Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: ck_r@mail.ru

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

C характеристика автоматического выключателя: назначение, как выбрать, характеристики, типы

Содержание

Время-токовая характеристика С автоматических выключателей

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В прошлой статье я Вам очень подробно рассказывал про время-токовую характеристику типа В на примере автоматических выключателей ВМ63-1 от КЭАЗ с номинальными токами 10 (А) и 16 (А). Я продолжу начатую тему и сегодня на очереди время-токовая характеристика типа С.

Это, наверное, одна из самых распространенных и применяемых характеристик в жилом секторе, хотя порой ее применение не всегда оправдано, но об этом еще поговорим в самое ближайшее время. Кому интересно, то подписывайтесь на рассылку новостей сайта.

Как раз мне в электролабораторию пришли на испытания пару десятков модульных автоматов серии Z406 (Effica) от компании Elvert (Китай).

Впервые сталкиваюсь с этим производителем, поэтому прогрузить эти автоматы будет вдвойне интереснее.

По внешнему виду никаких особенных отличий у автоматов Elvert от автоматов других производителей я не нашел.

Единственное, что сразу бросилось в глаза, так это наличие и исполнение заглушек для пломбировки клемм автоматов. Заглушкам модульных автоматов я посвятил отдельную статью, где рассмотрел различные виды заглушек у основных производителей (IEK, Legrand, Schneider Electric, КЭАЗ), но такого варианта я еще не встречал.

Заглушки автоматов Elvert всегда идут в комплекте, а значит не нужно заботиться о том, чтобы приобретать их отдельно.

Заглушка легко перемещается по направляющим, тем самым открывая и закрывая доступ к зажимному винту.

Если в заглушке нет необходимости или она Вам мешает, то ее можно снять с автомата, переместив до упора и слегка сжав.

Проволока для пломбы продергивается через специальные отверстия, сделанные, как в самой заглушке, так и в корпусе автомата.

Вот на примере прогрузки автоматов Elvert я Вас подробно и познакомлю с время-токовой характеристикой типа С. А в качестве примера возьму два автомата: однополюсный автомат с номинальным током 16 (А) и трехполюсный автомат с номинальным током 63 (А).

Напомню, что тип время-токовой характеристики всегда указывается на корпусе автомата в виде латинской буквы, и в нашем случае, это С16 и С63. Цифры после буквы обозначают величину номинального тока автомата.

Согласно ГОСТ Р 50345-2010, п.5.3.5, существует 3 стандартных типа время-токовой характеристики (или диапазонов токов мгновенного расцепления): B, C и D. Так вот автомат с характеристикой С должен срабатывать в пределах от 5-кратного до 10-кратного тока от номинального (5·In до 10·In).

Помимо стандартных характеристик типа В, С и D, существуют еще и не стандартные характеристики типа А, К и Z, но о них я расскажу Вам как-нибудь в другой раз.

Согласно ГОСТ Р 50345-2010, п.3.5.17, ток мгновенного расцепления — это наименьшая величина тока, при котором автоматический выключатель сработает (отключится) без выдержки времени, т.е. это и есть его электромагнитный расцепитель (ЭР).

А теперь проверим заявленные характеристики представленных выше автоматов. Для этого я воспользуюсь, уже известным Вам, многофункциональным устройством РЕТОМ-21.

Вот график время-токовой характеристики (сокращенно, ВТХ) типа С, взятый из паспорта автомата Elvert:

Помимо характеристики С, на графике показаны характеристики В и D, но на них в рамках данной статьи не обращайте внимания.

На графике показана зависимость времени отключения автоматического выключателя от протекающего через него тока. Ось Х — это кратность тока в цепи к номинальному току автомата (I/In). Ось У — время срабатывания (t), в секундах (минутах).

Запомните, что время-токовые характеристики практически всех автоматов изображают при температуре окружающей среды +30°С и данная характеристика не исключение.

График разделен двумя линиями, которые и определяют разброс времени срабатывания зон теплового (зеленого цвета на графике) и электромагнитного (коричневого цвета на графике) расцепителей автомата.

Верхняя линия теплового расцепителя (зеленого цвета на графике) — это холодное состояние, т.е. без предварительного пропускания тока через автомат, а нижняя линия теплового расцепителя — это горячее состояние автомата, т.е. который только что был в работе или сразу же после его срабатывания.

1. Токи условного нерасцепления (1,13·In)

У каждого автомата есть такое понятие, как «условный ток нерасцепления» и он всегда равен 1,13·In. При таком токе автомат не отключится в течение 1 часа (для автоматов с номинальным током ≤ 63А) и в течение 2 часов (для автоматов с номинальным током > 63А).

Точку условного нерасцепления автомата (1,13·In) всегда отображают на графике. Если провести прямую, то видно, что она уходит как бы в бесконечность и с нижней линией теплового расцепителя пересекается в диапазоне от 60 до 120 минут, в зависимости от номинала автомата.

Таким образом, при прохождении через наш рассматриваемый автомат Elvert С16 тока 1,13·In = 18,08 (А) его тепловой расцепитель не должен сработать в течение 1 часа. А при прохождении через автомат С63 тока 1,13·In = 71,19 (А) его тепловой расцепитель не должен сработать в течение 1 часа.

Вот значения «токов условного нерасцепления» для различных номиналов автоматов:

  • 10 (А) — 11,3 (А)
  • 16 (А) — 18,08 (А)
  • 20 (А) — 22,6 (А)
  • 25 (А) — 28,25 (А)
  • 32 (А) — 36,16 (А)
  • 40 (А) — 45,2 (А)
  • 50 (А) — 56,5 (А)
  • 63 (А) — 71,19 (А)

Проверку рассматриваемых автоматов на токи «условного нерасцепления» я проводить не буду, т.к. это занимает достаточно длительное время, да и согласно нашей утвержденной методики на автоматы, такую проверку мы не проводим.

2. Токи условного расцепления (1,45·In)

Есть еще понятие, как «условный ток расцепления» автомата и он всегда равен 1,45·In. При таком токе автомат отключится за время не более 1 часа (для автоматов с номинальным током ≤ 63А) и за время не более 2 часов (для автоматов с номинальным током > 63А).

Кстати, точку условного расцепления автомата (1,45·In) практически всегда отображают на графике.  Если провести прямую, то видно, что она пересекает график в двух точках зоны теплового расцепителя: нижнюю линию в точке 60-70 секунд, а верхнюю — в точке от 60 до 120 минут, в зависимости от номинала автомата.

Таким образом, автомат с номинальным током 16 (А) в течение часа, не отключаясь, может держать нагрузку порядка 23,2 (А), а автомат с номинальным током 63 (А) — порядка 91,35 (А). Но это при условии, что автоматы изначально были в холодном состоянии, в ином случае время их отключения будет значительно меньше.

Вот значения «токов условного расцепления» автоматов различных номиналов для их холодного состояния:

  • 10 (А) — 14,5 (А)
  • 16 (А) — 23,2 (А)
  • 20 (А) — 29 (А)
  • 25 (А) — 36,25 (А)
  • 32 (А) — 46,4 (А)
  • 40 (А) — 58(А)
  • 50 (А) — 72,5 (А)
  • 63 (А) — 91,35 (А)

Вот об этом не стоит забывать при выборе сечения проводов и кабелей для электропроводки (вот Вам таблица в помощь).

Вот представьте себе, что кабель сечением 2,5 кв.мм Вы защищаете автоматом на 25 (А). Вдруг по некоторым причинам Вы перегрузили линию до 36 (А). Такое зачастую бывает, особенно в зимнее время, когда включены нагреватели и множество различных бытовых приборов.

Автомат номиналом 25 (А) при токе 36 (А) может не отключаться в течение целого часа (из холодного состояния), а по кабелю будет идти ток, который превышает его длительно-допустимый ток (25 А).

За это время кабель конечно же не расплавится, но нагреться может достаточно сильно. Более точнее скажу, когда проведу данный эксперимент и измерю температуру нагрева с помощью тепловизора. Так что кому интересно, то подписывайтесь на рассылку сайта «Заметки Электрика», чтобы не пропустить выход новых статей.

А Вы все знаете, что повышенная температура всегда подвергает изоляцию ускоренному старению, т.е. сегодня нагрели, завтра и послезавтра перегрели, происходит ее старение и растрескивание, изоляция ухудшается, что в итоге может привести к короткому замыканию и прочим разным последствиям.

А если еще учесть то, что в последнее время производители кабельной продукции преднамеренно занижают сечения жил, то ситуация тем более усугубляется.

Некоторые мои коллеги в Интернете, ссылаясь на мое мнение, утверждают, что я не прав и сильно перестраховываюсь. Да, возможно это и так, и температура нагрева кабеля не выйдет за предельные нормы, но еще раз повторю про ситуацию с занижением сечения жил. Вы думаете, что приобрели кабель сечением 2,5 кв.мм, но по факту это может оказаться кабель с сечением жил 2,0 кв.мм. И про прочей равной нагрузке он может нагреться уже гораздо сильнее. Поэтому я считаю, что данный факт мы, как специалисты, должны учитывать в том числе.

В принципе, выбор номиналов автоматических выключателей это отдельная тема для статьи. Я лишь привел здесь одну из наиболее распространенных ошибок.

Лично я рекомендую защищать кабели следующим образом:

  • 1,5 кв.мм — защищаем автоматом на 10 (А)
  • 2,5 кв. мм —  защищаем автоматом на 16 (А)
  • 4 кв.мм —  защищаем автоматом на 20 (А) и 25 (А)
  • 6 кв.мм —  защищаем автоматом на 25 (А) и 32 (А)
  • 10 кв.мм — защищаем автоматом 40 (А)
  • 16 кв.мм — защищаем автоматом 50 (А)
  • 25 кв.мм — защищаем автоматом 63 (А)

Для удобства все данные я свел в одну таблицу:

А теперь проверим рассмотренные автоматы на токи условного расцепления.

Чтобы мне не терять время, я буду сразу проверять 4 автомата с номинальным током 16 (А), подключив их последовательно.

В общем наводим ток 23,2 (А) и засекаем время.

Первым отключился четвертый автомат, время срабатывания которого составило 108,4 (сек.).

Сейчас я исключу отключившийся автомат из схемы и продолжу испытания остальных. Более подробнее про это Вы можете посмотреть в видеоролике в конце статьи, а сейчас я укажу получившееся время срабатывания всех четырех автоматов:

  • автомат №1 — 376,32 (сек. )
  • автомат №2 — 130,48 (сек.)
  • автомат №3 — 220,92 (сек.)
  • автомат №4 — 108,4  (сек.)

Все наши автоматы сработали в пределах заявленных время-токовых характеристик.

Теперь у нас на очереди трехполюсный автоматический выключатель Elvert с номинальным током 63 (А). Проверять его тепловой расцепитель я буду, пропуская одновременно через все три полюса ток 91,35 (А).

Автомат сработал за время 267,2 сек., что также соответствует ВТХ.

3. Проверка теплового расцепителя при токе 2,55·In

Согласно ГОСТ Р 50345-2010, п.9.10.1.2 и таблицы №7, если через автоматический выключатель будет проходить ток, равный 2,55·In, то его тепловой расцепитель должен сработать за время не менее 1 секунды и не более 60 секунд для автоматов с номинальным током ≤ 32 (А), или не менее 1 секунды и не более 120 секунд для автоматов с номинальным током > 32 (А).

На графике видно, что нижний предел по отключению взят с некоторым запасом, т. е. не 1 секунду, а целых 8 секунд. Верхний предел тоже взят с небольшим запасом — не 60 секунд, а 40 секунд. На то есть право у производителей автоматов. Вот поэтому они всегда к каждому автомату прикладывают, непосредственно, свою ВТХ, которая, естественно, что удовлетворяет всем требованиям ГОСТ Р 50345-2010.

Проверим!

Автомат Z406 от Elvert с номинальным током 16 (А) при токе 40,8 (А), согласно ГОСТ Р 50345-2010, должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния. Но, согласно ВТХ завода-производителя, время отключения должно находиться в пределах от 8 до 40 секунд.

Первый раз автомат отключился за время 5,35 (сек.), а второй раз — за время 5,26 (сек).

Как видите, время срабатывания автомата лежит вне предела ВТХ завода-производителя, но вполне соответствует ГОСТ Р 50345-2010.

И для какой цели производитель отобразил график ВТХ в таком виде, если автоматы срабатывают вне этого графика?! Это несоответствие необходимо исправить!

Автомат Z406 от Elvert с номинальным током 63 (А) при токе 160,65 (А) должен отключиться за время не менее 1 секунды из горячего состояния и не более 120 секунд из холодного состояния. Каждый полюс автомата я буду прогружать в отдельности.

Автомат отключился за время:

  • первый полюс — 15,37 (сек.)
  • второй полюс — 31,89 (сек.)
  • третий полюс — 30,52 (сек.)

4. Проверка электромагнитного расцепителя при токе 5·In

Согласно ГОСТ Р 50345-2010, п.9.10.2.1 и таблицы №7, если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время не менее 0,1 секунды. Верхний предел по времени ГОСТом Р 50345-2010 не определен, и у автоматов разных производителей здесь может наблюдаться не большой разброс в пределах от 1 до 10 секунд.

Странно, конечно, ведь речь идет об электромагнитном расцепителе и он должен срабатывать без выдержки времени. Но тем не менее, при токе 3·In электромагнитный расцепитель еще не срабатывает и по факту автомат отключается все таки от теплового расцепителя. Вот именно поэтому измеренное значение петли фаза-ноль сравнивают не с 5-кратным током, а с 10-кратным, учитывая коэффициент 1,1.

Итак, автомат Z406 от Elvert с номинальным током 16 (А) при токе 80 (А) должен отключиться за время не менее 0,1 секунды.

Первый раз автомат отключился за время 0,942 (сек.), а второй раз — за время 0,95 (сек.), что вполне удовлетворяет вышеперечисленным требованиям.

Автомат Z406 от Elvert с номинальным током 63 (А) при токе 315 (А) должен отключиться за время не менее 0,1 секунды. Здесь аналогично, каждый полюс автомата я буду прогружать в отдельности.

Автомат отключился за время:

  • первый полюс — 4,97 (сек.)
  • второй полюс — 3,36 (сек.)
  • третий полюс — 5,2 (сек.)

5. Проверка электромагнитного расцепителя при токе 10·In

Согласно ГОСТ Р 50345-2010, п.9.10.2.1 и таблицы №7, если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время менее 0,1 секунды.

Автомат Z406 от Elvert с номинальным током 16 (А) при токе 160 (А) должен отключиться за время менее 0,1 секунды.

Первый раз автомат отключился за время 6,5 (мсек.), а второй раз — за время 6,5 (мсек.).

Автомат Z406 от Elvert с номинальным током 63 (А) при токе 630 (А) должен отключиться за время менее 0,1 секунды. Здесь аналогично, каждый полюс автомата я буду прогружать в отдельности.

Автомат отключился за время:

  • первый полюс — 7,6 (мсек.)
  • второй полюс — 7,8 (мсек.)
  • третий полюс — 7,6 (мсек.)

Как видите, оба автомата полностью соответствуют требованиям ГОСТ Р 50345-2010 и заявленным характеристикам завода-изготовителя Elvert.

Всю информацию по пределам срабатывания время-токовых характеристик различных типов (B, C и D) я представил в виде общей таблицы:

Как видите, разницей между время-токовыми характеристиками типа В, С и D являются только значения срабатывания электромагнитного расцепителя (ЭР). По тепловой защите они работают в одних пределах по времени.

Кому интересно, то смотрите весь процесс прогрузки автоматов в моем видеоролике:

P.S. Это все, что я хотел рассказать Вам про время-токовую характеристику типа С на примере модульных автоматических выключателей Elvert серии Z406. Надеюсь, что теперь Вы сможете самостоятельно определять пределы времени срабатывания модульных автоматов с характеристикой С, а также правильно рассчитывать сечения проводов в зависимости от номиналов автоматов. Все интересующие вопросы пишите в комментариях. Спасибо за внимание. До новых встреч.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Выбор автоматического выключателя по параметрам сети, подключенной нагрузке (мощности), по току, по сечению провода. Конструктивные элементы и особенности эксплуатации автоматов.

Старая версия статьи здесь

Автоматические выключатели одновременно выполняют функции защиты и управления: защищают кабели, провода, электрические сети и потребителей от перегрузки и короткого замыкания (сверхтоков короткого замыкания), а также обеспечивают нормальный режим протекания электротока в цепи и осуществляют управление участками электроцепей.

Автоматические выключатели выполняют одновременно функции защиты и управления, бывают однополюсные, двухполюсные, трехполюсные и четырехполюсные.

Автоматы имеют защитные (спусковые) устройства двух типов: тепловое реле с выдержкой времени для защиты от перегрузки и электромагнитное реле для защиты от короткого замыкания.

Основные конструктивные узлы автоматических выключателей: главная контактная система, дугогасительная система, привод, расцепляющее устройство, расцепители и вспомогательные контакты. Расцепители представляют собой реле прямого действия, служащее для отключения автоматического выключателя (без выдержки времени или с выдержкой) через механизм свободного расцепления, который в свою очередь состоит из рычагов, защелок, коромысел и отключающих пружин.

 

Только правильно выбранный автоматический выключатель сможет защитить Вас и сработает в случае аварии или при опасной нагрузке на вашу электропроводку. Неверный выбор может привести к пожару или поражению электрическим током.

Не рекомендуется применять «автомат» с видимыми повреждениями корпуса, а также устанавливать автоматические выключатели с завышенным номинальным током срабатывания. Нужно выбирать автоматический выключатель строго под параметры вашей электропроводки и потребителей, только известных производителей и желательно в специализированных магазинах.

Выбираются автоматические выключатели по номинальному току, напряжению и по условиям эксплуатации (исходя из типа исполнения). Если необходимо выбрать автомат для подключения известных нагрузок необходимо рассчитать ток. Автоматический выключатель также должен отключить напряжение при коротком замыкании.

Характеристики срабатывания (отключения) и эксплуатации установлены в европейских стандартах на автоматические выключатели: DIN VDE 0641 часть 11/8.92, EN 60 898, IEC 898 (DIN – Немецкий промышленный стандарт, VDE – Технические правила Общества немецких электриков, EN – Европейский стандарт, IEC – Международная электротехническая комиссия) и в российском стандарте ГОСТ Р 50345-99.

Согласно данным стандартам защитные устройства могут быть трех характеристик срабатывания:

    • Автоматический выключатель с характеристикой срабатывания B рекомендуется применять преимущественно для защиты оборудования, кабелей и цепей в жилых домах (как правило, цепи освещения и розеток)
    • Автоматический выключатель с характеристикой срабатывания C рекомендуется применять  для защиты оборудования, кабелей и цепей в жилых домах (цепи освещения и розеток), а также для защиты цепей с потребителями, обладающими большим пусковым током (группы ламп, электродвигатели и т.д.)
    • Автоматические выключатели с характеристикой срабатывания D преимущественно применяются для защиты кабелей и цепей с потребителями с очень большим пусковым током (сварочные трансформаторы, электродвигатели и т.д.)

Стоит отметить, что подавляющее большинство автоматов на российском рынке предлагается с характеристикой С, с характеристикой B продаются как правило автоматы на малые токи, остальные поставляются в основном под заказ.

 

Согласно стандарту DIN VDE 0100 часть 430/11.91 и его приложений (для устройств защиты кабелей и электрических цепей от перегрузки), защита от чрезмерного нагрева (тепловая защита) в случае перегрузки обеспечивается, если выполняются следующие условия:

    • Потребляемый ток цепи должен быть меньше или равным номинальному току автоматического выключателя, который в свою очередь должен быть не больше, чем максимально допустимая нагрузка электрической цепи или кабеля (Ib<=In<=Iz)
    • Номинальный ток срабатывания автоматического выключателя (для защиты от перегрузки по току) должен быть примерно в 1,5 раза меньше, чем максимально допустимая нагрузка электрической цепи или кабеля (In<=1,45*Iz)

где Ib – потребляемый ток цепи, нагрузка
Iz – допустимая нагрузка электрической цепи или кабеля
In – номинальный или заданный ток устройств защиты от чрезмерного тока

Определить максимальный ток, который выдерживает проводка можно с помощью программы по выбору сечения провода по нагреву и потерям напряжения или по таблицам ПУЭ (Правил устройства электроустановок).

 

 
Характеристики срабатывания автоматических выключателей B и C согласно DIN VDE 0641 и D согласно IEC 947-2

 

Параметры срабатывания линейных защитных автоматов согласно DIN VDE 0641 и IEC 60 898

 

 Характеристика срабатывания Тепловое реле Электромагнитное реле
 Малый испытательный ток Большой испытательный ток Время срабатывания Удерживание СрабатываниеВремя срабатывания
 B 1,13*In  > 1час 3*In > 0,1 с
  1,45*In < 1час  5*In< 0,1 с
 C 1,13*In  > 1час 5*In > 0,1 с
  1,45*In < 1час  10*In< 0,1 с
 D 1,13*In  > 1час 10*In > 0,1 с
  1,45*In < 1час  20*In< 0,1 с

 

То есть при перегрузке до 13% номинального тока, автоматический выключатель должен отключиться не ранее, чем через час (т. е. выдерживать перегрузку 13% минимум в течение часа), а при перегрузке до 45%, тепловое реле должно отключить «автомат» в течение часа.

Трехкратную перегрузку автоматический выключатель с характеристикой B должен как минимум выдерживать 0,1 секунду, а при пятикратной перегрузке встроенное электромагнитное реле должно отключить автоматический выключатель менее чем за 0,1 секунду.

Из всего этого видно, что номинальный ток выбранного Вами автоматического выключателя, как минимум, не должен превышать допустимых токовых нагрузок для Вашей электропроводки, поэтому, приобретая автоматические выключатели, будьте внимательны с выбором тока. Если Вам продавец советует выбрать автоматический выключатель с током не менее 25А, чтобы при включенном холодильнике, обогревателе, стиральной машине и т.п. его не выбивало, то помните, что в большинстве квартир проводка выполнена из алюминия сечением 2.5 мм2, а такой провод выдерживает максимум 24А. В этом случае единственным разумным решением будет не включать одновременно, например, микроволновую печь и электрочайник или стиральную машину, а не заменять автомат 16А на 25А. Не забывайте, что автоматический выключатель должен выполнять свое основное предназначение — защищать Вашу сеть от перегрузок.

Аналогичным образом подбирается и номинальный ток для дифференциального автомата (так как он объединяет в себе УЗО и автоматический выключатель) — выбор дифференциального автоматического выключателя.

При использовании в цепи постоянного тока характеристики срабатывания теплового расцепителя остаются теми же, что и в сетях переменного напряжения. А характеристики максимального испытательного тока электромагнитного расцепителя изменятся.

Значения максимального испытательного тока электромагнитного расцепителя.

 

 

 

Характеристика выключения

B

C

D

АС/50 Гц (переменный ток)

DC (постоянный ток)

АС/50 Гц (переменный ток)

DC (постоянный ток)

АС/50 Гц (переменный ток)

Минимальный испытательный ток

3,0*In

3,0*In

5*In

5*In

10*In

Максимальный испытательный ток

5,0*In

7,5*In

10*In

15*In

20*In


Допустимая нагрузка на автоматические выключатели
, установленные в ряд один за другим

Поправочный коэффициент (K) в случае взаимного теплового влияния автоматических выключателей, установленных рядом друг с другом, при расчетной нагрузке.

 Число автоматических выключателей Коэффициент К
 1 1
 2…3 0,95
 4…5 0,9
 ≥6 0,85

Влияние окружающей температуры на тепловое срабатывание автоматического выключателя (приведенные в столбце 30°С токи соответствуют номинальным токам автоматического выключателя, так как при этой температуре задается режим срабатывания). В таблице приведены уточненные значения расчетного тока в зависимости от окружающей температуры.

 

In (А)30°С35°С40°С45°С50°С55°С60°С
0,50,50,470,450,40,38
110,950,90,80,70,60,5
221,91,71,61,51,41,3
332,82,52,42,32,11,9
443,73,53,332,82,5
665,65,354,64,23,8
10109,48,887,576,4
1616151413121110
202018,517,516,5151413
252523,52220,51917,516
3232302826242220
404037,53533302825
50504744413833532
6363595551484440

 

См. каталог:
Модульные устройства коммутации и управления HAGER
Автоматические выключатели, УЗО и дифф. автоматы Hager
Линейные защитные автоматы — для защиты кабелей и проводов
Автоматические выключатели Hager HMF на токи 80-125А
Автоматические выключатели SASSIN
Автоматы дифференциальные SASSIN серии C45L, C45N

Статьи по теме:

Выбор устройства защитного отключения (УЗО)
Выбор дифференциального автомата
Проведение электромонтажных работ


Внимание! При полном или частичном копировании материалов данной статьи или другой информации с сайта www.electromirbel.ru, обязательно наличиеактивной ссылки, ведущей на главную страницу www.electromirbel.ru или на страницу с копируемым материалом. Гиперссылка не должна быть запрещена к индексации поисковыми системами (например, с помощью тегов noindex, nofollow и т.д.)!!!


© ООО «Электромир», 2010.

Типы характеристика классификация виды автоматических выключателей. Устройство автоматического выключателя: маркировка, токи, обозначение

Типы автоматических выключателей

Автоматический выключатель – защитный прибор, срабатывающий от короткого замыкания или тепловой перегрузки линии к которой подключен.
Типы:
Основные типы или виды автоматических выключателей:
– Модульный автоматический выключатель. Устройство стандартного, модульного типа с установкой в электрический щиток на din-рейку. Применяется для защиты в бытовых целях, а так же в коммерческих и промышленных сетях энергораспределения.
– Промышленные автоматические выключатели в корпусе. Предназначены для защиты распределительных сетей 50/60 Гц с напряжением до 660 В, рабочим током до 1600 А. Применяется в больших щитовых подстанциях и на производстве используются для подключения мощного оборудования или как главный вводной автоматический выключатель.
– Автоматические выключатели для защиты электрических двигателей.
Все вышеперечисленные типы автоматических выключателей имеют свои характеристики для определенных параметров срабатывания.
Остановимся более подробнее на модульном автоматическом выключателе. Это основной элемент защиты в электрораспределении для жилищных, коммерческих помещений.
Сразу обозначим, что внешний вид модульных автоматических выключателей одного и того же производителя будет одинаков, характеристики срабатывания на внешний вид не влияют.
Различают автоматические выключатели по характеристике срабатывания:
Характеристика срабатывания это настройка магнитного расцепителя, более простыми словами – настройка чувствительности на ток короткого замыкания.

Токи автоматических выключателей

Для бытовых условий электрораспределения (в жилом доме, квартире) применяются номинальные токи автоматических выключателей от 0,5 до 63 Ампер. Такие параметры автоматических выключателей являются достаточными для обеспечения защиты и правильного распределения электрических линий. Если, в жилом доме, возникает потребность установки автоматического выключателя на токи выше 63 Ампера, то такие приборы так же существует, но уже в промышленных сериях. Устанавливая в доме такой мощный автомат, убедитесь что сечение вводного кабеля позволяет устанавливать автоматический выключатель на такой ток. К примеру, для автоматического выключателя на ток 100 Ампер сечение кабеля, которого он защищает должно быть не менее 16 mm² медного проводника или же 25 mm² алюминиевого. Более точное определение номинального тока автомата защиты к сечению кабеля зависит от ряда таких факторов, как длина токоведущей линии, количество жил в проводнике (одножильный, двухжильный, трехжильный провод и т.д) и способ прокладки кабеля. Приняв во внимание потерю мощности, от длины линии, и условие охлаждения от способа прокладки кабеля вы сможете правильно подобрать номинальный ток автоматического выключателя для надежной и безопасной работы.

Технические характеристики автоматического выключателя:

Рассмотрим самые востребованные время-токовые характеристики автоматических выключателей в бытовых сериях:

Классификация автоматических выключателей:

Итак, время-токовая характеристика автоматических выключателей, такая характеристика дает возможность индивидуального подбора защиты к каждому прибору или линии.Кривая «B». В автоматическом выключатели такого типа срабатывания настройка магнитного расцепителя установлена в пределах 3÷5 Iноминального значения автомата. Автоматические выключатели с характеристикой отключения B, способны защищать от тока короткого замыкания с малым значением и подойдут для установки практически во всех случаях, где на линии нет устройств с большими пусковыми токами. Защита освещения, бойлеров, нагревательных приборов, электрочайника, тостера, бытовых электрических плит и других электроприборов за исключением электроприборов где присутствуют электродвигатели, насосы.
Кривая «C». Автоматический выключатель характеристики отключения у которого тип С — настройка 5÷10 от Iноминального значения. В современных квартирах и домах, практически везде стоят автоматические выключатели с такой характеристикой. Это обусловлено тем, что автомат с такими настройками способен надежно защищать линии практически со всеми электроприборами, включая те приборы, где при старте включения появляются большие пусковые токи (приборы в конструкции которых есть электродвигатели, большое количество дросселей и пр. ). Например, бытовые электроприборы с большими пусковыми токами: стиральная машина, пылесос, холодильник, блендер и т.п.
Кривая «D». Категория автоматических выключателей с характеристикой D предназначена для защиты электрических двигателей в однофазной и трёхфазной сети. Это устройства защиты с более грубыми настройками чувствительности к токам короткого замыкания: в пределах от 10 до 20 Iноминального значения.
Автоматические выключатели характеристики которых мы не упомянули в этой статье («MA», «A», «K», «Z») относятся к промышленным сериям и о них мы расскажем в отдельной статье.
Напишем немного о том, зачем такая градация по типам срабатывания.
В электрораспределительных щитах, при распределении с большого количества потребителей, для правильной работы системы, необходимо соблюдение селективности. Селективность автоматического выключателя — можно назвать словом «избирательность».
Селективность — согласование работы установленных последовательно защитных аппаратов, таким образом, чтобы в случае перегрузки или короткого замыкания (к. з.) отключалась только та часть установки, где возникла неисправность.

Маркировка автоматических выключателей

– Расшифруем основные показатели бытового, модульного автоматического выключателя по маркировке. Обращаем ваше внимание на то, что у фирменных, оригинальных устройств защиты, маркировка выполнена четко и нестирающейся краской. Бывают случаи когда вам предлагают автоматический выключатель маркировка которого не четкая, цифры напечатаны расплывчатой краской или вовсе стертые, знайте это подделка! На корпусе изделия должно быть все обозначение автоматических выключателей, даже такие технические характеристики, как отключающая способность автоматического выключателя и характеристика отключения. Например, напечатанный символ «C», рядом с номиналом, указывает на то, что автоматический выключатель С типа.

Каталог автоматических выключателей

Интернет-магазин «Электрика-Шоп» — это специализированный магазин электрики. В каталоге наших товаров вы найдете самые популярные, надежные, проверенные временем и практикой, автоматические выключатели европейских брендов. Например, автоматические выключатели Schneider Electric, считаются одними из самых лучших средств защиты от короткого замыкания и тепловой перегрузки. В каждой карточке товара автомата защиты Шнайдер Электрик можно скачать каталог автоматических выключателей Schneider Electric.
Автоматические выключатели Moeller / Eaton – еще один качественный, надежный, а главное доступный по цене бренд автоматов защиты. Производитель Moeller / Eaton предлагает несколько серий для бытового и коммерческого сектора, подробнее о продуктах можно ознакомиться перейдя по ссылке – Автоматические выключатели Moeller

Устройство автоматического выключателя

Мало кому приходилось разбирать автомат и исследовать устройство автоматических выключателей. Для общей информативности, мы решили показать вам, как должно выглядеть это защитное устройство изнутри, и как на практике выглядят разобранные автоматы оригинального фирменного бренда и обычный китайский (из дешевого ценового сегмента).
Предлагаем фото и схему этих автоматических выключателей в разрезе с краткими комментариями.

Клеммы подключения у фирменного автоматического выключателя это два полноценных винтовых зажима, а у китайского одна верхняя клемма для подключения провода с нормальным креплением и одна нижняя с явной халтурой, зачем делать экономию на зажимах проводов мы не знаем, но даже такой ньюанс может повлиять на продолжительность работы автомата.
Не будем подробно описывать достоинства и недостатки конкретно этих автоматических выключателей, но в результате увиденного, сделаем такое описательное заключение, что при разборке двух автоматов защиты (фирменного и с категории «подешевле») механические части, такие как подвижный и неподвижный силовой контакт, крепление гибкого проводника, плавность хода ручки управления и клеммы подключения даже визуально имеют явное отличие качества.
Мы не тестировали тепловой и электромагнитный расцепитель автомата китайского, дешевого образца, но не идеальное качество применяемых деталей показал даже визуальный осмотр устройства этого автоматического выключателя.

Время-токовые характеристики автоматических выключателей

Многие, наверное, замечали, что на корпусах модельных защитных выключателей указаны буквы латинского алфавита – B, C или D. Они обозначают време-токовую характеристику или ток мгновенного расцепления данного устройства.

В соответствии с пунктом 3.5.17 ГОСТа Р 50345-99, ток мгновенного расцепления – это минимальные показатели электротока, при котором устройство отключается без электромагнитной защиты, то есть без выдержки времени.

Пунктом 5.3.5 того же ГОСТа установлено, что существует три вида данной характеристики:

1.B– от 3 In до 5 In.

2.C – от 5 In до 10 In.

3.D – от 10 In до 20 In.

In– это номинальный показатель предохранительного элемента.

Рассмотрим эти виды многоцелевого расцепления на примере модульного коммутационного устройства ВА 47-29.

Время-токовая характеристика типа B

На графике приведена зависимость времени срабатывания защитного устройства от величины протекающего электротока. На оси Х указана кратность тока к номинальному электротоку коммутатора. По оси Y– время разъединение (секунд).

График имеет две линии, которые описывают разброс разъединение электромагнитного и теплового расцепителя устройства. Верхняя линия – это холодное состояние автомата после срабатывания, а нижняя – горячее.

Важно! Характеристики большинства автоматов изображаются при температуре 30 градусов по Цельсию.

На представленных характеристиках, пунктирной линией отмечен верхний предел для прибора с номинальным электротоком меньше 32 Ампер.

Анализ графика показывает:

1.Если через коммутационный прибор будет проходить электрический ток в 3 In, то максимальное время его отключения в горячем состоянии составляет 0,02 секунды. В холодном состоянии время срабатывания:

  • для автоматов менее 32 А – 35 сек.;
  • для автоматов более 32 А – 80 сек.

2.Если через автомат будет проходить электроток в 5 In, то максимальное время разъединения в горячем состоянии – 0,01 секунды, а в холодном – 0,04.

Автоматические выключатели вида B используются преимущественно для защиты потребителей с активным типом нагрузки – цепи освещения, электрические обогреватели и печи.

В магазинах количество подобных устройств довольно ограничено. Хотя для организации питания групп розеток и освещения целесообразно использовать именно такие рубильники, а не тип С. Именно в таком случае удастся соблюсти селективность при коротком замыкании.

Время-токовая характеристика типа C

График время-токовой характеристики вида С:

1.Если через предохранительный коммутатор будет протекать ток в 5 In, то максимальное время отключения в горячем состоянии составит 0,02 секунды. В холодном состоянии наибольшее время разъединение :

  • для выключателей менее 32 А – 11 сек.;
  • для выключателей более 32 А – 25 сек.

2.Если через защитное коммутационное устройство будет протекать электроток в 10 In, то максимальное время срабатывания в горячем состоянии – 0,01 секунды, а в холодном – 0,03 секунды.

Данный тип автоматов используется в основном для защиты моторов с небольшими пусковыми токами и трансформаторов. Их также можно применять для запитывания цепей освещения. Они широко используются в жилом фонде.

Время-токовая характеристика типа D

График время-токовой характеристики типа D:

1.Если через з предохранительный автомат будет протекать ток в 10 In, то максимальное время отключения в горячем состоянии составит 0,02 секунды. В холодном состоянии максимальное время срабатывания :

  • для выключателей менее 32 А – 3 сек.;
  • для выключателей более 32 А – 7 сек..

2.Если через защитный коммутатор будет протекать электроток в 20 In, то наибольшее время срабатывания в горячем состоянии – 0,009 секунды, а в холодном – 0,02 секунды.

Коммутаторы вида D используются для защиты двигателей с тяжелым и частым пуском.

Изменение характеристик расцепления автоматов

Как упоминалось в начале статьи, все характеристики предохранительных автоматов приводятся при температуре окружающей среды в 30 градусов по Цельсию. Для того, чтобы узнать время срабатывания механических коммутаторов при других температурах, следует учитывать такие поправочные коэффициенты:

1.Kt – температурный коэффициент окружающего воздуха. На графике ниже можно проанализировать его значения. Чем выше температура воздуха, тем ниже значение данного коэффициента, а значит и снижается номинальный ток выключателя, то есть его нагрузочная способности. Или, иначе, чем холодней, тем меньше нагрузочная способность. По этойпричине в жарких помещениях возможно срабатывания автоматов даже без роста нагрузки.

2.Kn– коэффициент учета количества установленных автоматов в ряд. Когда в одном ряду уставлено несколько защитных автоматов, то они передают часть своего тепла остальным выключателям. На графике ниже представлена зависимость конвекции тепла от количества автоматов. Чем больше устройств в ряду, тем меньше их нагрузочная способность.

Для того, чтобы рассчитать электроток, в соответствии с температурой окружающей среды, нужно номинальный ток механического коммутатора умножить на приведенные выше коэффициенты.

Теперь рассмотри пример использования коэффициентов на практике. Допустим, распределительный щиток установлен на улице и к нему подключено 4 автомата:

  • вводной автомат типа ВА 47-29 С40 – 1 штука;
  • групповой автомат типа ВА 47-20 С16 – 3 штуки.

Температура окружающей среды – минус 10 градусов по Цельсию.

Находим поправочные коэффициенты для автомата ВА 47-29 С16:

1.Kt=1,1.

2.Kn=0,82.

Рассчитываем номинальный ток:

In=16*1,1*0,82=14,43 Ампер.

Следовательно, чтобы определить предельное время отключения защитного автомата типа С нужно использовать не соотношение I/In (I/16), а I/In* (I/14,43).

Условный ток неотключение и условный ток отключения

Каждый автомат имеет условный ток неотключения, который рассчитывается как 1,13 In. При таком токе защитное устройство не сработает.

Возьмем уже знакомый нам выключатель ВА 47-29 С16. При протекании через него электротока 1,13 In=18,08 Ампер он никогда не сработает.

Также существует такое понятие, как условный ток отключения. Он всегда равняется 1,45 In. При таком токе в холодном состоянии выключатель не будет отключатся в течение часа.

Например, выключатель ВА 47-29 С16 при прохождении тока 1,45In = 23,2 Ампер в горячем состоянии отключится через 50 секунд, а в холодном – через час.

Только представьте, что автомат номинальным током в 16 Ампер сможет держать нагрузку в 23 Ампер в течение 60 минут. За это время 1,5-миллиметровый кабель может выгореть и расправится.

Как выбрать автоматический выключатель для дома: по мощности, по току

Если у вас часто срабатывает автоматический выключатель на 16-20 А и обесточивает квартиру, не верьте тем, кто говорит, что нужно просто поставить автомат номиналом побольше. Новый автомат реагировать на перегрузки перестанет, но начнут гореть розетки.


 

Зачем менять автомат?

Любой электрик скажет: «При наличии отсутствия острой необходимости лучше в электропроводку дома своими руками не лезть». Последствия могут быть печальными. Когда же возникает такая необходимость?

Для того чтобы поменять розетку, нужно знать физику за 8-9 классы. С прочей электрической начинкой все немного сложнее. Если в квартире регулярно срабатывает автомат (автоматический выключатель в щитке) и пропадает свет, пора его менять.

Вероятно, автоматический выключатель выработал свой ресурс, даже несмотря на то, что срок, указанный в паспорте, еще не истек. Изношенный аппарат на 16 А может срабатывать при слабой нагрузке на сеть (10 А), а может не срабатывать при экстремальных значениях (произойдет спаивание контактов, дальше – пожар).

 

Напомним на всякий случай некоторые сведения из школьной программы:

  • Мощность = Напряжение х Ток.
  • Ток = Мощность \ Напряжение.

 

Напряжение в розетке — 220 В. На кофеварке указано 1200 Вт, значит, потребляемый ток будет 1200\220=5,45 (А).

Если вам удалось сложить мощность всех домашних электроприборов и рассчитать общую силу тока, можете считать себя электриком второго уровня.

 

Как работает автомат и от чего он защищает

Внешне автоматический выключатель представляет собой пластиковый коробок с клеммами для подсоединения проводки, плюс тумблер. Лезть внутрь не обязательно. Для нас важно, что в нем установлены контакты, тепловой и электромагнитный расцепители, которые отвечают за обесточивание сети при повышенной и экстремальной нагрузке.

Как расшифровать маркировку на автоматическом выключателе:

  • Буква (A, B, C, D) – это класс автомата, она означает предел тока мгновенного срабатывания, то есть напряжения, когда автомат сразу же обесточивает сеть в квартире. В большинстве случаев в жилых домах будет стоять автомат с буквой C. Он будет моментально срабатывать при 5-10 кратном увеличении силы тока от номинала. То есть автомат с номиналом 10 А вырубит сеть без задержки при значении силы тока 50-100 А. Автомат с B-характеристикой (3-5 кратное превышение) тоже самое сделает при значении 30-50 А.
  • Цифра указывает на номинальный ток, то есть значение, до которого автомат будет работать в штатном режиме, ничего не выключая. Тот же автомат на 10 А при превышении силы тока до 11,5 сработает лишь через два часа. При 14,5 подождет минуту, если перенапряжение сети не исчезнет, обесточит квартиру. И так далее, до пиковых значений, обозначенных буквой, когда сеть упадет без задержки.
  • Рядом меньшим шрифтом будет стоять другая цифра (в тысячах ампер), обозначающая максимальное значение силы тока, при котором автомат сработает, не получив повреждений.


 

В чем здесь фокус, почему нельзя сразу отключить сеть, если превышено номинальное значение? Автомат учитывает кратковременные токи, возникающие в сети на доли секунды при включении электрооборудования. Когда вы включаете стиральную машину, пусковой ток может быть выше номинального в 2-3 раза.

Основная функция автоматического выключателя – защищать сеть от короткого замыкания и перегрузки. Когда по линии течет слишком большой ток, проводка нагревается. Если это происходит слишком долго – провод может загореться.

Автомату по большому счету все равно на ваши электроприборы, он их, вопреки расхожему мнению, не защищает от скачков напряжения. Но потерять микроволновку или чайник, подключенные к розетке, это одно, а перегоревшая проводка в стене или в люстре – другое.

Важно понимать, что и от удара током человека при случайном касании токоведущих участков и заземленных предметов автомат тоже не убережет. Для этого существуют устройства защитного отключения (УЗО). Советуют ставить одно общее после вводного автомата и на группы, где есть риск поражения током.

 

Как выбрать автомат для электропроводки

Для того чтобы правильно выбрать автоматический выключатель, нужно прикинуть максимально допустимую токовую нагрузку сети (суммировать все приборы). Номинал автомата (цифра после буквы) не должен превышать этого значения.

Для обычной квартиры, где нет «серьезных» потребителей питания типа кондиционера, водонагревателя, подойдет автомат класса B. Такая сеть считается слабонагруженной. Ставить высоконагруженный автомат (класса D) для сети, которая питает лампочки опасно. Он не будет воспринимать скачки напряжения в ней как вредные и может пропустить даже короткое замыкание.

Слабонагруженный прибор в сети с большой нагрузкой в штатном режиме наоборот, будет срабатывать не по делу и часто.

Да, чуть не пропустили: автоматы различаются по количеству фаз (полюсов). Число полюсов автомата указывает, с каким из типов сетей он может работать.В квартиру можно также поставить один входной выключатель класса C и по одному однофазному для обеспечения отдельных участков (кухня, комната, отдельно на кондиционер, если предусмотрен). Если нет желания все усложнять, в двухкомнатной квартире можно вполне обойтись одним автоматическим выключателем B с номиналом 16.

Мы почти разобрались, как выбрать автоматический выключатель по току и мощности. Но, если учесть только нагрузку потребителей, можно нарваться на неприятности. Выбор автомата напрямую зависит от типа проводки, кабеля. На слабой проводке мощный автомат при перегрузках не справится со своими задачами. То есть всегда нужно принимать во внимание сечение провода и его пропускную способность.

В домах до 2001-2003 годов с большой долей вероятности будет алюминиевая проводка в однослойной изоляции. Скорее всего, она свое уже отслужила (номинально она может выдержать 20 лет при идеальных условиях, без перегрузок). Ставить на нее новый автомат, учитывая лишь суммарную мощность потребителей, категорически не рекомендуется. Автомат часто срабатывать перестанет, а проблема перегрева останется.

Варианта, по сути, два:

  • Менять проводку на медную.
  • К мощным потребителям (стиральная машина, бойлер, кондиционер) провести отдельную линию от щитка и поставить на нее отдельный автомат.


 

Медный провод пропускает больший ток, чем алюминиевый. Но и здесь важно, кроме материала, учитывать его сечение. Оно дает понять, сколько ампер можно пропустить через кабель, не опасаясь повреждения и перегрева.

Для примера:

  • Алюминиевый провод сечением 2,5 мм2 безопасно работает с токами до 16-24 А.
  • Медный провод сечением 2,5 мм2 безопасно работает с токами 21-30 А.

 

Это означает, что при нагрузке в 23 А, автомат с номиналом 16 А обесточит проводку через минуту. Вполне достаточно, чтобы медный провод не перегрелся. Если поставить автомат 25 А, до отключения кабель будет пропускать ток за пределами своей нормальной нагрузки, он перегреется, изоляция быстрее износится, розетка со временем перегорит. Для алюминиевой проводки, соответственно, эти значения ниже.

Для простоты понимания предлагаем таблицу выбора автоматического выключателя, исходя из сечения кабеля.


 

Последний совет: на своей безопасности не следует экономить. Лучше брать автоматы в специализированных магазинах, выбирать производителей с проверенной репутацией. Менеджеры на месте ответят на вопросы, которые мы могли упустить в этой статье.

15 маркировок на автоматических выключателях

Автоматический выключатель на своем корпусе несет массу полезной информации, о которой многие даже и не догадываются.

Основной упор при выборе и покупке, почему то делается только на величину номинального тока. А между тем, чтобы правильно выбрать автомат защиты, нужно учитывать множество факторов и технических характеристик подобных коммутационных устройств.

Наиболее важные из них производители нам и предоставляют, указывая все это непосредственно на корпусе, либо несмываемой краской, либо лазерной маркировкой.

Зная их расшифровку и обозначение, вам больше не придется лезть в интернет или в специализированные каталоги. Достаточно внимательно осмотреть модульный автомат со всех сторон.

Давайте пройдемся по всем этим данным, взяв за основу наиболее популярные марки от ABB, Schneider Electric, IEK и другие.

Производитель

Первое, что выделяется на лицевой стороне корпуса — это логотип и название производителя. Большинство останавливает свой взгляд именно на этом.

Перед походом в магазин, у нас уже как правило сформировано представление о том, какая марка будет приобретаться. Выбор делается на основе предыдущего опыта (положительного или отрицательного), либо подробного изучения всей имеющейся информации в сети.

И только после этого идет подробное изучение технических особенностей.

После названия фирмы производителя, указывается серия данного выключателя или так называемая линейка.

В ней бывает зашифровано несколько параметров и конструктивных особенностей. Причем каждая линейка может подразделяться на отдельные кластеры, со своими нюансами и отличиями.

Вот например, расшифровка автоматов ABB серии S200.

Номинальный ток и времятоковая характеристика

Далее следует одна из главных надписей — номинальный ток автомата. Например С25 или С16.

Первая буква обозначает времятоковую характеристику «С». Цифра после буквы — значение номинального тока.

Самые распространенные характеристики — «B, C, D, Z, K». Они определяют время отключения, в зависимости от тока короткого замыкания, проходящего через автомат. Если коротко, то:

B

автомат отключится «условно мгновенно» при токе КЗ в 3-5 раз больше номинала

В основном их ставят в цепях освещения.

C

при токе КЗ в 5-10 раз больше номинала

Универсальное применение в сетях со смешанной нагрузкой.

D

в 10-20 раз больше Iном

Используются для подключения электродвигателей.

Актуально в схемах с электронными устройствами.

Подходит только для оборудования с индуктивной нагрузкой.

Все подобные устройства имеют тепловую и электромагнитную защиту. Хотя тепловая иногда может и не ставится. Но об это чуть позже.

Тепловая часть отключает автоматический выключатель в диапазоне токов от 1,13 до 1,45*Iном.

Электромагнитная — в диапазоне вышеприведенных параметров в зависимости от типа характеристики.

Обратите внимание, что при значении С25, автомат не отключит нагрузку в 26 Ампер. Это случится только при величине тока в 1,13 раз большую от 25А. Да и то, через довольно длительный промежуток времени (более 1 часа).

Есть такое понятие как:

  • ток срабатывания — 1,45*Iном

Автомат гарантировано сработает в течение часа.

  • ток не срабатывания — 1,13*Iном

Автомат не должен сработать в течение часа, а только по истечении этого времени.

Еще не забывайте, что значение номинального тока на корпусе указано для окружающей температуры в +30С. Если вы поставите аппарат в бане или на фасаде дома, прямо под лучами солнца, то 16 Амперный автомат, знойным летним деньком может сработать при токе, даже меньше номинального!

230/400V — надписи номинального напряжения, где может применяться данный автомат.

Если там стоит значок 230V (без 400V), эти аппараты нужно использовать только в однофазных сетях. Вы не сможете поставить в ряд два или три однофазных выключателя и подать таким образом 380В на двигательную нагрузку или трехфазный насос, либо вентилятор.

Еще внимательно изучайте двухполюсные модели. Если у них на одном из полюсов написана буква «N» (не только дифавтоматы), то именно сюда подключается нулевая жила, а не фазная.

Они и называются несколько иначе. Например ВА63 1П+N.

Значок волны означает — для работы в сетях переменного напряжения.

На постоянное напряжение и ток, такие аппараты лучше не ставить. Характеристики его отключения и результат работы при КЗ, будут не предсказуемы.

Выключатели на постоянный ток и напряжение, помимо значка в виде прямой линии, могут иметь на своих клеммах характерные надписи «+» (плюс) и «-» (минус).

Причем правильное подключение полюсов здесь критично. Это связано с тем, что условия гашения дуги на постоянном токе несколько тяжелее.

Если на переменке происходит естественное гашение дуги при переходе синусоиды через ноль, то на постоянке, синусоида как таковая отсутствует. Для устойчивого гашения дуги в них применяется магнит, устанавливаемый вблизи дугогасительной камеры.

Он засасывает дугу как можно глубже, тем самым обеспечивая ее разрыв. Поэтому, если вы перепутаете полярность, то возникнет обратный эффект и магнит при срабатывании автомата будет не затягивать, а выталкивать дугу.

Что приведет к неминуемому разрушению корпуса.

Отключающая способность

4500А или 6000А — номинальная отключающая способность тока в амперах при номинальном напряжении.

Это означает, что если на нагрузке или на кабеле по которому она питается, случится короткое замыкание с силой тока 6000А, то данный аппарат сможет успешно выполнить свою задачу и отключит потребителя.

Если же ток будет больше 6000А, то контакты автомата могут свариться между собой, «прикипеть», либо разрушатся (выгорят) стенки корпуса.

С какой именно величиной тока (4,5кА или 6кА) выбирать автоматы для щитовой в многоэтажках, а какие устанавливать при проживани в частном доме за городом, читайте в отдельной статье.

Бывают аппараты рассчитанные и на бОльшие токи КЗ. Причем при Iном=0,5-25А это будет ток КЗ в 25кА, а при Iном=32-63А всего лишь 15кА.

Это объясняется невозможностью рассеять большую мощность дуги при таких компактных габаритах. Хотите токи еще больше? Тогда ищите экземпляры чуть пошире.

Причем речь здесь не идет о промышленных габаритных выключателях. Это те же самые модульные автоматы, правда с одним исключением.

Они занимают на дин-рейке, в отличие от стандартных не один модуль, а полтора. Вот пример от ABB на токи КЗ до 50кА!

Класс токоограничения

Цифра после тока КЗ (3 или 2) — класс токоограничения.

Выключатель с такой функцией не позволяет току короткого замыкания принимать его самое максимальное значение и производит отключение на как можно ранней стадии.

То есть, эта цифра показывает, насколько быстро внутри устройства гасится электрическая дуга, не позволяя отдельным элементам и деталям, нагреваться до предельных температур и способствовать пожару.

Класс ‘2’

ограничивает ток КЗ в пределах половины полупериода

Класс ‘3’

в пределах 1/3 полупериода

Грубо говоря, автомат с «троечкой», справится с последствиями тока КЗ быстрее, чем с «двоечкой». По времени это можно отразить следующей таблицей.

Устройства с «первым» классом, вообще никоим образом и никакими цифрами не маркируются.

Все вышеприведенные маркировки располагаются на лицевой стороне. Теперь переходим к боковой грани. Там тоже есть масса полезной информации.

ГОСТ и стандарты

Например, соответствие стандарту. Вот модель от Шнайдер Электрик, которая одновременно отвечает двум международным стандартам.

Эти стандарты имеют отечественные аналоги. Для российского рынка чаще всего указывается ГОСТ Р50345.

Эта надпись означает, что выключатель можно применять только в бытовых условиях.

Обслуживать его могут рядовые потребители и лица, без прохождения какого-либо обучения и инструктажа.

Есть и другой ГОСТ Р500030.2

Эти модели уже предназначены для эксплуатации в промышленных условиях. Работать с такими аппаратами разрешается только квалифицированному персоналу.

Далее некоторые надписи могут дублировать информацию на передней панели.

  • U=400V — номинальное рабочее напряжение
  • Icn=6000А — наибольшая отключающая способность
  • 50/60Гц — частота работы электросети
  • I=8In (С) — автоматический выключатель имеет характеристику «С» с пределом электромагнитного отключения 8 крат от номинального тока (+-20%).

Напряжение импульсное, изоляция и степень загрязнения

Есть и новые маркировки.

  • Uimp=6kV — номинальное импульсное удерживаемое напряжение
  • Ui=500V — номинальное напряжение изоляции
  • Deg3 — степень загрязнения

Означает, что допустимо токопроводящее загрязнение или сухое не токопроводящее загрязнение, которое может стать токопроводящим при конденсации влаги.

Наибольшая отключающая способность

А вот этот параметр наиболее интересен, хотя указывают его далеко не все производители. Это так называемая, наибольшая отключающая способность в зависимости от напряжения.

Упрощенно по поводу Icu можно сказать следующее. Если ток КЗ прошедший через автомат, будет соответствовать данному значению указанному на корпусе, то автоматический выключатель успешно выполнит свою задачу только один раз.

Далее он уже будет не пригоден к последующей эксплуатации. Его по любому придется заменить.

Если же ток КЗ будет равен параметру Ics/Icu, то автоматом можно пользоваться и дальше.

Данные надписи порой очень важны и позволяют оценить возможность применения коммутационного аппарата при различном номинальном напряжении. Как понимаете, токи КЗ при этом будут существенно отличаться.

Отключающая способность автоматов имеет квадратичную зависимость от питающего напряжения. Вот посмотрите насколько существенна эта разница.

Поэтому купить автомат для однофазки 220В, это не то же самое что для трехфазки 380В. Подберете неправильно и ждите последствий при первом же КЗ:

  • пожар и выгорание корпуса
  • ненормальный гул при последующем включении, если автомат все таки «выжил»
  • неселективная работа или спекание контактов

Хорошо, если он у вас вообще отключится. Фактически выключатель в таком случае превращается в предохранитель.

Вот только стоимость его в разы отличается от простейших устройств с плавкими вставками. Спрашивается, стоило ли переплачивать?

Селективность

Cat A или Cat B — категория применения в отношении селективности.

Cat A — это обычный автомат. Cat B — это селективный выключатель, который ставится в разветвленных сетях для обеспечения селективности защит.

Грубо говоря, чтобы при КЗ отключался только автомат какой-то конкретной линии, а не главный ввод всей цепочки.

Например, у вас в квартире стоит вводной автоматический выключатель, плюс еще один установлен на лестничной площадке. Даже если номинал автомата в подъезде или лестничной клетке больше, то нет никаких гарантий, что в случае серьезного КЗ сработает тот аппарат, который смонтирован в квартирном щитке.

Чаще всего отрабатывают оба. А представьте, что второй аппарат смонтирован не сразу за дверью, а в щитовой подвала, да еще и под замком? Бывает и такое.

Поэтому в таких ситуациях для ответственных объектов не помешает раскошелиться и применить селективные аппараты.

Ну и конечно в обязательном порядке их нужно ставить в медицинских учреждениях. Дабы какая-нибудь уборщица тетя Глаша, замкнув мокрой тряпкой розетку в подсобке, случайно не обесточила полбольницы вместе с операционной.

Момент затяжки

На корпусе качественного автоматического выключателя также указывается номинальный момент затяжки контактных клемм.

Только соблюдая его, вы гарантировано надежно подключите провода.

Отдельные модели нередко снабжаются QR кодом. Он у каждого экземпляра индивидуален.

Благодаря этому, имея под рукой сотовый телефон, вы прямо в магазине легко сможете проверить оригинальный перед вами товар или подделка. Это к вопросу о том, как отличить настоящие автоматы ABB от китайских фальшивок.

Схема и типы защит

Еще на корпусе рисуется условная схема, где нарисованы типы защит, установленные в автомате.

Полукруг — электромагнитный расцепитель. Прямоугольничек — тепловой.

Как это не странно, но есть автоматические выключатели без теплового расцепителя. Они служат для защиты электродвигателей с тепловыми реле. Их применяют в системах дымоудаления и подключают к ним кабели, способные выдерживать значительный перегрев.

Это особое требование пожаробезопасности для обеспечения длительной работоспособности устройств, при высоких окружающих температурах. Будь «теплушка» в таких выключателях, они бы срабатывали раньше времени, ухудшая сценарий развития пожара.

Дополнительную маркировку, относящуюся к устройствам дифференциальной защиты или отдельным видам реле, ищите по специализированным каталогам. Всю информацию по маркировке модульных пускателей и контакторов, читайте в статье ниже.

Как видите, даже на нескольких квадратных сантиметрах можно разместить огромное количество полезных данных, на основании которых и следует делать грамотный выбор электрооборудования.

Статьи по теме

Время токовые характеристики автоматических выключателей

Автоматический выключатель (АВ) – защитное электротехническое устройство, срабатывающее при коротких замыканиях или превышении допустимой нагрузки по сети. Современный рынок заполнен аппаратами немецкого (АВВ, Siemens), французского (Schneider, Legrand), японского (Terasaky), российского (IEK) производства. Они различаются между собой конструкцией, качеством и ценой. Но время токовые характеристики автоматических выключателей от разных изготовителей соответствуют действующим нормам и стандартам. Этот показатель дает возможность подобрать АВ под конкретные условия.

Что показывает время токовая характеристика

В электрических системах при возникновении аварии отключение электропитания следует производить очень быстро, чтобы свести к минимуму негативные последствия. Человек неспособен достаточно быстро отреагировать. Поэтому устанавливаются автоматические выключатели.

Для энергетической сферы существует деление на системы постоянного и переменного напряжения. Оборудование классифицируется на низковольтное (до 1000 В), высоковольтное (более 1000 В). Соответственно применяются различные типы автоматов.

Во всех случаях АВ предназначен для разрывания цепи при различных токовых величинах короткого замыкания (КЗ) и перегрузках. Первые безошибочно отсекаются электромагнитным расцепителем мгновенно. Вторые протекают по цепи определенное время, без каких-либо последствий, а лишь потом сработает тепловая защита.

Современные автоматические защитные аппараты содержат три вида расцепителей:

  1. механический – эта ручка предназначена для включения, выключения автомата;
  2. электромагнитный – отсекает нагрузку КЗ;
  3. тепловой – предохраняет электрические цепи от перегрузки.

Рабочие параметры последних двух определяют время токовые характеристики для автоматических выключателей. Которые показывают зависимость времени отключения аппарата от соотношения между протекающим по нему током и его номинальным значением. Они сложны тем, что требуют графического выражения.

Благодаря тому, что автоматы с одинаковым номиналом имеют различные характеристики срабатывания, при одном и том же токовом значении их можно применять под разные типы нагрузки. Это обеспечивает минимальное число ложных отключений и защищает от токовых перегрузок.

Получается, что время токовая характеристика (ВТХ) показывает:

  1. диапазон срабатывания защиты от короткого замыкания (максимально-токовой), который определяется параметрами встроенной электромагнитной катушки;
  2. диапазон срабатывания при превышении нагрузки, определяемый встроенной биметаллической пластиной.

Общий вид ВТХ можно представить нижеприведенным графиком. Цифрой 1 отмечен участок срабатывания при определенном токовом соотношении теплового расцепителя, а цифрой 2 – время реакции электромагнитного.

Общий вид время токовой характеристики АВ

Распространенные виды характеристик

Характеристики срабатывания автоматических выключателей указываются буквами латинского алфавита на их корпусе: А, B, C, D, Z, К. Они показывают на отношение уставки электромагнитного расцепителя к номинальному току данного аппарата, то есть чувствительность.

Рассмотрим их детально в таблице.

Время токовые характеристики АВ типа B, C, D представлены на рисунке.

Время токовые характеристики выключателей по типу B, C, D

У автоматических выключателей разные технические характеристики. Правильный выбор автомата по токовой нагрузке и время токовой характеристике позволяет установить защитное устройство, реагирующее на перегрузки сети должным образом. Это избавит от ложных отключений. Для домашних условий оптимальным вариантом будет использование автоматов типа В и С.

кривых отключения MCB — кривые отключения B, C, D, K и Z

MCB (Миниатюрный автоматический выключатель) — это устройство с возможностью перенастройки, предназначенное для защиты цепи от коротких замыканий и сверхтоков. Кривая срабатывания автоматического выключателя (кривые B, C, D, K и Z ) говорят нам о номинальном токе срабатывания автоматических выключателей. Номинальный ток срабатывания — это минимальный ток, при котором автоматический выключатель срабатывает мгновенно. Требуется, чтобы ток отключения сохранялся в течение 0,1 с.

Определение

Кривые срабатывания MCB, также известные как характеристика срабатывания I-t, состоят из двух участков, а именно, участка перегрузки и участка короткого замыкания.Раздел перегрузки описывает время отключения, необходимое для различных уровней токов перегрузки, а раздел короткого замыкания описывает мгновенный уровень тока отключения MCB.

Подробнее: Миниатюрный автоматический выключатель (MCB) — Принцип работы

Кривая отключения класса B

Автоматический выключатель с характеристиками срабатывания класса B мгновенно срабатывает, когда ток, протекающий через него, достигает от 3 до 5 значений номинального тока. Эти автоматические выключатели подходят для защиты кабеля.

Кривая отключения класса C

MCB с характеристиками отключения , класс C отключается мгновенно, когда ток, протекающий через него, превышает номинальный ток в 5-10 раз. Подходит для бытовых и жилых помещений и для электромагнитных пусковых нагрузок со средними пусковыми токами.

Кривая отключения класса D

Автоматический выключатель с характеристиками срабатывания класса D мгновенно срабатывает, когда ток, протекающий через него, превышает номинальный ток в 10-20 раз (исключая 10).Подходит для индуктивных и моторных нагрузок с высокими пусковыми токами.

Кривая отключения класса K

MCB с характеристиками отключения , класс K мгновенно срабатывает, когда ток, протекающий через него, превышает номинальный ток в 8–12 раз. Подходит для индуктивных и моторных нагрузок с высокими пусковыми токами.

Кривая отключения класса Z

MCB с характеристиками отключения , класс Z мгновенно срабатывает, когда ток, протекающий через него, в 2–3 раза превышает номинальный ток. Этот тип MCB очень чувствителен к короткому замыканию и используется для защиты высокочувствительных устройств, таких как полупроводниковые устройства.

Кривая отключения класса A

MCB с характеристиками отключения , класс A мгновенно срабатывает, когда ток, протекающий через него, в 2–3 раза превышает номинальный ток. Как и автоматические выключатели класса Z, они также очень чувствительны к короткому замыканию и используются для защиты полупроводниковых устройств.

Чаще всего используются автоматические выключатели

с классом кривой срабатывания B и классом кривой срабатывания C.Автоматические выключатели с кривыми срабатывания класса C можно найти в распределительных щитах освещения в жилых и коммерческих зданиях. Он срабатывает, как только ток возрастает в 5-10 раз от номинального. Автоматические выключатели класса B используются для защиты электронных устройств, таких как ПЛК, источники питания постоянного тока и т. Д. В панелях управления. Он срабатывает, как только ток возрастает в 3-5 раз от номинального.

Наручные часы: кривые отключения MCB лучше.

В некоторых приложениях частые пики тока происходят в течение очень короткого периода (от 100 мс до 2 с).Для таких приложений должны использоваться автоматические выключатели класса Z. Автоматические выключатели типа Z используются в схемах с полупроводниковыми приборами.

Важность кривых отключения MCB

Важно выбрать соответствующий номинал MCB и кривую срабатывания, чтобы защитить цепь от повреждений во время сбоев. Следовательно, необходимо рассчитать ток короткого замыкания и пусковой ток перед выбором подходящего номинала MCB. Если выбранный номинал MCB намного выше, чем требуется, он может не сработать в случае неисправности.Точно так же, если MCB недооценен, это может вызвать ложные срабатывания, например, даже пусковые токи или пусковые токи могут отключать MCB.

Кривые срабатывания других автоматических выключателей

Все автоматические выключатели, такие как MCCB, ACB, VCB и т. Д., Имеют свои собственные характеристики отключения. Единственное, что может не соответствовать категоризации MCB. Кроме того, характеристики отключения каждого автоматического выключателя отличаются от других.

Узнать больше о MCB :

Статьи по теме:
1.Разница между MCB и MCCB
2. Разница между контакторами и реле
3. Разница между устройствами плавного пуска и VFD
4. Разница между MCCB и RCCB
5. Разница между MCB и RCBO
6. Разница между RCCB и RCBO
7. Разница между MPCB и MCCB

MCB (Миниатюрные автоматические выключатели) — Типы, рабочие характеристики и кривые отключения

Короче говоря, MCB — это устройство для защиты от перегрузки и короткого замыкания. Они используются в жилых и коммерческих помещениях.Точно так же, как мы тратим время на тщательную проверку перед покупкой бытовой техники, такой как стиральные машины или холодильники, мы также должны исследовать миниатюрные автоматические выключатели.

MCB — лучшая альтернатива предохранителю , поскольку он не требует замены при обнаружении перегрузки. В отличие от предохранителя, MCB легко эксплуатируется и, таким образом, обеспечивает повышенную безопасность и удобство эксплуатации без больших эксплуатационных расходов. Они используются для защиты цепей с более низким током и имеют следующие характеристики:

  • Номинальный ток — Амперы
  • Номинальное значение короткого замыкания — килоампер (кА)
  • Рабочие характеристики — Кривые B, C, D, Z или K

Не путайте миниатюрный автоматический выключатель с MCCB (автоматический выключатель в литом корпусе) или GFCI (автоматический выключатель при замыкании на землю).

Миниатюрный автоматический выключатель — это распределительное устройство, которое обычно доступно в диапазоне от 0,5 A до 100 A. Его номинальный ток короткого замыкания указан в килоамперах (кА), и это указывает на уровень его работоспособности.

Например, бытовой MCB обычно имеет уровень неисправности 6 кА, тогда как тот, который используется в промышленном приложении, может нуждаться в блоке с возможностью отказа 10 кА.

Принцип работы миниатюрного автоматического выключателя (MCB)

MCB

— это защитные устройства, которые предназначены для размыкания цепи в случае перегрузки или короткого замыкания.

Срабатывание автоматического выключателя при перегрузке и коротком замыкании составляет,

  • Для защиты от перегрузки у них есть биметаллическая полоса , которая вызывает размыкание цепи.
  • Для защиты от короткого замыкания он имеет электромагнитный тип .

Внутри миниатюрного автоматического выключателя

Существует две схемы работы: — автоматический выключатель .

  1. Из-за теплового воздействия сверхтока
  2. Из-за электромагнитного эффекта перегрузки по току.

Температурный режим автоматического выключателя достигается с помощью биметаллической ленты. Всякий раз, когда через MCB протекает непрерывный электрический ток, биметаллическая полоса нагревается и отклоняется из-за изгиба.

Это отклонение биметаллической ленты освобождает механическую защелку. Поскольку эта механическая защелка прикреплена к рабочему механизму, она вызывает размыкание контактов миниатюрного автоматического выключателя .

Но во время короткого замыкания внезапное повышение электрического тока вызывает электромеханическое смещение плунжера, связанного с катушкой отключения или соленоидом MCB .

Плунжер ударяет по рычагу отключения, вызывая немедленное освобождение фиксирующего механизма, что приводит к размыканию контактов выключателя. Это было простое объяснение принципа работы миниатюрного автоматического выключателя .

Механизм отключения в миниатюрном автоматическом выключателе

Как объяснено в предыдущем разделе, автоматический выключатель имеет два типа отключающего механизма.

  1. Тепловое срабатывание
  2. Магнитное расцепление

Они объяснены в следующем разделе.

1. Тепловой расцепитель

Тепловой расцепитель защищает от токов перегрузки.

Тепловой блок основан на биметаллическом элементе, расположенном за перемычкой выключателя и является частью токоведущей цепи выключателя.

При перегрузке повышенный ток нагревает биметалл, вызывая его изгиб. Когда биметалл изгибается, он тянет за расцепитель, размыкающий контакты выключателя.

Время, необходимое для изгиба биметалла и срабатывания выключателя, обратно пропорционально току.

Магнитный и тепловой расцепитель MCB

2. Магнитный расцепитель

Магнитный расцепитель защищает от короткого замыкания. Магнитный расцепитель состоит из электромагнита и якоря.

При коротком замыкании через катушки проходит ток большой величины, создавая магнитное поле, которое притягивает подвижный якорь к неподвижному якорю.

Молоток прижимается к подвижному контакту, и контакты размыкаются.

Магнитный расцепитель

Типы автоматических выключателей по характеристикам отключения

Автоматические выключатели

подразделяются на разные типы в зависимости от отключения в диапазоне тока короткого замыкания. Важными типами автоматических выключателей являются следующие:

  1. MCB типа B
  2. MCB типа C
  3. Тип D MCB
  4. Тип K MCB
  5. Тип Z MCB

Ток отключения и время срабатывания каждого из вышеперечисленных типов MCB приведены в таблице ниже.

Тип Ток отключения Время работы
Тип B От 3 до 5 раз больше тока полной нагрузки 0.С 04 по 13 сек
Тип C От 5 до 10 раз превышающего ток полной нагрузки от 0,04 до 5 секунд
Тип D От 10 до 20 раз больше тока полной нагрузки 0,04 до 3 сек
Тип K от 8 до 12 раз больше тока полной нагрузки <0,1 сек
Тип Z От 2 до 3-кратного тока полной нагрузки <0. 1 сек

Инфографика о различных типах миниатюрных автоматических выключателей

1. MCB типа B

Этот тип MCB отключает ток полной нагрузки в 3–5 раз.

Устройства

типа B в основном используются в жилых помещениях или в легких коммерческих приложениях, где подключенные нагрузки — это в первую очередь осветительные приборы, бытовые приборы с преимущественно резистивными элементами.

MCB

типа B Также используется для компьютеров и электронного оборудования с очень низкими пусковыми нагрузками (проводка ПЛК).Уровни импульсного тока в таких случаях относительно низкие.

Функции MCB типа B — защита и управление цепями от перегрузок и коротких замыканий; защита людей и кабелей большой длины в системах TN и IT.

Приложения : жилое, коммерческое и промышленное.

Подробнее о MCB типа B

2. MCB типа C

Этот тип MCB отключает от 5 до 10 раз больше тока полной нагрузки.

Используется в коммерческих или промышленных приложениях, где возможны более высокие значения токов короткого замыкания в цепи.

Тип C MCB

Подключаемые нагрузки в основном индуктивные по своей природе (например, асинхронные двигатели) или люминесцентное освещение. Применения включают небольшие трансформаторы, освещение, пилотные устройства, схемы управления и катушки.

Функции MCB типа C: защита и управление цепями от перегрузок и коротких замыканий; защита резистивных и индуктивных нагрузок с низким пусковым током.

Приложения : жилое, коммерческое и промышленное.

3. MCB типа D:

Этот тип MCB отключает от 10 до 20 раз больше тока полной нагрузки.

Эти автоматические выключатели используются в специальных промышленных / коммерческих целях, где пусковой ток может быть очень высоким. Примеры включают трансформаторы или рентгеновские аппараты, двигатели с большой обмоткой и т. Д.

Устройства типа D MCB

с D-кривой подходят для приложений, в которых ожидаются высокие уровни пускового тока. Высокая магнитная точка срабатывания предотвращает ложное срабатывание в высокоиндуктивных приложениях, таких как двигатели, трансформаторы и источники питания.

F Функции типа D MCB предназначены для защиты и управления цепями от перегрузок и коротких замыканий; защита цепей, питающих нагрузки с высоким пусковым током при замыкании цепи (трансформаторы, лампы пробоя).

Приложения : жилое, коммерческое и промышленное.

4. MCB типа K

Автоматические выключатели этого типа отключаются между 8 и 12 -кратным током полной нагрузки. Они подходят для индуктивных нагрузок и нагрузок двигателя с высокими пусковыми токами.

Тип K MCB

Прерыватели кривых K и D предназначены для двигателей, в которых допустимая токовая нагрузка увеличивается быстро и мгновенно во время «пуска».

Функциями MCB типа K являются защита и управление цепями, такими как двигатели, трансформатор и вспомогательные цепи, от перегрузок и коротких замыканий.

Преимущества MCB типа K:

Отсутствие ложных срабатываний при пиковых рабочих токах до 8xIn, в зависимости от серии; благодаря высокочувствительному термостатическому биметаллическому расцепителю характеристика K-типа обеспечивает защиту повреждаемых элементов в диапазоне сверхтоков; он также обеспечивает лучшую защиту 2 кабелей и линий.

Приложения : Торговля и промышленность.

5. MCB типа Z:

Автоматические выключатели этого типа отключаются в диапазоне от 2 до 3 раз при токе полной нагрузки.

Этот тип MCB очень чувствителен к короткому замыканию и используется для защиты высокочувствительных устройств, таких как полупроводниковые устройства.

MCB типа Z

Функции MCB типа Z — это защита и управление электронными цепями от слабых и длительных перегрузок и коротких замыканий.

Приложения : Коммерческое и промышленное использование.

Все вышеперечисленные типы автоматических выключателей обеспечивают защиту от отключения в течение одной десятой секунды.

Это визуальная сводка кривых отключения (по стандарту
) и их типичных типов нагрузки.

Типы автоматических выключателей по количеству полюсов

Другой практический способ различения автоматических выключателей — это количество полюсов, поддерживаемых автоматическим выключателем. Исходя из этого, существуют следующие типы:

1. Однополюсный (SP) MCB

Однополюсный MCB

Однополюсный MCB обеспечивает переключение и защиту только для одной отдельной фазы цепи.

2. Двухполюсный MCB

Двухполюсный MCB

Двухполюсный MCB обеспечивает переключение и защиту как фазы, так и нейтрали.

3. Трехполюсный (TP) MCB

Трехполюсный MCB

Трехфазный миниатюрный автоматический выключатель обеспечивает переключение и защиту только трех фаз цепи, но не нейтрали.

4. Трехполюсный с нейтралью [TPN (3P + N) MCB]

MCB TPN имеет переключение и защиту для всех трех фаз цепи, и, кроме того, нейтраль также является частью MCB в качестве отдельного полюса.

Трехполюсный + нейтраль — кривая C MCB

Однако нейтральный полюс не имеет какой-либо защиты и может только переключаться.

5. Четырехполюсный (4P) MCB

4-полюсный автоматический выключатель похож на TPN, но, кроме того, он также имеет защитную разблокировку для нейтрального полюса.

4-полюсный MCB

Этот MCB следует использовать в случаях, когда существует вероятность протекания большого тока нейтрали через цепь, например, в случае несимметричной цепи.

Характеристики / кривые отключения MCB (Типы B, C и D)

В этом разделе вы узнаете характеристики или кривые срабатывания различных типов MCB. Понимание кривых срабатывания очень важно, чтобы помочь вам при выборе MCB.

Что такое кривые срабатывания?

Характеристическая кривая / кривая отключения — это графическое представление ожидаемого поведения устройства защиты цепи.

Устройства защиты цепей бывают разных видов, включая предохранители, автоматические выключатели, автоматические выключатели в литом корпусе, дополнительные устройства защиты, автоматические выключатели для защиты двигателя, реле перегрузки, электронные предохранители и воздушные автоматические выключатели.

Кривая отключения

обычно строится между током расцепителя и временем отключения (Время — Кривая тока).Они предоставляются производителями устройств защиты цепей, чтобы помочь пользователям выбрать устройства, которые обеспечивают надлежащую защиту и производительность оборудования, избегая при этом ложных срабатываний.

Типичная характеристическая кривая MCB

Кривые отключения автоматического выключателя состоят из двух частей:

  1. Срабатывание защиты от перегрузки (устройство теплового отключения) : Чем выше ток, тем короче время срабатывания
  2. Срабатывание защиты от короткого замыкания (магнитное расцепляющее устройство) : Если ток превышает пороговое значение этого защитного устройства, время отключения составляет менее 10 миллисекунд.

Первый наклонный участок кривой представляет собой графическое представление характеристик отключения теплового расцепителя. Эта часть кривой имеет наклон из-за характера теплового расцепителя.

Зоны срабатывания на кривой MCB

Вторая область — это время отклика магнитного расцепителя, которое различает каждую характеристику и для которого присваивается идентификационная буква (Тип B, C, D, K, Z).

Классификация типа B, C или D основана на номинальном токе короткого замыкания, при котором происходит магнитное срабатывание для обеспечения кратковременной защиты (обычно менее 100 мс) от коротких замыканий.

Наиболее важные характеристики MCB:

  • Характеристические кривые типа B.
  • Характеристические кривые типа C.
  • Характеристические кривые типа D.

1. Кривая типа B 2. Кривая типа C 3. Кривая типа D

Существует несколько специализированных кривых отключения, например

.

  • Кривая типа S
  • Тип кривой Z
  • Кривая типа K

Зачем нужны разные кривые срабатывания?

Здесь возникает один вопрос: «Зачем нужны разные типы кривых срабатывания» или «Зачем нам нужны разные кривые срабатывания».

Назначение автоматического выключателя — достаточно быстрое срабатывание, чтобы избежать отказа оборудования или проводки, но не так быстро, чтобы давать ложные или ложные срабатывания.

Важно, чтобы оборудование с высокими пусковыми токами не приводило к срабатыванию автоматического выключателя без необходимости, и все же устройство должно срабатывать в случае тока короткого замыкания, который может повредить кабели цепи.

Нам нужны разные кривые отключения, чтобы сбалансировать правильную величину максимальной токовой защиты и оптимальную работу машины.Выбор автоматического выключателя с кривой срабатывания, которая срабатывает слишком рано, может привести к ложному срабатыванию. Выбор автоматического выключателя, который срабатывает слишком поздно, может привести к катастрофическому повреждению машины и кабелей.

Теперь мы рассмотрим каждую из трех важных кривых срабатывания, упомянутых выше.

1. Кривая типа B

Устройства

типа B обычно подходят для домашнего применения . Они также могут использоваться в легких коммерческих приложениях, где коммутационные перенапряжения незначительны или отсутствуют.

Кривая MCB типа B

Они предназначены для отключения при токах короткого замыкания, в 3-5 раз превышающих номинальный ток. Например, устройство на 10 А сработает при 30-50 А.

2. Кривая типа C

Устройства

типа C являются стандартным выбором для коммерческих и промышленных приложений , где используется люминесцентное освещение, двигатели и т. Д.

Эти устройства предназначены для отключения при токе, превышающем номинальный в 5-10 раз (50-100 А для устройства на 10 А).

3. Кривая типа D

Устройства типа D имеют более ограниченное применение, обычно в промышленном использовании, где можно ожидать высоких пусковых токов .

Тип D MCB Curve

Примеры включают большие системы зарядки аккумуляторов, обмоточные двигатели, трансформаторы, рентгеновские аппараты и некоторые типы разрядного освещения. Устройства типа D рассчитаны на 10-20 срабатываний (100-200 А для устройства 10 А).

Нормальные характеристики кабеля относятся к непрерывной работе при определенных условиях установки. Кабели, конечно, будут пропускать более высокие токи в течение короткого времени без необратимых повреждений.

Автоматические выключатели типов B и C обычно могут быть выбраны для достижения времени отключения, которое защитит проводники цепи от нормальных импульсных токов в соответствии с BS 7671.Этого труднее достичь с устройствами типа D, которым может потребоваться более низкое полное сопротивление контура заземления (Zs) для достижения времени работы ячейки, требуемого Регламентом 413-02-08.

Различные типы кривых срабатывания в MCB

Источники импульсных токов

Импульсные токи в бытовых установках, как правило, невелики, поэтому устройство типа B.

Импульсный ток или пусковой ток в MCB

Например, пусковые токи, связанные с одной или двумя люминесцентными лампами или двигателем компрессора в холодильнике / морозильной камере, вряд ли вызовут нежелательное отключение. Люминесцентные и другие газоразрядные лампы создают импульсные токи, и хотя одна или две люминесцентные лампы вряд ли вызовут проблему, переключение ряда люминесцентных ламп блокируется.

В магазине, офисе или на заводе могут возникать значительные пусковые токи. По этой причине для этих приложений рекомендуются устройства типа C.

Величина импульсного тока будет зависеть от номинала лампы, системы запуска и типа ПРА, используемого в светильниках.

Авторитетный миниатюрный автоматический выключатель Производители составляют таблицы, в которых перечислено количество фитингов определенной марки и типа, которые могут использоваться с их устройствами.

Преодоление нежелательного отключения MCB

Иногда выход из строя вольфрамовых ламп накаливания может привести к срабатыванию миниатюрных автоматических выключателей типа B в бытовых и торговых помещениях.

Это вызвано сильным дуговым током, возникающим во время отказа, и обычно связано с лампами низкого качества. По возможности следует поощрять пользователя использовать лампы более высокого качества. Если проблема не устраняется, следует рассмотреть одно из перечисленных ниже измерений.

Устройство типа C может быть заменено устройством типа B, где сохраняется нежелательное срабатывание, особенно в коммерческих приложениях.

В качестве альтернативы можно использовать более высокий рейтинг типа B MCB , скажем, 10A, а не 6A.

Какое бы решение ни было принято, установка должна соответствовать BS 7671.

Переход с устройств типа C на тип D должен производиться только после тщательного рассмотрения условий установки, в частности, времени работы, требуемого нормативными требованиями.

Прочие соображения

Невозможно переоценить важность выбора автоматических выключателей от известных производителей. Некоторые импортные продукты, заявившие, что они обладают способностью к короткому замыканию 6 кА, во время испытаний потерпели неудачу.

Напротив, процедуры испытаний, применяемые в лабораториях британской ASCTA (Ассоциация органов по тестированию короткого замыкания), являются одними из самых подходящих в мире.

Устройства типа B следует использовать только в домашних условиях, где высокие пусковые токи маловероятны, а устройства типа C следует использовать во всех других ситуациях.

Выбор правого MCB

Решение об использовании миниатюрных автоматических выключателей типа B, C или D для окончательной защиты цепей в жилых, коммерческих, промышленных или общественных зданиях может быть основано на нескольких простых правилах.

Однако понимание различий между этими типами устройств может помочь установщику преодолеть проблемы нежелательного отключения или сделать подходящий выбор там, где разграничительные линии менее четко определены.

Следует подчеркнуть, что основное назначение устройств защиты цепей, таких как миниатюрные автоматические выключатели и предохранители, заключается в защите кабеля после устройства.

Существенное различие между устройствами типа B, C или D основано на их способности выдерживать импульсные токи без отключения. Обычно это пусковые токи, связанные с люминесцентными и другими видами разрядного освещения, асинхронными двигателями, оборудованием для зарядки аккумуляторов и т. Д.

  • Типы B, C и D используются для максимальной токовой защиты кабелей в соответствии с IEC / EN 60898-1
  • Тип K для защиты двигателей и трансформаторов и одновременной максимальной токовой защиты кабелей с отключением от перегрузки в соответствии с IEC / EN 60947-2
  • Тип Z для цепей управления с высоким импедансом, цепей преобразователя напряжения и полузащиты кабеля, а также одновременной защиты кабелей от перегрузки по току с отключением от перегрузки в соответствии с IEC / EN 60947-2.

Как выбрать рейтинг MCB в конкретной цепи

Если для конкретной цепи не выбран правильный номинал, то при перегрузке автоматический выключатель не будет работать. Поэтому очень важно выбрать правильный рейтинг MCB, который можно легко рассчитать, как показано ниже.

Пример

Давайте представим, что у вас есть 4 вентилятора, один телевизор, 4 трубки, один V.C.D., один холодильник и один 1,5-тонный кондиционер на определенном контуре.

Ток в этой цепи будет (4 x 0,40) + (0,55) + (4 x 0,20) + (0,22) + (1,6) + (11) = 16 AMP .

Следовательно, подходящим номиналом MCB будет 20 AMP серии B.

Ниже приведен эталонный ток готовности некоторых важных устройств для расчета предпочтительного номинального значения MCB.

Расчет потребления энергии: 1 единица = рупий. 4,50 = 1000 Вт / час = 1 кВт / час.

Таблица выбора MCB

Таблица выбора MCB поможет вам выбрать правильный MCB для защиты вашей цепи.

Таблица выбора MCB 1 Таблица выбора MCB 2

Разница между миниатюрными автоматическими выключателями (MCB) классов A, B, C, D, K и Z

Автоматические выключатели

подразделяются на различные типы в зависимости от характеристик отключения, которые представляют собой диапазон тока короткого замыкания, при котором устройство работает в случае короткого замыкания или перегрузки.

Миниатюрные автоматические выключатели типа А

Автоматические выключатели

типа A — это высокочувствительные устройства, которые мгновенно срабатывают, когда ток в 2–3 раза превышает номинальный.

В основном используется для защиты высокочувствительных устройств.

Миниатюрные автоматические выключатели типа B

Автоматические выключатели типа B срабатывают, когда ток в 3-5 раз превышает номинальный, с временем срабатывания от 0,04 до 13 секунд. Он используется для чисто резистивных нагрузок, которые являются неиндуктивными нагрузками, или с очень небольшой индуктивной нагрузкой, которая не имеет значительной индуктивности.

Эти типы в основном используются для бытовых применений с низким энергопотреблением, таких как схемы освещения, домашние электропроводки и т. Д.

Миниатюрные автоматические выключатели типа C

Тип C работает при значении тока, в 5-10 раз превышающем номинальный ток, со временем срабатывания от 0,04 до 5 секунд. Они используются с индуктивными нагрузками, такими как двигатели, вентиляторы, трансформаторы и т. Д., Где есть вероятность внезапных скачков или скачков тока.

В основном используется в коммерческих и промышленных приложениях.

Миниатюрные автоматические выключатели типа D

Тип D имеет ток срабатывания в 10-20 раз превышающий номинальный ток при времени срабатывания 0.От 04 до 3 секунд. Он используется для очень высоких индуктивных нагрузок.

В основном используется в мощных промышленных установках для таких типов оборудования, как тяжелые двигатели, трансформаторы, рентгеновские лучи, сварка и т. Д.

Миниатюрные автоматические выключатели типа K

Отключение типа K, когда ток в 8–12 раз превышает номинальный, при времени срабатывания менее 0,1 секунды. Они используются для индуктивных нагрузок, которые могут иметь высокие пусковые токи.

Миниатюрные автоматические выключатели типа Z

Автоматические выключатели

типа Z работают при значении тока, в 2–3 раза превышающем номинальный ток, при времени срабатывания менее 0. 1 секунда.

Автоматические выключатели

типов A, K и Z имеют чрезвычайно малое время работы по сравнению с автоматическими выключателями типов B, C и D. Классы A, K и Z — это высокочувствительные выключатели, которые срабатывают очень быстро за короткое время и используются для защиты чувствительных устройств.

MCB TRIP — Каковы причины? [Объяснение классов кривой поездки 2020]

Кривые срабатывания автоматического выключателя и автоматического выключателя (B, C, D, K, Z)

Кривые срабатывания

MCB используются для отображения номинального тока срабатывания автоматических выключателей.Номинальный ток срабатывания — это минимальный уровень тока, при котором автоматический выключатель срабатывает мгновенно. Ток отключения должен сохраняться не менее 0,1 с, что является требованием для номинального значения.

Кривая отключения может также называться характеристикой отключения I-t. Он состоит из двух секций: секции перегрузки и секции короткого замыкания. Продолжительность отключения, необходимая для уровней токов перегрузки, отображается в разделе перегрузки, в то время как мгновенный уровень тока отключения автоматического выключателя описывается в разделе короткого замыкания.

Что такое отключения MCB

Классы кривых срабатывания:

Кривая срабатывания, класс B

Автоматические выключатели с характеристиками этого класса мгновенно срабатывают, когда токи, протекающие через них, в 3-5 раз превышают номинальный ток. Эти автоматические выключатели используются в основном для защиты кабеля.

Кривая срабатывания, класс C

Обычно автоматические выключатели, которые демонстрируют характеристики этого класса, имеют мгновенные отключения, когда ток, протекающий через них, в 5-10 раз превышает номинальный ток.Таким образом, они подходят для бытовых и бытовых применений и электромагнитных пусковых нагрузок, требующих средних пусковых токов.

Кривая срабатывания, класс D

Автоматические выключатели

с характеристиками этого класса мгновенно срабатывают, если ток, протекающий через них, превышает номинальный ток в 10,1–20 раз. Автоматические выключатели этого класса рекомендуются для использования в индуктивных нагрузках и нагрузках двигателей с высокими пусковыми токами.

Кривая срабатывания, класс K

Автоматические выключатели с характеристиками этого класса мгновенно срабатывают, когда токи, протекающие через них, в 8–12 раз превышают номинальный ток.Эти автоматические выключатели могут использоваться для индуктивных нагрузок и нагрузок двигателя с высокими пусковыми токами.

Кривая срабатывания, класс Z

Автоматические выключатели с характеристиками этого класса мгновенно срабатывают, когда токи, протекающие через них, в 2–3 раза превышают номинальный ток. Эти MCB обычно очень чувствительны к короткому замыканию и могут использоваться для защиты высокочувствительных устройств, таких как полупроводниковые устройства.

MCB Расчеты отключения

Как рассчитать настройки отключения автоматического выключателя

  • Обратите внимание на маркировку силы тока на переключателе MCB. Обычно это значение от 15 до 20. Также обратите внимание на маркировку напряжения на выключателе, это будет от 120 до 240.
  • После определения номинального напряжения и тока умножьте вольты на амперы. Результатом умножения будет максимальная мощность нагрузки, которую цепь может принять перед отключением.

Подробнее: MCB | Все, что вам нужно знать о миниатюрных автоматических выключателях

Причины отключения автоматического выключателя

Что вызывает отключение автоматических выключателей?

  1. Перегрузка цепи

Одна из основных причин отключения автоматических выключателей — это перегрузка цепи.Это происходит, когда вы пытаетесь заставить цепь давать больше электрического тока, чем ее фактическая емкость. Это приведет к перегреву цепи, что подвергнет опасности все электрические устройства, подключенные к цепи. Возьмем, к примеру, если ваш настольный компьютер подключен к цепи, которая требует 17 ампер, но теперь использует 22 ампера, тогда схема настольной компьютерной системы будет перегрета и повреждена. Автоматический выключатель срабатывает, чтобы предотвратить перегрев и даже предотвратить крупный пожар.Вы можете решить эту проблему, пытаясь перераспределить свои электрические приборы и стараясь отключать их от одних и тех же цепей, чтобы избежать перегрузки цепей. Вы даже можете отключить некоторые устройства, которые в настоящее время не используются, чтобы снизить электрическую нагрузку на автоматический выключатель.

Причины отключения MCB

2 Короткое замыкание

Это еще одна распространенная причина отключения автоматических выключателей. Короткие замыкания даже опаснее перегруженных цепей. Короткое замыкание происходит, когда «горячий» провод касается «нейтрального» провода в одной из ваших электрических розеток.Каждый раз, когда это происходит, через цепь проходит огромное количество тока, что создает огромное количество тепла, больше, чем может выдержать цепь. В этой ситуации MCB отключится, чтобы отключить цепь, чтобы предотвратить опасное происшествие, такое как пожар. Короткие замыкания могут возникать по разным причинам, например, неплотное соединение или неисправная проводка. Вы можете легко определить случай короткого замыкания по запаху гари, который обычно остается вокруг автоматического выключателя. Кроме того, вы можете заметить вокруг него черный или коричневый оттенок.

3 Скачки замыкания на землю.

Скачки при замыкании на землю очень похожи на короткие замыкания. Они случаются всякий раз, когда горячий провод соприкасается с заземляющим проводом из чистой меди или корпусом металлической розеточной коробки, которая соединена с заземляющим проводом. Когда это происходит, через провод проходит больше электричества, чем может принять цепь. Автоматический выключатель отключается для защиты цепи и устройств от перегрева или возгорания. Вы можете легко определить выбросы замыкания на землю по черному или коричневому цвету вокруг автоматического выключателя.Не упускайте из виду ни одну из этих проблем всякий раз, когда вы их замечаете, потому что, поступая так, вы подвергнете себя, свою семью или соседа по комнате большой опасности. Если ваш MCB часто выезжает из строя, то пришло время известить профессионалов, которые приедут и изучат проблемы. НЕ ПЫТАЙТЕСЬ делать это самостоятельно, если у вас нет должной подготовки.

= >>> Где купить MCB

Как это работает и типы (B, C, D, K, Z)

Миниатюрный автоматический выключатель (MCB) — это автоматический выключатель, который защищает электрическую цепь от сверхтоков или скачков напряжения.

Термин «перегрузка по току» относится к ошибочному току, возникающему в результате короткого замыкания, неисправной проводки или перегрузки цепи.

Предохранители и автоматические выключатели защищают электрооборудование от повреждений. Однако MCB более продвинуты.

Миниатюрный автоматический выключатель (MCB) и предохранитель

  • MCB служат долго, предохранитель выходит из строя после однократного срабатывания.
  • В отличие от предохранителя, MCB имеет пластиковый корпус, закрывающий металлический провод.
  • MCB имеет переключатель в отличие от предохранителя
  • MCB легко перезапускается после срабатывания, а предохранитель необходимо заменять

Примечание: MCB не может защитить вас от поражения электрическим током , это делает RCD или GFCI.

Принцип работы автоматического выключателя

Как и другие типы автоматических выключателей, автоматические выключатели защищают электрические системы и приборы. Они делают это двумя способами.

  • Электромагнитное срабатывание для защиты от короткого замыкания.
  • Тепловое срабатывание для защиты от перегрузки.

В условиях работы автоматического выключателя ток течет от входной клеммы к неподвижным и подвижным контактам, соленоиду, биметаллической полосе, а затем к выходным клеммам.

Электромагнитный режим

При возникновении короткого замыкания через соленоиды протекает сильный ток. Это приводит к смещению отключающего плунжера, что приводит к освобождению фиксирующего механизма, размыкающего контакт.

Тепловой режим

Тепловой режим MCB работает с помощью биметаллической ленты. При перегрузке цепи коммутационное устройство отключается.

Характеристики автоматических выключателей

  • Номинальный ток перегрузки — Амперы
  • Номинальный ток короткого замыкания — Килоамперы (KA)
  • Типы работы — Кривые B, C, D, Z и K.

Номинальный ток перегрузки — Амперы (A)

Перегрузка цепи возникает, когда вы подключаете к одной цепи слишком много устройств, больше, чем она может выдержать. Например, соедините вместе кухонную плиту, посудомоечную машину, блендер и микроволновую печь.

Когда такое случается, MCB отключает питание, чтобы предотвратить повреждения, которые могут возникнуть в результате перегрузки.

Номинальный ток автоматического выключателя составляет от 0,5 до 100 А.

Рейтинг короткого замыкания — Килоампер (КА).

Короткое замыкание происходит, когда провод под напряжением касается нейтрали. Он измеряется в килограммах-амперах.

Уровень неисправности бытовых автоматических выключателей составляет 6 кА или 6000 А. Для промышленных автоматов может потребоваться автоматический выключатель на 10 кА.

Типы автоматических выключателей в соответствии с их кривыми срабатывания.

Существует несколько типов автоматических выключателей в зависимости от их кривых срабатывания. Но перед этим дайте нам знать значение кривой поездки.

Кривая отключения — это максимальный ток, который MCB может выдержать перед отключением.Их различные типы — это типы B, C, D, K и Z.

Автоматический выключатель типа B.

Этот автоматический выключатель срабатывает, когда ток в 3-5 раз превышает номинальный ток. Они используются в бытовых приборах и в некоторых коммерческих приложениях, где импульсный ток невелик.

MCB типа C

Этот тип отключения MCB, когда ток в 5-10 раз превышает номинальный ток.

Они используются в коммерческих отраслях, где существует большая вероятность коротких замыканий и перегрузок.

Объекты, которые они защищают, включают трансформаторы, флуоресцентные серверы, принтеры и другие компьютеры.

MCB типа D

Этот автоматический выключатель срабатывает, когда ток в 10-20 раз превышает номинальный ток.

Они используются в крупных отраслях промышленности с высоким пусковым током. Например; Рентгеновские аппараты, обмоточные двигатели, большие трансформаторы и т. Д.

Тип K MCB

Этот тип отключения MCB, когда ток в 10–12 раз превышает номинальный ток.Они подходят для индуктивных нагрузок и нагрузок двигателя с высокими пусковыми токами.

Автоматический выключатель типа Z

Этот MCB отключается, когда ток в 2–3 раза превышает текущий номинальный ток. Они чувствительны к коротким замыканиям и подходят для защиты чувствительных устройств, таких как полупроводниковые устройства.

Детали автоматического выключателя.

1. Защелка
2. Соленоид
3. Переключатель
4.Плунжер,
5. Входной вывод
6. Держатель дугогасительной камеры
7. Дуговые желоба
8. Динамический контакт
9. Фиксированный контакт
10. Держатель DIN-рейки
11. Выходной зажим
12. Биметаллический держатель ленты
13. Биметаллическая полоса

Типы автоматических выключателей по количеству полюсов

Другой способ классификации автоматических выключателей — по количеству полюсов, которые у них есть. Нас:

1. Однополюсный автоматический выключатель

Однополюсный автоматический выключатель имеет один выключатель и также защищает одну фазу цепи.

2. Двухполюсный автоматический выключатель

Двухполюсный MCB имеет два переключателя, а также защищает двухфазную и нейтраль.

3. Трехполюсный автоматический выключатель

Трехполюсный автоматический выключатель имеет 3 переключателя, и они также защищают три фазы.

4 . Три полюса с нейтралью

Три полюса и автоматический выключатель нейтрали защищают три фазы цепи.Он также имеет нейтральный переключатель.

5. Четыре полюса

Четырехполюсный MCB содержит четыре переключателя, три фазы и нейтраль. Но в отличие от трех полюсов с нейтралью, четыре полюса защищают все фазы и нейтраль.

Используются в местах с несимметричной цепью.

Рейтинг MCB

Это значение тока, которое MCB может выдержать без отключения. Он фиксированный и колеблется от 1А до 100А.

Часто задаваемые вопросы о MCB

Почему автоматические выключатели предпочитают предохранять?

MCB и предохранитель выполняют одну и ту же работу — защиту от перегрузки по току. Однако автоматические выключатели предпочтительнее, поскольку они служат дольше и не нуждаются в замене после каждой поездки.

В чем разница между MCB и RCD (GFCI)?

Устройства защитного отключения (УЗО) и автоматические выключатели (MCB) являются защитными устройствами. Однако они защищают разные вещи.

УЗО

или прерыватели цепи замыкания на землю (GFCI) защищают людей от поражения электрическим током, которое может возникнуть в результате замыкания на землю. В то время как автоматические выключатели защищают приборы и электрические системы от высокого напряжения.

В чем разница между автоматическими выключателями и автоматическими выключателями?

Автоматические выключатели

и автоматические выключатели в литом корпусе (MCCB) одинаковы. Их единственное отличие заключается в кривой срабатывания. Кривая срабатывания автоматических выключателей не регулируется, и все они предназначены для низковольтных цепей с током менее 100 А.

В то время как автоматические выключатели имеют регулируемую кривую срабатывания и могут использоваться в высоковольтных цепях.

Выбор подходящего MCB или RCBO

ХАРАКТЕРИСТИКИ ПЕРЕГРУЗОЧНОГО ТОКА
Решение об использовании автоматических выключателей или автоматических выключателей типа B, C или D для окончательной защиты цепей в жилых, коммерческих или промышленных зданиях может быть основано на нескольких простых правилах.

Однако понимание различий между этими типами устройств может помочь разработчику или установщику преодолеть проблемы нежелательного отключения, время отключения для защиты от замыкания на землю или проблемы, связанные с дискриминацией вышестоящих защитных устройств.

Основное назначение устройств защиты цепей, таких как автоматические выключатели, — защита кабеля после устройства. Поэтому первое требование — выбрать устройство в соответствии с последней версией 18-го издания.

ОСНОВНЫЕ ПРИМЕНЕНИЯ
Существенное различие между устройствами типа B, C или D основано на их способности выдерживать импульсные токи без отключения. Как правило, это пусковые токи, связанные с реактивными нагрузками, такими как освещение, или нагрузками, содержащими двигатели или оборудование для зарядки аккумуляторов. Типы B, C и D распознаются в BS 7671 и могут быть в целом разделены на следующие категории:

  • Устройства типа B обычно подходят для бытового применения.Они также могут использоваться в легких коммерческих приложениях, где коммутационные перенапряжения незначительны или отсутствуют.
  • Устройства типа C — это нормальный выбор для коммерческих и промышленных приложений, где ожидается некоторая степень электрического броска.
  • Устройства типа D имеют более ограниченное применение, обычно в промышленности, где можно ожидать больших пусковых токов.

Классификация типов B, C или D основана на номинальном токе короткого замыкания, при котором происходит мгновенное срабатывание (обычно менее 100 мс) для защиты от коротких замыканий. Важно, чтобы оборудование с высокими пусковыми токами не приводило к срабатыванию автоматического выключателя без необходимости, и, тем не менее, устройство должно срабатывать в случае тока короткого замыкания, который может повредить кабели цепи.

ХАРАКТЕРИСТИКИ ОТКЛЮЧЕНИЯ:

  • Устройства типа B предназначены для отключения при токах короткого замыкания, в 3-5 раз превышающих номинальный ток (In). Например, устройство на 10 А сработает при 30-50 А.
  • Устройства типа C рассчитаны на отключение при 5–10-кратном токе In (50–100 А для устройства на 10 А).
  • Устройства типа D рассчитаны на отключение при 10-20 кратном Iном (100-200 А для устройства на 10 А).

Нормальные характеристики кабеля относятся к непрерывной работе при определенных условиях установки. Кабели, конечно, будут пропускать более высокие токи в течение короткого времени без необратимых повреждений.

Помимо защиты кабелей от перегрузок и коротких замыканий, автоматические выключатели также могут законно использоваться для защиты от замыканий на землю и защиты от поражения электрическим током как на стационарном, так и на портативном оборудовании.Однако устройство заземления и значение полного сопротивления контура заземления (Zs) цепи будут определять, сможет ли MCB обеспечить подходящее время отключения.

НЕЖЕЛАТЕЛЬНОЕ ОТКЛЮЧЕНИЕ
Помимо естественных пусковых токов, иногда отказ ламп / компонентов может привести к срабатыванию выключателей типа B в бытовых и торговых помещениях. Это вызвано сильным дуговым током, возникающим во время отказа.

Устройство типа C может быть заменено устройством типа B, где сохраняется нежелательное срабатывание, особенно в коммерческих приложениях.В качестве альтернативы можно использовать автоматический выключатель типа B с более высоким номиналом, например 10А, а не 6А. Какое бы решение ни было принято, установка должна соответствовать BS 7671.


TEC Electric, блок F2 и F3, бизнес-парк Weatherwell, Клондалкин, Дублин, D22 HN36
T: 00353 (0) 1 4572445
E: [электронная почта защищена]
W: www.tecelectric.ie

Сущность автоматических выключателей низкого напряжения — Расцепители, кривые срабатывания, характеристики и ограничения

Замыкающие, выдерживающие и размыкающие токи

Автоматический выключатель представляет собой устройство выключения, которое может включать, выдерживать и отключать токи, сила которых не более чем равна номинальному току (In) и защитному устройству, которое может автоматически отключать сверхтоки, которые обычно возникают после неисправностей в установках.

10 характеристик автоматического выключателя низкого напряжения, которые вы ДОЛЖНЫ знать

Выбор автоматического выключателя и его характеристик зависит от размера установки, а также от различных параметров сети.

Давайте начнем с типов расцепителей автоматического выключателя, затем наиболее важные характеристики, важные для работы выключателя, затем несколько примеров кривых отключения и в конце статьи — кривые ограничения.

Содержание:

  1. Технологии, используемые для обнаружения сверхтоков
    1. Тепловой расцепитель
    2. Магнитный расцепитель
    3. Электронный расцепитель
  2. Характеристики автоматических выключателей
    1. Номинальное рабочее напряжение (в В)
    2. Напряжение изоляции (в В )
    3. Импульсное напряжение (в кВ)
    4. Категория применения
    5. Номинальный ток (в А)
    6. Предельная отключающая способность (в кА)
    7. Номинальная отключающая способность (в А)
    8. Стандартная отключающая способность
    9. Кратковременная стойкость Ток (в кА)
    10. Номинальная включающая способность при коротком замыкании (кА пиковая)
  3. Примеры кривых отключения
    1. Автоматический выключатель 250A с термомагнитным расцепителем
    2. Автоматический выключатель 1600A с электронным расцепителем
    3. Пример настройки цепи выключатель и считывание кривых
    4. Пределы MCB
  4. Ограничение
    1. Кривые ограничения тока
    2. Кривые ограничения теплового напряжения

1.

Технологии, используемые для обнаружения сверхтоков

Перегрузки по току обнаруживаются тремя различными устройствами: тепловым для перегрузки, магнитным для коротких замыканий и электронным для обоих. В тепловых и магнитных расцепителях, которые обычно комбинируются (термомагнитные выключатели), используется экономичная, испытанная и испытанная технология, но они обеспечивают меньшую гибкость настройки, чем электронные расцепители. С другой стороны, выключатель с электронным расцепителем дороже…

Хорошо, давайте подробно рассмотрим каждую из упомянутых технологий.

1.1 Термическое расцепление

Состоит из биметаллической полосы, которая при нагревании сверх нормальных рабочих значений деформируется, освобождая фиксатор, удерживающий контакты.

Время реакции биметаллической ленты обратно пропорционально силе тока. В результате своей тепловой инерции биметаллическая полоса реагирует быстрее, когда вторая перегрузка следует за первой в быстрой последовательности. Это улучшает защиту кабелей , температура которых уже выше.

Большинство автоматических выключателей позволяют устанавливать ток срабатывания Ir в определенных пределах (от 0,4 до 1 In в зависимости от типа выключателя).

Рисунок 1 — Типичная кривая срабатывания термомагнитного расцепителя

Вернуться к содержанию ↑

1.2 Магнитный расцепитель

Он состоит из магнитной петли, действие которой освобождает замок, удерживающий контакты , тем самым вызывая размыкание, если есть высокий ток перегрузки. Время отклика очень короткое (около одной десятой секунды).

Большинство автоматических выключателей в литом корпусе имеют настройку Im (до 10 x Ir) , которую можно использовать для установки значения срабатывания в соответствии с условиями защиты установки (ток короткого замыкания и косвенный контакт).

Кроме того, эту настройку в сочетании с временной задержкой можно использовать для поиска наилучших условий дискриминации между устройствами.

Рисунок 2 — Термомагнитный расцепитель

Вернуться к содержанию ↑

1.3 Электронный расцепитель

Катушка, размещенная на каждом проводе, непрерывно измеряет ток в каждом из них.Эта информация обрабатывается электронным модулем , который управляет отключением автоматического выключателя при превышении значений уставок.

Рисунок 3 — Типичная кривая срабатывания электронного расцепителя

На кривой расцепителя показаны три рабочие зоны.

«Мгновенная» рабочая зона

Обеспечивает защиту от коротких замыканий высокой интенсивности . Оно устанавливается либо конструкцией на фиксированное значение (от 5 до 20 кА), либо регулируется в зависимости от устройства.

Рабочая зона «Кратковременная задержка»

Обеспечивает защиту от коротких замыканий меньшей интенсивности, которые обычно возникают в конце линии.

Порог срабатывания обычно регулируется. Период задержки может быть увеличен на пороговые значения до одной секунды, чтобы гарантировать распознавание устройств, размещенных ниже по потоку.

Рабочая зона «с длительной задержкой»

Это аналогично характеристике теплового расцепителя.Он защищает проводники от перегрузок.

Электронные расцепители улучшают селективность , и некоторые автоматические выключатели одного производителя могут также связываться друг с другом.

Итак, как это работает?

Защита от перегрузок (функция отключения с длительной задержкой, код ANSI 51, реле максимального тока с выдержкой времени переменного тока) определяется функцией L . Если ток короткого замыкания превышает установленный порог I 1 , эта защита срабатывает в соответствии с характеристикой с обратнозависимой выдержкой времени, где время-ток связи представлен соотношением:

I 2 t = K (где постоянная сквозная энергия).

При использовании этой кривой время отключения уменьшается с увеличением тока.

I 1 представляет собой регулируемое значение порога срабатывания тепловой защиты и называется срабатывание с длительным выдерживанием времени . Эта защита не может быть исключена.

Кривая характеристики обратнозависимого времени функции L графически представлена ​​в билогарифмическом масштабе, как показано на рисунке 4 ниже.

Рисунок 4 — Кривая отключения с кривой обратнозависимой выдержки времени (I 2 t = K) защиты L автоматического выключателя ABB типа Tmax

Электронный расцепитель обеспечивает множество возможных настроек отключения для функции L, точнее, связку параллельных линий.Каждая строка идентифицируется временем t1 (большая временная задержка), которое представляет время срабатывания защиты в секундах в соответствии с кратным I1 .

Например, этот коэффициент зависит от расцепителя и равен 3 × I1 для автоматических выключателей ABB типа «Emax» и 6 × I1 для автоматических выключателей типа «Tmax».

Вернуться к содержанию ↑

2. Характеристики автоматических выключателей

2.1 Номинальное рабочее напряжение U

e (В)

Это напряжения, при которых может использоваться автоматический выключатель .Указанное значение обычно является максимальным. При более низких напряжениях некоторые характеристики могут отличаться или даже улучшаться, например, отключающая способность.

Пример однополюсного U e = 230/400 В и для трехполюсного U e = 400 В .

Рисунок 5 — Номинальное рабочее напряжение

Вернуться к содержанию ↑

2.2 Напряжение изоляции U

i (в В)

Это значение является справочным для характеристик изоляции устройства .Испытательное напряжение изоляции (импульсное, промышленная частота и т. Д.) Определяется на основе этого значения.

Пример U i = 500 В, испытательное напряжение = 2000 В

Если не указано иное, номинальное напряжение изоляции является значением максимального номинального рабочего напряжения автоматического выключателя. Ни в коем случае максимальное номинальное рабочее напряжение не должно превышать номинальное напряжение изоляции.

Вернуться к содержанию ↑

2.3 Импульсное напряжение U

imp (в кВ)

Это значение характеризует способность устройства выдерживать переходные перенапряжения , такие как молния (стандартный импульс 1.2/50 мкс). Фактически это напряжение, на котором основаны зазоры.

Это импульс напряжения с формой волны 1,2 / 50 мкс , см. Рисунок ниже.

Пример Uimp = 4 кВ для автоматических выключателей на 230/400 В

Рисунок 6 — Импульс напряжения с волной 1,2 / 50 мкс

Вернуться к содержанию ↑

2.4 Категория применения

IEC 60947-2 определяет автоматические выключатели как принадлежащие к одному двух категорий:

  • Категория A для автоматических выключателей, которые не имеют выдержки времени перед срабатыванием при коротком замыкании.
  • Категория B для автоматических выключателей с выдержкой времени. Это можно отрегулировать, чтобы выполнить временную дискриминацию для значения короткого замыкания меньше Icw.

Значение Icw должно быть по крайней мере равным большему из двух значений, 12 In или 5 кА , для автоматических выключателей с номинальным током 2500 A не более и 30 кА после этого.

Вернуться к содержанию ↑

2,5 Номинальный ток I

n (в A)

Это максимальное значение тока, которое может выдерживать автоматический выключатель на постоянной основе .Это значение всегда дается для температуры окружающей среды вокруг устройства 40 ° C в соответствии со стандартом IEC 60947-2 и 30 ° C в соответствии со стандартом IEC 60898-1.

Если эта температура выше, может потребоваться уменьшить рабочий ток.

Пример In = 32A, тип C с маркировкой C32

Вернуться к содержанию ↑

2.6 Предельная отключающая способность Icu (в кА)

Это максимальное значение тока короткого замыкания, которое имеет автоматический выключатель. может сломаться при заданном напряжении и фазовом угле (cos ϕ).Испытания выполняются в соответствии с последовательностью Ot-CO , где:

  • O представляет собой операцию автоматического прерывания,
  • t — временной интервал и
  • CO — операцию включения с последующим автоматическим прерыванием. операция.

После испытания автоматический выключатель должен продолжать обеспечивать минимальный уровень безопасности (изоляция, электрическая прочность).

Вернуться к содержанию ↑

2.7 Номинальная отключающая способность Icn (в A)

В стандарте IEC 60898-1 отключающая способность устройства проверяется аналогичным образом, но называется Icn .После испытания, t выключатель должен сохранять свои диэлектрические свойства и быть способным отключиться в соответствии со спецификациями стандарта.

Этот стандарт устанавливает дополнительные требования к одно- и двухполюсным автоматическим выключателям, которые, в дополнение к указанным выше характеристикам, подходят для работы с постоянным током и имеют номинальное постоянное напряжение, не превышающее 220 В для однополюсных и 440 В для двухполюсных выключателей , номинальный ток не более 125 A и номинальная стойкость к короткому замыканию постоянного тока не более 10 000 A .

ВНИМАНИЕ! Настоящий стандарт распространяется на автоматические выключатели , способные включать и отключать как переменный, так и постоянный ток .

Вернуться к содержанию ↑

2.8 Стандартная отключающая способность Ics

Это значение, выраженное в процентах от предельной отключающей способности Icu . Это будет одно из следующих значений: 25% (только категория A), 50%, 75% или 100% . Автоматический выключатель должен нормально работать после нескольких прерываний тока Ics с использованием последовательности O-CO-CO.

Стандарт IEC 60898 дает минимальные значения, которые должны быть достигнуты в соответствии с Icn устройства.

Во время работы автоматический выключатель очень редко должен отключать максимальный ожидаемый ток короткого замыкания (который использовался для определения его требуемой отключающей способности).

Однако, возможно, придется отключать более низкие токи. Если они ниже, чем Ics устройства, это означает, что установку можно перезапустить сразу после перерыва.

Следует отметить, что на сегодняшний день очень немногие спецификации или стандарты установки содержат какие-либо ссылки на Ics .

Вернуться к содержанию ↑

2.9 Кратковременный выдерживаемый ток I

cw (в кА)

Это значение тока короткого замыкания, которое автоматический выключатель категории B способен выдерживать в течение определенного период без изменения его характеристик. Это значение предназначено для включения различения между устройствами.

Соответствующий автоматический выключатель может оставаться включенным, пока неисправность устраняется нижележащим устройством, пока энергия I 2 t не превышает Icw 2 (1 с) .

По соглашению значение Icw дается для времени t = 1 с . Для другой длительности t это должно быть указано, например, Icw 0,2 . Затем необходимо проверить, что тепловое напряжение I 2 t, возникающее до тех пор, пока не сломается устройство, расположенное ниже по потоку, на самом деле меньше, чем Icw 2 t.

Рисунок 7 — Пример номинального кратковременного выдерживаемого тока

Вернуться к содержанию ↑

2.10 Номинальная включающая способность при коротком замыкании I

см (пиковый кА)

Это максимальная сила тока, которую устройство может выдавать номинальное напряжение согласно условиям стандарта.

Устройства без функции защиты, такие как переключатели, должны выдерживать токи короткого замыкания со значением и продолжительностью, возникающими в результате срабатывания соответствующего защитного устройства.

Вернуться к содержанию ↑

3. Примеры кривых отключения

3.1 Автоматический выключатель 250A с термомагнитным расцепителем

Рисунок 8 — Автоматический выключатель 250A с термомагнитным расцепителем

Где:

  • I = Фактический ток
  • Ir = Тепловая защита от перегрузок (настройка Ir = × In)
  • Im = Магнитная защита от коротких замыканий: (настройка Im = × Ir)

Поскольку абсцисса кривых обозначает I Отношение / Ir, изменение настройки Ir не меняет графическое представление теплового отключения.

Однако магнитная установка Im может быть считана непосредственно (от 3,5 до 10 в этом примере).

Вернуться к содержанию ↑

3.2 Автоматический выключатель 1600 А с электронным расцепителем

Рисунок 9 — Автоматический выключатель 1600 А с электронным расцепителем

Где:

  • I = Фактический ток
  • Ir = Защита от перегрузок с длительной задержкой (регулируется: Ir = × In, от 0,4 до 1 × In)
  • Tr = Время срабатывания защиты с длительной задержкой (регулируется: от 5 до 30 с) до 6 x Ir
  • Im = Защита с короткой задержкой от короткого замыкания (регулируется: Im = × Ir, 1.От 5 до 10 Ir)
  • Tm = Время срабатывания защиты с короткой задержкой (регулируется: от 0 до 0,3 с)
  • I 2 t = Постоянно (настраивается через Tm)
  • Если = Мгновенная защита с фиксированным порогом (фиксированное: от 5 до 20 кА в зависимости от модели)

Вернуться к содержанию ↑

3.3 Пример настройки автоматического выключателя и считывания кривых

Здесь: I B = 500 A и I k3 max = 25 кА в месте установки.Тогда защита может быть обеспечена автоматическим выключателем с электронным блоком, номиналом 630 A , уставкой длительной задержки (перегрузка) Ir = 0,8 × In, т.е. 504 A .

Рисунок 10 — Пример настройки автоматического выключателя и считывания кривых

Сценарий 1: Высокий мин. Isc

Isc мин. (в конце строки) = 20 кА
⇒ установка короткой задержки (короткое замыкание) Im = 10 × Ir, т.е. 5040 A

Считывание кривых:

  • Если I <504 A ⇒ без отключения
  • Если 504 A ⇒ отключение от 1 до 200 с (защита с длительной задержкой)
  • Если I> 5 кА ⇒ отключение 0.01 с (мгновенная защита с фиксированным порогом)

Сценарий 2: Низкий мин. Isc

Isc мин. (в конце строки) = 4 кА
⇒ уставка короткого замыкания (короткое замыкание) Im = 5 × Ir, т.е. 2520 A

Считывание кривых:

  • Если I <504 A ⇒ нет срабатывания
  • Если 504 A ⇒ отключение от 6 до 200 с (защита с длительной задержкой)
  • Если 2520 A ⇒ отключение <0.1 с (защита от короткого замыкания)
  • Если I> 5 кА ⇒ отключение через 0,01 с (мгновенная защита с фиксированным порогом)

Сценарий 3: Ограничение теплового напряжения кабеля

Isc мин. (в конце строки) = 20 кА

Проводник 10 мм 2 , допустимое тепловое напряжение: 1,32 × 106 А2с, т.е. 3633 А в течение 0,1 с
⇒ уставка короткого замыкания (короткое замыкание) Im = 7 × Ir, т.е. 3528 A (

Считывание кривых:

  • Если I <504 A ⇒ нет срабатывания
  • Если 504 A ⇒ отключение от 3 до 200 с (защита с длительной задержкой)
  • Если 3528 A ⇒ отключение <0.1 с (защита от короткого замыкания)
  • Если I> 5 кА ⇒ отключение через 0,01 с (мгновенная защита с фиксированным порогом)

Вернуться к содержанию ↑

3,4 Пределы MCB

Для выключателей вторичной цепи (MCB — автоматические выключатели), стандарт IEC 60898-1 определяет пределы, в которых должно происходить отключение при коротких замыканиях:

  • Кривая B: от 3 до 5 дюймов
  • Кривая C: от 5 до 10 дюймов
  • Кривая D: от 10 до 20 дюймов

Также можно использовать другие типы кривой:

  • Кривая Z: 2.От 4 до 3,6 дюйма
  • Кривая MA: от 12 до 14 дюймов

Основные кривые отключения для автоматических выключателей:

Рисунок 11 — Основные кривые отключения для автоматических выключателей

Как правило, используются автоматические выключатели кривой C. для стандартных приложений распространения . Может потребоваться использование автоматических выключателей кривой B для малых токов короткого замыкания (длинные кабели, автоматический выключатель вторичной цепи в системе IT или TN, генератор переменного тока и т. Д.).

Если есть высокие пусковые токи (трансформаторы, двигатели), кривая D предотвращает ложное срабатывание , особенно при запуске.Кривая Z (высокая чувствительность) обычно предназначена для защиты цепей питания электронного оборудования. Автоматические выключатели

MA (только магнитные) используются для цепей, в которых тепловая защита запрещена или обеспечивается другими методами: цепи безопасности в общественных зданиях, цепи двигателей, трансформаторы и т. Д.

Вернуться к содержанию ↑

4. Ограничение

В случае короткого замыкания без какой-либо защиты ток, который будет протекать через установку, является предполагаемым током короткого замыкания.

Когда ток короткого замыкания проходит через автоматический выключатель, автоматический выключатель в большей или меньшей степени способен пропускать только часть этого тока. В этом случае короткое замыкание ограничивается по амплитуде и продолжительности.

Цель ограничения — уменьшить:

  1. Тепловое напряжение
  2. Электродинамические силы
  3. Влияние электромагнитной индукции

Это также упрощает распознавание и комбинирование.Ограничивающая способность устройств представлена ​​в виде кривых ограничения

Рисунок 12 — Ограничение предполагаемого тока короткого замыкания

Вернуться к содержанию ↑

4.1 Кривые ограничения тока

Они дают максимальные пиковые значения тока (в А пик), ограниченный устройствами в соответствии со значением предполагаемого тока короткого замыкания.