Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Что значит опрессовка системы отопления: Опрессовка системы отопления, что это и под каким давлением проводится

Содержание

Как опрессовать систему отопления | Всё об отоплении

Основные правила опрессовки системы отопления своими руками

В осенне-зимний сезон одной из наиболее важных бытовых задач является профилактика отопительной системы для обеспечения ее дальнейшей бесперебойной работы. С этой целью проводится так называемая опрессовка – испытание прочности трубопровода и соединенного с ним оборудования гидравлическим или пневматическим способом. Процедура эта необходима и в многоквартирных домах с централизованной системой отопления, и в частных особняках.

Чтобы узнать, как провести опрессовку системы отопления, можно обратиться к специалистам, однако приведенное ниже описание позволит вам обойтись и без их помощи – точное выполнение рекомендаций гарантирует получение того же результата, что и при участии мастера.

Соблюдая необходимые правила опрессовки системы отопления своими руками, с этой задачей можно успешно справиться самостоятельно. Проведенный заблаговременно осмотр и устранение неполадок помогут вам избежать протечек в радиаторах отопления и сальниковых соединениях, срывов какого-либо участка трубопровода, предотвратить течь в местах установления запорной и регулировочной арматуры. Опрессовка системы отопления – инструкция по ее проведению даст вам исчерпывающую информацию о последовательности действий – должна быть проведена в соответствии с технологией выполнения работ, это обеспечит отсутствие каких-либо неполадок системы во время отопительного сезона.

Проведение подготовительных работ перед опрессовкой

В каждой отопительной системе поддерживается рабочее давление, обеспечивающее движение по контуру теплоносителя, необходимого для нагрева труб и радиаторов отопления, которые, в свою очередь, обогревают окружающий их воздух в помещении. Сила же рабочего давления должна быть достаточной для поднятия теплоносителя на необходимую высоту (подробнее: «Рабочее давление в системе отопления — нормы и испытания «). Из этого следует заключение о том, что для более высоких домов требуется большее значение давления системы.

Перед тем, как делать опрессовку системы отопления, следует заметить – при опрессовке воздухом, или пневмоопрессовке, рабочее давление должно превышать норму на 40-50%. Повышение давления в системе связано с проходящими гидравлическими процессами на пути теплоносителя к зданию от магистрали.

Порядок проведения опрессовки системы отопления начинается с подготовительных работ, включающих следующие этапы:

  • Проверка запорной арматуры (к примеру, вентилей) на каждом участке системы
  • Проверка герметичности, которую можно обеспечить уплотнением сальниками необходимых участков
  • Осмотр и, при необходимости, проведение ремонта элементов, предназначенных для изоляции трубопровода
  • Отключение здания, в котором проводится опрессовка контура, при помощи заглушки от общей отопительной системы

Далее спускной кран, находящийся на «обратке», подготавливается для дальнейшего заполнения труб водопроводной водой. При заполнении отопления системы водой необходимо перекрыть задвижки, краны, а воздушники оставить открытыми.

Как выполнить опрессовку коллекторной системы отопления, подробное видео:

Как проводится опрессовка системы отопления

Для частных домов теплоноситель в системе отопления во время проведения опрессовки должен находиться под давлением в 2 атмосферы. При поступлении в систему отопления, он вытесняет воздух, скопившийся в трубах. Теплоноситель, в качестве которого выступает обычная водопроводная вода либо антифриз, должна заполнить каждый элемент трубопровода. Использование в качестве теплоносителя антифриза является более дорогим решением, однако в этом случае вы будете застрахованы от повреждения замерзшей системы в случае отключения отопления.

Опрессовка системы отопления своими руками должна поводиться с помощью специального прибора – опрессовщика, с тем, что он собой представляет, вы можете ознакомиться по фото:

Для проведения опрессовки в многоквартирных этажных домах, для обнаружения участков протечки в систему подают жидкость, находящуюся под давлением в 8 атмосфер. Это значение на 20-30-% превышает рабочую величину. На вводе для контроля давления, которое должно держаться на указанном выше уровне в течении получаса, следует установить манометр. Перед началом проведения работ должна быть проведена тщательная проверка приборов и их калибровка. Падение во время испытаний стрелки манометра является свидетельством утечки в местах с нарушенной герметизацией (прочитайте также: «Акт гидравлического испытания системы отопления и трубопроводов «).

Если вы точно соблюдаете порядок опрессовки системы отопления, то своевременно обнаружите малейшую неисправность системы. Обратить внимание следует, в первую очередь, на батареи отопления, запорную арматуру, прокладки и резьбовые соединения. Слабыми местами являются залитые в пол элементы системы. Обнаружив требующие ремонта участки, из системы следует слить всю воду и заменить или же исправить поврежденные места.

Зная, как сделать опрессовку системы отопления и самостоятельно проведя все необходимые действия, включая исправление найденных дефектов, следует учесть – находящиеся в детских, медицинских или административно-хозяйственных зданиях системы подлежат осуществляемой органами надзора обязательной приемке.

Оставляйте отзывы:

Опрессовка отопительной системы своими руками

Как любой другой механизм или конструкция, система отопления требует технического обслуживания. Мероприятиями, поддерживающими ее в работоспособном состоянии, являются опрессовка и промывка. Для получения результата при проведении этих процедур важно разобраться в технологическом процессе.

Когда проводится опрессовка?

Работы по опрессовке отопительной системы предполагают испытание на герметичность. Это мероприятие необходимо:

  • при запуске после завершения монтажа;
  • при проведении ремонтных работ на участке контура;
  • при осуществлении планово-предупредительных работ в ходе подготовки к отопительному сезону.

По сути опрессовка – определение уровня герметичности отопительной системы. Она заключается в последовательном выполнении ряда операций:

  • создание давления при помощи нагнетания воды или воздуха;
  • обнаружение разгерметизации;
  • выявление участков, где жидкость или воздух покидают пределы системы.

Современные конструкции отопления не требуют большого числа людей для проведения такой проверки. Помогает специальное оборудование.

Наличие повышенного давления станет причиной выхода из строя на аварийных участках приборов и узлов. На элементы, находящиеся в нормальном состоянии, избыточное давление не окажет негативного влияния.

Последовательность работ

Опрессовка ведется при отключенной отопительной системе при удаленном из нее теплоносителе. Для предупреждения нарушения целостности трубопровода необходимо вести постоянный контроль уровня давления.

Испытания должны проводиться с учетом специфических характеристик системы и учитывать:

  • параметры материала трубопровода;
  • качественные показатели арматуры;
  • этажность здания;
  • схему разводки.

Система нуждается в опрессовке

Последовательность действий при проведении опрессовки унифицирована и проводится в следующем порядке:

  • Часть трубопровода, которая подлежит проверке, отключают. При автономном отоплении останавливают работу котла.
  • Удаляют теплоноситель.
  • Отопительный контур заполняют водой с температурой ниже 45 градусов Цельсия.
  • По ходу заполнения магистрали осуществляют сброс воздуха.
  • В систему включается оборудование для нагнетания давления.
  • Увеличивают давление до значения, предусмотренного проектом как рабочее. При этом ведется визуальный контроль состояния системы.
  • Плавно повышают давление (это обязательное условие) до уровня, предусмотренного испытанием.
  • Фиксируют значение давления на контрольном манометре.
  • Выдерживают в течение 10 минут пробное давление.
  • Визуально осматривают с целью обнаружения явных протечек, подозрительных участков соединений и иных неисправностей. Проверяют работоспособность запорной арматуры.
  • Снимают показания манометра. Если падение давления не наблюдается, то считается, что система прошла испытание. Если есть неполадки, то их устраняют, и процедура повторяется.
  • По итогам мероприятия составляется акт.

Воздушная опрессовка используется при отсутствии возможности использования воды или проведении испытаний при низких температурах, когда есть вероятность замерзания жидкости в трубопроводе. При использовании пневматического метода испытания показателем разгерметизации контура служит изменение показаний давления на манометре. Для определения аварийных участков места, которые могут иметь проблемы, покрываются мыльным раствором.

Давление при испытании системы

Во избежание аварийной ситуации следует проводить опрессовку согласно требованиям СНиП. Этим нормативом предусматривается давление для проверки на 50% выше рабочего уровня, но не менее 0,6 МПа. Правила технической эксплуатации тепловых энергоустановок рекомендуют проведение опрессовки в более мягких условиях: с превышением давления на 25% выше рабочего, но не менее 0,2 МПа.

Важно следить за давлением

Таким образом, рабочее давление – базовое значение при проведении испытаний. В домах с количеством этажей не более трех значение меньше 2 атм. и регулируется за счет срабатывания обратного клапана. В домах с большим количеством этажей этот показатель выше и меняется с увеличением этажности, может достигать 10 атм.

Нормативная документация указывает, что давление при испытании выбирается между максимумом и минимумом. Минимально значение принимают в промежутке на 20-30% выше рабочего. Максимальное значение определяется проектом.

В общем случае требуется изучить паспортные данные абсолютно всех приборов и устройств, входящих в систему отопления, чтобы не нанести им вреда при испытании.

Необходимый инструмент

Для создания требуемых условий при проведении опрессовки нужно оборудование, позволяющее достичь требуемого уровня давления. Чаще используется насос. Он совместно с обратным клапаном подключается при помощи шланга высокого давления к системе через патрубок. Основными характеристиками при выборе аппарата является уровень производительности и давление, которое он может создать. Если прибор работает от электричества, то обратите внимание на рабочее напряжение (220 В или 380 В).

При проведении работ с небольшим объемом контура, целесообразно использовать ручную конструкцию опрессовщика, который оборудован гидроцилиндром. Достичь большей эффективности и удобства эксплуатации можно при использовании поршневого устройства с электроприводом. Электрический тип опрессовщика за короткий срок создаст требуемое давление без приложения мускульных усилий. Эти приборы, помимо манометра, имеют оборудование для контроля и управления.

В частных домах, где низкое давление в системе, заполняют ее водой с последующей фиксацией показаний давления на манометре.

Кто проводит опрессовку?

Ответственность по контролю работоспособности системы отопления и проведению профилактических мероприятий лежит на организации, которая ее эксплуатирует. Коммунальные службы занимаются этими вопросами в жилых домах, а на других предприятиях и учреждениях – соответствующие технические службы.

К проведению работ по опрессовке допускаются аттестованные специалист с необходимой квалификацией.

Специалистам важно иметь квалификацию

Эти работы в частных домах с автономным отоплением выполняются работниками сервисных организаций или самостоятельно, как и монтаж.

Вне зависимости от того, кто будет осуществлять мероприятия по опрессовке, следует придерживаться требований и правил нормативных документов, регламентирующих этот вид работ.

Технология опрессовки в многоквартирном доме

Процедура опрессовки выполняется по единому алгоритму, проведение имеет некоторые особенности в различных случаях.

Специальные службы обязаны до и после отопительного сезона осуществлять гидравлические испытания.

Также это мероприятие проводится после ремонта или при вводе в эксплуатацию оборудования.

Итог мероприятия фиксируется документально и составляется соответствующий акт.

Перед опрессовкой проводят:

  • осмотр узла подачи, трубопровода и других детали системы.
  • проверку состояния теплоизоляции магистральной линии.

При эксплуатации свыше 5 лет, перед гидравлическим испытанием рекомендуется промыть систему. С этой целью заливается специальный раствор в освобожденные от теплоносителя трубы.

Завершив эти мероприятия, переходят к опрессовке. Действия имеют следующий порядок.

  1. Во вновь смонтированную или промытую систему заливается вода.
  2. При помощи специального нагнетающего оборудования создают повышенное давление, которое контролируется манометром.
  3. Если уровень давления остается неизменным на протяжении 15-30 минут, то это говорит о герметичности системы и надежности оборудования, которое в нее включено.
  4. Если наблюдается снижение давления, то выясняется причина этого.
  5. Выяснив место, где происходит утечка, ее ликвидируют или меняют неисправный элемент и процедура повторяется.
  6. Успешным считается испытание в случае падения давления не более 0,1 атм на протяжении 30 минут.

Технология гидравлического испытания в частном доме

Так как в закрытых автономных отопительных давление невелико, то для создания избыточного давления используют насосное оборудование любого типа. Возможно проведение испытания путем соединения отопительной системы с магистралью подачи воды, в которой уровень давления удовлетворяет условиям.
Для запитки водопроводной водой используется сливной кран или кран, специально установленный для этих целей. Они располагаются в нижней точке, что обеспечивает свободное вытеснение воздуха.

Температура воды не должна превышать 45 градусов Цельсия. Простые конструкции системы отопления, выполненные своими силами, проходят испытания без привлечения сторонних организаций. Алгоритм действий не отличается от последовательности работ в многоэтажных домах.

При использовании воды, используемой при испытании, как теплоноситель, важен уровень ее жесткости. Требуемый показатель – 75-95 единиц. Сомнения по поводу пригодности воды могут возникнуть, если после ее использования образуется накипь на нагревательных элементах бытовых приборов (электрочайник, стиральная машина, бойлер).

Если вода в дальнейшем не будет использована, то ее сливают. Сразу же после этого необходимо залить в систему теплоноситель. Это важно при использовании стальных труб и металлических отопительных приборов, незащищенных внутри.

Пневматическая опрессовка

Воздух для опрессовки применяется довольно редко, чаще всего, при проведении испытаний в частных домах. Таким образом проводят проверку качества сборки системы при отсутствии воды или соответствующего оборудования.

Для испытания подключается компрессор, оборудованный манометром, к запиточному или сливному крану. При этом конструкция насоса и его привод роли не играют, главное, чтобы его мощность была на достаточном уровне. В целях безопасности избыточное давление не повышают более 1,5 атм. Воздушные клапаны при этом заменяются заглушками.

Время выдержки давления в системе больше по сравнению с гидравлическим испытанием. Это связано со свойствами газов, так как стабилизация давления в контуре происходит медленно. Его значение будет первоначально неизбежно снижаться даже при исправном оборудовании. После стабилизации воздушного давления выдержка должна составлять более получаса.

Несмотря на простоту операций, осуществляемых при опрессовке, это ответственное мероприятие, которое желательно поручить квалифицированному специалисту.

Смотрите также

Опрессовка системы отопления и водоснабжения

Чтобы система отопления не отказала в самый напряженный момент, отопительный сезон прошел без проблем, необходимо периодически проверять состояние оборудования, выявлять все изношенные детали. Такая проверка называется «опрессовка системы отопления», проводится она по определенным правилам.

Что такое опрессовка системы отопления и водоснабжения

Отопление и водоснабжение — две системы, состоящие из большого количества самого разнообразного оборудования. Как известно, работоспособность любой многокомпонентной системы определяется самым слабым элементом — при выходе его из строя она останавливается полностью или частично. Чтобы выявить все слабые места и проводится опрессовка отопления и водоснабжения. Если говорить простым языком, специально поднимается давление намного выше рабочего, закачивая жидкость. Делают это при помощи специального оборудования, контролируют давление при помощи манометра. Второе название опрессовки — гидравлические испытания. Наверное, понятно почему.

Опрессовка отопления проводится после любого ремонта или перед отопительным сезоном

Когда проводится опрессовка системы отопления, давление поднимают на 25-80% в зависимости от типа труб, радиаторов, другого оборудования. Понятное дело, что такое испытание выявляет все слабые места — все, что не имеет запаса прочности, ломается, в изношенных трубах и ненадежных соединениях появляются течи. Устранив все выявленные неполадки, обеспечиваем работоспособность своего отопления или водоснабжения на некоторое время.

Если речь идет о централизованном отоплении, то опрессовка обычно проводится сразу после окончания сезона. В таком случае имеется приличный промежуток времени для ремонта. Но это не единственный случай, когда проводятся подобные мероприятия. Опрессовка еще проходит после ремонта, замены любого элемента. В принципе, это понятно, — надо проверить, насколько надежно новое оборудование и соединения. Например, вы спаяли из полипропиленовых труб отопление. Надо проверить, насколько качественными получились соединения. Сделать это можно при помощи опрессовки.

Если говорить об автономных системах в частных домах или квартирах, то новое или отремонтированное водоснабжение проверяется обычно просто пуском воды, хотя и тут проверка на прочность не помешает. А вот отопление желательно испытывать «на полную», причем и перед вводом в эксплуатацию, и после ремонта. Имейте в виду, что те трубопроводы, которые прячутся в стены, в пол или под подвесной потолок, необходимо испытать до того момента, как их закроют. Иначе, если при испытаниях окажется, что там есть утечки, придется все разбирать/разбивать и устранять проблемы. Мало кого это обрадует.

Оборудование и периодичность испытаний

Опрессовка централизованных систем проводится персоналом с использованием штатных средств, потому о ней говорить вряд ли стоит. А вот о том, чем испытывают частное отопление и водоснабжение, наверняка знают не все. Это специальные насосы. Есть они двух типов — ручные и электрические (автоматические). Ручные опрессовочные насосы автономны, давление нагнетается при помощи рычага, контролируют созданное давление по встроенному в прибор манометру. Подобные насосы можно применять для небольших систем — качать достаточно сложно.

Ручной опрессововчный аппарат

Электрические насосы для опрессовки — более сложное и дорогостоящее оборудование. В них обычно заложена возможность создавать определенное давление. Его задает оператор, а «нагоняется» оно автоматически. Подобное оборудование покупают фирмы, занимающиеся опрессовкой профессионально.

Согласно СНиПу гидравлическое испытание систем отопления должно проводиться ежегодно, перед началом отопительного сезона. Это относится и к частным домам тоже, но данную норму мало кто выполняет. Проверяют в лучшем случае, раз в 5-7 лет. Если вы не собираетесь тестировать свое отопление ежегодно, то смысла покупать опрессовочный аппарат нет. Самый дешевый ручной стоит порядка 150$, а хороший — от 250$. В принципе, можно взять его на прокат (обычно есть в фирмах, торгующих составляющими для систем отопления или в конторах по прокату стойинвентаря). Сумма выйдет небольшая — нужен вам прибор на несколько часов. Так что это — неплохой выход.

Вызывать спецов или делать своими руками

Если вам для каких-то целей требуется акт опрессовки системы отопления или горячего водоснабжения, у вас только один выход — заказать эту услугу в специализированной организации. Стоимость опрессовки отопления вам могут озвучить только индивидуально. Она зависит от объема системы, ее строения, наличия запорных кранов и их состояния. Вообще, считают стоимость исходя из тарифа за 1 час работы, а она колеблется от 1000 руб/час до 2500 руб/час. Придется звонить в разные организации и справляться у них.

У фирм, занимающихся гидравлическими проверками систем, оборудование более серьезное

Если вы модернизировали отопление или горячее водоснабжение собственного дома, и точно знаете, что трубы и оборудование у вас в нормальном состоянии, в них нет солей и отложений, можете проводить опрессовку самостоятельно. Никто у вас требовать акты проведения гидравлических испытаний не будет. Даже если вы увидели, что трубы и радиаторы у вас засорены, вы можете промыть все самостоятельно, после чего опять-таки протестировать. Если же вам просто не хочется заниматься этим, можно вызвать специалистов. Они сразу и почистят систему и проведут ее опрессовку, да еще выдадут вам акт.

Акт гидростатического испытания системы (опрессовки)

Процесс опрессовки

Опрессовка систем отопления частного дома начинается с отключения от системы котла отопления, автоматических воздухоотводчиков и расширительного бака. Если на это оборудование ведут запорные краны, можно закрыть их, но если краны окажутся неисправными, расширительный бак точно выйдет из строя, а котел — в зависимости от давления, которое на него подадите. Потому расширительный бак лучше снять, тем более, что сделать это несложно, ну а в случае с котлом придется надеться на исправность кранов. Если на радиаторах стоят терморегуляторы, их также желательно снять — они не рассчитаны на высокое давление.

Иногда тестируется не все отопление, а только какая-то часть. Если это возможно, ее отсекают при помощи запорной арматуры или устанавливают временные перемычки — сгоны.

Есть два важных момента: опрессовка может проводиться при температуре воздуха не ниже +5°C, заполняется система водой с температурой не выше +45°C.

Далее процесс такой:

  • Если система была в эксплуатации, сливается теплоноситель.
  • К системе подключается опрессовщик. От него отходит шланг, заканчивающийся накидной гайкой. Этот шланг и подключают к системе в любом подходящем месте, хоть на месте снятого расширительного бака или вместо сливного крана.
  • В емкость опрессовочного насоса наливается вода, при помощи насоса закачивается в систему.

Аппарат подключается к любому доступному входу — на подающем или обратном трубопроводе — неважно

  • Перед поднятием давления надо удалить из системы весь воздух. Для этого можно немного прокачать систему при открытом сливном кране или спустить его через воздухоотвочики на радиаторах (краны Маевского).
  • Система доводится до рабочего давления, выдерживается не менее 10 минут. За это время спускается весь оставшийся воздух.
  • Давление повышается до проверочного, выдерживается некоторый промежуток времени (регламентируется нормативами Минэнерго). За время испытания проверяются все приборы и соединения. Их осматривают, на предмет появления течи. Причем течью считается даже слегка влажное соединение (запотевание тоже требует устранения).
  • Во время опрессовки контролируется уровень давления. Если на протяжении испытания его падение не превышает норму (прописано в СНиПе), система считается исправной. Если давление упало хоть немного ниже нормы, надо искать утечку, устранять ее, потом начинать опрессовку снова.
  • Как уже говорилось, опрессовочное давление зависит от типа испытываемого оборудования и системы (отопление или горячее водоснабжение). Рекомендации Минэнерго, изложенные в «Правилах технической эксплуатации тепловых энергоустановок» (п. 9.2.13) для удобства пользования сведены в таблицу.

    Тип испытываемого оборудования

    Источники: http://teplospec.com/montazh-remont/osnovnye-pravila-opressovki-sistemy-otopleniya-svoimi-rukami.html, http://small-house.ru/opressovka-otopitelnoy-sistemyi-svoimi-rukami/, http://stroychik.ru/otoplenie/opressovka-sistemy-otopleniya-i-vodosnabzheniya

    Опрессовка отопления — неотъемлемый элемент пусконаладочных работ.

    Качественная работа систем отопления с высокими показателями энергоэффективности и надежность этой работы зависят не только от грамотного проектирования и качественно выполненных монтажных работ, но и от тщательно проведенных пусконаладочных: опрессовки и промывки.

    Зачем проводить гидроиспытание

    Как известно, система отопления является закрытым контуром, работающим под избыточным давлением. Любые неплотности в местах резьбовых соединений арматуры или в точках подключения радиаторов приведут к утечке воды, затоплению помещений, повреждению строительных конструкций, отделки и пр. А так как система работает в зимнее время под давлением и высокими температурами теплоносителя, то во время аварий могут возникнуть также ситуации, угрожающие жизни и здоровью людей. Последствия от протечек систем отопления могут быть очень дорогостоящими и проблематичными с точки зрения устранения их, особенно в зимнее время.

    Поэтому гидравлические испытания систем отопления и теплоснабжения являются обязательными мероприятиями и на момент сдачи объекта в эксплуатацию, и на этапе подготовительных работ перед отопительным сезоном.

    В ряде случаев отсутствие акта о проведении испытаний систем теплоснабжения здания является гарантированным отказом теплоснабжающей организации на пуск тепла в здание перед началом отопительного периода. Поэтому организация, эксплуатирующая здание, в обязательном порядке должна быть осведомлена о порядке подготовки сетей и должна владеть соответствующей квалификацией для проведения испытаний систем отопления. Кроме того, проведение опрессовки систем отопления, подключенных к теплосетям города или населенного пункта, является частью теплоснабжающего договора.

    К основным подготовительным работам и испытаниям систем отопления относят следующие мероприятия:

    • опрессовка системы,
    • промывка трубопроводов.

    Что такое опрессовка систем?

    Под опрессовкой систем отопления подразумевается гидродинамическое испытание сети трубопроводов, то есть система выдерживается под определенным избыточным давлением в течение некоторого промежутка времени.

    Проверке на прочность также подлежит и все оборудование системы отопления: теплообменники, радиаторы, запорная и регулирующая арматура, насосные станции и прочие элементы сетей.

    Кроме гидравлических испытаний систем отопления, ежегодной проверке подлежат и все остальные системы теплоснабжения: узлы ввода тепла в здание, индивидуальные тепловые пункты, тепловые узлы, системы теплоснабжения приточной вентиляции и воздушно-тепловых завес, системы подогрева и теплых полов, котельные и пр.

    Нормативы, регламентирующие порядок проведения испытаний

    Как в проектных, монтажных, так и в испытательных работах без знания нормативной базы грамотно выполнить работы по опрессовке систем отопления будет невозможно.

    Так, например, в СНиП 41-01-2003 даны основные рекомендации по проведению испытаний систем отопления:

    • в здании должна быть температура воздуха выше нуля градусов;
    • давление опрессовки не должно быть больше максимального предельного давления оборудования и материалов в системе отопления;
    • величина давления опрессовки должна быть больше рабочего давления системы отопления и оборудования на 50%, но при этом показатель не должен быть ниже 0,6 МПа.

    СНиП 3.05.01-85 регламентирует:

    • проводить гидравлические испытания крупно узловых элементов на месте сборки;
    • при падении давления в системе во время гидравлических испытаний необходимо визуально обнаружить место течи, устранить неплотность, а затем продолжить мероприятия по проверке на герметичность;
    • проводить опрессовку трубопроводов с установленными вентилями или клиновыми задвижками следует при двукратном повороте регулирующей ручки;
    • секционные приборы отопления не заводской сборки также должны быть опрессованы на месте;
    • трубопроводы скрытой разводки должны быть испытаны повышенным давлением до момента отделочных работ;
    • изолируемые трубы подлежат опрессовке до момента нанесения теплоизоляции;
    • во время проведения работ по испытаниям систем теплоснабжения должны быть отключены водогрейные котлы и мембранные баки;
    • система считается работоспособной и прошедшей испытательные мероприятия, если на протяжении 30 минут не снизилось давление опрессовки, а визуальным методом не обнаружены подтеки воды;
    • испытание системы отопления на правильность и равномерность прогрева называют тепловым испытанием. Такие мероприятия должны проводиться на протяжении семи часов водой с температурой не менее 60 градусов. Если в летнее время источник тепла не выдает температуру опрессовки, то испытания откладывают до момента возобновления временного теплоснабжения, либо до подключения к источнику тепла.

    Все гидравлические испытания фиксируются в акте опрессовки, а испытания трубопроводов скрытой прокладки сопровождаются листом на скрытые работы.

    Порядок и технологические особенности проведения опрессовки системы отопления

    Гидравлические испытания систем теплоснабжения принято проводить с различными давлениями опрессовки в зависимости от назначения системы и типа используемого оборудования. Например, узел ввода тепла в здание опрессовывают давлением в 16 атмосфер, системы теплоснабжения вентиляции и ИТП, а также системы отопления многоэтажных домов — давлением в 10 атмосфер, а системы отопления индивидуальных домов — давлением от 2 до 6 атм.

    Системы отопления вновь возводимых зданий прессуются в 1,5-2 раза большим давлением от рабочего, а системы отоплений старых и ветхих домов — заниженными значениями в пределах 1,15-1,5. К тому же при опрессовке систем с чугунными радиаторами диапазон давлений не должен превышать 6 атм., зато при установленных конвекторах — порядка 10.

    Таким образом, при выборе давления опрессовки следует внимательно ознакомиться с паспортами на оборудование. Оно не должно быть выше максимального давления самого «слабого» звена системы.

    Для начала производится заполнение системы отопления или теплоснабжения водой. Если в системе отопления будет залит низкозамерзающий теплоноситель, то опрессовку проводят сначала водой, затем уже раствором с присадками. Следует знать, что в силу меньшего поверхностного натяжения теплоносители на основе этиленгликоля или пропиленгликоля более текучи, чем вода, поэтому в случае незначительных подтеков на резьбовых соединениях их следует порой лишь незначительно подтянуть.

    При подготовке функционирующей системы отопления к отопительному сезону рабочий теплоноситель необходимо слить и вновь заполнить чистой водой для опрессовки. Заполнение системы отопления обычно производится в нижней точке котельной или теплового узла через сливной шаровый кран. Параллельно с заливкой системы отопления должен быть стравлен воздух через автовоздушники на стояках, верхних точках ответвлений или через краны Маевского на радиаторах. Для предотвращения завоздушивания системы отопления заполнение системы производится только «снизу-вверх».

    Затем производится повышение давления системы до расчетного с контролем падения давления по измерительным манометрам. Параллельно с контролем давления производится визуальный осмотр всей системы, узлов трубопроводов, резьбовых присоединений и оборудования на предмет образования течи и появления капель на швах. Если на системе после заполнения водой образовался конденсат, то трубопроводы необходимо высушить, а затем проводить осмотр дальше.

    Приборы отопления и участки трубопроводов, скрытые в строительных конструкциях, подлежат осмотру в обязательном порядке.

    Систему отопления выдерживают под давлением не менее 30 минут, а если не обнаружено течи и не было зафиксировано падения давления, то считается, что система опрессовку прошла.

    В некоторых случаях падение давления допустимо, но в пределах, не превышающих значения 0,1 атмосферы, и при условии, что визуальный осмотр не подтвердил образования подтеков воды и нарушения герметичности сварных и резьбовых соединений.

    При отрицательном результате гидравлических испытаний производят ремонтные работы с дальнейшей повторной опрессовкой.

    По окончании испытательных работ составляется акт опрессовочных работ по форме, указанной в основных нормативных документах.

    Пневматические испытания систем отопления

    Основным ограничением проведения гидравлических испытаний является проведение работ в помещениях с положительной температурой, что крайне затруднительно в строящемся здании. Поэтому часто перед основными испытательными работами проводят опрессовку системы отопления воздухом.

    Компрессор подключается к сливному крану либо к крану Маевского в любой точке системы, нагнетается повышенное давление воздуха, а система выдерживается определенное время без падения давления.

    Промывка систем отопления

    Гидропневматическая промывка отопительных систем является обязательным мероприятием при подготовке системы отопления к пуску перед началом отопительного сезона.

    Вода циркулирует по замкнутому контуру системы отопления на протяжении отопительного периода, а при нагревании и остывании происходит отложение солей жесткости. А это вместе с процессами коррозии внутренних стенок труб приводит к отложению накипи на них. Накипь значительно уменьшает внутреннее сечение трубопроводов, увеличивает гидравлическое сопротивление системы и снижает теплоотдачу радиаторов.

     

    В высокотемпературных системах отопления накипь приводит к локальному перегреву и к дальнейшему образованию свищей. Отложение накипи толщиной в один миллиметр приводит к снижению теплоотдачи системы отоплении на 15-20%. А в глобальных масштабах — это колоссальные потери тепловой мощности и значительное снижение энергоэффективности системы со значительным ростом затрат на обогрев здания.

    Промывка систем отопления является таким же необходимым ежегодным мероприятием, как и опрессовка, и проводится перед началом отопительного сезона или на момент ввода в эксплуатацию.

    Главным признаком «забитой» системы отопления является увеличение роста расхода теплоносителя, увеличение времени прогрева или неравномерный прогрев радиаторов. В этих случаях часто возникают такие ситуации, когда трубопроводы горячие, а радиаторы еще непрогретые.

    Методика гидропневматического способа сводится к заполнению системы чистой водой и подключению в нее воздушного компрессора. Избыточное давление воздуха увеличивает скорость течения теплоносителя и создает турбулентные потоки жидкости. Эти потоки в местах отложений накипи создают вихревые колебания, вследствие чего частицы загрязнений отрываются от поверхности стенок.

    При подаче воздуха высокого давления вентиль на воздухоспускных клапанах необходимо закрыть, а для защиты компрессора от попадания воды из системы следует установить обратный клапан.

    Также для промывки системы существуют специальные растворы, которые расщепляют отложенную на стенках трубопроводов накипь и снижают тем самым их гидравлическое сопротивление.

    Службы, проводящие гидравлические испытания

    Если система отопления монтируется подрядной организацией на этапе возведения нового жилья, то и обязанности по опрессовке трубопроводов полностью лежат на подрядчике.

    В случае, когда система отопления уже функционирует, независимо от того, жилой это дом, муниципальное учреждение, торговый либо офисный комплекс, опрессовку выполняет организация, обслуживающая все системы здания. В жилищном строительстве законом предусмотрены обязанности управляющей компании содержать системы отопления в рабочем состоянии, а, следовательно, и осуществлять мероприятия по подготовке к отопительному сезону.

    Для административных и иных комплексов испытания систем производят либо эксплуатирующая организация, либо подрядчик, владеющий всеми необходимыми разрешениями на проведение комплекса работ.

    что это такое и в каких случаях ее необходимо применять?

    Опрессовка системы отопления что это такое? Этот вопрос зачастую возникает у собственников жилья во время подготовки систем отопления к новому отопительному сезону. В этой статье мы подробно рассмотрим тему опрессовки и промывки систем отопления.

    Неисправности системы отопления и их диагностика

    Система отопления представляет собой сложную инженерную систему, позволяющую человеку создать комфортную атмосферу в жилище в холодную погоду. И как во всякой сложной системе, в ней не исключается возникновение неисправностей. Основной неисправностью в системе отопления является потеря герметичности её контуров, следствием чего служит появление протечек теплоносителя. Для диагностирования возможных утечек в комплексе отопительных приборов, труб и прочих элементов применяется так называемая опрессовка отопления.

    Так что такое опрессовка системы отопления? Это неразрушающий метод контроля, заключающийся в испытании контуров трубопроводов, отопительных приборов и прочих частей системы методом кратковременного повышения в ней давления теплоносителя. При этом руководствуются логичным принципом – если протечки отсутствуют при повышенном давлении, то их не будет и при нормальных условиях эксплуатации. В момент повышения давления проявляются все дефекты в местах соединения или прогнивания труб и отопительных приборов.

    Такое гидравлическое испытание позволяет проверить:

    • прочность стенок трубопроводов, корпусов отопительных приборов и перегородок теплообменников, запорной арматуры;
    • плотность в местах соединения элементов системы;
    • работоспособность измерительных приборов, клапанов, кранов и прочей инженерной оснастки контуров.

    Руководящие документы

    Существует целый ряд нормативных документов, описывающих, как опрессовать систему отопления. К ним принадлежат:

    1. СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование».
    2. СНиП 3.05.01-85 «Внутренние санитарно-технические системы зданий».
    3. «Правила технической эксплуатации тепловых энергоустановок», утверждённые Приказом МинэнергоРФ №115 от 24.03.2003.

    Несоблюдение требований этих документов при проведении подготовки к отопительному сезону может вылиться в создание аварийных ситуаций во время эксплуатации систем отопления. Авария в условиях низких температур чревата разморозкой контуров отопительной системы, что может привести к частичной или полной замене трубопроводов.

    Порядок проведения работ

    Важно понимать, что опрессовка систем отопления – не только простое повышение давления, это целый комплекс процедур, куда входит промывка контуров, ревизия и, по потребности, замена элементов системы (запорной арматуры, секций или целиком отопительных приборов и т.д.), восстановление теплоизоляционных покрытий трубопроводов и многое другое. В индивидуальном домохозяйстве опрессовке могут подвергаться так же и системы водоснабжения, канализации и даже трубы в водяной скважине.

    По таким работам, как опрессовка системы отопления инструкция выглядит следующим образом:

    1. Проверяемый участок с помощью устанавливаемых отсечек или кранов изолируется от остальной сети.
    2. Производится слив теплоносителя.
    3. Контур проверяемого участка через находящийся в нижнем фрагменте системы патрубок заполняется холодной (не превышая температуры 45 С) водой.
    4. В процессе заполнения производится выпуск воздуха из системы отопления.
    5. После наполнения системы подключают к ней подающее давление устройство.
    6. В контуре поднимают давление до рабочего (указанного в проекте) и производят визуальный осмотр элементов испытываемого участка системы.
    7. Производят плавное повышение давления до испытательного значения (обычно это в 1,5 раза выше рабочего).
    8. Фиксируются показания контрольного прибора (манометра).
    9. Испытательное давление выдерживается по времени не менее 10 минут. За это время проводят визуальный контроль всех частей проверяемого участка на предмет выявления протечек или «запотевания» мест соединения элементов системы.
    10. Проверяются показания контрольного прибора (манометра). При отсутствии падения давления проверка пройдена успешно. При наличии неполадок воду из контура сливают и производят их устранение, затем проверку проводят повторно.
    11. Составляется Акт по итогам испытаний.

    Допускается, в исключительных случаях, и опрессовка труб отопления воздухом. К ним относятся невозможность заполнить контур водой и испытания при низких температурах, не исключающих возможность замерзания воды в трубопроводах. При данном способе по контрольному манометру проверяют герметичность системы, а для обнаружения утечек возможные проблемные места (соединительные фитинги, краны, швы и места соединений) обильно обмазывают мыльным раствором. Пузырение раствора показывает места утечек.

    Опрессовка системы отопления в многоквартирных зданиях

    Необходимо так же отдельно рассмотреть, как проводится опрессовка системы отопления в многоквартирных зданиях. Как принято, опрессовка системы отопления многоквартирного дома проводится по окончанию сезона отопления, начиная с конца апреля. Как правило, эксплуатирующей организацией за отопительный сезон собрана предварительная информация о проблемных местах в отопительной системе здания по поступающим жалобам от жильцов.

    Это могут быть замечания на недостаточно высокую температуру в помещениях, наличие подтёков теплоносителя и многое другое. Поэтому перед проведением опрессовки в первую очередь проверяются и исправляются неполадки по имеющейся информации.

    Перед испытаниями системы отопления проводят следующие подготовительные мероприятия:

    • Промывку стояков, по которым поступали жалобы на недостаточную температуру теплоносителя.
    • Проверку работы запорно-регулирующей арматуры на стояках и в элеваторном узле. В многоквартирных домах практически всегда устанавливают чугунные задвижки, в которых из-за воздействия высоких температур во время отопительного сезона сальниковая набивка теряет герметичность и начинает течь. Поэтому следует заново набить сальники, заменить прокладки между фланцами задвижек, поменять прикипевшие болты.
    • Методом визуального контроля проверяют систему целиком на наличие подтёков и протечек на запорных элементах и трубопроводах. Обнаруженные неполадки устраняют.
    • Проверяют целостность теплоизоляции на трубопроводах и устраняют её повреждения.

    После выполнения подготовительных мероприятий приступают непосредственно к опрессовке. Методика и правила опрессовки системы отопления многоквартирного здания не отличаются от рассмотренных выше, за исключением того, что выполняется она в несколько этапов и выдержка системы отопления под повышенным давлением составляет не 10, а 30 минут.

    На первом этапе проверяют контуры системы всего здания, а на втором отдельно испытывают тепловой узел.

    Разделение на этапы обусловлено тем, что проверку теплового узла на вводе в здание производят под более высоким давлением (обычно 10 атмосфер).

    Промывка системы отопления

    Отдельно стоит заострить внимание над темой промывки системы отопления. Заиливание и засорение контуров отопительной системы в многоквартирных домах происходит не моментально, а на протяжении длительного времени. Особенно выражено это проявляется в местах минимальной скорости движения теплоносителя, например в радиаторах отопления и тупиковых ветках контура. Под воздействием высоких температур на внутренних поверхностях трубопроводов так же образуется осадок минеральных солей, что неуклонно уменьшает внутренний диаметр трубопровода.

    Немаловажной причиной засорения является также присутствие твёрдых инородных взвесей в составе теплоносителя. Это обусловлено тем, что в ТЭЦ происходит круглосуточный непрерывный нагрев колоссальных объёмов жидкости, подвергнуть которую тонкой фильтрации практически невозможно. Вследствие этого твёрдые частицы в местах медленного протекания теплоносителя год за годом наслаиваются друг на друга. И если на протяжении долгого времени не оказывать этому процессу должного внимания, система отопления может полностью выйти из строя.

    Сегодня применяют два метода промывки – химический и гидропневматический.

    Химический метод

    Химический метод заключается в заполнении контуров системы химреагентов вместо теплоносителя и применяется в случаях, когда система отопления многоквартирного здания эксплуатировалась на протяжении десятилетий. В качестве реагентов обычно выступают либо щёлочь, либо растворы фосфорных кислот. Затем с помощью специального насоса на протяжении не менее 2-х часов раствор циркулирует в системе, растворяя образовавшийся в трубах осадок. Впоследствии раствор сливается, производится заполнение системы теплоносителем и её опрессовка.

    Гидропневматический метод

    Гидропневматическая промывка уже долгие годы считается высокоэффективной, при комплексном подходе к таким работам, как промывка и опрессовка системы отопления стоимость работ выходит весьма привлекательной. Суть данного метода элементарна: контуры отопительной системы выводятся на сброс в канализацию, а в систему компрессором подаётся сжатый воздух. Вода, проходящая по всем трубам контура на высокой скорости, частично откалывает накипь и рыхлит илистые отложения, унося их в канализацию. Максимально действенным такой способ будет, если промывать стояки поочерёдно, не более 7-10 за один раз.

    Для частных домохозяйств и малоквартирных жилых зданий зачастую выгодно установить на каждый прибор отопления промывочные краны, так как засорение в первую очередь происходит именно в них. Этот подход позволит промывать систему отопления частично, по мере необходимости и только в нужных местах.

    Стоимость проведения работ

    В заключении следует рассмотреть, сколько стоит опрессовка системы отопления и её промывка. Ввиду сложности процесса и необходимости получения на заключительном этапе официальных бумаг для государственных структур, самостоятельно данные работы проводить весьма проблематично. Целесообразным будет обратиться к непосредственно проводящим эти работы организациям, имеющим на них соответствующую аттестацию и свидетельство СРО. Пообщавшись с тремя-четырьмя представителями таких фирм можно будет определить для себя стоимость опрессовки системы отопления здания и её промывки в средних пределах.

    На такие работы, как промывка и опрессовка системы отопления цена может иметь довольно большие расхождения под влиянием нескольких параметров. Обычно за основу берут площадь здания, в основном она влияет на протяжённость трубопроводов, количество отопительных приборов, тепловую производительность оборудования и, соответственно, трудозатраты на проведение работ. Но стоимость опрессовки системы отопления может возрасти в случае неисправности задвижек на вводе в здание, которые необходимо починить перед испытанием, так же могут повлиять ещё многие и многие факторы.

    Необходимо понимать, что в таких работах, как опрессовка системы отопления цена всегда индивидуальна и не может быть фиксированной. Некоторые организации указывают стоимость нормо-часа проведения работ и в результате, учитывая впоследствии стоимость расходных материалов, состояние приборов учёта и подвергнутых ремонту элементов контура, определяется окончательная для такой работы как опрессовка системы отопления стоимость работ и включается в счёт.

    Справочная информация:

    1. По ОКПД опрессовка системы отопления относится к коду 70.32.13.854 (работы по техническому обслуживанию систем отопления).
    2. По КОСГУ опрессовка системы отопления относится к статье 225.

    зачем нужна, как и когда проводится

    Узнаем, что такое опрессовка, где применяется, в каких случаях она нужна. Этот важный процесс можно провести самостоятельно.

    В этой статье поговорим о том, что такое опрессовка, где применяется, в каких случаях она просто необходима. Расскажем, какое оборудование требуется для проведения опрессовки, разберёмся, нужно ли быть специалистом, чтобы выполнить этот важный процесс самостоятельно и какие этапы он включает.

    Опрессовка

    Опрессовка — это проведение испытаний некой закрытой системы с помощью избыточного давления. Гидравлические испытания или проверка воздухом, которые проводятся под давлением, превышающим нормальный рабочий показатель, необходимы, чтобы убедиться — система справляется с такими экстремальными условиями.

    Когда и где проводится опрессовка:

    1. После окончания монтажа отопительной системы. Проверяется работа котлов, теплообменников, циркуляционного насоса, другого оборудования;
    2. После укладки местных и магистральных трубопроводов;
    3. После монтажа систем подачи горячей и холодной воды;
    4. После создания системы газоснабжения домов.

    Кроме того, опрессовка необходима для проверки состояния газовых баллонов и другого оборудования.

    Необходимость в опрессовке появляется не только после монтажа инженерных систем. Есть и другие ситуации:

    • Аварийная замена трубы отопления или радиатора;
    • Установка теплосчётчика;
    • Замена или ремонт газовой трубы;
    • Проведение сервисного обслуживания коммуникаций;
    • Подготовка дома к отопительному сезону;
    • Ремонт или замена труб системы водоснабжения;
    • Замена или ревизия запорной арматуры;
    • Чистка бойлеров или фильтров.

    Как видим, практически любое вмешательство в системы водоснабжения, отопления или газоснабжения подразумевает, что после этого будет проведена опрессовка, как завершающий, проверочный этап.

    Данный процесс позволяет выявить все слабые места. Если система работает нормально при повышенном давлении, значит, точно выдержит нормальные показатели. В процессе опрессовки можно выявить места протечки соединений труб, которые просто на глаз отыскать невозможно.


     Проводится опрессовка следующим образом:

    • Для начала вся система водоснабжения или отопления заполняется жидкостью. Чаще всего используется вода. Применяется обычный бытовой насос или подключение к стационарному водопроводу, так как заполнение системы опрессовщиком займёт много времени, а если он ручной — то и сил;

    Важно! Многие эксперты настаивают, что нужно проводить именно гидравлическое испытание, с применением жидкости — воды или масла. Подать в систему сжатый воздух проще, однако, если будут выявлены слабые места, использование пневматики может грозить разрушением и даже взрывом. Жидкость же обладает несжимаемостью, поэтому процесс опрессовки не связан с такими рисками. Впрочем, признаем, другие специалисты считают, что опрессовка воздухом — это удобно и процесс может быть выполнен самостоятельно.

    • Когда система отопления или водоснабжения заполнена жидкостью, подключается самый необходимый прибор — опрессовочный насос, ручной или электрический. Данное устройство создаст в системе давление, которое в полтора-два раза превысит рабочее;

    Важно! Нельзя подавать слишком высокое давление. Разрушить можно всё, что угодно, если перестараться. Поэтому давления в два раза больше нормального, то есть того, под которым будут работать коммуникации в дальнейшем, вполне достаточно для проверки.

    • После того, как давление достигнет желаемого показателя, опрессовщик отключается, а мастер следит за стрелкой манометра. Если давление не падает, держится на опрессовочном показателе, система признаётся герметичной, надёжной, пригодной для дальнейшего использования. Если давление после отключения опрессовщика начинает падать — значит, где-то есть утечка, слабое место, которое следует выявить и устранить.

    Важно! Опрессовку систем газоснабжения проводят только специалисты по заявлению владельца частного дома или в рамках плановой проверки. Проверка газовых труб связана с отключением от основной магистрали, перекрытием крана линии высокого давления, установкой заглушек, удалением всего газа из системы. Для этого требуется специальное оборудование и соблюдение всех правил безопасности, так как опрессовка в данном случае проводится сжатым воздухом.

    Чтобы провести опрессовку систем отопления или водоснабжения, требуется опрессовщик, опрессовочный насос. Он может быть:

    1. Ручным. Накачка повышенного давления в систему в данном случае потребует физических усилий, придётся поработать рычагом, а следить за показателями необходимо самому мастеру, который не должен перестараться;
    2. Электрическим. Такие опрессовщки обычно имеют механический ограничитель давления, что позволяет не опасаться превышения нужного показателя. Работать

    Правила опрессовки системы отопления своими руками — как правильно проводится процесс, пошаговый порядок действий

    Содержание:

    1. Проведение подготовительных работ перед опрессовкой

    2. Как проводится опрессовка системы отопления

    В осенне-зимний сезон одной из наиболее важных бытовых задач является профилактика отопительной системы для обеспечения ее дальнейшей бесперебойной работы. С этой целью проводится так называемая опрессовка – испытание прочности трубопровода и соединенного с ним оборудования гидравлическим или пневматическим способом. Процедура эта необходима и в многоквартирных домах с централизованной системой отопления, и в частных особняках. 

    Чтобы узнать, как провести опрессовку системы отопления, можно обратиться к специалистам, однако приведенное ниже описание позволит вам обойтись и без их помощи – точное выполнение рекомендаций гарантирует получение того же результата, что и при участии мастера.

    Соблюдая необходимые правила опрессовки системы отопления своими руками, с этой задачей можно успешно справиться самостоятельно. Проведенный заблаговременно осмотр и устранение неполадок помогут вам избежать протечек в радиаторах отопления и сальниковых соединениях, срывов какого-либо участка трубопровода, предотвратить течь в местах установления запорной и регулировочной арматуры. Опрессовка системы отопления – инструкция по ее проведению даст вам исчерпывающую информацию о последовательности действий – должна быть проведена в соответствии с технологией выполнения работ, это обеспечит отсутствие каких-либо неполадок системы во время отопительного сезона. Читайте также: «Что такое опрессовка системы отопления – описание процесса, последовательность выполнения работ».

    Проведение подготовительных работ перед опрессовкой

    В каждой отопительной системе поддерживается рабочее давление, обеспечивающее движение по контуру теплоносителя, необходимого для нагрева труб и радиаторов отопления, которые, в свою очередь, обогревают окружающий их воздух в помещении. Сила же рабочего давления должна быть достаточной для поднятия теплоносителя на необходимую высоту (подробнее: «Рабочее давление в системе отопления — нормы и испытания»). Из этого следует заключение о том, что для более высоких домов требуется большее значение давления системы.


    Перед тем, как делать опрессовку системы отопления, следует заметить – при опрессовке воздухом, или пневмоопрессовке, рабочее давление должно превышать норму на 40-50%. Повышение давления в системе связано с проходящими гидравлическими процессами на пути теплоносителя к зданию от магистрали.

    Порядок проведения опрессовки системы отопления начинается с подготовительных работ, включающих следующие этапы:

    • Проверка запорной арматуры (к примеру, вентилей) на каждом участке системы
    • Проверка герметичности, которую можно обеспечить уплотнением сальниками необходимых участков
    • Осмотр и, при необходимости, проведение ремонта элементов, предназначенных для изоляции трубопровода
    • Отключение здания, в котором проводится опрессовка контура, при помощи заглушки от общей отопительной системы

    Далее спускной кран, находящийся на «обратке», подготавливается для дальнейшего заполнения труб водопроводной водой. При заполнении отопления системы водой необходимо перекрыть задвижки, краны, а воздушники оставить открытыми.

      Как выполнить опрессовку коллекторной системы отопления, подробное видео:


    Как проводится опрессовка системы отопления

    Для частных домов теплоноситель в системе отопления во время проведения опрессовки должен находиться под давлением в 2 атмосферы. При поступлении в систему отопления, он вытесняет воздух, скопившийся в трубах. Теплоноситель, в качестве которого выступает обычная водопроводная вода либо антифриз, должна заполнить каждый элемент трубопровода. Использование в качестве теплоносителя антифриза является более дорогим решением, однако в этом случае вы будете застрахованы от повреждения замерзшей системы в случае отключения отопления.

    Опрессовка системы отопления своими руками должна поводиться с помощью специального прибора – опрессовщика, с тем, что он собой представляет, вы можете ознакомиться по фото:

    Для проведения опрессовки в многоквартирных этажных домах, для обнаружения участков протечки в систему подают жидкость, находящуюся под давлением в 8 атмосфер. Это значение на 20-30-% превышает рабочую величину. На вводе для контроля давления, которое должно держаться на указанном выше уровне в течении получаса, следует установить манометр. Перед началом проведения работ должна быть проведена тщательная проверка приборов и их калибровка. Падение во время испытаний стрелки манометра является свидетельством утечки в местах с нарушенной герметизацией (прочитайте также: «Акт гидравлического испытания системы отопления и трубопроводов»).

    Если вы точно соблюдаете порядок опрессовки системы отопления, то своевременно обнаружите малейшую неисправность системы. Обратить внимание следует, в первую очередь, на батареи отопления, запорную арматуру, прокладки и резьбовые соединения. Слабыми местами являются залитые в пол элементы системы. Обнаружив требующие ремонта участки, из системы следует слить всю воду и заменить или же исправить поврежденные места.

    Зная, как сделать опрессовку системы отопления и самостоятельно проведя все необходимые действия, включая исправление найденных дефектов, следует учесть – находящиеся в детских, медицинских или административно-хозяйственных зданиях системы подлежат осуществляемой органами надзора обязательной приемке.

    Промывка и опрессовка системы отопления

            Доброго времени суток, уважаемые читатели! Промывка и опрессовка систем отопления проводится обычно в межотопительный, летний период, после окончания отопительного сезона. Вообще цель промывки — вымывание накопившейся в радиаторах и трубах грязи, окалины, отложений. Опрессовка проводится с целью испытания на прочность и плотность трубопроводов отопления.

          Примерно так записано в «Правилах технической эксплуатации теплоэнергоустановок». Если более точно — промывка проводится согласно п.п.9.2.9., 9.2.10., опрессовка согласно п.п. 9.1.59., 9.2.12., 9.2.13. Кроме подготовки к отопительному сезону гидравлические испытания (опрессовку ) проводят :

    а) перед вводом в эксплуатацию нового трубопровода,

    б) после завершения капитального ремонта дома или здания,

    в) после реконструкции или модернизации теплоузла.

          Но все эти варианты мы рассматривать не будем, так как самым распространенным является вариант промывки и опрессовки перед отопительным сезоном. Согласно «Правил технической эксплуатации тепловых энергоустановок» в каждом здании перед отопительным сезоном должна пройти промывка и опрессовка внутренних систем отопления.

            Как же проводится промывка? Обычно проводят гидропневматическую промывку. Суть ее в том, что сжатый воздух подается компрессором совместно с водой, и этой водовоздушной смесью под давлением (но не более 6 кгс/см²) промываются стояки и радиаторы. Через один шланг водовоздушная смесь под давлением прогоняется по стоякам и радиаторам, через другой шланг сбрасывается в систему канализации. Промывку чаще всего проводят водопроводной (холодной) водой, либо сетевой водой по согласованию с эксплуатирующей организацией. Промывка идет до тех пор, пока вода, которая идет на сброс в канализацию, не станет полностью светлой, то есть до полного осветления. Это если вкратце. Рабочую программу проведения промывки можно скачать здесь:

     Программа промывки 

    РД  34.20.327-87 «Методические указания по гидропневматической промывке водяных тепловых сетей» можно скачать здесь :

    РД 34.20.327-87

            Кто может делать промывку? Вы можете нанять какую либо организацию, а можете и проводить промывку сами, для этого не нужен допуск СРО ( саморегулируемой организации ). Допуск СРО — это, что раньше называлось лицензией. Но для того, чтобы проводить промывку вам нужен будет компрессор и подготовленный персонал. Если со вторым еще как то можно справиться, то покупать компрессор ради одной промывки в год не очень то целесообразно. Тем более, что «внутрянку» сейчас моют уже не теми огромными, грохочущими компрессорами, которые были раньше, а вполне себе компактными, современными агрегатами. Например, таким как на фото ниже.

           Напишу про свое личное отношение к проведению промывки перед отопительным сезоном. Если честно, я не считаю, что промывку нужно проводить каждое лето. Сталкивался я на практике и с проблемами, которые возникают после промывки. Мое мнение по этому поводу такое — промывку нужно проводить раз в пять лет, не чаще. Как то приходилось промывать здание, которое не промывалось с 90х годов, вот там промывка имела смысл, она была просто необходима, грязи вымыли просто очень много. А каждый год если мыть, только компрессор запускаешь, шланг в люк канализации — а вода уже с самого начала почти чистая идет. И смысл мыть каждый год? Читал я и про то, что за границей, в европейских странах промывка не очень то приветствуется, то есть ее не проводят в обязательном порядке. Но Правила есть Правила, поэтому будем их придерживаться.

            Теперь касаемо опрессовки, или гидравлических испытаний на прочность и плотность. Их проводят, или по крайней мере должны проводить после промывки систем отопления. Честно сказать, не всегда это делается, так сказать по желанию заказчика. При опрессовке «внутрянка» ставится под давление, но не выше расчетного, на определенное время, которое оговаривается в программе опрессовки, или другими словами гидравлических испытаний. Рабочую программу опрессовки можно скачать здесь :

    Программа опрессовки

           Опрессовку можно проводить с помощью специального ручного опрессовочного насоса, например такого, как на фото:

    Таким насосом вы можете опрессовать как часть «внутрянки», так и полностью систему отопления. После проведения опрессовки визуально осматривается вся внутренняя система отопления. Если нигде нет свищей, течей со стояков отопления и радиаторов, значит система считается выдержавшей гидравлическое испытание. И после промывки и после опрессовки обязательно составляется акт, который подписывают представитель потребителя и представитель теплоснабжающей организации.

           Как известно, промывка и опрессовка входят в комплекс мероприятий по подготовке к отопительному сезону, а на тему подготовки к отопительному сезону я написал книгу, с одноименным названием, просмотреть ее можно по ссылке ниже:

    Подготовка к отопительному сезону

    Книга эта написана мной на основе моего 15-летнего опыта теплоэнергетика-практика. К книге я также приложил дополнительные материалы, а именно: план мероприятий по подготовке к отопительному сезону в формате Exel, рабочие программы промывки и опрессовки внутренней системы теплоснабжения здания, формы актов промывки и опрессовки в формате Word, паспорт ИТП (теплового пункта) со схемой, паспорт тепловой сети (теп

    Неразрушающий контроль — Манометр, Регистратор температуры и давления, Насосы для гидростатических испытаний

    Испытательное оборудование для напорных систем

    Манометр

    Манометры — это относительно недорогие механические устройства, считывание которых по большей части выполняется вручную.
    Один из самых известных типов — манометр Бурдона, который был запатентован во Франции Юджином Бурдоном в 1849 году.

    Манометры Бурдона

    содержат тонкостенную металлическую трубку, которая обычно ввинчивается в отсек, в котором измеряется давление.По мере увеличения давления в трубке трубка начинает выпрямляться. На другом конце трубки находится рычажная система со стрелкой. По мере выпрямления трубки указатель перемещается по шкале, показывая давление в фунтах на квадратный дюйм (PSI). Обычные формы трубок включают изогнутые или С-образные, спиральные и спиральные. Это механическое устройство, считываемое вручную. Другой тип механического манометра, который работает аналогичным образом и также содержит стрелку, называется диафрагменным манометром.

    Традиционные манометры, такие как манометры Бурдона и диафрагменные манометры, чувствительны к вибрации и конденсации.Другой тип называется манометром с «заполнением», и он заполнен вязким маслом. В этой конструкции меньше движущихся частей, чем в традиционных манометрах, и она более надежна. Эта конструкция гасит вибрацию стрелки и не подвержена конденсации.

    Регистратор-приемник температуры и давления

    Регистратор-приемник температуры и давления — это прибор, предназначенный для общих применений температуры и давления, и ИТ записывает контролируемую температуру и давление на графике.

    Система статического давления состоит из спиральной трубки Бурдона, соединенной с системой трубопроводов, и измеряет статическое давление.
    Тепловая система состоит из спиральной трубки Бурдона, капилляра и колбы. Обычно все детали из нержавеющей стали.
    Механизм записи часто представляет собой ручную систему, которая непрерывно записывает данные. Он преобразует механические входные значения давления и температуры в линии на вращающейся диаграмме.

    Насосы для гидростатических испытаний

    Насос для гидростатических испытаний — это автономный переносной насос высокого давления небольшого объема, приводимый в действие ручным, воздушным, электрическим или газовым двигателем, со шлангом высокого давления, подключенным к оборудованию.Насос используется для проверки проверяемого компонента, который заполняется несжимаемой жидкостью, обычно водой.
    С помощью насоса, включающего соответствующие предохранительные устройства и средства управления, давление тестируемого компонента медленно повышается до заданного значения и поддерживается в течение заданного времени. Затем выполняется визуальный осмотр, чтобы определить, есть ли утечка или давление снижается от заданной точки давления.

    Это оборудование для испытания гидростатического давления компактно, эффективно и экономично, доступно в различных комбинациях давления и расхода (возможно давление до 1000 бар (14 500 фунтов на кв. Дюйм)).0,714)))

    Замечание (я) автора …

    Какое безопасное расстояние для испытаний под давлением?

    За прошедшие годы я провел сотни испытаний под давлением и собрал много документации об этом методе неразрушающего контроля. Что касается меня, то могу очень кратко ответить:

    Безопасное расстояние определить заранее сложно или невозможно.

    На рисунке ниже показан элемент трубопровода, который запускается при испытании пневматическим давлением.Я не знаю точных обстоятельств, но что-то пошло не так.
    Если бы вам нужно было определить безопасное расстояние для этого испытания под давлением, смогли бы вы это предоставить?

    Качественные различия

    Воздух сжимаемый

    • Энергоаккумулятор большой
    • Изменение давления «пропорционально» изменению объема [P1V1 = P2V2]
    • Объемный модуль, K = 20,6 фунтов на кв. Дюйм
    • Воздушный шар, наполненный большим количеством воздуха, мгновенно выделяет энергию

    Вода несжимаемая

    • Накопление энергии минимальное
    • Давление изменяется на конечную величину при бесконечно малом изменении объема
    • Объемный модуль, K = 316,000 фунтов на кв. Дюйм K = — Δ P / [ΔV / V]
    • Баллон, наполненный водой, не «лопается» без энергии сжатия

    Сравнения

    Какова накопленная энергия в трубе 42 NPS, длиной 36 футов и давлением 7?5 фунтов на кв. Дюйм?

    Гидростатические испытания
    Пневматический тест

    Как относиться к различиям?

    • 4,44 фунта-фут — небольшое число, которое легко понять
    • А как насчет 294 815 фунт-футов?
    • Внедорожник , движущийся со скоростью 42 миль в час [68 км / ч], имеет такое количество энергии
    • Как правило, сравнение внезапного высвобождения энергии проводится с эквивалентом 294 815 фунт-фут = 0,2 фунта в тротиловом эквиваленте в тротиловом эквиваленте
    • Эквивалент

    • тротила в 1 кг тротила * = 4.184 x 106 Дж [1], или эквивалент 1 фунта в тротиловом эквиваленте = 1,4 x 106 фунт-футов
    • * Обратите внимание, что некоторые источники дают 1 кг в тротиловом эквиваленте = 4,63 x 106 Дж

    Актуальная практика!

    Многие люди не подозревают об опасности опрессовки. Каждый день я вижу практики, которые могут и должны быть лучше. Испытание давлением часто считается второстепенным, поэтому ему уделяется меньше внимания.
    Прогресс невозможен с помощью опрессовки, но с помощью сварки и сборки последнее гораздо важнее для подрядчика.

    Для опрессовки компонента, который будет использоваться в эксплуатации, давление обычно составляет 1,3–1,5 от расчетного давления, что препятствует деформации материала, но подвергает его большему стрессу, чем при эксплуатации. Инспекторы ползают по всей установке в поисках подтеков.
    Пневматические испытания проводятся при меньшем давлении в 1,1–1,25 раза выше расчетного давления без учета опасности. Однако инспекторам все же приходится ползать по агрегату в поисках утечек.

    Я уверен, что есть еще много возможностей для улучшения с точки зрения испытаний под давлением.
    Лично у меня было всего два инцидента во время опрессовки. Оба были связаны с ненадежным материалом трубы.

    Мой собственный топ-5 причин неудачных испытаний под давлением.

    1. Установлена ​​неправильная прокладка
    2. Клапаны прошедшие тест
    3. Без дренажа и вентиляции
    4. Неправильный момент затяжки болтов
    5. Сомнительный материал трубопровода

    Лично я считаю, что большинство аварий можно предотвратить во время испытаний под давлением, если будет соблюден ряд важных условий, предшествующих испытанию под давлением.

    Пневматические испытания трубопроводов как альтернатива гидростатическим испытаниям> ENGINEERING.com

    Сайт www.eng-tips.com — это технический форум для практикующих инженеров, где они могут обсуждать актуальные темы с другими практикующими инженерами.

    Обсуждения статического тестирования появляются на eng-tips.com каждые несколько месяцев. Обычно они будут соответствовать формату:

    Резьба 481-348164
    мкм1209 (Нефть) (OP) 8 июля 13 9:13

    Ребята

    Я работаю в компании по строительству трубопроводов.

    Я занимаюсь технологическим и трубопроводным обслуживанием с 1999 года.

    Я пришел в эту компанию, чтобы основать подразделение по гидроиспытаниям.

    Наш заказчик просит нас провести пневматическое испытание 7 миль 20-дюймового трубопровода.

    Испытательное давление составляет около 1300 фунтов на квадратный дюйм.

    Я очень против этого, но моя компания хочет двигаться вперед. Заказчик дал нам зеленый свет.

    Ах да

    Мы делаем этот тест в течение недели.

    Мне нужны неопровержимые факты, чтобы моя компания не делала этого. Я искал информацию в сети, но не нашел ничего конкретного. Или факты, чтобы я чувствовал себя лучше.

    Я нашел

    «437.4.3 Разрешено только для систем трубопроводов, эксплуатируемых при 20% или менее SMYS»

    Нужна помощь

    Обычно сразу после этого вопроса следует что-то вроде:

    Резьба378-191668

    JoeTank (Структурный) 9 июля 07 9:12

    Моя личная практика для проверки воздуха заключается в том, чтобы находиться как минимум на расстоянии одного почтового индекса от сайта.

    Джо Танк

    Что довольно забавно и довольно запоминается. Сообщение? Эти пневматические испытания безответственны, и любой, кто предлагает их, — ковбой. Хотя это правильно и правильно, что у нас есть сильная предвзятость в пользу гидростатических испытаний, а не испытаний со сжатыми газами, испытания с использованием сжатого газа далеко не безответственны и могут быть альтернативой с меньшим риском в определенных конкретных случаях.

    Риск, о котором здесь идет речь, заключается в том, что сжатый газ содержит значительно больше потенциальной энергии, чем сжатая несжимаемая жидкость.Быстрое преобразование этой потенциальной энергии в кинетическую может быть жестоким и разрушительным событием.

    Испытания трубопроводов на прочность
    Когда новый трубопровод должен быть введен в эксплуатацию, различные нормы и стандарты компании требуют, чтобы он подвергался испытанию на герметичность и / или испытанию на прочность. Испытания на герметичность обычно проводятся при довольно низком давлении и предназначены только для подтверждения того, что труба действительно будет содержать жидкости. Риски, как правило, достаточно низкие, и испытания на герметичность проводятся без особого учета катастрофического отказа.

    Испытание на прочность проводится при повышенном давлении, кратном превышающем 1,0 максимально допустимого рабочего давления системы (МДРД), и выдерживается в течение некоторого времени. Множественность давления и продолжительность значительно варьируются от одной регулирующей юрисдикции к другой, от одного кодового документа к другому и от одной компании к другой. Эти подробности, хотя и обильно разбросаны в сообщениях по этой теме, выходят за рамки этого обсуждения.

    Основными видами испытаний являются «гидростатические» или «пневматические статические» (иногда называемые «пневмостатическими», но это слишком претенциозно).«Статический» просто означает, что во время успешного испытания жидкости под давлением не имеют чистого движения относительно конца трубы или ее средней линии.

    Гидростатическое испытание проводится с использованием в значительной степени несжимаемой жидкости, такой как вода (отсюда и префикс «гидро»), масло, гликоль или некоторая смесь (например, гликоль часто добавляют в воду для гидростатических испытаний для предотвращения замерзания). В этих испытаниях трубопровод заполняется жидкостью, унесенные газы могут рассеиваться к вентиляционным отверстиям, а давление в системе повышается до требуемого испытательного давления и удерживается там в течение всего испытания.

    Пневматический статический тест проводится с использованием газа, такого как сжатый воздух, азот, CO2 или метан (тесты с CO2 очень редки и очень трудны, потому что при повышенных давлениях газ может переходить в «плотную фазу», которая ведет себя совершенно иначе, чем оба газ или жидкость). Проблемы, связанные с пневматическими статическими испытаниями, в основном связаны с запасенной энергией.

    Энергия Участвует в испытании
    Модуль объемной упругости (т.е. величина давления, необходимого для уменьшения объема жидкости на 1%) жидкостей очень велик, поэтому даже в самых агрессивных испытаниях жидкость будет иметь очень небольшую энергию сжатия (например,g., объемный модуль воды составляет порядка 319000 фунтов на квадратный дюйм [2200 МПа], поэтому испытание на 900 фунтов на квадратный дюйм [6,2 МПа] уменьшит объем примерно на 0,3%). При неудачном испытании выделение энергии от этой декомпрессии будет иметь тенденцию немного увеличивать любой разрыв в разрушенном материале, но вряд ли создаст какие-либо снаряды.

    Рисунок 1 — 700 футов
    перепад высот

    С другой стороны, жидкости имеют значительную массу. Для вертикальных изменений линии увеличение высоты добавляет 0.433 фунтов на кв. Дюйм [9,81 кПа / м] до давления в самой низкой точке системы. Это означает, что в холмистой местности может быть очень сложно разработать гидростатический тест. Например, если перепад высот составляет 1000 футов [305 м], то давление внизу будет на 433 фунта на кв. Дюйм [2,99 МПа] выше, чем давление вверху, для испытания 150% на линии ANSI 150. Простое заполнение линии приведет к превышению испытательного давления в нижней части, а в верхней части останется атмосферное давление. Часто возможно сегментировать линию, чтобы сохранить изменения отметки в пределах сегмента ниже некоторого максимума, но не всегда (например,g., некоторые линии имеют недоступные сегменты на очень пересеченной местности [см. Рисунок 1], другие не имеют клапанов там, где это необходимо для выполнения сегментации).

    Испытания с газом — полная противоположность. Плотность очень низкая, поэтому гравитационные силы гораздо менее значительны. Например, воздух под давлением 900 фунтов на кв. Дюйм будет оказывать давление 0,034 фунтов на кв. Дюйм [0,758 кПа / м], что можно безопасно игнорировать.

    Хотя плотность газа низкая, сжимаемость достаточно высока, чтобы вызывать опасения. Сжатие воздуха от атмосферного давления до 900 фунтов на кв. Дюйм на уровне моря при постоянной температуре приведет к тому, что газ попадет в объем, составляющий 1/63 первоначального объема.Подумайте об этом, сжав пружину до 1/63 ее длины, и вы начнете видеть величину накопленной энергии.

    Задача при проведении пневматических испытаний — «взрывная декомпрессия». Несколько лет назад НАСА опубликовало документ, получивший название «Методология исследовательского центра НАСА Гленна». Этот документ был действительно первым случаем, когда кто-либо предпринял попытку количественно оценить риск попадания газа под давлением. Он был на веб-сайте НАСА в течение нескольких лет, но недавние попытки найти его оказались безуспешными.На основе документа НАСА было написано несколько правил и множество политик компании. В основном этот двухстраничный документ сказал:

    • Отказ трубопровода можно было бы правильно назвать «адиабатическим» процессом (т.е. он происходит при постоянной энтропии и является обратимым)
    • Адиабатическая декомпрессия приводит к значительному выделению энергии.
    • Весь материал в системе будет участвовать во взрывной декомпрессии

    Расчет адиабатической энергии при пневматическом испытании
    Адиабатическая энергия может быть рассчитана следующим образом (это версия НАСА, для вывода этого уравнения требуется «k» в числителе члена «k-1», но давайте придерживаться версии НАСА):

    Где:

    • Wgas -> Работа на газе (Н-м или фут-фунт-сила).Чтобы преобразовать в «тонны тротила», разделите число фут-фунт-сила на 3,086×109 или число Н-м на 4,184×109 (это число является наиболее распространенным преобразованием, но в некоторых источниках используется 4,8×109 Н-м / т тротила)
    • Vsystem -> Объем системы (m3 ft3)
    • Ptest -> Давление во время испытания (Па или фунт-сила / фут2) в абсолютных единицах
    • Patm -> Местное атмосферное давление (Па или фунт-сила / фут2) в абсолютных единицах
    • k -> Адиабатическая постоянная, состоящая из отношения удельной теплоемкости при постоянном давлении к удельной теплоемкости при постоянном объеме (нет единиц, воздух имеет значение 1.4)

    Этот расчет может закончиться очень большим числом. Например, если вы испытывали 100 миль [161 км] 36-дюймового [914,4 мм] трубопровода Schedule 40 под давлением 900 фунтов на кв. Дюйм [6,2 МПа] на уровне моря (14,7 фунтов на квадратный дюйм [101,35 кПа]) со сжатым воздухом, объем система будет иметь размер 3,428×106 футов3 [9,706×104 м3]. Это приводит к общему накоплению энергии 253,8 тонны в тротиловом эквиваленте, что соответствует масштабу тактического ядерного оружия. Страшная штука. Я не уверен, что «следующий почтовый индекс» достаточно далеко.

    Проблема с методологией исследования Гленна НАСА состоит в том, что событие взрывной декомпрессии длится очень быстро. Эксперименты, проведенные в Университете Небраски-Линкольн для Министерства энергетики в 2012 году, показывают, что температура газа при взрывной декомпрессии очень быстро падает до минимума, а затем увеличивается примерно до начальной температуры в течение следующих нескольких секунд. Этот минимум можно принять за конец взрывной декомпрессии и начало разгерметизации.В упомянутой статье не указывается продолжительность этого почти вертикального температурного переходного процесса. Другие, менее формальные источники указывают на то, что это происходит при 10-50 мСм после открытия достаточно большого отверстия, которое может привести к закупорке потока.

    Природные явления в объеме газа ограничены скоростью звука (1,0 Маха). Это ограничение связано с созданием стоячих «ударных волн» в потоке, которые препятствуют обмену данными от нисходящего потока к восходящему. До Маха 1.0 о существовании более низкого давления на выходе сообщалось выше по потоку через неспособность поддерживать более высокое давление на входе.При скорости 1,0 Маха ударная волна достаточна для поддержания давления выше по потоку и позволяет течь только со скоростью звука.

    Итак, если мы скажем, что вертикальный переходный процесс составляет 50 мс, и дадим половину доступного времени для сообщения о событии внутри системы и половину времени для энергии, которая теперь «знает», что произошла ошибка участвовать во взрыве со скоростью звука:

    Где:

    • vsonic -> Скорость звука (м / с или фут / с)
    • Rgas -> Удельная газовая постоянная (Универсальная газовая постоянная / Молярная масса)
    • T -> Температура газа (R или K)

    Для воздуха при 60 ° F [15.6C] скорость звука составляет 1118 фут / с [341 м / с]. Это говорит о том, что за доступные 25 мСм ударная волна пройдет 28 футов [8,5 м]. Предположим, что отказ произошел бесконечно далеко (т. Е. Более чем на 28 футов [8,5 м]) от конца трубы, поэтому длина задействованной трубы составляет 56 футов [17 м], поскольку в нем участвует накопленная энергия с обеих сторон разрушения. Это объем 364 фут3 [10,29 м3], поэтому, используя приведенное выше уравнение адиабатической энергии, энергия эквивалентна 54 фунтам на метр в тротиловом эквиваленте — не тривиальное событие, но далеко не тактическое ядерное оружие.Для сравнения, 54 фунта тротила в правильно сконструированном и правильно развернутом «кратерном заряде» приведут к образованию кратера глубиной 6 футов [1,8 м] и диаметром 25 футов [7,62 м], что составляет объем земли примерно 36,4 ярда3 [27,8 м3].

    В теме Thread378-293859 член SNORGY, который часто участвует в этих обсуждениях, поделился электронной таблицей Excel, в которой используются расчеты НАСА для установки «ограниченного расстояния» (т. Е. Ближайшей безопасной точки подхода во время испытаний) в 5621 фут. [1.7 км] для этого теста. Изменение длины трубы на 56 футов, рассчитанное выше, изменяет ограниченное расстояние до 271 фут — все еще возмутительно, но не более одной мили. Этот калькулятор демонстрирует полную ошибочность этого подхода — если бы линия в 100 миль работала при давлении 300 фунтов на квадратный дюйм (половина МДРД), самое близкое расстояние, которое вы могли когда-либо подойти к действующей линии, было бы 3670 футов (1,12 км).

    Рисунок 2 — Отказ после пневматического испытания
    В обсуждении часто обсуждаются сбои, которые всегда включают изображение на рис. 3 (из Thread378-348164 , отправленного MJCronin).Этот сбой в Шанхае, Китай (в некоторых источниках говорится, что он произошел в Бразилии, но детали одинаковы независимо от полушария) произошел, когда тест (который не включал отказавшее судно) проводился с закрытым клапаном, ведущим судно.

    Клапан протек, и давление в сосуде выросло настолько, что он резко отказал. Эта неудача призвана продемонстрировать, насколько опасны и безответственны пневматические испытания.Другая точка зрения состоит в том, что вы никогда не проводите испытания с закрытым клапаном, не наблюдая за условиями на выходе. Сбой был одной из инженерных процедур и / или выполнения процедуры и не должен использоваться для обвинения в пневматических испытаниях.

    Риски и стратегии снижения при гидростатических испытаниях
    Гидростатические испытания регулярно проводятся безопасно и без последствий для окружающей среды. Успешными испытаниями засчитано:

    • Сопротивление материалов.Указанный минимальный предел текучести (SMYS) — это мера напряжений, которые материал может выдержать, не начав деформироваться. Различные кодексы и политики компании определяют различную максимальную нагрузку в зависимости от SMYS. Системы сбора сырого газа часто ограничиваются 20% SMYS. Транспортировка переработанного газа по пересеченной местности часто допускает нагрузки, которые намного ближе к 100% SMYS. Линии с высоким потенциалом воздействия на население ограничиваются более низкой долей SMYS, чем линии на открытой местности.Перед принятием каких-либо решений по тестированию эти нагрузки должны быть количественно определены и учтены при принятии решения.
    • Соображения по охране окружающей среды / безопасности.
      • Вода для гидростатических испытаний (даже без химических добавок) должна рассматриваться как промышленные отходы и не должна сбрасываться в придорожную канаву. Успешные испытания решают эту проблему, определяя точку сброса и подтверждая, что это место будет принимать воду.
      • Неудачный тест приведет к слиянию всей или части жидкости, участвующей в тесте, рядом с местом сбоя.Успешное испытание предполагает использование временных берм для защиты уязвимых мест (например, рек, сухих водоемов, парковок, офисных зданий и т. Д.).
      • Гидростатические испытания по обезвоживанию стали причиной бесчисленных утечек и травм. Отправка больших объемов жидкости через гибкий трубопровод, такой как пожарный шланг, может создавать очень большие выходные силы на выпускном патрубке, что может привести к резкому раскачиванию конца шланга с риском повреждения людей и имущества.Успешные испытания определяют средства захвата концов шлангов.
    • Нормативные требования. В некоторых юрисдикциях план тестирования должен быть одобрен регулирующим органом до его выполнения. В других юрисдикциях требуется уведомление, но не разрешение. Если дороги собираются закрыть во время испытания, то обычно требуется разрешение. Успешные тесты требуют необходимых согласований / разрешений задолго до теста.
    • Источник жидкости. Каждый источник жидкости содержит микробы и загрязняющие вещества, многие из которых представляют собой долгосрочную угрозу целостности трубопроводов.Успешные тесты показали, что очень часто после теста остается некоторое количество жидкости, и указываются необходимые химические вещества для обработки.
    • Вес жидкости. При испытании трубопроводов с надземными участками важно подтвердить, что опоры для труб подходят для переноса трубы, полной жидкости (обрушившиеся стойки для труб являются частым источником неудач при испытаниях).
    • Рельеф. Испытание должно гарантировать, что испытательное давление соответствует минимальному значению в высоких точках, но не является «чрезмерным» в низких точках.Требуется инженерная оценка для определения «достаточно хорошо» (например, допустимо ли перейти к 160% МДРД в нижней точке, чтобы иметь возможность достичь 110% МДРД в верхней точке? Или лучше оставаться на уровне 150% MAWP в нижней точке и принять 90% MAWP в верхней точке? Или вы можете сегментировать линию, чтобы оставаться в пределах ± 10% от 150% MAWP?).
    • Окончания линии. Если тестируемая система уже была подключена к трубопроводу / сосудам выше / ниже по потоку, вам необходимо подумать, как вы собираетесь предотвратить включение этого внешнего трубопровода в тест.Если нет способа избежать испытания на запорный клапан, тогда вам потребуется контроль давления и защита от избыточного давления в подключенных системах.
    • Определение точек впрыска / слива, тестирования и вентиляции. Все эти точки должны быть доступны и располагаться в каком-нибудь полезном месте. Например, если назначенная точка вентиляции находится в нижней точке системы, то будет трудно удалить газ, который может накапливаться в высоких точках.
    • Заполнение системы. Любая введенная жидкость может увлечь за собой увлеченный газ.Этот газ очень сжимаем и может очень затруднить испытание на номинальную несжимаемость. Успешный тест будет предвидеть этот газ и указывать время выдержки после заполнения и частоту выпуска воздуха на этапе заполнения.
    • Герметизация системы. Следует учитывать скорость нагнетания давления и минимальные температуры (как температуры окружающей среды, так и температуры жидкости), чтобы предотвратить хрупкое разрушение трубопроводов, которые в противном случае прошли бы испытание.
    • Выполнение теста. Все тесты, кроме самых коротких, будут испытывать некоторое изменение температуры.Вода изменит давление примерно на 100 фунтов на кв. Дюйм / ° F
      [1241 кПа / C]. Достаточно небольшие изменения температуры вызывают значительные изменения давления. Успешный тест будет включать критерии приемки. Например, в гидростатических испытаниях, которые я разрабатываю, я указываю, что жидкость может быть удалена во время испытания, но не может быть добавлена, и что испытание считается успешным, если конечное давление превышает МДРД. Другие указывают максимальный объем, который может быть добавлен для поддержания испытательного давления. Все сводится к инженерному решению.
    • Системный слив. После того, как испытательная жидкость попала в новый трубопровод, с ней следует обращаться как с промышленными отходами, поскольку почти наверняка она будет собирать масло, жир и прокатную окалину. Вы не можете просто бросить его на землю. Также было несколько случаев, когда незакрепленные шланги болтались и травмировались люди. Эти риски необходимо предвидеть и минимизировать.
    • Система сушки. Многие системы не будут стекать естественным образом из-за неровностей топологии трубопроводов.Обычно эту остаточную жидкость удаляют, пропуская скребки воздухом. Успешные испытания определяют, насколько сухой должна быть линия перед ее переключением на работу (например, «запускайте поролоновые скребки до тех пор, пока один из них не станет сухим», или «продуйте линию азотом при -40 ° F до тех пор, пока содержание воды на трубке Дрегера не станет менее 7 фунтов / MMSCF «).
    • Убрать. Испытания всегда требуют некоторой модификации системы (например, установки глухих фланцев и оборудования для наполнения), которые должны быть отменены до того, как испытание будет названо «завершенным».Успешные тесты содержат подробные списки того, что необходимо сделать, и, если есть какие-либо временные зависимости, порядок, в котором они должны быть выполнены.

    Риски и стратегии снижения при статических пневматических испытаниях трубопроводов
    Многие из проблем, упомянутых выше при гидростатических испытаниях, идентичны пневматическим статическим испытаниям. Некоторые немного отличаются:

    • Расчеты прочности материалов для пневматических статических испытаний такие же, как и для гидростатических испытаний, указанных выше.
    • Соображения по охране окружающей среды / безопасности
      • При высокой концентрации энергии в газе отказ имеет риск выброса обломков с большой скоростью. Для заглубленных линий основным мусором является грязь и камни, но камни использовались в качестве снарядов с незапамятных времен. Для надземных конструкций мусором будут трубы или фитинги. Некоторые из самых разрушительных отказов связаны с запуском фланца с приварной шейкой и слепотой на сотни футов. Успешные испытания учитывают «запретные зоны» вокруг заглубленной трубы и комбинацию баррикад и запретных зон вокруг наземных сооружений.Также рассматривается возможность проведения испытаний в периоды минимальной занятости проезжей части и сооружений.
    • Нормативные требования аналогичны гидростатическим испытаниям, за исключением того, что есть юрисдикции, которые имеют сильное предубеждение против пневматических статических испытаний. В таких случаях обязательно, чтобы вы выполнили соответствующую подготовительную работу, чтобы продемонстрировать, почему вы предлагаете пневматическое статическое испытание вместо гидростатического. «Удобство» или «стоимость» редко будут иметь большое значение в этом обсуждении.Вы должны продемонстрировать, что потенциальный результат гидростатического теста значительно хуже, чем потенциальный результат пневматического статического теста (например, «невозможно должным образом высушить», «точки сегментации недоступны»).
    • Источник газа. Что касается газов, нас не беспокоят проблемы многофазности (например, газ в жидкости) или коррозия. Нас очень беспокоит пригодность газа для испытания. Если испытательной средой является сжатый воздух, то вам потребуется воздушный компрессор, который может перемещать огромные объемы при умеренном давлении в течение большей части периода заполнения, а затем меньшие объемы при высоком давлении в оставшееся время.Для азотного теста вы должны выбрать источник (например, баллоны или жидкий азот в больших объемах) и убедиться, что вы понимаете проблемы по вашему выбору (например, замена баллонов с азотом сопряжена с риском, баллоны могут опорожняться меньше по мере увеличения давления в системе азот находится в жидкой форме и должен быть нагрет перед впрыском).
    • Вес жидкости не является проблемой для газа.
    • Местность не проблема с газом
    • Окончания линии.Все вопросы идентичны гидростатическим.
    • Определение точек впрыска / слива, тестирования и вентиляции. Вам не нужно дегазировать газовую заливку, но вам все равно нужны точки наполнения / слива и контрольные точки.
    • Заполнение системы. Температура окружающей среды и газа гораздо более важны при пневматических статических испытаниях, чем при гидростатических испытаниях. Необходимо указать и контролировать минимальную температуру окружающей среды и минимальную температуру впрыска. Кроме того, поскольку запасенная энергия при пневматическом статическом испытании намного больше, чем накопленная энергия при гидростатическом испытании, требуется указать время выдержки при определенных давлениях, чтобы позволить напряжениям уравновеситься.В ходе недавно разработанного мною испытания мы заполнили систему при давлении от 5 до 50 фунтов на квадратный дюйм с последующим 30-минутным периодом выдержки. После выдержки давление увеличивалось до 10 фунтов на квадратный дюйм / мин с 30-минутными периодами выдержки при 150 фунтах на квадратный дюйм и 450 фунтах на квадратный дюйм. Эти давления, скорости заполнения и периоды выдержки были определены путем расчета накопления напряжения.
    • Герметизация системы. В конце периода заполнения система находится под давлением.
    • Выполнение теста. Пневматические статические испытания гораздо меньше подвержены изменению давления из-за колебаний температуры.Из-за температурного уравновешивания испытательное давление редко значительно увеличивается или уменьшается. Как и гидростатическое испытание, успешное испытание будет включать критерии приемки.
    • Системный слив. В конце теста газ обычно выпускается в атмосферу. Что касается воздуха и азота, то при продувке большое беспокойство вызывает охлаждение трубопровода методом Джоуля-Томсона до зоны хрупкого разрушения. В упомянутом выше испытании мы указали максимальную скорость сброса давления 25 фунтов на кв. Дюйм / мин (и указали, что скорость будет определяться каждые 60 секунд).Одно существенное исключение — это тесты с товарной продукцией. Если я тестирую линию CO2 с помощью CO2, я могу оставить систему под давлением для обслуживания после теста. То же самое с испытанием линии природного газа с помощью природного газа.
    • Сушка системы не является проблемой при статических пневматических испытаниях.
    • Проблемы с очисткой аналогичны описанным выше гидростатическим испытаниям.

    Обсуждения на профессиональных форумах о тестировании трубопроводов

    Рисунок 3 — Неисправность трубопровода в работе
    (кратер ок.6 футов диаметром, 3 фута глубиной)

    Просмотрев 20 тем на eng-tips.com с объединенными 324 сообщениями, я нашел несколько интересных наблюдений:

    • Не было ни одного поста, ссылающегося на личную осведомленность об отказе трубопровода при пневматическом испытании. Был один очень интересный пост о клапане, вышедшем из строя в ходе пневматического испытания производителя, и один о трубных катушках, не прошедших испытание на заводе. От первого лица не сообщалось о сбоях при тестировании трубопроводов (был один пост, в котором респондент указал, что «он знал парня, который…», но анекдот лишь поддержал официальное расследование).
    • Во всех рассмотренных мною темах было только дюжина отчетливых упоминаний об отказах при пневматических испытаниях. Ни одно из звеньев старше 2007 года все еще не действовало, но все звенья после 2007 года относились к одному из 4 отказов пневматических испытаний. В нескольких публикациях упоминались смертельные случаи, связанные с гидростатическими испытаниями. В нескольких сообщениях упоминались сбои и взрывы в системах под давлением, которые прошли через годы после статических испытаний (иногда спустя десятилетия).
    • Каждая отдельная пневматическая неисправность с травмами / смертельным исходом может быть связана с технической неисправностью (например,g., источник давления 2600 фунтов на квадратный дюйм был подключен к испытанию 900 фунтов на квадратный дюйм без предохранительного клапана между источником очень высокого давления и испытываемым клапаном) или неспособность должным образом выполнить процедуру (например, отсутствие контроля температуры нагнетания от резервуар с жидким азотом или запуск теста с трубопроводом ниже указанной минимальной температуры окружающей среды). Каждая травма, связанная с пневматическим статическим испытанием, может быть напрямую связана с этими двумя причинами. Если надлежащие процедуры написаны и соблюдены, то отказ трубы при пневматическом испытании — это просто отказ трубы, а не поездка на машине скорой помощи.

    Мои выводы из прочтения этой сосредоточенной работы таковы: (1) многие люди считают, что гидростатические испытания по своей природе безопасны и не требуют какого-либо значительного анализа; и (2) многие люди считают, что статические пневматические испытания небезопасны по своей сути и не могут быть выполнены без создания неприемлемых опасностей. Первый вывод пугает, потому что гидростатические испытания связаны со значительными рисками для человека и окружающей среды. Им можно управлять, но бесцеремонное отношение к такой массе и энергии довольно опасно.Второй вывод исключает грамотное рассмотрение действующей методики снижения рисков, связанных с гидростатическими испытаниями.

    Разумно сказать, что если можно надлежащим образом управлять рисками утилизации, сушки и массы жидких испытаний, то предпочтительнее гидростатические испытания. С другой стороны, будет разумным сказать, что иногда лучший способ снизить риски гидростатических испытаний — это провести пневматические статические испытания.


    Об авторе

    Дэвид Симпсон, ЧП, инженер-консультант по нефтегазовой отрасли в Muleshoe Engineering .Дэвид является MVP на профессиональных форумах www.eng-tips.com и членом гильдии инженерных писателей .

    Следуйте за Дэвидом (zdas04) по телефону http://eng-tips.com/userinfo.cfm?member=zdas04

    Контроль / неразрушающий контроль

    Этот документ содержит подробные и конкретные рекомендации по проверке и
    Неразрушающий контроль (NDT) в соответствии с критериями уровня 2:

    Связанные технические меры Документы — это обучение
    и процедуры обслуживания.

    Этот документ помогает в оценке и проверке неразрушающего контроля, применяемого на
    завода и как это поддерживает его дальнейшую безопасную работу.

    • Введение: описание неразрушающего контроля, что
      он может и не может делать, и как это согласуется с управлением безопасностью.
    • Нормативные требования: как неразрушающий контроль
      соответствует требованиям действующих норм и описанию
      Письменная схема экзамена.
    • Отчет о безопасности

    • COMAH: какая информация
      по неразрушающему контролю можно было бы ожидать в отчете о безопасности.
    • HSE: продолжение COMAH Inspection: что такое HSE
      Инспектору следует поискать в COMAH последующий осмотр объекта.
    • Процесс и управление неразрушающим контролем: a
      описание того, как должностные лица должны инициировать, указывать и применять неразрушающий контроль
      и как использовать результаты. Также подробно рассказывайте о том, как
      надо управлять НК на сайте.
    • Методы и возможности:
      обзор распространенных методов неразрушающего контроля и преимуществ и
      ограничения.Включает описание общих торговых наименований.
    • Контрольный список для проверки NDT: Aide Mémoire
      для оказания помощи при последующей инспекции HSE на объекте
    • Терминология и современные тенденции: Глоссарий
      термины и что они на самом деле означают.
    • Примеры из практики: 2 тематических исследования
      адекватность программ неразрушающего контроля для обнаружения дефектов в сосудах под давлением.
    • Источники дополнительной, более подробной информации
      даются в соответствующем месте текста и других значимых
      стандарты перечислены.

    1. Введение

    Сосуды под давлением, резервуары для хранения и другие компоненты, важные для безопасности
    (включая трубопроводы и клапаны) предназначены для удержания жидкостей, газов и
    твердые вещества, при которых не происходит потери герметичности. Утечки или
    механический или структурный отказ этих элементов оборудования может привести к
    крупная авария на месте.

    Наличие дефектов в критических компонентах может привести к нарушению целостности
    того, что такие системы скомпрометированы и увеличивают вероятность отказа.

    Неразрушающий контроль (NDT) — это приложение для измерения
    методы выявления повреждений и дефектов в материалах. NDT
    часто предоставляет единственный способ получить информацию о текущем
    «здоровье» технологического предприятия.

    Если все сделано правильно, NDT может предоставить полезную информацию для помощи в
    управление безопасностью предприятия. Если применяется неподходящий неразрушающий контроль или нет
    правильно применен, то результаты могут создать ложное впечатление о
    целостность и безопасность завода.

    NDT — это измерение физического свойства или эффекта, от которого
    можно сделать вывод о наличии повреждений или нарушений. Это не
    измерение абсолютного параметра, такого как температура или давление.

    Различие между тем, что считается изменениями в
    свойства материала и то, что будет считаться дефектом, не
    отчетливый. Это может привести к отсутствию дефектов неразрушающего контроля, а также к образованию
    ложные вызовы i.е. о дефекте сообщается, когда на самом деле сигнал не
    произведен дефектом. Кроме того, неразрушающий контроль применяется к большему или меньшему
    степень человеческими операторами, которые вносят человеческие ошибки и субъективность
    в процесс.

    NDT редко дает 100% эффективность при обнаружении проблемных дефектов. подобно
    все измерения, определение местоположения дефектов и размеры с помощью неразрушающего контроля
    техники подвержены ошибкам. Поскольку эти методы часто
    При сочетании отдельных измерений эти ошибки могут быть значительными.

    методов неразрушающего контроля делятся на две категории:

    • методы, которые обнаруживают и определяют только дефекты / повреждения, имеющиеся на
      поверхность детали;
    • методов, которые могут обнаруживать и определять размеры дефектов / повреждений
      внутри компонента.

    Краткое описание общих методов, применяемых к процессу
    растение приведено в Методиках. Базовый NDT
    методы мало изменились с годами, но с улучшением
    технологии и потребность в максимальном увеличении производительности завода.
    были разработаны техники и вариации старых, а также
    различные подходы к неразрушающему контролю.Они разъясняются в Терминологии.
    и текущие тенденции ниже.

    Качество неразрушающего контроля, нанесенного на компонент, не может быть легко
    оценивается путем последующего наблюдения за компонентом или результатами
    получено.

    Требуются дополнительные шаги при разработке и применении
    испытание, чтобы убедиться в его способности идентифицировать повреждение или
    нарушения, вызывающие беспокойство. Инспекция
    Более подробно рассматривается процесс и его правильное управление.
    ниже.

    NDT — это основной механизм исправления ошибок проектирования,
    строительно-эксплуатационная деятельность.

    Правильный выбор и применение метода неразрушающего контроля могут обеспечить
    уверенность в том, что компонент или часть установки не содержат дефектов
    того типа, который способна обнаружить техника.

    При применении в производственной среде он используется для обеспечения
    уверенность в отсутствии дефектов определенного размера
    которые могли быть внесены в производственный процесс.В этом
    case NDT — лишь одно из множества мероприятий по контролю качества, направленных
    при производстве компонента или части растения для конкретного
    Технические характеристики.

    НК при эксплуатации обеспечивает уверенность в том, что
    не вызывает ухудшения его целостности за пределами своей конструкции
    параметры.

    Если такое ухудшение обнаружено, то NDT может количественно оценить ущерб
    и предоставить исходные данные для обоснования технического обслуживания или мониторинга
    действия.

    Ad hoc NDT можно использовать для проверки механизмов неожиданного повреждения.
    не встречаются.

    У всех техник есть сильные и слабые стороны относительно типов.
    и параметры механизма повреждения, которые они могут обнаружить.

    Либо ad hoc NDT должен быть нацелен на гипотетический ущерб.
    механизм или механизм повреждения, о которых можно сообщить как не обнаруженные
    определяется возможностями методики.

    Типы дефектов / дефектов и деградации, которые могут быть обнаружены с помощью неразрушающего контроля
    суммируются как:

    • Плоские дефекты — к ним относятся такие дефекты, как усталостные трещины, отсутствие
      сварка боковых стенок в сварных швах, растрескивание под воздействием окружающей среды, например
      водородное растрескивание и трещины коррозии под напряжением; холодные запоры в отливках
      так далее;
    • Ламинирование — в том числе дефекты прокатки и ковки.
      расслоения, ламинарные включения и отслоения в композитах;
    • Пустоты и включения — к ним относятся такие дефекты, как пустоты, шлак и
      пористость сварных швов и пустоты в отливках и поковках;

    Что такое тестирование программного обеспечения? Определение, основы и типы

    • Начало
    • Тестирование

        • Назад
        • Гибкое тестирование
        • BugZilla
        • Cucumber
        • Тестирование базы данных
        • Тестирование ETL
        • Jmeter
        • JIRA
        • JUnit
        • LoadRunner
        • Ручное тестирование
        • Мобильное тестирование
        • Mantis
        • Почтальон
        • QTP
        • Назад
        • Центр качества (ALM)
        • RPA
        • SAP Testing
        • Selenium
        • Управление тестированием SoapUI
        • TestLink
    • SAP

        • Назад
        • ABAP
        • APO
        • Начинающий
        • Basis
        • BODS
        • BI
        • BPC
        • CO
        • Назад
        • CRM
        • Crystal Reports
        • FICO
        • HANA
        • HR
        • MM
        • QM
        • Заработная плата
          • Назад
          • PI / PO
          • PP
          • SD
          • SAPUI5
          • Безопасность
          • Менеджер решений
          • Successfactors
          • Учебники SAP
      • Интернет

          • Назад
          • Apache
          • AngularJS
          • ASP.Net
          • C
          • C #
          • C ++
          • CodeIgniter
          • СУБД
          • JavaScript
          • Назад
          • Java
          • JSP
          • Kotlin
          • Linux
          • MariaDB
          • MS Access
          • MYSQL
          • Node. js
          • Perl
          • Назад
          • PHP
          • PL / SQL
          • PostgreSQL
          • Python
          • ReactJS
          • Ruby & Rails
          • Scala
          • SQL
          • SQLite
          • Назад
          • SQL Server
          • UML
          • VB.Net
          • VBScript
          • Веб-службы
          • WPF
      • Обязательно учите!

          • Назад
          • Учет
          • Алгоритмы
          • Android
          • Блокчейн
          • Бизнес-аналитик
          • Создание веб-сайта
          • Облачные вычисления
          • COBOL
          • Дизайн компилятора
          • Назад

      Почему это происходит и как с этим справиться?

      Стресс — это естественное чувство неспособности справиться с конкретными требованиями и событиями.Однако стресс может перерасти в хроническое заболевание, если человек не примет меры по его устранению.

      Эти требования могут исходить от работы, отношений, финансового давления и других ситуаций, но все, что представляет собой реальную или предполагаемую проблему или угрозу благополучию человека, может вызвать стресс.

      Стресс может быть мотиватором и даже иметь важное значение для выживания. Механизм борьбы или бегства тела сообщает человеку, когда и как реагировать на опасность. Однако когда организм слишком легко срабатывает или когда одновременно действует слишком много факторов стресса, это может подорвать психическое и физическое здоровье человека и стать вредным.

      Стресс — это естественная защита организма от хищников и опасностей. Это заставляет организм наводняться гормонами, которые подготавливают его системы к тому, чтобы избежать опасности или противостоять ей. Люди обычно называют это механизмом борьбы или бегства.

      Когда люди сталкиваются с проблемой или угрозой, они частично получают физическую реакцию. Тело активирует ресурсы, которые помогают людям либо остаться и противостоять вызову, либо как можно быстрее добраться до безопасного места.

      Организм производит большее количество химических веществ кортизола, адреналина и норэпинефрина.Они вызывают следующие физические реакции:

      • повышенное кровяное давление
      • повышенная подготовленность мышц
      • потливость
      • бдительность

      Все эти факторы улучшают способность человека реагировать на потенциально опасные или сложные ситуации. Норэпинефрин и адреналин также вызывают учащение пульса.

      Факторы окружающей среды, вызывающие эту реакцию, называются стрессорами. Примеры включают шум, агрессивное поведение, превышение скорости машины, страшные моменты в фильмах или даже выход на первое свидание.Чувство стресса имеет тенденцию усиливаться вместе с увеличением количества факторов, вызывающих стресс.

      Согласно ежегодному исследованию стресса, проведенному Американской психологической ассоциацией (APA) в 2018 году, средний уровень стресса в Соединенных Штатах составлял 4,9 по шкале от 1 до 10. Исследование показало, что наиболее распространенными факторами стресса были занятость и деньги.

      Чтобы помочь поддержать психическое благополучие вас и ваших близких в это трудное время, посетите наш специализированный центр, чтобы получить дополнительную информацию, подтвержденную исследованиями.

      Стресс замедляет некоторые нормальные функции организма, например, функции пищеварительной и иммунной систем. Затем тело может сконцентрировать свои ресурсы на дыхании, кровотоке, бдительности и подготовке мышц к внезапному использованию.

      Во время стрессовой реакции организм изменяется следующим образом:

      • артериальное давление и пульс учащаются
      • дыхание увеличивается
      • пищеварительная система замедляется
      • иммунная активность снижается
      • мышцы становятся более напряженными
      • снижается сонливость из-за повышенная бдительность

      От того, как человек реагирует на трудную ситуацию, зависит влияние стресса на общее состояние здоровья.Некоторые люди могут испытывать несколько факторов стресса подряд или одновременно, но это не приводит к серьезной стрессовой реакции. У других может быть более сильная реакция на один фактор стресса.

      Человек, который чувствует, что у него недостаточно ресурсов, чтобы справиться, вероятно, будет иметь более сильную реакцию, которая может вызвать проблемы со здоровьем. Стрессоры по-разному влияют на людей.

      Некоторые события, которые люди обычно считают положительными, могут привести к стрессу, например, рождение ребенка, поездка в отпуск, переезд в лучший дом и получение повышения по службе.

      Причина этого в том, что они обычно предполагают значительные изменения, дополнительные усилия, новые обязанности и потребность в адаптации. Также они часто требуют, чтобы человек сделал шаги в неизвестность.

      Человек может рассчитывать на повышение зарплаты, например, после повышения по службе, но при этом задумываться, сможет ли он справиться с дополнительными обязанностями.

      Постоянно негативная реакция на вызовы может отрицательно сказаться на здоровье и счастье.

      Например, обзор исследований 2018 года обнаружил связь между стрессом на работе и ишемической болезнью сердца.Несмотря на это, авторы не смогли подтвердить точные механизмы, посредством которых стресс вызывает ишемическую болезнь сердца.

      Другая литература показала, что люди, воспринимающие стресс как отрицательное воздействие на свое здоровье, могут иметь более высокий риск ишемической болезни сердца, чем те, кто этого не делает.

      Однако более внимательное отношение к последствиям стресса может помочь человеку справиться с ним более эффективно и лучше справиться.

      Национальный институт психического здоровья (NIMH) распознает два типа стресса: острый и хронический.Это требует разных уровней управления.

      NIMH также идентифицирует три примера типов стрессора:

      • Обычный стресс, такой как уход за детьми, выполнение домашних заданий или финансовые обязательства
      • внезапные разрушительные изменения, такие как тяжелая утрата семьи или обнаружение потери работы
      • травмирующие стресс, который может возникнуть в результате сильной травмы в результате тяжелой аварии, нападения, экологической катастрофы или войны

      Острый стресс

      Этот тип стресса является кратковременным и обычно является более распространенной формой стресса.Острый стресс часто развивается, когда люди принимают во внимание давление недавних событий или сталкиваются с предстоящими проблемами в ближайшем будущем.

      Например, человек может нервничать из-за недавней ссоры или приближающегося крайнего срока. Однако стресс уменьшится или исчезнет, ​​как только человек разрешит спор или уложится в срок.

      Острые факторы стресса часто бывают новыми и, как правило, имеют четкое и немедленное решение. Даже несмотря на более сложные проблемы, с которыми сталкиваются люди, есть возможные способы выйти из ситуации.

      Острый стресс не причиняет такого же ущерба, как длительный хронический стресс. Кратковременные эффекты включают головные боли напряжения и расстройство желудка, а также умеренное недомогание.

      Однако повторяющиеся случаи острого стресса в течение длительного периода могут стать хроническими и вредными.

      Хронический стресс

      Этот тип стресса развивается в течение длительного периода и является более опасным.

      Продолжающаяся бедность, неблагополучная семья или несчастливый брак — примеры ситуаций, которые могут вызвать хронический стресс.Это происходит, когда человек не видит способа избежать своих факторов стресса и перестает искать решения. Травматический опыт в раннем возрасте также может способствовать хроническому стрессу.

      Хронический стресс мешает организму вернуться к нормальному уровню активности гормона стресса, что может способствовать возникновению проблем в следующих системах:

      • сердечно-сосудистая
      • дыхательная
      • сон
      • иммунная
      • репродуктивная

      Постоянное состояние стресса также может увеличить риск развития диабета 2 типа, высокого кровяного давления и сердечных заболеваний.Депрессия, тревога и другие расстройства психического здоровья, такие как посттравматическое стрессовое расстройство (ПТСР), могут развиться, когда стресс становится хроническим.

      Хронический стресс может продолжаться незамеченным, так как люди могут привыкнуть к возбуждению и безнадежности. Это может стать частью личности человека, делая его постоянно подверженным воздействию стресса независимо от сценариев, с которыми они сталкиваются.

      Люди, страдающие хроническим стрессом, подвержены риску окончательного расстройства, которое может привести к самоубийству, насильственным действиям, сердечному приступу или инсульту.

      Люди по-разному реагируют на стрессовые ситуации. То, что вызывает стресс у одного человека, может не вызывать стресса у другого, и почти любое событие может вызвать стресс. Для некоторых людей простая мысль о триггере или нескольких более мелких триггерах может вызвать стресс.

      Нет очевидной причины, по которой один человек может чувствовать меньше стресса, чем другой, столкнувшись с одним и тем же фактором стресса. Психические расстройства, такие как депрессия, или нарастающее чувство разочарования, несправедливости и беспокойства, могут вызывать у одних людей больший стресс, чем у других.

      Предыдущий опыт может повлиять на то, как человек реагирует на стрессоры.

      Общие важные жизненные события, которые могут вызвать стресс, включают:

      • проблемы с работой или выход на пенсию
      • нехватка времени или денег
      • утрата
      • семейные проблемы
      • болезнь
      • переезд домой
      • отношения, брак и развод

      Другими часто сообщаемыми причинами стресса являются:

      • аборт или потеря беременности
      • вождение в плотном транспортном потоке или страх аварии
      • страх преступления или проблем с соседями
      • беременность и материнство
      • чрезмерный шум, перенаселенность, и загрязнение
      • Неуверенность или ожидание важного исхода

      Некоторые люди испытывают постоянный стресс после травмирующего события, такого как несчастный случай или какое-либо насилие.Врачи диагностируют это как посттравматическое стрессовое расстройство.

      Те, кто работает на стрессовых работах, например, в армии или в экстренных службах, после серьезного инцидента пройдут сеанс разбора полетов, а службы гигиены труда будут контролировать их на предмет посттравматического стрессового расстройства.

      Физические последствия стресса могут включать:

      • потливость
      • боль в спине или груди
      • судороги или мышечные спазмы
      • обмороки
      • головные боли
      • нервные подергивания
      • ощущения иглами

      Исследование 2012 г. обнаружили, что факторы стресса, с которыми сталкиваются родители, такие как финансовые проблемы или ведение неполного домашнего хозяйства, также могут приводить к ожирению у их детей.

      Эмоциональные реакции могут включать:

      • гнев
      • выгорание
      • проблемы с концентрацией
      • усталость
      • чувство незащищенности
      • забывчивость
      • раздражительность
      • кусание ногтей
      • беспокойство
      • печаль

      Стрессовое поведение включают:

      • тяга к еде и слишком много или слишком мало еды
      • внезапные вспышки гнева
      • злоупотребление наркотиками и алкоголем
      • повышенное потребление табака
      • социальная изоляция
      • частый плач
      • проблемы во взаимоотношениях

      Если стресс становится хроническим, это может привести к нескольким осложнениям, включая

      • беспокойство
      • депрессия
      • болезни сердца
      • высокое кровяное давление
      • снижение иммунитета против болезней
      • мышечные боли
      • посттравматическое стрессовое расстройство
      • нарушения сна
      • подъем желудка et
      • эректильная дисфункция (импотенция) и потеря либидо

      Врач обычно диагностирует стресс, спрашивая человека об их симптомах и жизненных событиях.

      Диагностика стресса может быть сложной задачей, поскольку зависит от многих факторов. Врачи использовали анкеты, биохимические измерения и физиологические методы для выявления стресса. Однако они могут быть не объективными или эффективными.

      Самый прямой способ диагностировать стресс и его влияние на человека — это всестороннее, ориентированное на стресс личное интервью.

      Лечение включает самопомощь и, если основное заболевание вызывает стресс, прием некоторых лекарств.

      Методы лечения, которые могут помочь человеку расслабиться, включают ароматерапию и рефлексотерапию.

      Некоторые страховые компании покрывают этот вид лечения. Тем не менее, людям важно проконсультироваться с врачом перед тем, как начать лечение. Подробная информация о возможном лечении может помочь предотвратить добавление этого постоянного стресса.

      Лекарства

      Врачи обычно не прописывают лекарства для борьбы со стрессом, если только они не лечат основное заболевание, такое как депрессия или тревожное расстройство.

      В таких случаях могут назначить антидепрессант. Однако существует риск, что лекарство только замаскирует стресс, а не поможет человеку справиться с ним. Антидепрессанты также могут иметь побочные эффекты, и они могут усугубить некоторые осложнения стресса, такие как снижение либидо.

      Разработка стратегий выживания до того, как стресс станет хроническим или серьезным, может помочь человеку справиться с новыми ситуациями и сохранить свое физическое и психическое здоровье.

      Людям, которые уже испытывают сильный стресс, следует обратиться за медицинской помощью.

      Люди могут обнаружить, что следующие меры по образу жизни могут помочь им справиться или предотвратить вызванное стрессом чувство подавленности.

      • Exercise: Систематический обзор исследований на животных 2018 года показал, что упражнения могут уменьшить ухудшение памяти у субъектов, страдающих стрессом, хотя исследования на людях необходимы для подтверждения этого.
      • Сокращение употребления алкоголя, наркотиков и кофеина: Эти вещества не помогают предотвратить стресс, а могут усугубить его.
      • Питание: Здоровая, сбалансированная диета с большим количеством фруктов и овощей может помочь поддержать иммунную систему во время стресса. Плохое питание может привести к ухудшению здоровья и дополнительному стрессу.
      • Управление приоритетами: Может помочь потратить немного времени на составление ежедневного списка дел и сосредоточение внимания на срочных или срочных задачах. Затем люди могут сосредоточиться на том, что они выполнили или сделали за день, а не на задачах, которые им еще предстоит выполнить.
      • Время: Люди должны выделить время, чтобы организовать свое расписание, расслабиться и преследовать свои интересы.
      • Дыхание и расслабление: Могут помочь медитация, массаж и йога. Техники дыхания и расслабления могут замедлить частоту сердечных сокращений и способствовать расслаблению. Глубокое дыхание также является центральной частью медитации осознанности.
      • Разговор: Обмен чувствами и проблемами с семьей, друзьями и коллегами по работе может помочь человеку «выпустить пар» и уменьшить чувство изоляции.Другие люди могут предложить неожиданные действенные решения для устранения стрессора.
      • Признание признаков: Человек может быть настолько обеспокоен проблемой, вызывающей стресс, что не замечает воздействия на свое тело. Важно помнить о любых изменениях.

      Обратите внимание на признаки и симптомы — это первый шаг к действию. Людям, которые испытывают стресс на работе из-за долгого рабочего дня, возможно, придется «сделать шаг назад». Возможно, пришло время им пересмотреть свои методы работы или поговорить с руководителем о поиске способов снижения нагрузки.

      У большинства людей есть занятия, которые помогают им расслабиться, например чтение книги, прогулка, прослушивание музыки или проведение времени с другом, любимым человеком или домашним животным. Некоторым людям также помогает расслабиться посещение хора или тренажерного зала.

      APA призывает людей развивать сети социальной поддержки, например, разговаривая с соседями и другими членами местного сообщества или вступая в клуб, благотворительную или религиозную организацию.

      Тем, кто часто чувствует, что у них нет времени или энергии для хобби, следует попробовать новые интересные занятия, которые доставляют им удовольствие.Люди могут обратиться в свою сеть поддержки, если им нужны идеи.

      Членство в группе может снизить риск развития стресса и оказать поддержку и практическую помощь в сложных обстоятельствах.

      Людям, которые обнаруживают, что стресс влияет на их повседневную жизнь, следует обратиться за профессиональной помощью. Врач или психиатр часто могут помочь, например, обучая справляться со стрессом.

      Методы управления стрессом

      Управление стрессом может помочь:

      • устранение или изменение источника стресса
      • изменение взгляда человека на стрессовое событие
      • снижение воздействия стресса на тело
      • обучение альтернативным способам лечения

      Терапия по управлению стрессом использует один или несколько из этих подходов.

      Люди могут развивать свои методы управления стрессом, используя книги по саморазвитию или онлайн-ресурсы.