Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Характеристики газобетонных блоков таблица: Лучший газобетон — сравнение технических характеристик и производителей

Содержание

Лучший газобетон — сравнение технических характеристик и производителей

Выбор газобетона зависит от того, какое строение вы планируете возводить. Рассмотрим основные свойства, на которые стоит обратить внимание.

Технические свойства газобетонных блоков в зависимости от марки


  • Марка — это показатель, который говорит о прочности газобетонного блока на сжатие. О чем нам говорит этот параметр?

  • Прочность — чем выше этот показатель, тем прочнее блок, однако это означает, что он и холоднее. Номер марки означает его плотность, то есть блок D400 соответствует плотности 400 кг/ м3

  • Огнестойкость  — все газосиликатные блоки обладают высокими показателями пожаробезопасности и могут выдерживать воздействие огня более, чем 1 час

  • Теплопроводность — чем ниже марка блока, тем выше его теплоизоляционные свойства

Сравнительная таблица характеристик газобетона в зависимости от марки









Марка

D300

D400

D500

D600

Плотность, кг/м3

300

400

500

600

Класс прочности на сжатие

В1,0

В1,5

В2

В2,5

В2,5

В3,5

Коэффициент теплопроводности в сухом состоянии

0,07

0,1

0,12

0,14

Усадка при высыхании, мм/м

0,3

0,3

0,3

0,3

Марка морозостойкости

F 35

F 50

F 50

F 50

Коэффициент паропроницаемости, мг/м*ч*Па

0,26

0,23

0,2

0,16

Рекомендации по выбору лучшего газобетона.

На что обратить внимание?


  • Выбирая между автоклавным и не автоклавным газобетоном лучше отдать предпочтение в пользу первого, потому что он более прочный

  • Качественный блок имеет правильную форму, его поверхность должна быть гладкой, без сколов

  • Цвет газобетона должен быть однородный, светло-серого оттенка, без разводов

  • Недопустимо наличие трещин и маслянистых пятен на поверхности блокам

  • Блок при транспортировке должны быть тщательно упакованы и сопровождаться соответствующей документацией и сертификатами
  • Какого производителя выбрать

    На сегодняшний день на рынке газобетонные блоки представлены такими производителями как:


    Ингредиенты, входящие в состав газосиликатный блоков, одинаковые, однако они могут отличаться по качеству, так же важную роль играет оборудование, на котором производятся блоки. Поэтому газобетон различных брендов может обладать разными характеристиками.

    Сравнительная таблица характеристик газобетона в зависимости от производителя







    Бренд

    Отклонение по ширине,мм

    Отклонение по высоте,мм

    Теплопроводность, ВТ/мС

    Морозостойкость, F

    Паропроницаемость, мг/(м*ч*Па)

    Прочность на сжатие, Мпа

    Класс прочности, В

    Средняя плотность, кг/м3

    Bonolit

    3

    0,8

    0,1

    100

    0,21

    3,58

    2,5

    494

    Thermocube

    2

    2

    0,13

    100

    0,2

    5

    3,5

    457

    YTONG

    0,3

    0,2

    0,1

    100

    0,21

    4,8

    3,5

    508

    Костромской силикатный завод

    2

    2

    0,12-0,14

    100

    0,21

    5

    3,5

    457

    При выборе газобетона обязательно ознакомьтесь с сертификатами качества на данную продукцию и никогда не покупайте блоки у непроверенных производителей!

    Строительство дома из газобетона

    Как выбрать газобетон в зависимости от этажности здания? Производители газосиликатных блоков для России рекомендуют возведение строений высотой до 3-х этажей. Прочность газобетона обозначается буквой «В» (важно не путать с показателем «Плотность»). На качество и показатель прочности может влиять различие в производственном процессе.







    Прочность

    1 этаж

    2 этажа с плитами перекрытия

    2 этажа с монолитными перекрытиями

    3 этажа с плитами перекрытия

    3 этажа с плитами перекрытия

    В 2,0

    Соответствует

    Не рекомендуется

    Крайне не рекомендуется

    Крайне не рекомендуется

    Крайне не рекомендуется

    В 2,5

    Соответствует с запасом

    Соответствует

    Не рекомендуется

    Не рекомендуется

    Не рекомендуется

    В 3,5

    Соответствует с запасом

    Соответствует с запасом

    Соответствует

    Соответствует

    Соответствует

    В 5,0

    Соответствует с запасом

    Соответствует с запасом

    Соответствует с запасом

    Соответствует с запасом

    Соответствует

     

Сравнительная характеристика теплопроводности газобетона.

Выбор толщины блока.

Технические характеристики газобетонных блоков

Отопительный сезон зачастую сопряжён с потерей тепла, которое крадут «холодные» стены не из газобетона UDK :-). А потому целесообразно строить или утеплять частный коттедж с использованием пористого материала. Газобетон различают по его плотности, которая измеряется в кг/м3. В зависимости от марки блока, его используют в различных целях: теплоизоляционных — в роли утеплителя, для постройки не высоких зданий, для строительства несущих конструкций высотных зданий.

Маркировка D400 обозначает, что в 1м3 пористого материала находится 400 кг. твёрдых частиц, занимающих 1/3 всей массы блока. Воздушные массы в ячейках являются естественной теплоизоляцией, не позволяющей внутреннему теплу из помещения проникать сквозь них. А потому, чем менее плотный монолит, тем лучше он сохранит тепло. В отличие от других стройматериалов, газобетонные блоки обладают более низкими показаниями теплопроводности. В этом можно убедиться взглянув на данную сравнительную таблицу и наглядные графики.

с Материал Теплопроводность, Вт/м °C
Показатели плотности, кг/м3
D400 D500
Газобетон при уровне влажности 0% 0,096 0,112
5% 0,117 0,147
Пенобетон при уровне влажности 0% 0,102 0,131
5% 0,131 0,161
Древесина, при уровне влажности 0% 0,116 0,146
5% 0,181 0,187

Структура пеноблоков похожа на газобетон, но при этом в пеноблоках замкнутые ячейки и высокие показатели плотности. Геометрия пеноблоков не точна и не совершенна, а потому в роли теплоизоляционного материала намного выгоднее использовать именно газобетон.

Древесина, хоть и является экологически чистым материалом, но когда речь заходит о её качественных теплоизоляционных свойствах, то она значительно проигрывает газобетону, так как не способна в должной мере сохранить тепло.

Однако отметим, что ячеистый блок – дышащий, огнеупорный материал, который отлично справляется со всеми поставленными перед ним задачами. Используя его в строительстве, важно сделать ограждение фундамента и цоколя здания от влаги. Потому как пористая структура может её тянуть в себя. С этой целью применяется рубероид и битум.

Характеристики теплопроводности кирпича и газобетонных блоков

Кирпич — классический вариант стройматериала, используемый для строительства дачных домиков и частных коттеджей. Он морозоустойчив, долговечен и обладает высокой плотностью. Но в отличие от газобетонных блоков, кирпичная стена возводится многослойной. Для того, чтобы дополнительно проложить утепляющие материалы между наружными и внутренними кладками.
 

Материал Показатели средней теплопроводности, Вт/м ° C
Газоблок 0,08-0,14
Керамические кирпичи 0,36-0,42
Красные глиняные кирпичи 0,57
Силикатные кирпичи 0,71

Выбор толщины блока

Толщина стен влияет на их теплоизоляционные свойства. Чем они толще, тем дольше будет сохранятся комфортная атмосфера внутри жилища.В процессе проектирования ширины ограждений, необходимо учитывать «мостики холода» (толщина цемента для укладки). Блоки монтируют при помощи пазового замка и клеевого раствора. Данный способ гарантирует сохранность тепла, сводя его потери до минимальных значений. Чтобы не платить больше, важно знать некоторые показатели, которыми обладают сборные конструкции стандартной толщины.

Материал Показатели толщины наружных стен, см
12 см 20 см 24 см 30 см 40 см
Показатели теплопроводности, Вт/м ° C
Белые кирпичи 7,51 4,52 3,75 3,12 2,25
Красные кирпичи 6,75 4,05 3,37 2,71 2,02
Газобетонный блок D400 0,82 0,51 0,41 0,32 0,25

Наилучшими качественными характеристиками на сегодняшний день обладают газобетон ЮДК которые производятся в городе Днепр (Украина). Шесть лет назад (в 2012 г.) завод UDK создал газобетон D400 с показателем прочности — 35 кг/см2. Данные свойства стройматериала позволили значительно сократить глубину наружных стен, что в свою очередь повлияло на себестоимость стройки.

За счёт того, что геометрия блоков ЮДК чёткая и точная, их можно класть на ультратонкий слой клея UDK TBM, благодаря чему в итоге не образуется «мостиков холода». К тому же, за счёт низкого коэффициента теплопотери, наружным стенам не потребуется дополнительное утепление. А высокий уровень прочности газобетона позволяет возводить здания до 5 этажей. При этом не используя монолитный каркас. Срок службы газоблока ЮДК около 100 лет.

Выбор толщины стены из газобетонных блоков ЮДК

Стена Размер блока
Наружная стена: D400, D500; В2,5-В2,0;
25-35 кг/см2; 400-500 мм.
Несущая
Не несущая
Жилой дом до 4 этажей, где проживают круглый год
Перегородка: D400, D500; В2,5-В2,0;
25-35 кг/см2; 200-500 мм.
Несущая при условии устройства монолитного пояса
Перегородка:

D500; В2,5;
35 кг/см2; 100-150 мм.

Не несущая

Выбор толщины стен необходимо делать с учётом вида постройки. Для постройки жилого дома у застройщиков пользуется популярностью толщина стены в один слой — 300-400 мм (иногда 500 мм). Ведь однослойные стены – всегда на порядок дешевле, нежели «сэндвичи». Классический стандартный газоблок имеет такие параметры: плотность — D300, D400; прочность В2,0,В2,5. Такой блок подходит для строительства одно- и двухэтажных зданий.

Для загородного дачного домика, куда хозяин наведывается лишь в тёплое время года, а зимой не требуется поддержание в помещении тепла, блока глубиной в 200 мм более чем достаточно. Такие стены прогреются очень быстро, а значит потребуется меньше энергоресурсов.

Для хозяйственных построек, а также гаража, толщину стен необходимо выбирать с учётом частоты нахождения в них. Там должно быть уютно и комфортно. Чтобы влажность и температурный режим были в норме для нужд хозяина помещения, в любое время года.

Определится с толщиной стены из газобетонных блоков, инвестор может исходя из нескольких нюансов. Во-первых, это стоимость газобетона. А она очень выгодная с учётом всех требований. Во-вторых, это типовой проект. Обычно в него закладывают средний показатель толщины стены с указанием температурной зоны и требования к коэффициенту сопротивления теплопередачи, как указано на рисунке ниже.

Для южной части Украины стена может быть более тонкой, нежели в северном регионе страны. Чем тоньше стена – тем большая жилая площадь выйдет в итоге. Естественно, толстые стены крадут жилые метры. Но, при злоупотреблении правилами грамотной стройки, можно существенно потерять на отоплении в зимний период и охлаждении в летний сезон. Ведь сквозь «холодные» стены тепло будет утекать с большой скоростью, а летом наоборот станет невыносимо жарко. К тому же, суммы за отопление и охлаждение помещения дополнительными средствами, увеличатся в разы.

Решение строить здание с толстыми стенами, это опять же не выгодно, ведь необходимо будет потратиться на дополнительный фундамент. Альтернативный и разумный выбор – стены из газобетона. Удовлетворяющие как потребителя, так и застройщика тем, что не дорого стоят и надёжно сохраняют тепло, при этом не мешая помещению «дышать».

На сегодняшний день газобетон ЮДК является оптимальным выбором стройматериала. Долговечный (70-100 лет), надёжный, обладающий низкой теплопроводностью и безупречной геометрией блоков – он находится на пике своей популярности. Благодаря его не высокому объёмному весу идёт меньшая нагрузка на фундамент. Лучше ложатся отделочные материалы и не требуется больших трудозатрат. А разнообразный выбор газобетонных блоков, отличающихся по толщине, прочности и назначению — способен удовлетворить требования большинства застройщиков.

Основные нормируемые характеристики газобетона

Прочность автоклавного и неавтоклавного газобетонов характеризуют классами по прочности на сжатие, определяемыми по ГОСТ 10180, ГОСТ Р53231.

Для газобетонов установлены ГОСТ 31359 следующие классы: В0,35; В0,5; В0,75; В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20.

Плотность газобетона нормируется марками по плотности D(Д), определяемыми по ГОСТ 27005. По показателями средней плотности назначают следующие марки газобетонов: D200; D250, D300, D350, D400, D450, D500, D600, D700, D800, D900, D1000, D1100, D1200.

Стабильность показателей газобетонов по плотности и прочности на сжатие характеризуется коэффициентами вариации, которые определяются в соответствии с требованиями СН 277, ГОСТ 27005 и ГОСТ Р53231. Средние значения коэффициентов вариации газобетонов не должны превышать: по плотности 5%; по прочности на сжатие – 15%.

Для учета российского зимнего фактора назначают и контролируют следующие марки газобетона по морозостойкости в циклах замораживания-оттаивания после водонасыщения: F15; F25; F35; F50; F75; F100, определяемые по ГОСТ 25485 или ГОСТ 31359.

Назначение марки газобетона по морозостойкости проводят в зависимости от режима эксплуатации конструкции и климатического района.

Показатели классов по прочности на сжатие и марок по морозостойкости в зависимости от марок по плотности приведены в таблице 3.2.

Нормативные сопротивления газобетонов сжатию, растяжению и срезу приведены в таблице 3.3, расчетные сопротивления – в таблице 3.4.

Значения начального модуля упругости Еb при сжатии и растяжении для газобетонов с влажностью 10±2% (по массе) принимаются по таблице 3.5.

При соответствующем экспериментально обосновании допускается учитывать влияние не только класса газобетона про прочности и его марки по плотности, но и состава и вида вяжущего, а также условий изготовления и твердения газобетона, при этом допускается принимать другие значения Еb.

Коэффициент линейной температурной деформации газобетонов аbtпри изменениях температуры от минус 90оС до плюс 50оС установлен равным  аbt =8,0*10-5оС-1.

При наличии данных о минералогическом составе цемента и заполнителей, рецептуре смеси, влажности газобетона и т. д. разрешается принимать другие значения  аbt, обоснованные экспериментально.

Начальный коэффициент поперечной деформации газобетонов (коэффициент Пуассона) V принимается равным 0,2, а модуль сдвига газобетонов G – равным 0,4 соответствующих значений  Еb, указанных в таблице 3.5.

Усадка при высыхании газобетонов, определяемая по ГОСТ 25484 (приложение 2), не должна превышать 0,5 мм/м.

Коэффициенты теплопроводности и паропроницаемости газобетонов приведены в таблице 3.6.

Отпускная влажность изделий и конструкций не должна превышать (% по массе):

·         25 – для газобетонов, изготовленных на основе песка;

·         30 – для газобетонов, изготовленных на основе сланцевой золы;

·         35  — для газобетонов, изготовленных на основе кислой золы-уноса теплоэлектростанций.

Показатели таблицы 4.7 для конструкций конкретного производства и режима эксплуатации могут быть уточнены в экспериментальном порядке на основе натурных испытаний с 90%-ной обеспеченностью (приложение В).

 

Таблица 3.2 – Показатели классов по прочности и марок по морозостойкости для разных марок ячеистых бетонов по плотности.

Вид бетона

Марка бетона по средней плотности

Бетон автоклавный

Класс по прочности

на сжатие

Марка по морозостойкости

Теплоизоляционный

D200

В0,35; В0,5

D250

В0,5; В0,75

D300

В0,75; В1

D350

В1; В1,5; В2; В2,5

Конструкционно-теплоизоляционный

D400

В1; В1,5; В2

F25

D500

В1,5; В2; В2,5

F25, F35

D600

В2; В2,5; В3,5

F25, F35, F50, F75

Конструкционный

D700

В2,5; В3,5; В5

F25, F35, F50, F75, F100

D800

В3,5; В5; В7,5

D900

В3,5; В5; В7,5; В10

D1000

В7,5; В10; В12,5

D1100

В10; В12,5; В15

D1200

В15; В17,5; В20

 

Таблица 3. 3 –Нормативные сопротивления газобетона сжатию, растяжению и срезу.

 

Показатели

Нормативные сопротивления ячеистого бетона сжатию Rbn, растяжению Rbtn и срезу Rshn; расчетные сопротивления для предельных состояний второй группы Rb,ser, Rbt,ser и Rsh,ser при классе бетона по прочности на сжатие

Класс бетона по прочности на сжатие

В1

В1,5

В2,0

В2,5

В3,5

В5

В7,5

В10

В12,5

В15

В20

Сопротивлению осевому сжатию (призменная прочность ) Rbnи Rb,ser

0,95

9,69

1,40

14,3

1,90

19,4

2,4

24,5

3,3

33,7

4,60

46,9

6,9

70,4

9,0

91,8

10,5

107

11,5

117

16,8

168,3

Сопротивление бетонов растяжению Rbtn и Rbt,ser

0,14

1,43

0,22

2,24

0,26

2,65

0,31

3,16

0,41

4,18

0,55

5,61

0,63

6,42

0,89

9,08

1,0

10,2

1,05

10,7

1,1

11,2

Сопротивление бетонов срезу Rshn, Rsh,ser

0,2

2,06

0,32

3,26

0,38

3,82

0,46

4,56

0,6

6,03

0,81

8,08

0,93

9,26

1,31

13,09

1,47

14,7

1,54

15,44

1,6

16,2

Примечания

1 Сверху указаны сопротивления в МПа, снизу – в кгс/см2

2 Величины нормативных сопротивлений ячеистых бетонов даны для состояния средней влажности ячеистого бетона 10% (по массе)

 

Таблица 3. 4 – Расчетные сопротивления газобетона сжатию, растяжению и срезу

 

Показатели

Расчетные сопротивления ячеистого бетона для предельных состояний первой группы Rb, Rbt и Rsh  при классе бетона по прочности на сжатие

Класс бетона по прочности на сжатие

В1

В1,5

В2,0

В2,5

В3,5

В5

В7,5

В10

В12,5

В15

В20

Сопротивлению осевому сжатию (призменная прочность) Rb

0,63

6,42

0,95

9,69

1,3

13,3

1,6

16,3

2,2

22,4

3,1

31,6

4,6

46,9

6,0

61,2

7,0

71,4

7,7

78,5

11,6

116,0

Сопротивление бетонов растяжению Rbt

0,06

0,612

0,09

0,918

0,12

1,22

0,14

1,43

0,18

1,84

0,24

2,45

0,28

2,86

0,39

4,0

0,44

4,49

0,46

4,69

0,70

8,02

Сопротивление бетонов срезу Rsh

0,09

0,90

0,14

1,42

0,17

1,66

0,20

1,98

0,26

2,62

0,35

3,51

0,40

4,03

0,57

5,69

0,64

6,39

0,67

6,71

0,70

7,04

Примечания

1 Сверху указаны сопротивления в МПа, снизу – в кгс/см2

2 Величины нормативных сопротивлений ячеистых бетонов даны для состояния средней влажности ячеистого бетона 10% (по массе)

 

Таблица 3. 5 – Начальные модули упругости автоклавного газобетона при сжатии

 

Марка по средней плотности

Начальные модули упругости автоклавного ячеистого бетона при сжатии и растяжении Eb при классе бетона по прочности на сжатие

В1

В1,5

В2,0

В2,5

В3,5

В5

В7,5

В10

В12,5

В15

D400

075

7,65

1

10,2

1,25

12,7

1,7

17,3

 

 

 

 

 

 

D500

 

1,4

14,3

1,7

17,3

1,8

18,4

 

 

 

 

 

 

D600

 

 

1,8

18,4

2,1

21,4

 

 

 

 

 

 

D700

 

 

 

2,5

25,5

2,9

29,6

 

 

 

 

 

D800

 

 

 

 

3,4

34,7

4,0

40,8

 

 

 

 

D900

 

 

 

 

3,8

38,8

4,5

45,9

5,5

56,1

 

 

 

D1000

 

 

 

 

 

 

6,0

61,2

7,0

71,4

 

 

D1100

 

 

 

 

 

 

 

7,9

80,6

8,3

84,6

8,6

87,7

D1200

 

 

 

 

 

 

 

 

 

9,3

94,6

 

Таблицы 3. 6 – Коэффициенты теплопроводности и паропроницаемости автоклавного газобетона

 

Вид бетона

Марка бетона по средней плотности

Коэффициент теплопроводности бетона в сухом состоянии λо, Вт/(м*оС)

Коэффициент паропроницаемости бетона µ, мг/(м*ч*Па), не менее

Расчетные коэффициенты теплопроводности  λ, Вт/(м*оС) для w=4%

Расчетные коэффициенты теплопроводности  λ, Вт/(м*оС) для w=5%

Теплоизоляцион-ный

D200

D250

D300

D350

0.048

0.06

0. 072

0.084

0.3

0.28

0.26

0.25

0.056

0.070

0.084

0.099

0.059

0.073

0.088

0.103

Конструкционно-изоляционный

D400

D450

D500

D600

D700

D800

0.096

0.108

0.12

0.14

0.17

0.19

0.23

0.21

0.20

0.16

0.15

0.14

0. 113

0.127

0.141

0.17

0.199

0.223

0.117

0.132

0.147

0.183

0.208

0.232

Конструкционный

D900

D1000

D1100

D1200

0.22

0.24

0.26

0.28

0.12

0.11

0.10

0.09

0.258

0.282

0.305

0.329

0.269

0.293

0.318

0.342

 

 Вернуться к оглавлению.                                                                              Читать дальше

таблица, сколько в одном квадратном метре

Чтобы правильно распределить отведённый на строительство газоблочного дома бюджет, необходима смета. В ней будет определена потребность объекта в тех или иных видах строительных материалов, в том числе и кладочных. Исчисляется объем кладки кубатурой. Имея такие данные, и зная, сколько газоблоков в 1 кубе, можно легко рассчитать их общее количество.

Набирающий сегодня популярность газобетон – материал не новый. Его история началась без малого сто лет назад, когда шведский изобретатель Эриксон предложил смесь тонкоизмельчённого кремнезёма, извести и цемента обогатить воздухом за счёт реакции с алюминиевым порошком. Уже тогда в основу была положена тепловлажностная обработка, которую сегодня называют синтезной или автоклавной.

  • За прошедшее время производились разные эксперименты, касающиеся состава смеси. Одна из старейших компаний по производству газобетона — Итонг, на заре своей деятельности (в 1929 году) начинала производить блоки на основе извести без цемента, и на портландцементе без извести. Тогда же были построены и первые газобетонные дома, которые эксплуатируются и в настоящее время.
  • В современном газобетоне присутствует и известь, и цемент, однако их процентное содержание может быть разным. Если извести больше (до 75% от общей массы бетона), то это газосиликат. Если цемента до 50%, а извести всего 20-25 %, то это газобетон. В целом, пропорции выверяются опытным путём, и у каждого производителя они свои. От количества основного ингредиента зависит цвет готовых изделий. Если цемента больше, они серые, если больше извести – белые.
  • Существует два типа газоблоков, которые отличаются по условиям твердения: неавтоклавные набирают прочность в естественных условиях, синтезные твердеют в автоклавах. Цементные блоки могут изготавливаться как первым, так и вторым способом. Для известковых требуется только автоклавная обработка, поэтому на контрафактный газосиликат, в отличие от газоблока, на рынке стройматериалов не нарвёшься.
  • Что отличает эти блоки, кроме цвета? При одинаковой плотности у газосиликата выше прочность, меньше удельный вес и лучше теплоизоляционные свойства. Но за счёт большего количества пор он сильнее поглощает влагу, что необходимо принимать во внимание при строительстве.
  • Повышенная прочность твердеющего в автоклаве газосиликатного камня, обусловлена преобразованием извести в гидросиликат кальция. То есть, бетон с пониженной плотностью, который в обычных условиях может быть только теплоизоляционным, после обработки горячим паром становится конструкционно-теплоизоляционным, и может уже применяться для возведения несущих стен в малоэтажных зданиях.
  • Время обработки в автоклаве, да и процентное содержание компонентов бетонной смеси, придают изделиям неодинаковые характеристики. Поэтому у одного производителя газоблок D500 имеет класс прочности на сжатие всего лишь В1,5, а у другого В2,5 и даже В3,5. Соответственно, отличается и цена.
  • Выбирая газоблоки для стройки, сравнивайте изделия по классу прочности, который прописывается в паспорте на партию. Смотрите так же на дату изготовления: если она не превышает 4 недели, как минимум, дайте блокам отлежаться на объекте. Если же нужно срочно пускать их в работу, ищите другую партию или другого продавца.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Примечание: Учитывая, что при одинаковой плотности, прочность блоков сильно разнится, выбирать их для постройки дома следует именно по второй характеристике. При прочности В2 блоки можно использовать для строительства одноэтажных зданий с мансардой. Такую характеристику могут иметь и блоки D400, и D500. Если плотность более высокая, а прочность при этом не увеличилась, перед вами, скорее всего, неавтоклавный вариант.

Не существует строительных материалов без недостатков. Есть они и у газобетона, хотя достоинств тоже немало. Вот как в общих чертах можно охарактеризовать данный материал в автоклавном исполнении:








Положительные качества газобетона Недостатки, которые можно нивелировать
Точность размеров. При высокотемпературной обработке бетон твердеет гораздо быстрее, чем при естественном наборе прочности. Соответственно, он не успевает дать усадку и значительно изменить свою геометрическую форму. Согласно ГОСТ, погрешности у блоков допускаются максимум 3 мм по длине, 2 мм по ширине, и 1 мм по высоте. Способность поглощать влагу составляет 25% за сутки, если блок погрузить в воду. Причиной тому множество равномерно распределённых открытых пор. Однако, находясь в кладке, газобетон не подвергается столь агрессивному воздействию влаги. Как минимум, его с двух сторон защищают отделочные материалы.
Воздухопроницаемость стены. Швы для любой кладки являются самым уязвимым местом. Если они где-то плохо заполнены или слишком толстые, кладку будет продувать ветром. В случае с газобетоном, это ещё и мостики холода, так как раствор имеет более высокий коэффициент теплопроводности. Однако благодаря первому преимуществу (точности размеров), возникает и второе – отсутствие необходимости делать толстые швы. При малой толщине они не только не будут продуваться, но и уменьшится расход клея. Высокая паропроницаемость. Эта характеристика сродни влагоёмкости, только характеризует не количество воды, которое блок может вобрать, а количество пара, которое он способен через себя пропустить. Характеризуется коэффициентом, выраженным в мг/м*ч*Па, и зависит от плотности камня.   Важно: Главная защита газобетона от пара – правильная отделка не только изнутри, но и снаружи. Смысл заключается в том, что внутренний отделочный материал должен препятствовать проникновению пара в кладку, а внешний – способствовать его скорейшему выведению.
Теплоизоляционные свойства. Пористость бетонного камня влечёт за собой не только недостатки в виде низкой прочности и гигроскопичности, но и даёт ему огромное преимущество, очень важное для жилищного строительства. Это высокая сопротивляемость передаче тепла, а соответственно, низкий коэффициент теплоизоляции. Благодаря ему газоблочные стены могут иметь небольшую толщину, а в процессе эксплуатации дома минимизируются расходы на его отопление. Подверженность трещинообразованию. Для газобетона это насущная проблема, которую влекут за собой низкие по сравнению с другими бетонами и кирпичом прочностные характеристики. Чтобы избежать подобных последствий, необходимо принимать такие меры:

  1. Фундамент под газобетон делать только монолитный: лента, плита или буронабивные сваи.
  2. В процессе кладки устранять перепады поверхностей соседних газоблоков тёркой.
  3. Армировать все места в кладке, подвергающиеся повышенным нагрузкам: в первом ряду, а затем в каждом четвёртом, под проёмом, под пятами перемычек.
  4. Для опоры перекрытий и элементов кровли устраивать монолитные пояса.
  5. Адгезионную отделку (штукатурка, наклейка плитки) производить с применением стеклосетки.
  6. Предусматривать более плотные блоки при устройстве тяжёлых перекрытий и вентилируемых фасадов.
Экологичность. Как бы ни варьировались компоненты газобетонной смеси в производстве, конечный продукт имеет высокий коэффициент экологичности (второй после древесины). Причиной тому использование только натурального сырья, с минимальными примесями глины, у которой обычно повышен радиационный фон. Морозоустойчивость. Чем меньшую плотность имеет камень, и чем больше он может впитать воды, тем ниже у него коэффициент морозостойкости. По стандарту у газоблоков максимум 35 циклов, но это не значит, что дом простоит столько же лет и не более. Чтобы дом из ячеистого бетона служил долго, его не надо оставлять без наружной отделки, а заложенный под неё утеплитель избавит кладку от перепадов температур. Главное только – не допустить вторичного увлажнения конденсатом, образующимся по причине подбора неправильных вариантов облицовки.
Трудоёмкость и скорость кладочных работ. Низкая плотность камня облегчает процесс его раскроя — а это, в свою очередь, ускоряет процесс работ в целом. Так же сокращению сроков кладки способствует крупный формат блоков.   Возьмём для сравнения кубометр кладки. На его возведение требуется 390 кирпичей. Сколько штук в одном кубе газобетонных блоков, зависит от их размера, но если это 600*300*200мм, понадобится всего 28. Чтобы уложить их, требуется в 3,5 раза меньше времени, чем в случае с кирпичом. Эстетика кладки. К сожалению, в этой номинации газобетон проигрывает не только кирпичу, но и практически всем остальным видам бетонных блоков. Несмотря на хороший внешний вид самих изделий, весь вид портят неровные серые следы от клея, выступающего в процессе кладки на лицевую поверхность. Так что, даже если бы не было необходимости производить отделку для защиты от ветра и влаги, её нужно выполнять для облагораживания фасада.
Изделия вспомогательного значения. Кроме стандартных прямоугольных блоков, большинство производителей газобетона для удобства работы предлагают:

  1. U-блоки. В качестве несъёмной опалубки для заливки перемычек и армопоясов.
  2. О-блоки. Для устройства вентиляции и вертикального армирования.
  3. Перемычки. Готовые изделия, предназначенные для перекрывания проёмов шириной до 3,5 м.
  4. Перегородочные блоки. Для возведения внутренних перегородок.
Слабая сопротивляемость вырывным усилиям. Чем выше у кладочного материала уровень пустотности, тем хуже он удерживает навешиваемые на него тяжёлые предметы. К примеру, чтобы выдернуть дюбель из кирпича, нужно приложить 350 кг, а из газобетона его можно выдернуть и во много раз меньшим усилием, иногда хватает 40 кг.   Примечание: Эта проблема решается путём подбора крепежа, специально предназначенного для пустотелых оснований. Это капроновые или нейлоновые дюбели с крупной спиралью на внешней поверхности, металлические распорные болты и химические анкера.    

Основные характеристики, присущие газобетону той или иной плотности, представлены в таблице:







Марка / плотность бетона (кг/м³) Класс прочности Минимальная прочность в кг/см² Теплопроводность Вт/м*С Паропроницаемость Мг/м*час*Па Усадка Мм/м
D400 В1-В2,5 9,0 0,10 0,23 0,3
D500 В1,5-В3 13,0 0,12 0,2
D600 В2,0-В3,5 16,0 0,14 0,17
D700 В3-В5 24,0 0,18 0,15
D800 В5-В7 27,0 0,21 0,14

На количество газоблоков в одном кубе влияют геометрические параметры изделий. Сначала высчитывается кубатура одного блока, для чего длина, ширина и высота переводятся в метры, а потом перемножаются. Например: 0,6*0,3*0,25=0,045 м³. Остаётся только разделить 1м³ на 0,0,45 м³, и вы получите 22,22 штук.

Зная размеры блока, можно не только определить его количество в 1м³, но и рассчитать, сколько квадратных метров покроет один куб газобетона. Для этого нужно ещё подсчитать, сколько штук блоков помещается в 1 м². Для этого находим площадь ложковой поверхности, путём умножения длины блока на его высоту. На нашем примере это будет 0,6*0,25м=0,15 м². Теперь делим 1м² на 0,15 м², и выясняем, что в 1 м² кладки помещается 6,67 газоблоков.

Теперь остаётся только поделить 22,22 на 6,67. Получается, что из 1 кубометра блоков вы сможете возвести 3,33 м² кладки.

Чтобы не заниматься подобными подсчётами самостоятельно, предлагаем таблицу с готовыми значениями:























Ширина блоков Высота и длина блоков Кубатура одного блока Количество штук блоков в 1 метре кубическом Сколько м³ нужно для возведения 1 м² кладки
75 200*600 0,009 111,11 13,33
100 200*600 0,012 83,33 10,00
120 200*600 0,014 69,44 8,33
150 200*600 0,018 55,55 6,67
200 200*600 0,024 41,66 5,00
250 200*600 0,030 33,33 4,00
280 200*600 0,033 29,76 3,57
300 200*600 0,036 27,77 3,33
360 200*600 0,043 23,16 2,78
375 200*600 0,045 22,22 2,67
400 200*600 0,048 20,83 2,5
500 200*600 0,06 16,66 2,00
50 250*625 0,0078 128,2 20,03
75 250*625 0,0117 85,47 13,354
100 250*625 0,0156 64,10 10,01
125 250*625 0,0195 51,28 8,013
150 250*625 0,0234 42,735 6,677
250 250*625 0,039 25,641 4,006
300 250*625 0,0468 21,368 3,339
400 250*625 0,0625 16 2,5
500 250*625 0,0781 12,80 2

Знать кубатуру газоблока нужно не только для составления сметы, но и для того, чтобы правильно подобрать транспорт для доставки. Хоть изделия и продаются в кубометрах, но отпуск со складов производится в паллетах. Поэтому купленное количество из кубов или штук пересчитывается в количество упаковочных единиц. Так как поддоны для загрузки используются всего двух видов, их объём известен: у стандартных не более 2 м³, у европаллет максимум 1,62 м³. Разделив их объём на кубатуру одного блока, вы получите количество изделий, умещающееся на поддон.

Блоки газобетонные ГОСТ: соответствие с технической документацией

Газобетонный блок

Характеристики строительных материалов интересуют многих будущих владельцев домов, ведь от них зависит долговечность, прочность и эксплуатационные показатели строения.

В данной статье мы рассмотрим, что представляет собой газобетонный блок, каких он бывает видов, какими свойствами обладает и где применяется. При этом, мы будем руководствоваться исключительно технической документацией на изделия.

Итак, блоки газобетонные ГОСТ: о чем говорит документ застройщикам и производителям?

Содержание статьи

Понятие газобетона

Газобетон – это один из разновидностей ячеистого бетона. Изготавливается он из смеси песка, извести, цемента, воды и газообразователя, чаще всего – алюминиевой пудры.

Состав газоблока

В результате реакции последней с негашеной известью, происходит процесс вспучивания раствора. В итоге получается материал, наполненный ячейками. Такая структура наделяет газобетон особыми свойствами и качествами, которые мы рассмотрим ниже.

Структура газобетона

А для начала разберемся, каким бывает газобетон.

Виды материала и сфера применения

В зависимости от назначения, в соответствии с ГОСТ 25485-89, газобетон может быть:

  • Теплоизоляционным, плотностью 300-400. Он обладает низким коэффициентом теплопроводности и используется исключительно в качестве материала для утепления, так как никаких нагрузок, помимо своего собственного веса, такие изделия выдержать не могут ввиду низкой плотности.
  • Конструкционно-теплоизоляционным. Его плотность варьируется в пределах от 500 до 900. Он более прочный, используется для возведения стен зданий и перегородок. Данный вид газобетона наиболее распространен среди частных застройщиков.
  • Конструкционный. Самый прочный вид. Плотность его – 1000-1200. Применяется для возведения зданий, высотой до 3-х этажей.

Однако при этом коэффициент теплопроводности значительно увеличивается, поэтому такой материал нуждается в дополнительном утеплении.

Газобетон различной плотности

Рассмотрим при помощи таблицы зависимость прочности изделий и их теплопроводности.

Прочность и теплопроводность газобетона:

Вид газобетона Марка прочности Коэффициент теплопроводности
Теплоизоляционный D300 0,09-0,11
D400 0,11-0,12
Конструкционно-теплоизоляционный D500 0,12-0,13
D600 0,14-0,15
D700 0,18-0,21
D800 0,21-0,23
D900 0,23-0,26
Конструкционный D1000 0,23-0,28
D1100 0,28-0,34
D1200 0,29-0,38

Раз уж мы заговорили о применении материала, стоило упомянуть о том, каким образом газобетон и бетон в целом, указывается в строительных проектах на чертежах. Штриховка газобетона на чертежах обозначается в виде пунктирных штрихов – линий, находящихся под наклоном. Наглядно это показано на фото ниже.

Штриховка строительных материалов

Также, в зависимости от типа твердения, газобетон разделяют на автоклавный и неавтоклавный. Автоклавный газобетон (газобетон синтезного твердения) отличается тем, что завершительным этапом изготовления является обработка изделий в автоклаве под воздействием высокой температуры и давления.

Процесс выпуска материала происходит в достаточно короткие сроки. Неавтоклавный газобетон (газобетон гидратационного твердения) твердеет в естественных условиях. Иногда его немного подогревают в специальных машинах до невысокой температуры, с целью ускорения процесса. Достигает марочной прочности такой газобетон в течение 28 дней.

Он несколько уступает по характеристикам своему конкуренту-автоклаву. Это касается, в первую очередь, прочности, морозостойкости, теплопроводности и долговечности.

Сравнение газобетона синтезного и гидратационного твердения:

Наименование показателя Значение для автоклавного газобетона Значение для неавтоклавного газобетона
Теплопроводность изделий в сухом виде От 0,09до 0,38 От 0,11 до 0,40
Морозостойкость, циклов До 150  До 50
Усадка, мм/м2 0,3 0,5
Марка прочности От В2,5 От В 1,5
Цвет изделия белый Серый
Долговечность, лет До 200  До 50
Марка по плотности 300-1200 300-1200

В соответствии с типом кремнеземистого компонента, газобетонные блоки могут быть изготовлены на:

  • Песке;
  • Золе;
  • Иных вторичных отходах промышленности.

В зависимости от типа вяжущего, газобетоны бывают:

  • На цементном вяжущем;
  • На шлаковом;
  • На известковом;
  • На зольном;
  • На смешанном.

В изделиях при этом содержится 15-50% основного составляющего.

В соответствии с категорией точности, газобетонные изделия разделяют на:

  • Блоки первой категории точности;
  • Блоки второй категории точности;
  • Блоки третьей категории точности.

Рассмотрим при помощи таблицы допустимые отклонения.

Газобетонный блок ГОСТ 21520 89: отклонения при различных категориях точности:

Наименование отклонения Первая категория точности (допустимый максимум), мм Вторая категория точности (допустимый максимум), мм Третья категория точности (допустимый максимум), мм
По толщине, длине 2 4 6
По высоте 1 3 5
Отклонение от прямоугольности 2 4 6
Грани и ребра 1 3 5
Повреждения углов, в том числе сколы (не более 2-х на одном изделии) 5 10 15

Гост на газобетонные блоки предусматривает аналогичные допустимые отклонения как для автоклавных, так и для неавтоклавных изделий.

Обратите внимание! ГОСТ на газобетон рекомендует укладывать блоки первой категории на клей, а блоки второй и третьей категории – на раствор. Изделия, в зависимости от категории, отличаются исключительно лишь геометрическими отклонениями. Никаких различий в технических характеристиках более нет.

Основные технические, механические и иные характеристики

Теперь давайте рассмотрим, какими показателями свойств и качеств обладают изделия из газобетона. Начнем с прочности на сжатие. Рассмотрим таблицу.

Газобетон ГОСТ 21520-89, 31359 2007: соотношение марки по плотности и марки по прочности на сжатие:

Марка плотности Прочность на сжатие, минимальный допустимый показатель для автоклавного газобетона Прочность на сжатие, минимальный допустимый показатель для неавтоклавного газобетона
Д500 В2,5 В1,5
Д600 В3,5 В2,0
Д700 В3,5 В2,0
Д800 В3,5 В2,5
Д900 В3,5 В2,5
Д1000 В7,5 В5
Д1100 В10 В7,5
Д1200 В12,5 В10

Размеры блоков также регулируются технической документацией:

Газобетонные блоки размеры, ГОСТ:

Типы изделий Размеры для кладки блоков
На раствор На клей
длина высота толщина длина высота толщина
I 588 188 300 598 198 295
II 250 245
III 288 200 298 195
IV 388 188 398 198
V 288 288 250 298 298 245
VI 588 144 300
VII 119 250
VIII 88 300 598 98 295
IX 250 245
X 398 200 398 195

Газобетонные блоки размеры ГОСТ

В соответствии с ГОСТ 31360 2007, газобетон автоклавный также должен обладать следующими характеристиками:

  • Плотность материала – от 300 до 1200
  • Морозостойкость изделий, предназначенных для возведения наружных стен, не должна быть менее 35, для остальных изделий- не менее 15;
  • Усадка при высыхании не должна превышать 0,5 мм для конструкционных и конструкционно-теплоизоляционных газобетонов, которые были изготовлены на песке, 0,7 мм — для конструкционных и конструкционно-теплоизоляционных газобетонов, изготовленных на иных вторичных продуктах промышленности.
  • Паропроницаемость напрямую зависит от плотности газобетонных изделий, и варьируется в пределах от 0,09 до 0,3
  • Теплопроводность, как уже было сказано выше, зависит напрямую от прочности изделий, числовой показатель находится в пределах от 0,09 до 0,38. Данные значения характерны для изделий в сухом состоянии. При увлажненности они увеличиваются.

Обратите внимание! Отпускная влажность блоков не должна превышать 25% — для изделий, изготовленных на песке и 30% — для изделий, изготовленных на золе.

Для неавтоклавных блоков показатель морозостойкости несколько ниже: не менее 25 для наружных стен и 15 – для остальных. Немаловажным является также начальный модуль упругости автоклавного газобетона.

Рассмотрим при помощи таблицы, как изменяются вышеуказанные значения при повышении плотности и прочности.

Начальный модуль упругости газобетона:

Марка плотности Прочность на сжатие и соответствующий начальный модель упругости (сжатие/растяжение)
Д400 В1 В1,5 В2 В2,5 В3 В3,5 В5 В7,5 В10 В12,5 В15
Д500 0,75/7,65 1/10,2 1,25/12,7 1,7/17,3
Д600 1,4/14,3 1,7/17,3 1,8/18,4
Д700 1,8/18,4 2,1/21,4
Д800 2,5/25,5 2,9/29,6
Д900 3,4/34,7 4/4,8
Д100 3,8/38,8 4,5/45,9 5,5/56,1
Д1100 6/61,2 7/71,4
Д1200 7,9/80,6 8,3/84,68,6/87,7
9,3/94,6

Основные требования к материалам, используемым для изготовления газобетона

Помимо технических и иных характеристик, ГОСТ устанавливаются также требования к материалам, которые используются при производстве газобетона.

Печень некоторых требований выглядит так:

  • Марка цемента в составе должна быть не ниже М400;
  • В качестве основного вяжущего компонента применяют: цемент (ГОСТ 31108, 10178), высокоосновную золу, негашеную известь (ГОСТ 9179), содержание в них различных химических веществ строго регламентируется;
  • В качестве кремнеземистого компонента могут применяться: природный материал в виде песка кварцевого и вторичные продукту промышленности – зола-унос, продукты обогащения руд, продукты собственного производства;
  • В качестве газообразователя рекомендуется применения алюминиевой пудры или пасты на ее основе;
  • Для улучшения качеств и свойств газобетона, рекомендуется применение различных добавок: гранулированный шлак, гипсовый камень и иные добавки, предусмотренные ГОСТ 24211;
  • Вода должна быть чистой и соответствовать требованиям ГОСТ 23732.

Газобетонный блок гост 31359 2007 класс b3, пропорции сырья

Преимущества и недостатки газобетона и изделий из него

При условии соблюдения изготовителем всех вышеуказанных требований и соответствия изделий всем показателям, газобетон будет обладать набором положительных и отрицательных качеств.

Рассмотрим их и начнем с плюсов:

  1. Благодаря пористой структуре, газобетон – легкий, что значительно может снизить нагрузку на фундамент;
  2. Изделия из него обладают достаточно крупным размером, что существенно может ускорить процесс строительства;
  3. Поскольку в состав входят безопасные для человека и окружающей среды компоненты, газобетон – экологически чистый;
  4. В соответствии с ГОСТ, материал не горит и не вступает во взаимодействие с огнем;
  5. Газобетон прост в обращении, его достаточно легко распилить, отшлифовать;
  6. Как мы уже выяснили, он обладает низким коэффициентом теплопроводности, что, в свою очередь, поможет сэкономить бюджет на утеплении конструкции, а, в будущем, на отоплении строения;
  7. Высокий показатель морозостойкости – несомненный плюс, количество циклов замораживания и оттаивания, которым может похвастаться газобетон по-настоящему удивляет;
  8. Хорошая способность к звукоизоляции, паропроницанию.
  9. Большой выбор размеров и производителей;
  10. Показатель прочности позволяет возводить строения высотой в несколько этажей;
  11. Также можно выделить в качестве плюса возможность разнообразной наружной и внутренней отделки. Главное при этом, строго соблюдать технологию, чтобы не ухудшить, а подчеркнуть достоинства материала.
  12. Возможность изготовления материала своими руками. Это относится только к неавтоклавному газобетону. Процесс производства прост и не требует существенных затрат, а экономия – налицо.

Для выпуска изделий понадобится инструкция и минимальный набор оборудования и сырья.

  1. Цена на изделия- сравнительно невысокая. Если сравнить газоблок с кирпичом, то последний дороже примерно на 15-20%.

Преимущества газобетона

Отрицательными сторонами являются:

  1. Гигроскопичность. Газобетону свойственно впитывать влагу, которая пагубно влияет на структуру блока, в особенности, при замерзании. Решается такая проблема при помощи правильной исполненной отделки.
  2. Плохая адгезия с отделочными материалами. Этот факт можно нивелировать при помощи подготовки стены, путем обработки ее грунтовками и бетоно-контактом. При оштукатуривании производят обязательное армирование с использованием сетки.
  3. Фиксация элементов – еще одна проблема, с которой могут столкнуться застройщики. При планировании крепления тяжелых предметов, возникает необходимость планирования узлов фиксации. Также необходимо использование специализированных метизов, предназначенных для ячеистых бетонов.
  4. Хрупкость материала. С газобетоном следует обходиться крайне осторожно.
  5. Усадка изделий – существенный недостаток. Не редки случаи появления трещин на самих блоках, а при проведении отделки – и на ней.

Методы контроля, испытаний и приемка изделий

ГОСТ предусмотрены методы контроля и испытания изделий на соответствие их заявленным характеристикам.

Контроль физико-технических показателей

Рассмотрим их при помощи таблицы.

Методы контроля газобетона в соответствии с ГОСТ 25485-89:

Наименование метода Краткое описание
Прочность на растяжение и сжатие Метод заключается в измерении усилий, которые разрушают предварительно подготовленный образец. Нагрузку при этом постоянно увеличивают и измеряют напряжение, предполагая упругую работу материала.
Сорбционная влажность Сущность метода заключается в следующем: образцы доводят до равновесного состояния, предварительно высушив в паровоздушных средах, которые имеют относительную влажность от 40 до 97%. В последующем производят измерение изменения веса образцов.
Усадка при высыхании Метод заключается в измерении изменения длины контролируемого образца при его влажности от 5 до 35%.
Отпускная влажность Испытываемые образцы изымаются из уже готовых изделий либо отбирают среди тех, которые уже прошли проверку на прочность.

Сущность заключается в высушивании образца в специальном шкафу до постоянной массы. После этого производят взвешивание. Собранную влажность определяют по методике ГОСТ. Полученные результаты обрабатывают.

Теплопроводность Сущность метода заключается в создании теплового потока, который проходит через образец определенной толщины. Направлен он перпендикулярно наибольшим граням. При этом производят измерение плотности самого стационарного потока, температуры граней образца и его толщину.
Морозостойкость Метод заключается в последовательном замораживании и размораживании образцов, путем помещения их в специальную морозильную камеру, а затем —  в камеру оттаивания. После проведения процедуры нужное количество раз, образцы проверяют на прочность. Результаты- фиксируются.
Модуль упругости Метод заключается в нагружении образца вплоть до его разрушения. При этом составляется график с зависимостью вида «нагрузка-деформация», который отражает изменения при растяжении образца.
Паропроницаемость Сущность метода заключается в создании потока пара, который проходит через подготовленные образцы, при этом производят измерение величины данного потока.
Призменная прочность Сущность метода заключается в постепенном нагружении образца-призмы осевой нагрузкой вплоть до разрушения. При этом производят измерения деформации.

Видео в этой статье расскажет подробнее о проведении испытаний над газобетонными блоками.

Приемка

Приемка изделий производится в виду соответствия следующим требованиям:

  • Количество изделий, отклонения которых превышают указанные в таблице 3, не должно быть более 5% по каждому параметру от общего количества в партии;
  • Приемка производится в соответствии с данными испытаний по всем показателям;
  • Покупатель имеет право на проведение контрольного испытания;
  • Для проведения контрольных испытаний, из партии отбирают 30 образцов выборочно, как из внутренних, так и наружных рядов упаковки;
  • Если результат испытаний – отрицательный по одному или нескольким параметрам, проверка проводится повторно в отношении этих показателей;
  • Если итог снова будет неудовлетворительным, проверка производится поштучно;
  • Возможность применения изделий, не соответствующих требуемым параметрам устанавливается специальной проектной организацией;
  • Блоки, находящиеся в упаковке, не должны быть слипнувшимися между собой, вручную должны свободно разбираться;
  • Каждая партия изделий должна сопровождаться документом, в котором указываются следующие данные: адрес и наименования производителя, обозначение стандарта, номер партии, объем или количество отгруженных изделий, дата выдачи документа, обозначение самих блоков.

Требования к транспортировке и хранению

Требования к транспортировке и хранению сводятся к следующему:

  1. Перевозка изделий осуществляется в контейнерах или на деревянных поддонах. Блоки должны быть жестко зафиксированы так, чтобы была обеспечена неподвижность продукции и ее сохранность;
  2. Транспортировка может быть осуществлена любым видом транспорта, который не противоречит требованиям ГОСТ 9238 и требованиям крепления и погрузки груза;
  3. Строго запрещено перевозить блоки навалом и выгружать их путем сбрасывания с транспортного средства;
  4. Храниться блоки должны на поддонах или в контейнерах, они должны быть защищены от попадания влаги.
  5. Изделия должны быть распределены в соответствии с размером, категорией, прочностью. Высота штабеля не должна превышать 2,5 метров.

В заключение

Мы рассмотрели все характеристики, требования и методы испытаний, предусмотренных ГОСТ на газобетон.  Как видно, данная документация содержит в себе исчерпывающие ответы на все вопросы, которые могут возникнуть как у потребителей, так и у изготовителей.

технические характеристики газобетона Xella YTONG

Что такое звук и шум?

Звук – это физическое явление, вызванное колебательными движениями частиц в упругой среде (газе, жидкости или твердых телах). Шум – тот же звук, но оказывающей раздражающее воздействие на живой организм.

Давление, которое оказывают на нас посторонние шумы, измеряется силой звука в децибелах. Нагляднее всего эту физическую единицу можно представить в виде шкалы громкости:

Как классифицировать шум?

В нормативной литературе можно встретить три вида шума:

  • Воздушный – распространяется по воздуху перед тем как встретить препятствие (перекрытие, стены из газобетона и прочее). Например: музыка, лай собак.
  • Ударный – возникает в следствие механического воздействия на конструкцию. Например: Стук обуви, падение тяжелого предмета.
  • Структурный – передается по элементам конструкции здания (как воздушный, так и ударный). Пример: движение лифтовой кабины или работа насосного оборудования на техническом этаже.

Как снизить уровень шума?

Чаще всего ударный шум передается через перекрытие, поэтому вариантом избавления от него служит, например, «плавающий» пол. В свою очередь структурный шум имеет технический характер и избавляет от него надежная виброизоляция. Остановимся более подробно на воздушном шуме.

Есть два основных пути снижения звукового воздействия воздушного шума:

  • Снизить уровень шума источника;
  • Изолировать источник шума или себя от источника – т.е. установить преграду на пути распространения звука.

Как нормируется уровень шума?

Согласно СП 51.13330.2011 «Защита от шума» нормируемым параметром звукоизоляции воздушного шума является индекс изоляции  – величина, служащая для оценки способности ограждающей конструкции уменьшать проходящий через нее звук.

Фактически индекс изоляции – это разница уровней звукового давления в двух смежных помещениях с некоторой акустической поправкой. Требуемые нормативные индексы звукоизоляции представлены в таблице №2 СП 51.13330.2011.

Какой блок YTONG подойдет для обеспечения звукоизоляции стен из газобетона?

По расчету СП 23-103-2003 индекс изоляции воздушного шума для ограждающей конструкции из газобетона получаем следующих значений (с подробностями расчета можно ознакомиться в Энциклопедии строительства Das Baubuch):

— к использованию в качестве стен и перегородок между квартирами, между помещениями квартир и офисами; между помещениями квартир и лестничными клетками, холлами, коридорами, вестибюлями требуется материал, имеющий индекс изоляции воздушного шума не менее 52 дБ.

style=»padding:0;»>





style=»padding:0;»>



№ п.п.

Плотность газобетонных блоков YTONG

Толщина блоков YTONG, мм

Толщина штукатурного слоя с двух сторон, мм

Индекс изоляции воздушного шума , дБ

1.

D500

150

30

53

2.

200

20

53

3.

250

10

53

4.

D600

200

20

54

5.

250

52

— к использованию в качестве перегородок без дверей между комнатами, между кухней и комнатой в квартире требуемое значение индекса изоляции воздушного шума составляет 43 дБ.






№ п.п.

Плотность газобетонных блоков YTONG

Толщина блоков YTONG, мм

Толщина штукатурного слоя с двух сторон, мм

Индекс изоляции воздушного шума , дБ

1.

D500

100

20

46

2.

125

10

44

3.

D600

100

10

43

4.

150

10

43

Газобетон YTONG благодаря особой структуре поверхности характеризуется более высоким поглощением звука по сравнению с совершенно гладкими и «жесткими» для звука поверхностями.

Таким образом, для обеспечения требуемой звукоизоляции стен в 52 дБ между квартирами достаточно возвести ограждение из газобетоннных блоков, например, класса по плотности D500 c толщиной 200-250 мм, оштукатуренную с двух сторон. А для комфортного проживания в квартире между смежными комнатами необходима перегородка из газобетона с теми же условиями, но уже толщиной 100-150 мм.

Итак, для обеспечения требуемой звукоизоляции необходимо подобрать такую ограждающую конструкцию, индекс звукоизоляции  которой будет больше или равен требуемому  по СП 51.13330.2011.

размеры и их характеристика (таблица)

Газобетонные блоки – это самый популярный в строительной сфере материал.

Таблицы размеров газобетона.

С ним можно выполнять любые манипуляции, будь то возведение стен, распиливание или вбивание гвоздей. Блоки из газобетона не раскрошатся и не потрескаются, сохраняя свой первозданный вид.

Характеристика газобетонных блоков

Газобетонные блоки, как и любой другой материал, имеют свои сильные и слабые стороны. К их преимуществам можно отнести:

Характеристики газобетонных блоков.

  1. Высокий уровень теплоизоляции. Изделия из ячеистого бетона на 90% состоят из воздуха с примесей газа, надежно удерживающих теплый воздух внутри помещений. При использовании данного материала можно даже обойтись без внутреннего утепления комнат при условии, что все стыки будут тщательно заделаны.
  2. Экологичность. Газобетонные блоки обладают специальной дышащей структурой, позволяющей вентилировать помещение и предотвращать образование плесени и грибка.
  3. Звукоизоляция. Несмотря на свою «легкую» структуру, блоки отлично поглощают звуки, доносящиеся извне, и предотвращают их проникновение внутрь.
  4. Пожаробезопасность. Газобетон отнесен к классу негорючих веществ, противодействующих проникновению огня в помещение. Он не плавится при воздействии высоких температур и при контакте с огнем не выделяет токсических веществ, представляющих опасность для здоровья человека.
  5. Шаг отклонения размеров каждого блока – 1 мм на 1 м. Таким образом, можно возвести практически идеально ровные стены.
  6. Экономичность. Один блок газобетона заменяет 8 кирпичей и раствор цемента, требуемый для их крепления.

Имеет данная технология и один существенный недостаток – ограниченный предельный вес. Конструкции не разрешены для многоэтажных домов, где стены должны выдерживать значительную нагрузку. Максимальное количество этажей из данного материала – не более трех. Причем речь идет о частном, а не о многоквартирном строении.

Все-таки выбрав данный материал, обратить внимание следует и на размеры блоков, имеющие стандартные габариты: высоту в 250 мм и длину в 600 мм. Варьироваться может лишь ширина изделия – от 100 до 450 мм. Целесообразнее всего выбирать блоки с наибольшими из представленных в ассортименте современных магазинов показателями 250х600х450 мм. Такие размеры позволяют уменьшить количество стыков и сделать возводимую стену максимально однородной.

Как правильно укладывать газобетонные блоки?

Схема кладки газобетона.

Газобетонные блоки, в отличие от других стройматериалов, необязательно должны быть уложены профессиональными строителями. Для того чтобы проделать данную процедуру самостоятельно, потребуются:

  • пила с твердосплавными зубьями;
  • угольник;
  • молоток с резиновым наконечником;
  • терка с крупнозернистой шкуркой;
  • шпатель или ковшик.

Зачастую газобетон упаковывается в плотный полиэтиленовый материал, который не следует выбрасывать. Его можно использовать в качестве гидроизоляции, помещенной между фундаментной основой и блоками.

Далее необходимо правильно закрепить первый ряд, который и станет основой будущего строения. Газобетонные блоки укладываются на специальную смесь на основе белого цемента. Она расходуется крайне экономично и надежно крепит блок. Использовать смесь для газобетона рекомендуется в любом слое, кроме первого. Для него отлично подойдет песчано-цементная смесь, обладающая большим коэффициентом сцепления.

Более рациональным, по сравнению с обыкновенным шпателем для нанесения раствора, станет использование специального ковшика, который позволяет распределять его равномерно. После того как основной слой уложен, газобетонные блоки необходимо оставить до полного высыхания. Излишняя спешка приведет к тому, что невысохший слой под воздействием силы тяжести попросту даст перекос. Для того чтобы укладывать газобетонные блоки было проще, рекомендуется начинать с углов, постепенно приставляя их навстречу друг другу.

После того как первый слой газобетон будет уложен и застынет, можно приступать к последующим работам. Блоки в каждом из рядов выкладывают в шахматном порядке, следя за тем, чтобы стык предыдущего ряда был покрыт площадью находящегося выше газобетона. Расстояние между стыками разных слоев должно быть менее 8 см. В этом случае можно гарантировать долговечность стен.

Делая из газобетона внутренние перегородки дома, в несущей стене пилой делают паз глубиной в 150 мм.

В него и будет вставляться блок, который станет основой всей конструкции.

После того как работы по монтажу блоков будут завершены, всю стену следует заново зашкурить и покрыть тонким слоем раствора. Он может выполнять также и роль штукатурки, позволяя после высыхания сразу приступать к отделочным работам.

% PDF-1.5
%
1 0 obj
>
endobj
2 0 obj
>
endobj
3 0 obj
>
endobj
4 0 obj
>
endobj
6 0 obj
> / XObject> / ProcSet [/ PDF / Text / ImageB / ImageC] >>>>
endobj
7 0 объект
>
endobj
8 0 объект
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 600 600 270 328 339769 541 823 836 175 394 394 500 833 270 330 270 278541 541 541 541 541 541 541 541 541 299 299 833 833 833 383 986 760 657 720 766 584 553 769 806 354 354 715 571 903 796 803 803 701 546 695787 760 1030 713 659 579 394 278 394 1000 500 500 459 513 458519 457 306 451 560 274 ​​269 546 267 815 560 516 519 513 374 382 325 560 484 700 492461383 500 500 500 833 600 541 600 230 541462 1000 500 500 500 1229 546 308 1037 600 579 600 600 230 230 462462 5

1000500 822 382 308 810 600 383 659 541 328 541 541 541 659 500 500 500 822 344 473 833 330 822 500 329 833 357 357 500 578 500 270 500 357 387 473848 848 849 383760 760 760 760 760 760 934 720 584584584 354 354 354 354 766 796 803 803 803 803 803 833 803 787 787 787 787 659 603 539 459 459 459 459 459 703 458 457 457 457 457 274 274 274 274 516 560 516 516 516 516 516 516 560 560 560 560 461 519 461]
endobj
9 0 объект
>
endobj
10 0 obj
>
endobj
11 0 объект
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 600 600 270 368 339 769 541 778 810 175 382 382 500 833 271 329 271 278 541 541 541 541 541 541 541 541 541 282 282 833 833 833 412 986 713 678 701 752625 579725 793 348 431 743 602917 774 799 623 799 660 532 671 819 694 995738 655 609 382 278 382 1000 500 500 491 405 4

  • 292461493273248 456 255 765 521468 488 468 359 356 308 528 498 757 442470 391 500 500 500 833 600 541 600 271 541463 1000 500 500 500 1150 532 273 1044 600 609 600 600 271271463463 590 500 1000 500 822 356 273 719 600 391 655 541 368 541 541 541 541 500 500 500 822 400 428833 329 822 500 329 833 357 357 500 578 500 271 500 357 361428 848 848 849 412 713 713 713 713 713 713 986 701625625625625348 348 348 348 762 774 799 799 799 799 799 833 799 819 819 819 819 655 637 484 44491686 405410 410 410 410 273 273 273 27348 521 468 468 468 468 468 468 528 528 528 528 470 472 470]
    endobj
    12 0 объект
    >
    endobj
    13 0 объект
    >
    endobj
    14 0 объект
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 342 402 587 867 711 1272 862 332 543 543 711 867 361 480 361 689 711 711 711 711 711 711 711 711 711 711 402 402 867 867 867 617 964 776 762 724 830 683 650 811 837 546 555 771 637 948 847 850 733 850 782710 682812 764 1128 764 737 6925453 689 543 867 711 711 668 699 588 699 664 422 699 712 342 403 671 342 1058 712 687 699 699 497 593 456 712 650 979 669 651 597 711 543 711 867 1000 711 1000 332 711 587 1049 711 711 711 1777 710 543 1135 1000 692 1000 1000 332 332 587 587 711 711 1000 711 964 593543 1068 1000 597 737 342 402711 711 711 711 543 711 711 964 598850 867 480 964 711 587 867 598 711 721 711 361 711 598 598 850 1182 1182 1182 617 776 776 776 776 776 1094 724 683 683 683 683546546546546830 847850 850850850 867850 812812812812 737 735 713 668 668 668 668 668 668 1018 588 664 664 664 342 342 342 342 67979 712 687 687 687 687 687 867 687 712 712 712 712 651 699 651]
    endobj
    15 0 объект
    >
    endobj
    16 0 объект
    >
    endobj
    17 0 объект
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 750 750 278 278 355 556 556 889 667 191 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 278 278 58458458456 1015 667 667 722 722 667 611 778722 278 500 667556833 722778 667778722 667 611 722 667 944 667 667 611 278 278 278 469 556 333 500 556 556 278 556 556 222 222 500 222 833 556 556 556 556 333 500 278 556 500 722 500 500 500 334 260 334 584 750 556 750 222 556 333 1000 556 556 333 1000 667 333 1000 750 611 750 750 222222 233 333 350 556 1000 333 1000 500 333944750500 667 278 333 556 556 556 556 260 556 333 737 370 556 584 333 737 552 400 549 333 333 333 576 537 278 333 333 365 556834 834 834 611 667 667 667 667 667 667 1000 722 667 667 667 667 278 278 278 278 722 722 778 778 778 778 778 584 778 722 722 722 722 667 667 611 556 556 556 556 556 556 889 500 556 556 556 556 278 278 278 278 556 556 556 556 556 556 556 549 556 556 556 556 500 556 500]
    endobj
    18 0 объект
    >
    endobj
    19 0 объект
    >
    endobj
    20 0 объект
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 342 402 587 867 711 1272 862 332 543 543 711 867 361 480 361 689 711 711 711 711 711 711 711 711 711 711 402 402 867 867 867 617 964 776 762 724 830 683 650 811 837 546 555 771 637 948 847 850 733 850 782710 682812 764 1128 764 737 6925453 689 543 867 711 711 668 699 588 699 664 422 699 712 342 403 671 342 1058 712 686 699 699 497 593 456 712 649 979 669 651 597 711 543 711 867 1000 711 1000 332 711 587 1049 711 711 711 1777 710 543 1135 1000 692 1000 1000 332 332 587 587 711 711 1000 711 964 593543 1068 1000 597 737 342 40 2711 711 711 711 543 711 711 964 598850 867 480 964 711 587 867 598 711 721 711 361 711 598 598 850 1182 1182 1182 617 776 776 776 776 776 1094 724 683 683 683 683 546 546 546 546 830 847 850 850 850850867850 812 812 812 812 737 735 713 668 668 668 668 668 668 1018 588 664 664 664 342 342 342 342 67979 712 686 686 686 686 686 867 686 712 712 712 712 651 699 651]
    endobj
    21 0 объект
    >
    endobj
    22 0 объект
    >
    endobj
    23 0 объект
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 352 394 459 818 636 1076 727 269 454 454 636 818 364 454 364 454 636 636 636 636 636 636 636 636 636 454 454 818 818 818 545 1000 684 686 698 771 632 575775 75142145 693 557 843 748 787 603 787 695 684 616 732 684 989 685 615 685 454 454 454 818 636 636 60 521 623 596 352 623 633 274 344 592 274 973 633 607 623 623 427 521 394 633 592818 5925925635 454 635 818 1000 636 1000 269 636 459 818 636 636 636 1521 684 454 1070 1000 685 1000 1000 269 269 459 459 545 636 1000 636 977 521 454 981 1000 525 615 352 394 636 636 636 454 636 636 1000 545 645 818 454 1000 636 542 818 542 542 636 6426 364 636 542545 645 1000 1000 1000 545 684 684 684 684 684 684 984 698632 632 632 632 421421421421775 748 787787 787787818 787 732 732 732 615 605 620 601 601 601 601 601 955521596596596596 274 274 274 274 274 612 633 607 607 6018 607 607 607 633 633 633 633 592 623 592]
    endobj
    24 0 объект
    >
    endobj
    25 0 объект
    >
    endobj
    26 0 объект
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 778 778 250 333 408 500 500 833 778 180 333 333 500 564 250 333250 278 500 500 500 500 500 500 500 500 500 500 278 278 564564 444 921 722 667 667 722 611 556 722 722 333 389 722 611 889 722 722 556 722 667 556611 722 722 944 722 722 611 333 278 333 469 500 333 444 500 444500 444 333 500 500 278 278 500 278 778 500 500 500 500 333 389 278 500 500 722 500 500 444 480 200 480 541 778 500 778 333 500 444 1000 500 500 333 1000 556 333 889 778 611 778 778 333 333 444 444 350500 1000 333980389333722778444722250 333500500500500200500 333760 276 500 564 333760 500 400 549 300 300 333 576 453250 333 300 310 500 750 750 750 444722 722 722 722 722 889 667 611 611 611 611 333 333 333 722 722 722 722 722 722 564 722 722 722 722 722 556 500 444 444 444 444 444 444 667 444 444 444 444 444 278 278 278 278 500 500 500 500 500 500 500 549 500 500 500 500 500 500 500 500]
    endobj
    27 0 объект
    >
    endobj
    28 0 объект
    >
    endobj
    29 0 объект
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 352 394 459 818 636 1076 727 269 454 454 636 818 364 454 364 454 636 636 636 636 636 636 636 636 636 454 454 818 818 18 545 1000 683 686 698766 632 575 775 75142145 693 557 843 748 787 603 787 695 684 616 732 683 990 685 615 685 454 454 454 818 6236 601 521 623 596 352 622 633 274 344 587 274 973 633 607 623 623 427 521 394 633 591 818 59259 1525 635 454635 818 1000 636 1000 269 636 459 818 636 636 636 1519 684 454 1070 1000 685 1000 1000 269 269 459 459 545 636 1000 636 977 521 454 980 1000 525 615 352 394 636 636 636 454 636 636 1000 545 645 818 454 1000 636 542 818 542 542 636 6426 364 636 542545 645 1000 1000 1000 545 683 683 683 683 683 989 698632 632 632 632 421421421421766 748 787787 787 787 818 787 732 732 732 732 615 605 620 601 601 601 601 601 60195 521 596 596596596 274 274 274 274 612 633 607 607 6018 607 607 633 633 633 633 591 623 591]
    endobj
    30 0 объект
    >
    endobj
    31 0 объект
    >
    endobj
    32 0 объект
    > поток

    Оценка механических свойств блока из автоклавного ячеистого бетона (AAC) и его кладки

  • 1.

    В. Сринивас, С. Сасмал, Экспериментальные и численные исследования поведения кирпичной кладки при предельной нагрузке. J. Inst. Англ. (Индия) Сер. A 97 (2), 93–104 (2016)

    Статья

    Google ученый

  • 2.

    S.H. Баша, Х. Кошик, Оценка нелинейных свойств материалов кирпичной кладки из зольной пыли при сжатии и сдвиге. J. Mater. Civ. Англ. (ASCE) 27 (8), 04014227 (2014)

    Статья

    Google ученый

  • 3.

    А. Радж, А.С. Борсайкия, Диксит, США, Производство автоклавного газобетона (AAC): текущее состояние и будущие тенденции. в Advances in Simulation, Product Design and Development (Springer, Singapore, 2020), стр. 825–833

  • 4.

    Д. Ферретти, Э. Мичелини, Г. Розати, Растрескивание в автоклавном ячеистом бетоне: экспериментальное исследование и моделирование XFEM. Джем. Concr. Res. 67 , 156–167 (2014)

    Статья

    Google ученый

  • 5.

    Н. Нараянан, К. Рамамурти, Микроструктурные исследования ячеистого бетона. Джем. Concr. Res. 30 (3), 457–464 (2000)

    Артикул

    Google ученый

  • 6.

    Дж. Александерсон, Связь между структурой и механическими свойствами автоклавного газобетона. Джем. Concr. Res. 9 (4), 507–514 (1979)

    Статья

    Google ученый

  • 7.

    Л. Малышко, Е. Ковальска, П. Билко, Расщепление автоклавного газобетона при растяжении: сравнение результатов различных образцов. Минусы. Сборка. Мат. 157 , 1190–1198 (2017)

    Статья

    Google ученый

  • 8.

    Д. Ферретти, Э. Мичелини, Г. Розати, Механические характеристики кладки из газобетона автоклавного твердения, подвергнутой нагрузке в плоскости: экспериментальное исследование и КЭ моделирование. Минусы. Сборка.Мат. 98 , 353–365 (2015)

    Статья

    Google ученый

  • 9.

    A. Bhosale, N.P. Заде, Р. Дэвис, П. Саркар, Экспериментальное исследование кладки из ячеистого бетона в автоклаве. J. Mater. Civ. Англ. (ASCE) 31 (7), 04019109 (2019)

    Статья

    Google ученый

  • 10.

    А. Радж, А.К. Борсайкия, США, Диксит, Прочность сцепления на сжатие и сдвиг блоков и кирпичной кладки с канавками.Mater. Struct. 52 (6), 116 (2019)

    Статья

    Google ученый

  • 11.

    https://brikolite.com/brikolite-user-guidelines/, дата обращения 19 сентября 2019 г.

  • 12.

    Х.Р. Кумават, Экспериментальное исследование механических свойств кладки из глиняного кирпича путем частичной замены мелкого заполнителя отходами глиняного кирпича. J. Inst. Англ. (Индия) Ser A 97 (3), 199–204 (2016)

    Статья

    Google ученый

  • 13.

    М. Кешава, С.Р. Рагхунатх, Экспериментальные исследования каменных стен с осевой и внецентренной нагрузкой. J. Inst. Англ. (Индия) Ser A 98 (4), 449–459 (2017)

    Статья

    Google ученый

  • 14.

    G. Sarangapani, B.V.V. Редди, К. Jagdish, Кирпичная кладка и прочность на сжатие. J. Mater. Civ. Англ. (ASCE) 17 (2), 229–237 (2005)

    Статья

    Google ученый

  • 15.

    A.J. Фрэнсис, К.Б. Хорман, Л. Jerrems, Влияние толщины шва и других факторов на прочность кирпичной кладки при сжатии. in Proceedings of 2 nd International Brick Masonry Conference , ed. Автор: HWH West, Британская керамическая ассоциация, Сток-он-Трент, стр. 31–37 (1971)

  • 16.

    Индийский стандартный свод правил [IS: 6441-1972, подтвержден в 2001 г.] для испытаний изделий из ячеистого бетона в автоклаве (пятая редакция) , Нью-Дели, Индия

  • 17.

    H.B. Кошик, Д.К. Рай, С.К. Джайн, Напряженно-деформированные характеристики кладки из глиняного кирпича при одноосном сжатии. J. Mater. Civ. Англ. (ASCE) 19 (9), 728–739 (2007)

    Статья

    Google ученый

  • 18.

    S.B. Сингх, П. Мунджал, характеристики прочности связи и напряжения-деформации при сжатии кирпичной кладки. J. Build. Англ. 9 , 10–16 (2017)

    Статья

    Google ученый

  • 19.

    Индийский стандартный свод правил [IS: 3495-1976, подтвержден в 2002 году] для испытания строительных кирпичей из обожженной глины (третья редакция), Нью-Дели, Индия

  • 20.

    Американские стандартные методы испытаний для отбора проб и испытаний кирпича и структурной глиняной плитки , ASTM C67-00, 4-е изд., Американское общество испытаний и материалов (ASTM), Филадельфия, Соединенные Штаты, (2001)

  • 21.

    Американский стандартный метод испытания прочности на разрыв кирпичных блоков при разделении, ASTM C 1006-07 , Американское общество испытаний и материалов (ASTM) Вест Коншохокен, США, (2007)

  • 22.

    Индийский стандартный свод правил [IS 2250-1981, подтвержден в 2002 году] для приготовления и использования строительных растворов (первая редакция), Нью-Дели, Индия

  • 23.

    Индийский стандартный свод правил [IS 1905-1987, подтвержден в 2002 году ] для структурного использования неармированной кирпичной кладки (Третья редакция), Нью-Дели, Индия

  • 24.

    Американский стандартный метод испытания прочности сцепления раствора с каменными элементами, ASTM C 952-91, Соединенные Штаты, (1991)

  • 25.

    С. Малликарджуна, Экспериментальное определение параметров для критерия разрушения на основе микромоделирования для стены сдвига из блочной кладки из AAC, М.тех. диссертация, Индийский технологический институт, Гувахати, Индия, 2017 г.

  • 26.

    В. Алеччи, М. Фагоне, Т. Ротунно, М. Де Стефано, Прочность на сдвиг кирпичных стен, собранных с использованием различных типов раствора. Минусы. Сборка. Мат. 40 , 1038–1045 (2013)

    Артикул

    Google ученый

  • 27.

    A.A. Коста, А. Пенна, Г. Магенес, А. Галаско, октябрь. Оценка сейсмостойкости каменных зданий из автоклавного ячеистого бетона (AAC).in Proceedings of the 14th World Conference on Earthquake Engineering , (Пекин, Китай), 05-04 (2008)

  • IRJET — Запрошенная вами страница не найдена на нашем сайте

    IRJET приглашает представителей различных инженерных и технологических организаций , Научные дисциплины для Тома 8, выпуск 2 (февраль-2021)

    Отправить сейчас


    IRJET Vol-8, выпуск 2, февраль 2021 Публикация в процессе …

    Обзор статей


    Получение IRJET «Фактор влияния на научный журнал : 7.529 «на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 2 ( Февраль-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 2, февраль 2021 Публикация продолжается …

    Обзор статей


    Получено IRJET «Фактор воздействия научного журнала: 7.529 «на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 2 ( Февраль-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 2, февраль 2021 Публикация продолжается …

    Обзор статей


    Получено IRJET «Фактор воздействия научного журнала: 7.529 «на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 2 ( Февраль-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 2, февраль 2021 Публикация продолжается …

    Обзор статей


    Получено IRJET «Фактор воздействия научного журнала: 7.529 «на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 2 ( Февраль-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 2, февраль 2021 Публикация продолжается …

    Обзор статей


    Получено IRJET «Фактор воздействия научного журнала: 7.529 «на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 2 ( Февраль-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 2, февраль 2021 Публикация продолжается …

    Обзор статей


    Получено IRJET «Фактор воздействия научного журнала: 7.529 «на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 2 ( Февраль-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 2, февраль 2021 Публикация продолжается …

    Обзор статей


    Получено IRJET «Фактор воздействия научного журнала: 7.529 «на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 2 ( Февраль-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 2, февраль 2021 Публикация продолжается …

    Обзор статей


    Получено IRJET «Фактор воздействия научного журнала: 7.529 «на 2020 г.

    A = площадь основания стены на основе сплошного поперечного сечения, в 2

    AAC = газобетон в автоклаве

    A s = площадь арматурной стали в армированном элементе или площадь поперечного сечения швартовки, дюйм 2

    A vf = площадь поперечной арматуры в соединительной балке диафрагмы, дюйм 2

    b = ширина или толщина рассматриваемого элемента в

    d = расстояние от крайнего изгибного сжимающего волокна до центра тяжести армирующей стали в армированном элементе, в D = статическая нагрузка на стену из AAC из-за собственного веса, фунт

    E c = модуль упругости бетона с нормальным весом, фунт / кв. Дюйм

    E AAC = модуль упругости AAC, psi

    E s = модуль упругости арматурной стали, psi

    e = эксцентриситет наложенной осевой нагрузки, дюйм

    F = фактическая сила в плоскости наверху стенки сдвига, фунт

    F a = допустимое осевое напряжение сжатия в AAC, фунт / кв. Дюйм

    f a = фактическое осевое напряжение сжатия в AAC, фунт / кв. Дюйм

    F b = допустимое напряжение сжатия при изгибе в AAC, фунт / кв. Дюйм

    f b = фактическое напряжение сжатия при изгибе в AAC, фунт / кв. Дюйм

    f ’ c = минимальная заданная прочность на сжатие обычного бетона, фунт / кв. Дюйм

    f ’ AAC = минимальная заданная прочность на сжатие AAC, psi

    F s = допустимое растягивающее напряжение в стальной арматуре или креплении, фунт / кв. Дюйм

    f s = фактическое растягивающее напряжение в арматурной стали, фунт / кв. Дюйм

    F t = допустимое напряжение при изгибе при растяжении в AAC, фунт / кв. Дюйм

    f t = фактическое напряжение при изгибе при растяжении в AAC, фунт / кв. Дюйм

    F v = допустимое напряжение сдвига в AAC, фунт / кв. Дюйм

    f v = фактическое напряжение сдвига в AAC по толщине элемента, фунт / кв. Дюйм

    h = эффективная высота стены, фут

    H = глубина диафрагмы, измеренная в горизонтальном направлении, фут

    I = момент инерции стены, основанный на твердом поперечном сечении, в 4

    I трещины = момент инерции трещины для бетона нормального веса, дюйм 4

    j = коэффициент, определенный на основе анализа упругости железобетонного профиля

    k = коэффициент, определенный на основе анализа упругости железобетонного профиля

    L = длина поперечной стенки AAC, фут

    M = фактический расчетный момент для анализа, ft k или ft lb

    M , основание = момент, учитываемый в основании стены AAC, фут-фунт

    M конц = допустимый момент для железобетонной секции, когда бетон является контролирующим элементом, фут-фунт

    M max = максимальный момент, возникающий в стене AAC из-за боковой нагрузки, фут-фунт

    M nom = допустимый момент для армированного бетонного профиля нормального веса, фут-фунт

    M otm = опрокидывающий момент для конструкции стены со сдвигом, фут-фунт

    M r = момент сопротивления сдвигу стенки при статической нагрузке, фут-фунт

    M rAAC = допустимый момент для поперечной стенки AAC, когда изгибное сжатие является контролирующим критерием, фут-фунт

    M арматура = допустимый момент для железобетонной секции, когда арматурная сталь является регулирующим элементом, фут-фунт Mrsteel = допустимый момент для стены, работающей на сдвиг AAC, когда напряжение в швартовке является контролирующим критерием, фут-фунт

    n = модульное соотношение AAC или обычного бетона к арматурной стали

    P ac = допустимая наложенная осевая сжимающая нагрузка для AAC, когда сжимающее напряжение является контролирующим критерием, фунт

    P при = допустимая наложенная осевая сжимающая нагрузка для AAC, когда растягивающее напряжение изгиба является контролирующим критерием, фунт

    P v = допустимая сила в плоскости наверху стенки сдвига, фунт

    R = коэффициент уменьшения статической нагрузки

    r = радиус вращения стены по твердому поперечному сечению, дюйм

    S = модуль упругости стенки или диафрагмы на основе твердого поперечного сечения, дюйм 3

    с = расстояние между анкерами, сопротивляющимися подъему, когда прогиб в соединительной балке является критерием контроля, фут

    с м = расстояние между анкерами, противостоящими подъему, когда момент в соединительной балке является критерием контроля, фут

    s v = расстояние между анкерами, сопротивляющимися подъему, когда сдвиг в соединительной балке является контролирующим критерием, фут

    T = сила натяжения, используемая для сопротивления опрокидыванию стенки сдвига, фунт

    T c = растягивающее усилие хорды в системе диафрагмы, фунты или тысячи фунтов

    t = толщина элемента, дюйм

    V = фактическая сила сдвига в месте, представляющем интерес для анализа диафрагмы, фунт

    v = фактическая сила сдвига на единицу длины в месте, представляющем интерес для анализа диафрагмы, PLF

    V AAC = прочность на сдвиг, предоставленная AAC, фунт

    V c = прочность на сдвиг, обеспечиваемая бетоном нормального веса, фунт

    В г = допустимое усилие сдвига для залитого раствора или соединительной балки для анализа диафрагмы, plf

    V s = прочность на сдвиг, обеспечиваемая арматурой на сдвиг в бетоне с нормальным весом, фунт

    V u = расчетное поперечное усилие, фунт

    w = расчетное скоростное давление ветра, psf; или равномерная нагрузка для лучевого анализа, plf; или наложенная статическая нагрузка, plf wbb = собственный вес соединительной балки, plf

    w вверх = подъемная нагрузка, выдерживаемая несущей балкой, plf

    x = высота над полом, на которой возникает максимальный изгибающий момент в стене AAC, фут

    γ = номинальная насыпная плотность AAC в сухом состоянии, pcf

    γ D = расчетный собственный вес AAC, pcf

    ρ = отношение площади арматурной стали к площади бетона, As / bd

    µ = коэффициент трения

    Правильное использование автоклавного газобетона — Masonry Magazine

    Автоклавный газобетон

    Ричард Э.Клингнер

    Крупный план автоклавного газобетона с небольшими закрытыми пустотами.

    Блоки автоклавного газобетона (AAC) обычно укладываются с использованием тонкослойного раствора и могут использоваться для кладки несущих стен. Положения по проектированию каменной кладки AAC приведены в Кодексе MSJC , , а требования к конструкции приведены в Спецификации Объединенного комитета по стандартам кладки (MSJC). В этой статье кратко рассмотрено производство AAC; проиллюстрированы практические примеры возведения кладки из ААК; Обобщены проектные положения MSJC для кладки AAC; особое внимание уделяется практическому руководству по строительству каменной кладки из AAC.

    Автоклавный газобетон (AAC) — легкий, похожий на бетон материал с множеством небольших закрытых внутренних пустот. Спецификации материалов для AAC указаны в ASTM C1386. AAC обычно весит от одной шестой до одной трети веса обычного бетона и составляет от одной шестой до одной трети прочности. Подходит для несущих стен и стенок сдвига малоэтажных и среднеэтажных конструкций. Его теплопроводность составляет одну шестую или меньше, чем у обычного бетона, что делает его энергоэффективным.Его огнестойкость немного выше, чем у обычного бетона такой же толщины, что делает его полезным в приложениях, где важна огнестойкость. Из-за своих внутренних пустот AAC имеет низкую передачу звука, что делает его полезным с акустической точки зрения.

    История AAC

    AAC был впервые коммерчески произведен в Швеции в 1923 году. С тех пор его производство и использование распространились в более чем 40 странах на всех континентах, включая Северную Америку, Центральную и Южную Америку, Европу, Ближний Восток, Дальний Восток и Австралию. .Этот обширный опыт позволил провести множество тематических исследований по использованию в различных климатических условиях и в соответствии с различными строительными нормами.

    В США современное использование AAC началось в 1990 году в жилых и коммерческих проектах в юго-восточных штатах. Производство простых и усиленных AAC началось в 1995 году на юго-востоке США и с тех пор распространилось на другие части страны. Общенациональная группа производителей газобетона была образована в 1998 году как Ассоциация автоклавных газобетонных изделий (AACPA, www.aacpa.org). Положения по проектированию и строительству каменной кладки AAC приведены в Кодексе и Спецификации MSJC. AACPA включает одного производителя в Монтеррее, Мексика, и многие технические материалы доступны на испанском языке. AAC одобрен для использования в категориях сейсмического проектирования A, B и C Дополнением 2007 г. к Международным строительным нормам и правилам, а также в других географических точках с одобрения местного строительного чиновника.

    Примеры элементов из пенобетона в автоклаве Изображение предоставлено Ytong International

    AAC может использоваться для изготовления неармированных блоков каменного типа, а также армированных на заводе панелей пола, панелей крыши, стеновых панелей, перемычек, балок и других специальных форм.В этой статье рассматриваются в основном только каменные блоки.

    Материалы, используемые в AAC

    Материалы для AAC зависят от производителя и местоположения и указаны в ASTM C1386. Они включают некоторые или все из следующего: мелкодисперсный кварцевый песок; Летучая зола класса F; гидравлические цементы; кальцинированная известь; гипс; расширительные агенты, такие как мелкоизмельченный алюминиевый порошок или паста; и смешивание воды. Каменные блоки из AAC не имеют внутреннего армирования, но могут быть усилены на строительной площадке с помощью деформированной арматуры, помещенной в вертикальные ячейки или горизонтальные связующие балки.

    Как создается AAC

    Для производства ААС песок при необходимости измельчается до необходимой степени измельчения в шаровой мельнице и хранится вместе с другим сырьем. Затем сырье дозируется по весу и доставляется в смеситель. В смеситель добавляют отмеренные количества воды и расширительного агента, и цементный раствор перемешивают.

    Стальные формы подготовлены для приема свежего AAC. Если должны производиться армированные панели AAC, стальные арматурные каркасы закрепляются внутри форм.После перемешивания кашицу разливают в формы. Расширяющий агент создает небольшие мелкодисперсные пустоты в свежей смеси, которые увеличивают объем примерно на 50 процентов в формах в течение трех часов.

    В течение нескольких часов после заливки начальная гидратация цементных смесей в AAC дает ему достаточную прочность, чтобы сохранять свою форму и выдерживать собственный вес.

    Общие этапы производства газобетона в автоклаве

    После резки газобетон транспортируется в большой автоклав, где завершается процесс отверждения.Автоклавирование необходимо для достижения желаемых структурных свойств и стабильности размеров. Процесс занимает от восьми до 12 часов при давлении около 174 фунтов на квадратный дюйм (12 бар) и температуре около 360 ° F (180 ° C), в зависимости от марки производимого материала. Во время автоклавирования устройства для обрезки проволоки остаются в исходном положении в блоке AAC. После автоклавирования их разделяют для упаковки.

    Агрегаты

    AAC обычно помещаются на поддоны для транспортировки. Неармированные элементы обычно упаковываются в термоусадочную пленку, в то время как армированные элементы связываются только полосами с использованием угловых ограждений для минимизации потенциальных локальных повреждений, которые могут быть вызваны полосами.

    Классы прочности AAC

    AAC производится с различной плотностью и соответствующей прочностью на сжатие в соответствии со стандартом ASTM C1386. Плотность и соответствующая прочность описаны в терминах «классов прочности» (см. Таблицу 1).

    ТАБЛИЦА 1
    Прочность
    Класс
    Задано
    На сжатие
    Прочность
    фунт / дюйм2 (МПа)
    Номинальная сухая
    Насыпная плотность
    фунт / фут3 (кг / м3)
    Пределы плотности
    фунт / фут3 (кг / м3)
    AAC 2.0 290 (2,0) 25 (400)
    31 (500)
    22 (350) — 28 (450)
    28 (450) — 34 (550)
    AAC 4.0 580 (4,0) 31 (500)
    37 (600)
    28 (450) — 34 (550)
    34 (550) — 41 (650)
    AAC 6.0 870 (6,0) 44 (700)
    50 (800)
    44 (700)
    50 (800)
    41 (650) — 47 (750)
    47 (750) — 53 (850)
    41 (650) — 47 (750)
    47 (750) — 53 (850)

    Типовые размеры блоков AAC кирпичного типа

    Типичные размеры блоков AAC каменного типа (блоки каменного типа) показаны в таблице 2 ниже.

    ТАБЛИЦА 2
    Блок AAC
    Тип
    Толщина,
    дюймов (мм)
    Высота,
    дюймов (мм)
    Длина,
    дюймов (мм)

    Типовая кладка с применением AAC

    Кладка

    AAC может использоваться в широком спектре структурных и неструктурных приложений.Например, в приложениях, используемых в проектах в Аризоне и Лас-Пальмасе, Мексика, тепловая и акустическая эффективность AAC делает его привлекательным выбором для ограждающих конструкций здания.

    Конструктивное проектирование кирпичной кладки AAC

    Кладка

    AAC спроектирована в соответствии с положениями Приложения A Кодекса MSJC (MSJC 2008), на который ссылаются коды моделей по всей территории Соединенных Штатов. Расчет кладки AAC аналогичен расчету прочности кладки из глины или бетона и основан на заданной прочности на сжатие.Соответствие указанной прочности на сжатие подтверждается испытанием на сжатие кубов AAC с использованием ASTM C1386, когда изготавливаются элементы каменного типа из AAC. Подробное практическое руководство по проектированию с использованием каменной кладки AAC представлено в 5-м издании Руководства для дизайнеров каменной кладки (MDG 2007).

    Комбинации изгиба и осевой нагрузки

    Кладка

    AAC разработана для сочетания изгиба и осевой нагрузки с использованием тех же принципов, что и для расчета прочности глиняной или бетонной кладки.Номинальная грузоподъемность рассчитывается исходя из плоских сечений, растянутой стали при текучести и эквивалентного прямоугольного блока сжатия.

    Показан отель AAC в Лас-Пальмасе, Мексика, где AAC используется как структура и оболочка. Изображение любезно предоставлено AACPA

    Связь и усиление

    Армирование в кирпичной кладке AAC состоит из деформированной арматуры, помещенной в залитые вертикальные стержни или связующие балки и окруженной цементным раствором. Требования к развитию и стыковке деформируемой арматуры в растворе идентичны требованиям, применяемым для кладки из глины или бетона.Консервативно, материал AAC не учитывается при расчете покрытия на сопротивление раскалыванию.

    Ножницы и подшипники

    Выравнивающая станина и прокладки для первого ряда каменных блоков из AAC ??? Первый ряд кирпичных блоков AAC укладывается на выравнивающий слой из раствора ASTM C270 типа M или S с использованием клиньев (при желании) для отвеса и выравнивания блоков.

    Как и в случае с глиняной или бетонной кладкой, сопротивление сдвигу каменной кладки AAC вычисляется как сумма сопротивления сдвигу из-за самого AAC и сопротивления сдвигу из-за арматуры, ориентированной параллельно направлению сдвига.Поскольку обычная арматура стыка основания вызывает локальное раздавливание AAC под поперечными проволоками, Кодекс MSJC требует, чтобы учитывался только вклад сдвиговых балок с залитой арматурой. Чтобы предотвратить локальное раздавливание ААЦ, номинальные напряжения в нем ограничиваются заданной прочностью на сжатие. Когда элементы пола или крыши упираются в стены из AAC, также возможно разрушение края стены при сдвиге. Это решается путем ограничения напряжения сдвига на потенциальных наклонных поверхностях разрушения.

    Укладка элементов кладки AAC

    На уровне диафрагмы стены из кирпичной кладки AAC соединяются с полом или крышей с помощью залитой цементным раствором балки, аналогичной конструкции из глиняной или бетонной кладки. После укладки блоков кладки AAC плоскость стены можно выровнять с помощью шлифовальной доски, изготовленной для этой цели.

    Электрооборудование и сантехника в соответствии с AAC

    Электромонтажные и сантехнические установки в кирпичной кладке AAC размещаются в проложенных выемках. При установке желобов необходимо соблюдать осторожность, чтобы обеспечить сохранение структурной целостности элементов AAC.Не сокращайте арматурную сталь и не уменьшайте конструктивную толщину элементов AAC, за исключением случаев, когда это разрешено проектировщиком. В вертикально перекрывающихся элементах AAC горизонтальная прокладка разрешается только в областях с низкими напряжениями изгиба и сжатия. В элементах AAC, охватывающих горизонтально, следует минимизировать вертикальную маршрутизацию. Когда это возможно, может быть полезно предусмотреть специальные выемки для большого количества трубопровода или водопровода.

    Укладка кирпичной кладки AAC тонким слоем и зубчатым шпателем ??? последующие слои укладываются с помощью модифицированного полимером тонкослойного раствора, наносимого специальным зубчатым шпателем.

    Внешняя отделка для AAC

    Незащищенный внешний вид AAC ухудшается при воздействии циклов замораживания и оттаивания в насыщенном состоянии. Чтобы предотвратить такое ухудшение состояния при замораживании-оттаивании, а также для улучшения внешнего вида и устойчивости к истиранию AAC, следует использовать внешние отделочные покрытия. Они должны быть совместимы с лежащим в основе AAC с точки зрения теплового расширения и модуля упругости, а также должны быть паропроницаемыми.

    Доступно множество различных типов внешней отделки. Модифицированные полимером штукатурки, краски или отделочные системы являются наиболее распространенной внешней отделкой для AAC.Они увеличивают сопротивление проникновению воды AAC, позволяя пропускать водяной пар. Тяжелые краски на акриловой основе, содержащие заполнители, также используются для повышения стойкости к истиранию. Как правило, нет необходимости выравнивать поверхность, а горизонтальные и вертикальные швы могут быть скошены как архитектурный элемент или могут быть заполнены.

    Изображение предоставлено Aercon Изображение предоставлено Aercon Florida

    Кладочный шпон можно использовать поверх каменной кладки AAC почти так же, как он используется для других материалов.Шпон крепится к стене из кладки AAC с помощью специальных стяжек. Пространство между AAC и кладкой можно оставить открытым (образуя дренажную стену) или заполнить раствором.

    Когда панели AAC используются в контакте с влажной или насыщенной почвой (например, в стенах подвала), поверхность, контактирующая с почвой, должна быть покрыта водонепроницаемым материалом или мембраной. Внутренняя поверхность должна быть либо без покрытия, либо иметь паропроницаемую внутреннюю отделку.

    Внутренняя отделка для кирпичной кладки AAC

    Внутренняя отделка используется для повышения эстетики и долговечности AAC. Они должны быть совместимы с лежащим в основе AAC с точки зрения теплового расширения и модуля упругости, а также должны быть паропроницаемыми.

    Доступно множество различных видов внутренней отделки. Внутренние стеновые панели из AAC могут иметь тонкий слой штукатурки на минеральной основе для достижения гладкой поверхности. Легкая внутренняя штукатурка на основе гипса может обеспечить более толстое покрытие для выравнивания и выпрямления стен, а также для создания основы для декоративных красок для внутренних помещений или отделки стен.Внутренние штукатурки содержат связующие вещества, повышающие их адгезию и гибкость, и обычно наносятся путем распыления или затирки.

    Гипсокартон при нанесении на внутреннюю поверхность наружных стен из AAC следует крепить с помощью полос для опалубки, обработанных под давлением. При нанесении на внутренние стены влагостойкий гипсокартон можно наносить непосредственно на поверхность AAC.

    Изображение предоставлено Aercon Florida

    Для коммерческих применений, требующих высокой прочности и низких эксплуатационных расходов, часто используются покрытия на акриловой основе.Некоторые содержат заполнители для повышения стойкости к истиранию.

    Когда керамическая настенная плитка должна быть уложена поверх AAC, подготовка поверхности обычно необходима только тогда, когда поверхность AAC требует выравнивания. В таких случаях перед укладкой керамической плитки на поверхность AAC наносится покрытие на основе портландцемента или гипса. Затем керамическую плитку следует приклеить к обшитой паркетом стене с помощью тонкого раствора на цементной основе или органического клея. Во влажных помещениях, таких как душевые, следует использовать только паржевое покрытие на основе портландцемента, а керамическую плитку следует укладывать только на цементный тонко застывший раствор.

    Типовые конструктивные особенности элементов AAC

    Широкий спектр строительных деталей для каменной кладки AAC доступен на веб-сайтах отдельных производителей, доступных через веб-сайт AACPA.


    Ричард Э. Клингнер — профессор гражданского строительства им. Л. П. Гилвина в Техасском университете в Остине, где он специализируется на поведении и проектировании каменной кладки, особенно в условиях землетрясений. Мнения, выраженные в этой статье, являются его собственными и не обязательно отражают официальную точку зрения MSJC или его спонсирующих обществ.Свяжитесь с ним по адресу [email protected]

    Вернуться к содержанию

    Built Expressions Bangalore :: Газобетонные блоки

    Блоки из пенобетона: экологичный и универсальный материал

    Б. Л. Раджпут1 и А. Л. Агарвал2

    1 доцент, NICMAR, 25/1 Balewadi, Pune 411045

    2Professor, NICMAR, 25/1 Balewadi, Pune 411045

    Реферат: Строительная промышленность Индии производит и потребляет большое количество разнообразных материалов.Хотя рост строительного сектора в Индии повысил спрос на различные материалы, бетон остается одним из наиболее широко потребляемых строительных материалов. Замена кирпича бетонными блоками широко распространена, так как это позволяет сохранить плодородный верхний слой почвы обрабатываемой земли. Бетонные блоки используются в перегородках различной толщины, а также в несущих стенах. Чтобы решить проблему веса бетона на конструкции и сделать конструкцию экономичной, предпринимаются попытки уменьшить нагрузку на бетонный блок, сделав его перфорированным или ячеистым.В этом документе делается попытка осветить последние разработки в области газобетонных блоков, а также их свойства, требования к испытаниям в соответствии с кодексом IS, области применения и преимущества по сравнению с обычными кирпичами.

    Введение

    Строительная отрасль Индии является одной из крупнейших с точки зрения затрат, объема потребляемого сырья / природных ресурсов, объема произведенных материалов и продукции, создания рабочих мест, воздействия на окружающую среду и т. Д.Строительная промышленность Индии производит и потребляет большое количество строительных материалов. Рост в строительном секторе в Индии увеличил спрос на различные строительные материалы, как показано в Таблице 1 [1].

    Таблица 1: Прогнозируемый спрос на строительные материалы

    Материал

    Год 2000

    Год 2020

    Кирпичи (шт.)

    150 х 109

    246 х 109

    Конструкционная сталь (тонн)

    11 х 106

    30 х 106

    Цемент (тонн)

    96 х 106

    255 х 106

    PLZ См. Таблицу

    на странице Pfd № 307

    Большинство строительных материалов являются энергоемкими, и их широкое использование может истощить энергетические ресурсы и отрицательно повлиять на окружающую среду.Следовательно, существует потребность в оптимальном использовании доступных энергетических ресурсов и сырья для производства простых, энергоэффективных, экологически чистых и устойчивых строительных альтернатив и методов для удовлетворения растущего спроса на строительство зданий. Ниже приведены некоторые параметры, которые необходимо учитывать при разработке экологически безопасных альтернативных строительных технологий.

    • Использование экологически чистых материалов и технологий

    • Минимальное использование высокоэнергетических материалов

    • Использование возобновляемых источников энергии

    • Минимальная транспортировка и использование имеющихся на месте материалов

    • Утилизация и / или переработка отходов строительных материалов

    Автоклавный газобетон

    Автоклавный газобетон (AAC) — легкий и экологически чистый строительный материал.Шведский архитектор Аксель Эрикссон изобрел этот инновационный материал в середине 1920 года [3]. AAC обычно используется в виде блоков, но бывает разных форм: от блоков, перемычек, стен, полов до крышных панелей. Блоки AAC используются для стен несущих конструкций, перегородок, внутреннего листа пустотелых стен или в качестве основы для кирпичной кладки, внешних стен для каркасных конструкций RCC при защите от атмосферных воздействий путем штукатурки или какой-либо другой эффективной обработки. Требования к блокам AAC плотностью до 1000 кг / м3 описаны в коде BIS IS 2185 (Часть 3).

    Производственный процесс

    Очень краткое описание процесса производства AAC дается в стандарте IS 2185 (часть 3), который представлен здесь. В блоках AAC используется газобетон, который получают путем введения воздуха или другого газа в суспензию, состоящую из цемента или извести и кремнистого наполнителя. Цемент, соответствующий индийским стандартам, может использоваться по усмотрению производителя. Использование летучей золы, соответствующей IS 3812-1981, может быть разрешено до 20%.Используемая известь должна соответствовать требованиям к извести класса C, установленным в стандарте IS 712-1973. Заполнители, используемые для производства блоков AAC, должны соответствовать стандарту IS 383-1970, за исключением классификации, которая может быть сделана для соответствия продукту, и содержание кремнезема, которое должно быть не менее 80%. Добавки могут добавляться либо в качестве добавки к цементу во время производства, либо в качестве добавок к бетонной смеси. Существует несколько способов образования воздушных ячеек или других пустот в

    .

    суспензия с образованием ячеистой структуры после автоклавирования:

    • За счет образования газа в результате химической реакции в массе на стадии жидкости или пластика

    • Путем подачи воздуха либо путем добавления к суспензии в смесителе предварительно сформированной стабильной пены, например, используемой при пожаротушении, либо с использованием воздухововлекающих агентов.

    Обычно автоклавирование (отверждение паром под высоким давлением) длится от 14 до 18 часов.При автоклавировании бетон подвергается воздействию максимальной температуры около 1750 ° C, что соответствует давлению пара около 8,5 кг / см2. После испарения водорода сильно вспененный бетон с закрытыми ячейками разрезается на размер. Блокам AAC можно придать различные текстуры поверхности, от очень мелкой близкой текстуры до грубой открытой текстуры путем правильного выбора, сортировки и пропорционального распределения заполнителей во время производства или путем обработки лицевой стороны блоков, пока они еще зеленые, проволокой. щеткой или слегка размыв поверхность, разбрызгивая на нее мелкую струю воды.

    Физические свойства

    В таблице 2 представлено сравнение различных свойств различных материалов стен, таких как глиняный кирпич, кирпич из зольной пыли, пустотелые и полнотелые бетонные блоки. Это показывает, что блоки AAC являются отличными стеновыми материалами по сравнению с другими материалами.

    Отбор проб

    Для тестирования блоков AAC на месте необходимо взять образцы из партии. Подробный метод выборки был описан в IS 2185 (Часть 3) для выборки блоков AAC.

    Когда отбор проб описанным методом практически неосуществим, пробы необходимо отбирать методом случайной выборки. В этом методе пробу следует брать из верхней части штабеля в доступном месте и изнутри штабелей, открывая траншеи сверху. Образцы блоков должны быть помечены для будущей идентификации груза, который они представляют. Блоки необходимо хранить под навесом и защищать от экстремальных условий температуры, относительной влажности и ветра до тех пор, пока они не потребуются для испытания.

    Sl

    Недвижимость

    Обыкновенный ожог

    Глиняное здание

    кирпичей IS 1077

    Кирпич из зольной пыли

    IS12894-2002

    Пустотелый и цельный

    бетонные блоки

    IS2185 (Часть — I)

    Блок AAC IS2185

    (Часть III)

    1

    Размер согласно IS

    мм Нормальный

    190 х 90 х 90

    190 х 90 х 40

    230 х 110 х 70

    190 х 90 х 90

    190 х 90 х 40

    230 х 110 х 70

    230 х 110 х 30

    400, 500, 600 длина

    200, высота 100 мм

    50, 75, 100, 150, 200,

    Ширина 250 или 300 мм

    400, 500, 600

    длина

    200, 250, 300

    высота

    100, 150, 200 или

    ширина 250 мм

    2

    Плотность кг / м3

    1700-1800

    1700

    полый A- мин. 1500

    B- от 1000 до 1500

    Solid Не менее

    чем 1800

    451–1000

    3

    Компрессионный

    прочность Н / мм2

    3.5–35

    3,5 до 35

    А-3,5,4,5,5,5,7,0

    Б-2.0,3.0,5.0

    от 1,5 до 7

    4

    Усадка при сушке

    Не доступен

    Не более

    0,15%

    Не должно превышать 0.1%

    Не может быть больше

    , чем 0,05% для

    класс 1 и 0,10% за

    квартал 2

    5

    Тепловой

    проводимость Вт / м

    ок

    0,82

    от 20 до 30% меньше

    бетонные

    блоков

    0.70 — 1,28

    0,9–0,22

    6

    Звукоизоляция

    50 дБ для 230 мм

    толстостенная

    Обычный

    Хорошо

    45 дБ для 200 мм

    толстостенная

    7

    Водопоглощение

    Не может быть больше

    , чем на 20% на

    вес до 12.5

    класс и 15% от

    вес для более

    класс

    Не может быть больше

    , чем 20% по массе

    до 12,5 класса и

    15% по массе для

    высший класс

    Не более 10% к

    Масса

    8% *

    8

    Выцветание

    Не может быть больше

    , чем умеренный

    к классу 12.5 и

    легкий для высших

    классы

    Не может быть больше

    чем умеренный до

    класс 12,5 и легкий

    для старших классов

    Не применимо

    Не применимо

    9

    Стоимость

    рупий.4-5 / кирпич

    6 рупий / кирпич

    рупий. С 20 по 30

    за блок

    рупий. 80 — 90 / блок

    Таблица 2: Сравнение физических свойств различных стеновых материалов

    PLZ См. Таблицу

    на странице Pfd № 309

    ( Источник: коды IS и производственные брошюры Ecolite — JVS Comatsco India Pvt.Ltd, Aerocon, Хайдарабад, и

    Siporex India Pvt. Ltd * Брошюра по блокам Magicrete AAC)

    После отбора проб следует как можно скорее провести тестирование. Все 24 блока необходимо проверить на предмет размеров и визуальных дефектов. Из 24 блоков 12 блоков подвергаются испытанию на прочность при сжатии, 3 блока — испытанию на плотность, 3 блока — испытанию на теплопроводность и 3 блока — испытанию на усадку при высыхании. Оставшиеся 3 блока следует зарезервировать для повторного испытания на усадку при сушке, если возникнет такая необходимость.

    Критерии соответствия

    Концепции и производству AAC уже десять лет, и они производятся по всему миру. Некоторые из применяемых кодов перечислены ниже [3].

    • Индийский стандарт: IS2185 (Часть 3)
    • Австралия Стандарт: AS3700: 1997
    • Германия Стандарт: DIN4165: 1990
    • Американский стандарт: ASTMC1693: 1999
    • Китайский стандарт: GB11968: 2006
    • Англия Стандарт: BS-EN771-4: 2003
    • Япония Стандарт: JISA5416: 1995
    • Евро Стандарт: EN771-4: 2003
    • Вьетнам Стандарт: TCVN7959: 2011

    Наряду с вышеперечисленными стандартами при производстве блоков AAC необходимо соблюдать систему менеджмента качества согласно ISO 9001: 2008.

    Преимущества автоклавных блоков из газобетона экологически чистые

    Экологичный и энергосберегающий блок AAC отвечает всем требованиям современности. В процессе не образуются никакие загрязняющие вещества или опасные отходы, а также нет отходов драгоценного сырья [4]. Блоки AAC можно использовать как альтернативу традиционному глиняному кирпичу.

    Традиционные глиняные кирпичи производятся из глинистой почвы. Глиняная почва — это жизненно важный заповедник, на формирование которого уходят тысячи лет.Благодаря постоянному использованию блоков AAC можно снизить потребление естественной глинистой почвы. После того, как глиняные кирпичи формованы и высушены, они приступают к сложному процессу обжига. Процесс обжига неэффективен и загрязняет окружающую среду. Затем это приводит к большим потерям энергии, а неполное и неравномерное обжигание в дальнейшем приводит к получению кирпичей низкого качества и высокому процентному содержанию взвеси (твердых частиц), которые выбрасываются в атмосферу и связаны с экологическими проблемами, такими как разрушение озонового слоя и глобальное потепление [ 5].Блоки AAC обеспечивают отличную теплоизоляцию и значительно снижают потребление энергии. Простота обработки блоков AAC помогает также исключить ненужные отходы на строительной площадке.

    Прочность

    Долговечность любого материала — важный фактор, который необходимо учитывать при выборе строительных материалов. Блоки AAC обладают отличной прочностью. По всему миру существует множество сооружений, многим из которых более 60 лет, и они находятся в отличном состоянии [6].Блоки AAC могут обеспечить хорошую устойчивость к суровым климатическим условиям и не разрушаются с течением времени. Это, в свою очередь, снижает стоимость обслуживания конструкции, уменьшая стоимость ее жизненного цикла. Из-за того, что блоки AAC менее пористы и имеют меньшее количество стыков, они обеспечивают отличную устойчивость к атакам термитов, что исключает необходимость химической защиты. Благодаря легкости стены из этого материала обладают хорошей сейсмостойкостью.

    Высокая теплоизоляция

    В типичном производственном процессе большое количество крошечных ячеек формируется в блоках AAC.Эти крошечные ячейки способствуют теплоизоляционным свойствам материала, что помогает снизить затраты на отопление и охлаждение здания. Он также имеет лучшую тепло- и звукоизоляцию за счет меньшего количества стыков. Эксперименты, проведенные со стенами из блоков AAC, показали, что среднее энергопотребление комнаты, построенной из блоков AAC, примерно на 25% меньше, чем в комнате из глиняных кирпичей.

    Огнестойкий

    Блоки

    AAC полностью неорганические и негорючие.Поскольку AAC является химически неорганическим материалом, а это означает, что он не горит, нет абсолютно никаких шансов на образование токсичных паров, что часто бывает с традиционными материалами. Продукт особенно подходит для применения в огнестойких условиях. Температура большинства пожаров в жилых домах не превышает 12000 ° C, а блоки AAC не разрушаются, пока не превышает 30000 ° C. Это позволяет ему сохранять структурную целостность даже после пожара. Стены из блоков AAC не только противостоят огню, но и фактически помогают предотвратить его распространение в другие районы, выступая в качестве противопожарной защиты в случае, если дома расположены слишком близко, чтобы образовать барьер.Стена из блоков AAC толщиной 100 мм имеет 4-часовой предел огнестойкости [5]

    Звукоизоляция

    Благодаря крошечной структуре ячеек из блоков AAC и прочной конструкции стены, стена из блоков AAC обеспечивает отличную звукоизоляцию, значительно снижая внешний шум и обеспечивая более тихий и комфортный интерьер для пассажиров. Класс звукопередачи (STC) для типичной стены AAC толщиной около 200 мм колеблется от 40 до 55 [6]. Следовательно, блоки AAC обладают отличной способностью подавления звука и уменьшают эффект эха в пустой комнате.Присущие AAC звукоизолирующие свойства делают его идеальным для контроля передачи шума между соседними комнатами, и, следовательно, эти блоки предпочтительны при строительстве квартир, гостиниц, ИТ-офисов, студий звукозаписи, мультиплексов и т. Д.

    Простота обработки

    Блоки

    AAC можно легко разрезать или придать им желаемые размеры. С помощью AAC можно реализовать практически любой креативный дизайн. Углы блоков можно обрезать, чтобы получились арки или закругленные края.Его можно распиливать, сверлить, прибивать гвоздями и обрабатывать с помощью стандартных инструментов. Его также можно оштукатурить и отделать плиткой или краской, что делает его одним из самых универсальных строительных материалов. Следовательно, блоки AAC могут использоваться для всех приложений, включая стены, крыши, полы и балконы, как в несущих, так и в ненесущих приложениях.

    Экономичное строительство

    Таблицы 3 и 4 подтверждают, что блоки AAC являются экономичным строительным материалом.

    PLZ См. Таблицу

    на странице Pfd № 312

    Заключение

    Огромный рост строительства в Индии увеличил спрос на различные строительные материалы.Из-за роста затрат строительным агентствам очень сложно контролировать стоимость материалов. Кроме того, большинство этих материалов являются энергоемкими и переносятся на большие расстояния. Широкое использование этих материалов может истощить энергетические ресурсы и отрицательно сказаться на окружающей среде. Следовательно, существует острая необходимость в использовании простых, энергоэффективных, экологически чистых и устойчивых строительных материалов и технологий для строительства. Блоки AAC удовлетворяют всем вышеперечисленным требованиям и могут использоваться в качестве альтернативного материала для стен.AAC — прочный материал в самых разнообразных климатических условиях. Строительство с использованием AAC оказалось экономичным из-за скорости строительства, меньшего количества отделочной обработки и минимального технического обслуживания после этого. AAC может быть неэкономичным, если для строительства требуются небольшие количества, а сама стоимость транспортировки делает их более дорогостоящими по сравнению с другими альтернативными строительными материалами. Такие свойства AAC, как теплопроводность, удельный вес, удобоукладываемость, звукоизоляция, проницаемость и огнестойкость, делают его универсальным и футуристическим строительным материалом.

    Примечание: Приведенные выше расчеты были выполнены с учетом только экономии за счет стоимости материалов, в то время как другая экономия средств за счет легкого веса AAC, затрат на транспортировку, трудозатрат на строительство и меньшего веса конструкции на фундаменте приводит к экономии в стоимости конструктивного каркаса. Общая экономия затрат может составить примерно до 15%.

    PLZ См. Таблицу

    на странице Pfd № 313

    ССЫЛКИ

    1. Б.В. Венкатарама Редди, «Устойчивые строительные технологии», Современная наука, Vol. 87, № 7, октябрь 2004 г., стр. 899-907.

    2. APITCO Ltd., A.P., Индия, (по состоянию на 06.12.2013)

    3. Блоки из газобетона в автоклаве, Вьетнам, (дата обращения 15.06.2013)

    4. Автоклавный пенобетон Aercon, Флорида, США, (дата обращения 22.06.2013)

    5.ECOLITE Блоки из автоклавного пенобетона, СП Cosmatsco Industries Pvt Ltd., Пуна. (дата обращения 20.06.2013)

    6. М.К. Прабхакар, «AAC экономит время, деньги и обеспечивает преимущества для окружающей среды», The Master Builder, февраль 2010 г., стр. 72-83.

    7. Tarmac Building Products Ltd., Великобритания (дата обращения 15.06.2013)

    8. Группа компаний Ширке — Siporex India Pvt. Ltd., Пуна. (дата обращения 06.12.2013)

    9. IS 1077, Строительный кирпич из обожженной глины обыкновенного — Спецификация, Бюро индийских стандартов, Нью-Дели.

    10. IS 12894 Технические условия на кирпичи из пылевидной золы извести, Бюро индийских стандартов, Нью-Дели.

    11. IS 2185 (Часть I): Спецификация для бетонных блоков (пустотелые и твердые бетонные блоки), Бюро стандартов Индии, Нью-Дели.

    12. IS 2185 (Часть III): (Автоклавные ячеистые газобетонные блоки), Бюро стандартов Индии, Нью-Дели.

    У вас недостаточно прав для чтения этого закона в это время

    У вас недостаточно прав для чтения этого закона в это время

    Логотип Public.Resource.Org На логотипе изображен черно-белый рисунок улыбающегося тюленя с усами. Вокруг печати красная круглая полоса с белым шрифтом, в верхней половине которого написано «Печать одобрения», а в нижней половине — «Public.Resource.Org». На внешней стороне красной круглой марки находится круг. серебряная круглая полоса с зубчатыми краями, напоминающая печать из серебряной фольги.

    Public.Resource.Org

    Хилдсбург, Калифорния, 95448
    Соединенные Штаты Америки

    Этот документ в настоящее время недоступен для вас!

    Уважаемый гражданин:

    В настоящее время вам временно отказано в доступе к этому документу.

    Public Resource ведет судебный процесс за ваше право читать и говорить о законах. Для получения дополнительной информации см. Досье по рассматриваемому судебному делу:

    Американское общество испытаний и материалов (ASTM), Национальная ассоциация противопожарной защиты (NFPA),
    и Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха (ASHRAE) v.Public.Resource.Org (общедоступный ресурс),
    DCD 1: 13-cv-01215, Объединенный окружной суд округа Колумбия [1]

    Ваш доступ к этому документу, который является законом Соединенных Штатов Америки, был временно отключен, пока мы боремся за
    ваше право читать и говорить о законах, по которым мы решаем управлять собой как демократическим обществом.

    Чтобы подать заявку на получение лицензии на чтение этого закона, ознакомьтесь с Сводом федеральных нормативных актов или применимыми законами и постановлениями штата.
    на имя и адрес продавца.Для получения дополнительной информации о постановлениях правительства и ваших правах как гражданина в соответствии с нормами закона ,
    пожалуйста, прочтите мое свидетельство перед Конгрессом Соединенных Штатов.
    Вы можете найти более подробную информацию о нашей деятельности на Public Resource
    в нашем реестре деятельности за 2015 год. [2] [3]

    Спасибо за интерес к чтению закона. Информированные граждане — фундаментальное требование для работы нашей демократии.