Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Газобетон или пенобетон в чем разница: Газобетон или пенобетон — что выбрать? — ДСК ГРАС

Содержание

Газобетон или пенобетон — что выбрать? — ДСК ГРАС

Содержание

Газобетонные блоки — это современный строительный материал, являющийся разновидностью ячеистого бетона. Его широкое применение обусловлено множеством преимуществ относительно других конструкционных изделий.

Состав газобетонных блоков

Газобетон — это минеральный камень искусственного происхождения пористой структуры. Особенность его в том, что пузырьки воздуха величиной 1-3 мм равномерно рассредоточены по всему объёму и имеют сферическую форму. Состоит материал из смеси цемента, извести, песка и воды. Также при производстве используются специальные газообразователи, которые вступая в химическую реакцию, выделяют водород. Он «вспучивает» смесь, в результате чего объём её увеличивается, а структура становится пористой. От газобетона пеноблоки отличаются способом производства, составом, и как следствие, характеристиками. Газобетонный блок становится пористым благодаря химическим реакциям, пеноблоки — в результате механического перемешивания смеси из песка, воды, цемента и приготовленной пены.


Стандартный цикл производства газобетонных блоков начинается с создания состава. Для этого сухие компоненты перемешиваются с водой, а затем раствор разливается в формы. После вспенивания и предварительного схватывания заготовки извлекают из формы и разрезают. Окончательное высушивание материала происходит в специальных камерах, где под высоким давлением массив обрабатывают паром в автоклаве. Это позволяет материалу приобрести такие качества, как: экологичность, долговечность, огнестойкость, высокую прочность, хорошую звукоизоляцию, теплоизоляцию, морозостойкость, высокую паропроницаемость. В зависимости от заключительного цикла газобетон делится соответственно на «неавтоклавный» и «автоклавный». В нашем случае, газобетон марки ГРАС является автоклавным ячеистым газобетоном.

Основные отличия автоклавного газобетона от пенобетона

Свойства Газобетон Пенобетон
Коэффициент теплопроводности 0,072-0,12 0,14-0,22
Марки по плотности 300, 350, 400, 500, 600, 700 600, 700, 800, 900
Прочность Класс B2,5 при D350 Класс B2,5 при D750-800
Отклонения геометрических размеров +/- 1 мм До 30 мм
Кладка, толщина шва Кладка на клей, шов 1-3 мм На песчано-цементный раствор, шов до 20 мм
Коэффициент экологичности 2  5
Фундамент Нагрузка на фундамент минимальная  Нагрузка на фундамент большая
Монтаж Менее сложен (легкий) Более сложен (тяжелый)
Звукоизоляция Низкая звукопроводность Высокая звукопроводность
Логистика Экономична (высокий объем загрузки) Не экономична (низкий объем загрузки)
Долговечность 100 лет и более Менее 30 лет

Обычному человеку легко спутать пенобетон с газобетоном, однако два этих материала имеют существенные отличия:


1.  В составе пенобетона вместо более дорогого кварцевого песка используются производственные отходы. Это удешевляет конструкцию и отражается на её характеристиках.


2. Высушивание блоков из пенобетона происходит на открытом воздухе, что сказывается на эксплуатационных качествах материала.


3. Газобетонные изделия обладают лучшими характеристиками по теплопроводности, чем пенобетонные.


4. В процессе эксплуатации блоки из газобетона не дают усадки, от пенобетона её следует ожидать.


5. В газобетоне мелкие поры распределены равномерно и имеют практически одинаковый размер, поры пенобетона намного крупнее.


Простой способ отличить газобетонные блоки от пенобетонных — изучить их цвет. Газобетонные изделия всегда белые, пенобетон — более серый и тёмный.

Преимущества газобетонных блоков

Газобетон не случайно применяется в качестве строительного материала по всему миру. Его производство налажено в 50 странах. Достоинства конструкций из газобетона обусловлены хорошими эксплуатационными качествами и  характеристиками.


• Долговечность материала сравнивают с конструкциями из кирпича, срок службы блоков может доходить до 100 лет и более.


• Прочность газоблоков обусловлена оптимальным соотношением плотности в пористой структуре. Однако понятие это условно. Так, применять газобетонные блоки в постройке высотой более 14 метров нельзя (исключение если конструкция с каркасом).


• Экологичность материала достигается благодаря отсутствию в составе токсичных компонентов. Блоки изготавливаются из традиционных сырьевых материалов, не выделяющих вредных веществ. Поэтому и готовые конструкции являются экологически чистыми.


• Газобетон по сравнению с обычным бетоном не радиоактивен, так как в его составе отсутствуют гранитный щебень и слюды (природные источники тория и урана).


• Способность материала, насыщенного водой, выдерживать попеременные циклы замораживания и оттаивания называется морозостойкость. Благодаря капиллярно-пористой структуре газобетона его морозостойкость сравнительно выше других подобных материалов.


• Газобетон — это негорючий материал, так как не органический. Он не горит сам и не поддерживает распространение огня. Это обуславливает его применение в жилом и общественном строительстве, а также в качестве обшивки пожаростойких стен, шахт и прочего.


• Энергоэффективность газобетона связана с его хорошими показателями по теплостойкости. Множество пор в структуре материала являются отличными блокировщиками холода. Поэтому здания с наружными стенами из газобетонных блоков сохраняют прохладу летом и тепло зимой. Благодаря этому же свойству материал обладает отличными звукоизоляционными свойствами.


• Благодаря особому способу производства все газобетонные конструкции имеют неизменно точные размеры, что позволяет дополнительно не выравнивать штукатуркой стены, а только нанести тонкую шпаклёвку.


• Ещё одно ценное преимущество — возможность простой обработки материала. Газобетонные блоки легко резать ручными инструментами, в результате чего вы сможете соорудить нестандартную конструкцию.

Недостатки газобетонных блоков




Несмотря на огромное количество преимуществ, газобетонные блоки — не совсем идеальный строительный материал. У него тоже есть хоть и не серьёзный, но недостаток.


• Хрупкость материала на излом.

Что же лучше всего подходит для строительства Вашего дома?

На наш взгляд, ответ на этот вопрос очевиден – газобетон.


Качество и химические свойства пеноблоков оставляют желать лучшего. Морозостойкость, огнестойкость, прочность, экологичность, теплоемкость,  водопоглащение и многое другое у этого материала значительно ниже. К тому же он может быть токсичен из-за химических реагентов, используемых при производстве. Оба материала отлично подходят для строительства домов.

Но, какой из них подходит для Вас?!


Хотите ли Вы жить в экологически чистом, комфортном, теплом, уютном доме, дом который простоит не один десяток лет или же в холодном, непрочном и не уютном. Решать Вам!

Информацию о газобетонных блоках, их стоимости и доставке Вы можете уточнить по телефону горячей линии: 8 (800) 505-0-654.

ПЕНОБЕТОН или ГАЗОБЕТОН: выбираем лучший вариант


Проекты каменных домов в классическом понимании, пользующиеся широкой популярностью еще пару десятилетий назад, больше не интересны заказчикам. Выполнение кладки кирпичных стен более трудоемкое, при этом они холоднее ячеистого бетона. Поэтому проекты двухэтажных домов из пеноблоков, также, как и проекты двухэтажных домов из газобетона наиболее востребованы на строительном рынке. Основная масса домов в нашем каталоге – это именно проекты мансардных домов из газобетона, одноэтажных и двухэтажных.

Объяснить популярность пенобетона и газобетона можно главным их свойством – низкой теплопроводностью. Оба эти материала втрое теплее кирпича, почти в двое – керамоблока и аж в восемь раз теплее обычного бетона. К тому же пено- и газоблоки легче керамических, что дает возможность создания более легких конструкций фундамента. Несомненным плюсом материалов считается экологичность построенного из них дома. Это обуславливается составляющими блоков на основе природных материалов.

Поэтому мы решили детальнее рассмотреть особенности пенобетона и газобетона, а также нюансы работы с этими материалами.

Производственные особенности

Производство газобетона происходит на заводе с применением извести, воды, кварцевого и обычного песка с добавлением цемента. Аллюминиевая пудра используется в качестве газообразователя. В результате химической реакции взаимодействия щелочи и алюминия происходит выделение водорода, поризующего готовую смесь. Для вспенивания и затвердевания смеси используются печи автоклавного горения. В них смесь обрабатывается водяными парами высокого давления и температуры. Поскольку процесс производства в технологическом плане строго регламентирован, все блоки имеют абсолютно однородную структуру, а также идеальные идентичные размерные характеристики.

Процесс производства пенобетона намного проще. Обладая специальным оборудованием, его небольшое количество можно изготовить даже в условиях строительного участка. Это положительным образом влияет на его стоимость. Сырьем для его изготовления является смесь бетона, которую разбавляют синтетическими или органическими пенообразователями, вводя их под высоким давлением.

Сравнение свойств газобетона и пенобетона

Стоит рассказать об основных различиях двух каменных материалов, главным образом определяющих особенности их применения, которые учитывают проекты мансардных домов из пеноблоков или газоблоков. Газобетон имеет более плотную, однородную и прочную структуру, неизменяемую со временем, но отличающуюся большей гигроскопичностью нежели пенобетон.  

  • Плотность газобетона выше. Обычно более плотный материал является и более «холодным» ввиду повышенной теплопроводности и ускорения процессов отведения тепла наружу. Но рационально оценить «тепло» двух этих материалов достаточно сложно, ведь плотность пенобетона имеет широкие границы – от 150 до 1200 кг/м3, а газобетона – от 350 до 800 кг/м3. С помощью этого показателя производители маркируют свои изделия, применяя букву D для обозначения марки. Чем меньше плотность пенобетона, тем большей хрупкостью он обладает. Именно поэтому изделия высоких марок, имеющие характеристики не ниже проектных, можно использовать для возведения конструктивов, а с помощью продукции низких марок можно успешно выполнять теплоизоляцию. Например, проект дачного домика из пеноблоков имеет указания технических характеристик пеноблоков, требуемых для строительства дома и учтенных при расчете проектных нагрузок и показателей.
  • Газобетон отличается большей прочностью. В сравнении с пенобетоном одноименной марки, его прочность больше в 2-3 раза. Именно этот материал подходит для строительства конструктивных элементов зданий. Такое свойство как хрупкость пенобетона определяет большую вероятность растрескивания материала стен при нарушении технологии строительства.
  • Свойства газобетона постоянны во времени, что обеспечится заводским производством этого материала полного цикла, а также его закалкой. Процесс сушки пенобетона занимает продолжительное время, что может привести к усадке блоков в год до 3 мм на 1 м. Эта особенность также способна вызвать растрескивание кладки, если была нарушена технология строительства. Прочность пенобетона набирает предельные значение через 2-3 года по завершении строительства. 
  • Структура газобетона однородна. Пеноблоки же при несоблюдении правил контроля технологии их производства могут получить неоднородные физические показатели прочности, массы, плотности и теплопроводности. Это может вызвать растрескивание стен ввиду неравномерности высыхания и усадки здания. 
  • Газобетон имеет лучшие показатели влагопроницания, чем пенобетон. Газобетонные блоки быстро набирают воду при попадании влаги на их поверхность и также активно его испаряют. Это определяет правило: например, проект двухэтажного дома из газоблока не должен предусматривать утепляющего пенополистирольного слоя с наружной стороны стен. Пар или влага в небольшом количестве не нарушают свойств газобетона, но защита его от прямого попадания воды обязательна. Поскольку поры пенобетона более закрытые, материал менее водопроницаем. 

ВОПРОС СТОИМОСТИ

Пенобетон будет дешевле для заказчика, чем газобетон в случае небольшого объема потребности этого материала и возможности его производства в непосредственной близости со строительной площадкой. 

  

Итоги: блоки какого вида предпочесть?

Оценив все «За» и «Против», можно было бы сделать вывод, что больше всего полюсов набрал газобетон. Но этот вывод не вполне однозначен. Точное следование технологии производства пенобетона, как и четкое следование нормам строительства при работе с этим материалом обеспечивает его надежность наравне с гезобетоном, а в определенных случаях даже большую выгоду. К тому же из пенобетона получается отличное утепление. Выбирая материал для строительства, следует тщательно просчитать все особенности каждого варианта применительно к конкретной ситуации.

P.S. В заключении хотим вам напомнить что все наши типовые проекты расcчитаны на каменные материалы, в том числе газобетон и пенобетон. Вам (либо ваши строителям-подрядчикам) необходимо лишь подобрать правильную марку этих материалов для соответствия проектным требованиям.

Смотрите также это видео об особенностях кладки блоков газобетона:

в чем разница, отличие, чем отличается пеноблок и ячеистый бетон, сравнение

Использование различных строительных материалов значительно расширяет возможности беспроблемного возведения любого типа построек. При выборе оптимального варианта большое значение имеет сравнительная характеристика основных критериев. Если взять во внимание такие виды современных строительных материалов как газо и пеноблоки, информация нашей статьи поможет разобраться во всех нюансах использования и сделать правильный выбор.

Что такое пеноблок

Этот материал получают путем добавления в цементную смесь специального пенообразователя, который делает структуру пористой и более объемной. При этом вспенивание необходимо производить механическим путем, перемешивая раствор насадками.

Пенобетон и газобетон отличия и другие особенности строительного материала описаны в статье.

Пеноблоки отличаются легким весом, что немаловажно при монтаже, а также хорошими теплосберегающими свойствами.

Установку пеноблоков производят на специальный клеящий состав, приобрести готовый или сделать собственноручно — дело индивидуального выбора. Большим преимуществом пеноблоков будет отсутствие мостиков холода, что автоматически позволит отказаться от дополнительной теплоизоляции. Наружную облицовку можно выполнять из любого подходящего сырья, при этом достигается высокий декоративный эффект таких фасадов.

Отличие пенобетона от газобетона что надежнее использовать можно узнать в данной статье.

На видео – преимущества пеноблока:

О том какие существуют преимущества газобетонных блоков можно узнать в данной статье.

Преимущества газобетона:

  • Легкий вес и простота монтажа.
  • Экономия клеящего состава.
  • Возможность выполнять монтаж в зимнее время.
  • Хорошая прочность и долговечность.

Газобетон — весьма привлекательный и прочный строительный материал с точной геометрией и гарантийным заводским происхождением. Использование газобетона снизит нагрузку на фундамент и позволит избежать характерных «мостиков холода», присущих традиционным материалам. Доступная стоимость и множество вариантов на строительном рынке также являются положительными сторонами использования газоблоков. Подробно про плюсы и минусы газоблока читайте в статье.

О том какова плотность газобетона описано в данной статье.

Сходство и отличия

Эти два материала гораздо больше похожи между собой, нежели принято считать. Начнем с того, что основное сырье, использованное при производстве — это цемент, песок и вода. Стандартный цементный раствор искусственно насыщается воздушными пузырьками. А вот какими методами это делается, определяется и различия между материалами.

Проанализировав основные показатели пеноблоков и газобетонных изделий, можно классифицировать следующим образом основные сходства и различия этих товаров.

О характеристиках газобетона Д 300 можно узнать из данной статьи.

На видео рассказывается, как отличить газобетон от пенобетона:

«Вспенивание» раствора и образование воздушных пустот

Пенобетон приобретает пористую структуру благодаря добавлению химического пенообразователя. При этом необходимо участие механизмов, которые будут «взбивать» полученный раствор наподобие кулинарного миксера. Благодаря этому структура пенобетона однородная, пузырьки воздуха располагаются по всей поверхности и не соединяются между собой. После приготовления смесь разливают по специальным формам и оставляют до полного застывания.

Газобетон изготавливают немного по–другому: базовый раствор из цемента подходящей маркировки, мелкого песка и воды насыщают специальными компонентами, которые вступают между собой в химическую реакцию с интенсивным выделением легкого газа. Процесс происходит в специализированном оборудовании — автоклаве. Там создается необходимое давление и температура окружающей среды, именно поэтому, сделать фальсификацию такого изделия труднее, нежели самостоятельно изготовить пенобетон.

О том какова теплопроводность газобетона можно прочесть в данной статье.

Теплопроводные свойства

Как уже говорилось ранее, оба материала выполнены из особого вида бетонной смеси, названного ячеистым благодаря пористой структуре. Именно воздушные пузырьки внутри блоков наделяю материал отличными теплосберегающими характеристиками. Разница в теплоемкости будет небольшая, но довольно существенная, если не планируется установка наружного слоя теплоизоляции.

На видео – характеристики газобетона и пенобетона:

Если не вдаваться в технические подробности, можно кратко суммировать положительный опыт работы с двумя материалами и сделать соответствующие выводы:

  1. Наружная облицовка необходима в любом случае, чтобы придать зданию завершенный вид и привлекательность.
  2. Для пеноблоков нет необходимости дополнительно утеплять фасады здания, достаточно будет выполнить декоративную отделку.
  3. Для газобетона — наружное утепление и облицовка просто необходимость, так как материал довольно чувствителен к внешним воздействиям и способен разрушаться.

Здания из пеноблока немного теплее, но при достаточной теплоизоляции по наружи газобетон будет ничуть не хуже.

Удобства монтажа

Здесь безусловным фаворитом будут изделия из газобетона. Благодаря четким размерам и исключительно заводскому производству, такие плиты намного ровнее пеноблоков, что существенно облегчает монтаж. Расход раствора также принято считать у газобетона более экономным, но это мнение очень субъективно, ведь в большей мере здесь будет задействовано мастерство укладчика и положительный опыт работ с подобными клеящими составами.

На видео – особенности монтажа:

Газобетон или пенобетон? Что лучше?

Довольно часто при использовании ячеистого бетона в строительстве постоянно задаешься вопросом: газобетон или пенобетон? Что лучше?

Газобетон и пенобетон относятся к категории ячеистых бетонов, свойства тех и других регламентируются ГОСТ 25485-89, при этом их принципиальное различие заключается в технологии их изготовления. При производстве газобетона пористая структура бетона формируется с помощью пузырьков газа, являющихся результатом химической реакции между цементом и алюминиевой пудрой, содержащейся в газообразователе.Пористая структура материала сохраняется при затвердевании газобетона. При наборе прочности получается легкий и прочный материал, который достаточно хорошо сохраняет тепло.

При изготовлении пенобетона пористая структура формируется с помощью пузырьков воздуха, равномерно распределенных по цементной смеси. Наличие пузырьков воздуха в пенобетоне обеспечивают подачей пены в цементную смесь или добавлением пенообразователя в цементную смесь при перемешивании.При затвердевании материала пористая структура сохраняется. Пенобетон по сравнению с газобетоном имеет закрытоячеистую структуру, что обеспечивает меньшее влагопоглощение.

Однако стены из пено- или газобетона обычно не оставляют без покрытия, а защищают от воздействия окружающей среды с помощью штукатурки, сайдинга, отделочной плитки и т. п. На строительной площадке важны не только теплоизоляционные свойства, но и прочность на разрыв при сжатии имеет значение. Пенообразователи (особенно синтетические), используемые для изготовления пенобетона, отрицательно влияют на прочность цементного кирпича.Для возведения несущей стены следует использовать кирпич класса прочности на сжатие на излом не ниже В2.

Для обеспечения такой прочности в пенобетоне плотность материала должна быть не менее 700-800 кг на куб. м. Такого же класса прочности (В2) у газобетона можно достичь при плотности 500-600 кг/куб. м. Итак, газобетон можно считать более прочным материалом. По той же причине пенобетон дороже в производстве, чем газобетон.Для сравнения: расход цемента на изготовление 1 куб. м пенобетона плотностью 800 кг/куб. м составляет в среднем 380-400 кг, а для изготовления 1 куб. м газобетона плотностью 600 кг/куб. м вам потребуется всего 280-300 кг цемента. Также стоит отметить, что стена из газобетона плотностью 600 кг/куб. м может быть тоньше при тех же прочностных и теплотехнических свойствах.

В любом случае выбирать материал будет потребитель.Перед покупкой необходимо убедиться, что выбранный материал соответствует требованиям ГОСТ и изучить особенности использования материала и его дальнейшей эксплуатации.

Сравнение легкого заполнителя и пенобетона с одинаковым уровнем плотности с использованием характеристик на основе изображений

https://doi.org/10.1016/j.conbuildmat.2019.03.270Get rights and content На основе анализа изображений исследованы характеристики и свойства легкого заполнителя бетона и пенобетона с одинаковыми уровнями плотности.

СЭМ-изображения подтвердили, что твердые структуры матрицы в пенобетоне относительно плотнее, чем в бетоне с легким заполнителем.

Микро-КТ изображения показали, что пенобетон имеет большую пористость, чем бетон с легким заполнителем, при одинаковой плотности материала.

Надлежащее использование бетона с легким заполнителем может быть более выгодным с точки зрения получения материала с лучшими механическими характеристиками за счет минимизации потери изоляционного эффекта.

Реферат

Легкий бетон — это особый тип бетона с низкой плотностью и улучшенной изоляцией, в основном изготавливаемый с использованием легких заполнителей или ячеистой матрицы. Бетонный материал, изготовленный из легких заполнителей, называется бетоном с легким заполнителем, а материал, изготовленный из ячеистой матрицы, обычно называют пенобетоном из-за пор, введенных пенообразователем. Оба типа легкого бетона имеют разные характеристики из-за разного состава.В этом исследовании свойства материала и характеристики этих легких бетонов были исследованы и сравнены. Была изготовлена ​​серия образцов пенобетона и легкого заполнителя с одинаковым уровнем плотности, а их механические и термические свойства были оценены с использованием чувствительных измерительных приборов. Рентгеновская микрокомпьютерная томография (μ-CT) и сканирующая электронная микроскопия (SEM) использовались для характеристики каждого материала с использованием методов на основе изображений. Результаты выявили детали каждого легкого бетона на микроструктурном уровне в отношении их свойств материала и показали, что правильно спроектированный бетон с легким заполнителем может иметь более выгодные механические характеристики за счет минимизации потери изоляции.

Ключевые слова

6

Ключевые слова

легкий совокупный бетон

вспененный бетон

рентген μ-CT

SEM

плотность

SEM

прочность на компрессию

Термальная проводимость

Рекомендуемая продукция Статьи (0)

Смотреть полный текст

© 2019 Elsevier ООО Все права защищены.

Рекомендуемые статьи

Цитирующие статьи

Пенобетон – материалы, свойства, преимущества и производство

🕑 Время прочтения: 1 минута

Пенобетон — это тип легкого бетона, который изготавливается из цемента, песка или золы-уноса, воды и пены.Пенобетон представляет собой вспененный раствор или вспененный раствор.
Пенобетон можно определить как вяжущий материал, состоящий не менее чем на 20 процентов из пены, который механически уносится в пластичный раствор. Сухая плотность пенобетона может варьироваться от 300 до 1600 кг/м3. Прочность на сжатие пенобетона, определенная через 28 суток, колеблется от 0,2 до 10 Н/мм 2 или может быть выше.

Пенобетон отличается от воздухововлекающего бетона объемом вовлеченного воздуха.Бетон с воздухововлекающими добавками поглощает от 3 до 8 процентов воздуха. Он также отличается от пенобетона и пенобетона тем же процентом вовлечения воздуха.
В случае замедленных минометных систем она составляет от 15 до 22 процентов. В случае газобетона пузырьки образуются химическим путем.

История пенобетона

Пенобетон имеет долгую историю и впервые был использован в 1923 году. Первоначально он использовался в качестве изоляционного материала.Улучшения за последние 20 лет в области производственного оборудования и более качественных пенообразователей позволяют использовать пенобетон в больших масштабах.

Производство пенобетона

Производство пенобетона предполагает разведение ПАВ в воде, которую пропускают через пеногенератор, что позволит получить пену устойчивой формы. Образующаяся пена смешивается с цементным раствором или строительным раствором, так что получается вспененное количество необходимой плотности.Эти поверхностно-активные вещества также используются в производстве наполнителей низкой плотности. Их также называют контролируемым материалом низкой прочности (CLSM). Здесь, чтобы получить содержание воздуха от 15 до 25 процентов, пена добавляется непосредственно в смесь с низким содержанием цемента и богатым песком.
Следует иметь в виду, что заполнители низкой плотности поставляются некоторыми производителями в виде пенобетона, поэтому следует быть осторожным с введением в заблуждение.
Для производства пенобетона используются два основных метода:

  • Встроенный метод и
  • Метод предварительного вспенивания

Поточный способ производства пенобетона

Базовая смесь цемента и песка добавляется в блок.В этом агрегате смесь тщательно смешивается с пеной. Процесс смешивания осуществляется с надлежащим контролем. Это поможет в смешивании больших количеств. Встроенный метод включает два процесса;

  • Влажный метод – встроенная система
  • Сухой метод — встроенная система

Влажный метод встроенной системы: материалы, используемые в мокром методе, будут более влажными по своей природе. С помощью ряда статических встроенных смесителей основной материал и пена подаются и смешиваются вместе. Непрерывный бортовой монитор плотности используется для проверки смешивания всей смеси.Выходной объем зависит от плотности пенобетона, а не от автобетоносмесителя. То есть из одной поставки 8 м 3 основного материала получится 35 м 3 пенобетона плотностью 500 кг/м 3 .
Сухой метод встроенной системы: здесь используются сухие материалы. Их забирают в бортовые бункеры. Отсюда они должным образом взвешиваются и перемешиваются с помощью бортовых миксеров. Смешанные основные материалы затем перекачиваются в смесительную камеру.
При мокром способе производства пенобетона добавляют и перемешивают пену. Этот метод использует большое количество воды для смешивания. Из одной партии цемента или смеси золы-уноса можно получить 130 кубометров пенобетона.

Предварительный способ производства пенобетона

Здесь грузовик со смесью доставляет основной материал на площадку. Через другой конец тележки предварительно сформированная пена впрыскивается в тележку, в то время как смеситель вращается. Таким образом, небольшое количество пенобетона может производиться для небольших работ, таких как заливка цементным раствором или засыпка траншей.Этот метод позволит получить пенобетон плотностью от 300 до 1200 кг/м 3 . Подача пены будет от 20 до 60 процентов воздуха. Конечный объем пенопласта можно рассчитать, уменьшив количество другого основного материала. Как это осуществляется в грузовике.
Для этого метода трудно контролировать стабильный воздух и плотность. Таким образом, степень недостаточной и избыточной доходности должна быть указана и разрешена.
При образовании пены ее смешивают с цементно-строительной смесью с водоцементным отношением 0. 4 до 0,6. Если раствор влажный, пена становится неустойчивой. Если она слишком сухая, предварительную пену трудно смешать.

Состав пенобетона

Состав пенобетона варьируется в зависимости от плотности, на которую есть спрос. Как правило, пенобетон с плотностью менее 600 кг/м 3 будет содержать цемент, пену, воду, а также некоторую добавку летучей золы или известняковой пыли.
Для достижения более высокой плотности пенобетона можно использовать песок. Базовая смесь составляет от 1: 1 до 1: 3 для более тяжелого пенобетона, что соответствует соотношению наполнителя и портландцемента (CEM I).Для большей плотности, скажем, более 1500 кг/м 3 используется больше наполнителя и песка среднего размера. Для уменьшения плотности следует уменьшить количество наполнителя. Рекомендуется исключить пенобетон плотностью менее 600кг/м 3 .

Материалы для пенобетона

Цемент для пенобетона

Обычно используется обычный портландцемент, но при необходимости можно использовать и быстротвердеющий цемент. Пенобетон может включать широкий спектр цемента и другие комбинации, например, 30 процентов цемента, 60 процентов золы-уноса и 10 процентов известняка.Содержание цемента колеблется от 300 до 400 кг/м3.

Песок для Пенобетон

Максимальный размер используемого песка может составлять 5 мм. Использование более мелкого песка до 2 мм, количество которого проходит через сито с размером ячеек 600 микрон, колеблется от 60 до 95%.

Поццоланас

Дополнительные вяжущие материалы, такие как летучая зола и молотый гранулированный доменный шлак, широко используются в производстве пенобетона. Количество используемой летучей золы колеблется от 30 до 70 процентов.Белый GGBFS колеблется от 10 до 50%. Это уменьшает количество используемого цемента и экономично.
Для увеличения прочности можно добавить микрокремнезем; в количестве 10 процентов по массе.

Пена

Гидролизованные белки или синтетические поверхностно-активные вещества являются наиболее распространенными формами, на основе которых производятся пены. Пенообразователи на синтетической основе проще в обращении и дешевы. Они могут храниться в течение более длительного периода.
Для производства этих пен требуется меньше энергии. Пеноматериалы на белковой основе дороги, но обладают высокой прочностью и производительностью.Пена бывает двух видов: влажная пена и сухая пена.
Влажные пены плотностью менее 100 кг/м3 не рекомендуются для изготовления пенобетона. Они имеют очень рыхло расположенную крупнопузырчатую структуру. До мелкой сетки распыляется средство и вода. В результате этого процесса образуется пена с пузырьками размером от 2 до 5 мм.
Сухая пена очень стабильна по своей природе. Раствор воды и пенообразователя через сужения нагнетается в камеру смешения компрессорным воздухом. Образовавшаяся пена имеет размер пузырьков меньше, чем влажная пена.То есть меньше 1 мм. Они дают структуру пузырьков, которые расположены равномерно.
BS 8443:2005 распространяется на пенообразующие добавки.

Прочие материалы и заполнители для пенобетона

Нельзя использовать крупный заполнитель или другой заменитель крупного. Это потому, что эти материалы будут тонуть в легкой пене.

Детали смеси пенобетона

Свойства пенобетона зависят от следующих факторов:

  • Объем поролона
  • Содержание цемента в смеси
  • Наполнитель
  • Возраст

Влияние водоцементного отношения очень мало влияет на свойства пенобетона, в отличие от пены и содержания цемента.

Свойства пенобетона

Свойства пенобетона в свежем и затвердевшем состоянии объясняются ниже;

Внешний вид пенобетона

Точное сравнение для пены, которая производится для производства пенобетона, напоминает пену для бритья. При смешивании с раствором стандартной спецификации конечная смесь будет напоминать консистенцию йогурта или форму молочного коктейля.

Свежие свойства пенобетона

Удобоукладываемость пенобетона очень высока и имеет осадку до разрушения 150 мм.Обладают сильным пластифицирующим эффектом. Это свойство пенобетона делает его востребованным в большинстве областей применения. После того, как поток смеси оставался статичным в течение длительного периода времени, очень трудно восстановить его исходное состояние. Пенобетон в свежем состоянии имеет тиксотропную природу.
Вероятность кровотечения в пенобетоне снижается из-за высокого содержания воздуха. При повышении температуры смеси хорошее наполнение и контакты осуществляются за счет расширения воздуха.
Если количество используемого песка больше или используются крупные заполнители, отличные от стандартных спецификаций, существует вероятность сегрегации.Это также может привести к схлопыванию пузыря, что приведет к уменьшению общего объема и структуры пены.
Перекачку свежего пенобетона можно проводить с осторожностью. Свободное падение пенобетона в конце с турбулентностью может привести к схлопыванию пузырьковой конструкции.

Затвердевшие свойства пенобетона

Физические свойства пенобетона четко связаны с плотностью в сухом состоянии. Изменения видны в таблице, приведенной в таблице ниже.

Таблица.

1: Типичные свойства пенобетона в затвердевшем состоянии

Сухая плотность
кг/м 3
Прочность на сжатие Н/мм 2 Прочность на растяжение
Н/мм 2
Водопоглощение
кг/м 2
400 0,5 — 1 0,05-0,1 75
600 1-1.5 0,2-0,3 33
800 1,5 -2 0,3-0,4 15
1000 2,5 -3 0,4-0,6 7
1200 4,5-5,5 0,6-1,1 5
1400 6-8 0,8-1,2 5
16 00 7. 5-10 1-1,6 5

Теплопроводность пенобетона колеблется от 0,1 Вт/м·К до 0,7 Вт/м·К. Усадка при высыхании составляет от 0,3 до 0,07% при 400 и 1600 кг/м3 соответственно.
Пенобетон не обладает эквивалентной прочностью, аналогичной автоклавному блоку с аналогичной плотностью. Под действием нагрузки внутри конструкции создается внутреннее гидравлическое давление, вызывающее деформацию пенобетона.
Затвердевший пенобетон обладает хорошей устойчивостью к замораживанию и оттаиванию.Было замечено, что при нанесении пенобетона в температурном диапазоне от -18 до +25 градусов Цельсия признаков повреждения не обнаружено. Плотность применяемого здесь пенобетона колеблется от 400 до 1400 кг/м 3 .

Преимущества пенобетона

  • Пенобетонная смесь не оседает. Следовательно, он не нуждается в уплотнении
  • Собственный вес уменьшен, так как это легкий бетон
  • Пенобетон в свежем состоянии имеет легкотекучую консистенцию. Это свойство поможет в полном заполнении пустот.
  • Структура из пенобетона обладает отличной способностью распределять и распределять нагрузку
  • Пенобетон Не создает значительных боковых нагрузок
  • Водопоглощение
  • Партии пенобетона просты в производстве, поэтому проверка качества и контроль выполняются легко
  • Пенобетон имеет повышенную устойчивость к замораживанию и оттаиванию
  • Безопасное и быстрое выполнение работ
  • Экономичный, меньше обслуживания

Недостатки пенобетона

  • Присутствие воды в замешанном материале делает пенобетон очень чувствительным
  • Трудность в завершении
  • Время перемешивания больше
  • С увеличением плотности снижается прочность на сжатие и прочность на изгиб.

Подробнее о Специальные бетоны

Часто задаваемые вопросы — Aerix Industries

Что такое ячеистый бетон?

Ячеистый бетон обычно определяется как легкий цементный материал, который содержит стабильные воздушные или газовые ячейки, равномерно распределенные по смеси в объеме более 20%. Вяжущие материалы инкапсулируют пузырьки воздуха, а затем рассеиваются, оставляя пористую структуру в качестве замены традиционному заполнителю.

Каковы преимущества формованной пены?

Процесс изготовления предварительно сформированной пены обеспечивает превосходный контроль качества и гарантию заданной плотности.Предварительно сформованная пена, в отличие от газообразующих химикатов, обеспечивает равномерное трехмерное распределение спроектированной системы воздушных ячеек. Предварительно сформированная пена образует стабильную матрицу из относительно небольших воздушных ячеек, которые более желательны, чем неорганизованная матрица из пузырьков разного размера, часто создаваемая методом отвода газов из реактивных добавок

Каковы недостатки ячеистого бетона по сравнению с обычным бетоном?

В более низких диапазонах плотности ячеистый бетон не развивает прочность на сжатие традиционного бетона.Хотя это может быть недостатком при применении традиционного бетона, это является преимуществом при применении ячеистого бетона. Следует учитывать, что ячеистый бетон и традиционный бетон обычно используются для разных целей. Каждая форма бетона демонстрирует уникальное семейство эксплуатационных характеристик. Каждый из них должен использоваться в соответствующем типе проекта.

Ячеистый бетон такой же, как CLSM

Нет! «Текучая» засыпка обычно представляет собой очень влажную смесь цемента и золы-уноса.Хотя ячеистый бетон и текучий заполнитель CLSM являются жидкими продуктами и часто оба приемлемы для одного и того же применения или проекта, ячеистый бетон имеет меньший удельный вес, а также улучшенные звуко- и теплоизоляционные свойства. Часто текучий наполнитель достигает предела прочности при сжатии, что делает удаление материала проблематичным. Ячеистый бетон низкой плотности очень легко удаляется только ручным инструментом. Технически ячеистый бетон представляет собой контролируемый материал с низкой прочностью, но «CLSM» по определению обычно относится к цементно-зольным растворам, в то время как «ячеистый бетон» относится к добавлению инженерной системы воздушных ячеек к цементу или цементно-зольному раствору. .AERFLOW™ от Aerix Industries — это ответ на спрос на текучий наполнитель CLSM с улучшенным воздушным наполнением, который можно производить на заводе по производству товарных смесей. AERFLOW™ представляет собой добавку, которую можно добавлять непосредственно в текучую наполнительную смесь с осадкой 1,5–2,0 дюйма без использования пеногенератора. AERFLOW™ CLSM обладает высокими характеристиками текучести и содержанием воздуха 20-25%. Текучий наполнитель CLSM больше не требует высокого содержания воды и высоких пределов прочности на сжатие. Дополнительную информацию см. в разделе о продукции на AERFLOW™.

Является ли ячеистый бетон тем же, что и легкий бетон?

Ячеистый бетон весит значительно меньше, чем обычный «легкий» бетон.По определению «легкий» бетон — это бетон, изготовленный из заполнителей, которые значительно легче обычных каменных заполнителей. Как правило, легкий бетон имеет плотность + 120 фунтов/куб.м. Типичный ячеистый бетон, использующий структуру внутренней воздушной камеры вместо заполнителя, имеет плотность 60 фунтов/куб. ft.

Является ли сегрегация проблемой?

В отличие от традиционного бетона, в ячеистом бетоне практически нет расслоения, что делает расслоение спорным вопросом. Ячеистый бетон, эквивалентный сегрегации, был бы коллапсом системы воздушных ячеек и уменьшением объема материала.Для предотвращения этого следует использовать наиболее стойкие жидкие пенообразователи и с осторожностью относиться к ячеистому бетону при укладке. Свежий ячеистый бетон не является хрупким и может перекачиваться на большие расстояния, но и не является неразрушимым.

Совместим ли ячеистый бетон с обычными добавками?

Ячеистый бетон совместим с обычными добавками для строительства бетона; однако наиболее распространенные добавки добавляются к традиционному бетону для изменения характеристик бетона, которые не применимы к эксплуатационным характеристикам ячеистого бетона.Например, ячеистый бетон не требует воздухововлекающих или отделочных добавок; тем не менее, цветные добавки и добавки, повышающие прочность, работают хорошо, если они применимы к проекту.

Какие добавки являются общими для ячеистых бетонов?

Армирование волокном Понизители теплоты гидратации (ледяная вода или химикаты) Повысители прочности на сжатие Красящие пигменты или добавки, улучшающие цвет

Каково правильное соотношение воды и цемента для цементно-водного раствора?

Как правило, файл .В качестве базовой смеси для ячеистого бетона обычно используется раствор с соотношением воды и цемента, состоящий из двух частей цемента и одной части воды. Водоцементное соотношение варьируется в зависимости от конкретных требований проекта. Следует отметить, что природную текучесть ячеистый бетон получает за счет воздушно-пузырьковой структуры, а не за счет избыточного содержания воды.

Ячеистые бетонные смеси содержат мелкий или крупный заполнитель?

Ячеистый бетон может также содержать обычные или легкие, мелкие и/или крупные заполнители.Система с воздушными ячейками из жесткого пенопласта отличается от обычного заполнителя методами производства и более широким спектром конечных применений. Ячеистый бетон может быть монолитным или сборным. Конструкции ячеистых бетонных смесей в целом предназначены для создания продукта с низкой плотностью и, как следствие, относительно более низкой прочностью на сжатие (по сравнению с традиционным бетоном). Типичный диапазон плотности чистых цементно-ячеистых бетонных смесей составляет от 20 до 60 фунтов/куб. футов, который развивает соответствующий диапазон прочности на сжатие от 50 фунтов на квадратный дюйм до 930 фунтов на квадратный дюйм.Когда требуется более высокая прочность на сжатие, добавление мелкого и/или крупнозернистого заполнителя приведет к получению более прочного ячеистого бетона с более высокой плотностью. Следует отметить, что для большинства применений ячеистого бетона требуется легкий материал. При рассмотрении вопроса о добавлении конечного заполнителя необходимо учитывать, насколько этот тяжелый заполнитель будет соответствовать проекту, который обычно требует использования легкого материала. Включение заполнителя, особенно грубого заполнителя, может отрицательно сказаться на ожидаемых характеристиках материалов.

Какой тип цемента подходит для ячеистого бетона?

Ячеистый бетон может быть изготовлен из любого типа портландцемента или смеси портландцемента и летучей золы. Эксплуатационные характеристики цементов типа II, типа III и специальных цементов переносятся на характеристики ячеистого бетона.

Уместно ли добавлять летучую золу в цементно-водную суспензию для ячеистого бетона?

Летучая зола, добавляемая в цемент, не оказывает неблагоприятного воздействия на основное затвердевшее состояние ячеистого бетона.Вливание и поддержка ячеистого бетона с помощью системы воздушных ячеек представляет собой механическое действие и не вызывает проблем с золой-уносом или химическими добавками к бетону. Обратите внимание, что некоторым смесям с летучей золой может потребоваться больше времени для схватывания, чем смесям с чистым портландцементом. Смеси с большим процентным содержанием летучей золы могут потребовать очень длительного времени для приготовления. Летучей золы с высоким содержанием углерода, такой как типичный «зольный остаток», следует избегать в большинстве ячеистых или простых бетонных смесей.

Как производится и укладывается ячеистый бетон?

В системе непрерывной генерации.жидкий концентрат пены проходит через генератор автопены, который добавляет воздух и воду в концентрат для создания предварительно сформированной пены. Затем эта пена смешивается с цементным раствором через встроенный инжектор, а затем перекачивается через шланг к месту укладки. Смеси MEARLCRETE, AERLITE и AERLITE-iX были успешно закачаны на глубину до 700 футов по вертикали и до 15 000 футов по горизонтали без каких-либо проблем.

Производит ли Aerix и укладывает ячеистый бетон?

Нет, Aerix поставляет специализированным подрядчикам усовершенствованный жидкий пенообразователь.Эти подрядчики, имеющие специальную подготовку и опыт работы с ячеистым бетоном, будут производить и укладывать ячеистый бетон. У Aerix хорошие рабочие отношения с этими специализированными подрядчиками, и мы стремимся предоставить им комплексное проектирование и техническую поддержку на протяжении всего процесса производства и размещения.

Можно ли замешивать ячеистый бетон?

Цементно-водный раствор следует смешивать до тех пор, пока не останется сухих комков или шариков цемента. Затем в смесь добавляют предварительно сформированную пенопластовую смесь.Пена довольно быстро смешивается с суспензией и требует лишь небольшого времени перемешивания в зависимости от смесительного оборудования.

Можно ли перемешивать ячеистый бетон?

Смешивание до уменьшения объема продукта не рекомендуется. Стабильность воздушной камеры — отличительная черта жидких пенообразователей Aerix и наших пеногенераторов. При обычных процедурах смешивания ячеистый бетон, приготовленный из предварительно сформированной пены Aerix, очень стабилен даже при незначительном увеличении времени смешивания.

На какое расстояние можно закачивать ячеистый бетон?

Ячеистый бетон представляет собой очень легко перекачиваемую, очень текучую смесь. Основная масса ячеистого бетона укладывается насосным способом. Ячеистый бетон обычно перемещается по насосным линиям с меньшим давлением, чем обычные более тяжелые растворные смеси. Общедоступна документация о перекачивании ячеистого бетона на высоту до 500 футов и более по вертикали и 10 000 футов по горизонтали.

Как вы отделываете ячеистый бетон?

Большая часть ячеистых бетонов оставлена ​​на самостоятельный поиск уровня, а не на «чистую» поверхность в традиционном понимании.Большая часть ячеистого бетона покрыта другим материалом. Инструмент для сглаживания напольного покрытия можно использовать просто для того, чтобы разрушить воздушные ячейки поверхности и придать поверхности более однородный и полированный вид в тех редких случаях, когда требуется более однородный внешний вид поверхности.

Можно ли армировать ячеистый бетон синтетическими волокнами?

Армирование синтетическим волокном представляет собой механический процесс и не оказывает никакого влияния на химический состав бетона. Поэтому вполне приемлемо проектировать ячеистый бетон, армированный волокном.Ячеистый бетон, армированный волокном, становится стандартным материалом для кровельных настилов и конструкций из изолированной бетонной формы (ICF).

Можно ли армировать ячеистый бетон стальной фиброй?

Нет никаких химических или механических причин не армировать ячеистый бетон стальной фиброй. Однако для большинства применений ячеистого бетона требуется легкий материал. Для большинства применений сталефибробетона требуется тяжелый железобетон с высокой прочностью на сжатие, армированный стальным волокном.Казалось бы несколько маловероятным, что приложение потребует ячеистого бетона, армированного стальной фиброй, но нет никаких технических причин не проектировать ячеистый бетон, армированный стальной фиброй

Схлопываются ли пузырьки в ячеистом бетоне, уменьшая его объем?

Не подходит для хорошо разработанных жидких пенообразователей. Готовые пенобетонные изделия из высококачественных жидких пенообразователей Aerix не разрушаются. Стабильность воздушной камеры является признаком превосходной комбинации пенообразователя и пенообразователя.Что не означает, что все изделия из ячеистого бетона стабильны. Особое внимание следует уделить испытанию пены из пеногенераторов водяного напорного типа и химических продуктов газоотвода. Предложенная предварительно сформированная пена для применения должна быть проверена на стабильность или сертифицирована на стабильность до фактического размещения проекта.

Как испытывают ячеистый бетон?

Ячеистый бетон соответствует методам испытаний ASTM, применимым к легкому изоляционному бетону. ASTM C 495 — это стандартный метод испытания прочности на сжатие, а ASTM C 796 — стандартный метод испытания пенообразователей, используемых при производстве ячеистого бетона с использованием предварительно сформированной пены.

Существуют ли важные отличия в тестировании по сравнению с традиционным бетоном?

Да, обработка и хранение образцов ячеистого бетона очень важны. Цилиндрические образцы имеют размеры 3″ x 6″ и должны храниться при относительной влажности 50% для отверждения. Образцы должны быть удалены из цилиндров и высушены на воздухе в течение 3 дней перед испытанием на прочность при сжатии через 28 дней.

Сколько стоит ячеистый бетон?

Экономичный ячеистый бетон различается по цене в зависимости от географического региона и требований к применению.Представитель YourAerix Industries будет рад помочь вам с расчетами бюджета и ценовыми предложениями для нашей продукции. Если вы хотите, ваш представитель Aerix может также согласовать цены на месте через одного из многих специализированных подрядчиков, прошедших обучение на заводе.

Чем ячеистый бетон отличается по цене от традиционного бетона?

Типичный проект из ячеистого бетона будет намного дешевле в расчете на кубический ярд по сравнению с традиционным бетоном из-за экономии рабочей силы, меньшей стоимости формования и экономии цены при сравнении предварительно сформированной пены с ценой на заполнитель.Следует отметить, что ячеистый бетон редко когда-либо используется там, где применим традиционный бетон. Сравнение цен на ячеистый бетон и традиционный бетон не имеет смысла. Ячеистый бетон выгодно отличается от цен на цементный раствор, раствор и текучую заливку.

Как выбрать ячеистый бетон?

Сотрудник группы Aerix может предоставить вам письменные или электронные спецификации, соответствующие вашему применению. Основные технические характеристики также можно получить по электронной почте.

Механические характеристики легкого пенобетона

Пенобетон демонстрирует отличные физические характеристики, такие как малый собственный вес, относительно высокая прочность и превосходные тепло- и звукоизоляционные свойства. Это позволяет минимизировать расход заполнителя, а за счет замены части цемента летучей золой способствует реализации принципов утилизации отходов. В течение многих лет применение пенобетона ограничивалось засыпкой подпорных стен, утеплением фундаментов и звукоизоляцией черепицы.Однако в последние несколько лет пенобетон стал перспективным материалом конструкционного назначения. Проведена серия испытаний по изучению механических свойств пенобетонных смесей без золы-уноса и с содержанием золы-уноса. Кроме того, исследовано влияние 25 циклов замораживания и оттаивания на прочность на сжатие. Кажущаяся плотность затвердевшего пенобетона сильно коррелирует с содержанием пены в смеси. Увеличение плотности пенобетона приводит к снижению прочности на изгиб.При одинаковой плотности прочность на сжатие, полученная для смесей, содержащих летучую золу, примерно на 20% ниже по сравнению с образцами без летучей золы. Образцы, подвергшиеся 25 циклам замораживания-оттаивания, демонстрируют примерно на 15 % более низкую прочность на сжатие по сравнению с необработанными образцами.

1. Введение

Пенобетон известен как легкий или ячеистый бетон. Его обычно определяют как вяжущий материал с не менее 20% (по объему) механически увлекаемой пены в растворной смеси, где воздушные поры захватываются в матрице с помощью подходящего пенообразователя [1].Он демонстрирует отличные физические характеристики, такие как малый собственный вес, относительно высокая прочность и превосходные тепло- и звукоизоляционные свойства. Это позволяет минимизировать расход заполнителя, а за счет замены части цемента золой-уносом способствует реализации принципов утилизации отходов [2]. При правильном подборе и дозировке компонентов и пенообразователя можно получить широкий диапазон плотностей (300-1600 кг/м 3 ) для различных конструкционных, изоляционных или заполняющих применений [2].

Пенобетон известен уже почти столетие и был запатентован в 1923 году [3]. Первое комплексное исследование пенобетона было проведено в 1950-х и 1960-х годах Валоре [3, 4]. После этого исследования более подробная оценка состава, свойств и областей применения ячеистого бетона была сделана Руднаи [5], а также Шортом и Киннибургом [6] в 1963 г. Новые смеси были разработаны в конце 1970-х и начале 1980-х годов. , что привело к расширению коммерческого использования пенобетона в строительных конструкциях [7, 8].

В течение многих лет применение пенобетона ограничивалось засыпкой подпорных стен, утеплением фундаментов, звукоизоляцией [8]. Однако в последние годы пенобетон стал перспективным материалом и конструкционного назначения [7, 9], например, для стабилизации слабых грунтов [10, 11], базового слоя многослойных растворов для фундаментных плит [12]. , промышленные полы [13], а также инженерные сооружения для автомагистралей и метро [14, 15].

В связи с растущими экологическими проблемами крайне важно исследовать экологичные материалы для более широкого спектра применений, чтобы предложить возможные альтернативы традиционным материалам.

Пенобетон, являясь альтернативой обычному бетону, соответствует критериям принципов устойчивости строительных конструкций [16–18]. Общие принципы, основанные на концепции устойчивого развития применительно к жизненному циклу зданий и других строительных сооружений, определены в ISO 15392:2008. Во-первых, пенобетон расходует относительно небольшое количество сырья по отношению к количеству затвердевшего состояния. Во-вторых, при его производстве могут использоваться переработанные материалы, такие как летучая зола.Таким образом, пенобетон способствует утилизации отходов тепловых электростанций. В-третьих, пенобетон можно перерабатывать и использовать вместо песка в изоляционных материалах. Кроме того, производство пенобетона нетоксично, а продукт не выделяет ядовитых газов при воздействии огня. Наконец, это рентабельно не только на этапе строительства, но и на протяжении всего срока эксплуатации и обслуживания сооружения.

Помимо вклада в утилизацию отходов тепловых электростанций, добавление золы-уноса улучшает удобоукладываемость свежей пенобетонной смеси и положительно влияет на усадку при высыхании [2, 19].С одной стороны, единственным недостатком этой минеральной добавки является более низкая ранняя прочность раствора по сравнению со смесью без золы-уноса [20]. С другой стороны, доказано улучшение длительной прочности [19, 21].

Несмотря на благоприятные и многообещающие прочностные и физические свойства, пенобетон по-прежнему используется в ограниченном масштабе, особенно в строительных целях. В основном это связано с недостатком знаний о его механических свойствах и небольшим количеством исследований его поведения при разрушении [22–28].

Основной целью данной работы является исследование механических характеристик пенобетона различной плотности (400–1400 кг/м 3 ). Была проведена серия испытаний для проверки прочности на сжатие, модуля упругости, прочности на изгиб и характеристик деградации материала после циклов замораживания-оттаивания.

2. Экспериментальная программа
2.1. Подготовка образцов и состав бетонной смеси

Материалами, использованными в этом исследовании, были портландцемент, летучая зола, вода и пенообразователь.Состав смеси представлен в табл. 1. Промышленный портландцемент марки ЦЕМ I 42,5 R [29] согласно PN-EN 197-1:2011. Ее химический состав и физические свойства, измеренные в соответствии с ПН-ЕН 196-6:2011 и ПН-ЕН 196-6:2011-4, приведены в таблицах 2 и 3. Во всех экспериментах использовалась водопроводная вода. Прочность цемента на сжатие определяли по ПН-ЕН 196-1:2016-07 (табл. 3).

093816PPI

  • Деванш Джайн
  • Анубхав Кумар Хиндория
  • Судхир С. Бхадаурия
  • конечный поток
    эндообъект
    2 0 объект
    >
    эндообъект
    3 0 объект
    >поток
    xXnc7+F».



    Символ смешивания Содержание вспенивающего агента (L / 100 кг C) Цемент (кг) Fly Sast (Kg) Вода (кг) кг) (-)

    FC1 2. 00 25.00 0,00 10,50 0,50 0,44
    FC2 4,00 25,00 0,00 10,00 1,00 0,44
    FC3 6,00 25.00 0.00 9.50 9.50 1.50 0,44 0.44
    FC4 8.00 0,00 25.00 0,00 9.00 2,00 0.44
    FC5 10,00 25.00 0,00 8,50 2,50 0,44
    FCA1 2,00 25,00 1,25 10,50 0,50 0,44
    FCA2 4.00 25.00 25.00 1.25 10.00 10.00 1.00 0,44
    FCA3 6.00 25.00 1.25 9,50 1,50 0,44
    FCA4 8,00 25,00 1,25 9,00 2,00 0,44
    FCA5 10,00 25. 00 1,25 8,50 2,50 0,44

    CAO


    SiO 2 Аль 2 О 3 Fe 2 О 3
    MGO SO 3 Na 2 O K 2 O CL

    19.5 4,9 2,9 63,3 1,3 2,8 0,1 0,9 0,05



    Удельная площадь поверхности (M 2 / кг) Удельная гравитация (G / см 3 ) прочность на сжимание (МПа)
    , после нескольких дней
    3840 3. 06 2 2 2 9 28
    28.0 28.0 58.0 58,0

    Для повышения работоспособности и уменьшения усадки, летучая зола использовали в некоторых смесе. Используемая зола соответствовала требованиям PN-EN 450-1:2012. Его химический состав приведен в таблице 4.

    9025


    SIO 2 AL 2 O 3 9 O 3 Fe 2 O 3 CAO MgO SO 3 Na 2 O K 2 O

    1.42 5.80197

    5.09 3.61 1.63 0,263 0.263 0.0.263 0.096 0.096

    6

    Коммерческий вспенивающий агент использовался для производства пены. Жидкий агент сжимали воздухом под давлением приблизительно 5 бар, чтобы получить стабильную пену с плотностью приблизительно 50 кг/м 3 . Готовили цементные массы с 2 ÷ 10 л жидкого пенообразователя на 100 кг цемента.

    Были использованы два различных типа бетонных смесей (один без летучей золы, а другой с летучей золой). Всего было изготовлено 10 смесей по пять образцов на одну бетонную смесь (табл. 1). Для всех смесей использовалось постоянное соотношение (включает воду и жидкий пенообразователь; c – содержание цемента). Он был основан на результатах Jones и McCarthy [7] и Xianjun et al. [30]. Целевые плотности затвердевшего пенобетона, которые должны быть получены в этом исследовании, составляли от 400 до 1400  кг/м 3 .

    Весь процесс производства пенобетона должен тщательно учитывать плотность смеси, производительность пенообразования и другие факторы для получения высококачественного пенобетона. Ключевыми факторами для получения стабильного пенобетона являлись нагнетание пенообразователя при стабильном давлении и постоянная скорость вращения смешения компонентов.

    Все образцы после отливки в стальные формы закрывали и хранили в сушильной камере при температуре 20 ± 1°С и влажности 95% в течение 24 часов.Затем образцы извлекали из форм и хранили в условиях окружающей среды (при 20 ± 1°C и влажности 60 ± 10%) в течение 28 или 42 дней перед испытанием.

    2.2. Испытания

    Пенобетон является относительно новым материалом, и в настоящее время не существует стандартизированных методов испытаний для измерения его физических и механических свойств. Поэтому в данном исследовании были адаптированы процедуры подготовки образцов и методы испытаний, обычно используемые для обычного бетона. Прочность на сжатие, модуль упругости и прочность на изгиб определяли в соответствии с рекомендациями: ПН-ЕН 12390-3:2011 + АС:2012, Инструкция НИИ №194/98, ПН-ЕН 12390-13:2014 и ПН-ЕН 12390-5:2011 соответственно. Плотность измеряли согласно PN-EN 12390-7:2011.

    Прочность на сжатие измерялась на стандартных кубах 150 × 150 × 150 мм, как указано в PN-EN 12390-3:2011 + AC:2012. Норма нагружения принята согласно PN-EN 772-1:2015 + A1:2015 как для элементов кладки из ячеистого бетона.

    Модуль упругости определяли согласно Инструкции НИИ 194/98 и ПН-ЕН 12390-13:2014-02 на цилиндрических образцах размерами 150 × 300 мм.Скорость нагружения составляла 0,1 ± 0,05 МПа/с в соответствии с PN-EN 679:2008 для блоков кладки из ячеистого бетона. Два тензодатчика электрического сопротивления с измерительной длиной 100 мм были приклеены к двум противоположным сторонам образцов на средней высоте. Для оценки модуля упругости регистрировали характеристику «напряжение-деформация».

    Прочность на изгиб была испытана на трехточечном изгибе с балками 100 × 100 × 500 мм в соответствии с PN-EN 12390-5:2011. Номинальное расстояние между опорами составляло 300 мм.Ролики допускали свободное горизонтальное перемещение. Образцы нагружались с постоянной скоростью смещения 0,1 мм/мин как оптимальная величина, определенная экспериментально.

    Характеристики деградации при циклах замораживания-оттаивания оценивали на стандартных кубиках размером 150 × 150 × 150 мм. Прочность на сжатие определяли по методике, описанной выше. Испытательная кампания состояла из 25 циклов замораживания и оттаивания. Каждый цикл включал охлаждение образцов до температуры -18°С в течение 2 ч.Затем образцы выдерживали в замороженном виде в течение 8  часов при температуре –18 ± 2°C и оттаивали в воде при температуре +19°C ± 1°C в течение 4 часов. Образцы сравнения хранились погруженными в воду в качестве эталонов.

    3. Результаты и обсуждение
    3.1. Кажущаяся плотность

    Дозировка пенообразователя сильно влияет на плотность смеси и затвердевшего пенобетона. На рис. 1 представлена ​​зависимость между дозировкой пенообразователя и кажущейся плотностью затвердевшего пенобетона для образцов без золы-уноса (ЗЦ) и других с золой-уносом (ЗЦА).Кажущаяся плотность затвердевшего пенобетона сильно коррелирует с содержанием пены и составом цементного теста и воздушных пустот в свежей смеси. Увеличение содержания пены сопровождается увеличением объема свежего бетона, что приводит к уменьшению плотности затвердевшего пенобетона. Можно заметить, что существуют экспоненциальные зависимости для образцов FC и FCA. Кроме того, результаты, полученные в FC, показывают уровень плотности примерно на 20% выше, чем в FCA. Это можно объяснить тем, что в образцах, содержащих летучую золу, процесс твердения замедлен.Физическая реакция между летучей золой и воздушными порами приводит к увеличению количества воздушных пор, захваченных смесью. Также установлено, что смеси с содержанием пенообразователя более 10 литров на 100 кг цемента дают нестабильную смесь. Результаты были аппроксимированы полиномиальными функциями, как показано на рисунке 1.

    3.2. Прочность на сжатие

    Кубические образцы пенобетона, испытанные на сжатие, имеют механизм разрушения, аналогичный обычному бетону. Для всех образцов наблюдалась типичная коническая картина разрушения после разрушения (рис. 2).

    Прочность на сжатие пенобетона без золы (FC) и пенобетона с добавкой золы-уноса (FCA) в зависимости от кажущейся плотности представлена ​​на рисунке 3. Можно заметить, что существуют экспоненциальные зависимости для обоих FC и FCA; однако, по-видимому, существует разница между показателями прочности, полученными для образцов FC и FCA. Образцы без золы, по-видимому, демонстрируют более высокую прочность, чем смеси, содержащие золу. Это связано с тем, что процесс твердения замедляется из-за наличия летучей золы [20].Кроме того, эта разница увеличивается вместе с плотностью. Полученные значения прочности на сжатие соответствуют результатам работ других авторов [31–34]. Результаты были аппроксимированы полиномиальными функциями, как показано на рисунке 3.

    3.3. Модуль упругости

    Образцы цилиндрического пенобетона, испытанные на сжатие, имеют механизм разрушения, аналогичный обычному бетону. Для всех образцов наблюдалась типичная коническая картина разрушения после разрушения (рис. 4).Зависимости напряжения от деформации цилиндрических образцов представлены на рис. 5. На графиках показаны зависимости в диапазоне 0,2 МПа до разрушения согласно ПН-ЕН 12390-13:2014-02.


    На рис. 6 представлены зависимости между модулем упругости пенобетона и его плотностью. Можно заметить, что существуют экспоненциальные зависимости для FC и FCA. Образцы без летучей золы, по-видимому, имеют более высокий модуль упругости, чем смеси, содержащие летучую золу [35].Полученные значения модуля упругости соответствуют результатам работ Олдриджа [8].

    3.4. Прочность на изгиб

    На рисунке 7 представлена ​​зависимость между плотностью пенобетона и прочностью на изгиб. Испытания проводились на образцах без летучей золы. На рис. 7 приведены также результаты экспериментов, проведенных авторами и опубликованных в [23–28]. Можно отметить снижение предела прочности при изгибе с уменьшением плотности пенобетона.Значения прочности на изгиб соответствуют результатам работ Mydin и Wang [31] и Soleymanzadeh и Mydin [36].

    3.5. Характеристики разрушения при циклах замораживания-оттаивания

    На рис. 8 показаны результаты прочности на сжатие пенобетона после 25 циклов замораживания-оттаивания в зависимости от плотности. В качестве справки результаты для необработанных образцов показаны на рис. 8. Обработка образцов методом замораживания-оттаивания оказывает лишь незначительное влияние на прочность пенобетона на сжатие.Прочность, полученная для образцов, подвергнутых циклам замораживания-оттаивания, показала примерно на 15% более низкие значения. Результаты были аппроксимированы полиномиальными функциями, как показано на рисунке 8.

    4. Выводы

    Пенобетон может достигать гораздо более низких плотностей (от 400 до 1400 кг/м 3 ) по сравнению с обычным бетоном. Была проведена серия испытаний для изучения механических параметров пенобетона: прочности на сжатие, прочности на изгиб и модуля упругости.Кроме того, было исследовано влияние 25 циклов замораживания и оттаивания на прочность на сжатие.

    Основные выводы, которые можно сделать из этого исследования, следующие: (i) Дозировка пенообразователя влияет на плотность смеси и затвердевшего пенобетона. Плотность пенобетона сильно коррелирует с содержанием пены в смеси. (ii) Прочность на сжатие, модуль упругости и прочность на изгиб уменьшаются с уменьшением плотности пенобетона; для описания этих отношений были предложены полиномиальные функции.(iii) Прочность на сжатие и модуль упругости пенобетона были немного снижены при добавлении 5% летучей золы. к необработанным образцам.

    Конфликт интересов

    Авторы заявляют об отсутствии конфликта интересов.

    Благодарности

    Работа выполнена при поддержке продолжающегося исследовательского проекта «Стабилизация слабого грунта путем нанесения слоя пенобетона, контактирующего с грунтом» (LIDER/022/537/L-4/NCBR/2013), финансируемого Национальный центр исследований и разработок в рамках программы ЛИДЕР.Авторы выражают признательность лаборанту Альфреду Кукельке за навыки и приверженность делу, без которого настоящее исследование не могло бы быть успешно завершено.

    Экспериментальное исследование сверхлегкого (

    Тип сверхлегкого (<300  кг/м 3 ) пенобетона (FC), который можно использовать в качестве нового энергосберегающего и защищающего окружающую среду строительного материала, особенно подходящий для произведена теплоизоляционная конструкция наружных стен зданий. Сообщалось о влиянии различных количеств золы-уноса, активатора зольной пыли, соотношения WC (WC) и пенообразователя (FA) на прочность на сжатие FC. Экспериментальное исследование показало, что (1) добавление летучей золы снижает прочность FC и что соответствующее количество золы при смешивании в этой сверхлегкой системе FC не должно превышать 45%; (2) с увеличением количества активатора летучей золы прочность образца FC заметно повышается, и соответствующее количество активатора летучей золы при смешивании составляет 2.5%; (3) оптимизированная пропорция соотношения WC составляет 0,45, и ТК, полученный в соответствии с этой пропорцией, имеет относительно высокую прочность на сжатие; (4) при увеличении количества FA в смеси заметно снижается прочность FC на сжатие, и оптимальное количество FA в смеси в этом эксперименте составляет 3,5%.

    1. Введение

    Пенобетон (ПБ) относится к более широкой категории ячеистых бетонов, в которых воздушные пустоты улавливаются в матрице раствора с помощью подходящего аэратора [1–4]. Он легкий, обладает влагозащитой, противопожарной защитой, звукоизоляцией и хорошей теплоизоляцией; поэтому он успешно применяется в проектах цементирования нефтяных скважин, используется в качестве материала для обратной засыпки в проектах земляных работ, а также используется для звуко- и теплоизоляции в строительных панелях, противопожарных стенах, энергопоглощающих прокладках на дорогах, дорожном основании, несущих конструкциях. насыпи, фундаменты, а также геотехнические и шахтные насыпи [5–7].

    Исследователи успешно изготовили ТЭ в диапазоне плотностей 300–1800 кг/м 3 [2–4, 8, 9], как тип базовых материалов; методы пенообразования и свойства ФК широко изучены.Ниже приведены некоторые примеры.

    (i) Компоненты базовой смеси . Помимо обычного портландцемента, в быстротвердеющем портландцементе для сокращения времени схватывания и улучшения ранней прочности пенобетона использовались высокоглиноземистый и сульфоалюминат кальция. В дополнение к цементу, многие типы материалов, такие как летучая зола диоксида кремния, известковый мел, дробленый бетон, зольный остаток мусоросжигательных заводов, переработанное стекло, литейный песок, карьерная мелочь, пенополистирол, скорлупа масличной пальмы и мелочь Lytag использовались для снижения плотности пенобетона и/или использовать отходы/вторсырье [3, 5, 6, 10, 11].

    (ii) Способы производства пены . Применялись химическое расширение и механическое вспенивание. При химическом пенообразовании пенообразователь (FA), такой как алюминиевый порошок, CaH 2 , TiH 2 или MgH 2 , смешивают с ингредиентами базовой смеси, и в процессе смешивания пена получается из химические реакции, формирующие ячеистую структуру бетона. При механическом пенообразовании пену готовят заранее с помощью специального устройства — пеногенератора, в котором вода и химическая добавка смешиваются в определенной пропорции, а предварительно приготовленная пена механически смешивается с бетонной смесью.После формования бетон твердеет при нормальных атмосферных условиях [3, 12, 13].

    (iii) Свойства FC . Физические свойства (усадка при высыхании, плотность, пористость, система воздух-пора и сорбция), механические свойства (прочность на сжатие, прочность на растяжение, модуль упругости и прогнозные модели), долговечность и функциональные характеристики (теплопроводность, акустические свойства, огнестойкость) широко обсуждались [5, 6, 14–19].

    Многие из упомянутых выше исследований ТЭ использовали цемент в качестве одного из основных материалов. Однако цемент является строительным материалом с высоким потреблением энергии и серьезным загрязнением окружающей среды. Таким образом, традиционно производимый продукт FC противоречит способу разработки экологически чистых строительных материалов, хотя многие экспериментальные и теоретические исследования были выполнены путем добавления в цемент определенного количества промышленных отходов, таких как летучая зола и шлак; например, Nambiar и Ramamurthy [10] использовали летучую золу для производства FC плотностью 1000, 1250 и 1500 кг/м 3 .Кирсли и Уэйнрайт [5, 6, 17] пришли к выводу, что долгосрочные свойства ТК можно улучшить, заменив 75% цемента летучей золой. До сих пор было проведено небольшое экспериментальное исследование влияния высокого содержания летучей золы на прочность на сжатие сверхлегких (<300 кг/м 3 ) FC. Однако по мере того, как область применения ТЭ становится все шире и шире, требуются все более сверхлегкие (<300 кг/м 3 ) ТЭ, например, теплоизоляционный материал для возведения наружных стен, засыпочный материал для теплосберегающих труб, фундамента. для шоссейных дорог и так далее.В этих применениях требования к прочности на сжатие не очень высоки; обычно 0,3~0,5 МПа будет достаточно.

    В ходе этого исследования был произведен тип сверхлегкого (<300 кг/м 3 ) FC, который может использоваться в качестве нового энергосберегающего и экологически безопасного строительного материала и особенно подходит для теплоизоляционных технологий. возведения наружных стен. Сообщалось о влиянии различных количеств золы-уноса, активатора зольной пыли, соотношения WC и FA на прочность на сжатие FC.

    2. Экспериментальные программы
    2.1. Материалы

    (i) Цемент . Цемент, используемый в этом исследовании, представлял собой портландцемент китайского стандарта 425 [20]. Его плотность 3100 кг / м 3 , а его химический состав приведен в таблице 1.

    K 2 O + Na 2 O

    9

    ≤5.0

    Растворимый остаток


    +


    цемент Fly
    % по массе GB175-2007 % масс.84 48,2
    СаО 65,23 19,6
    Аль 2 О 3 5,23 18,4
    Fe 2 O 3 3.30 3.7
    SO 3 0,98 ≤3.59 1.7 ≤3.0
    MGO 2.76 ≤5 1.1
    1.6
    потери при прокаливании 1,5 ≤3.0 2.0
    0,19 ≤1.5 0.75

    ( ii) Летучая зола .Односортная зола (PFA) с электростанции Yaomeng в Пиндиншане, Китай, которая использовалась как сухая и просеянная для удаления некоторых крупных частиц. Количество частиц диаметром более 45 мм контролировалось на уровне менее 12,5%. Его технические характеристики соответствовали результатам, зафиксированным в «золе-уносае, используемой в цементе и бетоне» GB/T1596-2005 [21], а химический состав показан в таблице 1.

    (iii) Пенообразователь (FA) . Имеет концентрацию перекиси водорода 27,5%; он реагирует с катализатором (MnO 2 ) с образованием газообразного кислорода в процессе изготовления FC.Уравнение реакции выглядит следующим образом:

    (iv) Стабилизатор пены . Это самодельный белый порошок. Он изготовлен из триэтаноламина (20%), полиакриламида (40%) и гидроксипропилметилцеллюлозы (40%), его количество в смеси составляет 1% FA, и его основная функция заключается в повышении вязкости суспензии.

    (v) Активатор летучей золы . Это самодельный; основным компонентом является белый порошок CaO (80%), остальные компоненты включают NaOH (8%) и Na 2 SO 4 (12%).Принцип активации CaO следующий: химическая активность летучей золы обусловлена ​​растворимыми SiO 2 и Al 2 O 3 в стекловидном теле, и они могут реагировать с CaO в присутствии воды с образованием гидратированных силикат кальция, и после этого появится прочность. Уравнения реакции следующие:

    Функция NaOH состоит в том, чтобы превратить раствор в щелочную среду, что может стать основой для реакции золы. OH вызовет разрыв связи Si-O, Al-O, что ускорит скорость гидратации.Функция Na 2 SO 4 в основном заключается в ускорении скорости и повышении уровня активации возбуждения летучей золы. Это связано с тем, что он может реагировать с AlO 2− , когда существует Ca 2+ , с образованием гидратированного алюмината кальция. Он может покрывать частицы летучей золы и образовывать волокнистый слой, а степень смыкания меньше, чем C-S-H, что более выгодно для Ca 2+ , диффундирующего в частицы летучей золы.

    (vi) Катализатор. Это порошок диоксида марганца (MnO 2 ); его молекулярная масса равна 86.94 (г/моль).

    2.2. Испытательное оборудование

    (i) Высокоскоростной смеситель: автоматическое управление со скоростью вращения 0~1200 об/мин. (ii) Стандартный тестер для определения консистенции и времени схватывания цемента (аппарат Вика) . (iii) Воронка для консистенции цементного раствора: производства Hebei Guanghua Weiye Construction Instrument Factory, вместимостью 1725 мл. (iv) Многофункциональная машина для механических испытаний горных пород (RMT): серия систем RMT была разработана в нашем институте. Машина имеет уникальный многофункциональный дизайн и технологию управления; он может проводить множество типов испытаний, таких как одноосное сжатие, трехосное сжатие, растяжение, сдвиг и испытания на усталость.Его максимальная нагрузка составляет 1   МН, а максимальное ограничивающее давление составляет 50 МПа. (v) Электротермическая дутьевая сушильная печь типа OL-103. (vi) Камера для отверждения с постоянной температурой и влажностью: Пекинский экспериментальный аппарат Huachuang Northern ООО

    2.3. Приготовление FC

    (i) Добавьте воду в другие материалы, такие как цемент, зольная пыль, стабилизатор пены и активатор зольной пыли, за исключением FA, и равномерно перемешайте, поддерживая температуру суспензии примерно на уровне 45°C. В целом этот процесс длится примерно 5 минут.(ii) Во время перемешивания на высокой скорости быстро добавьте FA и продолжайте перемешивание в течение примерно 30 секунд. (iii) Вылейте равномерно перемешанную суспензию в форму размером 1200 мм × 900 мм × 350 мм и подождите, пока она не вспенится; процесс пенообразования показан на рис. 1. (iv) Разберите форму через 2 часа и держите ее в камере для отверждения при постоянной температуре и влажности до окончания испытательного срока. Используйте образец размером 100 мм × 100 мм × 100 мм для проведения теста; структура пор показана на рис. 2.

    Весь процесс приготовления ТЭ с использованием химического вспенивания можно обобщить как процесс динамического баланса.Процесс проектирования эксперимента должен тщательно учитывать плотность раствора, скорость вспенивания, скорость конденсации раствора, количество добавки FA и другие влияющие факторы для получения относительно высококачественного продукта. Ключом к формированию структуры FC с помощью химического вспенивания является обеспечение того, чтобы скорость вспенивания соответствовала скорости схватывания и затвердевания суспензии.

    3. Результаты и обсуждение
    3.1. Влияние смешиваемого количества летучей золы на прочность на сжатие

    Прочность FC напрямую связана с долей загущенного материала.Чем больше доля бетона в гелеобразном материале, тем выше прочность продукта. В системе цемент-уноса массовое использование золы-уноса резко снизит прочность бетона, что особенно очевидно в сверхлегких ТЭ на основе цемента-золы-уноса [5, 6, 18]. Поэтому количество летучей золы в сверхлегких продуктах FC сильно ограничено. Тем не менее, умеренное количество активатора летучей золы может эффективно улучшить начальную прочность продуктов [22], что также полезно для сокращения времени очистки продуктов и повышения эффективности производства.Для ТЭ с фиксированным количеством смеси летучей золы и активатора 2,5% и сухой насыпной плотностью 290 кг/м 3 прочность 28 d продуктов снижается по мере увеличения содержания летучей золы, как показано на рисунке 3.

    При содержании летучей золы менее 45 % наблюдается умеренное снижение прочности продукта: при изменении количества смешивания с 30 % до 45 % прочность снижается на 0,14  МПа. Однако при содержании летучей золы более 45 % тенденция к снижению прочности продукта усиливается: при изменении количества смешивания с 45 % до 55 % прочность снижается на 0.37 МПа, а прочность изделия составила всего 0,15 МПа при содержании летучей золы 55%. Таким образом, с практической точки зрения, соответствующее количество летучей золы в этой сверхлегкой системе FC не должно превышать 45%.

    3.2. Влияние количества активатора летучей золы в смеси на прочность на сжатие Прочность

    FC напрямую связана с долей цемента в вяжущих материалах, и многие исследователи изучали активацию реакционной способности природных пуццоланов и летучей золы [22–22]. 25].В этом исследовании активатор летучей золы изготавливается самостоятельно, и его основным компонентом является CaO. Механизм активации летучей золы СаО можно объяснить следующим образом. Вещество в извести, которое в конечном итоге влияет на активность летучей золы, представляет собой Ca(OH) 2 ; Ca(OH) 2 может обеспечить OH для раскрытия химических связей между Si-O и Al-O и Ca 2+ для получения гидравлических вяжущих материалов путем гидратации летучей золы. Однако в реакции должно быть умеренное количество сульфата, чтобы быстро, полностью и экономично активировать летучую золу при нормальной температуре и давлении.Таким образом, смешивание количества самодельного активатора летучей золы имеет решающее значение для активации прочности летучей золы. На рис. Как показано на рисунке 4, прочность образца FC заметно повышается с увеличением количества активатора летучей золы. При смешивании количество активатора зольной пыли более 2.5% увеличение прочности FC имеет тенденцию к выравниванию, что означает, что количество смешиваемого активатора зольной пыли имеет оптимальное значение. В этой сверхлегкой системе FC соответствующее количество активатора летучей золы составляет 2,5%.

    3.3. Влияние коэффициента WC на ​​прочность на сжатие

    Коэффициент WC является еще одним важным фактором, который может влиять на характеристики FC [5, 6]. При приготовлении ФК химическим вспениванием скорость загустевания и скорость вспенивания суспензии должны сильно совпадать, что указывает на то, что вспенивание и статическое поддержание суспензии синхронизированы.В процессе приготовления ФК соотношение WC существенно влияет на всю технологию приготовления: при чрезмерно низком содержании WC и слишком густой суспензии это препятствует полному диспергированию ТВС и приводит к частичному усилению пенообразования и большим пузырям; кроме того, начальное время схватывания суспензии заметно короче, если соотношение WC низкое. Если суспензия схватится до окончания процедуры вспенивания отделки ТВС, то внутри изделия возникнет перенапряжение и появятся дефекты. Когда соотношение WC чрезмерно велико, а плотность раствора слишком мала, конденсация и затвердевание раствора отстают от вспенивания FA, что приведет к разрушению FC на более поздней стадии.Влияние соотношения WC на ​​прочность на сжатие FC показано на рис. 5. При увеличении соотношения WC от 0,40 до 0,50 прочность образца на сжатие сначала увеличивается, а затем снижается, поскольку в этом диапазоне соотношений WC консистенция шлам умеренный, и газы равномерно рассеиваются в шламе; таким образом, ТВС полностью вспенивается, и объем суспензии неуклонно увеличивается. Между тем, пористая структура хорошо затвердевает, поскольку начальная скорость затвердевания суспензии соответствует скорости вспенивания FA.Таким образом, прочность на сжатие образца относительно высока. Когда отношение WC увеличивается с 0,45 до 0,50, плотность суспензии слишком низкая, и газ очень легко вырывается с поверхности образца и оставляет трещины и сквозные отверстия в образце, что снижает прочность образца. Кроме того, из-за слишком большого соотношения WC время коагуляции больше, чем время вспенивания везиканта; на более поздней стадии вспенивания части пор сливаются, что снижает равномерность и значительно снижает прочность пористой структуры в образце.Поэтому в эксперименте оптимальное соотношение WC равно 0,45. ТЭ, изготовленный с таким соотношением WC, имеет относительно высокую прочность на сжатие.

    3.4. Влияние FA на прочность на сжатие

    FA является одним из основных сырьевых материалов для получения FC. FA вызывает химические реакции в равномерно перемешанной суспензии, в результате которых образуется много газа. Газ рассеивается внутри раствора и постепенно фиксируется в затвердевшем бетоне по мере его конденсации; наконец, газ образует ровную и устойчивую везикулярную структуру.На рис. 6 показано влияние количества смеси ТВС на прочность на сжатие ФК через 28 дней. Из рисунка 6 видно, что прочность на сжатие ТЭ снижается по мере увеличения количества смеси ТВС, поскольку количество воздушных отверстий внутри ТЭ также увеличивается, а стенки воздушных отверстий становятся тоньше. Поэтому сухая насыпная плотность ФК уменьшается, а вместе с ней и прочность. Отмечено, что стенка пор образца с содержанием примеси H 2 O 2 3 % наиболее толстая, поры практически не пересекаются; таким образом, этот образец имеет максимальную прочность на сжатие.Стенка пор образца с количеством замеса H 2 O 2 4,5% является самой тонкой с большим количеством взаимосвязанных пор; таким образом, он имеет минимальную прочность. Для образца, изготовленного из ТВС с содержанием примеси H 2 O 2 3,5 %, толщина стенок пор и структура пор являются относительно подходящими, а прочность также квалифицирована с учетом требования теплосбережения внешняя стена. Следовательно, оптимальное количество примеси ЖК в данном эксперименте равно 3.5%.

    4. Выводы

    Изготовлен тип сверхлегкого (<300 кг/м 3 ) ТЭ. Влияние различных количеств летучей золы, активатора летучей золы, содержания WC и FA на прочность на сжатие FC было экспериментально изучено и может быть резюмировано следующим образом. (1) Плотность суспензии, скорость пенообразования, конденсация скорость суспензии, количество добавки FA и другие влияющие факторы должны быть тщательно учтены для получения относительно высококачественного продукта.При формировании структур FC с использованием химического вспенивания скорость вспенивания должна соответствовать скорости схватывания и затвердевания суспензии. (2) При содержании летучей золы менее 45% прочность продукта умеренно снижается, тогда как при содержании летучей золы превышает 45%, прочность изделия быстро снижается. С практической точки зрения соответствующее количество летучей золы в этой сверхлегкой системе FC не должно превышать 45 %. (3) С увеличением количества активатора золы-уноса прочность образца FC заметно повышается.Когда смешиваемое количество активатора летучей золы составляет более 2,5%, увеличение прочности FC имеет тенденцию к выравниванию. В этой сверхлегкой системе FC подходящее количество активатора летучей золы составляет 2,5%. (4) В эксперименте оптимальная доля WC составляет 0,45. ТЭ, полученный с такой пропорцией, имеет относительно высокую прочность на сжатие. (5) С увеличением количества добавки ТВС прочность на сжатие ТЭ заметно снижается. Толщина стенок пор и структура пор образца, полученного с использованием ТВС с количеством примеси H 2 O 2 , равным 3.5% являются относительно подходящими, а прочность также удовлетворяет требованиям по сохранению тепла внешней стены. Таким образом, оптимальное количество добавки ФК в данном эксперименте составляет 3,5%.

    Конфликт интересов

    Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.

    Благодарности

    Эта работа была поддержана Национальной программой ключевых фундаментальных исследований (Программа 973) (грант № 2013CB036006), Национальным фондом естественных наук Китая (грант № .51208499, 41102193 и 51109207), Китайский фонд докторантуры (2014M550365) и Национальный научный фонд выдающихся молодых ученых Китая (грант № 51225902).

    %PDF-1.4
    %
    1 0 объект
    >поток
    2022-01-11T23:17:09-08:002019-08-28T10:27:45-04:002022-01-11T23:17:09-08:00Acrobat PDFMaker 15 для Worduuid:5c47339b-6b83-44d4-a51a- ff86ebbb392duuid:ce882802-9c3d-4443-ace0-27d25c24d479uuid:5c47339b-6b83-44d4-a51a-ff86ebbb392d

  • 140
  • сохраненоxmp.iid:3154AB445AD5E911B82EA0DDD7EEDB112019-09-12T18:08:49+05:30Adobe Bridge CS6 (Windows)/метаданные
  • application/pdfiText 4.2.0 от 1T3XTD:201