39 A | 1367,45 A | 922,62 A | 870,19 A | 554,91 A |
710,0 кВт | 1961,39 A | 1541,09 A | 1039,77 A | 980,7025 A | |
800,0 кВт | 2210,02 A | 1736,44 A | 1171,58 A | 1105,01 A | 704,64 A |
900,0 кВт | 2486,27 A | 1953,50 A | 1318.02 A | 1243,14 A | 792,72 A |
1000,0 кВт | 2762,52 A | 2170,55 A | 1464,47 A | 1381,26 A | 880,80 A |
Полезный ресурс: электрические двигатели — полная нагрузка -Токи полной нагрузки для двигателей 460 В, 230 В и 115 В — одно- и трехфазные
Прочие калькуляторы кВт и ампер
Калькулятор преобразования
кВт в Ампер • Электрические калькуляторы Org
Калькулятор преобразования
кВт в Ампер используется для расчета ампер из известных киловатт мощности в цепях постоянного, одно-, двух- или трехфазного переменного тока.Введите известные кВт и системные напряжения, чтобы найти ток в цепи.
От постоянного тока кВт до А
Это отношение 1000 кВт к напряжению системы.
Математически
I = [кВт * 1000] / E
Пример: приводной клиновой ремень генератора постоянного тока мощностью 50 кВт, 100 В постоянного тока на электростанции по производству цемента. Найдите амперы.
Решение: I = [50 * 1000] / 100 = 500 А
Однофазный кВт до А
Однофазные и все другие цепи переменного тока вводят дополнительное понятие коэффициента мощности в знаменателе.Однофазная формула — это отношение коэффициента мощности, умноженного на тысячу киловатт, на рабочее напряжение.
Математически
I = [кВт * 1000] / [E * PF]
Пример: Однофазная цепь переменного тока на 120 В имеет нагрузку 20 кВт. Система работает с коэффициентом мощности 0,85. Посчитайте амперы.
Решение: I = [20 кВт * 1000] / [120 * 0,85] = 196 A
Двухфазный, от кВт до А
Здесь формула идентична предыдущей с той разницей, что в знаменателе введено 2.
Математическое уравнение:
I = [кВт * 1000] / [E * PF * 2]
Пример: Двухфазная цепь 200 В, работающая при 0,8 PF, нагружена нагрузкой 10 кВт. Найдите ток.
Решение: I = [10 * 1000] / [200 * 0,8 * 2] = 31,25 A
Трехфазный, кВт до А
Расчет трехфазной мощности в токе в амперах включает соотношение в 1000 кВт к коэффициенту мощности, умноженному на напряжение, и дополнительный коэффициент 1,73, который представляет собой эквивалент √3 и добавляется, потому что схема является трехфазной по своей природе.
Математически:
I = [кВт * 1000] / [E * PF * 1,73]
Пример: к трехфазной цепи на 400 В подключена нагрузка 50 кВт. Найдите ток, если коэффициент мощности равен 0,9.
Решение: I = [50 * 1000] / [400 * 0,9 * 1,73] = 80,28 A
Другие калькуляторы:
Калькулятор тока трехфазного асинхронного двигателя: полезный калькулятор для определения FLA и RLA в трехфазном асинхронном двигателе
Калькулятор счетов за электроэнергию: используется для определения стоимости бытовых приборов в вашем счете.
Калькулятор цветового кода 4-полосного резистора
: полезный инструмент для расшифровки 4-х полосных резисторов.
Калькулятор цветовой кодировки 5-полосного резистора: Выдает значение 4-полосного резистора.
Калькулятор резонансной частоты RLC: полезный электронный инструмент для определения частоты, на которой резонирует цепь.
Калькулятор
Киловатт в Ампер (кВт до А) Ток полной нагрузки (FLA)
Киловатт в ампер Калькулятор (кВт до А):
С помощью нашего калькулятора кВт в А вы можете онлайн преобразовать киловатты постоянного тока, однофазные и трехфазные киловатты в амперы.Для этого просто введите значения кВт и напряжения в два нижеприведенных поля и, нажав кнопку расчета, получите ответ в амперах. Для переменного тока также необходимо ввести значение коэффициента мощности.
Для постоянного тока:
Ток в амперах (A) равен 1000 кВт и делится на напряжение в вольтах
I (A) = 1000 × P (кВт) / V (V)
Другими словами,
Ампер = 1000 * кВт / Вольт.
для одной фазы:
Как мы уже говорили ранее, нам также нужно указать коэффициент мощности. Переменный ток в 1000 раз превышает реальную мощность и делится на произведение напряжения и коэффициента мощности. Следовательно, для расчета однофазных кВт в Ампер формула принимает следующий вид:
I (A) = 1000 × P (кВт) / ( PF × V (вольт) )
А = 1000 * кВт / пФ * В (В)
Здесь P (кВт) — активная мощность,
для трехфазного:
Трехфазный ток I (A) равен 1000-кратной реальной мощности, деленной на 3-кратное умножение напряжения между линией и нейтралью и коэффициентом мощности.
I (A) = 1000 × P (кВт) / (3 × PF × V L-N (V) )
Если рассматривать линейное напряжение, оно станет
I (A) = 1000 × P (кВт) / ( √ 3 × PF × V L-L (V) )
Давайте рассмотрим простой пример.
A Данные на паспортной табличке трехфазного двигателя: 5.5 кВт, 415 В между фазами, и работающий при коэффициенте мощности 0,86. Рассчитайте ток в амперах.
I (A) = 1000 × 5,5 / ( √ 3 × 0,86 × 440 )
I (A) = 5500 / (1,732 * 415 * 0,86)
I (A) = 8,9 А
Преобразование
киловатт в амперы:
В приведенных ниже таблицах приведены значения преобразования номинальной мощности стандартного двигателя в кВт в номинальный ток полной нагрузки в ампер при 0.86 пф.
S. No. | кВт | пф | В (L-L) | А |
1 | 0,75 | 0,86 | 415 | 1,213296 |
2 | 1,1 | 0,86 | 415 | 1.779501 |
3 | 1,5 | 0,86 | 415 | 2.426592 |
4 | 2,2 | 0,86 | 415 | 3,559002 |
5 | 3,7 | 0,86 | 415 | 5.985594 |
6 | 5,5 | 0,86 | 415 | 8.8 |
7 | 7,5 | 0,86 | 415 | 12,13296 |
8 | 11 | 0.86 | 415 | 17.79501 |
9 | 15 | 0,86 | 415 | 24.26592 |
10 | 22 | 0,86 | 415 | 35.59002 |
11 | 37 | 0,86 | 415 | 59.85594 |
12 | 50 | 0,86 | 415 | 80,88641 |
13 | 75 | 0.86 | 415 | 121.3296 |
14 | 90 | 0,86 | 415 | 145,5955 |
15 | 110 | 0,86 | 415 | 177.9501 |
16 | 132 | 0,86 | 415 | 213,5401 |
17 | 150 | 0,86 | 415 | 242,6592 |
18 | 175 | 0.86 | 415 | 283.1024 |
19 | 220 | 0,86 | 415 | 355.9002 |
20 | 250 | 0,86 | 415 | 404.4321 |
21 | 280 | 0,86 | 415 | 452.9639 |
22 | 310 | 0,86 | 415 | 501.4958 |
23 | 350 | 0.86 | 415 | 566.2049 |
24 | 375 | 0,86 | 415 | 606.6481 |
25 | 420 | 0,86 | 415 | 679,4459 |
Мощность генератора
, кВА, таблица преобразования силы тока
кВА (киловольт-ампер) — это рейтинг, наиболее часто используемый для определения выходной мощности генератора. Чем выше рейтинг кВА, тем большую мощность производит генератор.Для обеспечения достаточной мощности вашего оборудования вам понадобится генератор с подходящей KVA. Наша диаграмма зависимости мощности генератора от киловольт-амперной характеристики поможет вам определить правильное преобразование киловатт-ампер-ампер в киловатт или ампер, которое соответствует вашим потребностям в мощности. Учитывая различные факторы, влияющие на силу тока, обратите внимание, что эта таблица предназначена для использования в качестве оценки, а не для точного расчета вашей потребности в силе тока.
График преобразования мощности генератора в кВА к силе тока 80% КОЭФФИЦИЕНТ МОЩНОСТИ | |||||||||||
кВ • А | кВт | 208В | 220 В | 240 В | 380 В | 440В | 480 В | 600 В | 2400 В | 3300В | 4160В |
6.3 | 5 | 17,5 | 16,5 | 15,2 | 9,6 | 8,3 | 7,6 | 6,1 | |||
9,4 | 7,5 | 26,1 | 24,7 | 22,6 | 14,3 | 12,3 | 11,3 | 9,1 | |||
12,5 | 10 | 34,7 | 33 | 30.1 | 19,2 | 16,6 | 15,1 | 12 | |||
18,7 | 15 | 52 | 49,5 | 45 | 28,8 | 24,9 | 22,5 | 18 | |||
25 | 20 | 69,5 | 66 | 60,2 | 38,4 | 33,2 | 30.1 | 24 | 6 | 4,4 | 3,5 |
31,3 | 25 | 87 | 82,5 | 75,5 | 48 | 41,5 | 37,8 | 30 | 7,5 | 5,5 | 4,4 |
37,5 | 30 | 104 | 99 | 90,3 | 57,6 | 49,8 | 45,2 | 36 | 9,1 | 6.6 | 5,2 |
50 | 40 | 139 | 132 | 120 | 77 | 66,5 | 60 | 48 | 12,1 | 8,8 | 7 |
62,5 | 50 | 173 | 165 | 152 | 96 | 83 | 76 | 61 | 15,1 | 10,9 | 8,7 |
75 | 60 | 208 | 198 | 181 | 115 | 99.5 | 91 | 72 | 18,1 | 13,1 | 10,5 |
93,8 | 75 | 261 | 247 | 226 | 143 | 123 | 113 | 90 | 22,6 | 16,4 | 13 |
100 | 80 | 278 | 264 | 240 | 154 | 133 | 120 | 96 | 24.1 | 17,6 | 13,9 |
125 | 100 | 347 | 330 | 301 | 192 | 166 | 150 | 120 | 30 | 21,8 | 17,5 |
156 | 125 | 433 | 413 | 375 | 240 | 208 | 188 | 150 | 38 | 27,3 | 22 |
187 | 150 | 520 | 495 | 450 | 288 | 249 | 225 | 180 | 45 | 33 | 26 |
219 | 175 | 608 | 577 | 527 | 335 | 289 | 264 | 211 | 53 | 38 | 31 |
250 | 200 | 694 | 660 | 601 | 384 | 332 | 301 | 241 | 60 | 44 | 35 |
312 | 250 | 866 | 825 | 751 | 480 | 415 | 376 | 300 | 75 | 55 | 43 |
375 | 300 | 1040 | 990 | 903 | 576 | 498 | 451 | 361 | 90 | 66 | 52 |
438 | 350 | 1220 | 1155 | 1053 | 672 | 581 | 527 | 422 | 105 | 77 | 61 |
500 | 400 | 1390 | 1320 | 1203 | 770 | 665 | 602 | 481 | 120 | 88 | 69 |
625 | 500 | 1735 | 1650 | 1504 | 960 | 830 | 752 | 602 | 150 | 109 | 87 |
750 | 600 | 2080 | 1980 | 1803 | 1150 | 996 | 902 | 721 | 180 | 131 | 104 |
875 | 700 | 2430 | 2310 | 2104 | 1344 | 1274 | 1052 | 842 | 210 | 153 | 121 |
1000 | 800 | 2780 | 2640 | 2405 | 1540 | 1330 | 1203 | 962 | 241 | 176 | 139 |
1125 | 900 | 3120 | 2970 | 2709 | 1730 | 1495 | 1354 | 1082 | 271 | 197 | 156 |
1250 | 1000 | 3470 | 3300 | 3009 | 1920 | 1660 | 1504 | 1202 | 301 | 218 | 174 |
1563 | 1250 | 4350 | 4130 | 3740 | 2400 | 2080 | 1885 | 1503 | 376 | 273 | 218 |
1875 | 1500 | 5205 | 4950 | 4520 | 2880 | 2490 | 2260 | 1805 | 452 | 327 | 261 |
2188 | 1750 | 5280 | 3350 | 2890 | 2640 | 2106 | 528 | 380 | 304 | ||
2500 | 2000 | 6020 | 3840 | 3320 | 3015 | 2405 | 602 | 436 | 348 | ||
2812 | 2250 | 6780 | 4320 | 3735 | 3400 | 2710 | 678 | 491 | 392 | ||
3125 | 2500 | 7520 | 4800 | 4160 | 3740 | 3005 | 752 | 546 | 435 | ||
3750 | 3000 | 9040 | 5760 | 4980 | 4525 | 3610 | 904 | 654 | 522 | ||
4375 | 3500 | 10550 | 6700 | 5780 | 5285 | 4220 | 1055 | 760 | 610 | ||
5000 | 4000 | 12040 | 7680 | 6640 | 6035 | 4810 | 1204 | 872 | 695 |
Запросить цену Узнать больше Подпишитесь на электронную почту
Расчет кВА к усилителям для генераторов
Один кВА равен 1000 вольт-ампер и рассчитывается путем умножения напряжения на ампер.KVA конвертируются в AMP. Наша диаграмма KVA в AMP позволяет вам точно увидеть, в какие кВт или напряжение преобразуется данный номинальный KVA, чтобы вы могли безопасно и адекватно питать свой генератор, не беспокоясь о перегрузке по мощности, которая потенциально может повредить ваш генератор и подключенное к нему оборудование.
Поскольку генераторы бывают разных размеров и разной выходной мощности, KVA будут иметь разную мощность, которую они обеспечивают. Используйте нашу легко читаемую диаграмму силы тока генератора, чтобы оценить, сколько энергии вам нужно для вашего оборудования.Помните, что в нашей таблице преобразования силы тока указан коэффициент мощности 80% по сравнению с полной мощностью. Это означает, что 80% входящей мощности выполняет полезную работу.
Lex Products ™ предлагает решения по распределению энергии, необходимые для всех ваших портативных источников питания. Lex Products ™ обладает знаниями, опытом, высококачественными продуктами и таблицами конверсии, чтобы помочь вам выполнить работу правильно, от военной сферы до индустрии развлечений и всего остального. Свяжитесь с Lex Products ™ сегодня, чтобы получить индивидуальные конфигурации или рекомендации по вашим потребностям в питании.
Простой калькулятор и формула преобразования кВт в А — Wira Electrical
Калькулятор преобразования кВт в А, формула и Пример — Киловатты и амперы важны как параметры электричества и электрической цепи. Ватт — это параметр для расчета мощности, потребляемой нагрузкой, и мощности, подаваемой в цепь. Когда мы говорим о 1 киловатте, это означает 1000 ватт. Ампер — это параметр для расчета тока, потребляемого нагрузкой, и тока, подаваемого в цепь.Мы узнаем, как преобразовать 1 кВт в ампер (1 киловатт в ампер) .
Если вы хотите преобразовать кВт в амперы (мощность в ток) или наоборот, вы можете легко использовать калькулятор кВт в амперы, указанный ниже. Просто выберите фазу напряжения, значение мощности, значение напряжения и коэффициент мощности. Вы также можете использовать преобразователь ампер в кВт, просто нажав кнопку. Результаты показаны ниже преобразователя квт в ампер .
Калькулятор киловатт в амперы
Как произвести расчет киловатт в амперы
Как указано выше, киловатты (кВт) — это измерение мощности, а ампер (А) — это измерение тока.Мы можем напрямую преобразовывать ватты в амперы и наоборот, но преобразование кВт в амперы и наоборот не может быть выполнено напрямую. Помимо ватт и ампер, мы также включаем в преобразование измерение напряжения. Сначала мы должны понять, что:
1 киловатт = 1000 ватт.
Из предыдущей основной формулы мощности мы знаем, что:
Цепи постоянного тока — киловатты (кВт) в амперы (А)
Если мы используем цепь постоянного тока,
Где:
I = Постоянный ток
В = постоянное напряжение
Проще говоря, мы можем получить ампер, разделив киловатты на напряжение и умножив его на 1000.
Для облегчения объяснения рассмотрим приведенный ниже пример:
У нас есть схема с мощностью 1 кВт при 120 вольт. Ампер будет:
ампер = (кВт × 1000) ÷ вольт
ампер = (1 × 1000) ÷ 120
ампер = 1000 ÷ 120
ампер = 8,33 А
однофазных цепей переменного тока — киловатт ( кВт) в ампер (Амперы)
Если мы используем однофазную цепь переменного тока,
Где:
I = переменный ток (среднеквадратичное значение)
В переменного тока = переменное напряжение (действующее значение)
П.F = коэффициент мощности
Проще говоря, мы можем получить ток, разделив киловатты на произведение среднеквадратичного напряжения переменного тока и коэффициента мощности, а затем умножить его на 1000.
Для упрощения объяснения рассмотрим приведенный ниже пример:
У нас есть схема с генератором мощностью 5 кВт, КПД 80% (0,8 PF) при 120 вольт. Ампер будет:
ампер = (кВт × 1000) ÷ (PF × вольт)
ампер = (5 × 1000) ÷ (0,8 × 120)
ампер = 5000 ÷ 96
ампер = 52.1A
Трехфазные цепи переменного тока — киловатты (кВт) в амперы (амперы)
Если мы используем трехфазную цепь переменного тока,
Где:
I = переменный ток (действующий)
В L = линейное напряжение переменного тока (среднеквадратичное значение)
PF = коэффициент мощности
Проще говоря, мы можем получить ток путем деления киловатт на произведение между √3, среднеквадратичным значением напряжения переменного тока и коэффициентом мощности, а затем умножить его на 1000.
Если значение фазного напряжения уже известно, мы можем рассчитать ампер из кВт по следующей формуле:
Где
В ф. = фазное напряжение переменного тока (среднеквадратичное значение)
Проще говоря, мы Ампер можно получить, разделив киловатты на произведение между 3, среднеквадратичным фазным напряжением переменного тока и коэффициентом мощности, а затем умножив полученное значение на 1000.
Для облегчения объяснения рассмотрим приведенный ниже пример:
У нас есть схема с трехфазным генератором мощностью 25 кВт, КПД 80% (0,8 PF) при 240 вольтах. Ампер будет:
А = (кВт × 1000) ÷ (√3 × PF × В)
А = (25 × 1000) ÷ (1,73 × 0,8 × 240
А = 75,18 А
кВт Таблица преобразования в амперы
Вы можете найти значение в амперах из известных киловатт в таблицах ниже:
Киловатт постоянного тока в амперы (кВт в амперы).
Таблица преобразования кВт в амперы при 110 В постоянного тока и 220 В постоянного тока .
514520 кВт
9102
9004 9102 9102
9004
KILOWATT | AMPS при 110 В пост. Тока | AMPS при 220 В пост. | 10,00 A | 5,00 A | |||
1.5 кВт | 13,64 A | 6,82 A | |||||
2,0 кВт | 18,18 A | 9,09 A | |||||
9,09 A | |||||||
94,00 ,99 | 10,00 A | ||||||
3,0 кВт | 27,27 A | 13,64 A | |||||
4,0 кВт | 36.36 A | 18,18 A | |||||
5,5 кВт | 50,00 A | 25,00 A | |||||
7,5 кВт | 9002 7,5 кВт | 9002 94 A | |||||
11,0 кВт | 100,00 A | 50,00 A | |||||
15,0 кВт | 136,36 A | 68.18 A | |||||
18,5 кВт | 168,18 A | 84,09 A | |||||
22,0 кВт | 200,00 A | 10094 900,00 A | 10094 900,00 A | 100,00 A | 272,73 A | 136,36 A | |
37,0 кВт | 336,36 A | 168,18 A | |||||
0 кВт | 409,09 A | 204,55 A | |||||
55,0 кВт | 500,00 A | 250,00 A | |||||
0 | |||||||
00 | 340,91 A | ||||||
90,0 кВт | 818,18 A | 409,09 A | |||||
110,0 кВт | 1000.00 A | 500,00 A | |||||
132,0 кВт | 1200,00 A | 600,00 A | |||||
160,0 кВт | 1454,55 | 1454,55 | 1454,55 A | ||||
200,0 кВт | 1818,18 A | 909,09 A | |||||
250,0 кВт | 2272,73 A | 1136.36 A | |||||
315,0 кВт | 2863,64 A | 1431,82 A | |||||
355,0 кВт | 355,0 кВт | 9002 | 3227.27 A 2 | 0 | 3636,36 A | 1818,18 A | |
500,0 кВт | 4545,45 A | 2272,73 A | |||||
5090,91 A | 2545,45 A | ||||||
630,0 кВт | 5727,27 A | 2863,64 A | 54 | 3227,27 A | |||
800,0 кВт | 7272,73 A | 3636,36 A | |||||
900,0 кВт | 8181.82 A | 4090,91 A | |||||
1000,0 кВт | 9090.91 A | 4545,45 A |
Amps.
Однофазные киловатты в амперы (киловатты в амперы) при P.F. 0,95
3,014 900
9002 51452.5 кВт
71.77 A
00
00
9
KILOWATT | AMPS при 120VAC | AMPS при 220VAC | AMPS при 230VAC | ||||||
1.0 кВт | 8,77 A | 4,78 A | 4,58 A | ||||||
1,1 кВт | 9,65 A | 5,2914 A 82 9009 | 5,26 A 2 9009 | 1,5 кВт | 13,16 A | 7,18 A | 6,86 A | ||
2,0 кВт | 17,54 A | 9.57 A | 9,15 A | ||||||
2,2 кВт | 19,30 A | 10,53 A | 10,07 A | ||||||
3,014 900 | |||||||||
14,35 A | 13,73 A | ||||||||
4,0 кВт | 35,09 A | 19,14 A | 18,31 A | ||||||
48,25 A | 26,32 A | 25,17 A | |||||||
7,5 кВт | 65,79 A | 35,8914 A 000 0009 | 11,0 кВт | 96,49 A | 52,63 A | 50,34 A | |||
15,0 кВт | 131,58 A 00 | 68,65 A | |||||||
18,5 кВт | 162,28 A | 88,52 A | 84,67 A | ||||||
0 | |||||||||
0 | |||||||||
0 | 105,26 A | 100,69 A | |||||||
30,0 кВт | 263,16 A | 143,54 A | 137.30 A | ||||||
37,0 кВт | 324,56 A | 177,03 A | 169,34 A | ||||||
45,0 кВт | 45,0 кВт | 205,95 A | |||||||
55,0 кВт | 482,46 A | 263,16 A | 251,72 A | ||||||
75.0 кВт | 657,89 A | 358,85 A | 343,25 A | ||||||
90,0 кВт | 789,47 A | 789,47 A | 900 | 110,0 кВт | 964,91 A | 526,32 A | 503,43 A | ||
132,0 кВт | 1157.89 A | 631,58 A | 604,12 A | ||||||
160,0 кВт | 1403,51 A | 765,55 A | 765,55 A | 7329 073294 0 | 200000 | 1754,39 A | 956,94 A | 915,33 A | |
250,0 кВт | 2192,98 A | 1196.17 A | 1144,16 A | ||||||
315,0 кВт | 2763,16 A | 1507,18 A | 1441.65 A | 1441,65 A | |||||
900 | 1698,56 A | 1624,71 A | |||||||
400,0 кВт | 3508,77 A | 1913,88 A | 1830.66 A | ||||||
500,0 кВт | 4385,96 A | 2392,34 A | 2288,33 A | ||||||
560,0 кВт 4 | 560,0 кВт 4 | 49002 | 2562,93 A | ||||||
630,0 кВт | 5526,32 A | 3014,35 A | 2883,30 A | ||||||
710.0 кВт | 6228,07 A | 3397,13 A | 3249,43 A | ||||||
800,0 кВт | 7017,54 A | 7017,54 A | 382 900 | 38000 | |||||
900,0 кВт | 7894,74 A | 4306,22 A | 4118,99 A | ||||||
1000,0 кВт | 8771.93 A | 4784,69 A | 4576,66 A |
Номинальные значения тока генератора основаны на выходной мощности в киловаттах при однофазном переменном токе 120 и 240 В с коэффициентом мощности 0,8
.31452
9009
.31452
3
650
0
,42752
,42782
,42752,19
,1
0
,1
0
,1
,1
0
Мощность | Ток при 120 В | Ток при 240 В | ||||
1 кВт | 10.417 A | 5.208 A | ||||
833 A | 10,417 A | |||||
3 кВт | 31,25 A | 15,625 A | ||||
4 кВт | 4 кВт | |||||
5 кВт | 52,083 A | 26,042 A | ||||
6 кВт | 62,5 A | 31.25 A | ||||
7 кВт | 72,917 A | 36,458 A | ||||
8 кВт | 83,333 A | 93,75 A | 46,875 A | |||
10 кВт | 104,17 A | 52,083 A | ||||
156.25 A | 78,125 A | |||||
20 кВт | 208,33 A | 104,17 A | ||||
25 кВт | 260,42 900,21 | |||||
30 кВт | 312,5 A | 156,25 A | ||||
35 кВт | 364,58 A | 182.29 A | ||||
40 кВт | 416,67 A | 208,33 A | ||||
45 кВт | 468,75 A | 520,83 A | 260,42 A | |||
55 кВт | 572,92 A | 286,46 A | ||||
0 | ||||||
0 | 0 312.5 A | |||||
65 кВт | 677,08 A | 338,54 A | ||||
70 кВт | 729,17 A | 364,594 | 364,5 | 781,25 A | 390,63 A | |
80 кВт | 833,33 A | 416,67 A | ||||
02 | ||||||
02 | A | 442,71 A | ||||
90 кВт | 937,5 A | 468,75 A | ||||
95 кВт | 989 | 989 | 989 | 989 | ||
100 кВт | 1041,7 A | 520,83 A | ||||
125 кВт | 1,302,1 A | 651.04 A | ||||
150 кВт | 1562,5 A | 781,25 A | ||||
175 кВт | 1822,9 A | 911,46 0911,46 | 2083,3 A | 1041,7 A | ||
225 кВт | 2343,8 A | 1,171,9 A | ||||
250 кВт | ||||||
250 кВт | ||||||
250 кВт 2 A | 1302,1 A | |||||
275 кВт | 2,864,6 A | 1,432,3 A | ||||
300 кВт | ||||||
325 кВт | 3385,4 A | 1692,7 A | ||||
350 кВт | 3645,8 A | 1822.9 A | ||||
375 кВт | 3,906,3 A | 1,953,1 A | ||||
400 кВт | 4,166,7 A | 9009 | 4427,1 A | 2213,5 A | ||
450 кВт | 4687,5 A | 2343,8 A | ||||
475 | ||||||
4759 A | 2,474 A | |||||
500 кВт | 5,208,3 A | 2,604,2 A | ||||
525 кВт | 525 кВт | 525 кВт | 525 | |||
550 кВт | 5729,2 A | 2 864,6 A | ||||
575 кВт | 5 989,6 A | 2994.8 A | ||||
600 кВт | 6250 A | 3,125 A | ||||
625 кВт | 6,510,4 A | 650 | 6500 | 6,770,8 A | 3,385,4 A | |
675 кВт | 7,031,3 A | 3,515,6 A | ||||
9000 | ||||||
9000 | ||||||
7 A | 3645,8 A | |||||
725 кВт | 7,552,1 A | 3,776 A | ||||
750 кВт | ||||||
775 кВт | 8 072,9 A | 4 036,5 A | ||||
800 кВт | 8 333,3 A | 4 166.7 A | ||||
825 кВт | 8 593,8 A | 4296,9 A | ||||
850 кВт | 8 854,2 A | 9114,6 A | 4557,3 A | |||
900 кВт | 9,375 A | 4 687,5 A | ||||
0 | ||||||
04 A | 4,817,7 A | |||||
950 кВт | 9,895,8 A | 4,947,9 A | ||||
0 | ||||||
1000 кВт | 10,417 A | 5,208,3 A |
Трехфазный переменный ток, киловатты в амперы (киловатты в амперы).
Трехфазные киловатты в амперы (киловатты в амперы) при P.F. 0,95.
3,26 A
9002 2001452.0 кВт
61
61
61
KILOWATT | AMPS при 208 В перем. Тока | AMPS при 280 В перем. Тока | AMPS при 415 В перем. кВт | 2,76 A | 2,17 A | 1,46 A | 1,38 A | 0,88 A | ||||||||
1.1 кВт | 3,04 A | 2,39 A | 1,61 A | 1,52 A | 0,97 A | |||||||||||
1,5 кВт | ||||||||||||||||
1,5 кВт | 2,20 A | 2,07 A | 1,32 A | |||||||||||||
2,0 кВт | 5,53 A | 4.34 A | 2,93 A | 2,76 A | 1,76 A | |||||||||||
2,2 кВт | 6,08 A | 4,78 A 4 4 | 4,78 A 4 914 3,04 A | 1,94 A | ||||||||||||
3,0 кВт | 8,29 A | 6,51 A | 4,39 A | 4.14 A | 2,64 A | |||||||||||
4,0 кВт | 11,05 A | 8,68 A | 5,86 A | 5,5314 09002 | 5,5 кВт | 15,19 A | 11,94 A | 8,05 A | 7,60 A | 4,84 A | ||||||
7.5 кВт | 20,72 A | 16,28 A | 10,98 A | 10,36 A | 6,61 A | |||||||||||
23,88 A | 16,11 A | 15,19 A | 9,69 A | |||||||||||||
15,0 кВт | 41,44 A | 32.56 A | 21,97 A | 20,72 A | 13,21 A | |||||||||||
18,5 кВт | 51,11 A | 51,11 A | 40,16 9529 2.09 25,55 A | 16,29 A | ||||||||||||
22,0 кВт | 60,78 A | 47,75 A | 32,22 A | 30.39 A | 19,38 A | |||||||||||
30,0 кВт | 82,88 A | 65,12 A | 43,93 A | 43,93 A | 9002 | 37,0 кВт | 102,21 A | 80,31 A | 54,19 A | 51,11 A | 32,59 A | |||||
45.0 кВт | 124,31 A | 97,67 A | 65,90 A | 62,16 A | 39,64 A | |||||||||||
55,0142000 | ||||||||||||||||
55,0142000 119,38 A | 80,55 A | 75,97 A | 48,44 A | |||||||||||||
75,0 кВт | 207,19 A | 162.79 A | 109,84 A | 103,59 A | 66,06 A | |||||||||||
90,0 кВт | 248,63 A | 4 | 4 | 980 124,31 A | 79,27 A | |||||||||||
110,0 кВт | 303,88 A | 238,76 A | 161,09 A | 151.94 A | 96,89 A | |||||||||||
132,0 кВт | 364,65 A | 286,51 A | 193,31 A | 193,31 A | 160,0 кВт | 442,00 A | 347,29 A | 234,32 A | 221,00 A | 140,93 A | ||||||
552,50 A | 434,11 A | 292,89 A | 276,25 A | 176,16 A | ||||||||||||
250,0 | ||||||||||||||||
250,0 | ||||||||||||||||
250,09 542,64 A | 366,12 A | 345,32 A | 220,20 A | |||||||||||||
315,0 кВт | 870,19 A | 683.72 A | 461,31 A | 435,10 A | 277,45 A | |||||||||||
355,0 кВт | 980,70 A | 00 | 00 | 00 490,35 A | 312,69 A | |||||||||||
400,0 кВт | 1105,01 A | 868,22 A | 585,79 A | 50 A | 352,32 A | |||||||||||
500,0 кВт | 1381,26 A | 1085,28 A | 732,23 A | 732,23 A | 6909,49 | 560,0 кВт | 1547,01 A | 1215,51 A | 820,10 A | 773,51 A | 493,25 A 94.0 кВт | 1740,39 A | 1367,45 A | 922,62 A | 870,19 A | 554,91 A |
1541,09 A | 1039,77 A | 980,70 A | 625,37 A | |||||||||||||
800,0 кВт | 2210.02 A | 1736,44 A | 1171,58 A | 1105,01 A | 704,64 A | |||||||||||
900,0 кВт | 900,0 кВт | 1318.02 A | 1243.14 A | 792,72 A | ||||||||||||
1000,0 кВт | 2762,52 A | 2170.55 A | 1464,47 A | 1381,26 A | 880,80 A |
Часто задаваемые вопросы
Как преобразовать кВт в амперы?
Мы можем использовать базовую формулу мощности для преобразования киловатт в амперы: I = P / V, где I — ток, P — мощность, а V — напряжение. Мощность 1 кВт означает 1000 Вт.
Какой усилитель 3квт?
3кВт чуть больше 13 ампер 3000/230 = 13,04 ампера и, учитывая, что схема является радиальной, с автоматическим выключателем на 16 ампер, на котором больше ничего нет, блок управления бесполезен и в нем нет необходимости.Кроме того, добавление нагревателей мощностью 3 кВт на кольцо, вероятно, приведет к его перегрузке.
Что такое 3000 Вт в амперах?
Если у нас есть мощность 3000 Вт, это означает, что у нас есть 25 ампер , если мы используем 120 В.
киловатт на ампер
Разместите свои комментарии?
Калькулятор преобразования киловатт в амперы (А)
7 часов назад Амперы — кВт калькулятор * Используйте e для экспоненциального представления. Например: 5e3, 4e-8, 1.45e12.DC киловатт до ампер расчет. Ток I в амперах (A) равен 1000-кратной мощности P в киловатт ( кВт ), деленной на напряжение V в вольтах (В): I (A) = 1000 × P ( кВт, ) / В (В). Однофазный перем.
Калькулятор преобразования электроэнергии из
киловатт (кВт) в амперы
Только что 65 строк · Преобразуйте киловатт (кВт) в ампер с помощью коэффициента мощности.Оборудование часто не на 100%…
Веб-сайт: Inchcalculator.com
Категория : Использовать в предложении
Киловатт
Киловатт в Ампер Онлайн преобразовать кВт в Ампер
Киловатт от до А . 4,8 кВт от до ампер = 20 ампер 45 кВт от до ампер = 187,5 ампер 5,3 кВт от до ампер = 22.08 А 5,5 кВт — А = 22,91 А 50 кВт – А = 208,33 А 500 кВт – А –204– А = 233,33 А 6 кВт – А = 25 А 60 кВт – А = 250 А 600 кВт – А = 2500 Ампер.2 кВт от до ампер = 30 ампер 7,3 кВт от до ампер = 30,41 ампер
Веб-сайт: Toponlinetool.com
Категория использования
Киловатт, кВт
КВт в Ампер Киловатт в Ампер Easy Unit
4 часа назад 65 строк · кВт — А — это калькулятор преобразования киловатт с в ампер .Он преобразует единицы из кВт в…
Веб-сайт: Easyunitconverter.com
Категория : использовать в предложении
кВт, киловатт
кВт для расчета 9000 9 часов назад трехфазного переменного тока киловатт до ампер . Линейное напряжение. I (A) = 1000 x P ( кВт, ) / (√3 x PF x V L-L (V)). Это означает, что фазный ток в ампер вычисляется на 1000, умноженную на мощность в киловаттах, , деленную на квадратный корень из трех, умноженный на коэффициент мощности, умноженный на действующее значение линейного напряжения в вольтах.
Веб-сайт: Calculatorology.com
Категория : Использовать в предложении
Киловатт, кВт
Киловатт в Ампер Калькулятор (кВт на А) Ток при полной нагрузке
5 часов назад От до А Калькулятор ( кВт до А): Используя наш калькулятор кВт — А , вы можете онлайн преобразовать постоянный ток, однофазный и трехфазный килограммов Вт в ампер.Для этого просто введите кВт и значение напряжения в два нижеприведенных поля и, нажав кнопку расчета, получите ответ в Ампер . Для переменного тока также необходимо ввести значение коэффициента мощности.
Расчетное время чтения: 1 мин.
Веб-сайт: Electrical4u.net
Категория : Использовать в предложении
Киловатт, кВт, киловатт до
киловатт (кВт) A): Узнайте с помощью нашего онлайн-калькулятора
8 часов назад Калькулятор преобразователя кВт — ампер прост в использовании: просто введите кВт и напряжение (вольт), и вы получите значение ампер .3 фазы киловатт, — ампер, преобразование . Вот три различных фазы преобразования киловатт (кВт), в ампер (A ): киловатт постоянного тока, , ампер, формула расчета .
Веб-сайт: Airconditionerlab.com
Категория : Использовать в предложении
кВт, киловатт
Калькулятор преобразования
кВт в ампер • Электрические калькуляторы Org
1 час назад Трехфазные кВт – Амперы Расчет включает соотношение в 1000 раз кВт к коэффициенту мощности, умноженному на напряжение, и дополнительному коэффициенту 1.73, который представляет собой эквивалент √3 и добавлен, потому что схема является трехфазной по своей природе. Математически: I = [ кВт * 1000] / [E * PF * 1,73] Пример: 3-фазная цепь на 400 В имеет подключенную к ней нагрузку 50 кВт .
Веб-сайт: Electricalcalculators.org
Категория : Использовать в предложении
кВт
Киловатт-часов (кВтч) в ампер-час (Ач) Калькулятор преобразования в 0003 кВт
кВт 2 часа назад Формула преобразования.Ач = кВт · ч × 1000 В. Электрический заряд в ампер -часов равен энергии в киловатт--часов, умноженной на 1000, а затем делится на напряжение. Например, давайте преобразуем 5 кВт · ч при 120 В в А · ч. Ah = (5 кВт · ч × 1000) ÷ 120 В. Ah = 5000 ÷ 120 В. Ah = 41,667 Ah. Вы также можете преобразовать ватт-часы в миллиампер-часы.
Веб-сайт: Inchcalculator.com
Категория : Использовать в предложении
кВтч, киловатт
кВт в амперах Преобразование, формула, диаграмма, преобразование и
кВт 7 часов назад до Ампер формула расчета: кВт = кВт или кВт .V LN = напряжение между фазой и нейтралью. V LL = напряжение между линиями. I AC1Ø = Ток / А 1 фаза. I AC2Ø = ток / А 2 фазы. I AC3Ø = ток / А 3 фазы. FP = Коэффициент мощности. Как преобразовать кВт в Амперы всего за 3 шага:
Цемент: 0,80-0,85
Угольная шахта : 0,65-0,80
Химическая промышленность: 0,65-0,75
Промышленность: Коэффициент мощности
Сайт: Калькуляторы конвертации.com
Категория : Использовать в предложении
КВт, Киловатт, Киловатт
Киловатт в Ампер (А) калькулятор преобразования CalculatorX.com
6 часов назад Ампер кВт DC to киловатт от до ампер расчет. Ток I в амперах (A) равен 1000-кратной мощности P в киловатт ( кВт ), деленной на напряжение V в вольтах (В):I (A) = 1000 × P ( кВт, ) / В (В). Однофазный переменный ток киловатт от до ампер расчет. Фазный ток I в ампер (A) равен 1000-кратной мощности P в киловатт ( кВт ), деленной на коэффициент мощности PF, умноженный на…
Расчетное время считывания: 50 секунд
Веб-сайт: Calculatorx.com
Категория : Использовать в предложении
кВт, киловатт
Преобразование кВт в амперы, основные данные калькулятора.com
Just Now Convert киловатт ( кВт ) в ампер (A) Напряжение (В): Вольт (В) Истинная мощность (PkW): киловатт ( кВт ) Коэффициент мощности (PF): Фаза (PH): одиночная тройка (линия к линии) тройка (линия к нейтрали) Формула и результат: Ток (I): I = P кВт * 100 / (V * PH * PF) = 32,89 A. Ток (I ) преобразование, когда напряжение (В) различно. Истинная мощность (P кВт ) фиксированная (10 кВт ).
Веб-сайт: Mainfacts.com
Категория : Используйте в предложении
Киловатт, кВт
Калькулятор преобразования из ватт в амперы
7 часов назад При 120 вольт 1 ампер равен 120 ваттам. При 240 вольт 1 ампер равен 240 ваттам. Сколько ампер это 1500 ватт? Если у вас есть электроприбор, потребляющий 1500 Вт мощности в цепи 120 В, вы можете использовать уравнение Ток ( А, ) = Мощность (Ватт) ÷ Напряжение, чтобы рассчитать, что потребляемая мощность электроприбора составляет 1500/120 = 12.5 ампер .
Расчетное время чтения: 4 минуты
Веб-сайт: Thecalculatorsite.com
Категория : использовать в предложении
Ампер в киловатт (кВт) Калькулятор преобразования электричества
Just Now
амперы от до киловатт Формула , полученная из формулы мощности: P ( кВт ) = I (A) × V (V) 1000. Таким образом, мощность P в киловаттах равна току I в амперах , умноженному на напряжение V в вольтах, деленному на 1000.Например, давайте найдем киловатт мощности для цепи с 12 ампер тока при 120 вольт. мощность = ток × напряжение ÷
Расчетное время чтения: 2 минуты
Веб-сайт: Inchcalculator.com
Категория : использовать в предложении
Киловатт, кВт
Преобразователь
кВт в ампер Киловатт в ампер
7 часов назад Трехфазный переменный ток — кВт — А .Для трехфазной цепи переменного тока, если известно линейное напряжение, ампер можно рассчитать из кВт по следующей формуле. Для любой трехфазной цепи переменного тока Ток, I = 1000 x кВт / (√3 x V L x P.F.), где V L — среднеквадратичное значение приложенного сетевого напряжения, а P.F. коэффициент мощности нагрузки. Следовательно, ампер можно рассчитать из переменного тока — кВт по…
Расчетное время чтения: 2 минуты
Веб-сайт: Electricalclassroom.com
Категория : использовать в предложении
кВт, известное
кВт на калькулятор в амперах
1 час назад Введите мощность в киловаттах ( кВт ), напряжение в вольтах (В) ), выберите коэффициент мощности (PF) от 0 до 1 с шагом 0,1 (для переменного тока), затем нажмите кнопку Calculate, чтобы получить результат в ампер (A). кВт постоянного тока от до ампер расчет I (A) = 1000 × P ( кВт ) / В (В) Ток I в амперах (A) равен…
Расчетное время считывания: 50 секунд
Веб-сайт: Allcalculators.net
Категория : Использовать в предложении
Киловатт, кВт
Ампер в киловатт Конвертировать амперы в кВт Онлайн-калькулятор
Только сейчас Амперы в Калькулятор киловатт в Киловатты в кВт . Чтобы вычислить, сколько кВт в Ампер , умножьте на вольты, а затем разделите на 1000. Просто выберите тип тока AC / DC, ток в А и вольт, и калькулятор Ампер — кВт будет рассчитать киловатт …
Сайт: Онлайн-калькулятор.org
Категория : Использовать в предложении
Киловатт, кВт
Калькулятор преобразования ватт в ток дюймы
6 часов назад Поскольку 1 киловатт равен 1000 ватт, возможно используйте приведенные выше формулы, чтобы также преобразовать кВт в А , но сначала необходимо преобразовать ватты в кВт . Воспользуйтесь нашим калькулятором кВт — А , чтобы вычислить кВт .Эквивалентные ватты и А при 120 В переменного тока. преобразование мощности в силу тока при 120 вольт. Напряжение тока силы тока; 50 Вт:
Веб-сайт: Inchcalculator.com
Категория : использовать в предложении
Киловатт, кВт, киловатт
Преобразование кВтч в ампер. Форум Майка Холта
1 час назад Итак, ампер равны 1000 умноженным на киловатт , разделенным на вольты. ампер = 1000? киловатт / вольт Или А = 1000? кВт / В киловатт от до ампер пример Какой ток в ампер при потребляемой мощности 0.33 киловатт а напряжение питания 110 вольт? Я = 1000? 0,33 кВт / 110 В = 3 А. Если вы хотите подсчитать, сколько кВт в час:
Веб-сайт: Forums.mikeholt.com
Категория : используйте в предложении
Киловатт, кВт
520 кВт в амперы — сколько ампер в 520 киловаттах?
8 часов назад 520 кВт — А : Здесь все, что касается 520 киловатт в ампер, включая полезную информацию, формулы для трехфазных и однофазных цепей постоянного и переменного тока, а также преобразователь мощности в ток.Если вы искали, как преобразовать 520 кВт в А , то вы нашли нужную статью.
Веб-сайт: Wattstoamps.com
Категория : использовать в предложении
кВт, киловатт
7 кВт в амперы Преобразовать 7 киловатт в амперы
2 часа назад Ампер . 7 кВт — ампер Калькулятор для преобразования 7 киловатт в ампер .Чтобы вычислить, сколько ампер в 7 кВт , умножьте кВт на 1000, а затем разделите на вольт. Введите коэффициент мощности от 0 до 1.
Веб-сайт: Online-calculator.org
Категория : используйте в предложении
кВт, киловатт
киловатт в амперы SimpleWebTool Просто
ol Теперь трехфазный переменный ток киловатт от до ампер Расчет . Расчет по линейному напряжению.Фазный ток I в ампер (A) равен 1000-кратной мощности P в киловатт ( кВт ), деленной на квадратный корень из 3-кратного коэффициента мощности PF, умноженного на действующее значение линейного напряжения V LL в вольт (В) :. I (A) = 1000 * P ( кВт ) / (√3 * PF * V LL (V))
Веб-сайт: Simplewebtool.com
Категория : использовать в предложении
Киловатт, кВт
Таблица усилителей Cummins Inc.
9 часов назад кВт x 1000 вольт AMPS — при известной кВА кВА x 1000 вольт кВА x 1000 1,732 x вольт AMPS — при известной мощности в л.с. x 746 вольт x% Eff. x PF HP x 746 1,732 x Вольт x% эфф. x PF HP x 746 В x% Eff. Выходная мощность электродвигателя, л.с. (л.с.) В x А …
Размер файла: 98 КБ
Количество страниц: 1
Веб-сайт: Incal.cummins.com
Категория использования слов в предложении
Kw, Kva, Known
Kw to Amps Calculator Free Online Converter Apps on
4 часа назад получить быстрые результаты.Если вы не знаете, как пользоваться этим калькулятором, просто выполните следующие простые шаги: • Выберите тип тока (постоянный, однофазный переменного тока, трехфазный переменный ток)
Рейтинг : 5/5 (24)
Содержание Рейтинг: Для всех
Веб-сайт: Play.google.com
Категория : Использовать в предложении
кВт
КВт в Ампер Киловатт в Ампер Преобразовать кВт в Ампер
3 часа назад Воспользуйтесь нашим бесплатным онлайн-калькулятором для перевода киловатт в ампер.Используйте https://toponlinetool.com/ киловатт, — ампер, — калькулятор / для быстрых результатов.
Веб-сайт: Youtube.com
Категория : Использовать в предложении
Киловатт, киловатт
Калькулятор из ватт в ампер
7 часов назад Расчет трехфазных ампер переменного тока от до 000 . Линейное напряжение. I (A) = P (W) / (√3 x PF x V LL (V)), что означает, что фазный ток в ампер вычисляется путем деления реальной мощности в ваттах на умножение квадратного корня из трех. , время коэффициент мощности.Затем результат умножается на действующее значение линейного напряжения в вольтах.
Веб-сайт: Calculatorology.com
Категория : Используйте в предложении
Калькулятор ватт в ампер Сначала электрическая безопасность
6 часов назад Ватт. Ампер , умноженный на вольт, равен ваттам, которые используются для определения количества энергии. Чем выше мощность, тем больше мощность и выходная мощность прибора. Что касается примера с шлангом, это будет относиться к количеству выпускаемой воды.
Веб-сайт: Electricalsafetyfirst.org.uk
Категория : Используйте слова в предложении
Ампер (А) в киловатт (кВт) калькулятор преобразования
1 часов назад Это Ампер с до киловатт Калькулятор для преобразования значения ампер, и вольт в значение мощности в киловаттах , выберите тип тока (постоянный / переменный ток), введите ампер и напряжение, затем нажмите «Рассчитать», чтобы получить результат мощности в кВт .Поменяйте местами калькулятор кВт на Ампер .
Веб-сайт: Yoosfuhl.com
Категория : Использовать в предложении
Киловатт, кВт
Киловатт в Киловатт3000 кВт 000 часов назад Преобразование
000 в Киловольтамп SimpleWebTool -000 часов назад амперы : Полная мощность S в киловольтах — ампер (кВА) равна реальной мощности P в киловаттах ( кВт ), деленной на коэффициент мощности PF:
Веб-сайт: Simplewebtool.com
Категория : Использовать в предложении
Киловатт, киловольт, ква, кВт
киловатт в вольт SimpleWebTool
6 часов назад Как преобразовать киловатта в вольт полная мощность S в вольтах — ампер (ВА) равна 1000-кратной реальной мощности P в киловатт ( кВт ), деленной на коэффициент мощности PF:
Веб-сайт: Simplewebtool.com
Категория : использовать в предложении
Киловатт, кВт
Ампера на кВт Калькулятор
4 часа назад Расчет трехфазного переменного тока А – киловатт Линейное напряжение P ( кВт ) = √3 x PF x I (A) x V LL (В) / 1000, что означает, что мощность в киловаттах рассчитывается как квадратный корень из трех, умноженный на коэффициент мощности, умноженный на фазный ток в ампер 90 004 среднеквадратичным значением линейного напряжения.Затем результаты делятся на 1000.
Веб-сайт: Calculatorology.com
Категория : Использовать в предложении
Киловатт, кВт
Ампер в кВт Конвертер ампер в киловатты Easy Unit Converter
4 часа назад Ампер — Киловатт Конвертер. Ампер — кВт — это преобразователь электроэнергии. Это поможет вам преобразовать амперы в киловатт для постоянного (DC) и переменного тока (AC).Вам необходимо выбрать тип преобразования переменного или постоянного тока. Введите значение в амперах, нажмите «Рассчитать», чтобы получить примерно равное значение переменного или постоянного тока.
Веб-сайт: Easyunitconverter.com
Категория : Использовать в предложении
Киловатт,
Киловатт (кВт) в Амперы (А) калькулятор преобразования
часов 1 От до А Калькулятор для преобразования мощности в киловаттах в текущий результат в А , выберите тип тока (DC / AC), введите мощность в кВт и напряжение, затем нажмите «Рассчитать», чтобы получить результат мощности в Ампер .Поменяйте местами Ампер на кВт калькулятор.
Веб-сайт: Yoosfuhl.com
Категория : использовать в предложении
киловатт,
киловатт, киловатт
киловатт (ампер на киловатт ампер на киловатт) онлайн-калькулятор
— коэффициент перевода киловатт в ватт. Таким образом, чтобы получить киловатт из ампер, нужно умножить амперы на напряжение в вольтах и разделить на 1000.P = кВт = А * В / 1000. Например, преобразуйте 16 ампер в киловатт . Если стандартное напряжение в электрических сетях 230 вольт, то. P = I х U / 1000 = 16 * 230/1000 = 3,68 кВт .
Веб-сайт: Buildingclub.info
Категория : Использовать в предложении
Киловатт, кВт
Ампер-часов (Ач) в Киловатт-час (кВтч) Калькулятор преобразования энергии 9000 2
в киловатт -часов равняется заряду в ампер -часов, умноженному на напряжение, затем деленному на 1000.Например, преобразуем 20 Ач при 120 В в кВт · ч . кВтч = (20 Ач × 120 В) ÷ 1000. кВтч = 2400 ÷ 1000. кВтч = 2,4 кВтч . Возможно, вас заинтересует наш калькулятор из миллиампер-часов в ватт-часы. Ампер-часы Киловатт -часов
Веб-сайт: Inchcalculator.com
Категория : Использовать в предложении
Киловатт, кВт · ч
кВт в Ампер Преобразование
кВт в Ампер Преобразование
кВт
3 часа назад кВт в А Преобразование в цепях постоянного, однофазного и трехфазного переменного тока с решенными примерами.—— Ампер или ампер i
Веб-сайт: Youtube.com
Категория : использовать в предложении
кВт
Как преобразовать амперы в киловатт-часы
1 час назад Шаг 3. Умножьте ампер на вольты, чтобы найти ватты. Разделите это число на 1000, чтобы получить киловатт . Например, устройство, которое потребляет 12 ампер и работает на электричестве в Северной Америке, будет использовать 1440 Вт, или 1.44 киловатт .
Веб-сайт: Hunker.com
Категория : Использовать в предложении
Киловатт
ВА на киловатт калькулятор
2 часа назад Расчет напряжения — Ампер до ампера ( кВт, ) = S (ВА) x PF / 1000, что означает, что реальная мощность в киловаттах вычисляется путем умножения полной мощности в вольтах — ампер на коэффициент мощности.Затем результат делится на 1000. Например, если полная мощность в вольтах — ампер составляет 20 ВА, а коэффициент мощности равен 2, каковы будут результаты в
. Веб-сайт: Calculatorology.com
Категория : использовать в предложении
Киловатт, кВт
Ампер в киловатт, преобразователь ампер в кВт
7 часов назад Трехфазный переменный ток — кВт — А . Для трехфазной цепи переменного тока, если известно линейное напряжение, киловатт можно рассчитать в амперах по следующей формуле.Для любой трехфазной цепи переменного тока Мощность кВт = (√3 x V L x P.F. x I L) / 1000, где V L и I L — среднеквадратичные значения приложенного сетевого напряжения и сетевого тока соответственно, а P.F. — коэффициент мощности нагрузки
Расчетное время чтения: 2 минуты
Веб-сайт: Electricalclassroom.com
Категория : Используйте в предложении
кВт, Известно, Киловатт
Вт Преобразование ампер в киловатты SensorLink Corporation
7 часов назад Как рассчитать мощность: ампер x вольт = ватты * Как рассчитать киловатт : ( ампер x вольт) / 1000 = киловатт .Сначала снимите текущие показания на служебном входе. При подключении к сети, быстрое измерение А и может быть выполнено с помощью амперметра под напряжением на двух проводах питания, идущих к метеорологической головке заказчика.
Веб-сайт: Sensorlink.com
Категория : Использовать в предложении
Киловатт
Формулы для расчета ампер, лошадиных сил, киловаттов
1 часов назад Оптовая торговля 4 . Электрический дистрибьютор , поставляющий все, от лампочек и диммеров до ПЛК и оборудования для промышленной автоматизации. Сотни из электрических продуктов и инструментов на выбор. Используйте диаграмму в этом руководстве по расчетам, чтобы найти формулу, которая вам нужна в соответствии с мерой, которую вы рассчитываете.
Веб-сайт: Elliottelectric.com
Категория : Используйте для в предложении
калькулятор преобразования Ампер в киловатты (кВт) Калькулятор X.com
6 часов назад * Используйте e для экспоненциального обозначения. Например: 5e3, 4e-8, 1.45e12. кВт от до ампер вычислитель постоянного тока ампер от до киловатт расчет. Мощность P в киловаттах ( кВт, ) равна току I в амперах (A), умноженному на напряжение V в вольтах (В), деленное на 1000 :. P ( кВт, ) = I (A) × V (В) / 1000. Однофазный переменный ток А от до киловатт расчет
Веб-сайт: Calculatorx.com
Категория : Используйте в предложении
кВт, киловатт
Калькулятор ампер в Ом
3 часа назад Ампер Расчет в Ом с ваттами. Введите мощность в ваттах (Вт), ток в ампер (A), затем нажмите кнопку «Рассчитать», чтобы получить результат в омах (Ом). R (Ω) = P (W) / I (A) 2. Сопротивление R в омах (Ом) равно мощности P в ваттах (Вт), деленной на квадратное значение фазного тока I в амперах (A).Рекламные объявления.
Веб-сайт: Allcalculators.net
Категория : Использовать в предложении
Киловольтамп в киловатт SimpleWebTool
8 часов назад Киловольт- 000 кВт кВт кВт кВт ) калькулятор преобразования электрического заряда и как преобразовать. киловатт от до ампер . Больше электрических преобразователей.
Веб-сайт: Simplewebtool.com
Категория : Использование в предложении
Киловольт, ква, киловатт, кВт
Что вам нужно знать?
Даже если киловатты не то, о чем вы думаете каждый день, это определенно то, что влияет на вашу повседневную жизнь. Видите ли, ватт — это основная единица измерения электроэнергии. Термин «ватт» происходит от Джеймса Ватта из Шотландии, инженера, предпринимателя, мастера, производителя инструментов и ученого, которого часто называют отцом промышленной революции.Одно из его самых заметных достижений было около 1775 года, когда он изобрел паровой двигатель Ватта. Сегодня паровые турбины на тепловых электростанциях используют ту же технологию для преобразования тепловой энергии в механическую. Мы измеряем эту электрическую мощность в киловаттах.
В этом руководстве мы берем сложный вопрос о киловаттах и упрощаем его до более понятных терминов. Здесь вы лучше поймете, что такое киловатты, а также мы рассмотрим такие вещи, как то, что мы измеряем в киловаттах, как мы конвертируем и вычисляем киловатты, и чем киловатты отличаются от киловатт-часов, мегаватт и гигаватт.
Что такое ватт?
Что такое киловатт?
источник
Прежде чем мы поговорим о киловаттах, давайте поговорим о ваттах (Вт). Ватты — это основная единица мощности, используемая для измерения электрической, тепловой и механической мощности. Один ватт равен одному джоуля, а также одному вольт-ампера. Все эти термины измеряют электрическую мощность.
Теперь давайте более подробно рассмотрим, что такое киловатт (кВт). Проще говоря, киловатт — это еще один термин, используемый для измерения мощности.Чаще всего мы используем киловатты для измерения мощности в жилых и коммерческих помещениях.
Имейте в виду, что приставка «килограмм» означает тысячу. Возможно, вам будет легче вспомнить, что один киловатт равен 1000 ватт электроэнергии, если задумываться о значении приставки. Например, микроволновая печь с этикеткой мощностью 1000 Вт требует для работы 1000 Вт мощности (или 1 кВт).
Как преобразовать ватты в киловатты?
Как перевести киловатты в ватты?
Преобразование ватт в киловатты настолько простое, как вы, возможно, догадались.Мы находим мощность в киловаттах P (кВт), разделив мощность в ваттах P (Вт) на 1000.
Вот формула для преобразования ватт в киловатты:
Например, если вы хотите преобразовать вашу посудомоечную машину мощностью 1500 Вт в киловатты, вы должны выполнить следующий расчет:
- P (кВт) = 1500 Вт / 1000 = 1,5 кВт
Вот еще один способ подумать об этом, который может упростить математические вычисления. Добавьте десятичную точку в конце целого числа. В данном случае это 1500.Затем, поскольку в 1000, которая является числом, на которое вы делите, есть три нуля, вы переместите десятичную точку на три цифры или три пробела влево. В итоге вы получите 1.500 или 1.5. Этот трюк позволяет легко преобразовать ватты в киловатты с помощью некоторых быстрых вычислений в уме.
Вот формула для преобразования киловатт в ватты:
Поскольку мы знаем, что один киловатт эквивалентен 1000 ватт, мы отменяем описанные выше операции, чтобы решить это уравнение.
Например, если вы знаете, что ваша посудомоечная машина потребляет 1,5 кВт, вы должны выполнить приведенное ниже уравнение, чтобы определить, что ваша посудомоечная машина имеет мощность 1500 Вт или для работы ей требуется мощность 1500 Вт.
- Преобразование 1,5 кВт в ватты:
- P (Вт) = 1000 × 1,5 кВт = 1500 Вт
Сколько киловатт в мегаватте?
источник
Мы используем мегаватты при измерении мощности в гораздо большем масштабе. Если вы хотите знать, сколько энергии вырабатывает электростанция или сколько электроэнергии требуется для питания всего города, вы должны использовать мегаватты.Например, мощность типичной угольной электростанции составляет около 600 МВт.
Чтобы продолжить путь к простоте, используйте ту же формулу, которая использовалась выше, для преобразования киловатт в мегаватты (МВт). Это почему? Ну, потому что 1000 киловатт равны — как вы уже догадались — одному мегаватту.
Вот формула для преобразования киловатт в мегаватты:
Эта формула также означает, что если вы хотите преобразовать ватты в мегаватты, вы должны добавить в уравнение еще три нуля.Мощность в мегаваттах P (МВт) можно найти, разделив мощность в ваттах P (Вт) на 1000000.
Вот формула для преобразования ватт в мегаватты:
- P (МВт) = P (Вт) / 1000000
Например, если вы конвертируете 100-ваттную лампочку в мегаватты, вы выполните следующий расчет:
- P (МВт) = 100 Вт / 1000000 = 0,000100 МВт
Сколько мегаватт в гигаватте?
Предположим, вы ищете еще большую единицу измерения.В этом случае вы захотите использовать гигаватты, которые мы используем для измерения мощности, которую могут вырабатывать вместе большие электростанции или несколько станций. В 2012 году общая мощность электростанций США составляла около 1100 ГВт.
Вы, наверное, заметили здесь формирующийся узор. В этом случае у вас может быть хорошее представление о формуле преобразования мегаватт в гигаватты (ГВт). Если вы догадались, что в одном гигаватте 1000 мегаватт, вы будете правы. Этот забавный факт означает, что 1 гигаватт составляет 1 000 000 киловатт, а 1 гигаватт — 1 000 000 000 ватт.Ух!
Что такое киловатт-часы?
Киловатт-часы отличаются от киловатт?
источник
А вот здесь все может немного запутаться. Киловатт-час (кВтч) — это показатель того, сколько энергии используется. Однако на самом деле это не то же самое, что измерение количества киловатт, которое вы используете в час, потому что мощность и энергия не одно и то же. Вместо этого киловатт-час измеряет количество времени или количество энергии, необходимое для использования одного киловатта мощности.
Количество энергии, используемой при работе прибора на 1000 ватт в течение одного часа, равно одному киловатт-часу. Чем ниже мощность предмета, тем лучше.
Вот пример: если бы вы использовали 100-ваттную лампочку, она бы потребляла один киловатт-час энергии после 10 часов использования. Но если вы перешли на более энергоэффективную лампочку, которой требуется всего 40 Вт для производства того же количества света, для использования одного кВтч энергии потребуется 25 часов. Представьте себе, какой экономии энергии можно добиться, отключив все лампочки в доме.
Как и при измерении энергопотребления, при расчете количества потребляемой или производимой энергии в более крупном масштабе вы должны использовать мегаватт-часы (МВтч) или гигаватт-часы (ГВтч).
Как рассчитать энергопотребление электрического прибора?
Как рассчитывается мое потребление энергии в киловатт-часах?
Подобно тому, как один киловатт равен 1000 ватт мощности, один киловатт-час эквивалентен 1000 ватт, или джоулям, энергии, потребляемой в течение одного часа.Если вы хотите преобразовать ватты в киловатт-часы, чтобы узнать, сколько энергии потребляет ваша кофеварка каждый день, вам нужно умножить потребляемую мощность в ваттах на количество использованных часов. Затем разделите это число на 1000.
Вот формула для расчета ватт в киловатт-часах:
- кВтч = (Вт × час) ÷ 1000
Например, чтобы найти 1 200 Вт кВтч за 3 часа:
- кВтч = (1,200 × 3) ÷ 1,000
Как преобразовать потребление энергии в киловатт-часах в ватты?
Предположим, вы хотели сделать обратное, чтобы определить, сколько ватт у вашей кофеварки, исходя из ее киловатт-часов.В этом случае вы легко можете сделать это, внеся несколько простых изменений в формулу.
Для этого преобразования умножьте использованную энергию в кВтч на 1000, чтобы найти потребление энергии в ватт-часах. Затем вы должны разделить это число на количество часов, в течение которых вы его использовали.
Вот формула для расчета киловатт-часов в ватты:
- Вт = (кВт · ч × 1000) ÷ час
Например: давайте найдем мощность в ваттах для 3.6 кВтч энергии используется за 3 часа.
- Вт = (3,6 кВтч × 1000) ÷ 3 часа
Сколько стоит один киловатт-час электроэнергии?
источник
Большинство коммунальных предприятий рассчитывают ваши счета за электроэнергию на основе того, сколько киловатт-часов или единиц энергии вы используете каждый месяц. Поскольку научная единица энергии измеряется в джоулях, вы часто будете видеть потребление энергии, указанное в джоулях, в вашем счете за электроэнергию. Помните, что один джоуль равен одному ватту.Если вы можете преобразовать ватты в киловатт-час, вы можете предсказать, сколько может стоить работа ваших различных электроприборов и устройств.
На основе последних данных о ценах на электроэнергию, предоставленных Управлением энергетической информации США, был составлен отчет о тарифах Choose Energy®. В отчете показано, сколько затрат на электроэнергию зависит от вашего местоположения.
В 2020 году жители Айдахо платили самые низкие средние тарифы на электроэнергию в США — 9,67 цента за кВтч. Напротив, больше всех платили жители Гавайев: их средний тариф на электроэнергию в 2020 году составил около 28.84 цента за кВтч.
Как рассчитать потребление электрического прибора?
Как мне оценить, какой будет мой счет за электричество?
Давайте возьмем среднюю национальную ставку около 13 центов за кВтч, чтобы рассчитать, сколько стоит питание 100-ваттной лампочки каждый час. Поскольку для работы требуется 100 ватт мощности — чтобы преобразовать мощность в ваттах в киловатт-часы, — вы умножите 100 ватт на один час. Затем вы разделите на 1000, чтобы найти потребление энергии в кВтч.
- Энергия = (100 × 1) ÷ 1000
- Почасовая стоимость = стоимость электроэнергии за кВтч ÷ потребление энергии в кВтч
- Почасовая стоимость = 0,13 долл. США ÷ 0,1 кВтч
- Почасовая стоимость = 1,3 цента
Если электричество стоит 13 центов за киловатт-час, то 100-ваттная лампочка будет стоить 1,3 цента за каждый час работы. Большинство счетов за электричество рассчитываются ежемесячно. Чтобы оценить ежемесячные расходы, выполните следующие действия:
- Оцените, сколько часов в день вы в среднем используете эту лампочку.(Допустим, 5 часов).
- Умножьте мощность лампочки в ваттах на среднее количество часов, которые вы используете в день, вместо одного часа, указанного в приведенной выше формуле. (Допустим, ваша лампочка мощностью 60 Вт, значит, вы рассчитали 60 Вт x 5 часов).
- Решите приведенное выше уравнение, используя фактическую мощность вашей лампочки и фактическое среднее количество часов, которые вы используете эту лампочку в день. (60 x 5 = 300 ÷ 1000 = 0,3 кВтч).
- Разделите среднюю стоимость электроэнергии в вашем районе на среднюю дневную мощность вашей лампочки в кВтч.(0,13 $ ÷ 0,3 кВтч = 43 цента в день.
- Умножьте ответ на 30, чтобы получить среднемесячное значение кВтч для этой лампочки. В этом случае 0,43 доллара США x 30 дней = 3,90 доллара США. Если вы оставите 60-ваттную лампочку включенной в среднем на 5 часов в день, каждый день, вам будет стоить 3,90 доллара в месяц.
- Повторите это уравнение для всех лампочек, приборов и других электрических устройств в вашем доме.
- Сложите итоговую сумму, чтобы найти расчетные ежемесячные затраты на электроэнергию в киловатт-часах.Вы можете быть удивлены, увидев, как быстро все это складывается.
Сколько киловатт-часов в среднем используется домохозяйством в США в день?
источник
Теперь, когда вы знаете все о том, как рассчитать потребляемую вами энергию в кВтч, может быть интересно сравнить ваше энергопотребление с другими в Соединенных Штатах. Средний дом в США в 2019 году потреблял 887 киловатт-часов (кВтч) электроэнергии в месяц, что составляет почти 30 кВтч в день.Если вам интересно узнать, где вы находитесь по сравнению с другими в вашем регионе или штате, ознакомьтесь с этими данными, предоставленными Управлением энергетической информации США.
Сколько киловатт должен быть генератор, чтобы управлять домом?
Если вы живете в районе, подверженном погодным условиям, которые могут привести к отключению электроэнергии, вы можете немного успокоиться, купив генератор. Морозильники, светильники, холодильники и колодезные насосы — это лишь некоторые из устройств, которые вы можете продолжать использовать во время отключения электроэнергии.
Самое важное домашнее оборудование может работать с генератором мощностью от 5000 до 7500 Вт. Если вы хотите, чтобы весь ваш дом продолжал работать, вам, вероятно, придется увеличить его. Если у вас меньше бытовой техники, возможно, вам удастся обойтись чем-то меньшим. Определение мощности необходимой вам техники поможет вам определить, какой размер генератора вам понадобится.
В чем разница между ваттами и амперами?
Ватты и амперы, также известные как амперы, являются единицами измерения потребления или производства электроэнергии.Энергопотребление всех электронных устройств указано на этикетке в ваттах или амперах. Если на этикетке вашего устройства указаны усилители, вы можете рассчитать мощность, используя простую формулу.
Вот формула для расчета ампер в ватты:
Мощность = Ампер x 120
Например, если у вас есть устройство на 120 В с меткой на 20 А, это эквивалентно мощности 2400. В форме уравнения: 20 А x 120 В = 2400 Вт
Что такое пик в киловаттах?
источник
Киловатт-пик (кВт-пик) — это скорость, с которой система может генерировать энергию во время своей максимальной производительности, то есть когда она работает с максимальной мощностью.Чаще всего мы используем кВт для солнечных систем электроснабжения. Эти системы имеют маркировку в пиковых киловаттах (кВт), чтобы потребители могли сравнивать выходные характеристики и размеры различных фотоэлектрических панелей.
Система мощностью 2 кВт будет производить 2 кВт электроэнергии только при ярком солнечном свете, когда все условия оптимальны. Стандартные модули занимают около 6,25 квадратных метров площади на крыше на каждый кВт. Модули с более высокой эффективностью занимают всего пять квадратных метров кровельного пространства.
Как технологии меняют энергетику
Нет никаких сомнений в том, что технологии с годами совершенствовались не по дням, а по часам. В энергетике дела обстоят точно так же. Давайте посмотрим на два отличных примера.
Сколько стоит зарядить Tesla?
Tesla существует с 2003 года, но теперь, когда электромобили становятся все более распространенными, они также становятся более доступными. Поскольку цены на газ растут, стоимость зарядки электромобилей снижается.Взгляните на этот пример, который объясняет, сколько стоит зарядить Tesla Model 3 на домашней зарядной станции:
- Емкость аккумулятора составляет 75 кВт, а наш текущий средний тариф на электроэнергию, который мы собираемся использовать, составляет 13 центов за кВтч
- Это означает, что ваша стоимость зарядки равна 75 x 0,13 доллара = 9,75 доллара за полную «заправку», которая позволит вам проехать примерно 240 миль.
- Сравните зарядку Tesla с заправкой меньшего автомобиля с 12-галлонным бензобаком.Когда мы используем стоимость бензина в 3,85 доллара за галлон, становится ясно, что 46,20 доллара, которые вы тратите на заправку автомобиля бензином (12 x 3,85 доллара = 46,20 доллара), намного дороже, чем использование зарядной станции Tesla. Это может дать вам 300-400 миль времени в пути, но даже двойная зарядка Tesla составляет менее половины стоимости одного бака бензина.
- Бонус: управляя электромобилем, вы уменьшите выбросы углекислого газа и станете участником борьбы с изменением климата.
Измерить потребление энергии просто с помощью интеллектуального счетчика
Интеллектуальные счетчики автоматически отправляют данные о ежедневном и почасовом потреблении энергии в центральную компьютерную систему вашей коммунальной компании.