Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Электричество обозначения: Обозначение фазы и нуля L и N в электрике

Содержание

Обозначение фазы и нуля L и N в электрике

В процессе самостоятельной установки и подключения электрооборудования (этом могут быть различные светильники, вентиляция, электроплитка и т.п.) можно заметить, что коммутационные клеммы обозначены буквами L, N, PE. Особое значение здесь имеет маркировка L и N. Кроме обозначения проводов в электрике по буквам, их помещают в изоляцию различного цвета.

Это значительно упрощает процедуру определения, где находится фаза, земля или нулевой провод. Чтобы устанавливаемый прибор смог работать в нормальном режиме, каждый из этих проводов должен быть подключен на соответствующую клемму.

Обозначение проводов в электрике по буквам

Электрические коммуникации в бытовой и промышленной сфере организовываются посредством изолированных кабелей, внутри которых находятся проводящие жилы. Они отличаются друг от друга цветом изоляции и маркировкой. Обозначение l и n в электрике дает возможность на порядок ускорить реализацию монтажных и ремонтных мероприятий.

Нанесение данной маркировки регулирует специальный ГОСТ Р 50462: это относится к тем электроустановкам, где используется напряжение до 1000 В.

Как правило, они комплектуются глухозаземленной нейтралью. Зачастую электрическое оборудование данного типа имеют жилые, административные и хозяйственные объекты. Во время монтажа электрических сетей в зданиях этого типа необходимо хорошо разбираться в цветовых и буквенных указаниях.

Обозначение фазы — L

Сеть переменного тока включает в себя провода, находящиеся под напряжением. Правильное их название – «фазные». Это слово имеет английские корни, и переводится как «линия» или «активный провод». Фазные жилы несут особенную опасность для здоровья человека и имущества. Для безопасной эксплуатации их покрывают надежной изоляцией.

Использование оголенных проводов под напряжением чревато следующими последствиями:

  1. 1. Поражение током людей. Это могут быть ожоги, травмы и даже смерть.
  2. 2. Возникновение пожаров.
  3. 3. Порча оборудования.

При обозначении проводов в электрике фазные жилы маркируются буквой «L». Это сокращение английского термина «Line», или «линия» (другое название фазных проводов).

Есть и другие версии происхождения этой маркировки. Некоторые специалисты считают, что прообразом стали слова «Lead» (подводящая жила) и Live (указание на напряжение). Подобная маркировка используется также для указания на зажимы и клеммы, на которые должны коммутироваться линейные провода. К примеру, в трехфазных сетях каждая из линий маркируется еще и соответствующей цифрой (L1, L2 и L3).

Действующие отечественные нормативы, регулирующие обозначение фазы и нуля в электрике (ГОСТ Р 50462-2009), предписывают помещать линейные жилы в коричневую или черную изоляцию. Хотя на практике фазные провода могут быть белыми, розовыми, серыми и т.п. В таком случае все зависит от производителя и изолирующего материала.

Обозначение нуля — N

Для маркировки нейтральной или нулевой рабочей жилы сети используют букву «N». Это сокращение термина neutral (в переводе – нейтральный). Так во всем мире принято называть нулевой проводник. У нас в стране в основном используют слово «Ноль».

Скорее всего, за основу здесь взято слово Null. Буква «N» в схеме указывает на контакты или клеммы, предназначенной для коммутации нулевой жилы. Подобное обозначение принято и для однофазных, и для трехфазных схем. В качестве цветового обозначения нулевого провода применяют синюю или бело-синюю (бело-голубую) изоляцию.

Обозначение заземления — PE

Кроме обозначения фазы и нуля, в электрике также применяется специальное буквенное указание PE (Protective Earthing) для провода заземления. Как правило, они всегда входят в состав кабеля, наряду с нулевыми и фазными жилами. Подобным образом маркируются также контакты и зажимы, предназначенные для коммутации с заземляющим нулевым проводом.

Для удобства монтажа жилы для заземления помещены в желто-зеленую изоляцию. Домашний мастер должен уяснить, что эти цвета всегда указывают только на заземляющие провода. Для обозначения фазы и нуля в электрике желтый и зеленый цвет никогда не используется.

Как показывает практика, при организации электрических сетей в зданиях жилого сектора иногда допускаются нарушения общепринятых нормативов использования цвета изоляции и соответствующей буквенно-цифровой маркировки. В таком случае не всегда достаточно обладать умением расшифровывать обозначения L, N или РЕ.

Чтобы подключение электрооборудования было действительно безопасным, необходимо проверять соответствие маркировки реальному положению вещей. Для этого используют специальные приборы (тестеры) или подручные приспособления. При отсутствии опыта подобных работ для собственной безопасности лучше пригласить опытного электрика с соответствующим допуском.

Обозначение l и n в электрике

Обозначение фазы и нуля в электрике введено для того, чтобы электрические сети были безопасными и удобными в использовании. Для этого используется специальная буквенная маркировка (l и n) и изоляция соответствующего цвета. Также могут встречаться жилы с маркировкой РЕ желто-зеленого цвета: таким образом обозначены заземляющие провода.

Кроме того, эти же буквенные обозначения применяются на соединительных контактах и клеммах. Все, что потребуется сделать во время установки электроприбора – подвести каждый из проводов на клемму. Для перестраховки каждый из проводов желательно проверить тестером.

На фото ниже хороший пример как обозначаются L и N в электрике на оборудовании. В частности на фото промаркированы клеммы УЗМ (устройства защиты многофункциональное) для правильного подключения проводов.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Буквенное обозначение фазы и нуля в электрике

Часто новички при взгляде на электросхемы чувствуют себя так, словно эти схемы написаны на китайском и долго не могут разобраться, что же такое $N$ и $L$ в электричестве и с какой стороны подойти к схеме.

Однако, не всё так сложно и у бывалых электриков не возникает вопросов, что же означает та или иная буква и как обозначается фаза и ноль в электрике. Давайте и мы с вами разбираться что к чему.

Как обозначается фаза в электричестве

Определение 1

Фазой в народе называют провод с электрическим током.

Если вы имеете дело с проводом, в котором только одна жила — фаза, то есть токопроводящая, то на схеме для обозначения фазы будет использоваться латинская буква $L$.

В случае же если вам приходится иметь дело со всеми тремя фазами (например, если вам по какой-то причине пришлось залезть в щиток в подъезде) — то все три фазы будут обозначаться буквами $L1$, $L2$, $L3$ соответственно.

Также для трёхфазной системы электроснабжения для обозначения всех трёх фазовых проводников возможно использование букв $A$, $B$, $C$, но по ГОСТ 2.709-89 для России более желательными обозначениями для фазовых проводов являются обозначения $L1$, $L2$, $L3$.

Трёхфазная цепь с тремя проводами называется трёхпроводной, тогда как трёхфазная цепь с четырьмя проводами, один из которых нулевой, а остальные — фазовые, называется четырёхпроводной.

Как обозначается нуль в электричестве

Из уроков физики в школе кто-то, возможно, помнит, что ток может течь только по замкнутым контурам.

Определение 2

Нулевой провод — это как раз провод, необходимый для того чтобы сделать электрический контур замкнутым.

По этому проводу происходит возвращение остаточного тока.

На схеме ноль обозначается буквой $N$, а если нулевой провод совмещён с защитным нулевым (т.е. с заземлением), то такой проводник будет обозначаться буквами $PEN$.

Обозначение нулевого провода буквой $N$ произошло от английского neutral, что переводится как “нейтральный”.

Теперь, наверное, вам стало понятнее, как обозначают фазу и ноль в электрике.

Ниже приведена упрощённая схема снабжения обычной жилой квартиры электрическим током с данными обозначениями:

Рисунок 1. Обозначение фазы и нуля на схеме

На рис. 1 представлена упрощённая схема проведения одного фазного провода в квартиру от трёхфазного источника тока вместе с нулевым проводом, для которого использовано обозначение $N$. Буква же $L$ используется для обозначения фазы как обычно принято в электрике.

На рис. 2 изображено осуществление заземления непосредственно у источника тока, а символами $R_H$ обозначено сопротивление некоторого потребителя тока.

Также на этом рисунке видно, что нулевой провод проведён в квартиру непосредственно от источника тока. При этом заземлён рабочий нулевой провод также у источника. Заземление на рисунке обозначено буквами $ЗМЛ$.

На рисунке 3 представлен другой вариант проведения фазного провода с осуществлением заземления в квартире. Этот вариант является неправильным.

Нулевой провод необходимо проводить непосредственно от источника тока, иначе электрический контур будет незамкнутым.

Рисунок 2. Пример обозначений фазы и нуля в электрических схемах: фаза, ноль и земля и используемые для них буквы

На данном рисунке представлено схематическое изображение подключения розетки.

Нулевой провод обозначен буквой $N$, фазовые напряжения — буквами $L1, L2, L3$, нулевой защитный провод, совмещённый с нейтральным рабочим и проведённый от трасформатора — буквами $PEN$, а заземление на розетке, проведённое от трансформатора – буквами $PE$.

Как видно из рисунка, чтобы измерить фазное напряжение на любом участке сети, необходимо подсоединить вольтметр к нулевому и фазовому проводу.

Заземление на рисунке представлено с помощью специального символа, о котором мы расскажем вам чуть ниже.

Обозначение земли в электрике

Для проводников с напряжением до $1$ кВ заземление обычно обозначают буквами $PE$, эта аббревиатура взята из английского от слов Protective Earthing, что дословно можно перевести как “защитная земля”.

Для обозначения заземления далеко не всегда используются именно буквы, очень часто на схемах используются специальные символьные обозначения, например:

Рисунок 3. Обозначение земли на схемах

Иногда также можно встретить буквенное обозначение $GRD$, оно также произошло от английского и является сокращением слова ground (русс. “земля”), а на первом рисунке из этой статьи использовалось обозначение $ЗМЛ$.

Ну вот и всё, и мы надеемся, что наша статья помогла вам и у вас больше не возникнет вопросов, как обозначаются фаза и ноль на схеме.

Знания того, какие обозначения используются для фазы, ноля и земли на схеме помогут вам с лёгкостью починить розетку, а если вы достаточно хорошо понимаете разницу между обозначениями $N$ $L$ в электрике — то вас никогда не ударит током.

Цветовые обозначения фазы L, нуля N и заземления

Любой электрический кабель для удобства монтажа изготавливается с разноцветной изоляцией на жилах. При монтаже стандартной электропроводки обычно используются трехжильные кабели (фаза, ноль, заземление).

Фаза («L», «Line»)

Основным проводом в кабеле всегда является фаза. Само по себе слово «фаза» означает «провод под напряжением», «активный провод» и «линия». Чаще всего он бывает строго определенных цветов. В распределительном щитке фазовый провод, перед тем как идти к потребителю, подключается через устройство защитного отключения (УЗО, предохранитель), в нем происходит коммутация фазы. Внимание! С голой фазой шутки плохи, по этому, чтобы не спутать фазу с чем-либо еще — запомните: контакты фазы всегда маркируются латинским символом «L», а провод фазы бывает красным, коричневым, белым или черным! Если же вы не уверены в этом или проводка устроена иначе, то приобретите отвертку с простым индикатором фазы. Прикоснувшись его жалом к голому проводнику, всегда можно узнать — фаза это или нет по характерному свечению индикатора. А лучше сразу обратитесь к квалифицированному специалисту.

Ноль («N», «Neutre», «Neutral», «Нейтраль» «Нуль»)

Вторым немаловажным проводом является ноль, известный в народе как «провод без тока», «пассивный провод» и «нейтраль». Он бывает только синим. В квартирных распределительных щитках его нужно подключать к нулевой шине, она помечена символом «N». К розетке провод нуля подключается к контактам, также обозначенным знаком «N».

Заземление («G», «T», «Terre» «Ground», «gnd» и «Земля»)

Изоляция заземляющего провода бывает только желтого цвета с зеленой полоской. В распределительном щитке он подключается к шине заземления, к дверце и корпусу щитка. В розетках заземление подключается к контактам, обозначенным латинским символом «G» или с знаком в виде перевернутой и коротко подчеркнутой буквой «Т». Обычно заземлительные контакты на виду и могут выступать из розеток, становясь доступными детям, что порой вызывает у многих родителей шок, тем не менее эти контакты не опасны, хотя совать пальцы туда все же не рекомендуется.

Внимание! При работе с электрическими сетями под напряжением всегда велика вероятность поражения человека электрическим током или пожара. Если даже установлено УЗО, настоятельно рекомендуется соблюдать все меры предосторожности! Известно, что специальная конструкция такого выключателя сверяет синхронность работы фазы и нуля, и в случае, если УЗО обнаружит утечку тока фазы без возвращения каких-то его процентов по нулю, то немедленно разорвет контакт, что спасет человеку жизнь; однако если прикоснуться не только к фазе, но еще и к нулю — то УЗО не спасет. Прикосновение к обоим проводам смертельно опасно!!!

проводы n и l на схемах электропроводки, цветовая маркировка

Для монтажа или ремонта электрической сети требуется принципиальная схема. Несведущему человеку сложно понять смысл условных обозначений, которыми насыщен план подключения оборудования. Разобраться в предназначении проводов поможет обозначение фазы и нуля на английском языке.

Назначение проводов в разводке

От источника питания к потребителю электричество передаётся по многожильным проводам. Приборы и механизмы обеспечиваются энергией посредством не менее трёх линий. По кабелям фазы и нуля подаётся напряжение. Заземляющая жила защищает человека от поражения электрическим током.

Каждая линия на монтажных схемах обозначается определённым образом. Кабели, отмеченные буквами n и l, в электрике предназначены для передачи тока. «Земля» отмечается аббревиатурой PE, которая расшифровывается как Protective Earth и переводится как «защитное заземление».

Провода, предназначенные для фазы, нуля и заземления, обладают специфической окраской и маркировкой.

Различие во внешнем виде облегчает сборку сети и предотвращает ошибки электрика, приводящие к несчастному случаю или поломке прибора.

Фазовая линия

Работу сети переменного тока формируют два компонента — рабочая фаза и нулевая составляющая. Рабочая фаза, или просто фаза, является основным проводом в многожильном кабеле. По этой линии на прибор поступает электрическая энергия.

В электротехнической документации фазовый канал обозначается латинской буквой L. Допускается употребление строчной литеры l. Условному сокращению профессионалы придают разные значения. Предпочтительными вариантами считаются Lead, Live или Line. С английского языка слова переводятся соответственно как «подводящий провод», «напряжение» или «линия».

Если в цепи предусмотрено использование нескольких фазовых кабелей, то к букве добавляется номер фазы. По европейским стандартам, не допускающим изменения колеровки, фазовые провода окрашены в конкретные цвета:

  • L 1 — коричневый.
  • L 2 — чёрный.
  • L 3 — серый.

В бытовой проводке на 220 вольт используются 3 линии, предназначенные для присоединения нуля, заземления и напряжения. Поэтому единственная фазовая шина покрыта изоляцией коричневого цвета. Использование кабелей другого колера считается грубым нарушением технологических норм.

Обозначение нуля

В цепи переменного тока нулевая линия необходима для создания замкнутого контура падения напряжения на контактах электрического прибора. Вместе с рабочей фазой «нуль» является основным компонентом сети.

На принципиальных схемах нулевая фаза обозначается буквами латинского алфавита N или n. Сокращённое обозначение подразумевает понятия Null или Neutral. Словари дают переводы «Нуль» и «Нейтраль».

В зависимости от гибкости кабеля, окраска нейтрального проводника представлена вариантами синего цвета. Жёсткая одножильная шина имеет насыщенный оттенок ультрамарина. Изолирующий слой многожильного провода окрашен в светло-голубой колер.

Самодеятельные мастера иногда соединяют нейтраль и заземление, ошибочно считая, что это одно и то же. Опасное заблуждение приводит к печальным последствиям. Нулевая фаза и земельная шина выполняют отличные друг от друга функции.

Различается и окраска. Защитный провод имеет жёлто-зелёный цвет. Подключение шин различного назначения в одну линию категорически запрещено техникой безопасности.

Меры предосторожности

Правильная электропроводка выполняется по регламенту IEC 60445, принятому законодательством Европы в 2010 году. Нормы российского ГОСТа 50462−2009, которые соответствуют международным правилам, указывают цвет проводов «фаза», «ноль» и «земля».

Иногда электрикам приходится работать с сетями, которые смонтированы много лет назад, а план разводки утерян. Отсутствие принципиальной схемы делает бесполезным знание того, как обозначаются ноль и фаза. Задача электрика усложнится, если в цепи использованы провода с цветом изоляции, которая не соответствует ГОСТу.

До начала работ монтажник обязан определить назначение каждой линии с помощью контрольной лампы, индикаторной отвёртки или мультиметра. При прозванивании электрических цепей необходимо соблюдение элементарных правил техники безопасности:

  • манипуляции с индикаторной отвёрткой выполняются одной рукой;
  • свободной рукой нельзя прикасаться к металлическим конструкциям или стенам;
  • работа проводится в присутствии квалифицированного ассистента.

Выяснив, какой провод для чего предназначен, опытный специалист маркирует линии. Для этого используются специальные бирки на клеевой основе или полихлорвиниловые насадки. На поверхность маркировочного материала наносятся условные обозначения на английском языке — n, l или PE. Только после окончания определительных работ приступают к монтажу или ремонту электрического оборудования.

Понимание того, какой смысл имеют на схеме латинские буквы l и n, помогает электрику проводить монтаж и ремонт сети быстрее и качественнее. Кроме того, буквенное обозначение фазы и нуля на схеме, а также цветовая маркировка чётко определяют назначение провода, с которым работает мастер. Это предотвращает несчастные случаи на рабочем месте.

L N в электрике — цвета проводов в трехжильном кабеле

В подавляющем большинстве кабелей разная расцветка изоляции жил. Сделано это в соответствие с ГОСТом Р 50462-2009, который устанавливает стандарт маркировки l n в электрике (фазных и нулевых проводов в электроустановках). Соблюдения этого правила гарантирует быструю и безопасную работу мастера на большом промышленном объекте, а также позволяет избежать электротравм при самостоятельном ремонте.

Разнообразие расцветки изоляции электрокабелей

Цветовая маркировка проводов многообразна и сильно различается для заземления, фазных и нулевых жил. Чтобы не было путаницы, требования ПУЭ регламентируют какого цвета провод заземления использовать в щитке электропитания, какие расцветки обязательно надо использовать для нуля и фазы.

Если монтажные работы проводились высококвалифицированным электриком, который знает современные стандарты работы с электропроводами, не придется прибегать к помощи индикаторной отвёртки или мультиметра. Назначение каждой жилы кабеля расшифровывается знанием его цветового обозначения.

Цвет жилы заземления

С 01.01.2011 цвет жилы заземления (или зануления) может быть только желто-зеленой. Эта цветовая маркировка проводов соблюдается и при составлении схем, на которых такие жилы подписываются латинскими буквами РЕ. Не всегда на кабелях расцветка одной из жил предназначена для заземления – обычно она делается если в кабеле три, пять или больше жил.

Отдельного внимания заслуживают PEN-провода с совмещенными «землей» и «нолем». Подключения такого типа все еще часто встречаются в старых зданиях, в которых электрификация проводилась по устаревшим нормам и до сих пор не обновлялась. Если кабель укладывался по правилам, то использовался синий цвет изоляции, а на кончики и места стыков надевались желто-зеленые кембрики. Хотя, можно встретить и цвет провода заземления (зануления) с точностью до наоборот – желто-зеленый с синими кончиками.

Заземляющая и нулевая жила могут отличаются толщиной, часто она тоньше фазных, особенно на кабелях, что применяются для подключения переносных устройств.

Защитное заземление является обязательным при прокладке линий в жилых и промышленных помещениях и регулируется стандартами ПУЭ и ГОСТ 18714-81. Провод нулевой заземляющий должен иметь как можно меньшее сопротивление, то же самое касается заземляющего контура. Если все работы по монтажу выполнено правильно, то заземление будет надежным защитником жизни и здоровья человека в случае появления неисправностей электролинии. Как итог – правильная пометка кабелей для заземления имеет решающее значение, а зануление вообще не должно применяться. Во всех новых домах проводка делается по новым правилам, а старые поставлены в очередь для ее замены.

Расцветки для нулевого провода

Для «ноля» (или нулевого рабочего контакта) используются только определенные цвета проводов также строго определяемые электрическими стандартами. Он может быть синим, голубым или синим с белой полоской, причем независимо от количества жил в кабеле: трехжильный провод в этом плане ничем не будет отличаться от пятижильного или с еще большим количеством проводников. В электросхемах «нулю» соответствует латинская буква N – он участвует в замыкании цепи электропитания, а в схемах может читаться как «минус» (фаза, соответственно, это «плюс»).

Цвета для фазных проводов

Эти электропровода требуют особо осторожного и «уважительного» с собой обращения, так как они являются токоведущими, и неосторожное прикосновение может вызвать тяжелое поражение электрическим током. Цветовая маркировка проводов для подключения фазы достаточно разнообразна – нельзя применять только цвета смежные с синим, желтым и зеленым. В какой-то мере так гораздо удобнее запоминать каким может быть цвет провода фазы – НЕ синим или голубым, НЕ желтым или зеленым.

На электросхемах фазу обозначают латинской буквой L. Такая же разметка используется на проводах, если цветовая маркировка ни них не применяется. Если кабель предназначен для подключения трех фаз, то фазные жилы помечают буквой L с цифрой. Например, для составления схемы для трехфазной сети 380 В использовано L1, L2, L3. Еще в электрике принято альтернативное обозначение: A, B, C.

Настоятельно рекомендуется использовать одинаковую расцветку проводов, при ответвлении однофазной цепи от трехфазной.

Перед началом работ надо определиться, как будет выглядеть комбинация проводов по цвету и неукоснительно придерживаться выбранной расцветки.

Если этот вопрос был продуман еще на этапе подготовительных работ и учтен при составлении схем электропроводки, следует закупить необходимое количество кабелей с жилами необходимых цветов. Если все-таки нужный провод закончился, то можно пометить жилы вручную:

  • кембриками обычными;
  • кембриками термоусадочными;
  • изолентой.

О стандартах цветовой маркировки проводов в Европе и России смотрите так же в этом видео:

Ручная цветовая разметка

Применяется в тех случаях, когда при монтаже приходится использовать провода с жилами одинаковой расцветки. Также часто это происходит при работе в домах старой постройки, в которых монтаж электропроводки производился задолго до появления стандартов.

Опытные электрики, чтобы не было путаницы при дальнейшем обслуживании электроцепи использовали наборы, позволяющие промаркировать фазные провода. Это допускается и современными правилами, ведь некоторые кабели изготавливаются без цветобуквенных обозначений. Место использования ручной маркировки регламентировано нормами ПУЭ, ГОСТа и общепринятыми рекомендациями. Она крепится на концы проводника, там, где он соединяется с шиной.

Разметка двужильных проводов

Если кабель уже подключен к сети, то для поиска фазных проводов в электрике используют специальную индикаторную отвертку – в ее корпусе есть светодиод, который светится, когда жало устройства касается фазы.

Правда эффективной она будет только для двухжильных проводов, ведь если фаз несколько, то определить где какая индикатор не сможет. В таком случае придется отключать провода и использовать прозвонку.

Далее понадобится набор специальных трубок с термоусадочным эффектом или ленты для изоляции, чтобы разметить фазу и ноль.

Стандарты не обязывают делать такую разметку на электропроводниках по всей их длине. Допускается отметить её лишь в местах стыков и соединения нужных контактов. Поэтому, при возникновении необходимости нанести метки на электрокабели без обозначений, нужно заранее приобрести материалы, для их разметки вручную.

Число используемых расцветок зависит от применяемой схемы, но главная рекомендация все же есть – желательно использовать цвета, исключающие возможность путаницы. Т.е. не применять для фазных проводов синие, желтые или зеленые метки. В однофазной сети, к примеру, фазу обычно обозначают красным цветом.

Разметка трехжильных проводов

Если надо определить фазу, ноль и заземление в трехжильных проводах, то можно попробовать сделать это мультиметром. Прибор устанавливается на измерение переменного напряжения, а затем щупами аккуратно коснуться фазы (его можно найти и индикаторной отверткой) и последовательно двух оставшихся проводов. Далее следует запомнить показатели и сравнить их между собой – комбинация «фаза-ноль» обычно показывает большее напряжение, нежели «фаза-земля».

Когда фаза, ноль и земля определены, то можно наносить маркировку. По правилам, для заземления применяется провод цветной желто зеленый, а точнее жила с такой расцветкой, поэтому его маркируют изолентой подходящих цветов. Ноль, отмечается, соответственно, синей изолентой, а фаза любой другой.

Если же при профилактических работах выяснилось, что маркировка устарела, менять кабеля не обязательно. Замене, в соответствии с современными стандартами, подлежит только электрооборудование, вышедшее из строя.

Как итог

Правильная разметка проводов это обязательное условие качественного монтажа электропроводки при проведении работ любой сложности. Она значительно облегчает как сам монтаж, так и последующее обслуживание электросети. Чтобы электрики «разговаривали на одном языке», созданы обязательные стандарты цветобуквенной маркировки, которые схожи между собой даже в разных странах. В соответствии с ними L – это обозначение фазы, а N – ноля.

Условные обозначения в электрических схемах Гост

Уметь читать специальные электрические обозначения должен уметь каждый человек, который имеет отношение к электричеству.  Обозначений существует огромное количество, но знать их нужно всегда, или просто изредка подглядывать в нашу статью. Здесь мы разберем, какие существуют условные обозначения в электрических схемах гост, и разберем все возможные варианты.

Какие бывают условные обозначения в электрических схемах

Всего существует две основных группы обозначений на схемах, они используются повсеместно, поэтому их стоит знать. Ведь по-другому вы не узнаете, как обозначаются: выключатели, светильники, розетки и другие элементы цепи на вашей электрической схеме. Если вы только думаете, составить схему, тогда обязательно используйте только правильные обозначения, ведь рано или поздно вы к ней вернетесь, если разобрать не сможете – будет очень плохо.

Если говорить за два вида электрических обозначений, то стоит назвать:

  1. Графические.
  2. Буквенные.

О них мы и поговорим в этой статье, прочитав все внимательно, вы сможете что-то понять. Чтобы выучить, прочитать придется раз 20, как минимум. Итак, существуют следующие условные обозначения в электрических схемах, если вы сможете в них вникнуть, тогда и учить все будет легче. Все они поддаются логике, но основное запомнить придется. Вам будет интересно узнать, какие существуют программы для черчения схем.

Графические обозначения в электрических схемах

Изначально мы поговорим об графических обозначениях электрических элементов, которые используются в стандартных схемах. Чтобы вам проще было вникнуть в суть, мы решили сделать для вас подборку в виде таблиц, которые мы встретили в интернете.

Первая таблица означает схемы: электрических коробок, щитов, пультов и шкафов на стандартных электросхемах.

Вот так обозначаются розетки и выключатели, более подробно вы найдете в статье, обозначение розеток.

Если говорить за элементы освещение обозначения, то по ГОСТу они обозначаются образом:

Следующим образом обозначаются трансформаторы и генераторы.

Если говорить за более серьезные схемы, то можно сразу назвать различные электродвигатели, элементы на них обозначаются вот так:

Такие обозначения важно будет узнать начинающим электрикам, ведь следующим образом выглядит контур заземления и силовая линия.

Опытные электрики всегда заинтересуются сложными графическими электрическими обозначениями в виде контактных соединений. Таким образом, обозначаются устройства на электросхемах по ГОСТУ.

Вот так выглядит радиоэлементы, сюда можно отнести: диоды, резисторы, транзисторы и прочее.

Итак, мы с вами разобрали все графические обозначения на электрических схемах, которые применяются в силовых сетях для освещения. Как вы могли заметить, обозначений много, но запомнить их всех можно, с электродвигателями ситуация немного сложней, но такие обозначения используют только профессиональные электрики. Мы рекомендуем сохранить эту страницу, она станет для вас спасением рано или поздно.

Буквенное обозначения в электрических схемах

Мы уже разбирали похожую статью: расшифровка кабелей и проводов, если вы читали эту статью, вам будет проще разобраться со всеми буквенными обозначениями. Согласно ГОСТ 7624-54 буквенное обозначение элементов на электрических схемах выглядит вот так:

  1. КВ – конечный выключатель.
  2. ПВ – путевой выключатель.
  3. ДО – двигатель насоса охлаждения.
  4. ДП – двигатель подач.
  5. ДШ – двигатель шпинделя.
  6. ДБХ – двигатель быстрых ходов.
  7. ДГ – главный двигатель.
  8. КК – командо-контроллер.
  9. КУ – кнопкауправления.
  10. Напряжение, мощность, время, указательное, реле тока, соответственно – РТ, РН, РМ, РС, РВ, РП, РУ, РГ, РТВ.

Радиотехнические элементы на электронных схемах обозначаются следующим образом.

Вот мы с вами и разобрали, какие существуют электрически обозначения на схемах, посмотрите еще вот такое интересное видео, оно поможет понять некоторые особенности.

Статья по теме: Что делать если соседи воруют электричество.

Как читать электрические схемы. Соединительные провода и линии электрической связи

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы рассмотрели три основных вида электрических схем применяемых в радио- и электротехнике, и в продолжение темы как читать электрические схемы приступим к изучению условных графических обозначений элементов, с помощью которых строятся электрические схемы. Начнем с самого простого — соединительных проводов и линии электрической связи.

Если взглянуть на принципиальную схему, то в глаза бросается обилие параллельных и пересекающихся прямых линий. Все эти линии обозначают соединительные провода или линии электрической связи, которыми соединяются между собой детали любого электрического устройства. Места соединения, символизирующие электрическое соединение в виде пайки, скрутки, сварки и т.п., изображают зачерненной точкой, а если линии пересекаются без соединения, то в месте их пересечения точка не ставится.

Иногда еще можно встретить старые принципиальные схемы, где при пересечении линий электрической связи отсутствие соединения обозначали специальным обводом, от применения которого в настоящее время отказались, так как он усложнял чертежную работу. Обводы применяли из-за опасения, что в месте пересечения человеческий глаз по ошибке может увидеть точку и тем самым создать ошибочное представление о соединении.

Для удобства чтения линии связи и соединения между деталями на схемах принято изображать горизонтальными и вертикальными линиями. Ответвления соединительных проводов и линий изображают под углом 90°, однако в некоторых случаях допускается изображение ответвлений под углами, кратными 45°.

Длина и расположение соединительных линий на схеме ни как не отображают натуральную длину провода или его расположение в реальном устройстве. Может получиться так, что самая длинная соединительная линия, изображенная на схеме, в реальном устройстве будет представлять короткий проводник или его полное отсутствие, потому что детали между собой соединены выводами.

А может оказаться и так, что самая короткая линия на схеме будет являться изображением самого длинного проводника в реальном устройстве. Тут главное понимать, что на схемах соединительная линия показывает только то, что определенный вывод одной детали электрически соединен с другим определенным выводом другой детали.

Иногда на принципиальных схемах с целью сокращения количества соединительных линий, имеющих общее функциональное назначение, применяют однолинейное изображение, представляющее собой одну общую соединительную линию, в которую сливаются, а в нужном месте разветвляются одиночные линии. При этом каждой одиночной линии на входе и выходе присваивается одинаковый номер, по которому ее определяют в схеме. Допускается как обычное, так и утолщенное изображение общей линии.

В качестве примера рассмотрим часть схемы узла индикации.
На схеме видно, что вывод 2 микроконтроллера DD2 PIC16F84 заходит в общую линию под номером 4 (красная стрелка) и, выходя из общей линии, соединяется с выводом 22 индикатора HG1 CA58-11SR. Или вывод 6 микроконтроллера DD2 заходит в общую линию под номером 1 (темная стрелка) и, выходя из общей линии, соединяется с выводом 7 дешифратора DD1 К514ИД2.

При сборке сложных электрических устройств, состоящих из самостоятельных блоков, в общую схему устройства блоки включают при помощи соединительных проводов, которые в процессе монтажа увязывают в жгуты, что делает монтаж красивым и аккуратным.

На принципиальных и монтажных схемах жгут изображают линией нормальной толщины, ну а то, что это именно жгут, указывают ответвления одиночных линий.

Чтобы легче было искать, в каком направлении находится второй конец одиночной линии, линию изображают с коротким изломом под углом 45°. ГОСТ также допускает и более упрощенный вариант, хотя и менее удобный, это когда разветвление проводов жгута осуществляется без излома.

В электрических устройствах, например, аудиотехнике или измерительной аппаратуре, между отдельными элементами или узлами часто используют соединения экранированным проводником. Это связано с тем, что при определенных условиях обычный проводник может возбуждать электромагнитное поле в окружающем пространстве или, наоборот, в нем может наводиться э.д.с под влиянием внешнего магнитного поля, например, фон переменного тока.

Для устранения такого эффекта провод заключают в заземляющую металлическую оболочку, исключающую распространение магнитного поля, как по проводу, так и от него. Такую оболочку называют экраном, а сам способ защиты – экранированием.

Как правило, экран выполняют из тонких медных проволок сплетенных таким образом, что они образуют своеобразную «рубашку» или оплетку поверх изоляции провода. Экранирование осуществляется соединением одного конца оплетки с общим полюсом питания или с корпусом устройства.

Экранированный проводник обозначается штриховой линией и на принципиальных схемах его изображают либо штриховой окружностью, либо обычной соединительной линией, по обе стороны которой расположены две параллельные штриховые линии, условно изображающие продольное сечение экранирующей оболочки.

Когда хотят показать, что линия экранирована на всем протяжении от одного элемента схемы до другого, то экранирование обозначают штриховой окружностью. Когда же необходимо показать только часть экранированного участка, экранирование показывается не по всей линии связи, а на ее отдельных участках.

Штриховые линии, изображающие экран, рассматриваются как условное изображение элементов, и поэтому к ним допускается присоединение других соединительных линий, показывающих подключение, например, соединение экрана с корпусом электрического устройства.

В электрических устройствах, работающих на сверхвысоких частотах, для передачи энергии электромагнитных волн применяют коаксиальный кабель, обладающий достаточно высокой помехозащищенностью.

Коаксиальный кабель имеет круглое сечение и представляет собой центральный и внешний проводники, которые закрыты внешней защитной оболочкой, защищающей кабель от механических повреждений.

Центральный проводник выполняется целиком из меди или из стали с медным покрытием, и располагается точно по оси внешнего проводника, чем и объясняется название «коаксиальный».
Внешний проводник представляет собой гибкую токопроводящую оплетку (экран) из медной проволоки или алюминиевой фольги с оплеткой из омедненного алюминия.

Благодаря экранирующему действию внешнего проводника электромагнитное поле в коаксиальном кабеле сосредоточено в пространстве между двумя проводниками, что обеспечивает абсолютную защиту от влияния внешних электромагнитных волн и исключает потери электромагнитного поля. Получается, что кабель практически не излучает радиоволн.

Широкое применение коаксиальный кабель получил в системах эфирного, кабельного и спутникового телевидения, в системах видеонаблюдения, в компьютерных сетях, в системах связи и т.п.

На принципиальных схемах коаксиальный кабель изображают сплошным кружком с касательным к нему отрезком линии. Сплошной кружок подчеркивает, что внешняя оболочка является непроницаемой для электромагнитных волн.

К коаксиальному кабелю также как и к экранирующему проводнику допускается электрическое присоединение других линий, показывающих подключение, например, с заземлением или с общим проводом.

Если линия электрической связи выполнена кабелем лишь частично, то знак видоизменяют: касательную линию к кружку направляют только в одну сторону. В примере на рисунке ниже показано, что с правой стороны знака коаксиальная линия отсутствует.

Ну вот, в принципе и все, что хотел сказать про соединительные провода и линии электрической связи.
Удачи!

Литература:

1. ГОСТ 2.721-74 Обозначения условные графические в схемах. Обозначения общего применения.

2. Згут М.А. Условные обозначения и радиосхемы.

3. Клюев А.С. Техника чтения схем автоматического управления и технологического контроля.

Электрические единицы измерения и описания

Стандартными единицами электрического измерения, используемыми для выражения напряжения, тока и сопротивления, являются Вольт [В], Ампер [А] и Ом [Ом] соответственно.

Эти электрические единицы измерения основаны на Международной (метрической) системе, также известной как система СИ, а другие обычно используемые электрические единицы являются производными от основных единиц СИ.

Иногда в электрических или электронных цепях и системах необходимо использовать кратные или подмножественные (доли) этих стандартных электрических единиц измерения, когда измеряемые величины очень велики или очень малы.

В следующей таблице приводится список некоторых стандартных электрических единиц измерения, используемых в электрических формулах и значениях компонентов.

Стандартные электрические единицы измерения

Электрооборудование
Параметр
Измерительная
Единица
Символ Описание
Напряжение Вольт В или E Единица электрического потенциала
В = I × R
Текущий Ампер я или я Единица электрического тока
I = V ÷ R
Сопротивление Ом R или Ом Единица сопротивления постоянному току
R = V ÷ I
Электропроводность Симен G или Взаимное сопротивление
G = 1 ÷ R
Емкость Фарад С Единица емкости
C = Q ÷ V
Заряд Кулон Q Единица электрического заряда
Q = C × V
Индуктивность Генри L или H Единица индуктивности
В L = -L (di / dt)
Мощность Вт Вт Единица мощности
P = V × I или I 2 × R
Импеданс Ом Z Единица сопротивления переменному току
Z 2 = R 2 + X 2
Частота Гц Гц Единица частоты
ƒ = 1 ÷ T

Кратные и дольные кратные

В электротехнике и электронной технике встречается огромный диапазон значений между максимальным значением и минимальным значением стандартной электрической единицы.Например, сопротивление может быть ниже 0,01 Ом или выше 1000000 Ом. Используя кратные и частные кратные стандартной единицы, мы можем избежать необходимости писать слишком много нулей для определения положения десятичной точки. В таблице ниже приведены их названия и сокращения.

Префикс Символ Множитель Сила десяти
Терра т 1 000 000 000 000 10 12
Гига G 1 000 000 000 10 9
Мега M 1 000 000 10 6
килограмм к 1 000 10 3
нет нет 1 10 0
сенти c 1/100 10 -2
милли м 1/1 000 10 -3
микро мк 1/1 000 000 10 -6
нано n 1/1 000 000 000 10 -9
пик п. 1/1 000 000 000 000 10 -12

Итак, чтобы отобразить единицы или кратные единицы для сопротивления, тока или напряжения, мы будем использовать в качестве примера:

  • 1кВ = 1 кВ, что равно 1000 вольт.
  • 1 мА = 1 миллиампер, что равно одной тысячной (1/1000) ампера.
  • 47кОм = 47 кОм — что равно 47 тыс. Ом.
  • 100 мкФ = 100 микрофарад, что равно 100 миллионным (100 / 1,000,000) фарада.
  • 1 кВт = 1 киловатт, что равно 1000 Вт.
  • 1 МГц = 1 мегагерц, что равно одному миллиону герц.

Для преобразования одного префикса в другой необходимо либо умножить, либо разделить на разницу между двумя значениями.Например, преобразовать 1 МГц в кГц.

Итак, мы знаем из вышеизложенного, что 1 МГц равна одному миллиону (1000000) герц, а 1 кГц равен одной тысяче (1000) герц, поэтому один 1 МГц в тысячу раз больше, чем 1 кГц. Затем, чтобы преобразовать мегагерцы в килогерцы, нам нужно умножить мегагерцы на тысячу, поскольку 1 МГц равна 1000 кГц.

Аналогично, если нам нужно преобразовать килогерцы в мегагерцы, нам нужно будет разделить на тысячу. Намного более простым и быстрым методом было бы перемещение десятичной точки влево или вправо в зависимости от того, нужно ли вам умножать или делить.

Помимо «Стандартных» электрических единиц измерения, показанных выше, в электротехнике также используются другие единицы измерения для обозначения других величин и величин, например:

  • • Wh — Ватт-час , Количество электроэнергии, потребляемой цепью за период времени. Например, лампочка потребляет сто ватт электроэнергии в течение одного часа. Обычно он используется в форме: Втч, (ватт-час), кВтч, (киловатт-час), что составляет 1000 ватт-часов, или МВтч, (мегаватт-час), что составляет 1000000 ватт-часов.
  • • дБ — Децибел , Децибел — это одна десятая единица бел (символ B) и используется для обозначения усиления по напряжению, току или мощности. Это логарифмическая единица, выраженная в дБ, и обычно используется для представления отношения входа к выходу в усилителе, аудиосхемах или системах громкоговорителей.

    Например, отношение дБ входного напряжения (V IN ) к выходному напряжению (V OUT ) выражается как 20log 10 (Vout / Vin).Значение в дБ может быть либо положительным (20 дБ), представляющим усиление, либо отрицательным (-20 дБ), представляющим потери с единицей, то есть вход = выход, выраженный как 0 дБ.

  • • θ — Фазовый угол , Фазовый угол — это разница в градусах между формой волны напряжения и формой волны тока, имеющей одинаковое периодическое время. Это разница во времени или сдвиг во времени, и в зависимости от элемента схемы может иметь «опережающее» или «запаздывающее» значение. Фазовый угол сигнала измеряется в градусах или радианах.
  • • ω — Угловая частота , Другой блок, который в основном используется в переменном токе. Цепи, представляющие взаимосвязь фазовых сигналов между двумя или более сигналами, называются угловой частотой, символ ω . Это единица вращения с угловой частотой 2πƒ с единицами измерения радиан в секунду , рад / с . Полный оборот за один цикл равен 360 градусам или 2π, поэтому половина оборота дается как 180 градусов или π рад.
  • τ Постоянная времени , Постоянная времени цепи импеданса или линейной системы первого порядка — это время, необходимое выходному сигналу для достижения 63.7% от максимального или минимального выходного значения при воздействии на него ступенчатого отклика. Это мера времени реакции.

В следующем уроке по теории цепей постоянного тока мы рассмотрим Закон Кирхгофа, который вместе с Законом Ома позволяет нам вычислять различные напряжения и токи, циркулирующие в сложной цепи.

Правила и примеры научной записи

Цель этого модуля — предоставить студентам инструменты, необходимые для использования научных обозначений для представления величин, применения электрических единиц измерения, преобразования метрических единиц и выражения измеренных данных с помощью надлежащего количества значащих цифр.

Объектив

Обучающийся сможет:

  • Используйте экспоненциальную нотацию для представления величин
  • Преобразование одной электрической метрической единицы в другую метрическую единицу
  • Преобразование из одной единицы с метрическим префиксом в другую в экспоненциальном представлении
  • Экспресс измерения с правильным количеством значащих цифр.

Ориентировочные вопросы

  • Как представить чрезвычайно большие или малые количества в экспоненциальной системе счисления?
  • Каковы процессы выполнения арифметических операций с использованием экспоненциальной записи?
  • Как преобразовать измерения, содержащие метрические префиксы?

Введение

При работе с очень большими или малыми количествами ученые и инженеры используют научную нотацию как форму представления.В электронике научная нотация — важный инструмент для представления электрических величин. Важные навыки включают в себя умение выполнять арифметические операции (сложение, вычитание, умножение и деление), используя научную нотацию, и умение конвертировать единицы измерения в метрические единицы.

Количества, представленные в научной нотации

Очень большие и очень маленькие количества часто встречаются в электронике. Вместо огромного количества цифр используется научная нотация.

Научная запись — это удобный способ выражения больших или малых чисел для выполнения арифметических и других функций. Он использует базовое число от 1 до 10 и степень от десяти . Степень десяти — это представление десятичного базового числа и показателя степени, указывающего, сколько раз базовое число увеличивается. Степень десяти представлена ​​символом, написанным сверху и справа от цифры, или показателем степени .

Например, если бы мы представили 230 000 в экспоненциальной системе счисления, мы бы переместили десятичную точку влево до тех пор, пока не получим число от 1 до 10 в левой части десятичной дроби.

В этом случае мы переместим десятичную точку между 2 и 3.

Затем мы посчитаем количество цифр справа от десятичной дроби. В нашем примере их 5. Таким образом, 230 000 будут представлены как 2,3 X 10 5 .

В экспоненциальном представлении слева от десятичной дроби может быть только число меньше 10. Любые числа справа от десятичной дроби, больше нуля, должны оставаться в базовом числе. Как и в приведенном выше примере, мы оставили 3 в базовом числе, так как оно больше нуля.

Чтобы преобразовать число, представленное в научном представлении, в десятичное, мы просто переместим десятичную дробь вправо на количество разрядов, обозначенное экспонентой.

Пример

Давайте возьмем следующее число и переведем его в научное представление:

2,500,000 Наш номер

2.5 Мы помещаем десятичную дробь между 2 и 5, что дает нам базовое число от 1 до 10.

2.5 X 10 6 Мы переместили десятичную запятую на 6 разрядов влево.

Маленькие числа

При работе с маленькими числами десятичная дробь перемещается вправо. Вместо положительной экспоненты (степени десяти) она отрицательная. Это не означает, что число отрицательное.

Например, если мы хотим представить количество 0,00000362, мы бы переместили десятичную дробь вправо, пока не получим число от 1 до 10. В этом случае наша десятичная дробь будет между 3 и 6.

Затем мы посчитаем, сколько цифр находится слева от десятичной дроби. В нашем примере мы переместили десятичную запятую на 6 разрядов. В нашем примере будет 3,62 X 10 -6 .

Обратите внимание, мы оставили 2, потому что это число больше нуля.

Чтобы преобразовать небольшое число, представленное научным представлением, в десятичное число, мы перемещаем десятичную дробь влево на количество разрядов, указанное экспонентой.

Пример

Представим следующее десятичное число в экспоненциальном формате:

0.000 000 025 наш номер.

2,5 Мы переместили десятичную запятую вправо, чтобы получить нашу базу 2,5, которая находится между 1 и 10.

2,5 X 10 -8 Мы переместили десятичную запятую на 8 разрядов вправо, получив показатель степени (-8).

Другие примеры

516,570,000,000,000 = 5,1657 X 10 14

0,000100972 = 1,00972 X 10 -4

4683.8 = 4,6838 Х 10 3

0,05871 = 5,871 X 10 -2

7,55 Х 10 2 = 755

190 X 10 6 = 190 000 000

1,23 Х 10 -6 = 0,00000123

9 Х 10 -3 = 0,009

Просмотрите видео ниже, прежде чем переходить к следующему разделу.

Видео с научной нотацией

Арифметика с экспоненциальным представлением

Научная нотация упрощает выполнение арифметических операций при работе с очень большими и очень маленькими числами.Это оставляет меньше места для ошибок.

Дополнение

Мы складываем числа в экспоненциальном представлении, используя следующий метод:

  1. Выразите оба числа с одинаковой степенью десяти.
  2. Сложите основные числа.
  3. Опустите степень десяти, чтобы представить новую степень десяти для суммы.
  4. Упростите так, чтобы базовое число было от 1 до 10.

Пример

Как сложить 3 X 10 5 плюс 6 X 10 4 ?

Нам нужно сначала выразить числа, используя ту же степень десяти:

(3 х 10 5 ) + (60 х 10 5 )

Добавьте основные числа:

3 + 60 = 63

Опустите силу десяти:

63 Х 10 5

Упростите так, чтобы основание было числом от 1 до 10:

6.3 Х 10 6

Вычитание

При вычитании степеней десяти используется следующий метод:

  1. Выразите оба числа с одинаковой степенью десяти.
  2. Вычтите основные числа без их степени десяти.
  3. Опустите степень десяти, чтобы обозначить разницу.
  4. Упростите так, чтобы базовое число было от 1 до 10.

Пример

Вот пример вычитания чисел, выраженных в степени десяти:

Вычтем 3.5 X 10 -12 из 9,5 X 10 -11

Сначала представим оба числа в одинаковой степени десяти:

(9,5 X 10 -11 ) — (0,35 X 10 -11 )

Вычтите основные числа:

9,5 — 0,35 = 9,15

Обрушьте силу десяти:

9.15 Х 10 -11

Научная запись: сложение и вычитание

Умножение

Для умножения чисел, выраженных в экспоненциальном представлении, используйте следующий метод:

  1. Умножайте основные числа без десятичной степени.
  2. Сложите степени десяти, используя алгебраические правила сложения чисел (степени не обязательно должны быть одинаковыми).

Пример

Умножить 6 X 10 3 на 4 X 10 -5

Умножьте основные числа: (6) (4) = 24

Сложите показатели: 3 + (-5) = -2

Товар: 24 X 10 -2

Упрощенное: 2,4 X 10 -1

Отдел

Для деления чисел, выраженных в экспоненциальном представлении, используйте следующий метод:

  1. Запишите задачу в виде дроби с числителем и знаменателем.{4}}}

    долл. США

    Разделите основные числа:

    7 / 3,5 = 2

    Вычтите экспоненты:

    9–4 = 5

    Частное: 2 X 10 5

    Научная запись: умножение и деление

    Преобразование единиц измерения с метрическими префиксами

    В области электроники вы будете иметь дело с измеряемыми величинами.Вы будете измерять напряжение, ток и сопротивление, а также многие другие электрические величины. Все эти измерения имеют определенные единицы и символы, которые используются в сочетании с техническими обозначениями.

    Инженерное обозначение

    Подобно научной нотации, инженерная нотация использует ту же концепцию «степени десяти». Разница в том, что инженерная нотация может содержать до трех цифр слева от десятичной дроби. Кроме того, инженерная нотация может иметь только экспоненты, кратные трем (3, 6, 9 и т. Д.).).

    Пример

    Ниже приведены несколько примеров чисел, представленных как в научных, так и в инженерных обозначениях:

    Номер Научное обозначение инженерное обозначение

    23000 2,3 х 10 4 23 х 10 3

    500 5 X 10 2 500 или.5 Х 10 3

    0,000052 5,2 Х 10 -5 52 Х 10 -6

    Электрооборудование

    Электрические единицы и количества представлены буквенным обозначением. Ниже приведена таблица некоторых общих электрических величин, SI (международный стандарт), и символы:

    КОЛИЧЕСТВО СИМВОЛ СИСТЕМА СИ СИМВОЛ
    Напряжение В Вольт В
    Текущий I Ампер (А) А
    Заряд Q Кулон С
    Сопротивление R Ом Ом
    Емкость С Фарад F
    Индуктивность L Генри H
    Мощность-п. Вт Вт
    Энергия Вт Джоуль Дж
    Время т секунд S
    Частота F Гц Гц


    Праймер по электрическим единицам, сокращения и символы 1-2

    Метрические префиксы

    Метрические префиксы представляют собой некоторые из наиболее распространенных степеней десяти в инженерной нотации.Ниже представлена ​​таблица с наиболее распространенными префиксами метрик:

    Префикс Префикс
    Обозначение
    Значение
    Пико-п. 10 -12 = 0,000 000 000 001
    нано n 10 -9 = 0,000 000 001
    микро мк 10 -6 = 0.000 001
    милли м 10 -3 = 0,001
    килограмм к 10 3 = 1000
    Мега M 10 6 = 1000 000
    Гига G 10 9 = 1 000 000 000
    Тера т 10 12 = 1 000 000 000 000

    Пример

    Покажите следующий номер с префиксом и символами единиц:

    0.005 Volts Наш номер

    5 X 10 -3 Вольт в экспоненциальном представлении

    5 м Вольт В нашей таблице мы видим 10 -3 представлено м

    5 мВ Обозначение для вольт: В

    Конвертация в метрические единицы

    Для выполнения некоторых вычислений с использованием метрических единиц удобнее преобразовывать префиксы метрики. При преобразовании префиксов необходимо соблюдать несколько основных правил:

    1. Переместите десятичную запятую вправо при преобразовании больших единиц в меньшие.
    2. Переместите десятичную запятую влево при преобразовании малых единиц в большие.
    3. Найдите разность степеней десяти, чтобы решить, на сколько позиций переместить десятичную запятую.

    Пример

    1. Перевести 3 миллифарада в микрофарады.

    Используя приведенную выше таблицу, мы видим, что mF — это миллифарады (10 -3 ). Микрофарад 10 -6 . Поскольку микрофарады меньше миллифарадов, мы переместим десятичную запятую на три позиции вправо.Это даст 300 мкФ.

    1. Перевести 4000 наноампер в микроампер.

    Мы переместим десятичную запятую на три позиции влево.

    4000 нА = 4000 X 10 -9 A = 4 X 10 -6 = 4 мкА

    1. Преобразование 1600 килоом в мегаом

    Мы переместим десятичную запятую на три позиции влево.

    1600 кОм = 1600 X 10 3 = 1,6 X 10 6 = 1.6 МОм

    Как соотносятся напряжение, ток и сопротивление: Закон Ома

    Том I — Округ Колумбия »ЗАКОН ОМА»

    Электрическая цепь образуется, когда создается токопроводящий путь для
    позволяют свободным электронам непрерывно двигаться. Это непрерывное движение
    Свободные электроны, проходящие через проводники цепи, называют током , и его часто называют «потоком», как поток жидкости через полую трубу.

    Сила, побуждающая электроны «течь» в цепи, называется напряжением .Напряжение — это особая мера потенциальной энергии, которая всегда
    относительный между двумя точками. Когда мы говорим об определенном количестве
    напряжение, присутствующее в цепи, мы имеем в виду измерение
    о том, сколько потенциальных энергии существует для перемещения электронов из одной конкретной точки в этой цепи в другую конкретную точку. Без ссылки на двух конкретных точек термин «напряжение» не имеет значения.

    Свободные электроны имеют тенденцию перемещаться по проводникам с некоторой степенью
    трение или противодействие движению.Это противодействие движению больше
    правильно называется сопротивление . Количество тока
    в цепи зависит от количества доступного напряжения, чтобы мотивировать
    электронов, а также количество сопротивления в цепи, чтобы противостоять
    электронный поток. Как и напряжение, сопротивление — величина относительная.
    между двумя точками. По этой причине величины напряжения и
    сопротивление часто указывается как «между» или «поперек» двух точек
    в цепи.

    Чтобы иметь возможность делать значимые заявления об этих количествах в
    цепей, мы должны иметь возможность описывать их количество в одном и том же
    способ, которым мы могли бы количественно определить массу, температуру, объем, длину или любой другой
    другой вид физической величины.Для массы мы можем использовать единицы
    «фунт» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или
    градусов Цельсия. Вот стандартные единицы измерения для
    электрический ток, напряжение и сопротивление:

    «Символ», указанный для каждого количества, является стандартным буквенным обозначением.
    буква, используемая для обозначения этой величины в алгебраическом уравнении.
    Подобные стандартизированные буквы распространены в дисциплинах
    физика и техника, и признаны во всем мире.Единица
    аббревиатура «для каждого количества представляет собой используемый алфавитный символ.
    как сокращенное обозначение его конкретной единицы измерения. И,
    да, этот странный на вид символ «подкова» — заглавная греческая
    буква Ω, просто символ в иностранном алфавите (извинения перед греческими читателями здесь).

    Каждая единица измерения названа в честь известного экспериментатора в области электричества: amp в честь француза Андре М.Ампер, вольт после итальянского Алессандро Вольта и Ом после немца Георга Симона Ома.

    Математический символ для каждой величины также имеет значение. В
    «R» для сопротивления и «V» для напряжения говорят сами за себя,
    тогда как «I» для тока
    кажется немного странным. Считается, что «я» должно было представлять
    «Интенсивность» (потока электронов) и другой символ напряжения, «E».
    расшифровывается как «Электродвижущая сила.»Из каких исследований мне удалось
    Да, похоже, есть некоторые споры о значении «я». Символы
    «E» и «V» по большей части взаимозаменяемы, хотя некоторые тексты
    зарезервируйте «E» для обозначения напряжения на источнике (таком как батарея или
    генератор) и «V» для обозначения напряжения на любом другом элементе.

    Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток)
    описывается в терминах короткого периода времени (называемого
    «мгновенное» значение).Например, напряжение батареи, которое
    стабильный в течение длительного периода времени, будет обозначаться заглавной буквой
    буква «Е», а пик напряжения удара молнии в самом
    момент попадания в линию электропередачи, скорее всего, будет обозначен
    строчная буква «е» (или строчная буква «v») для обозначения этого значения как
    находясь в один момент времени. Это же соглашение о нижнем регистре выполняется
    верно и для тока, строчная буква «i» обозначает ток в некоторый момент времени.Однако большинство измерений постоянного тока (DC), которые стабильны во времени, будут обозначены заглавными буквами.

    Одна основополагающая единица электрического измерения, которой часто учат в
    начало курсов электроники, но впоследствии редко используемое,
    блок кулонов ,
    который представляет собой меру электрического заряда, пропорциональную количеству
    электроны в несбалансированном состоянии. Один кулон заряда равен
    6 250 000 000 000 000 000 электронов.Символ электрического заряда
    количество — заглавная буква «Q» с единицей измерения кулоны.
    сокращенно заглавной буквой «C». Так получилось, что агрегат для
    поток электронов, amp, равен 1 кулону электронов, проходящих через
    данный момент в цепи за 1 секунду времени. В этих терминах ток — это скорость движения электрического заряда по проводнику.

    Как указывалось ранее, напряжение — это мера потенциальной энергии на единицу заряда , доступной для перемещения электронов из одной точки в другую.Прежде чем мы сможем точно определить, что такое «вольт»
    то есть, мы должны понять, как измерить эту величину, которую мы называем «потенциал
    энергия ». Общая единица измерения энергии любого вида — джоулей ,
    равно количеству работы, выполненной приложенной силой в 1 ньютон
    через движение на 1 метр (в том же направлении). В британских частях
    это чуть меньше 3/4 фунта силы, приложенной на расстоянии
    1 фут. Проще говоря, требуется около 1 джоуля энергии для
    поднимите гирю 3/4 фунта на 1 фут от земли или перетащите что-нибудь
    расстояние в 1 фут с использованием параллельного тягового усилия 3/4 фунта.Определенный
    в этих научных терминах 1 вольт равен 1 джоуля электрической потенциальной энергии на (деленный на) 1 кулон заряда. Таким образом, батарея на 9 вольт выделяет 9 джоулей энергии на каждый кулон электронов, перемещаемых по цепи.

    Эти единицы и символы электрических величин станут очень
    важно знать, когда мы начинаем исследовать отношения между ними
    в схемах. Первые и, пожалуй, самые важные отношения
    Между током, напряжением и сопротивлением называется закон Ома, открытый Георгом Саймоном Омом и опубликованный в его статье 1827 года Математические исследования гальванической цепи .Главное открытие Ома заключалось в том, что величина электрического тока
    через металлический проводник в цепи прямо пропорционально
    напряжение, приложенное к нему, для любой заданной температуры. Ом выражен
    его открытие в виде простого уравнения, описывающего, как напряжение,
    ток и сопротивление взаимосвязаны:

    В этом алгебраическом выражении напряжение (E) равно току
    (I) умноженное на сопротивление (R). Используя методы алгебры, мы можем
    преобразовать это уравнение в два варианта, решая для I и R,
    соответственно:

    Давайте посмотрим, как эти уравнения могут работать, чтобы помочь нам анализировать простые схемы:

    В приведенной выше схеме есть только один источник напряжения (аккумулятор слева) и только один источник сопротивления току.
    (лампа справа).Это позволяет очень легко применять закон Ома.
    Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.

    В этом первом примере мы рассчитаем величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):

    Какая величина тока (I) в этой цепи?

    В этом втором примере мы рассчитаем величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):

    Какое сопротивление (R) предлагает лампа?

    В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):

    Какое напряжение обеспечивает аккумулятор?

    Закон Ома — очень простой и полезный инструмент для анализа электрических
    схемы.Он так часто используется при изучении электричества и
    электроники, которую нужно сохранить в памяти серьезными
    студент. Для тех, кто еще не знаком с алгеброй, есть
    трюк с запоминанием того, как решить для любого одного количества, учитывая другое
    два. Сначала расположите буквы E, I и R в виде треугольника следующим образом:

    Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:

    Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:

    Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:

    В конце концов, вам придется познакомиться с алгеброй, чтобы серьезно
    изучать электричество и электронику, но этот совет может сделать ваш первый
    расчеты запомнить немного легче.Если тебе комфортно с
    алгебры, все, что вам нужно сделать, это зафиксировать E = IR в памяти и получить
    другие две формулы из того, когда они вам понадобятся!

    • ОБЗОР:
    • Напряжение измеряется в вольт , обозначается буквами «E» или «V».
    • Ток измеряется в ампер , обозначается буквой «I».
    • Сопротивление измеряется в Ом. обозначается буквой «R».
    • Закон Ома: E = IR; I = E / R; R = E / I

    Обозначения цепей

    | Electronics Club

    Условные обозначения схем | Клуб электроники

    Провода | Принадлежности |
    Устройства вывода | Переключатели |
    Резисторы | Конденсаторы |
    Диоды | Транзисторы |
    Аудио и радио | Метры |
    Датчики | Логические ворота

    Следующая страница: Электричество и электрон

    См. Также: Схемы соединений

    Условные обозначения на схемах

    Обозначения цепей используются в принципиальных схемах, показывающих, как
    соединены вместе.Фактическое расположение компонентов обычно сильно отличается от принципиальной схемы.

    Для построения схемы вам понадобится другая диаграмма, показывающая расположение частей на
    макетная (для временных схем), стрипборд
    или печатная плата.

    Принципиальная схема


    Символы проводов и подключений

    Провод

    Соединяет компоненты и легко передает ток от одной части цепи к другой.

    Провода соединились

    «Клякса» должна быть нарисована в месте соединения (стыковки) проводов, но иногда ее не показывают.Провода, подключенные на «перекрестке», должны быть слегка смещены в шахматном порядке для образования двух Т-образных переходов.
    как показано справа.

    Провода не соединены

    В сложных схемах часто необходимо провести пересечение проводов, даже если они не
    связаны. Простое пересечение слева правильно, но может быть ошибочно прочитано как соединение, где
    о «капле» забыли. Символ моста справа не оставляет сомнений!



    Символы блока питания

    Ячейка

    Поставляет электрическую энергию.Большая линия — положительный знак (+).
    Единичный элемент часто называют аккумулятором, но, строго говоря, аккумулятор — это два или более элемента, соединенных вместе.

    Аккумулятор

    Поставляет электрическую энергию. Батарея состоит из более чем одной ячейки. Большая линия — положительный знак (+).

    Солнечный элемент

    Преобразует свет в электрическую энергию.
    Большая линия положительная (+).

    Источник постоянного тока

    Поставляет электрическую энергию.
    DC = постоянный ток, всегда протекающий в одном направлении.

    Источник переменного тока

    Поставляет электрическую энергию.
    AC = переменный ток, постоянно меняющий направление.

    Предохранитель

    Устройство безопасности, которое «взорвется» (расплавится), если ток, протекающий через него, превысит заданное значение.

    Трансформатор

    Две катушки проволоки, соединенные железным сердечником. Трансформаторы используются для усиления
    (увеличение) и понижение (уменьшение) переменного напряжения. Энергия передается между
    катушки магнитным полем в сердечнике, между катушками нет электрического соединения.

    Земля (Земля)

    Подключение к земле. В некоторых электронных схемах этот символ используется для обозначения 0 В (ноль вольт) источника питания,
    но для электросети и некоторых радиосхем это действительно означает землю. Он также известен как земля.


    Обозначения устройства вывода

    Лампа (осветительная)

    Преобразователь, преобразующий электрическую энергию в свет.
    Этот символ используется для лампы, обеспечивающей освещение, например, автомобильной фары или лампы фонарика.

    Лампа (индикатор)

    Преобразователь, преобразующий электрическую энергию в свет.
    Этот символ используется для лампы, которая является индикатором, например, сигнальной лампой на приборной панели автомобиля.

    Нагреватель

    Преобразователь, преобразующий электрическую энергию в тепло.

    Двигатель

    Преобразователь, преобразующий электрическую энергию в кинетическую энергию (движение).

    Белл

    Преобразователь, преобразующий электрическую энергию в звук.

    Зуммер

    Преобразователь, преобразующий электрическую энергию в звук.

    Индуктор, Катушка, Соленоид

    Катушка с проволокой, которая создает магнитное поле, когда через нее проходит ток.
    Внутри катушки может быть железный сердечник. Может использоваться как преобразователь
    преобразование электрической энергии в механическую, притягивая что-либо магнитным путем.


    Символы переключателей

    Двухпозиционный выключатель

    Кнопочный переключатель позволяет току течь только при нажатии кнопки.
    Это переключатель, используемый для управления дверным звонком.

    Автоматический выключатель

    Этот тип нажимного переключателя нормально замкнут = включен, он разомкнут = выключен только при нажатии кнопки.

    SPST, двухпозиционный переключатель

    SPST = однополюсный, односторонний.
    Ток протекает только тогда, когда переключатель находится в положении «замкнуто = включено».

    SPDT, 2-позиционный переключатель

    SPDT = однополюсный, двусторонний.
    Двухпозиционный переключатель направляет ток по одному из двух путей в зависимости от его положения.
    Некоторые переключатели SPDT имеют центральное выключенное положение и описываются как «вкл-выкл-вкл».

    Переключатель DPST

    DPST = двухполюсный, одинарный.
    Двойной двухпозиционный выключатель, который часто используется для включения электросети, поскольку он может
    Изолируйте и токоведущие, и нейтральные соединения.

    Переключатель DPDT

    DPDT = двойной полюс, двойной бросок.
    Этот переключатель можно подключить как реверсивный переключатель двигателя.
    Некоторые переключатели DPDT имеют центральное положение выключения.

    Реле

    Переключатель с электрическим приводом, например, цепь батареи 9 В, подключенная к
    катушка может переключать сеть переменного тока. Прямоугольник представляет катушку.
    NO = нормально открытый, COM = общий, NC = нормально закрытый.


    Условные обозначения резисторов

    Резистор

    Резистор ограничивает поток заряда.Использование включает ограничение тока, проходящего через светодиод,
    и медленную зарядку конденсатора в цепи синхронизации.

    В некоторых публикациях используется старый символ резистора:

    Реостат переменный резистор

    Реостат имеет 2 контакта и обычно используется для контроля тока.
    Использование включает в себя управление яркостью лампы или скоростью двигателя и изменение скорости потока заряда в конденсатор в схеме синхронизации.

    Потенциометр переменного резистора

    Потенциометр имеет 3 контакта и обычно используется для контроля напряжения.Его можно использовать таким образом как преобразователь положения (угла управляющего шпинделя) в электрический сигнал.

    Предустановленный переменный резистор

    Для работы с предустановкой используется небольшая отвертка или аналогичный инструмент.
    Он предназначен для настройки при замыкании цепи, а затем для оставления без дальнейшей регулировки.
    Пресеты дешевле стандартных переменных резисторов, поэтому их иногда используют в проектах для снижения стоимости.


    Обозначения конденсаторов

    Конденсатор неполяризованный

    Конденсатор накапливает электрический заряд.Его можно использовать с резистором в цепи синхронизации,
    для сглаживания притока (образует резервуар заряда) и может использоваться как фильтр
    (блокирует сигналы постоянного тока, но пропускает сигналы переменного тока). Неполяризованные конденсаторы обычно имеют небольшие значения, менее 1 мкФ.

    Конденсатор, поляризованный

    Конденсатор накапливает электрический заряд. Поляризованные конденсаторы должны быть подключены правильно.
    Обычно они имеют большие значения, 1 мкФ и выше. См. Использование выше.

    Конденсатор переменной емкости

    В радиотюнере используется переменный конденсатор.

    Подстроечный конденсатор переменной емкости

    Этот тип переменного конденсатора предназначен для установки при замыкании цепи, а затем оставления без дальнейшей регулировки.


    Диодные символы

    Диод

    Устройство, позволяющее току течь только в одном направлении.

    Светоизлучающий диод

    Преобразователь, преобразующий электрическую энергию в свет. Обычно сокращается до LED.

    Стабилитрон

    Для поддержания постоянного напряжения можно использовать стабилитрон.

    Фотодиод

    Светочувствительный диод.


    Обозначения транзисторов

    Транзистор NPN

    Транзистор усиливает ток и может использоваться с другими компонентами для создания усилителя или схемы переключения.
    Этот символ обозначает биполярный переходной транзистор (BJT), тип, который вы, скорее всего, будете использовать в первую очередь.

    Транзистор PNP

    Транзистор усиливает ток и может использоваться с другими компонентами для создания усилителя или схемы переключения.Этот символ обозначает биполярный переходной транзистор (BJT), тип, который вы, скорее всего, будете использовать в первую очередь.

    Фототранзистор

    Транзистор светочувствительный.


    Звуковые и радио символы

    Микрофон

    Преобразователь, преобразующий звук в электрическую энергию.

    Наушники

    Преобразователь, преобразующий электрическую энергию в звук.

    Громкоговоритель

    Преобразователь, преобразующий электрическую энергию в звук.

    Пьезоэлектрический преобразователь

    Преобразователь, преобразующий электрическую энергию в звук.

    Усилитель (общее обозначение)

    Схема усилителя с одним входом. На самом деле это символ блок-схемы
    потому что он представляет собой схему, а не только один компонент.

    Антенна (Антенна)

    Устройство для приема и передачи радиосигналов. Он также известен как антенна.


    Измерители и осциллографы

    Вольтметр

    Измеряет напряжение.Правильное название напряжения — «разность потенциалов», но более широко используется напряжение.

    Амперметр

    Измеряет ток.

    Гальванометр

    Очень чувствительный измеритель, используемый для измерения крошечных токов, обычно 1 мА или меньше.

    Омметр

    Измеряет сопротивление. Большинство мультиметров имеют настройку омметра.

    Осциллограф

    Осциллограф используется для отображения «формы» электрических сигналов, показывая, как они меняются со временем.Его можно использовать для измерения напряжения и временных периодов.


    Датчики (устройства ввода)

    LDR

    Преобразователь, преобразующий яркость (свет) в сопротивление (электрическое свойство).
    LDR = светозависимый резистор

    Термистор

    Преобразователь, преобразующий температуру (тепло) в сопротивление (электрическое свойство).



    Символы логического элемента

    Логические вентили обрабатывают сигналы, которые представляют истинных (1, высокий, + Vs, вкл.) Или ложных (0, низкий, 0В, выкл.).Для получения дополнительной информации см. Страницу о логических вентилях.
    Есть два набора символов: традиционный и IEC (Международная электротехническая комиссия).

    НЕ

    Элемент НЕ может иметь только один вход. «О» на выходе означает «нет». Выход логического элемента НЕ является обратным.
    (напротив) его входа, поэтому выход истинен, когда вход ложен. Вентиль НЕ также называется инвертором.

    Традиционный

    МЭК

    И

    Логический элемент И может иметь два или более входов.Выход логического элемента И истинен, когда все его входы истинны.

    Традиционный

    МЭК

    NAND

    Логический элемент И-НЕ может иметь два или более входов. ‘O’ на выходе означает ‘не’, показывая, что это
    N от И ворота. Выход логического элемента И-НЕ истинен, если все его входы не верны.

    Традиционный

    МЭК

    ИЛИ

    Логический элемент ИЛИ может иметь два или более входов.Выход логического элемента ИЛИ истинен, когда хотя бы один из его входов истинен.

    Традиционный

    МЭК

    НОР

    Логический элемент ИЛИ-НЕ может иметь два или более входов. ‘O’ на выходе означает ‘не’, показывая, что это
    N от OR вентиль. Выход логического элемента ИЛИ-НЕ является истиной, когда ни один из его входов не является истиной.

    Традиционный

    МЭК

    EX-OR

    Элемент EX-OR может иметь только два входа.Выход логического элемента EX-OR истинен, когда его входы различны (один истинный, один ложный).

    Традиционный

    МЭК

    EX-NOR

    Гейт EX-NOR может иметь только два входа. ‘O’ на выходе означает ‘not’, показывая, что это N ot
    EX-OR вентиль. Выход элемента EX-NOR является истинным, если его входы одинаковы (оба истинны или оба ложны).

    Традиционный

    МЭК



    Политика конфиденциальности и файлы cookie

    Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет
    используется только для ответа на ваше сообщение, оно не будет передано никому.
    На этом веб-сайте отображается реклама, если вы нажмете на
    рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.
    Рекламодателям не передается никакая личная информация.
    Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов.
    (включая этот), как объяснил Google.
    Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста
    посетите AboutCookies.org.

    electronicsclub.info © Джон Хьюс 2021 г.

    Определение электрического тока

    Электрический ток — это мера количества электрического заряда, передаваемого за единицу времени. Он представляет собой поток электронов через проводящий материал, например металлическую проволоку.Измеряется в амперах.

    Единицы и обозначения для электрического тока

    Единицей измерения электрического тока в системе СИ является ампер, равный 1 кулону в секунду. Ток — это величина, то есть это одно и то же число независимо от направления потока, без положительного или отрицательного числа. Однако при анализе цепей важно направление тока.

    Условное обозначение тока — I , которое происходит от французской фразы интенсивность куранта , что означает сила тока .Сила тока часто обозначается просто как , сила тока .

    Символ I использовал Андре-Мари Ампер, в честь которого названа единица измерения электрического тока. Он использовал символ I при формулировке закона силы Ампера в 1820 году. Обозначение перешло из Франции в Великобританию, где оно стало стандартом, хотя по крайней мере один журнал не изменился с C на I до 1896 года.

    Закон Ома, регулирующий электрический ток

    Закон Ома гласит, что ток через проводник между двумя точками прямо пропорционален разности потенциалов между двумя точками.Вводя константу пропорциональности, сопротивление, приходим к обычному математическому уравнению, описывающему эту взаимосвязь:

    I = V / R

    В этом соотношении I — это ток через проводник в единицах ампер, В, — это разность потенциалов, измеренная на проводе в единицах вольт, и R — это сопротивление проводника в единицах Ом. . Более конкретно, закон Ома гласит, что R в этом отношении является постоянным и не зависит от тока.Закон Ома используется в электротехнике для решения схем.

    Аббревиатуры AC и DC часто используются для обозначения просто переменного и постоянного , когда они изменяют ток или напряжение . Это два основных типа электрического тока.

    Постоянный ток

    Постоянный ток (DC) — это однонаправленный поток электрического заряда. Электрический заряд течет в постоянном направлении, что отличает его от переменного тока.Термин, ранее использовавшийся для постоянного тока , был гальваническим током.

    Постоянный ток вырабатывается такими источниками, как батареи, термопары, солнечные элементы и электрические машины коммутаторного типа динамо-типа. Постоянный ток может течь в проводнике, таком как провод, но также может течь через полупроводники, изоляторы или даже через вакуум, как в электронных или ионных пучках.

    Переменный ток

    В переменном токе (AC, также AC) движение электрического заряда периодически меняет направление.В постоянном токе электрический заряд идет только в одном направлении.

    Переменный ток — это форма подачи электроэнергии на предприятия и жилые дома. Обычная форма волны в силовой цепи переменного тока — синусоидальная волна. В некоторых приложениях используются сигналы различной формы, например треугольные или прямоугольные.

    Аудио- и радиосигналы, передаваемые по электрическим проводам, также являются примерами переменного тока. Важной целью в этих приложениях является восстановление информации, закодированной (или модулированной ) в сигнал переменного тока.

    % PDF-1.5
    %
    89 0 obj>
    эндобдж

    xref
    89 76
    0000000016 00000 н.
    0000002452 00000 н.
    0000001816 00000 н.
    0000002530 00000 н.
    0000002654 00000 н.
    0000003177 00000 н.
    0000003526 00000 н.
    0000004058 00000 н.
    0000004584 00000 н.
    0000005115 00000 н.
    0000005400 00000 н.
    0000006025 00000 н.
    0000006090 00000 н.
    0000006295 00000 н.
    0000006622 00000 н.
    0000006686 00000 н.
    0000006846 00000 н.
    0000006893 00000 н.
    0000006957 00000 н.
    0000007004 00000 н.
    0000007288 00000 н.
    0000007374 00000 н.
    0000007876 00000 н.
    0000013412 00000 п.
    0000013798 00000 п.
    0000014167 00000 п.
    0000014455 00000 п.
    0000014830 00000 н.
    0000020351 00000 п.
    0000020768 00000 п.
    0000020882 00000 п.
    0000021224 00000 п.
    0000022475 00000 п.
    0000022733 00000 п.
    0000022934 00000 п.
    0000023287 00000 п.
    0000026956 00000 п.
    0000027571 00000 п.
    0000032829 00000 н.
    0000038520 00000 п.
    0000043730 00000 п.
    0000048792 00000 п.
    0000053797 00000 п.
    0000058856 00000 п.
    0000059151 00000 п.
    0000060917 00000 п.
    0000061282 00000 п.
    0000061436 00000 п.
    0000061661 00000 п.
    0000062031 00000 п.
    0000065753 00000 п.
    0000066124 00000 п.
    0000066193 00000 п.
    0000066257 00000 п.
    0000066982 00000 п.
    0000067609 00000 п.
    0000069621 00000 п.
    0000069908 00000 н.
    0000069976 00000 п.
    0000070495 00000 п.
    0000070588 00000 п.
    0000075741 00000 п.
    0000081716 00000 п.
    0000082560 00000 п.
    0000083366 00000 п.
    0000084220 00000 п.
    0000085167 00000 п.
    0000085730 00000 п.
    0000086082 00000 п.
    0000086173 00000 п.
    0000086492 00000 п.
    0000087091 00000 п.
    0000087328 00000 п.
    0000087489 00000 н.
    0000087852 00000 п.
    0000089428 00000 п.
    трейлер
    ] >>
    startxref
    0
    %% EOF

    91 0 obj> поток
    xb«b`Oc`g`cdd @

    ОСНОВНЫЕ КОНЦЕПЦИИ И ВЗАИМООТНОШЕНИЯ — Прикладное промышленное электричество

    Столетия назад было обнаружено, что определенные типы материалов загадочным образом притягиваются друг к другу после того, как их натерли друг на друга.Например, если протереть кусок шелка о кусок стекла, шелк и стекло будут иметь тенденцию слипаться. Действительно, сила притяжения могла быть продемонстрирована, даже когда два материала были разделены:

    Рис. 2.1.

    Стекло и шелк — не единственные материалы, которые, как известно, ведут себя подобным образом. Любой, кто когда-либо касался латексного шара только для того, чтобы обнаружить, что он пытается прилипнуть к нему, испытал то же самое явление. Парафин и шерстяная ткань — еще одна пара материалов, которые ранние экспериментаторы признали проявляющими силу притяжения после трения друг о друга:

    Фигура 2.2

    Это явление стало еще более интересным, когда было обнаружено, что идентичные материалы после протирания их соответствующей тканью всегда отталкивают друг друга:

    Рис. 2.3

    Также было отмечено, что когда кусок стекла, натертый шелком, подвергался воздействию куска воска, натертого шерстью, два материала притягивались друг к другу:

    Рис. 2.4

    Кроме того, было обнаружено, что любой материал, демонстрирующий свойства притяжения или отталкивания после трения, может быть отнесен к одной из двух различных категорий: притягивается к стеклу и отталкивается воском или отталкивается стеклом и притягивается к воску.Было либо одно, либо другое: не было обнаружено материалов, которые могли бы притягиваться или отталкиваться как стеклом, так и воском, или которые реагировали бы на одно, не реагируя на другое.

    Больше внимания было обращено на куски ткани, используемые для растирания. Было обнаружено, что после протирания двух кусков стекла двумя кусками шелковой ткани не только кусочки стекла отталкивались друг от друга, но и ткани. То же самое произошло с кусочками шерсти, которыми натирали воск:

    Фигура 2.5

    Это было действительно странно наблюдать. В конце концов, ни один из этих предметов не претерпел видимых изменений в результате трения, но они определенно вели себя иначе, чем до того, как их натерли. Какое бы изменение ни произошло, заставив эти материалы притягиваться или отталкивать друг друга, было незаметно.

    Некоторые экспериментаторы предположили, что невидимые «жидкости» переходили от одного объекта к другому в процессе трения и что эти «жидкости» были способны воздействовать на физическую силу на расстоянии.Чарльз Дюфай был одним из первых экспериментаторов, которые продемонстрировали, что существует определенно два разных типа изменений, вызванных трением определенных пар предметов друг о друга. Тот факт, что в этих материалах проявлялось более одного типа изменений, был очевиден тем фактом, что были созданы два типа сил: притяжения и отталкивания . Гипотетический перенос жидкости стал известен как заряд .

    Один исследователь-пионер, Бенджамин Франклин, пришел к выводу, что между натертыми предметами происходил обмен только одной жидкостью, и что два разных «заряда» были не чем иным, как избытком или недостатком этой жидкости.После экспериментов с воском и шерстью Франклин предположил, что грубая шерсть удаляет часть этой невидимой жидкости из гладкого воска, вызывая избыток жидкости на шерсти и недостаток жидкости на воске. Возникающее в результате несоответствие содержания жидкости между шерстью и воском могло вызвать силу притяжения, поскольку жидкость пыталась восстановить прежний баланс между двумя материалами.

    Постулирование существования единственной «жидкости», которая была получена или потеряна в результате трения, лучше всего объясняет наблюдаемое поведение: все эти материалы аккуратно попадают в одну из двух категорий при трении и, что наиболее важно, что два активных материала трутся о них. друг друга всегда попадали в противоположные категории , о чем свидетельствует их неизменное влечение друг к другу.Другими словами, никогда не было времени, когда два материала трулись друг о друга , и оба становились либо положительными, либо отрицательными.

    После предположения Франклина о том, что шерсть стирает что-то с воска, тип заряда, который был связан с натертым воском, стал известен как «отрицательный» (поскольку предполагалось, что он имеет дефицит жидкости), в то время как тип заряда, связанный с натирание шерсти стало называться «положительным» (поскольку предполагалось, что в ней будет избыток жидкости).Он и не подозревал, что его невинное предположение в будущем вызовет много путаницы у изучающих электричество!

    Точные измерения электрических зарядов были выполнены французским физиком Шарлем Кулоном в 1780-х годах с помощью устройства, называемого крутильными весами , для измерения силы, создаваемой между двумя электрически заряженными объектами. Результаты работы Кулона привели к разработке единицы электрического заряда, названной в его честь, кулонов .Если бы два «точечных» объекта (гипотетические объекты, не имеющие заметной площади поверхности) были бы одинаково заряжены величиной 1 кулон и поместили на расстоянии 1 метра (примерно 1 ярд) друг от друга, они бы генерировали силу около 9 миллиардов ньютонов (примерно 2 миллиарда фунтов), либо притягивая, либо отталкивая в зависимости от типа задействованных зарядов. Рабочее определение кулона как единицы электрического заряда (в терминах силы, создаваемой между точечными зарядами) оказалось равным избытку или недостатку примерно в 6 250 000 000 000 000 000 электронов.Или, говоря наоборот, один электрон имеет заряд около 0,00000000000000000016 кулонов. Поскольку один электрон является наименьшим из известных носителей электрического заряда, последняя величина заряда электрона определяется как элементарный заряд .
    Гораздо позже было обнаружено, что эта «жидкость» на самом деле состоит из очень маленьких кусочков материи, названных электронами , названными так в честь древнегреческого слова, обозначающего янтарь: еще один материал, проявляющий заряженные свойства при трении тканью.

    Состав атома

    Эксперименты с тех пор показали, что все объекты состоят из чрезвычайно маленьких «строительных блоков», известных как атомов , и что эти атомы, в свою очередь, состоят из более мелких компонентов, известных как частицы . Три основных частицы, составляющие большинство атомов, называются протонами , нейтронами и электронами . Хотя большинство атомов состоит из протонов, нейтронов и электронов, не все атомы имеют нейтроны; Примером является изотоп протия (1h2) водорода (Водород-1), который является самой легкой и наиболее распространенной формой водорода, которая имеет только один протон и один электрон.Атомы слишком малы, чтобы их можно было увидеть, но если бы мы могли взглянуть на один, он мог бы выглядеть примерно так:

    Несмотря на то, что каждый атом в куске материала имеет тенденцию держаться вместе как единое целое, на самом деле между электронами и кластером протонов и нейтронов, находящимся посередине, остается много пустого пространства.

    Рис. 2.6

    Эта грубая модель представляет собой модель элемента углерода с шестью протонами, шестью нейтронами и шестью электронами. В любом атоме протоны и нейтроны очень прочно связаны друг с другом, что является важным качеством.Плотно связанный сгусток протонов и нейтронов в центре атома называется ядром , и количество протонов в ядре атома определяет его элементарную идентичность: измените количество протонов в ядре атома, и вы измените тип атома, который он есть. Фактически, если бы вы могли удалить три протона из ядра атома свинца, вы осуществили бы мечту старых алхимиков о создании атома золота! Тесное связывание протонов в ядре отвечает за стабильную идентичность химических элементов и неспособность алхимиков осуществить свою мечту.

    Нейтроны гораздо меньше влияют на химический характер и идентичность атома, чем протоны, хотя их так же трудно добавить в ядро ​​или удалить из него, поскольку они так прочно связаны. Если нейтроны добавляются или приобретаются, атом все равно сохранит ту же химическую идентичность, но его масса немного изменится, и он может приобрести странные ядерные свойства, такие как радиоактивность.

    Однако электроны обладают значительно большей свободой передвижения в атоме, чем протоны или нейтроны.Фактически, они могут быть выбиты из своего положения (даже полностью покинув атом!) С гораздо меньшей энергией, чем та, которая требуется для смещения частиц в ядре. Если это произойдет, атом по-прежнему сохраняет свою химическую идентичность, но возникает важный дисбаланс. Электроны и протоны уникальны тем, что они притягиваются друг к другу на расстоянии. Именно это притяжение на расстоянии вызывает притяжение между натертыми объектами, когда электроны удаляются от своих первоначальных атомов и располагаются вокруг атомов другого объекта.

    Электроны имеют тенденцию отталкивать другие электроны на расстоянии, как и протоны с другими протонами. Единственная причина, по которой протоны связываются вместе в ядре атома, заключается в гораздо большей силе, называемой сильной ядерной силой , которая действует только на очень коротких расстояниях. Считается, что из-за такого поведения притяжения / отталкивания между отдельными частицами электроны и протоны имеют противоположные электрические заряды. То есть каждый электрон имеет отрицательный заряд, а каждый протон — положительный.В равных количествах внутри атома они противодействуют присутствию друг друга, так что общий заряд внутри атома равен нулю. Вот почему изображение атома углерода имеет шесть электронов: чтобы уравновесить электрический заряд шести протонов в ядре. Если электроны уйдут или появятся дополнительные электроны, общий электрический заряд атома будет разбалансирован, в результате чего атом останется «заряженным» в целом, заставив его взаимодействовать с заряженными частицами и другими заряженными атомами поблизости. Нейтроны не притягиваются и не отталкиваются электронами, протонами или даже другими нейтронами и, следовательно, классифицируются как не имеющие никакого заряда.

    Процесс прибытия или ухода электронов — это именно то, что происходит, когда определенные комбинации материалов трются друг о друга: электроны от атомов одного материала вынуждаются трением покинуть свои соответствующие атомы и переходить к атомам другого материала. Другими словами, электроны составляют «жидкость», выдвинутую Бенджамином Франклином.

    Что такое статическое электричество?

    Результат дисбаланса этой «жидкости» (электронов) между объектами называется статическим электричеством .Это называется «статическим», потому что смещенные электроны стремятся оставаться неподвижными после перемещения из одного изоляционного материала в другой. В случае воска и шерсти путем дальнейших экспериментов было установлено, что электроны в шерсти фактически передаются атомам воска, что прямо противоположно гипотезе Франклина! В честь того, что Франклин назвал заряд воска «отрицательным», а заряд шерсти «положительным», электроны, как говорят, обладают «отрицательным» зарядным влиянием.Таким образом, объект, атомы которого получили избыток электронов, считается заряженным на отрицательно на , в то время как объект, атомы которого не имеют электронов, считается заряженным на положительно на , как бы сбивает с толку эти обозначения. К тому времени, когда была открыта истинная природа электрической «жидкости», номенклатура электрического заряда Франклина была слишком хорошо установлена, чтобы ее можно было легко изменить, и так остается по сей день.

    Майкл Фарадей доказал (1832 г.), что статическое электричество такое же, как у батареи или генератора.Статическое электричество по большей части доставляет неудобства. В черный порох и бездымный порох добавлен графит для предотвращения возгорания из-за статического электричества. Это вызывает повреждение чувствительной полупроводниковой схемы. Хотя возможно производство двигателей с питанием от статического электричества с высоким напряжением и низким током, это неэкономично. Немногочисленные практические применения статического электричества включают ксерографическую печать, электростатический воздушный фильтр и высоковольтный генератор Ван де Граафа.

    • Все материалы состоят из крошечных «строительных блоков», известных как атомов .
    • Все встречающиеся в природе атомы содержат частицы, называемые электронами , протонами и нейтронами , за исключением изотопа протия ( 1 H 1 ) водорода.
    • Электроны имеют отрицательный (-) электрический заряд.
    • Протоны имеют положительный (+) электрический заряд.
    • Нейтроны не имеют электрического заряда.
    • Электроны удаляются из атомов намного легче, чем протоны или нейтроны.
    • Количество протонов в ядре атома определяет его идентичность как уникального элемента.

    Электроны атомов разных типов имеют разную степень свободы передвижения. В некоторых типах материалов, таких как металлы, внешние электроны в атомах настолько слабо связаны, что они хаотично перемещаются в пространстве между атомами этого материала не более чем под влиянием тепловой энергии комнатной температуры.Поскольку эти практически несвязанные электроны могут свободно покидать свои соответствующие атомы и плавать в пространстве между соседними атомами, их часто называют свободными электронами .

    Проводники и изоляторы

    В других типах материалов, таких как стекло, электроны атомов имеют очень мало свободы передвижения. Хотя внешние силы, такие как физическое трение, могут заставить некоторые из этих электронов покинуть свои соответствующие атомы и перейти к атомам другого материала, они не очень легко перемещаются между атомами внутри этого материала.

    Эта относительная подвижность электронов в материале известна как электрическая проводимость . Электропроводность определяется типами атомов в материале (количество протонов в ядре каждого атома определяет его химическую идентичность) и тем, как атомы связаны друг с другом. Материалы с высокой подвижностью электронов (много свободных электронов) называются проводниками , в то время как материалы с низкой подвижностью электронов (мало или без свободных электронов) называются изоляторами .

    Вот несколько распространенных примеров проводников и изоляторов:

    Проводники Изоляторы
    серебро стекло
    медь каучук
    золото масло
    алюминий асфальт
    железо стекловолокно
    сталь фарфор
    латунь керамика
    бронза кварц
    ртуть (сухое) хлопок
    графит (сухая) бумага
    грязная вода (сухое) дерево
    бетон пластик
    воздух
    алмаз
    чистая вода


    Следует понимать, что не все проводящие материалы имеют одинаковый уровень проводимости, и не все изоляторы одинаково устойчивы к движению электронов.Электропроводность аналогична прозрачности некоторых материалов для света: материалы, которые легко «проводят» свет, называются «прозрачными», а те, которые этого не делают, — «непрозрачными». Однако не все прозрачные материалы одинаково светопроводят. Оконное стекло лучше, чем большинство пластиков, и, конечно, лучше, чем «прозрачное» стекловолокно. Так и с электрическими проводниками, одни лучше других.

    Например, серебро является лучшим проводником в списке «проводников», предлагая более легкий проход для электронов, чем любой другой упомянутый материал.Грязная вода и бетон также считаются проводниками, но эти материалы обладают значительно меньшей проводимостью, чем любой металл.

    Также следует понимать, что некоторые материалы изменяют свои электрические свойства в различных условиях. Стекло, например, является очень хорошим изолятором при комнатной температуре, но становится проводником при нагревании до очень высокой температуры. Такие газы, как воздух, обычно изолирующие материалы, также становятся проводящими при нагревании до очень высоких температур.Большинство металлов при нагревании становятся хуже проводниками, а при охлаждении — лучше. Многие проводящие материалы становятся идеально проводящими (это называется сверхпроводимостью ) при чрезвычайно низких температурах.

    Электронный поток / электрический ток

    В то время как нормальное движение «свободных» электронов в проводнике является случайным, без определенного направления или скорости, электроны могут скоординированно перемещаться через проводящий материал. Это равномерное движение электронов мы называем электричеством или электрическим током .Чтобы быть более точным, его можно было бы назвать динамическим электричеством в отличие от статического электричества , которое представляет собой неподвижное накопление электрического заряда. Так же, как вода, текущая через пустоту трубы, электроны могут перемещаться в пустом пространстве внутри и между атомами проводника. На наш взгляд проводник может показаться твердым, но любой материал, состоящий из атомов, по большей части представляет собой пустое пространство! Аналогия с потоком жидкости настолько уместна, что движение электронов через проводник часто называют «потоком».”

    Здесь можно сделать примечательное наблюдение. Поскольку каждый электрон равномерно движется через проводник, он толкает проводник впереди, так что все электроны движутся вместе как группа. Начало и остановка потока электронов по всей длине проводящего пути происходит практически мгновенно от одного конца проводника к другому, даже если движение каждого электрона может быть очень медленным. Примерная аналогия — трубка, заполненная встык мрамором:

    Фигура 2.7

    Трубка полна шариков, так же как проводник полон свободных электронов, готовых к перемещению под действием внешнего воздействия. Если один шарик внезапно вставляется в эту полную трубку с левой стороны, другой шарик немедленно попытается выйти из трубки справа. Несмотря на то, что каждый шарик прошел лишь небольшое расстояние, передача движения через трубку происходит практически мгновенно от левого конца к правому концу, независимо от длины трубки. С электричеством общий эффект от одного конца проводника до другого происходит со скоростью света: быстрые 186 000 миль в секунду !!! Однако каждый отдельный электрон проходит через проводник на , намного медленнее.

    Электронный поток через провод

    Если мы хотим, чтобы электроны текли в определенном направлении в определенное место, мы должны обеспечить им правильный путь, так же как водопроводчик должен установить трубопровод, чтобы вода текла туда, где он или она хочет, чтобы она текла. Чтобы облегчить это, провода изготовлены из металлов с высокой проводимостью, таких как медь или алюминий, самых разных размеров.

    Помните, что электроны могут течь только тогда, когда у них есть возможность перемещаться в пространстве между атомами материала.Это означает, что электрический ток может присутствовать только там, где существует непрерывный путь из проводящего материала, обеспечивающий проход для электронов. В аналогии с мрамором шарики могут течь в левую сторону трубки (и, следовательно, через трубку) тогда и только тогда, когда трубка открыта с правой стороны, чтобы шарики могли вытекать. Если трубка заблокирована с правой стороны, шарики будут просто «скапливаться» внутри трубки, и мраморный «поток» не произойдет.То же самое верно и для электрического тока: непрерывный поток электронов требует наличия непрерывного пути, позволяющего этот поток. Давайте посмотрим на диаграмму, чтобы проиллюстрировать, как это работает:

    Рис. 2.8

    Тонкая сплошная линия (как показано выше) является условным обозначением непрерывного отрезка провода. Поскольку проволока сделана из проводящего материала, такого как медь, составляющие ее атомы имеют много свободных электронов, которые могут легко перемещаться по проволоке. Однако в этом проводе никогда не будет непрерывного или равномерного потока электронов, если им не будет откуда взяться и куда пойти.Добавим гипотетические «Источник» и «Назначение» электрона:

    .

    Рис. 2.9.

    Теперь, когда Источник электронов проталкивает новые электроны в провод с левой стороны, может возникнуть поток электронов через провод (на что указывают стрелки, указывающие слева направо). Однако поток будет прерван, если токопроводящий путь, образованный проволокой, будет нарушен:

    Рисунок 2.10

    Целостность цепи

    Поскольку воздух является изолирующим материалом, а два куска провода разделяет воздушный зазор, некогда непрерывный путь прерван, и электроны не могут течь от источника к месту назначения.Это похоже на разрезание водопроводной трубы на две части и закрытие ее сломанных концов: вода не может течь, если нет выхода из трубы. С точки зрения электричества, у нас было состояние электрической цепи , когда провод был цельным, а теперь эта непрерывность прервана из-за того, что провод был разрезан и отделен.

    Если бы мы возьмем другой кусок провода, ведущего к Пункту назначения, и просто вступим в физический контакт с проводом, ведущим к Источнику, у нас снова будет непрерывный путь для движения электронов.Две точки на схеме обозначают физический контакт (металл-металл) между кусочками провода:

    Рисунок 2.11

    Теперь у нас есть непрерывность от Источника до вновь созданного соединения, вниз, вправо и вверх до Назначения. Это аналогично установке тройника в одну из закрытых труб и направлению воды через новый сегмент трубы к месту назначения. Обратите внимание, что по обрыву провода с правой стороны нет электронов, проходящих через него, потому что он больше не является частью полного пути от Источника к Пункту назначения.

    Интересно отметить, что из-за этого электрического тока внутри проводов не происходит «износа», в отличие от водопроводных труб, которые в конечном итоге подвергаются коррозии и изнашиваются из-за продолжительных потоков. Однако при движении электроны сталкиваются с некоторым трением, и это трение может генерировать тепло в проводнике. Это тема, которую мы рассмотрим более подробно позже.

    • В проводящих материалах внешние электроны в каждом атоме могут легко приходить или уходить и называются свободными электронами.
    • В изоляционных материалах внешние электроны не так свободно перемещаются.
    • Все металлы электропроводны.
    • Динамическое электричество или электрический ток — это равномерное движение электронов по проводнику.
    • Статическое электричество — это неподвижный (если на изоляторе) накопленный заряд, образованный избытком или недостатком электронов в объекте. Обычно он образуется путем разделения зарядов путем контакта и разделения разнородных материалов.
    • Для того, чтобы электроны могли непрерывно (бесконечно) течь через проводник, должен существовать полный, непрерывный путь, по которому они могут двигаться как внутрь, так и из этого проводника.

    Вы, возможно, задавались вопросом, как заряды могут непрерывно течь в одинаковом направлении по проводам без использования этих гипотетических Источников и Назначений. Чтобы схема источника и назначения работала, оба должны иметь бесконечную емкость для зарядов, чтобы поддерживать непрерывный поток!

    Используя аналогию с мрамором и трубкой из предыдущего раздела о проводниках, изоляторах и потоке электронов, мраморный источник и мраморные приемные ведра должны быть бесконечно большими, чтобы вместить достаточно мрамора для «потока» мрамора. выдержанный.

    Что такое цепь?

    Ответ на этот парадокс находится в концепции цепи : бесконечный петлевой путь для носителей заряда. Если мы возьмем провод или несколько проводов, соединенных встык, и закрутим его так, чтобы он образовал непрерывный путь, у нас есть средства для поддержки равномерного потока заряда без необходимости прибегать к бесконечным источникам и назначениям:

    Рисунок 2.12

    Каждый носитель заряда, движущийся по часовой стрелке в этой цепи, толкает носитель перед ним, который толкает носитель перед ним, и так далее, и так далее, точно так же, как хула-хуп, наполненный шариками.Теперь у нас есть возможность поддерживать непрерывный поток заряда бесконечно без необходимости в бесконечных запасах и свалках. Все, что нам нужно для поддержания этого потока, — это постоянные средства мотивации для этих носителей заряда, о которых мы поговорим в следующем разделе этой главы, посвященном напряжению и току.

    Wha t Означает ли это, что цепь b раскачивается?

    Непрерывность в цепи так же важна, как и в прямом проводе.Как и в примере с прямым отрезком провода между Источником и Назначением, любой разрыв в этой цепи предотвратит прохождение заряда через нее:

    Рис. 2.13

    Здесь важно понимать, что не имеет значения, где происходит разрыв . Любое нарушение непрерывности в цепи предотвратит поток заряда по всей цепи. Если не существует непрерывной непрерывной петли из проводящего материала, через которую проходят носители заряда, устойчивый поток просто не может поддерживаться.

    Рисунок 2.14

    • Схема представляет собой непрерывную петлю из проводящего материала, которая позволяет носителям заряда непрерывно проходить через нее без начала и конца.
    • Если цепь «разорвана», это означает, что ее проводящие элементы больше не образуют полный путь, и непрерывный поток заряда не может возникать в ней.
    • Местоположение разрыва цепи не имеет отношения к ее неспособности поддерживать непрерывный поток заряда. Любой разрыв , где-нибудь в цепи предотвращает поток носителей заряда по цепи.

    Как упоминалось ранее, нам нужно нечто большее, чем просто непрерывный путь (т. Так же, как мрамор в трубе или вода в трубе, для инициирования потока требуется некоторая сила воздействия. В случае электронов эта сила — это та же сила, которая действует в статическом электричестве: сила, создаваемая дисбалансом электрического заряда.

    Если мы возьмем примеры воска и шерсти, которые были натерты друг с другом, мы обнаружим, что избыток электронов в воске (отрицательный заряд) и недостаток электронов в шерсти (положительный заряд) создают дисбаланс заряда между ними.Этот дисбаланс проявляется как сила притяжения между двумя объектами:

    Рисунок 2.15

    Если между заряженным парафином и шерстью поместить проводящую проволоку, электроны будут проходить через нее, так как некоторые из избыточных электронов воска устремляются через провод, чтобы вернуться к шерсти, восполняя там недостаток электронов:

    Рис. 2.16

    Дисбаланс электронов между атомами воска и атомами шерсти создает силу между двумя материалами. Поскольку электроны не могут перетекать от воска к шерсти, все, что может сделать эта сила, — это притягивать два объекта вместе.

    Однако теперь, когда проводник перекрывает изолирующий зазор, сила заставляет электроны течь в однородном направлении через провод, хотя бы на мгновение, пока заряд в этой области не нейтрализуется и сила между воском и шерстью не уменьшится.

    Электрический заряд, образованный между этими двумя материалами при трении их друг о друга, служит для хранения определенного количества энергии. Эта энергия мало чем отличается от энергии, накопленной в высоком резервуаре с водой, который выкачивается из пруда нижнего уровня:

    Фигура 2.17

    Влияние силы тяжести на воду в резервуаре создает силу, которая пытается снова опустить воду на более низкий уровень. Если подходящая труба проложена от резервуара обратно к пруду, вода под действием силы тяжести потечет вниз из резервуара по трубе:

    Рис. 2.18.

    Для перекачки воды из пруда с низким уровнем в резервуар с высоким уровнем требуется энергия, а движение воды по трубопроводу обратно к исходному уровню представляет собой высвобождение энергии, накопленной от предыдущей откачки.

    Если вода перекачивается на еще более высокий уровень, для этого потребуется еще больше энергии, таким образом, будет сохранено больше энергии, и больше энергии будет высвобождено, если воде будет позволено снова течь по трубе обратно вниз:

    Рис. 2.19.

    Электроны не сильно отличаются. Если мы протираем воск и шерсть вместе, мы «выкачиваем» электроны с их нормальных «уровней», создавая условия, при которых существует сила между парафином и шерстью, поскольку электроны стремятся восстановить свои прежние положения (и балансировать внутри своего тела). соответствующие атомы).Сила, притягивающая электроны обратно в исходное положение вокруг положительных ядер их атомов, аналогична силе гравитации, действующей на воду в резервуаре, пытаясь вернуть ее к прежнему уровню. Подобно тому, как перекачка воды на более высокий уровень приводит к накоплению энергии, «перекачка» электронов для создания дисбаланса электрического заряда приводит к накоплению определенного количества энергии в этом дисбалансе. И точно так же, как обеспечение возможности для воды стекать обратно с высоты резервуара приводит к высвобождению этой накопленной энергии, предоставление возможности электронам течь обратно к их первоначальным «уровням» приводит к высвобождению накопленной энергии.

    Когда носители заряда находятся в этом статическом состоянии (точно так же, как вода, неподвижная, высоко в резервуаре), энергия, хранящаяся там, называется потенциальной энергией , потому что у нее есть возможность (потенциал) высвобождения, которая не была полностью использована. понял еще.

    Понимание концепции напряжения

    Когда носители заряда находятся в этом статическом состоянии (точно так же, как вода, неподвижная, высоко в резервуаре), энергия, хранящаяся там, называется потенциальной энергией, потому что у нее есть возможность (потенциал) высвобождения, которая еще не полностью реализована. .

    Когда вы терзаете обувь с резиновой подошвой о тканевый ковер в сухой день, вы создаете дисбаланс электрического заряда между вами и ковром. При царапании ногами накапливается энергия в виде дисбаланса зарядов, вытесняемых из их первоначальных мест. Этот заряд (статическое электричество) является стационарным, и вы вообще не заметите, что энергия накапливается. Однако, как только вы положите руку на металлическую дверную ручку (с большой подвижностью электронов для нейтрализации вашего электрического заряда), эта накопленная энергия будет высвобождена в виде внезапного потока заряда через вашу руку, и вы будете воспринимать ее как поражение электрическим током!

    Эта потенциальная энергия, хранящаяся в виде дисбаланса электрического заряда и способная вызывать прохождение носителей заряда через проводник, может быть выражена термином, называемым напряжением, которое технически представляет собой меру потенциальной энергии на единицу заряда или что-то вроде того, что физик назвал бы удельную потенциальную энергию.

    Определение напряжения

    Определяемое в контексте статического электричества, напряжение — это мера работы, необходимой для перемещения единичного заряда из одного места в другое, против силы, которая пытается сохранить баланс электрических зарядов. В контексте источников электроэнергии напряжение — это количество доступной потенциальной энергии (работы, которую необходимо выполнить) на единицу заряда для перемещения зарядов по проводнику. Поскольку напряжение — это выражение потенциальной энергии, представляющее возможность или потенциал высвобождения энергии при перемещении заряда с одного «уровня» на другой, на него всегда ссылаются между двумя точками.Рассмотрим аналогию с водохранилищем:

    .
    Рис. 2.20

    Из-за разницы в высоте падения существует вероятность того, что гораздо больше энергии будет выпущено из резервуара через трубопровод в точку 2, чем в точку 1. Принцип интуитивно понятен при падении камня: что приводит к при более сильном ударе камень упал с высоты одного фута или тот же камень упал с высоты одной мили?

    Очевидно, падение с большей высоты приводит к высвобождению большей энергии (более сильному удару).Мы не можем оценить количество накопленной энергии в водохранилище, просто измерив объем воды, точно так же, как мы можем предсказать серьезность удара падающей породы, просто зная вес породы: в обоих случаях мы также должны учитывать, как далекие эти массы упадут с их начальной высоты. Количество энергии, высвобождаемой при падении массы, зависит от расстояния между его начальной и конечной точками. Точно так же потенциальная энергия, доступная для перемещения носителей заряда из одной точки в другую, зависит от этих двух точек.Следовательно, напряжение всегда выражается как величина между двумя точками.

    Интересно, что аналогия с массой, потенциально «падающей» с одной высоты на другую, является настолько удачной моделью, что напряжение между двумя точками иногда называют падением напряжения .

    Генерирующее напряжение

    Напряжение можно генерировать другими способами, кроме трения материалов определенных типов друг о друга. Химические реакции, лучистая энергия и влияние магнетизма на проводники — вот несколько способов, которыми может создаваться напряжение.Соответствующими примерами этих трех источников напряжения являются батареи, солнечные элементы и генераторы (например, «генератор переменного тока» под капотом вашего автомобиля). На данный момент мы не будем вдаваться в подробности того, как работает каждый из этих источников напряжения — более важно то, что мы понимаем, как источники напряжения могут применяться для создания потока заряда в электрической цепи.

    Давайте возьмем символ химической батареи и поэтапно построим схему:

    Рисунок 2.21

    Как работают источники напряжения?

    Любой источник напряжения, включая аккумуляторные батареи, имеет две точки электрического контакта.В этом случае у нас есть точка 1 и точка 2 на приведенной выше диаграмме. Горизонтальные линии разной длины указывают на то, что это батарея, и дополнительно указывают направление, в котором напряжение этой батареи будет пытаться протолкнуть носители заряда по цепи. Тот факт, что горизонтальные линии в символе батареи кажутся разделенными (и, следовательно, не могут служить в качестве пути для потока заряда), не вызывает беспокойства: в реальной жизни эти горизонтальные линии представляют собой металлические пластины, погруженные в жидкий или полутвердый материал. который не только проводит заряды, но и генерирует напряжение, чтобы подтолкнуть их, взаимодействуя с пластинами.

    Обратите внимание на маленькие знаки «+» и «-» непосредственно слева от символа батареи. Отрицательный (-) конец батареи всегда является концом с самым коротким тире, а положительный (+) конец батареи всегда является концом с самым длинным тире. Положительный конец батареи — это конец, который пытается вытолкнуть из нее носители заряда (помните, что по традиции мы думаем, что носители заряда заряжены положительно, хотя электроны заряжены отрицательно). Точно так же отрицательный конец — это конец, который пытается привлечь носители заряда.

    Когда «+» и «-» концы батареи ни к чему не подключены, между этими двумя точками будет напряжение, но не будет потока заряда через батарею, потому что нет непрерывного пути, по которому могут перемещаться носители заряда. .

    Рис. 2.22

    Тот же принцип справедлив и для аналогии с резервуаром для воды и насосом: без возвратной трубы обратно в пруд накопленная энергия в резервуаре не может быть выпущена в виде потока воды. Когда резервуар полностью заполнен, поток не может возникнуть, независимо от того, какое давление может создать насос.Должен существовать полный путь (контур), по которому вода может течь из пруда в резервуар и обратно в пруд для обеспечения непрерывного потока.

    Мы можем обеспечить такой путь для батареи, соединив кусок провода от одного конца батареи к другому. Формируя цепь с петлей из проволоки, мы инициируем непрерывный поток заряда по часовой стрелке:

    Рисунок 2.23

    Понимание концепции электрического тока

    Пока батарея продолжает вырабатывать напряжение и непрерывность электрического пути не нарушена, носители заряда будут продолжать течь в цепи.Следуя метафоре воды, движущейся по трубе, этот непрерывный, равномерный поток заряда через цепь называется током . Пока источник напряжения продолжает «толкать» в одном направлении, носители заряда будут продолжать двигаться в том же направлении в цепи. Этот однонаправленный поток тока называется , постоянный ток, или постоянный ток. Во втором томе этой серии книг исследуются электрические цепи, в которых направление тока переключается взад и вперед: , переменный ток, , или переменный ток.Но пока мы просто займемся цепями постоянного тока.

    Поскольку электрический ток состоит из отдельных носителей заряда, текущих в унисон через проводник, двигаясь и толкая носители заряда впереди, точно так же, как шарики через трубу или вода через трубу, величина потока в одной цепи будет равна то же самое в любой момент. Если бы мы отслеживали поперечное сечение провода в одной цепи, считая протекающие носители заряда, мы бы заметили точно такое же количество в единицу времени, что и в любой другой части цепи, независимо от длины проводника или проводника. диаметр.

    Если мы нарушим непрерывность цепи в любой точке , электрический ток прекратится во всей петле, и полное напряжение, создаваемое батареей, будет проявляться в разрыве, между концами проводов, которые раньше были соединены:

    Рисунок 2.24

    Что такое полярность падения напряжения ?

    Обратите внимание на знаки «+» и «-», нарисованные на концах разрыва цепи, и то, как они соответствуют знакам «+» и «-» рядом с выводами аккумулятора.Эти маркеры указывают направление, в котором напряжение пытается протолкнуть ток, это направление потенциала, обычно называемое полярностью , . Помните, что напряжение всегда относительно между двумя точками. По этой причине полярность падения напряжения также является относительной между двумя точками: будет ли точка в цепи помечена знаком «+» или «-», зависит от другой точки, к которой она относится. Взгляните на следующую схему, где каждый угол петли отмечен номером для справки:

    Фигура 2.25

    При нарушении целостности цепи между точками 2 и 3, полярность падения напряжения между точками 2 и 3 будет «+» для точки 2 и «-» для точки 3. Полярность батареи (1 «+» и 4 « — ”) пытается протолкнуть ток через петлю по часовой стрелке от 1 до 2, от 3 до 4 и снова обратно до 1.

    Теперь посмотрим, что произойдет, если мы снова соединим точки 2 и 3 вместе, но сделаем разрыв цепи между точками 3 и 4:

    Рисунок 2.26

    При разрыве между 3 и 4 полярность падения напряжения между этими двумя точками будет «-» для 4 и «+» для 3.Обратите особое внимание на тот факт, что «знак» точки 3 противоположен знаку в первом примере, где разрыв был между точками 2 и 3 (где точка 3 была помечена «-»). Мы не можем сказать, что точка 3 в этой цепи всегда будет либо «+», либо «-», потому что полярность, как и само напряжение, не зависит от одной точки, а всегда относительна между двумя точками!

    • Носители заряда могут двигаться через проводник с помощью той же силы, которая проявляется в статическом электричестве.
    • Напряжение — это мера удельной потенциальной энергии (потенциальной энергии на единицу заряда) между двумя точками. С точки зрения непрофессионала, это мера «толчка», позволяющая мотивировать обвинение.
    • Напряжение, как выражение потенциальной энергии, всегда является относительным между двумя местоположениями или точками. Иногда это называют «падением напряжения».
    • Когда источник напряжения подключен к цепи, напряжение вызывает равномерный поток носителей заряда через эту цепь, называемый током .
    • В одиночной (однопетлевой) схеме величина тока в любой точке такая же, как и величина тока в любой другой точке.
    • Если цепь, содержащая источник напряжения, разорвана, полное напряжение этого источника появится в точках разрыва.
    • +/- ориентация падения напряжения называется полярностью . Это также относительное значение между двумя точками.

    Схема из предыдущего раздела не очень практична.На самом деле, это может быть довольно опасно строить (прямое соединение полюсов источника напряжения с помощью одного куска провода). Причина, по которой это опасно, заключается в том, что величина электрического тока может быть очень большой в таком коротком замыкании , а выделение энергии может быть очень значительным (обычно в виде тепла).

    Обычно электрические цепи конструируются таким образом, чтобы максимально безопасно использовать высвобождаемую энергию на практике.

    Ток, протекающий через нить накала лампы

    Одним из практических и популярных способов использования электрического тока является электрическое освещение.Самая простая форма электрической лампы — это крошечная металлическая «нить» внутри прозрачной стеклянной колбы, которая накаляется добела («накаляется») тепловой энергией, когда через нее проходит достаточный электрический ток. Как и батарея, он имеет две токопроводящие точки подключения: одна для входа тока, а другая — для выхода.

    При подключении к источнику напряжения электрическая цепь лампы выглядит примерно так:

    Рисунок 2.27.

    Когда ток проходит через тонкую металлическую нить накала лампы, он встречает большее сопротивление движению, чем это обычно бывает в толстом куске провода.Это сопротивление электрическому току зависит от типа материала, его площади поперечного сечения и температуры. Технически он известен как сопротивление . (Можно сказать, что проводники имеют низкое сопротивление, а изоляторы имеют очень высокое сопротивление.) Это сопротивление служит для ограничения количества тока, проходящего через цепь с заданным значением напряжения, подаваемого батареей, по сравнению с «коротким замыканием», когда у нас не было ничего, кроме провода, соединяющего один конец источника напряжения (батареи) с другим.

    Когда ток движется вопреки сопротивлению, возникает «трение». Точно так же, как механическое трение, трение, создаваемое током, протекающим против сопротивления, проявляется в виде тепла. Концентрированное сопротивление нити накала лампы приводит к тому, что на нити накала рассеивается относительно большое количество тепловой энергии. Этой тепловой энергии достаточно, чтобы нить накаливания стала раскаленной добела, производя свет, в то время как провода, соединяющие лампу с батареей (которые имеют гораздо меньшее сопротивление), едва ли нагреваются, проводя такое же количество тока.

    Как и в случае короткого замыкания, если непрерывность цепи нарушена в любой точке, ток прекращается по всей цепи. Если лампа установлена, это означает, что она перестанет светиться:

    Рисунок 2.28.

    Как и раньше, при отсутствии тока, весь потенциал (напряжение) батареи доступен через разрыв, ожидая возможности соединения, чтобы перемыть этот разрыв и позволить току снова течь. Это состояние известно как обрыв цепи , , когда разрыв цепи предотвращает ток повсюду.

    Все, что требуется, — это однократное прерывание непрерывности, чтобы «разомкнуть» цепь. После повторного подключения любых разрывов и восстановления непрерывности цепи она называется замкнутой цепью .

    Основа для включения ламп

    То, что мы видим здесь, является основой для включения и выключения ламп с помощью дистанционных выключателей. Поскольку любой разрыв непрерывности цепи приводит к остановке тока по всей цепи, мы можем использовать устройство, предназначенное для преднамеренного разрыва этой непрерывности (называемое переключателем), установленное в любом удобном месте, к которому мы можем провести провода, для управления потоком ток в цепи:

    Фигура 2.29

    Таким образом выключатель, установленный на стене дома, может управлять лампой, установленной в длинном коридоре или даже в другой комнате, вдали от выключателя. Сам переключатель состоит из пары проводящих контактов (обычно сделанных из какого-либо металла), соединенных механическим рычажным приводом или кнопкой. Когда контакты соприкасаются друг с другом, ток может течь от одного к другому, и устанавливается непрерывность цепи. Когда контакты разделены, ток от одного к другому предотвращается воздушной изоляцией между ними, и непрерывность цепи нарушается.

    Рубильник

    Пожалуй, лучший вид переключателя, который можно показать для иллюстрации основного принципа, — это «ножевой» переключатель:

    Рис. 2.30

    Рубильник — это не что иное, как токопроводящий рычаг, свободно поворачивающийся на шарнире, вступающий в физический контакт с одной или несколькими неподвижными точками контакта, которые также являются токопроводящими.

    Переключатель, показанный на иллюстрации выше, построен на фарфоровой основе (отличный изоляционный материал) с использованием меди (отличный проводник) для «лезвий» и точек контакта.Ручка сделана из пластика, чтобы изолировать руку оператора от токопроводящего лезвия переключателя при его открытии или закрытии.

    Вот еще один тип рубильника, с двумя неподвижными контактами вместо одного:

    Рис. 2.31

    Конкретный рубильник, показанный здесь, имеет одно «лезвие», но два неподвижных контакта, что означает, что он может замыкать или размыкать более одной цепи. На данный момент это не так важно, чтобы знать, просто базовая концепция того, что такое переключатель и как он работает.Рубильные переключатели отлично подходят для иллюстрации основного принципа работы переключателя, но они представляют определенные проблемы безопасности при использовании в электрических цепях большой мощности. Открытые проводники рубильника делают случайный контакт с цепью, и любая искра, которая может возникнуть между движущимся лезвием и неподвижным контактом, может воспламенить любые находящиеся поблизости горючие материалы. В большинстве современных конструкций переключателей подвижные проводники и точки контакта герметично закрыты изолирующим кожухом, чтобы уменьшить эти опасности.Фотография нескольких современных типов переключателей показывает, что механизмы переключения гораздо более скрыты, чем в конструкции ножа:

    Рисунок 2.32

    Открытые и закрытые контуры

    В соответствии с терминологией цепей «разомкнутый» и «замкнутый», переключатель, который устанавливает контакт от одной клеммы подключения к другой (пример: рубильник с лезвием, полностью касающимся неподвижной точки контакта), обеспечивает непрерывность подачи тока в протекает и называется переключателем замкнутый .

    И наоборот, выключатель, который нарушает целостность цепи (пример: рубильник с лезвием , не касающимся неподвижной точки контакта), не пропускает ток, и называется выключателем разомкнутым . Эта терминология часто сбивает с толку новичков, изучающих электронику, потому что слова «открытый» и «закрытый» обычно понимаются в контексте двери, где «открытый» приравнивается к свободному проходу, а «закрытый» — к блокировке. В случае электрических переключателей эти термины имеют противоположные значения: «разомкнутый» означает отсутствие потока, в то время как «замкнутый» означает свободное прохождение электрического тока.

    • Сопротивление — это мера сопротивления электрическому току.
    • Короткое замыкание представляет собой электрическую цепь, которая практически не оказывает сопротивления протеканию тока. Короткие замыкания опасны для источников питания высокого напряжения, поскольку возникающие высокие токи могут вызвать выделение большого количества тепловой энергии.
    • Разрыв цепи — это цепь, в которой непрерывность была нарушена из-за прерывания пути прохождения тока.
    • Замкнутая цепь — это замкнутая цепь с хорошей непрерывностью на всем протяжении.
    • Устройство, предназначенное для размыкания или замыкания цепи в контролируемых условиях, называется переключателем .
    • Термины «разомкнут», и «замкнут». относятся как к переключателям, так и ко всем цепям. Открытый переключатель — это переключатель без непрерывности: ток не может течь через него. Замкнутый переключатель — это переключатель, который обеспечивает прямой (с низким сопротивлением) путь для прохождения тока.

    Поскольку соотношение между напряжением, током и сопротивлением в любой цепи настолько регулярное, мы можем надежно контролировать любую переменную в цепи, просто управляя двумя другими. Возможно, самой простой переменной в любой цепи для управления является ее сопротивление. Это можно сделать, изменив материал, размер и форму проводящих компонентов (помните, как тонкая металлическая нить накала лампы создавала большее электрическое сопротивление, чем толстый провод?).

    Что такое резистор?

    Специальные компоненты, называемые резисторами, производятся специально для создания точного количества сопротивления для вставки в цепь.Обычно они изготавливаются из металлической проволоки или углерода и спроектированы так, чтобы поддерживать стабильное значение сопротивления в широком диапазоне условий окружающей среды. В отличие от ламп, они не излучают свет, но выделяют тепло, поскольку электрическая энергия рассеивается ими в рабочем контуре. Однако, как правило, резистор предназначен не для выработки полезного тепла, а просто для обеспечения точного количества электрического сопротивления.

    Условные обозначения и значения на схеме резистора

    Наиболее распространенным условным обозначением резистора на схеме является зигзагообразная линия:

    Фигура 2.33

    Значения резисторов в омах обычно отображаются как смежные числа, и если в цепи присутствует несколько резисторов, они будут помечены уникальным идентификационным номером, например R 1 , R 2 , R 3 , и т.д. Как видите, символы резисторов могут отображаться как по горизонтали, так и по вертикали:

    Рис. 2.34

    Реальные резисторы не похожи на зигзагообразный символ. Вместо этого они выглядят как маленькие трубки или цилиндры с двумя торчащими проводами для подключения к цепи.Вот образцы резисторов разных типов и размеров:

    Рис. 2.35

    В соответствии с их внешним видом, альтернативное схематическое обозначение резистора выглядит как небольшая прямоугольная коробка:

    Рис. 2.36. Можно также показать, что резисторы

    имеют переменное, а не фиксированное сопротивление. Это может быть сделано с целью описания реального физического устройства, разработанного с целью обеспечения регулируемого сопротивления, или может быть для того, чтобы показать какой-то компонент, который просто случайно имеет нестабильное сопротивление:

    Фигура 2.37

    Фактически, каждый раз, когда вы видите символ компонента, нарисованный через диагональную стрелку, этот компонент имеет переменную, а не фиксированное значение. Этот «модификатор» символа (диагональная стрелка) является стандартным условием для электронных символов.

    Переменные резисторы

    Переменные резисторы должны иметь какие-либо физические средства регулировки, либо вращающийся вал, либо рычаг, который можно перемещать для изменения величины электрического сопротивления. На фотографии показаны некоторые устройства, называемые потенциометрами, которые можно использовать в качестве переменных резисторов:

    Фигура 2.38

    Номинальная мощность резисторов

    Поскольку резисторы рассеивают тепловую энергию, поскольку электрические токи через них преодолевают «трение» их сопротивления, резисторы также оцениваются с точки зрения того, сколько тепловой энергии они могут рассеять без перегрева и повреждений. Естественно, эта номинальная мощность указывается в физических единицах измерения «ватты». Большинство резисторов, используемых в небольших электронных устройствах, таких как портативные радиоприемники, рассчитаны на 1/4 (0,25) Вт или меньше. Номинальная мощность любого резистора примерно пропорциональна его физическому размеру.Обратите внимание на первую фотографию резистора, как номинальная мощность соотносится с размером: чем больше резистор, тем выше его номинальная рассеиваемая мощность. Также обратите внимание, что сопротивление (в омах) не имеет ничего общего с размером!

    Хотя сейчас может показаться бессмысленным иметь устройство, которое ничего не делает, кроме сопротивления электрическому току, резисторы — чрезвычайно полезные устройства в схемах. Поскольку они просты и широко используются в мире электричества и электроники, мы потратим значительное количество времени на анализ схем, состоящих только из резисторов и батарей.

    Чем полезны резисторы?

    Для практической иллюстрации полезности резисторов, рассмотрите фотографию ниже. Это изображение печатной платы или печатной платы: сборка, состоящая из прослоенных слоев изоляционной фенольной волокнистой платы и проводящих медных полос, в которые можно вставлять компоненты и закреплять их с помощью процесса низкотемпературной сварки, называемого «пайкой». Различные компоненты на этой печатной плате обозначены печатными этикетками. Резисторы обозначаются любой этикеткой, начинающейся с буквы «R».

    Рис. 2.39.

    Эта конкретная печатная плата представляет собой компьютерный аксессуар, называемый «модемом», который позволяет передавать цифровую информацию по телефонным линиям. На плате этого модема можно увидеть как минимум дюжину резисторов (все с мощностью рассеиваемой мощности 1/4 Вт). Каждый из черных прямоугольников (называемых «интегральными схемами» или «микросхемами») также содержит собственный массив резисторов для своих внутренних функций. Другой пример печатной платы показывает резисторы, упакованные в еще меньшие блоки, называемые «устройствами для поверхностного монтажа».Эта конкретная печатная плата является нижней стороной жесткого диска персонального компьютера, и снова припаянные к ней резисторы обозначены этикетками, начинающимися с буквы «R»:

    Рисунок 2.40

    На этой печатной плате более сотни резисторов для поверхностного монтажа, и это количество, конечно, не включает количество резисторов, встроенных в черные «микросхемы». Эти две фотографии должны убедить любого, что резисторы — устройства, которые «просто» препятствуют прохождению электрического тока, — очень важные компоненты в области электроники!

    «Нагрузка» на принципиальных схемах

    На схематических диаграммах символы резисторов иногда используются для иллюстрации любого общего типа устройства в цепи, выполняющего что-то полезное с электрической энергией.Любое неспецифическое электрическое устройство обычно называется нагрузкой, поэтому, если вы видите схематическую диаграмму, показывающую символ резистора с пометкой «нагрузка», особенно в учебной принципиальной схеме, объясняющей некоторые концепции, не связанные с фактическим использованием электроэнергии, этот символ может просто быть своего рода сокращением чего-то еще более практичного, чем резистор.

    Анализ цепей резисторов

    Чтобы обобщить то, что мы узнали в этом уроке, давайте проанализируем следующую схему, определив все, что мы можем, исходя из предоставленной информации:

    Фигура 2.41

    Все, что нам здесь дано для начала, — это напряжение батареи (10 вольт) и ток цепи (2 ампера). Нам неизвестно сопротивление резистора в омах или рассеиваемая им мощность в ваттах. Изучая наш массив уравнений закона Ома, мы находим два уравнения, которые дают нам ответы на основе известных величин напряжения и тока:

    Закон Ома

    [латекс] R = \ frac {E} {I} \ tag {2.1} [/ латекс]

    Уравнение мощности

    [латекс] P = IE \ tag {2.2} [/ латекс]

    Подставляя известные величины напряжения (E) и тока (I) в эти два уравнения, мы можем определить сопротивление цепи (R) и рассеиваемую мощность (P):

    Закон Ома:

    [латекс] R \: = \ frac {10V} {2A} = 5 \ Omega [/ latex]

    Степенной закон:

    [латекс] P = (2A) (10 В) = (20 Вт) [/ латекс]

    Для условий цепи 10 В и 2 А сопротивление резистора должно быть 5 Ом.Если бы мы проектировали схему для работы при этих значениях, нам пришлось бы указать резистор с минимальной номинальной мощностью 20 Вт, иначе он перегреется и выйдет из строя.

    Материалы резистора

    Резисторы

    могут быть изготовлены из самых разных материалов, каждый из которых имеет свои свойства и специфические области применения. Большинство инженеров-электриков используют указанные ниже типы:

    Резисторы с проволочной обмоткой

    Резисторы с проволочной обмоткой

    изготавливаются путем намотки резистивного провода вокруг непроводящего сердечника по спирали.Обычно они производятся для высокоточных и силовых приложений. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивный провод из никель-хромового сплава не подходит для приложений с частотами выше 50 кГц. Низкий уровень шума и устойчивость к колебаниям температуры являются стандартными характеристиками проволочных резисторов. Доступны значения сопротивления от 0,1 до 100 кВт с точностью от 0,1% до 20%.

    Резисторы металлопленочные

    Нитрид тантала или нихрома обычно используется для изготовления металлопленочных резисторов.Комбинация керамического материала и металла обычно составляет резистивный материал. Значение сопротивления изменяется путем вырезания спирального рисунка в пленке, как углеродная пленка с помощью лазера или абразива. Металлопленочные резисторы обычно менее устойчивы к температуре, чем резисторы с проволочной обмоткой, но лучше справляются с более высокими частотами.

    Металлооксидные пленочные резисторы

    В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлических пленочных резисторов.Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. Из-за этого металлооксидные пленочные резисторы используются в приложениях, требующих высокой прочности.

    Фольгированные резисторы

    Разработанный в 1960-х годах резистор из фольги до сих пор остается одним из самых точных и стабильных типов резисторов, которые вы найдете и используются в приложениях с высокими требованиями к точности. Керамическая подложка, к которой приклеена тонкая объемная металлическая фольга, составляет резистивный элемент.Фольговые резисторы имеют очень низкотемпературный коэффициент сопротивления.

    Резисторы из углеродного состава (CCR)

    До 1960-х годов резисторы из углеродного состава были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Смесь мелких частиц углерода и непроводящего керамического материала используется для резистивного элемента резисторов CCR. Вещество формуют в форме цилиндра и запекают.Размеры корпуса и соотношение углерода и керамики определяют величину сопротивления. Использование большего количества углерода в процессе означает меньшее сопротивление. Резисторы CCR по-прежнему полезны для определенных приложений из-за их способности выдерживать импульсы высокой энергии, хорошим примером применения может быть источник питания.

    Резисторы углеродные пленочные

    Углеродные пленочные резисторы имеют тонкую углеродную пленку (со спиралью, вырезанной в пленке для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике.Это позволяет получить более точное значение сопротивления, а также увеличивает значение сопротивления. Резисторы из углеродной пленки намного точнее, чем резисторы из углеродной композиции. Специальные углеродные пленочные резисторы используются в приложениях, требующих высокой импульсной стабильности.

    Показатели эффективности (КПЭ)

    Ключевые показатели эффективности для каждого материала резистора можно найти ниже:

    Характеристика Металлическая пленка Толстая металлическая пленка Прецизионная металлическая пленка Углеродный состав Углеродная пленка
    Темп.диапазон-55 + 125-55 + 130-55 + 155-40 + 105,55 + 155
    Макс. темп. коэфф. 100 100 15 1200 250–1000
    Vмакс 200–350 250 200 350-500 350-500
    Шум (мкВ на вольт приложенного постоянного тока) 0,5 0,1 0.1 4 (100 КБ) 5 (100 КБ)
    R Insul. 10000 10000 10000 10000 10000
    Припой (% изменения значения сопротивления) 0,20% 0,15% 0,02% 2% 0,50%
    Влажное тепло (изменение значения сопротивления в%) 0,50% 1% 0,50% 15% 3.50%
    Срок годности (% изменения значения сопротивления) 0,10% 0,10% 0,00% 5% 2%
    Полный рейтинг (2000 ч при 70 градусах Цельсия) 1% 1% 0,03% 10% 4%
    • Устройства, называемые резисторами, созданы для обеспечения точного значения сопротивления в электрических цепях. Резисторы оцениваются как по их сопротивлению (Ом), так и по их способности рассеивать тепловую энергию (ватты).
    • Номинальное сопротивление резистора не может быть определено по физическому размеру резистора (ов), о котором идет речь, хотя приблизительные значения мощности могут быть определены. Чем больше резистор, тем большую мощность он может рассеять без повреждений.
    • Любое устройство, которое выполняет некоторые полезные задачи с помощью электроэнергии, обычно называют нагрузкой. Иногда символы резисторов используются на принципиальных схемах для обозначения неспецифической нагрузки, а не для обозначения фактического резистора.

    Поскольку требуется энергия, чтобы заставить заряд течь вопреки сопротивлению, напряжение будет проявляться (или «падать») между любыми точками цепи с сопротивлением между ними.

    Важно отметить, что, хотя величина тока (т. Е. Количество заряда, движущегося мимо заданной точки каждую секунду) в простой схеме одинакова, величина напряжения (потенциальная энергия на единицу заряда) между различными наборами точек в одном контуре могут значительно отличаться:

    Рисунок 2.42

    Возьмем эту схему в качестве примера. Если мы обозначим четыре точки в этой цепи номерами 1, 2, 3 и 4, мы обнаружим, что количество тока, проводимого через провод между точками 1 и 2, точно такое же, как количество тока, проводимого через лампу. (между пунктами 2 и 3).Такое же количество тока проходит по проводу между точками 3 и 4 и через батарею (между точками 1 и 4).

    Однако мы обнаружим, что напряжение, возникающее между любыми двумя из этих точек, прямо пропорционально сопротивлению в пределах проводящего пути между этими двумя точками, учитывая, что величина тока на любой части пути цепи одинакова (что, для этой простой схемы это так).

    В обычной цепи лампы сопротивление лампы будет намного больше, чем сопротивление соединительных проводов, поэтому следует ожидать появления значительного напряжения между точками 2 и 3 и очень небольшого напряжения между точками 1 и 2, или от 3 до 4.Напряжение между точками 1 и 4, конечно, будет полной «силой», обеспечиваемой батареей, которая будет лишь немного больше, чем напряжение на лампе (между точками 2 и 3).

    Это, опять же, аналог системы резервуаров для воды:

    Рис. 2.43

    Между точками 2 и 3, где падающая вода высвобождает энергию в водяном колесе, существует разница давлений между двумя точками, отражающая противодействие потоку воды через водяное колесо.От точки 1 до точки 2 или от точки 3 до точки 4, где вода свободно течет через резервуары с небольшим сопротивлением, разница в давлении мала или отсутствует (нет потенциальной энергии). Однако скорость потока воды в этой непрерывной системе одинакова везде (при условии, что уровни воды в пруду и водохранилище неизменны): через насос, через водяное колесо и через все трубы.

    То же самое и с простыми электрическими цепями: ток одинаков в каждой точке цепи, хотя напряжения могут различаться в разных наборах точек

    Первая и, возможно, самая важная взаимосвязь между током, напряжением и сопротивлением называется законом Ома, который был открыт Георгом Симоном Омом и опубликован в его статье 1827 года «Гальваническая цепь, исследованная математически».

    Напряжение, ток и сопротивление

    Электрическая цепь образуется, когда создается проводящий путь, позволяющий электрическому заряду непрерывно перемещаться. Это непрерывное движение электрического заряда по проводникам цепи называется током , и его часто называют «потоком», как поток жидкости через полую трубу.

    Сила, побуждающая носители заряда «течь» в цепи, называется напряжением .Напряжение — это особая мера потенциальной энергии, которая всегда относительна между двумя точками. Когда мы говорим об определенном количестве напряжения, присутствующем в цепи, мы имеем в виду измерение того, сколько потенциальной энергии существует для перемещения носителей заряда из одной конкретной точки в этой цепи в другую конкретную точку. Без ссылки на два конкретных пункта термин «напряжение» не имеет значения.

    Ток имеет тенденцию проходить через проводники с некоторой степенью трения или противодействия движению.Это противодействие движению более правильно называть сопротивлением . Сила тока в цепи зависит от величины напряжения и величины сопротивления в цепи, препятствующей прохождению тока. Как и напряжение, сопротивление — это величина, относительная между двумя точками. По этой причине величины напряжения и сопротивления часто указываются как «между» или «поперек» двух точек в цепи.

    Единицы измерения: вольт, ампер и ом

    Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, мы должны уметь описывать их количества так же, как мы могли бы количественно определить массу, температуру, объем, длину или любой другой вид физической величины.Для массы мы можем использовать единицы «килограмм» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия. Вот стандартные единицы измерения электрического тока, напряжения и сопротивления:

    Таблица 2.1

    «Символ», указанный для каждой величины, представляет собой стандартную буквенную букву, используемую для представления этой величины в алгебраическом уравнении. Подобные стандартизированные буквы распространены в физических и технических дисциплинах и признаны во всем мире.«Аббревиатура единицы» для каждой величины представляет собой алфавитный символ, используемый в качестве сокращенного обозначения для ее конкретной единицы измерения. И, да, этот странно выглядящий символ «подкова» — это заглавная греческая буква Ω, просто символ иностранного алфавита (извинения перед читателями-греками).

    Каждая единица измерения названа в честь известного экспериментатора в области электричества: amp в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта и Ом в честь немца Георга Симона Ома.

    Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя, тогда как «I» для тока кажется немного странным. Считается, что буква «I» должна представлять «интенсивность» (потока заряда), а другой символ напряжения, «E», означает «электродвижущую силу». Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые споры по поводу значения слова «я». Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах зарезервировано «E» для обозначения напряжения на источнике (таком как батарея или генератор) и «V» для обозначения напряжения на любом другом элементе.

    Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (называемого «мгновенным» значением). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», в то время как пик напряжения при ударе молнии в тот самый момент, когда он попадает в линию электропередачи, скорее всего, будет обозначается строчной буквой «е» (или строчной буквой «v»), чтобы обозначить это значение как имеющееся в один момент времени.То же самое соглашение о нижнем регистре справедливо и для тока, строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений постоянного тока (DC), которые стабильны во времени, будут обозначены заглавными буквами.

    Кулон и электрический заряд

    Одна из основных единиц измерения электрического тока, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, — это единица кулонов , которая представляет собой меру электрического заряда, пропорционального количеству электронов в несбалансированном состоянии.Один кулон заряда равен 6 250 000 000 000 000 000 электронов. Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается заглавной буквой «C». Бывает так, что единица измерения тока, ампер, равна 1 кулону заряда, проходящего через заданную точку в цепи за 1 секунду. В этих терминах ток — это скорость движения электрического заряда по проводнику.

    Как указывалось ранее, напряжение является мерой потенциальной энергии на единицу заряда , доступной для стимулирования протекания тока из одной точки в другую.Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общая метрическая единица для энергии любого вида — джоуля, , что равняется количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении). В британских подразделениях это чуть меньше 3/4 фунта силы, приложенной на расстоянии 1 фута. Проще говоря, требуется около 1 джоуля энергии, чтобы поднять гирю весом 3/4 фунта на 1 фут от земли или перетащить что-то на расстояние 1 фут, используя параллельную тяговую силу 3/4 фунта.В этих научных терминах 1 вольт равен 1 джоуля электрической потенциальной энергии на (деленный на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.

    Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.

    Уравнения закона Ома

    Основное открытие

    Ома заключалось в том, что величина электрического тока, протекающего через металлический проводник в цепи, прямо пропорциональна напряжению, приложенному к нему при любой заданной температуре.Ом выразил свое открытие в виде простого уравнения, описывающего взаимосвязь напряжения, тока и сопротивления:

    [латекс] E = IR \ tag {2.3} [/ латекс]

    В этом алгебраическом выражении напряжение (E) равно току (I), умноженному на сопротивление (R). Используя методы алгебры, мы можем преобразовать это уравнение в два варианта, решая для I и R соответственно:

    [латекс] I = \ frac {E} {R} \ tag {2.4} [/ латекс]

    [латекс] R = \ frac {E} {I} \ tag {2.5} [/ латекс]

    Анализ простых схем с помощью закона Ома

    Давайте посмотрим, как эти уравнения могут работать, чтобы помочь нам анализировать простые схемы:

    Рисунок 2.44

    В приведенной выше схеме есть только один источник напряжения (батарея слева) и только один источник сопротивления току (лампа справа). Это позволяет очень легко применять закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.

    В этом первом примере мы рассчитаем величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):

    Рисунок 2.45

    Какова величина тока (I) в этой цепи?

    [латекс] I = \ frac {E} {R} [/ latex] [latex] = \ frac {12V} {3 \ Omega} = 4A [/ latex]

    В этом втором примере мы рассчитаем величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):

    Какое сопротивление (R) дает лампа?

    [латекс] R = \ frac {E} {I} [/ latex] [latex] = \ frac {36V} {4A} = 9 \ Omega [/ latex]

    В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):

    Фигура 2.46

    Какое напряжение обеспечивает аккумулятор?

    [латекс] E = IR [/ латекс] [латекс] = (2A) (7 \ Omega) = 14V [/ латекс]

    Техника треугольника закона Ома

    Закон Ома — очень простой и полезный инструмент для анализа электрических цепей. Он так часто используется при изучении электричества и электроники, что серьезный студент должен запомнить его. Для тех, кто еще не знаком с алгеброй, есть уловка, позволяющая вспомнить, как найти любую одну величину, учитывая две другие.Сначала расположите буквы E, I и R в виде треугольника следующим образом:

    Рисунок 2.45

    Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:

    Рисунок 2.46

    Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:

    Рисунок 2.47

    Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:

    Рис. 2.48

    В конце концов, чтобы серьезно изучать электричество и электронику, вам придется познакомиться с алгеброй, но этот совет может облегчить запоминание ваших первых вычислений.Если вы знакомы с алгеброй, все, что вам нужно сделать, это зафиксировать E = IR в памяти и вывести из нее две другие формулы, когда они вам понадобятся!

    • Напряжение измеряется в вольтах , обозначается буквами «E» или «V».
    • Ток измеряется в амперах , обозначается буквой «I».
    • Сопротивление измеряется в Ом. обозначается буквой «R».
    • [латекс] \ text {Закон Ома:} E = IR [/ latex]; [латекс] I = \ frac {E} {R} [/ latex]; [латекс] R = \ frac {E} {I} [/ latex]

    Выучите формулу силы

    Мы видели формулу для определения мощности в электрической цепи: умножая напряжение в вольтах на ток в амперах, мы получаем ответ в ваттах.»Давайте применим это к примеру схемы:

    В приведенной выше схеме мы знаем, что у нас напряжение батареи 18 В и сопротивление лампы 3 Ом. Используя закон Ома для определения силы тока, получаем:

    [латекс] I = \ frac {E} {R} [/ latex] [latex] = \ frac {18V} {3 \ Omega} = 6A [/ latex]

    Теперь, когда мы знаем ток, мы можем взять это значение и умножить его на напряжение, чтобы определить мощность:

    [латекс] P = IE [/ латекс] [латекс] = (6A) (18 В) = 108 Вт [/ латекс]

    Это говорит нам о том, что лампа рассеивает (выделяет) 108 Вт мощности, скорее всего, в форме света и тепла.

    Повышение напряжения батареи

    Давайте попробуем взять ту же схему и увеличить напряжение батареи, чтобы увидеть, что произойдет. Интуиция подсказывает нам, что ток в цепи будет увеличиваться с увеличением напряжения, а сопротивление лампы останется прежним. Аналогично увеличится и мощность:

    Теперь напряжение батареи 36 вольт вместо 18 вольт. Лампа по-прежнему обеспечивает электрическое сопротивление 3 Ом для прохождения тока. Текущий сейчас:

    [латекс] I = \ frac {E} {R} [/ latex] [latex] = \ frac {36V} {3 \ Omega} = 12A [/ latex]

    Это понятно: если I = E / R, и мы удваиваем E, а R остается неизменным, ток должен удвоиться.Действительно, есть: теперь у нас 12 ампер тока вместо 6. А что насчет мощности?

    [латекс] P = IE [/ латекс] [латекс] = (12A) (36V) = 432W [/ латекс]

    Как повышение напряжения батареи влияет на мощность?

    Обратите внимание, что мощность увеличилась, как мы и предполагали, но она увеличилась немного больше, чем ток. {2} R [/ latex]

    Закон Джоуля Закон противЗакон Ома

    Историческая справка: именно Джеймс Прескотт Джоуль, а не Георг Саймон Ом первым открыл математическую связь между рассеиваемой мощностью и током через сопротивление. Это открытие, опубликованное в 1841 году, имело форму последнего уравнения (P = I 2 R) и широко известно как закон Джоуля. Однако эти уравнения мощности настолько часто связаны с уравнениями закона Ома, связывающими напряжение, ток и сопротивление (E = IR; I = E / R; и R = E / I), что они часто приписываются Ому.{2}} {R} [/ латекс]

    До сих пор мы анализировали схемы с одним аккумулятором и одним резистором без учета соединительных проводов между компонентами, пока формируется полная цепь. Имеет ли значение для наших расчетов длина провода или «форма» цепи? Давайте посмотрим на несколько принципиальных схем и узнаем:

    Рис. 2.49.

    Когда мы рисуем провода, соединяющие точки в электрической цепи, мы обычно предполагаем, что эти провода имеют незначительное сопротивление. Как таковые, они не вносят заметного влияния на общее сопротивление цепи, и поэтому единственное сопротивление, с которым мы должны бороться, — это сопротивление компонентов.В приведенных выше схемах единственное сопротивление исходит от резисторов 5 Ом, так что это все, что мы будем учитывать в наших расчетах. В реальной жизни металлические провода действительно имеют сопротивление (как и источники питания!), Но эти сопротивления, как правило, намного меньше, чем сопротивление, присутствующее в других компонентах схемы, что их можно безопасно игнорировать. Исключения из этого правила существуют в электропроводке энергосистемы, где даже очень небольшое сопротивление проводника может вызвать значительные падения напряжения при нормальных (высоких) уровнях тока.

    Электрически общие точки в цепи

    Если сопротивление соединительного провода очень мало или его нет, мы можем рассматривать соединенные точки в цепи как электрически общие . То есть точки 1 и 2 в вышеуказанных схемах могут быть физически соединены близко друг к другу или далеко друг от друга, и это не имеет значения для любых измерений напряжения или сопротивления относительно этих точек. То же самое касается точек 3 и 4. Это как если бы концы резистора были присоединены непосредственно к клеммам батареи, что касается наших расчетов по закону Ома и измерений напряжения.Это полезно знать, потому что это означает, что вы можете заново нарисовать принципиальную схему или повторно подключить схему, укорачивая или удлиняя провода по желанию, не оказывая заметного влияния на работу схемы. Важно только то, что компоненты прикрепляются друг к другу в одинаковой последовательности.

    Это также означает, что измерения напряжения между наборами «электрически общих» точек будут одинаковыми. То есть напряжение между точками 1 и 4 (непосредственно на батарее) будет таким же, как напряжение между точками 2 и 3 (непосредственно на резисторе).Внимательно посмотрите на следующую схему и попробуйте определить, какие точки являются общими друг для друга:

    Рисунок 2.50

    Здесь у нас есть только 2 компонента, не считая проводов: батарея и резистор. Хотя соединительные провода образуют законченную цепь извилистым путем, на пути тока есть несколько электрически общих точек. Точки 1, 2 и 3 являются общими друг для друга, потому что они напрямую связаны друг с другом проводом. То же самое касается пунктов 4, 5 и 6.

    Напряжение между точками 1 и 6 составляет 10 вольт, идущее прямо от батареи.Однако, поскольку точки 5 и 4 являются общими для 6, а точки 2 и 3 являются общими для 1, те же 10 вольт также существуют между этими другими парами точек:

    • Между точками 1 и 4 = 10 вольт
    • Между точками 2 и 4 = 10 вольт
    • Между точками 3 и 4 = 10 В (непосредственно через резистор)
    • Между точками 1 и 5 = 10 В Между точками 2 и 5 = 10 В
    • Между точками 3 и 5 = 10 В Между точками 1 и 6 = 10 В (непосредственно на батарее)
    • Между точками 2 и 6 = 10 В Между точками 3 и 6 = 10 В

    Поскольку электрически общие точки соединены вместе проводом (нулевого сопротивления), между ними нет значительного падения напряжения, независимо от величины тока, проводимого от одной к другой через этот соединительный провод.Таким образом, если бы мы считали напряжения между общими точками, мы должны были бы показать (практически) ноль:

    • Между точками 1 и 2 = 0 вольт
    • Точки 1, 2 и 3 между точками 2 и 3 = 0 вольт электрически общие
    • Между точками 1 и 3 = 0 вольт
    • Между точками 4 и 5 = 0 вольт
    • Точки 4, 5 и 6 находятся между точками 5 и 6 = 0 вольт электрически общий
    • Между точками 4 и 6 = 0 вольт

    Расчет падения напряжения по закону Ома

    Это тоже имеет смысл математически.С батареей на 10 В и резистором 5 Ом ток в цепи будет 2 ампера. Если сопротивление провода равно нулю, падение напряжения на любом непрерывном участке провода можно определить с помощью закона Ома как такового:

    [латекс] E = IR [/ латекс]

    [латекс] E = (2A) (0 \ Omega) [/ латекс]

    [латекс] \ textbf {E = 0V} [/ латекс]

    Должно быть очевидно, что рассчитанное падение напряжения на любой непрерывной длине провода в цепи, где предполагается, что провод имеет нулевое сопротивление, всегда будет равно нулю, независимо от величины тока, поскольку ноль, умноженный на что-либо, равен нулю.

    Поскольку общие точки в цепи будут иметь одинаковые значения относительного напряжения и сопротивления, провода, соединяющие общие точки, часто помечаются одним и тем же обозначением. Это не означает, что точки подключения клеммы обозначены одинаково, только соединительные провода. Возьмем для примера эту схему:

    Рис. 2.56.

    Точки 1, 2 и 3 являются общими друг для друга, поэтому точки подключения проводов 1–2 обозначены так же (провод 2), что и точки подключения проводов 2–3 (провод 2).В реальной схеме провод, тянущийся от точки 1 до 2, может даже не быть того же цвета или размера, что и провод, соединяющий точку 2 и 3, но они должны иметь точно такую ​​же метку. То же самое касается проводов, соединяющих точки 6, 5 и 4.

    Падение напряжения должно равняться нулю в общих точках

    Знание того, что электрически общие точки имеют нулевое падение напряжения, является ценным принципом поиска и устранения неисправностей. Если я измеряю напряжение между точками в цепи, которые должны быть общими друг для друга, я должен прочитать ноль.Если, однако, я обнаружил значительное напряжение между этими двумя точками, то я с уверенностью знаю, что они не могут быть напрямую соединены друг с другом. Если эти точки предположительно являются электрически общими , но они регистрируются иначе, то я знаю, что между этими точками существует «открытый сбой».

    Нулевое напряжение технически означает незначительное напряжение

    Последнее замечание: для большинства практических целей можно предположить, что проводники обладают нулевым сопротивлением от конца до конца.В действительности, однако, всегда будет небольшое сопротивление по длине провода, если только это не сверхпроводящий провод. Зная это, мы должны помнить, что изученные здесь принципы, касающиеся общих электрических точек, в значительной степени действительны, но не до абсолютных градусов. То есть правило, согласно которому между электрически общими точками гарантированно будет нулевое напряжение, более точно сформулировано как таковое: между электрически общими точками будет очень небольшое падение напряжения .Этот небольшой, практически неизбежный след сопротивления, обнаруживаемый в любом куске соединительного провода, должен создавать небольшое напряжение по всей его длине при прохождении тока. Пока вы понимаете, что эти правила основаны на идеальных условиях, , вы не будете недоумевать, когда натолкнетесь на какое-то условие, которое кажется исключением из правила.

    • Предполагается, что соединительные провода в цепи имеют нулевое сопротивление, если не указано иное.
    • Провода в цепи можно укорачивать или удлинять, не влияя на работу схемы — все, что имеет значение, — это то, что компоненты подключены друг к другу в одной и той же последовательности.
    • Точки, напрямую соединенные в цепь нулевым сопротивлением (проводом), считаются электрически общими .
    • Электрически общие точки с нулевым сопротивлением между ними будут иметь нулевое падение напряжения между ними, независимо от величины тока (в идеале).
    • Показания напряжения или сопротивления между наборами электрически общих точек будут одинаковыми.