Мифы и реальные характеристики газобетона
Данная статья поможет Вам прояснить физические свойства газобетонных блоков для строительства стен дома. Мы трудимся в строительной сфере и каждый раз при выборе материала, с которым ранее не работали, сталкиваемся с противоречивыми рекомендациями специалистов. На ум всегда приходит поговорка: каждый кулик своё болото хвалит. Так и есть. Для своих заказчиков мы применяем строительство из газобетона и ракушечника . Вам наверное снова вспомнилась та пословица?
Прошу не сравнивать нас со всеми и как всегда. Мы рекомендуем смотреть в суть материала, а именно в его физические свойства и показатели, которые можно замерить. И эти свойства никак не меняются от непрофессионального взгляда на газобетон.
В интернете и в речах куликов, которые продают кирпич и тёплую керамику, можно услышать неправильную информацию.
«В СОСТАВЕ ГАЗОБЕТОНА СОДЕРЖИТСЯ АЛЮМИНИЙ И ЭТО ВРЕДНО»
Алюминий – третий по распространенности на Земле химический элемент. Алюминий, вернее оксид алюминия – основа глинозема и различных глин, в т.ч. глины, применяемой в косметических целях. Металлический алюминий обладает высокой химической активностью и быстро окисляется на воздухе, превращаясь все в тот же оксид.
В состав газобетонной массы алюминий вводится двумя путями: с цементом, который содержит до 20% алюминия по массе (до 100 кг цемента на кубический метр газобетона), и в виде алюминиевой пудры (около 400 г пудры на кубический метр газобетона). Собственно эти 400 г и превращают текучую газомассу объемом около половины кубометра в полноценный кубометр газобетона: частички алюминиевой пудры, реагируя с гидроксогруппами раствора (ОН—-ионами), превращаются все в тот же оксид алюминия и водород. Выделяющийся водород и вспучивает газомассу.
Металлический алюминий в составе газобетона остаться не может просто из-за самой сути химического процесса газообразования: гидроксогруппы можно уподобить малькам, атакующим кусок мякиша – поверхность крупинки алюминия не пассивируется налипающими на нее «мальками», а раздергивается до полного истаивания.
В результате мы имеем материал, в кубометре которого содержится до 20 кг химически связанного алюминия. Для сравнения: в кубометре кирпича содержится 200-400 кг алюминия в виде оксидов, в кубометре неавтоклавных ячеистых бетонов – 50 кг алюминия и более. Окисленный алюминий – одно из наиболее стойких химических соединений. Подозревать его в некоей «вредности» бессмысленно.
«В СОСТАВЕ ГАЗОБЕТОНА ЕСТЬ ИЗВЕСТЬ, МОЖЕТ РЖАВЕТЬ МЕТАЛЛИЧЕСКАЯ АРМАТУРА»
Здесь в одной фразе заключены сразу два заблуждения: во-первых, то, что известь есть в составе газобетона, а во-вторых, то, что известь способствует коррозии.
Первое. Да, для производства газобетона используются и цемент, и известь, и кварцевый песок, и алюминиевая пудра. Но готовый газобетон из них не состоит! Готовый бетон состоит из новообразованных минералов, представленных в основном различными гидросиликатами. Автоклавный газобетон – это не продукт простой гидратации цемента, это синтезированный камень, который не содержит даже кварцевого песка. При автоклавной обработке даже кварцевый песок, инертное в обычных условиях вещество, расходуется в реакциях синтеза силикатов. Поэтому извести в составе газобетона нет. Есть силикаты кальция – весьма химически стойкие минералы.
Второе. «Под воздействием извести ржавеет арматура». То, что извести в готовом газобетоне нет, мы уже установили. Но даже если бы…
Бетон, приготовленный на цементе или извести дает щелочную реакцию. Щелочная среда препятствует коррозии металла. Стальные элементы, находясь в толще газобетона или в штробе в слое раствора, сохраняются дольше, чем на открытом воздухе. Газобетон препятствует коррозии, а не способствует ей.
«КЛАДКА БЛОКОВ НА КЛЕЮ ДОРОЖЕ, ЧЕМ НА ЦЕМЕНТНОМ РАСТВОРЕ»
Это не столько даже миф, сколько простое заблуждение, проистекающее от лености. Лености потратить пару минут на сравнительный расчет.
Давайте разберем «простоту и дешевизну» кладки на раствор.
Сначала по поводу простоты кладки на растворе по сравнению с клеем:
- возможно, для “строителей”, чья юность прошла в студенческих стройотрядах, да и просто для поживших изрядно каменщиков – кладка на раствор привычней. И переучивание для работы с тонкослойным клеем потребует от них некоторых затрат сил и времени;
- но от человека начинающего “с нуля”, равно как и для потратившего время на переобучение, кладка на клею требует меньших затрат времени и сил. Снижение трудозатрат при укладке блоков на клей (по сравнению с кладкой на растворе) существует объективно, что нашло отражение даже в снижении сметных расценок на такую кладку.
Теперь о дешевизне раствора в сравнении с клеем.
Кладка на тонкослойные “мастики” и “клея” еще в 80-е годы рассматривалась как способ снизить расход вяжущего при кладочных работах.
Расход ц/п раствора (толщина шва 10-12 мм) в 5-6 раз больше, чем расход клея.
При том, что клей для газобетона – это одна из самых дешевых сухих строительных смесей.
Клей стоит примерно в 2 раза дороже простой цементно-песчаной смеси при в 5-6 раз меньшем расходе.
Да, есть отдельные производители сухих смесей, которые умудряются продавать клей для ячеистых бетонов по сравнительно высоким ценам. Ну, так на то они и отдельные, чтобы своим исключением оттенять общее правило: клей для газобетона – дешевая замена раствору (при хорошей точности геометрических размеров блоков).
Использовать тонкослойный клей для кладки газобетонных блоков следует всегда. Для повышения экономической, теплотехнической и прочностной характеристик кладки.
«ДЛЯ ДВУХ-ТРЕХЭТАЖНОГО ДОМА НЕДОСТАТОЧНО ПЛОТНОСТИ 400, А НУЖЕН ГАЗОБЕТОН ПОПЛОТНЕЕ, С ПЛОТНОСТЬЮ НЕ МЕНЬШЕ 500-600 КИЛОГРАММ НА КУБОМЕТР. ПЛОТНОСТИ МЕНЬШЕ 500 МАЛО ДЛЯ НЕСУЩИХ СТЕН»
Говорить о плотности материала кладки имеет смысл в связи с ее теплотехническими характеристиками. И только.
Поскольку от плотности бетона блоков напрямую зависит их теплопроводность. От плотности значительно зависит также тепловая инерция стен. Но их несущая способность зависит только от прочности. А прочность и плотность не зависят друг от друга напрямую. Прочность бетона блоков (а через нее и несущая способность кладки) зависит от множества факторов: и от качества сырьевых материалов, и от тщательности их подготовки, и от режимов обработки уже отформованного бетона и, в качестве лишь одного из параметров, от плотности.
Поэтому, задумываясь о прочностных характеристиках стен будущего дома, надо вспоминать о прочности бетона, а не о его плотности. Приведем простой пример:
Допустим, для вашего строительства в проекте указана необходимая прочность кладочных материалов; и допустим, что для блоков назначен класс по прочности при сжатии В2,5 (такая прочность редко нужна для индивидуального малоэтажного строительства, как правило такой прочности достаточно для несущих стен 4-5 этажного многоквартирного дома).
Что вы обнаружите, начав поиски блоков с такой прочностью на рынке Ярославля? Вы обнаружите привезенные из центральных областей России блоки с характеристиками D500 B2,5 иD600 B2,5, в меньшем количестве будут присутствовать блоки D600 В2,5 белорусского и эстонского производств. Вероятно, что вы сможете найти блоки из ячеистого бетона неавтоклавного твердения с характеристиками D800 В2,5.
При этом основная продукция завода Ytong – это стеновые блоки с маркой по плотности D400 (400 кг/куб.м) и классом по прочности при сжатии В2,5 (средняя прочность камня 35 кгс/кв.см).
Теперь подведем итог: Несущая способность кладки зависит от прочности блоков. Прочность блоков и их плотность – совершенно разные характеристики. Выяснять их нужно по отдельности.
«ЧЕМ ВЫШЕ ПЛОТНОСТЬ БЕТОНА, ТЕМ ВЫШЕ ЕГО ПРОЧНОСТЬ»
Утверждение о том, что с ростом плотности растет прочность бетона, в общем случае справедливо.
В шестидесятые – семидесятые годы даже делались попытки создать универсальные формулы зависимости прочности автоклавных ячеистых бетонов от их плотности. Но со временем такие попытки были признаны не имеющими практической ценности и оставлены.
В целом, если случайным образом отобрать со строек России большое количество образцов ячеистых бетонов и построить график зависимости их прочности от плотности, то обобщенная кривая действительно покажет наличие зависимости между плотностью и прочностью. И форма этой кривой будет похожа на ту, что мы видим на иллюстрации.
Но если мы сузим площадь отбора образцов до определенной территории, то перед нами предстанет неожиданная картина: при фактической плотности бетона 380 – 415 кг/куб.м его прочность соответствует средней по России прочности для плотностей около 600 кг/куб.м, такая же прочность будет наблюдаться у образцов с остальными плотностями. Из этого правила будут лишь незначительные исключения, составляющие не более 1/5 от общего числа отобранных блоков. То есть образцы, отобранные со строек конкретного региона, не позволят исследователю установить зависимость между плотностью и прочностью.
Объяснение этому феномену довольно простое. Сейчас ряд компаний используют газобетонные блоки Итонг . с плотностью 400 кг/куб.м и фактическим классом по прочности бетона В 2.5. Блоки с плотностью около 500 кг/куб.м производит местный производитель газобетона, обеспечивая при этом примерно такую же прочность. Причем у некоторых изготовителей подобную прочность имеют также блоки плотностью 600кг/куб.м
Поэтому, выбирая в Ярославле газобетон для частного строительства, нет оснований полагать, что более плотный бетон является синонимом большей прочности.
«ГАЗОБЕТОН, В ОТЛИЧИЕ ОТ ПЕНОБЕТОНА, БОИТСЯ ВОДЫ»
(в качестве наглядной агитации за этот тезис приводится плавающий в воде пенобетонный кубик, а в качестве теоретического обоснования заявляется: «Пенобетон имеет закрытые поры, и как следствие сопротивляется проникновению воды и плавает на поверхности, а газобетон, имеющий открытую структуру пор, тонет»).
Начнем с того, что критерий «тонет/не тонет» не годится для определения пригодности материала для строительства. Кирпич тонет быстро, минвата тонет чуть медленнее, а вспененные пластики, как правило, не тонут вообще. Но эта информация никак не поможет нам определиться с выбором материала для строительства.
Тонет… ха!.. утопить газобетонный кубик не так-то просто. Время сохранения образца бетона «на плаву» не зависит напрямую ни от способа образования пор, ни от способа твердения, и, что важнее, практически никак не влияет на эксплуатационные характеристики материалов.
Влажность стенового материала, закрытого от атмосферных осадков, зависит от трех факторов: сезонность эксплуатации помещения, конструкция стены и сорбционная способность самого материала.
Для дачных домов, эксплуатирующихся зимой от случая к случаю, фактическая влажность материала стены вообще не имеет практического значения. Почти любой минеральный материал, закрытый от осадков исправной крышей, будет при такой эксплуатации практически вечным.
Для постоянно эксплуатирующихся домов важна правильная конструкция стены – такое устройство стенового «пирога», при котором паропроницаемость материалов стены возрастает по мере продвижения от внутренних слоев к наружным (это требование особенно касается наружной отделки, которая не должна движению паров из помещения в сторону улицы.
И третье – сорбционная влажность материала (которая никоим образом не связана с водопоглощением и не проверяется методом «тонет/не тонет»). Сорбционная влажность различных ячеистых бетонов обычно мало различается от образца к образцу и составляет около 5% по массе при относительной влажности воздуха 60% и 6-8% по массе при относительной влажности воздуха 90-95%. Это означает, что чем ячеистый бетон менее плотный, тем меньше воды он содержит. Так, стена толщиной 250 мм из газобетона плотностью 400 кг/м3 будет содержать в среднем 5 кг воды в одном кв.м, такая же стена из пенобетона плотностью 600 кг/м3 будет содержать воды уже 7,5 кг/кв.м, как и стена из щелевого кирпича (плотность 1400 кг/куб.м, влажность 2%).
«ГАЗОБЕТОН ГИГРОСКОПИЧЕН И НАКАПЛИВАЕТ ВЛАГУ, ОН НЕ ПОДХОДИТ ДЛЯ СТЕН ВЛАЖНЫХ ПОМЕЩЕНИЙ»
Гигроскопичность (способность абсорбировать пары воды из воздуха) – это и есть та самая сорбционная влажность, о которой несколько слов было сказано в предыдущей рубрике.
Да, про газобетон можно сказать, что он гигроскопичен. За несколько месяцев стояния в тумане ячеистобетонная конструкция может набрать воды около 10% от своего веса. Примерно такой и оказывается к весне влажность стен не отапливаемых зданий, зимовавших в условиях влажной зимы. Потом, к маю-июню, влажность стен постепенно снижается. Сезонные колебания влажности конструкции, вызванные сорбцией/десорбцией, невелики и не приводят к каким-либо значимым изменениям в материале кладки.
Перегородки, отделяющие душевые и ванные комнаты от других помещений здания, подвергаются периодическому одностороннему воздействию влажного воздуха. Это воздействие также не может привести к сколь-нибудь значимому накоплению влаги в стене.
Поэтому внутриквартирные перегородки санузлов и ограждения душевых в спорткомплексах и бассейнах из автоклавного газобетона применяются массово.
Совсем другое дело – наружные ограждения помещений с влажным и мокрым режимами эксплуатации. Применять газобетон в них нужно с большой осторожностью (равно как и любые другие неполнотелые материалы, включая пустотный кирпич и щелевые бетонные блоки). Увлажнение материалов наружных стен отапливаемых помещений лишь частично зависит от их сорбционной влажности (гигроскопичности). Гораздо большее влияние на влажность наружных стен оказывает их конструктивное решение: способ наружной и внутренней отделки, наличие дополнительных включений в состав стены, способ устройства оконных откосов и опирания перекрытий. В общем случае, можно сказать так: для устройства из газобетона наружных стен влажных помещений (парной, например) нужно предусматривать тщательную пароизоляцию их внутренних поверхностей.
Повторяем:
- гигроскопичность не имеет значения для стен неотапливаемых помещений;
- гигроскопичность не имеет значения для перегородок внутри зданий;
- гигроскопичность не имеет практического значения для наружных стен отапливаемых зданий.
«ГАЗОБЕТОННЫЕ СТЕНЫ БЕЗ ДОПОЛНИТЕЛЬНОГО УТЕПЛЕНИЯ НЕДОСТАТОЧНО ТЕПЛЫЕ»
Наружные стены здания в первую очередь должны обеспечивать санитарно-гигиенический комфорт в помещении. Действующими нормами принято, что такой комфорт будет обеспечен, если в самый лютый мороз перепад температур между внутренней поверхностью наружной стены и внутренним воздухом будет не более 4 градусов.
Для большинства районов Центрального регионов это требование обеспечивается при сопротивлении стены теплопередаче равном 1,3 – 1,5 м2.оС/Вт. А таким сопротивлением теплопередаче обладает кладка из газобетонных блоков толщиной 150 – 200 мм (в зависимости от плотности 400 или 500 кг/куб.м). До недавних пор все панельные «корабли» в Ярославле строились с наружными стенами толщиной 240 мм из газобетона марки по средней плотности D600 (примерно 600 кг/куб.м). Сейчас такие же дома по обновленным проектам строятся со стенами толщиной 320 мм (без каких бы то ни было дополнительных утеплителей). При этом такие дома соответствуют действующим строительным нормам и обеспечивают комфортность проживания.
«Теплая» стена – это, прежде всего, стена, обеспечивающая тепловой комфорт. Тепловой комфорт в помещении обеспечивается газобетонной стеной толщиной уже 150 – 200 мм! Именно такой стены достаточно для дачного дома, который в холодный сезон эксплуатируется эпизодически, от случая к случаю. Для двухэтажного дачного дома достаточно кладки из блоков толщиной 200 мм (реже – 250 мм) -как по несущей способности, так и по теплотехническим характеристикам. Дополнительного утепления такой дом не требует.
«СТЕНА БЕЗ НАРУЖНОГО УТЕПЛЕНИЯ НЕ ОТВЕЧАЕТ ТРЕБОВАНИЯМ ТЕПЛОВОЙ ЗАЩИТЫ»
Сначала несколько слов собственно о требованиях, предъявляемых строительными нормами к наружным стенам жилых зданий, эксплуатируемых постоянно.
Первое требование – обеспечить санитарно-гигиенический комфорт в помещении. Об этом речь шла в предыдущем разделе. Для обеспечения такого комфорта в большинстве районов Центрального и Северо-западного регионов России наружные стены должны обладать сопротивлением теплопередаче равным 1,3 –1,5 м2.оС/Вт. Таким сопротивлением при плотности бетона блоков 400 кг/м3 обладает газобетонная кладка толщиной 150 мм.
Второе требование, предъявляемое нормами к наружным ограждающим конструкциям – содействовать общему снижению расхода энергии на отопление здания.
Для упрощения расчетов, проводимых при проектировании тепловой защиты, введено понятие «нормируемого значения сопротивления теплопередаче» Rreq, которое принимается по простой табличке в зависимости от продолжительности и интенсивности отопительного периода (так называемые «градусо-сутки отопительного периода» в районе строительства). Для Московской области эта табличка предписывает сопротивление теплопередаче стен жилых зданий равное 2.8-3.1 м2.оС/Вт.
Эта величина означает, что при постоянном перепаде температур между внутренним и наружным воздухом в 1 оС через стену будет проходить тепловой поток плотностью 1/3,08 = 0,325 Вт/м2. А при средней за отопительный период разнице температур 22 оС плотность теплового потока составит 7,15 Вт/м2. За все 220 суток отопительного периода через каждый квадратный метр стены будет потеряно около 37,5 кВт.ч тепловой энергии. Для сравнения: через каждый квадратный метр окна теряется почти в 6 раз больше энергии – около 225 кВт.ч.
Следующая стадия проектирования тепловой защиты зданий – расчет потребности в тепловой энергии на отопление здания. Как правило, на этой стадии оказывается, что расчетные значения значительно ниже требуемых (т.е. расчетный расход энергии меньше нормативного). В этом случае (при коммерческом строительстве) понижают уровень теплозащиты отдельных ограждений здания или (в случае, когда заказчику предстоит самому эксплуатировать здание) выбирают экономически оптимальное решение: сэкономить на единовременных вложениях или понадеяться на экономию в процессе эксплуатации. Минимальное значение сопротивления теплопередаче наружных стен жилых зданий, до которого можно снижать тепловую защиту – 1,76 м2.оС/Вт.
Таким образом, при новом строительстве в климатических условиях Центральной России нормативные документы требуют обеспечить для наружных стен жилых зданий сопротивление теплопередаче на уровне 1,97 – 3,13 м2.оС/Вт (СП 50.13330.2012 «Тепловая защита зданий», Актуализированная редакция СНиП 23-03-2003).
Теперь о том, какими теплозащитными характеристиками обладает кладка, выполненная из газобетонных блоков.
- При расчете стены по условиям энергосбережения берем в качестве расчетной среднюю теплопроводность газобетона при эксплуатационнй влажности. Для жилых зданий Ярославля и газобетона марки по средней плотности D400 получаем такие значения: расчетная влажность 5%, расчетная теплопроводность 0,117 Вт/м.оС (ГОСТ 31359-2007 «Бетоны ячеистые автоклавного твердения»).
- Коэффициент теплотехнической однородности кладки по полю стены (без учета откосов и зон сопряжения с перекрытиями) примем равным 1. Разные расчетные модели показывают, что при кладке на тонком клеевом шве 2±1 мм коэффициент теплотехнической однородности может снижаться до 0,95-0,97, но лабораторные эксперименты и натурные обследования такого снижения не фиксируют. В любом случае – в инженерных расчетах погрешностью в пределах 5% принято пренебрегать.
- Теплоизоляция зон сопряжения с перекрытиями и оконных откосов – это отдельные конструктивные мероприятия, с помощью которых можно добиться повышения теплотехнической однородности до величин даже бόльших единицы. Теперь по формуле R = 1/αн + δ/λ + 1/αв найдем сопротивление теплопередаче газобетонных кладок разных толщин (при плотности газобетона 400 кг/куб.м).
Как видно из таблицы, уже при толщине 200 мм стена из газобетона D400 может удовлетворять требованиям, предъявляемым к стенам жилых зданий из условия снижения расхода энергии на отопление.
А при толщинах 300 мм и более может использоваться даже без проверки удельного расхода энергии на отопление. Итак, однослойная газобетонная стена толщиной более 300 мм совершенно самодостаточна с точки зрения нормативных требований к наружным ограждениям жилых зданий.
«БЕЗ НАРУЖНОГО УТЕПЛЕНИЯ ТОЧКА РОСЫ ОКАЗЫВАЕТСЯ В СТЕНЕ»
«Точка росы», а если говорить более четко, то «плоскость возможной конденсации водяных паров», легко может оказаться внутри утепленной снаружи ограждающей конструкции и практически никогда не окажется в толще однослойной стены.
Наоборот, однослойная каменная стена менее подвержена увлажнению, чем стены со слоем наружного утеплителя в пределах 50 – 100 мм.
Дело в том, что плоскость возможной конденсации – это не тот слой стены, температура которого соответствует точке росы воздуха, находящегося в помещении. Плоскость конденсации – это слой, в котором фактическое парциальное давление водяного пара становится равным парциальному давлению насыщенного пара. При этом следует учитывать сопротивление паропроницанию слоев стены, предшествующих плоскости возможной конденсации. Учитывать сопротивление паропроницанию внутренней штукатурки, обоев и т.д.
Ещё раз рекомендуем индивидуальным застройщикам не пользоваться в быту косвенными характеристиками, а выяснять фактические значения наиболее важных параметров блоков.
Для стенового материала важнейшими характеристиками являются прочность на сжатие, морозостойкость, паропроницаемость и показатель теплопроводности. Именно по этим характеристикам мы и выбрали производителя блоков Итонг. Если сравнивать по цене-качеству, как обычно говорят, надо понять что для Вас важнее всё-таки цена или качество. Если углубится в изучение технологий строительства и производства материалов, напрашивается вывод, что чем дешевле тем менее качественный материал. Желаем Вам осознанного выбора.
Теплая керамика или газобетон, сравнение
Выбор материала для строительства дома должен быть максимально осмысленным и учитывать все возможные риски. В нашей статье мы сравним два самых популярных конкурента среди стеновых материалов:
- Газоблок
- Керамоблок
Экологичность
- Керамические блоки – максимально экологичный материал благодаря простому натуральному составу: вода, глина, древесные опилки.
- Газобетон – искусственно созданный материал. Он состоит из цемента, алюминиевой пудры, извести, песка.
Теплопроводность
Сравнивая аналогичные по толщине стены и плотности керамические блоки с газосиликатными, мы видим, что коэффициент теплопроводности у газобетона чуть ниже, соответственно он чуть теплее. Но тут есть несколько важных моментов:
- Для газобетона показатель раcсчитывается в сухой среде. Однако идеальных условий не бывает, и с ростом влажности показатель теплопроводности вырастает в 3 раза. Когда газосиликат выходит с завода, его влажность может доходить до 50%. Это связано с обработкой водяным паром в печах автоклава. Не все производители газобетона афишируют, что расчёт теплопроводности производится без учета клея или раствора, на который он укладывается.
- Керамический блок расcчитывается по теплопроводности уже с учетом использования цементно-песчаного раствора, что как раз даёт более реальные показатели.
Надо понимать, что фактически по теплопроводности эти блоки сопоставимы. Но керамический материал держит свои характеристики весь срок службы.
Прочность
Прочность – один из самых важных показателей, от него зависит какую нагрузку может выдержать материал в кладке.
- Газобетон – прочность в зависимости от производителя М35 — М50
- Керамический блок – прочность в зависимости от производителя М75-М150
М150 означает, что каждый м2 выдерживает 150 кг. Если сделать расчёт нагрузки на 1 метр кладки газосиликатного блока и керамического, то получается разница в 2 раза!
Также есть показатель — прочность на сжатие (МегаПаскали).
- Газобетон – 1-5 МПа
- Керамоблок – 10-15 Мпа
Крепление в блок
Керамический блок выдерживает нагрузку
на вырыв до 500 кг (5кН)
Газобетонный блок – до 300 кг (3кН)
Технология кладки
Газоблок со временем теряет прочность (процесс карбонизации силикатов — переход силикатов в мел). В связи с этими показателями его нужно армировать в кладке каждые 3 ряда + делать армирование в стенах длиннее 6 метров, оконных проемах, и в других местах с усиленной нагрузкой. Это удорожает стоимость кладки и увеличивает время возведения.
Керамические блоки не теряют прочность в кладке. Можно спокойно возводить стены без дополнительного армирования. Есть примеры постройки 10-этажных зданий из тёплой керамики с несущими стенами без армирования.
Геометрия
У газобетона средние отклонения от заявленных размеров 1-2 мм. Это позволяет производить тонкошовную кладку на клей, что уменьшает количество мостиков холода через швы. Также это позволяет наносить более тонкий слой штукатурки в дальнейшем, экономя средства.
У керамоблока средние отклонения 5-6 мм. Поэтому шов при кладке должен быть 8-12 мм. Использование тёплого кладочного раствора компенсирует этот момент, так как он был специально создан для керамических блоков, с максимально приближенным показателем по теплотехнике
Вес
Керамический блок легче почти в 2 раза, чем аналогичный блок из газосиликата. Это позволяет сократить нагрузку на фундамент и облегчить кладку строителям. Всё это тоже может позволить сэкономить дополнительные деньги.
Морозостойкость
Этот показатель у обоих материалов отвечает нормам – F50–F100 в зависимости от производителя.
Скорость строительства дома
- Кроме вышеописанных пунктов (дополнительное армирование, вес, нанесения клея в вертикальные швы), у газобетонных блоков есть ещё одна особенность – это последующая отделка стен штукатуркой. Её нельзя производить сразу, так как газоблок слишком влажный. Как правило, дом отстаивается ещё около 1-2 лет, просушивая газосиликатные блоки.
- Тёплая керамика изначально сухая – отделку можно производить сразу при положительной температуре.
Комфорт в доме
- Керамоблок имеет свойство как поглощать влагу, так её и отдавать. Тем самым в доме происходит регуляция влажности без приборов и систем. За счёт своей высокой инерционности, керамические блоки имеют теплоёмкость выше, чем у газоблока. Это означает что зимой керамический материал набирает тепло и потом медленно его отдаёт в помещения, тем самым контролируя комфортную температуру в доме. А летом обратная ситуация – теплая керамика аккумулирует в своих пустотах прохладный воздух, не давая теплому воздуху заполнить внутренние помещения. Это позволяет сэкономить на отоплении и кондиционировании дома в разные сезоны проживания.
- Газоблок отдаёт влажность годами и таких свойств не имеет.
Дом из керамических блоков также больше подойдёт, если у вас в семье есть аллергики. Это связано с абсолютной гипоаллергенностью блоков.
В газосиликате же присутствуют выделения пыли, что нужно иметь в виду.
Цена
Цены на аналогичные блоки по плотности и толщине в среднем идентичны. Цены у каждого материала больше разнятся по производителям – есть премиальные бренды керамических блоков (напр. Поротерм) и также у газобетона есть свои лидеры (напр. Ytong).
Огнестойкость
Оба материала проходят по низким показателям горючести – предел огнейстойкости до 4 часов.
Долговечность
- История строек из газосиликата рассказывает нам, что по истечении 15-20 лет внешние стены подвергаются усадке около 2 мм. Это может негативно сказаться на целостности кладки. Мы знаем этот материал 40 лет, больше этих сроков надежность пока оценить не представляется возможным.
- Керамический блок появился гораздо раньше, можно отметить уже 100-летний юбилей. Но если мы посмотрим вглубь истории построек из керамического материала, то можем увидеть сегодня строения с 20-ти вековой историей. На фото одно из таких строений – отель Анно (Любек, Германия), первое упоминание о котором датируется 1305г.
от чего зависит и какой коэффициент
Индустрия строительства сегодня обеспечена многочисленными высокотехнологичными материалами, имеющими выдающиеся свойства. Одним из них является ячеистый бетон. Одна из разновидностей — газобетон. Производители гарантируют материалу высокие эксплуатационные характеристики. Например, обеспечивать сбережение комфортного внутреннего теплового режима зданий или передачу лишнего тепла за его пределы. Постоянное удорожание энергоресурсов делает все более актуальным фактором строительства снижение теплопроводности материалов.
Что такое теплопроводность?
Стены зданий предназначены стабилизировать комфортную температуру внутри помещений. Высокая теплопроводность стен холодной порой года будет быстро передавать тепло отопления наружу. Стоимость потребленных энергоресурсов вырастет, однако, жилое строение будет по-прежнему холодным. По этой же причине жаркие дни станут причиной внешнего нагрева стен. Материал передаст тепло внутрь строения, потребовав непременного охлаждения воздуха. Газобетону присущи иные свойства.
Само название подтверждает, что объем материала равномерно заполнен порами. Примерно 85% тела блоков — пустоты. Они заполнены воздухом, именно поэтому изделия имеют незначительный вес. По этому параметру продукция объединяет качества дерева, камня. Как известно «запертый» воздух является плохим проводником тепла. Значит, структура материала обладает ярко выраженной низкой теплопроводностью.
Показатель имеет наименьшую величину среди используемых стеновых материалов. Термин «теплопроводность» определяет способность передавать тепло внутри материала от одной более нагретой части объема к другой менее нагретой за счет теплового движение молекул. Измерение производится в Вт/(м °С). Показатель имеет название — коэффициент теплопроводности.
Фактически речь идет о количестве теплоты, которая передается через грань образца объемом 1 м. куб. за установленное время (например, 1 час) при формировании разности температур в 1 градус на противоположных сторонах. Технология изготовления газобетона задает макроструктурное качество, характеристики плотности, влажности материала. Именно от этих параметров зависит теплопроводность продукции.
Вернуться к оглавлению
Зависимость от плотности
Влияние плотности на теплопроводность.
Теплопроводность изделий формируется плотностью их материала. Чем они плотнее, тем быстрее передают холод (тепло) через свой объем. Стены из разных материалов, которые одинаково препятствуют теплопотерям, имеют разную толщину. Для сравнения: стены кирпичная шириной 210 см, из блоков газобетона сечением 44 см, из листов пенополистирола толщиной 12 см имеют практически равные показатели теплопропускания.
Сравнение стандартных величин теплопроводности кирпича — 0,35 Вт/(м °С) с газобетоном марки D400 — 0,10 Вт/(м °С) показывают, что условная кирпичная стена выпускает тепло из постройки быстрее, примерно от 3 до 4 раз. Одна из особенностей газоблоков в том, чем большую плотность он имеет, тем быстрее сооружение охлаждается. Есть обратная связь. Важно выдержать оптимум при выборе марки блоков, чтобы дом стал долговечным, теплым.
Вернуться к оглавлению
Зависимость от влажности
Влияние влажности на теплопроводность газобетона.
Формирование из блоков наружных стен сооружений предполагает взаимодействие, в первую очередь, с переменчивой влажностью окружающей среды. Хотя гигроскопичность материала достаточно низкая, однако, его структура все же подвержена впитыванию влаги. Реальные теплоизоляционные свойства изделий становятся несколько ниже, чем в стандартных условиях измерений. Величина равновесной эксплуатационной влажности наружных газобетонных стен может составлять до 10%. Поэтому, например, стандартный коэффициент теплопроводности, равный 0,12 Вт/(м °С) для блоков марки D500 в стандартных условиях, отличается от величины в условиях эксплуатационной влажности на 0,2 Вт/(м °С) и больше. Однако, это не много по сравнению, к примеру, с пустотелым строительным кирпичом, для которого в аналогичных условиях величина данного показателя ухудшается на 70-90%.
Вернуться к оглавлению
Зависимость от качества макроструктуры
Данная разновидность блоков отличается от пенобетонных тем, что содержит характерные вытянутые пустоты неправильной формы. Такому образованию их формы материал обязан выходу газа в процессе отвердения. Газ выходит через образовавшиеся в порах трещинки, а значит, есть обратная сторона вопроса — подверженность продукции поглощению влаги.
Структуризацию материала определяют технологии изготовления. Определяющим фактором являются размеры внутренних пустот. Теплосберегающие свойства материала тем выше, чем больше пустотелых сфер в материале, а также чем меньших они размеров.
Вернуться к оглавлению
Коэффициент теплопроводности марки D500
Газоблоки данной марки классифицируются как конструкционно-теплоизоляционный материал. Величина показателя продукции в среднем равна 0,12 Вт/(м °С). Теплоизоляционные свойства стен, состоящих из уложенных блоков, могут достигать до 0,28 Вт/(м °С), что уже приближает их к кирпичу. Вместе с тем в соответствии с современными строительными нормами (к примеру, СТО 501-52-01-2007, ГОСТ 31360-2007 для РФ) газоблоки марок от D500 и выше могут быть использованы для кладки самонесущих стен высотой более 3-х этажей.
Вернуться к оглавлению
Коэффициент теплопроводности марки D600
Дом из газобетонных блоков сохраняет комфортную температуру в помещениях, как в зимний, так и в летнее время.
Данные изделия также являются конструкционно-теплоизоляционными. Средняя величина показателя для продукции составляет около 0,14 Вт/(м °С). Расчетные теплоизоляционные характеристики стен, состоящих из изделий марки D600, могут достигать до 0,31 Вт/(м °С). Для минимизации теплопотерь требуется точное выполнение рекомендаций по гидроизоляции материала от влаги воздуха, атмосферных осадков.
К сожалению, не только газоблоки составляют тело стен. Мостики передачи тепла создаются армопоясами, бетонными перемычками (поясами), кладочными швами. Последние резко понижают теплоизоляционные качества конструкции стен в целом.
Использование при монтаже специальных клеев снижает теплопроводность стен по сравнению с кладкой на цементные растворы. Вместе с тем повышение точности изготовления единиц продукции при одновременном увеличении их стандартных размеров позволяет сократить количество мостиков холода.
Вернуться к оглавлению
Заключение
За газобетоном настоящее и будущее жилищного строительства ввиду совершенствования норм, требований теплосбережения, роста цен на энергоносители. Простота возведения стен, отсутствие необходимости проводить дополнительное утепление, малые значения теплопроводности автоклавного газобетона позволяют существенно удешевить конструкцию сооружений.
Однако специфика строения пустот в газоблоках способствует впитыванию материалом влаги, поэтому их гидроизоляция обязательна. Конкретная климатическая зона строительства формирует индивидуальный подход как к выбору марки газоблоков, расчету толщины стен зданий, так и определяет их реальную теплопроводность.
Теплопроводность газосиликатных блоков в сравнении с другими материалами
Способность к эффективному удержанию тепла внутри помещений играет ключевую роль при выборе материалов для возведения наружных стен зданий, характеристики, отражающие ее в количественном выражении, обязательно учитываются при проведении расчета их толщины. Неизменно высокие результаты показывают газосиликатные блоки и плиты, обеспечивающие низкую термопередачу при минимальной нагрузке на основание и достаточно хорошей прочности.
Определение и влияние на другие характеристики
В количественном выражении отражает способность газосиликата проводить тепло с учетом его постоянного агрегатного состояния и условий эксплуатации. По сути является аналогом электропроводимости: чем она выше, тем активнее происходит теплообмен. Существует прямая связь между толщиной строительных конструкций, удельным весом и структурой их основы и показателем термопередачи.
Пористые и удерживающие внутри воздух блоки или плиты в сухом виде имеют неизменно низкую теплопроводность, уплотненные разновидности – наоборот.
Обратная величина этой характеристики – способность к препятствованию прохождения тепла сквозь структуру: чем она выше, тем лучше элементы подходят для утепления или постройки энергосберегающих сооружений. По этой причине для организации отвода или теплопередачи используются элементы из стали или алюминия, имеющие крайне низкое термическое сопротивление, а при необходимости поддержки определенного режима внутри – стройматериалы с ячеистой или волокнистой структурой: дерево, минвата, газосиликат или пенобетон, поризованная или пустотелая керамика, пенопласт, ППУ, эковата.
Кладочные изделия представлены марками с разной плотностью, в пределах D300-D400 они относятся к теплоизоляционным, D500 и D600 – совмещают утепляющие и конструкционные способности, свыше D700 – не обладают энергосберегающими свойствами. D400 могут использоваться при возведении нагружаемых стен, но лишь при условии их надежного армирования и поддержки каркасом, при исключении мостиков холода в дополнительной защите от потерь тепла они не нуждаются. При повышении плотности марки скорость теплообмена между наружной и внутренней средой увеличивается, что приводит к необходимости утепления фасада.
Марка плотности | D300 | D400 | D500 | D600 |
Теплопроводность г в сухом состоянии, Вт/м·°C | 0,08 | 0,096 | 0,12 | 0,14 |
Коэффициент паропроницаемости газосиликата, мг/м·ч·Па | 0,26 | 0,23 | 0,2 | 0,16 |
Это значение подтверждается производителем опытным путем, для его определения в домашних условиях можно направить на блок горелку (или поставить его на плиту) и измерять изменение температуры в 3-4 см углублении на другой стороне с интервалом в 1 мин. После прекращения нагрева отслеживается динамика охлаждения. Такой опыт позволяет проверить не только изоляционные свойства, но и огнестойкость.
Сравнения коэффициентов теплопроводности газоблоков и других материалов
Большинство современных строительных конструкций, разделяющих зоны с разными температурами, являются многослойными. Их величина термического сопротивления суммируется с учетом толщины каждой прослойки в метрах и термопроводности при стандартных условиях (нормальной влажности и температуре). Усредненные нормативные значения последней приведены в таблице ниже:
Вид | Средний диапазон плотности, кг/м3 | Коэффициент теплопроводности в сухом состоянии, Вт/м·°C |
Мелкоштучные кладочные изделия и блоки из искусственного камня | ||
Кирпич красный плотный | 1700-2100 | 0,67 |
То же, пористый | 1500 | 0,44 |
Силикат | 1000-2200 | 0,5-1,3 |
Керамический поризованный камень | 810-840 | 0,14-0,185 |
Многопустотные камни из легкого бетона | 500-1200 | 0,29-0,6 |
Дерево | ||
Дуб | 700 | 0,23 |
Клен | 620-750 | 0,19 |
Лиственница | 670 | 0,13 |
Липа | 320-650 | 0,15 |
Сосна | 500 | 0,18 |
Береза | 510-770 | 0,15 |
Блоки и плиты из ячеистых видов бетона | ||
Пенобетон | 300-1250 | 0,12-0,35 |
Автоклавные газосиликатные и газобетонные | 280-1000 | 0,07-0,21 |
Строительные плиты из пористого бетона | 500-800 | 0,22-0,29 |
Утеплители | ||
Пенополистирол | 40 | 0,038 |
Маты из минеральной ваты | 50-125 | 0,048-0,056 |
Эковата | 35-60 | 0,032-0,041 |
Несложно заметить, что из всех видов кладочных материалов автоклавные газосиликатные блоки в разы выигрывают в сопротивлении теплопередаче. На практике это означает возможность уменьшения толщины стен при равном теплообмене и отсутствии необходимости их наружного утепления. В этом плане они уступают лишь дереву, для сравнения: равную теплопроводность имеют 140 мм сухого бруса, 250 – кладки из газосиликата, 500 – керамзитобетона и 650 – монолитной стены из кирпича. У продукции, используемой при утеплении, такая же низкая эффективность теплообмена наблюдается у плиты ППУ толщиной в 25 мм, полистирола в 60, пробки в 70 и минеральной ваты в 80.
Высокая способность к удержанию тепла допускает использование как конструкционных изделий, так и в качестве изолятора. Марки D500 и D600 совмещают оба свойства, но при превышении плотности свыше 700 кг/м3 сопротивление теплопередаче снижается и возникает потребность либо в наружном утеплении, либо в увеличении толщины кладки, и как следствие – росту затрат. С целью исключения ошибок этот параметр определяет расчет, проводимый на стадии проектирования и учитывающий климатические условия региона, требуемую температуру внутри здания и точную теплопроводность.
Теплопроводность газобетона и газобетонных блоков
На протяжении долгих лет строители отдавали предпочтение кирпичу как долговечному, прочному материалу, устойчивому к износу. Современный рынок предлагает ряд альтернативных материалов, среди которых ячеистые бетоны, обладающие большим количеством преимуществ. Одним из важных плюсов газобетона является теплопроводность, которая подразумевает способность материала сохранять тепло внутри помещения.
Способность строительного материала к удержанию тепла зависит от многих факторов, среди которых плотность, характеристика взаимодействия с влагой, расположенность к теплоусвоению и паропроходимость.
Теплопроводность газобетона обусловлена его структурой. Любой ячеистый бетон на 85% состоит из пузырьков воздуха, который создает своеобразную прослойку при взведении стен здания и оказывается отличным утеплителем. В сравнении с пенобетоном газоблок оказывается более подвержен воздействию влаги, что сказывается на его теплопроводности. Поэтому при проведении строительных работ необходимо осуществить гидроизоляцию используемых изделий и будущей постройки.
От чего зависит теплопроводность газобетонных блоков?
На теплопроводность газобетона влияет влажность воздуха. В сухом климате его показатели будут более располагающими, но в иных условиях способность ячеистых бетонов к пропусканию тепла практически схожи с теми, которые демонстрирует кирпич. Каждый регион имеет индивидуальные климатические и погодные особенности, которые предполагают использование тех или иных материалов. В случае с областями, где наблюдается высокая влажность воздуха, прибегают к эксплуатации изделий с большей толщиной, а любое строительство требует проведения предварительных расчетов для того, чтобы полученная в финале теплопроводность газобетона не сказалась на пригодности дома к эксплуатации и комфорте проживания в нем.
Осуществление расчетов предполагает учет толщины газоблоков, возможность их эффективного утепления и обустройство потенциальной системы отопления.
Теплопроводность газобетона, используемого при возведении стен, может зависеть от качества клеевого раствора, так как места смыкания блоков являются возможными причинами проникания холода. Также сказывается и наличие армопоясов. Использование обычного бетона приведет к тому, что дом будет сильно промерзать, поэтому строители используют железобетонные армированные пояса для увеличения теплопроводности газобетонных блоков. Необходимость использования этих деталей сказывается на финансовых затратах на строительство.
Зависимость теплопроводности от плотности
Коэффициент теплопроводности газобетона напрямую зависит от плотности материала. Чем плотнее его структура, тем выше способность к удержанию тепла. При этом наблюдается специфичная зависимость теплоизоляции от прочности материала: чем менее прочен газобетон, тем лучше он удерживает тепло. Выбирая марку материала, стоит ориентироваться и на эту особенность, и при строительстве дома выбирать газобетон марки D500- D600.
Преимущества теплопроводности газобетона
Низкий коэффициент теплопроводности материала позволяет серьезно сэкономить на системе отопления и электроэнергии, затрачиваемой на поддержание комфортной температуре в помещении. Стены дома из газобетона помогают поддерживать приятный микроклимат, сохраняя тепло зимой, а жарким летом создавая приятную прохладу благодаря тому, что они не пропускают тепло извне.
Экономичность в использовании газобетона заключается еще в том, что нет необходимости в затратах на дополнительную теплоизоляцию. В случае необходимости повышения теплоизоляции можно облицевать фасады здания кирпичом, сделав более привлекательным его внешний вид и увеличив его способность к сохранению тепла.
Купить газобетонные блоки высокого качества и по выгодным ценам можно на сайте компании «УниверсалСнаб».
Теплопроводность газобетона: для чего нужен коэффициент
Физико-технические характеристики кладочных блоков зависят от технологии производства и свойств исходного сырья. Строители учитывают теплопроводность газобетона на стадии проектирования дома. Этот показатель важно узнать заранее, поскольку специалисты рекомендуют определять способ утепления до начала кладки стен. Гораздо проще монтировать крепления для утеплителя между блоками.
Для чего нужен коэффициент теплопроводности?
Температура внутри помещения зависит от скорости остывания стен и циркуляции воздуха. В целях сбережения тепла проектировщики стремятся подбирать кладочные стройматериалы с низким показателем плотности. Газобетонные блоки имеют пористую структуру, которая в холодную пору года не пропускает теплые потоки с помещения. Пустоты с воздухом составляют большую часть объема газобетона, что обеспечивает низкий уровень теплопроводности. Это свойство способствует медленному нагреву в жаркое время года.
Объем пропускаемого тепла за единицу времени при условии разности температур называется коэффициентом теплопроводности. Параметры, которые определяют теплоизоляционные свойства следующие:
- Плотность. Чем меньше показатель, тем лучше сохраняется тепло в доме.
- Влажность. Газобетон неустойчив к воздействию осадков. Влага накапливается в порах, вытесняя воздух, и теплоизоляционные свойства нарушаются.
- Размер пустот. Чем меньше поры в газобетоне, тем медленнее материал нагревается.
Показатель теплопроводности рассчитывают в таких целях:
Показатель теплопроводности расчитывают для того, чтобы знать затраты на обогрев дома.
- Подсчет затрат на обогрев дома. Если коэффициент теплопроводности газобетона увеличится, возрастут расходы на тепло и электроэнергию.
- Необходимость утепления дома. Чем больше кладочный материал пропускает тепла, тем сильнее нужно утеплять фасад.
- Выбор способа теплоизоляции. Стены из газобетона можно утеплять с одной стороны или с двух одновременно.
Теплопроводность блоков из газобетона
Материал для кладки стен выбирают с учетом предназначения будущего строения. Газобетон с высоким уровнем теплоизоляции имеет небольшую плотность. Такая кладка деформируется под воздействием механической нагрузки. Условно можно обобщить типы газобетона в 3 группы:
- Строительные блоки марки ниже D400. Газобетон имеет наименьший уровень теплопроводности. Применяют для утепления помещения или возведения простенков.
- Газобетон до марки D800. Оптимальный вариант с приемлемым для строительства несущих конструкций уровнем плотности и высокими теплоизоляционными свойствами.
- Блоки с наибольшей плотностью до марки D1200. Применяют для строительства двухэтажных домов. Такому строению нужна дополнительная теплоизоляция.
Значение теплопроводности монолитного газобетона позволяет применять материал для устройства полов с подогревом.
Как утеплять: внутри или снаружи?
Утепление сооружения снаружи рекомендовано делать для повышения прочности кладки.
Внешнюю отделку газобетонных стен проводят обязательно с целью гидроизоляции дома и повышения уровня прочности кладки. Необходимо утеплить помещение снаружи в следующих случаях:
- Для возведения стен запланировано применение газобетона наибольших или самых низких марок.
- Несущие элементы конструкции выполнены из пустотелых блоков.
- Вместо специального клеящего вещества применили цементно-песчаный состав.
- Толщина швов достигает полсантиметра и больше.
- Раствор нанесен неравномерно.
С целью предотвращения накопления влаги между стеной и шаром утеплителя, нужно подбирать газобетон с высоким уровнем паропроницаемости для внешней отделки, а для внутренней — наоборот. Наибольшей популярностью пользуется наружное утепление, поскольку одновременно можно выполнять эстетическое оформление. В обоих случаях используют одинаковые теплоизоляционные материалы. По мере утепления увеличивается уровень звукоизоляции. Можно монтировать теплоизоляционный материал с обеих сторон сразу.
Чем лучше всего проводить утепление?
Существует несколько типов теплоизоляционных материалов для газоблоков с разными физико-техническими характеристиками. Строительными нормами допускается утепление пористого газобетона специальными красками и штукатуркой. Главный минус — тонкий плотный слой забивает поры легких бетонных блоков. Более привлекательно выглядит отделка кирпичными плитами и сайдинговыми листами.
Применение пенополистирола
Применение пенополистирола имеет ряд преимуществ, таких как быстрый монтаж и высокая влагоустойчивость.
Такое утепление быстро изнашивается и имеет низкую паропроницаемость. Перед нанесением слоя стены чистят и монтирую специальную сетку. Материал крепят с помощью клеящего вещества. Для повышения надежности утеплитель фиксируют дюбелями. Главные преимущества пенополистирола:
- низкая стоимость;
- влагоустойчивый;
- относительно быстрый монтаж.
Использование минеральной ваты
Материал считается экологически чистым и недорогим. Специалисты рекомендуют использовать зарубежные экземпляры. На плиты из стекловолокна крепят армирующую сетку и наносят клеящее вещество. Такое утепление нуждается в дополнительной отделке специальной штукатуркой или красками. Главные преимущества монтажа минеральной ваты:
- огнеупорный материал;
- устойчивость к механическим нагрузкам;
- многолетний срок полезной службы.
Краткие выводы
Теплопроводность газобетонных блоков зависит от технических свойств. Популярность кладочного материала объясняется способностью сохранять тепло в помещении зимой и прохладу летом. Такие стены нуждаются в дополнительной отделке и утеплении, поскольку газоблоки теряют преимущества под воздействием условий окружающей среды. Выбор облицовки зависит от марки газобетона и бюджета владельцев. Лучше не экономить на безопасности и надежности строения.
Теплопроводность бетона: характеристики, коэффициент и таблица
Одной из важнейших характеристик бетона, конечно же, является его теплопроводность. Изменение этого показателя для разных типов материала может быть значительным. Зависит от теплопроводности бетона, скорее всего, от вида используемого в нем наполнителя. Чем легче материал, тем лучше он изолирует от холода.
Что такое теплопроводность?
При возведении зданий и сооружений используются разные материалы.Жилые и производственные здания в российском климате обычно утеплены. То есть в их конструкции используются специальные утеплители, основное назначение которых — поддержание комфортной температуры внутри помещения. При расчете необходимого количества минеральной ваты или пенополистирола обязательно учитывается теплопроводность основного материала, используемого для возведения ограждающих конструкций.
Очень часто в нашей стране здания и сооружения строятся из разных видов бетона.Также для этого использовали смазки и дерево. Собственно самой теплопроводностью называется способность вещества передавать энергию в своей толще за счет движения молекул. Подобный процесс может происходить как в твердых частях материала, так и в его порах. В первом случае это называется проводимостью, во втором — конвекцией. В твердых частях материала охлаждение происходит намного быстрее. Воздух, заполняющий поры, конечно, лучше задерживает тепло.
От чего зависит показатель
Выводы из всего вышеперечисленного позволяют сделать следующее.Зависит от проводимости бетона, дерева и кирпича, а также любого другого материала от их:
- плотности;
- пористость;
- влажность.
С увеличением плотности бетона увеличивается и степень его теплопроводности. Чем больше в порах материала, тем он лучше изолирует от холода.
Виды бетона
В современном строительстве можно использовать самые разные виды этого материала. Однако весь существующий на рынке бетон можно разделить на две большие группы:
- тяжелый;
- легкая пена или с пористым наполнителем.
Теплопроводность тяжелого бетона: показатели
Такие материалы также делятся на две основные группы. Бетон можно использовать в строительстве:
При производстве второй разновидности материалов, таких как заполнители, используются металлолом, гематит, магнетит, барит. Особенно тяжелые бетоны используются обычно только при строительстве объектов, основное назначение которых — защита от радиации. В эту группу входят материалы плотностью 2500 кг / м 3 .
Обычные тяжелые бетоны изготавливаются с использованием таких видов наполнителей, как гранит, диабаз или известняк, изготовленных на основе горного щебня. В строительстве зданий и сооружений аналогичный материал плотностью 1600-2500 кг / м 3 .
Какой может быть в этом случае теплопроводность бетона? Таблица, Информация, представленная ниже, демонстрирует показатели, характерные для различных типов тяжелого материала.
Тип бетона | Чрезвычайно тяжелый | Тяжелый для железобетонных конструкций | На песке |
Индекс теплопроводности W / (м ° С) | 1,28-1,74 | При плотности 2500кг / м3 — 1,7 | При плотности 1800-2500 кг / м3 — 0.7 |
Теплопроводность ячеистого легкого бетона
Такой материал также делится на две основные разновидности. Очень часто в строительстве используют бетоны на основе пористого наполнителя. В качестве последнего применяется глина, туф, шлак, пемза. Во второй группе заполнителей легкого бетона используется обычный. Но в процессе замеса такой материал вспенивается. В результате после созревания в нем остается много пор.
T Легкое бетона с очень низкой проводимостью.Но при этом и по прочностным характеристикам такой материал уступает тяжелому. Легкие бетоны чаще всего используют при возведении разного рода жилых и хозяйственных построек, не подверженных серьезным нагрузкам.
Классификация легких бетонов n
Влияние термического отверждения на устойчивость раствора и коэффициент теплопроводности пенобетона на основе твердых промышленных отходов
3.1 Влияние температуры выдержки на стабильность суспензии пенобетона
На рисунке 1 показано изменение скорости объемного расширения образцов в зависимости от температуры отверждения.Очевидно, что степень объемного расширения двух вяжущих материалов резко выросла при высоких температурах отверждения. Для вяжущего материала A350 степень объемного расширения составляла 64,71% и 99,35% соответственно при температуре 45 ° C и 70 ° C; для вяжущего материала A500 степень объемного расширения составляла 48,99% и 39,90%, соответственно, при двух температурах. Быстрый рост степени объемного расширения можно объяснить следующим образом.
Оба вяжущих материала выделяют большое количество ОН- в воде, создавая щелочную среду.В этих условиях паста из алюминиевого порошка выделяет газ в результате химической реакции. Многочисленные пузырьки газа независимы и равномерно распределены. Когда пузырьки только что образуются, суспензия находится в жидком состоянии и подвергается конвективной теплопередаче, так как ее температура отличается от температуры окружающей среды. После нагревания пузырьки становятся все более нестабильными. Источник газа начинает быстро расширяться, когда давление газа превышает предельное напряжение сдвига суспензии (сумма вязкого сопротивления и гидростатического давления) [22, 23].
Температура влияет на теплопроводность жидкости. С повышением температуры броуновское движение жидкости усиливается, и вязкость пленки жидкости сначала увеличивается, а затем уменьшается. Продолжающийся рост температуры приведет к уменьшению толщины пузырьковой пленки. По мере того как вода конденсируется на цементном материале, собственный вес материала постепенно увеличивается. Когда собственный вес превысит сумму давления в порах и силы вязкости на поверхности пузырьков, поры будут раздавлены, пузырьки схлопнутся [24] и пузырьки прекратят свое существование.Вот почему A500 имел меньшую скорость расширения объема, чем A350 при температуре 70 ° C.
Рис. 1. Изменение скорости объемного расширения в зависимости от температуры отверждения
Чтобы дополнительно раскрыть влияние температуры на стабильность суспензии, температура суспензии была измерена термопарой в каждой форме, и изменение этой температуры во времени представлено на рисунке 2. Можно видеть, что температура суспензии A350 сначала снизилась, а затем затем увеличилась при температуре отверждения 20 ℃.Это связано с тем, что вяжущий материал A350 имеет небольшую SSA и низкую растворимость в начальной фазе. Вначале стальной шлак (SS) и доменный шлак (BFS) гидратируются с медленной скоростью, и только несколько минералов присоединяются к гидратации. Таким образом, в растворе мало содержания ОН- и Са2 +. По сравнению с A500 вяжущий материал A350 длительное время остается в жидком состоянии. Между тем, суспензия A350 будет охлаждаться, поскольку ее тепло течет в относительно прохладную среду.По мере продолжения гидратации выделяется все больше и больше тепла, повышая температуру суспензии.
На рисунке 2 также можно увидеть, что A500 гидратировался быстрее, чем A350 в первые 20 минут. Гидратация — это экзотермический процесс реакции. На начальном этапе выделяется большое количество тепла из-за концентрированного образования эттрингитов. Многочисленные частицы микронного размера обволакивают пену и участвуют в гидратации стенок пенопласта. Для сравнения, суспензия с коротким начальным временем схватывания может сдерживать и фиксировать пузырьки, а также сохранять поры стабильными.В процессе вспенивания в такой суспензии остается больше газа, несмотря на реакцию гидратации [25, 26].
Скорость гидратации A350 относительно низкая. Паста из алюминиевого порошка высвободила огромное количество водорода до того, как пузырьки покроются гидратированным твердым слоем. Газоудерживающая способность суспензии настолько низкая, что пузырьки всплывают вверх. Молекулы в маленьких пузырьках с высоким внутренним давлением мигрируют через жидкую пленку к соседним большим пузырькам с низким внутренним давлением.В результате маленькие пузырьки сливаются в большие и выходят из раствора (рис. 3). Из-за низкой скорости гидратации суспензия A350 более горячая, чем суспензия A500 на более поздней стадии. Таким образом, можно сделать вывод, что разрывы пузырьков при низких температурах в основном являются результатом диффузии газа и сочетания пузырьков.
Рисунок 2. Изменение скорости объемного расширения в зависимости от температуры отверждения
Рисунок 3. Выход пузырьков при температуре ниже 20 ℃
При температуре отверждения 45 ° C (рис. 4) как A350, так и A500 гидратировались во время вспенивания, и оба обладали хорошим газоудерживающим эффектом.Скорость объемного расширения двух суспензий составляла соответственно 252% и 295%, что намного выше, чем при температуре ниже 20 ° C. При этой температуре отверждения первые 15 минут являются периодом индукции гидратации вяжущего материала [27]. A500 гидратируется быстрее, чем A350. При гидратации выделяется много тепла, которое передается суспензии. Между тем пузыри образуются в первые 15 минут. По мере того, как температура жидкости увеличивается за короткое время, скорость барботажа суспензии начинает расти.В конце концов, раствор может быстрее растворять реагенты и продукты реакции при высоких температурах. Сильная растворяющая способность способствует реакции гидратации, приводя к увеличению добычи газа в единицу времени и количества газа в суспензии.
Рисунок 4. Изменение температуры суспензии ниже 45 ℃
На рис. 5 показано изменение температуры суспензии во времени ниже 70 ℃. Как показано на рисунке 4, стабильность суспензии в основном зависит от комбинированного эффекта термической стабильности пузырьков и скорости гидратации.A500 гидратируется быстрее, чем A350. На ранней стадии суспензия A500 быстро переходит из жидкого состояния в пластичное, и теплопроводность текучей среды становится теплопроводностью твердого тела. Пузырь схлопывается под собственным весом суспензии и истончением стенок пузыря (рис. 6). Обрушение создает множество пустот на поверхности шлама, расширяя зону тепловой конвекции. На более позднем этапе суспензия A500 продолжает расти. При повышении температуры эффект Марангони ослабевает из-за теплопроводности жидкости и расширения газа, и пленка жидкости становится менее вязкой и менее прочной, что приводит к снижению устойчивости пузырька.В то же время пластификация суспензии ускоряется, а пузырьки сливаются и быстрее разрываются под действием собственного веса. Следовательно, можно считать, что схлопывание пузырька при высоких температурах является комбинированным результатом температуры и давления.
Рисунок 5. Изменение температуры суспензии ниже 70 ℃
Рисунок 6. Обрушение пузыря
3.2 Влияние температуры застывания на газобетон TCC
После трех дней отверждения образцы были подвергнуты измерению ТСС методом плоских полос и измерению пористости методом проникновения ртути.Результаты измерений показаны в Таблице 2 и на Рисунке 7. Можно видеть, что TCC газобетона уменьшалась с ростом температуры отверждения (за исключением схлопывания пузырьков). Причина заключается в том, что термическое отверждение превращает нестабильную трехфазную суспензию газ-жидкость-твердое тело в стабильную двухфазную систему газ-твердое тело, превращая пузырьки в поры. Когда диаметр пор составляет менее 4 мм, на общие характеристики теплопередачи в основном не влияют конвективная теплопередача или лучистая теплопередача.Поскольку TCC воздуха (0,026 Вт / (м · k)) намного меньше, чем у обычного бетона (1,4 Вт / (м · k)), большая часть тепла газобетона передается твердой теплопроводностью после образование пор. Есть два пути для передачи тепла в пустотах: четверть окружности и менее четверти окружности (рис. 8). Твердый TCC зависит от пористости материала. Чем выше пористость, тем длиннее путь теплопередачи и больше потери энергии. Таким образом, термическое отверждение способствует образованию пористой структуры и снижает TCC вяжущего материала.
Таблица 2. Пористость и ОКУ пенобетона при различных температурах отверждения
Номер | Температура отверждения ( ℃ ) | Пористость (%) | TCC (Вт / м · K) |
A350 | 20 | 48,65 | 0.157 |
A350 | 45 | 66,27 | 0,094 |
A350 | 70 | 73,18 | 0,086 |
A500 | 20 | 59,71 | 0,131 |
A500 | 45 | 78.65 | 0,071 |
A500 | 70 | 83,5 | 0,117 |
Рис. 7. Изменение ТСС при нормальной температуре в зависимости от температуры отверждения
Рисунок 8. Пути теплопередачи в твердом корпусе
Приведенный выше анализ показывает, что термическое отверждение влияет на пористость материала и, следовательно, на ТСС материала.Согласно модели Максвелла [28, 29], TCC линейно коррелирует с пористостью:
$ λ = (2λ1 + λ2 + 2V (λ2-λ1) λ1) / (2λ1 + λ2-V (λ2-λ1)) $
, где λ 1 — ТСС непрерывной фазы; λ 2 — ТСС дисперсной фазы; λ — КТК материала; V — пористость. Значения этих параметров при последующем анализе остаются прежними.
В нашем тесте была измерена линейная зависимость между TCC и пористостью. Результаты (Рисунок 9) показывают, что TCC коррелирует с пористостью для газобетона, изготовленного из стального шлака (SS), доменного шлака (BFS) и гипса FGD, но коэффициент детерминации R2 = 0.954. Причина в том, что модель Максвелла характеризует теплопроводность материала, образованного однородными и независимыми сферами, неравномерно распределенными в матрице, а ТСС газобетона, в отличие от других двухфазных композитов, не только шарниров. на TCC его твердой и газовой фаз, а также на относительное содержание, морфологию, распределение и взаимодействие пор (которые образуются из пузырьков). Конечно, пористость является основным фактором, влияющим на КТК ячеистого бетона [30, 31].Для газобетона межпористое расстояние сокращается с ростом пористости. В этом случае стенки пор будут соприкасаться друг с другом, и поры могут даже соединиться. Взаимодействие между порами создает цепочку теплопроводности вдоль теплового потока.
Рис. 9. Кривая зависимости между ТСС и пористостью
В то время как модель Максвелла не учитывает влияние формы пузырька на TCC, Hasselman et al. улучшена модель Максвелла с учетом того, как размер дисперсных сфер (n = 3) влияет на теплопроводность материала.Результирующая модель Хассельмана [32] может быть выражена как:
$ λ = λ1 ([λ2 (1 + 2α) +2 λ1] + 2V [λ2 (1-α) — λ1]) / ([λ2 (1 + 2α) +2 λ1] -2V [λ2 (1- α) — λ1]) $
где, α — размерный коэффициент сферической дисперсной фазы. Этот коэффициент отрицательно коррелирует с размером сферы. Согласно модели Хассельмана, ТСС газобетона зависит от пористости и формы пор, в то время как температура отверждения ограничивает образование и распределение пор.
Затем была проведена сканирующая электронная микроскопия образцов с одинаковым увеличением при разных температурах.Результаты (рис. 10) показывают, что рост температуры вызвал расширение диаметра пор, истончение стенок пор и однородность диаметра пор в пенобетоне.
Рис. 10. СЭМ-изображения микроструктуры пенобетона при различных температурах
3.3 Анализ механизма газобетона на основе МСВ
Приведенные выше результаты показывают, что бетон, изготовленный из стального шлака (SS), доменного шлака (BFS) и гипса FGD, имеет более высокую температуру вспенивания, чем обычный портланд-бетон, что может быть связано с продуктами гидратации его вяжущего материала.Согласно результатам SEM на ячеистом бетоне A350 (Рисунок 11), небольшое количество эттрингитов и геля C-S-H образовалось при температуре отверждения 20 ° C, но продукты не кристаллизовались, оставив несколько выпуклостей на изображении SEM; особой морфологии практически не было продуктов гидратации. При температуре отверждения 45 ° C игольчатые выходы эттрингита были очень очевидны, промежутки были покрыты мелкими эттрингитами, а гель образовывал кластеры и запутывался с эттрингитами. При температуре отверждения 70 ° C кристаллы эттрингита становились все толще и толще.С повышением температуры окружающей среды кремний (алюминий) -кислородный тетраэдр с большей скоростью диссоциировал от доменного шлака (BFS) в системе. Между тем, стальной шлак (SS) гидратируется быстрее, делая раствор более подщелачивающимся. Это приводит к образованию огромного количества эттрингитов. Таким образом, на порах и на поверхности частиц можно наблюдать большое количество агломерированного геля. Это означает, что у обычного портландцемента механизм гидратации отличается от механизма гидратации вяжущего материала на основе стального шлака (SS), доменного шлака (BFS) и гипса FGD.Обычный портландцемент может быстро гидратироваться, образуя большое количество силиката трикальция, силиката дикальция и алюмината алюминия на ранней стадии, а пенобетон, сделанный из цемента, имеет хороший эффект удержания газа при нормальной температуре. Напротив, вяжущий материал на основе стального шлака (SS), доменного шлака (BFS) и гипса FGD медленно гидратируется при нормальной температуре, что подавляет задержку газа в пенобетоне, что затрудняет его вспенивание; основные продукты гидратации материала включают эттрингит и гель C-S-H.
Рисунок 11. Результаты SEM на A350 при различных температурах отверждения
Удельное сопротивление и проводимость — температурные коэффициенты для обычных материалов
Удельное сопротивление равно
- электрическое сопротивление единичного куба материала, измеренное между противоположными гранями куба
Калькулятор сопротивления электрического проводника
Этот калькулятор можно использовать для рассчитать электрическое сопротивление проводника.
Коэффициент удельного сопротивления (Ом · м) (значение по умолчанию для меди)
Площадь поперечного сечения проводника (мм 2 ) — Калибр провода AWG
Алюминий | 3,8 x 10 -3 | 3,77 x 10 7 | |
Алюминиевый сплав 3003, прокат | 3,7 x 10 -8 | ||
Алюминиевый сплав 2014, отожженный | 3,4 x 10 -8 | ||
Алюминиевый сплав 360 | 7,5 x 10 -8 | ||
Алюминиевая бронза | 12 x 10 -8 | ||
Животный жир | 14 x 10 -2 | ||
Животный жир | 0.35 | ||
Сурьма | 41,8 x 10 -8 | ||
Барий (0 o C) | 30,2 x 10 -8 | ||
Бериллий | 4,0 x 10 -8 | ||
Бериллиевая медь 25 | 7 x 10 -8 | ||
Висмут | 115 x 10 -8 | ||
Латунь — 58% Cu | 5.9 x 10 -8 | 1,5 x 10 -3 | |
Латунь — 63% Cu | 7,1 x 10 -8 | 1,5 x 10 -3 | |
Кадмий | 7,4 x 10 -8 | ||
Цезий (0 o C) | 18,8 x 10 -8 | ||
Кальций (0 o C) | 3,11 x 10 -8 | ||
Углерод (графит) 1) | 3-60 x 10 -5 | -4.8 x 10 -4 | |
Чугун | 100 x 10 -8 | ||
Церий (0 o C) | 73 x 10 -8 | ||
Хромель (сплав хрома и алюминия) | 0,58 x 10 -3 | ||
Хром | 13 x 10 -8 | ||
Кобальт | 9 x 10 -8 | ||
Константан | 49 x 10 -8 | 3 x 10 -5 | 0.20 x 10 7 |
Медь | 1,724 x 10 -8 | 4,29 x 10 -3 | 5,95 x 10 7 |
Купроникель 55-45 (константан) | 43 x 10 -8 | ||
Диспрозий (0 o C) | 89 x 10 -8 | ||
Эрбий (0 o C) | 81 x 10 -8 | ||
Эврика | 0.1 x 10 -3 | ||
Европий (0 o C) | 89 x 10 -8 | ||
Гадолий | 126 x 10 -8 | ||
Галлий (1,1K) | 13,6 x 10 -8 | ||
Германий 1) | 1 — 500 x 10 -3 | -50 x 10 -3 | |
Стекло | 1 — 10000 x 10 9 | 10 -12 | |
Золото | 2.24 x 10 -8 | ||
Графит | 800 x 10 -8 | -2,0 x 10 -4 | |
Гафний (0,35K) | 30,4 x 10 — 8 | ||
Hastelloy C | 125 x 10 -8 | ||
Гольмий (0 o C) | 90 x 10 -8 | ||
Индий ( 3.35K) | 8 x 10 -8 | ||
Инконель | 103 x 10 -8 | ||
Иридий | 5,3 x 10 -8 | ||
Железо | 9,71 x 10 -8 | 6,41 x 10 -3 | 1,03 x 10 7 |
Лантан (4,71K) | 54 x 10 -8 | ||
Свинец | 20.6 x 10 -8 | 0,45 x 10 7 | |
Литий | 9,28 x 10 -8 | ||
Лютеций | 54 x 10 -8 | ||
Магний | 4,45 x 10 -8 | ||
Магниевый сплав AZ31B | 9 x 10 -8 | ||
Марганец | 185 x 10 -8 | 1.0 x 10 -5 | |
Меркурий | 98,4 x 10 -8 | 8,9 x 10 -3 | 0,10 x 10 7 |
Слюда (мерцание) | 1 x 10 13 | ||
Низкоуглеродистая сталь | 15 x 10 -8 | 6,6 x 10 -3 | |
Молибден | 5,2 x 10 -8 | ||
Монель | 58 x 10 -8 | ||
Неодим | 61 x 10 -8 | ||
Нихром (сплав никеля и хрома) | 100 — 150 х 10 -8 | 0.40 x 10 -3 | |
Никель | 6,85 x 10 -8 | 6,41 x 10 -3 | |
Никелин | 50 x 10 -8 | 2,3 x 10 -4 | |
Ниобий (колумбий) | 13 x 10 -8 | ||
Осмий | 9 x 10 -8 | ||
Палладий | 10.5 x 10 -8 | ||
Фосфор | 1 x 10 12 | ||
Платина | 10,5 x 10 -8 | 3,93 x 10 -3 | 0,943 x 10 7 |
Плутоний | 141,4 x 10 -8 | ||
Полоний | 40 x 10 -8 | ||
Калий | 7.01 x 10 -8 | ||
Празеодим | 65 x 10 -8 | ||
Прометий | 50 x 10 -8 | ||
Протактиний (1,4 K) | 17,7 x 10 -8 | ||
Кварц (плавленый) | 7,5 x 10 17 | ||
Рений (1,7 K) | 17.2 x 10 -8 | ||
Родий | 4,6 x 10 -8 | ||
Твердая резина | 1-100 x 10 13 | ||
Рубидий | 11,5 x 10 -8 | ||
Рутений (0,49K) | 11,5 x 10 -8 | ||
Самарий | 91,4 x 10 -8 | ||
Скандий | 50.5 x 10 -8 | ||
Селен | 12,0 x 10 -8 | ||
Кремний 1) | 0,1-60 | -70 x 10 -3 | |
Серебро | 1,59 x 10 -8 | 6,1 x 10 -3 | 6,29 x 10 7 |
Натрий | 4,2 x 10 -8 | ||
Грунт, типичный грунт | 10 -2 -10 -4 | ||
Припой | 15 x 10 -8 | ||
Нержавеющая сталь | 10 6 | ||
Стронций | 12.3 x 10 -8 | ||
Сера | 1 x 10 17 | ||
Тантал | 12,4 x 10 -8 | ||
Тербий | x 10 -8 | ||
Таллий (2,37K) | 15 x 10 -8 | ||
Торий | 18 x 10 -8 | ||
Тулий | 67 x 10 -8 | ||
Олово | 11.0 x 10 -8 | 4,2 x 10 -3 | |
Титан | 43 x 10 -8 | ||
Вольфрам | 5,65 x 10 -8 | 4,5 x 10 -3 | 1,79 x 10 7 |
Уран | 30 x 10 -8 | ||
Ванадий | 25 x 10 -8 | ||
Вода дистиллированная | 10 -4 | ||
Вода пресная | 10 -2 | ||
Вода соль | 4 | ||
Иттербий | 27.7 x 10 -8 | ||
Иттрий | 55 x 10 -8 | ||
Цинк | 5,92 x 10 -8 | 3,7 x 10 -3 | |
Цирконий (0,55K) | 38,8 x 10 -8 |
1) Примечание! — удельное сопротивление сильно зависит от наличия примесей в материале.
2 ) Примечание! — удельное сопротивление сильно зависит от температуры материала.Приведенная выше таблица основана на справочных данных 20 o C.
Электрическое сопротивление в проводе
Электрическое сопротивление провода больше для более длинного провода и меньше для провода с большей площадью поперечного сечения. Сопротивление зависит от материала, из которого оно изготовлено, и может быть выражено как:
R = ρ L / A (1)
, где
R = сопротивление (Ом, Ом )
ρ = коэффициент удельного сопротивления (Ом · м, Ом · м)
L = длина провода (м)
A = площадь поперечного сечения провода (м 2 )
Фактором сопротивления, учитывающим природу материала, является удельное сопротивление.Поскольку он зависит от температуры, его можно использовать для расчета сопротивления провода заданной геометрии при различных температурах.
Обратное сопротивление называется проводимостью и может быть выражено как:
σ = 1 / ρ (2)
где
σ = проводимость (1 / Ом · м)
Пример — сопротивление алюминиевого провода
Сопротивление алюминиевого кабеля длиной 10 м и площадью поперечного сечения 3 мм 2 можно рассчитать как
R = (2.65 10 -8 Ом м) (10 м) / ((3 мм 2 ) (10 -6 м 2 / мм 2 ))
= 0,09 Ом
Сопротивление
Электрическое сопротивление компонента схемы или устройства определяется как отношение приложенного напряжения к протекающему через него электрическому току:
R = U / I (3)
где
R = сопротивление (Ом)
U = напряжение (В)
I = ток (A)
Закон Ома
Если сопротивление является постоянным более значительным диапазон напряжения, затем закон Ома,
I = U / R (4)
можно использовать для прогнозирования поведения материала.
Удельное сопротивление в зависимости от температуры
Изменение удельного сопротивления в зависимости от температуры можно рассчитать как
dρ = ρ α dt (5)
, где
dρ1591 Ом м 2 / м)
α = температурный коэффициент (1/ o C)
dt41 = изменение температуры ( C)
Пример — изменение удельного сопротивления
Алюминий с удельным сопротивлением 2.65 x 10 -8 Ом · м 2 / м нагревается от 20 o C до 100 o C . Температурный коэффициент для алюминия составляет 3,8 x 10 -3 1/ o C . Изменение удельного сопротивления можно рассчитать как
dρ = (2,65 10 -8 Ом · м 2 / м) (3,8 10 -3 1/ o C) ((100 o C) — (20 o C))
= 0.8 10 -8 Ом м 2 / м
Окончательное удельное сопротивление можно рассчитать как
ρ = (2,65 10 -8 Ом м 2 / м) + (0,8 10 -8 Ом м 2 / м)
= 3,45 10 -8 Ом м 2 / м
Калькулятор зависимости коэффициента удельного сопротивления от температуры
Этот калькулятор может использоваться для расчета удельного сопротивления материала проводника в зависимости оттемпература.
ρ — Коэффициент удельного сопротивления (10 -8 Ом м 2 / м)
α — температурный коэффициент (10 -3 1 / o C)
dt — изменение температуры ( o C)
Сопротивление и температура
Для большинства материалов электрическое сопротивление увеличивается с температурой.Изменение сопротивления можно выразить как
dR / R s = α dT (6)
, где
dR = изменение сопротивления (Ом)
с = стандартное сопротивление согласно справочным таблицам (Ом)
α = температурный коэффициент сопротивления ( o C -1 )
dT = изменение температура от эталонной температуры ( o C, K)
(5) может быть изменена на:
dR = α dT R s (6b)
«Температурный коэффициент сопротивления» — α — материала — это увеличение сопротивления резистора 1 Ом из этого материала при повышении температуры 9 0357 1 или С .
Пример — сопротивление медного провода в жаркую погоду
Медный провод с сопротивлением 0,5 кОм при нормальной рабочей температуре 20 o C в жаркую солнечную погоду нагревается до 80 o C . Температурный коэффициент для меди составляет 4,29 x 10 -3 (1/ o C) , и изменение сопротивления можно рассчитать как
dR = ( 4,29 x 10 -3 1/ o C) ((80 o C) — (20 o C) ) (0.5 кОм)
= 0,13 (кОм)
Результирующее сопротивление для медного провода в жаркую погоду будет
R = (0,5 кОм) + (0,13 кОм)
= 0,63 ( кОм)
= 630 (Ом)
Пример — сопротивление угольного резистора при изменении температуры
Угольный резистор с сопротивлением 1 кОм при температуре 20 o C нагревается до 120 o С .Температурный коэффициент для углерода отрицательный. -4,8 x 10 -4 (1/ o C) — сопротивление уменьшается с повышением температуры.
Изменение сопротивления можно рассчитать как
dR = ( -4,8 x 10 -4 1/ o C) ((120 o C) — (20 o C) ) (1 кОм)
= — 0,048 (кОм)
Результирующее сопротивление резистора будет
R = (1 кОм) — (0.048 кОм)
= 0,952 (кОм)
= 952 (Ом)
Калькулятор зависимости сопротивления от температуры
Этот счетчик можно использовать для расчета сопротивления проводника в зависимости от температуры.
R s — сопротивление (10 3 (Ом)
α — температурный коэффициент (10 -3 C) 1/ o
dt — изменение температуры ( o C)
Температурные поправочные коэффициенты для сопротивления проводника
Температура проводника (° C) Коэффициент | Обратно в преобразовать из 20 ° C | |
---|---|---|
5 | 1.064 | 0,940 |
6 | 1,059 | 0,944 |
7 | 1,055 | 0,948 |
8 | 1,050 | 0,952 |
9 | 1,046 | 0,956 |
10 | 1,042 | 0,960 |
11 | 1,037 | 0,964 |
12 | 1,033 | 0.968 |
13 | 1.029 | 0.972 |
14 | 1.025 | 0.976 |
15 | 1.020 | 0.980 |
16 | 1.016 | 0.984 | 1,012 | 0,988 |
18 | 1,008 | 0,992 |
19 | 1,004 | 0,996 |
20 | 1.000 | 1.000 |
21 | 0.996 | 1.004 |
22 | 0.992 | 1.008 |
23 | 0.988 | 1.012 |
24 | 0.984 | 1.0 |
25 | 0,980 | 1,020 |
26 | 0,977 | 1,024 |
27 | 0,973 | 1.028 |
28 | 0,969 | 1.032 |
29 | 0,965 | 1.036 |
30 | 0,962 | 1.040 |
31 | 0.958 | 1.044 | 0,954 | 1,048 |
33 | 0,951 | 1,052 |
Коэффициент теплопередачи повторно используемых бетонных кирпичей в сочетании со стеной из изоляционной плиты EPS
Для проверки их коэффициентов теплопередачи были проведены четыре образца тектонических форм .Путем анализа и сравнения тестовых значений и теоретических значений коэффициента теплопередачи был предложен метод расчета скорректированного значения для определения коэффициента теплопередачи; Предложенный метод оказался достаточно правильным. Результаты показали, что коэффициент теплопередачи кирпичной стены из переработанного бетона выше, чем у стены из глиняного кирпича, коэффициент теплопередачи кирпичной стены из переработанного бетона может быть эффективно снижен в сочетании с изоляционной панелью из пенополистирола, а тип теплоизоляции сэндвич был лучше. чем у типа внешней теплоизоляции.
1. Введение
По мере того, как урбанизация постепенно расширяется, также увеличиваются быстрые темпы строительства зданий и выдающиеся достижения в области энергосбережения [1]. Энергосбережение играет важную роль в национальных энергетических стратегиях, снижая значительную нагрузку на ресурсы и окружающую среду [2, 3]. В элементах частокола здания площадь внешней стены занимает большую долю по сравнению с крышей здания, дверями, окнами и т. Д. [4, 5].Тепловая консервация наружных стен является ключом к достижению энергоэффективности в зданиях [5, 6]. Наружные стены различаются в зависимости от строительных материалов, типов конструкций и условий окружающей среды. Глиняный кирпич, широко используемый во многих существующих зданиях, привел к огромным разрушениям земельных ресурсов. Производственный процесс с использованием высокотемпературных печей также привел к увеличению выбросов парниковых газов. Таким образом, возникла растущая потребность в исследованиях строительных материалов для зеленых стен и их термоконсервации и теплоизоляционных характеристик.Переработанный бетонный кирпич, изготовленный из измельченных отходов бетона, широко используется в кирпичных конструкциях в качестве экологически чистых строительных материалов. Было проведено множество исследований его механических свойств, но лишь несколько измерений его теплоизоляционных свойств [7]. Кроме того, наиболее распространенным типом теплоизоляции было добавление теплосохраняющих материалов на внешней стороне внешней стены, с самым большим ограничением, заключающимся в более коротком сроке службы [8, 9]. Вспениваемый полистирол (EPS), используемый для теплоизоляции, продемонстрировал очевидные свойства сохранения тепла и теплоизоляции.Тем не менее, различные материалы для наружных стен с различными формами структурных типов для сохранения тепла из пенополистирола, независимо от того, сильно ли отличаются вариации их теплоизоляционных свойств, традиционно не были в центре внимания в контексте сохранения тепла стен и энергосбережения.
Коэффициент теплопередачи () обычно использовался в качестве показателя для измерения термоконсервации и теплоизоляции стен корпуса и в основном определялся коэффициентом теплопроводности () материалов.Считается, что тепловая и влажная среда влияет на эффективность теплопередачи стенок корпуса [10–12]. Коэффициент теплопроводности изменялся в зависимости от температуры и влажности воздуха, что приводило к отклонению между фактическим и теоретическим значением. Однако во многих исследованиях предполагалось, что рабочие характеристики материалов не изменятся или коэффициент теплопроводности () материалов выражен как постоянный. Поэтому существует растущая потребность в изучении скорректированного коэффициента теплопроводности материала в различных средах и его расширенном применении в энергосберегающих конструкциях.
Кирпичи из вторичного бетона обладают все большим потенциалом развития и использования. Его различная комбинация с изоляционной панелью EPS обеспечивает как экологическую защиту окружающей среды, так и энергосбережение. Понимание характеристик теплопередачи вторичного бетонного кирпича в сочетании с изоляционной плитой из пенополистирола становится все более необходимым для количественной оценки их вклада в энергосбережение.
Целями данного исследования было испытание коэффициента теплопередачи () кирпичной стены из вторичного бетона, прямое сравнение теплового поведения различных строительных решений стен и предложение скорректированного метода расчета коэффициента теплопередачи при оптимизации энергопотребления здания. .
2. Тест коэффициента теплопередачи
В настоящее время не существует официального стандарта для методов испытаний, которые непосредственно касаются динамических характеристик стен: основные справочные нормы [13] включают измерение стационарных характеристик одинарных материалов и многослойных конструкций. при стандартных граничных условиях. В этом исследовании был проведен экспериментальный анализ климатической камеры для сравнения влияния коэффициента теплопередачи элементов оболочки, которые характеризуются эквивалентными характеристиками в установившемся режиме.
2.1. Типы стен и свойства материалов
В этом исследовании были изготовлены четыре различных образца для количественной оценки их тепловых характеристик. Четыре образца, которые были отобраны среди типологий стен, подробно описаны на Рисунке 1 и в Таблице 1.
SJ0 стена из глиняного кирпича; SJ1 была переработана бетонная кирпичная стена; SJ2 добавлен односторонний шаблон EPS на базе SJ1; SJ3 был добавлен в шаблон EPS в середине SJ1. |
2.2. Устройство для испытанийВ соответствии со стандартами и исследованиями, относящимися к этому типу испытаний [14, 15], в экспериментальном исследовании использовалось устройство для измерения стационарной теплопередачи (CD-WTFl515, Шэньян, Китай).Условия теплопередачи тестируемой оболочки здания моделируются на основе стандарта GB / T 13475-2008 и однонаправленного устойчивого принципа теплопередачи для измерения и анализа коэффициента теплопередачи. Климатическая установка с контролем окружающей среды состоит из двух камер с кондиционированием воздуха, в которых температура регулируется с помощью термостойких проводов и систем охлаждения (рисунки 2 и 3). Одна камера используется для создания микроклимата на открытом воздухе. Температура дозирующего резервуара установлена на -10 ° C (при допустимом перепаде температур ± 0.2 ° С). Другая камера имитирует внутреннюю среду, в которой температура установлена на 35 ° C (с допустимой разностью температур ± 0,1 ° C). Образцы были изготовлены в соответствии с предусмотренными размерами испытательного оборудования. Размеры установки и образцов составляют 2600 × 2160 × 2140 мм в высоту и 1500 × (≤400) × 1500 мм соответственно (рисунок 4). После 28 дней естественной сушки в испытательном устройстве поверхность раздела между образцами и испытательным устройством была герметизирована пенополиуретаном. Все образцы были испытаны в Пекинском центре испытаний строительных материалов. Перед обработкой образцов стен в аппарате сначала была проведена калибровка установки. Образцы стен внутри и снаружи должны соответствовать горячей и холодной камерам соответственно. Для каждого образца были измерены шесть групп данных связанных параметров окружающей среды, таких как температура горячего поля () и холодного поля (), влажность горячего поля () и холодного поля (), а также общая входная мощность (). уменьшить погрешность измерения.С каждой стороны образцов симметрично подключалось по девять датчиков температуры. Допустимый перепад температуры поверхности образца составлял ± 0,5 ° C, с интервалом сбора данных 10 мин. Измерения проводились в соответствии с настройками параметров в соответствии с положениями стандарта GB / T 13475-2008. Когда допустимый перепад температур был в пределах диапазона значений после трех часов непрерывного климат-контроля, испытания были прекращены. 3. Модель расчета коэффициента теплопередачиТеплопередача через стену проходила в трех фазах: теплообмен внутренней поверхности; теплопроводность внутренней стены; теплообмен внешней поверхности.Методы расчета теплообмена на каждом этапе различны [17], с точки зрения решения процесса уравнения Фурье с помощью метода испытаний и метода теории, граничных условий. 3.1. Принципы расчета контрольных значенийПринцип испытания устройства для испытания теплопередачи в установившемся режиме (CD-WTFl515, Шэньян, Китай) основан на одномерной установившейся теплопередаче. Образцы были помещены между двумя различными температурными полями, чтобы моделировать теплопередачу стен в реальных условиях.По обе стороны от образца температура поверхности и температура воздуха измерялись датчиками температуры. Также были измерены поверхностные температуры с обеих сторон направляющей пластины. Были проверены внутренняя и внешняя температура поверхности измерительной коробки и входная мощность. По измеренным данным можно рассчитать коэффициент теплоотдачи стенок образцов [13], учтите, где — тепловой поток через стенку измерительной коробки (Вт · м −2 ), — коэффициент теплопередачи измерительной стенки (Вт м −2 K −1 ), является температурой внутренней поверхности измерительной камеры (K), и является температурой внешней поверхности измерительной камеры (K). Тогда коэффициент теплопередачи конструкции ограждения можно рассчитать по следующей формуле: где — общая потребляемая мощность (Вт · м -2 ), — расчетная площадь измерения, — температура горячего поля (K), и — температура холодного поля (К). 3.2. Теоретическая расчетная модельВ условиях установившейся теплопередачи, когда весь процесс теплопередачи не изменяет общее количество тепла, закон Фурье может быть выражен как где — теплопередача плотности теплового потока конструкции, — теплота Коэффициент передачи оболочки здания (Вт · м -2 K -1 ) — это сопротивление теплопередаче внутренней поверхности, равное 0.11 м 2 K Вт −1 , сопротивление теплопередаче внешней поверхности, которое составляет 0,04 м 2 K Вт −1 , сопротивление теплопередаче каждого материала (м 2 K W -1 ), представляет собой сопротивление теплопередаче оболочки здания, представляет собой толщину материалов (м) и представляет собой коэффициент теплопроводности каждого материала (Вт м -1 K -1 ). 3.3. Модель расчета скорректированного значенияКоэффициент теплопроводности материала является постоянной величиной в существующих теоретических расчетах и численных расчетах, приведенных в литературе, без учета коэффициента теплопроводности материала при изменении температуры и влажности.Мы должны исследовать расчет истинного значения коэффициента теплопередачи и применить его к теоретическому расчету. 3.3.1. Расчет коэффициента теплопроводности в реальных условиях эксплуатацииМеханизм теплопередачи строительных материалов стен аналогичен жидкостному, который основан на упругих волнах. Теплопроводность увеличивалась с увеличением температуры, а также на нее влияла влажность. Общее уравнение в случае реальных рабочих условий обычно выражается следующим образом: где — испытательное значение теплопроводности материала, — изменение теплопроводности, вызванное температурой, — изменение теплопроводности, вызванное влажностью веса, и — изменение теплопроводности. пробужденный от холода. Были рассчитаны материалы, вызванные перепадом температуры, весом, влажностью и замерзанием, соответственно. Затем материалы были рассчитаны в рабочей среде на влияние теплопроводности на температуру и влажность. Модель, используемая для описания влияния температуры и влажности на коэффициент теплопроводности неорганических связующих материалов, была [18] Термическая эффективность — автоклавный газобетон Aercon AACЧтобы сравнить внешнюю стену AERCON с традиционными методами возведения стен (каркас из деревянных каркасов и бетонная кладка), Центр солнечной энергии Флориды определил эквивалентные значения R для стены AERCON.Данные о погоде для Орландо, Флорида, разработанные в базе данных «Типичный метеорологический год» (TMY 1981), послужили основой для определения внешних условий. Чтобы отделить эффект ориентации стенок, предполагалось, что на внешних поверхностях стен будет присутствовать только диффузное излучение. Исследование включало расчеты для шести условий: средние зимние и летние дни, зимние и летние пиковые дни, а также сезоны охлаждения и нагрева. В исследовании сравнивалась стена AERCON толщиной 8 дюймов как с традиционной деревянной каркасной стеной, так и с блочной стеной CMU.Типичные исследованные сечения стенок показаны на рисунке A. Расчетные статические значения R и U без учета теплового массового воздействия показаны в таблице 1. Результаты исследования, которые включают тепловые массовые эффекты, показаны в Таблице 2. Они представляют собой значение изоляции, которое необходимо добавить либо к деревянной каркасной стене, либо к блочной стене CMU для достижения эквивалентной тепловой системы. Например, в обычный летний день 8-дюймовая стена AERCON работает как стена с деревянным каркасом, утепленная R-20.4 изоляция из стекловолокна или 8-дюймовая стена из блока CMU, изолированная жесткой изоляцией R-8.6. Это означает, что необходимо добавить почти 6 дюймов ватной изоляции к стене деревянного каркаса и более 2 дюймов жесткой полистирольной изоляции к стене блока CMU, чтобы сравняться с характеристиками стены AERCON, как показано на рисунке B! Следует отметить, что одно из упрощающих предположений, сделанных для этого исследования, заключалось в том, что на внешних поверхностях стен будет присутствовать только диффузное излучение, т.е.е. на стены не попадал прямой солнечный свет. Если бы исследование было расширено и включило эффекты прямого излучения, результаты показали бы, что стена AERCON будет работать даже лучше!
. |