Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Измеряется удельная теплоемкость: Удельная теплоёмкость — это… Что такое Удельная теплоёмкость?

Содержание

Удельная теплоёмкость — это… Что такое Удельная теплоёмкость?

Уде́льная теплоёмкость — физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 Кельвин. Удельная теплоемкость обозначается буквой c и измеряется в Дж/кг*Кельвин.

Единицей СИ для удельной теплоёмкости является джоуль на килограмм-кельвин. Следовательно, удельную теплоёмкость можно рассматривать как теплоёмкость единицы массы вещества. На значение удельной теплоёмкости влияет температура вещества. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C.

Формула расчёта удельной теплоёмкости: , где  — удельная теплоёмкость,  — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении),  — масса нагреваемого (охлаждающегося) вещества,  — разность конечной и начальной температур вещества.

Значения удельной теплоёмкости некоторых веществ

Таблица I: Стандартные значения удельной теплоёмкостиВнимание: Здесь указана удельная теплоёмкость с использованием единицизмерения температуры в Кельвинах(К).
ЭлементАгрегатное состояниеУдельная
теплоёмкость
Дж/(г·K)
воздух (сухой)газ1,005
воздух (100 % влажность)газ1,0301
алюминийтвёрдое тело0,930
бериллийтвёрдое тело1,8245
латуньтвёрдое тело0,377
оловотвёрдое тело0,218
медьтвёрдое тело0,385
стальтвёрдое тело0,500
алмазтвёрдое тело0,502
этанолжидкость2,460
золототвёрдое тело0,129
графиттвёрдое тело0,720
гелийгаз5,190
водородгаз14,300
железотвёрдое тело0,444
свинецтвёрдое тело0,130
чугунтвёрдое тело0,540
вольфрамтвёрдое тело0,134
литийтвёрдое тело3,582
ртутьжидкость0,139
азотгаз1,042
Нефтяные масла (фракция нефти) зависит от углеводородных составляющихжидкость1,67 — 2,01
кислородгаз0,920
кварцевое стеклотвёрдое тело0,703
вода 373К (100 °C)газ2,020
сусло пивноежидкость3,927
водажидкость4,183
лёдтвёрдое тело2,060
Значения приведены для стандартных условий, если это не оговорено особо.
Таблица II: Значения удельной теплоёмкости для некоторых строительных материалов
ВеществоАгрегатное состояниеУдельная
теплоёмкость
кДж*(кг−1·K−1)
Объёмная
теплоёмкость
кДж*(дм³−1·K−1)
асфальттвёрдое тело0,921,2
полнотелый кирпичтвёрдое тело0,841,344
силикатный кирпичтвёрдое тело11,7
бетонтвёрдое тело0,881,7
кронглас (стекло)твёрдое тело0,671,709
флинт (стекло)твёрдое тело0,5032,1
оконное стеклотвёрдое тело0,842,1
граниттвёрдое тело0,7902,1
гипствёрдое тело1,092,507
мрамор, слюдатвёрдое тело0,8802,4
песоктвёрдое тело0,8351,2
стальтвёрдое тело0,473,713
почватвёрдое тело0,80
древесинатвёрдое тело1,71

См. также

Примечания

Литература

Ссылки

В этой статье не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 19 ноября 2011.

В чем измеряется удельная теплоемкость вещества в системе си?

14. Першу годину автомобіліст їхав зі швидкістю 50 км/год і розрахував,
що коли він і далі буде їхати з такою швидкістю, то запізниться в місто на
пів

години. Він збільшив швидкість на 20% і приїхав своєчасно. Який шлях
проїхав автомобіліст? Скільки часу він знаходився у дорозі? Якою є середня
швидкість руху автомобіліста?

а полозьях, которые могут скользить по гладкому полу,установлен гидравлический пресс,заполненный несжимаемым маслом. Шток поршня большего диаметра при

креплён к стене (рис.а). При движении поршня между ними стенкой пресса возникает сила трения F(одинаковая для обоих поршней). Чтобы сдвинуть пресс с места, к меньшему поршню необходимо приложить силу не меньшую,чем F1=500 Н.Определите величину силытрения F, если площади поршней отличаются в 4 раза.Какую минимальную горизонтальную силу F2необходимо приложить к поршню большего диаметра, чтобы отодвинуть пресс от стены, если установить его так, чтобы шток меньшего поршня был прикреплен к стене(рис.б)? В какую сторону в этом случае должна быть направлена сила F2?

12. Відстань між кінцевими зупинками трамвайного маршруту 4 км.
Трамвай проходить маршрут в одному напрямку за 10 хв, а в протилежному
– за 20 хв. Яко

ю є середня швидкість руху трамвая?

решите задачу 5.8 12 баллов

решите задачу 5.5 20 баллов

Преобразуй указанные единицы. Округление не выполняй!
98,8692 км3 =
м3
133889 см3 =
м3
1435 дм3 =
м3

знайти період коливання тіла якщо його частота 100 гц

На упаковке творога жирностью 5% есть надпись «Пищевая ценность 100 г продукта: белки — 14,8 г, жиры — 5 г, углеводы — 1,5 г». Определи энергетическую

ценность (калорийность) 100 г творога жирностью 5% и вырази её в килоджоулях. (Прими 1 кал = 4,19 Дж). Ответ: ккал = кДж. ​

за графіком визначити коефіцієнт жорсткості пружини ​

я хз че и как именно, но слушайте.есть стиральная машинка у неё диаметр барабана 60 см а барабан крутиться 1080 оборотов в минуту. Вопрос: Сколько кил

ометров в час крутится барабан. ВСЕ ДАННЫЕ ДАЛ! ​

Чему равна удельная теплоемкость

Удельная теплоемкость является характеристикой вещества. То есть у разных веществ она различна. Кроме того, одно и то же вещество, но в разных агрегатных состояниях обладает разной удельной теплоемкостью. Таким образом, правильно говорить об удельной теплоемкости вещества (удельная теплоемкость воды, удельная теплоемкость золота, удельная теплоемкость древесины и т. д.).

Удельная теплоемкость конкретного вещества показывает, сколько тепла (Q) надо ему передать, чтобы нагреть 1 килограмм этого вещества на 1 градус Цельсия. Удельную теплоемкость обозначают латинской буквой c. То есть, c = Q/mt. Учитывая, что t и m равны единице (1 кг и 1 °C), то удельная теплоемкость численно равна количеству теплоты.

Однако теплота и удельная теплоемкость имеют разные единицы измерения. Теплота (Q) в системе Си измеряется в Джоулях (Дж). А удельная теплоемкость — в Джоулях, деленных на килограмм, умноженный на градус Цельсия: Дж/(кг · °C).

Если удельная теплоемкость какого-то вещества равна, например, 390 Дж/(кг · °C), то это значит, что если 1 кг этого вещества нагреется на 1 °C, то оно поглотит 390 Дж тепла. Или, другими словами, чтобы нагреть 1 кг этого вещества на 1 °C, ему надо передать 390 Дж тепла. Или, если 1 кг этого вещества охладится на 1 °C, то оно отдаст 390 Дж тепла.

Если же на 1 °C нагревается не 1, а 2 кг вещества, то ему надо передать в два раза больше тепла. Так для примера выше это уже будет 780 Дж. То же самое будет, если нагреть на 2 °C 1 кг вещества.

Удельная теплоемкость вещества не зависит от его начальной температуры. То есть если например, жидкая вода имеет удельную теплоемкость 4200 Дж/(кг · °C), то нагревание на 1 °C хоть двадцатиградусной, хоть девяностоградусной воды одинаково потребует 4200 Дж тепла на 1 кг.

А вот лед имеет удельную теплоемкость отличную от жидкой воды, почти в два раза меньше. Однако, чтобы и его нагреть на 1 °C потребуется одинаковое количество теплоты на 1 кг, независимо от его начальной температуры.

Удельная теплоемкость также не зависит от формы тела, которое изготовлено из данного вещества. Стальной брусок и стальной лист, имеющие одинаковую массу, потребуют одинаковое количество теплоты для нагревания их на одинаковое количество градусов. Другое дело, что при этом следует пренебречь обменом теплом с окружающей средой. У листа поверхность больше, чем у бруска, а значит, лист больше отдает тепла, и поэтому быстрее будет остывать. Но в идеальных условиях (когда можно пренебречь потерей тепла) форма тела не играет роли. Поэтому говорят, что удельная теплоемкость — это характеристика вещества, но не тела.

Итак, удельная теплоемкость у разных веществ различна. Это значит, что если даны различные вещества одинаковой массы и с одинаковой температурой, то чтобы нагреть их до другой температуры, им надо передать разное количество тепла. Например, килограмму меди потребуется тепла примерно в 10 раз меньше, чем воде. То есть у меди удельная теплоемкость примерно в 10 раз меньше, чем у воды. Можно сказать, что в «медь помещается меньше тепла».

Количество теплоты, которое надо передать телу, чтобы нагреть его от одной температуры до другой, находят по следующей формуле:

Q = cm(tк – tн)

Здесь tк и tн — конечная и начальная температуры, m — масса вещества, c — его удельная теплоемкость. Удельную теплоемкость обычно берут из таблиц. Из этой формулы можно выразить удельную теплоемкость:

c = Q/(m(tк – tн))

Таблицы удельной теплоемкости веществ: газов, жидкостей, металлов, продуктов

АБС пластик1300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках840
Алмаз502
Аргиллит700…1000
Асбест волокнистый1050
Асбестоцемент1500
Асботекстолит1670
Асбошифер837
Асфальт920…2100
Асфальтобетон1680
Аэрогель (Aspen aerogels)700
Базальт850…920
Барит461
Береза1250
Бетон710…1130
Битумоперлит1130
Битумы нефтяные строительные и кровельные1680
Бумага1090…1500
Вата минеральная920
Вата стеклянная800
Вата хлопчатобумажная1675
Вата шлаковая750
Вермикулит840
Вермикулитобетон840
Винипласт1000
Войлок шерстяной1700
Воск2930
Газо- и пенобетон, газо- и пеносиликат, газо- и пенозолобетон840
Гетинакс1400
Гипс формованный сухой1050
Гипсокартон950
Глина750
Глина огнеупорная800
Глинозем700…840
Гнейс (облицовка)880
Гравий (наполнитель)850
Гравий керамзитовый840
Гравий шунгизитовый840
Гранит (облицовка)880…920
Графит708
Грунт влажный (почва)2010
Грунт лунный740
Грунт песчаный900
Грунт сухой850
Гудрон1675
Диабаз800…900
Динас737
Доломит600…1500
Дуб2300
Железобетон840
Железобетон набивной840
Зола древесная750
Известняк (облицовка)850…920
Изделия из вспученного перлита на битумном связующем1680
Ил песчаный1000…2100
Камень строительный920
Капрон2300
Карболит черный1900
Картон гофрированный1150
Картон облицовочный2300
Картон плотный1200
Картон строительный многослойный2390
Каучук натуральный1400
Кварц кристаллический836
Кварцит700…1300
Керамзит750
Керамзитобетон и керамзитопенобетон840
Кирпич динасовый905
Кирпич карборундовый700
Кирпич красный плотный840…880
Кирпич магнезитовый1055
Кирпич облицовочный880
Кирпич огнеупорный полукислый885
Кирпич силикатный750…840
Кирпич строительный800
Кирпич трепельный710
Кирпич шамотный930
Кладка «Поротон»900
Кладка бутовая из камней средней плотности880
Кладка газосиликатная880
Кладка из глиняного обыкновенного кирпича880
Кладка из керамического пустотного кирпича880
Кладка из силикатного кирпича880
Кладка из трепельного кирпича880
Кладка из шлакового кирпича880
Кокс порошкообразный1210
Корунд711
Краска масляная (эмаль)650…2000
Кремний714
Лава вулканическая840
Латунь400
Лед из тяжелой воды2220
Лед при температуре 0°С2150
Лед при температуре -100°С1170
Лед при температуре -20°С1950
Лед при температуре -60°С1700
Линолеум1470
Листы асбестоцементные плоские840
Листы гипсовые обшивочные (сухая штукатурка)840
Лузга подсолнечная1500
Магнетит586
Малахит740
Маты и полосы из стекловолокна прошивные840
Маты минераловатные прошивные и на синтетическом связующем840
Мел800…880
Миканит250
Мипора1420
Мрамор (облицовка)880
Настил палубный1100
Нафталин1300
Нейлон1600
Неопрен1700
Пакля2300
Парафин2890
Паркет дубовый1100
Паркет штучный880
Паркет щитовой880
Пемзобетон840
Пенобетон840
Пенопласт ПХВ-1 и ПВ-11260
Пенополистирол1340
Пенополистирол «Пеноплекс»1600
Пенополиуретан1470
Пеностекло или газостекло840
Пергамин1680
Перекрытие армокерамическое с бетонным заполнением без штукатурки850
Перекрытие из железобетонных элементов со штукатуркой860
Перекрытие монолитное плоское железобетонное840
Перлитобетон840
Перлитопласт-бетон1050
Перлитофосфогелевые изделия1050
Песок для строительных работ840
Песок речной мелкий700…840
Песок речной мелкий (влажный)2090
Песок сахарный1260
Песок сухой800
Пихта2700
Пластмасса полиэфирная1000…2300
Плита пробковая1850
Плиты алебастровые750
Плиты древесно-волокнистые и древесно-стружечные (ДСП, ДВП)2300
Плиты из гипса840
Плиты из резольноформальдегидного пенопласта1680
Плиты из стеклянного штапельного волокна на синтетическом связующем840
Плиты камышитовые2300
Плиты льнокостричные изоляционные2300
Плиты минераловатные повышенной жесткости840
Плиты минераловатные полужесткие на крахмальном связующем840
Плиты торфяные теплоизоляционные2300
Плиты фибролитовые и арболит на портландцементе2300
Покрытие ковровое1100
Пол гипсовый бесшовный800
Поливинилхлорид (ПВХ)920…1200
Поликарбонат (дифлон)1100…1120
Полиметилметакрилат1200…1650
Полипропилен1930
Полистирол УПП1, ППС900
Полистиролбетон1060
Полихлорвинил1130…1200
Полихлортрифторэтилен920
Полиэтилен высокой плотности1900…2300
Полиэтилен низкой плотности1700
Портландцемент1130
Пробка2050
Пробка гранулированная1800
Раствор гипсовый затирочный900
Раствор гипсоперлитовый840
Раствор гипсоперлитовый поризованный840
Раствор известково-песчаный840
Раствор известковый920
Раствор сложный (песок, известь, цемент)840
Раствор цементно-перлитовый840
Раствор цементно-песчаный840
Раствор цементно-шлаковый840
Резина мягкая1380
Резина пористая2050
Резина твердая обыкновенная1350…1400
Рубероид1500…1680
Сера715
Сланец700…1600
Слюда880
Смола эпоксидная800…1100
Снег лежалый при 0°С2100
Снег свежевыпавший2090
Сосна и ель2300
Сосна смолистая 15% влажности2700
Стекло зеркальное (зеркало)780
Стекло кварцевое890
Стекло лабораторное840
Стекло обыкновенное, оконное670
Стекло флинт490
Стекловата800
Стекловолокно840
Стеклопластик800
Стружка деревянная прессованая1080
Текстолит1470…1510
Толь1680
Торф1880
Торфоплиты2100
Туф (облицовка)750…880
Туфобетон840
Уголь древесный960
Уголь каменный1310
Фанера клееная2300…2500
Фарфор750…1090
Фибролит (серый)1670
Циркон670
Шамот825
Шифер750
Шлак гранулированный750
Шлак котельный700…750
Шлакобетон800
Шлакопемзобетон (термозитобетон)840
Шлакопемзопено- и шлакопемзогазобетон840
Штукатурка гипсовая840
Штукатурка из полистирольного раствора1200
Штукатурка известковая950
Штукатурка известковая с каменной пылью920
Штукатурка перлитовая1130
Штукатурка фасадная с полимерными добавками880
Шунгизитобетон840
Щебень и песок из перлита вспученного840
Щебень из доменного шлака, шлаковой пемзы и аглопорита840
Эбонит1430
Эковата2300
Этрол1500…1800

Ответы | Лаб. 2. Измерение удельной теплоемкости вещества — Физика, 8 класс




0.

Что выражает удельная теплоемкость?

Ответ: удельная теплоемкость выражает количество теплоты, которое нужно передать единичной массе данного вещества для того, чтобы его температура изменилась на единицу.

Зависит ли удельная теплоемкость от массы вещества, изменения его температуры и рода вещества?

Ответ: да.




1.3 · 180$ мл $= 180$ г.







5.

$Δt_1 = t_3 — t_1 = 21 — 19 = 2$°C.




6.

$Δt_2 = t_3 — t_2 = 21 — 98 = -77$°C.




8.

$Q_1 = c_1m_1Δt_1$.
$Q_1 = 4200$ Дж/кг·°C $· 0.15$ кг $· 2$°C $= 1260$ Дж.







10.

Какому веществу соответствует измеренное в работе значе­ние удельной теплоемкости?

Будет соответствовать веществу из железа или стали.

Как объяснить расхождение между найденным и табличным значениями удельной теплоемкости вещества цилиндра?

При теплообмене часть тепла уходит на нагревание стенок калориметра и окружающего воздуха, а также влияют погрешности при определении массы, объёма и температуры, поэтому табличные значения с решениями не совпадают.




11.

Как, по вашему мнению, влияет на точность полученного результата значение массы взятой для опыта воды?

В холодную воду мы положили цилиндр из кипячёной воды, холодная вода нагрелась и некоторое количество молекул исчезло. Масса воды также уменьшилась.



Присоединяйтесь к Telegram-группе @superresheba_8,
делитесь своими решениями и пользуйтесь материалами, которые присылают другие участники группы!




Удельная теплоемкость формула — обозначение и единицы измерения

Каждому школьнику приходилось сталкиваться во время уроков физики с понятием удельной теплоемкости. Определение, заученное со времён школы, помнят не все. Кто-то в дальнейшем поступает на технический факультет при вузе и снова сталкивается с этим термином. Формула удельной теплоемкости — важный параметр, рассматриваемый в момент нагрева вещества. Не зная его, нельзя определить объём энергии, необходимой для осуществления такого процесса.

Определение термина

Физическая величина, характеризующая, сколько тепловой энергии требуется на единицу вещества, и есть удельная теплоемкость, или энтальпия. Также она позволяет определить, сколько тепла необходимо отвести от единицы того или иного соединения, чтобы изменить на 1 градус его температуру. Неважно, по какой системе измеряется этот параметр:

  • Кельвина;
  • Цельсия;
  • Фаренгейта.

Единицей измерения удельной теплоемкости является джоуль, поделенный на килограмм и градус Кельвина. Есть и особая, внесистемная единица, представляющая собой показатель калорий, который имеет вид произведения килограммов и градусов Цельсия. Обозначается теплоемкость удельного типа посредством специальных индексов. Допустим, в ситуации, когда наблюдаются постоянные отметки давления, используется индекс p. Когда постоянство сохраняет объем, его место занимает буква v. Единица, в которой измеряется удельная теплоёмкость — килоджоуль.

Молярная теплоёмкость – отдельный показатель. Это количество тепловой энергии, которое показывает требующееся для нагрева 1 моль вещества на каждый градус. Во время плавления выделяется также определенный объем тепловой энергии. Теплопроводность — разновидность теплопередачи, когда энергия перемещается от нагретой области вещества к более холодной, посредством передвижения частиц. На уроках физики проводится объяснение физического смысла теплоёмкости. Ее размерность обозначена так:

Физическая величина может быть охарактеризована различными способами. В частности, допускается формулировка, согласно которой ее можно представить в виде комбинации теплоемкости вещества к его массе.

Теплоемкость, в свою очередь, это физическая величина. Она отображает объем тепла, который надо подвести либо отвести от вещества для изменения показателя его температуры. Если это объект, масса которого превышает 1 кг, определять этот показатель надо, как для единичного значения.

Примеры для тех или иных веществ

Путем экспериментов удалось выяснить, что показатель является различным для тех или иных веществ. Например, в отношении воды имеется показатель 4,187 кДж. Наибольшим он является у водорода. Для него установлено нормальное значение 14,300 кДж. Наименьшее оно у золота — 0,129 кДж.

Благодаря современным достижениям науки можно увеличить скорость обнаружения интересующих значений и свойств. Если раньше приходилось искать по справочнику соответствующую таблицу, то теперь на любом телефоне появилась опция для поиска через интернет. Наиболее примечательные вещества, теплоёмкость которых представляет интерес чаще всего это:

  • воздушные массы (идеальные и реальные газы) — 1,005 кДж;
  • металл алюминий — 0,930 кДж;
  • медь — 0,385 кДж.

Лабораторная работа

На школьных уроках определяется теплоемкость в отношении твердых веществ. Ее удаётся подсчитать при сравнении с тем показателем, который уже известен. Таблица удельной теплоемкости создана специально для удобства подсчетов.

Берут воду и твердый объект в нагретом состоянии, после чего производят замер температуры обоих. Отпускают твердое тело в жидкость и дожидаются момента теплового равновесия. Чтобы организовать такой эксперимент, необходим колориметр. Соответственно, имея такой прибор, можно пренебрегать небольшими потерями энергии.

В дальнейшем записывается формула объёма тепла, которая переходит в воду при взаимодействии с твёрдым объектом. Второе равенство отображает энергию, передаваемую твёрдым веществом при снижении температуры. Указанные показатели равны. После вычислений можно выявить теплоемкость компонентов, из которых состоит твердый объект. При этом обычно смотрят на данные таблицы, пытаясь таким образом определить, из какого вещества оно было сделано.

Первая задача

Допустим, металл меняет свои показатели температуры в пределах 20-24°. Внутренняя энергия этого вещества увеличивается одновременно на 152 кДж. Необходимо рассчитать, сколько составляет теплоёмкость металлического объекта при условии, что его масса составляет 100 г.

Для решения этой задачи надо воспользоваться специальной формулой. Достаточно подставить имеющиеся значения, но перед этим следует перевести массу в килограммы. Если этого не сделать, ответ будет неверным. В каждом килограмме насчитывается 1000 г. По этой причине 100 г необходимо поделить на 1000. Получается значение, равное 0,1 кг.

После произведенных подсчетов с использованием формулы получается такой результат:

Другие условия

Согласно 2 задаче, даётся энергия внесистемной единицы. Следует выявить температуру, при которой вода в количестве 5 л остынет, если её первоначально возьмут при температуре кипения. При этом она выделяет 1684 кДж тепла. Это количество переводится в джоули = 1680000 Дж.

Чтобы найти ответ, надо воспользоваться формулой, в которой используется масса. С другой стороны, в задаче она не приводится. Но несмотря на это, указан объем жидкости, соответственно, для нахождения критерия допустимо подставить уравнение с коэффициентами:

Плотность ее составляет 1000 кг на м3. Но надо подставлять объём в кубических метрах. Для перевода исходного значения надо поделить его на 1000. Получается число, равное 0,005 м3.

Производятся дальнейшие расчеты, и на выходе получается выражение:

В дальнейшем применяется формула:

Получается отметка, равная 20 ºС.

Другая задача: имеется стакан, в который налито 50 г воды. Сам он имеет массу 100 г. Температура жидкости первоначально имеет показатели 0°. Необходимо найти объем тепла, необходимого для доведения воды до кипения.

Для решения этой задачи надо ввести подходящие параметры. Можно дать условное обозначение характеристикам, которые касаются стакана, в виде единицы. Всё, что касается воды, обозначается индексом 2. Далее следует найти цифры, соответствующие теплоемкости, через таблицу. Если это тара, выполненная из лабораторного стекла, то у нее будут показатели с1 = 840 Дж/ (кг * ºС). Точный показатель для воды будет иметь вид:

Масса в этой задаче приводится в граммах. После перевода получаются показатели:

Начальная температура равна 0°. Необходимо найти параметры, соответствующие температуре кипения — 100°. Стакан нагревается одновременно с жидкостью, которая наполнена им. Поэтому начальное количество теплоты необходимо получить при складывании несколько показателей. Это параметр, получаемый при нагревании стекла, а второй показатель обнаруживается после нагрева воды. Составляется формула такого вида:

Сюда подставляются имеющееся значения, после чего она принимает следующий облик:

Те или иные материалы с одинаковой массой предполагают разные объемы тепла, необходимые для нагрева. Этот показатель обычно больше у металлов, нежели у древесины, например, алюминия или поверхности из штукатурки. То есть вид материала влияет на этот показатель в той же степени, что и масса. Чтобы нагреть бетон в объеме 1 кг требуется примерно 1000 Дж.

Показатели воздуха

Теплоемкость воздуха отличается, в зависимости от сопутствующих условий. Её величина влияет на объём тепла, который требуется для подведения при постоянном давлении к 1 кг воздуха. При этом задается цель — увеличить температуру на градус. Если газ имеет температуру 20°С, то необходимо подведение 1005 джоулей тепла, чтобы нагреть 1 кг этого вещества.

По мере роста температуры повышается удельная теплоемкость. Но здесь имеет место нелинейная зависимости. Средняя теплоемкость почти не меняется, если не отмечается воздействия экстремального холода и других критичных явлений. Но от температуры окружающего пространства зависит удельная теплоемкость вещества не так явно, если сравнивать с вязкостью. Иногда такие связи изображают в виде графиков для лучшего понимания.

При нагреве газов теплоемкость способна возрастать в 1,2 раз.

У влажного воздуха такой параметр является более высоким, нежели у сухого. Вода по сравнению с ним имеет большие значения теплоемкости. Соответственно, когда капли воды висят в воздухе, его теплоемкость становится больше.

Предыдущая

ФизикаУсловия плавания тел — формулы, основные принципы и положения закона Архимеда

Следующая

ФизикаЧастота колебаний — определение, формулы и характеристики

Единицы измерения удельной теплоты — Справочник химика 21





    Количество теплоты, подводимой (или отводимой) к произвольной массе вещества, обозначают Qt, а удельное количество теплоты, отнесенное к единице массы вещества, — (/. Теплоту в системе СИ измеряют в джоулях (Дж), килоджоулях (кДж) допускаются и такие единицы измерения, как калория и килокалория (ккал). [c.25]

    Теплоемкость. Для измерения количества теплоты, подводимой к га у (или отводимой от него), надо знать удельную теплоемкость газа. Удельной теплоемкостью (или просто теплоемкостью) называется количество теплоты, которое необходимо подвести к единице количества вещества (или отвести от него), чтобы повысить (или понизить) его температуру на один градус. [c.25]










    Теплота сгорания, отнесенная к единице количества вещества, называется удельной теплотой сгорания. В зависимости от выбранной для измерения единицы количества вещества удельную теплоту сгорания измеряют в кДж/кг для твердого и жидкого топлива, в кДж/м для газообразного с указанием условий замера объема газа (температура и давление). [c.212]

    Согласно определению, удельная теплопроводность Я соединения равна количеству теплоты, которое протекает через плоскую пластину толщиной 1 см и площадью 1 см за 1 с при условии, что между поверхностями пластины поддерживается разность температур 1 К. Таким образом, единица измерения удельной теплопроводности — Вт/(м-К). Теплопроводность осуществляется в результате прямой передачи энергии между молекулами без учета влияния конвекции или излучения. Согласно законам кинетической теории газов, в области температур и давлений, применяемых в газовой хроматографии, теплопроводность не зависит от давления и для всех газов существенно увеличивается с ростом температуры. [c.379]

    Приведенные объемы в отличие от приведенных массовых характеристик относятся не к 100 000 ккал, а к 1000 ккал теплоты сгорания топлива. Отнесение объема (м ) не к 1 ккал, а к 1000 ккал означает, что единица увеличена в 10 раз по сравнению с м ккал. Действительно, на 1000 ккал теплоты сгорания топлива потребуется объем воздуха (продуктов сгорания) в 10 раз больший, чем на 1 ккал. Когда удельный объем (м /кг), определенный по составу топлива, делится на QPн, кДж/кг, и, следовательно, уменьшается в 4,19 раза по сравнению с делением на QPн, ккал/кг, то увеличение единицы величины происходит уже в 4,19-10 раз. Таким образом численные значения приведенных объемов остаются теми же и не зависят от системы единиц измерений. Так, приведенные объемы, когда величина рРд дана в ккал/кг, составляют [c.18]

    Большим недостатком обычных измерений теплоты смачивания является то, что этот параметр относят к единице массы твердых адсорбентов, тогда как следовало бы относить его к единице поверхности. Чтобы получить сравнимые величины ну- жно знать степень дисперсности и удельную поверхность (для исключения влияния величины удельной поверхности). Ребиндером был предложен коэффициент р, дающий термическую характеристику гидрофильности поверхности твердого тела. Коэффициент р является отношением значений теплоты смачивания одного и того же твердого вещества в воде С 1 и в углеводороде Сг  [c.147]










    Для определения удельной поверхности теплоту смачивания можно использовать при том условии, что ее значение на единицу поверхности известно заранее. Результаты во многом зависят от исходного состояния поверхности, особенно от количества предварительно адсорбированной воды, поэтому необходима тщательная стандартизация процедуры измерения. В целом этот способ уступает методам адсорбции газов и часто требует довольно сложного оборудования. [c.359]

    Если в опыте применяется азотная кислота, то теплотой разведения ее раствора (при обычном переходе от концентрации 20 молей воды на моль кислоты к концентрации 500 молей воды на моль кислоты) можно пренебречь, так как этот эффект мал и лежит за пределами ошибки измерения. Однако, удельный вес исходного раствора сильно отличается от единицы, и это должно быть учтено при расчете с помощью таблиц. В этом случае логичнее поставить опыт так, чтобы целью работы являлось нахождение теплоты нейтрализации при известном составе исходного раствора. [c.50]

    Гаркинс отмечает, что измеренная поверхность может зависеть от рода примененного инструмента. Если цель, для которой определяется площадь поверхности твердого тела, связана с действием молекул на его поверхность, то, повидимому, именно молекулы должны быть инструментами, наилучшим образом приспособленными для измерения этой площади . Поэтому микроскопическое исследование порошка всегда приводила к несколько преуменьшенным значениям удельной поверхности, а следовательно, к преувеличенным величинам адсорбции и теплот адсорбции на единицу поверхности (например, у Паркса ). Все же в ряде случаев [c.174]

    О количестве сообщенной ледяному калориметру теплоты судят по изменению объема смеси вода — лед, находящейся при 0° С. Изменение объема измеряют по перемещению ртути в капилляре или по взвешиванию ртути, вытекающей из капилляра или втягиваемой в него. Поскольку удельный объем льда, воды и ртути и теплота плавления льда при 0° С точно известны, для ледяного калориметра можно заранее рассчитать, какое количество сообщенной калориметру теплоты вызовет определенное изменение объема или какое изменение объема будет наблюдаться при сообщении калориметру единицы количества теплоты. Эти константы не зависят от конструкции калориметра. Кроме того, изменение объема всегда будет строго пропорционально количеству теплоты. Эти соображения могут привести к мысли, что градуировка ледяного калориметра не является необходимой. Однако и для ледяного калориметра следует рекомендовать эмпирическую градуировку, так как выполнение ее позволяет, во-первых, учесть неравномерность сечения капилляра и, во-вторых, получить все отмеченные выше преимущества сравнительного метода измерений. [c.227]

    Для характеристики, активных и неактивных твердых веществ может быть применено измерение и ряда других параметров. В настоящей работе с этой целью используется определение теплот смачивания. Так называется теплота, выделяющаяся при погружении твердого вещества в жидкость. Ее следовало бы относить к единице поверхности, но, вследствие сложности определения последней, теплоту смачивания часто относят к 1 г твердого вещества. Теплота смачивания представляет собой уменьшение полной поверхностной энергии 1 г твердого вещества при погружении его в жидкость (из воздуха или из вакуума). Она связана с удельной поверхностной энергией и удельной свободной поверхностной энергией следующим уравнением  [c.79]

    ТЕПЛОТА СГОРАНИЯ (топлива) — количество теплоты, выделяющейся при полном сгорании топлива в кислороде (раньше эта величина наа. теплотворной способность ю). Т. с. определяют нри нсследованпи топлива, для к-рого эта величина является одним из вая нейших показателей его практич. ценности. Томи же методами, что и для топлив, Т. с. определяют и при исследовапии органич. веществ с целью получения данных об их структуре (см. Теплота образования). При полном сгорании в кислороде органич. вещества его Т. с. характеризуется суммой тепловых эффектов реакций превращения углерода в углекислый газ, водорода — в воду, серы — в серный ангидрид, выделения азота и галогенов в свободном виде. Т. с. измеряют в джоулях 1 Зж= = 1 ньютон-1 метр=(1и-1 м), или в калориях (1 кал= =4,1868 дж). Т. с., отнесенная к единице количества вещества, наз. удельной теплотой сгорания. В зависимости от выбранной для измерения единицы количества вещества удельную Т. с. обозначают для твердого и жидкого вещества — кдж1кг, кал г, ккал кг, для газообразного вещества — кдж/лА, шт ккал , с фиксацией условий (темп-ра, давление) замера объема газа. Обычно берется кубич. метр сухого газа, измеренный нри 20° и 760 мм рт. ст. (ГОСТ 2939—63). [c.39]

    Удельная поверхность катализатора (после опытов по измерению адсорбций паров воды) определялась по низкотемпературной адсорбции паров азота и составляла 220 м 1г. Предварительные опыты показали, что существенных изменений в величине удельной поверхности обезвоженных при 800°С и затем увлажненных образцов катализатора не происходит. Величины теплот смачивания водой, рассчитанные на единицу поверхности, как для образцов с малым содержанием воды, так и для образцов, совершенно ее лишенных, практически одинаковы. Теплота смачивания является ин- [c.124]










    Внд топлива или энергии Единица измерения на коммерческом рынке Удельная низшая теплота сгорания, МДж/еднницу Выход. полезного тепла 2, кВт-ч [c.56]

    ГОСТ 8550—61 Тепловые единицы устанавливает для тепловых измерений систему МКСГ с основными единицами метр (л), килограмм (кг), секунда (сек) и градус (°К). Допускается п )именение кратных и дольных единиц и как временная мера некоторых других внесистемных единиц, основанных на калории, например для удельной теплоты — кал/г, ккал/кг-, удельной теплоемкости ккал/(кг-град), коэффициента теплопередачи —/с/сй1л/(л 2 ч грае ) и др. [c.25]

    Теплоемкостью называется количество теплоты, необходимое для нагревания рабочего тела на 1 фадус. Удобно оперировать удельной теплоемкостью с, отнесенной к единице массы тела. В курсе ПАХТ чаще всего используют теплоемкость при постоянном давлении (с = Ср). Единица измерения теплоемкости Дж/ кгК). [c.54]

    Величины, входящие в выражения для критериев подобия, и их единицы измерения а—коэффициент теплоотдачи, Вт/(м -К), Р — коэффициент объемного расширения, К р — плотность, кг/м X — коэффициент теплопроводности, Вт/(м-К) Д. —разность температур стенки и жидкости (или наоборот), К Ц — динамический коэффициент вязкости, Па с V — кинематический коэффициент вязкости, м / а — кКср)—коэффициент температуропроводности, м7с с — удельная теплоемкость (при постоянном давлении), Дж/(кг-К) Г — ускорение свободного падения, м/с I — определяющий геометрический размер (для каждой формулы указывается, какой размер является определяющим), м т — скорость, м/с г —удельная теплота парообразования (испарения), Дж/кг. [c.104]

    Известно, что любое твердое тело хара1ггеризуется некоторой поверхностной энергией, которая измеряется работой, необходимой для перемещения внутренней частицы твердого тела на его поверхность. Таким образом, частицы, выведенные на поверхность, обладают некоторым избытком энергии. На поверхности твердого тела формируется поверхностный слой, в котором концентрируется избыточная энергия. Этот избыток энергии поверхностного слоя, отнесенный к единице поверхности, называют удельной поверхностной энергией и обозначают а. Размерность о указывает на близость понятий поверхностная энергия и поверхностное натяжение , используемых для характеристики жидкостей. Физический смысл понятия поверхностное натяжение жидкости идентичен понятию поверхностная энергия твердого тела , однако имеются и коренные отличия а твердых тел от о жидких. Из-за однородности жидкости (или бесструктурного строения) ее поверхностное натяжение ст не зависит от направления действия разрывающей силы. Удельная поверхностная энергия кристаллических твердых тел зависит от направления приложения сил (поскольку всегда существует анизотропия кристаллов), твердости минералов, температуры, а также среды юмельчения. Тонкое измельчение не осуществляется избирательно по заданным направлениям, поэтому при характеристике поверхности пользуются некоторым усредненным значением ст, которое находят эмпирически. Определение удельной поверхностной энергии основано на методах определения твердости минералов — царапании, шлифовании, вдавливании или же измерении теплоты растворения (или смачивания) дисперсных порошков. [c.806]

    В случае однокомпонентной жидкой среды используется совершенно иной метод определения удельной поверхности. Он состоит в определении количества тепла, выделяемого при погружении твердого тела в чистую жидкость, т. е. в определении теплоты смачивания. Это количество тепла пропорционально удельной поверхности различных образцов твердого тела, и его можно использовать для сопоставления удельных поверхностей различных образцов одинаковой химической природы. Если известна теплота смачивания твердого тела, соответствующая единице поверхности, то для определения абсолютных значений удельной поверхности может быть использована теплота смачивания, отнесенная к одному грамму твердого тела. В настоящее время трудности калориметрических измерений в значительной степени преодолены, и поэтому метод определения удельной поверхности по теплотам смачивания становится весьма перспективным он будет подробно рассмотрен в разд. 7.2. [c.312]

    Если бы физическая адсорбция была полностью неспецифична, то природа адсорбента была бы совершенно несушественна, и имела бы значение только величина поверхности. Производятся ли измерения адсорбции на ионном кристалле, подобном хлористому натрию, на полупроводнике вроде графита, или же на металлическом проводнике вроде железа, адсорбция на единицу поверхности была бы в этом случае одной и той же. Если бы образец угля имел в 100 раз большую удельную поверхность, чем образец железного катализатора, то адсорбционные изотермы азота, вычерченные для 1 г железа и 0,01 г угля на одном и том же графике, точно совпали бы, по крайней мере в области низких давлений. (При более высоких давлениях различия в структуре пор сказались бы на изотермах,— они отличались бы друг от друга.) Па самом же деле это не имеет места. Изотермы не совпадают, потому что даже небольшие различия в теплотах адсорбции вносят значительную долю специфичности в ван-дер-ваальсову адсорбцию. [c.447]

    Количество тепла, необходимое для нагревания 1 г воды от 14,5 до 15,5°, называют малой калорией (или грамм-калорией) и оно является единицей тепла. В настоящее время единицу тепла определяют соответствующей электрической энергией, а именно в соответствии с термохимическими измерениями калория равна количеству тепла, эквивалентному 4,1840 ватт-секундам джоуль). Таким образом, 1 кал=4,1840 дж. В отличие от термохимической калории кал) единицу, полученную на основе удельной теплоемкости воды при 15°, обозначают как 15°-калория (1 КОЛ150 =4,1855 дж) Больщей частью теплоты химических реакций выраЙ5ают в килограмм-калориях (ккал). 1 ккал=1000 кал. [c.69]

    Смачиваемость можно также измерять обратимой работой адгезии или теплотой смачивания на единицу поверхности ks[ Так как изменение энергии системы при контактировании большинства твердых и жидких тел очень невелико, для измерения теплоты смачивания необходимо использовать тонко раздробленные твердые вещества с большой удельной поверхностью. Для многих органнческих веществ это обстоятельство вызывает определенные трудности. Имеется и много других осложнений. К тому же известна чувствительность таких из.мерений к малейшим следам загрязнений. Следует отметить также известную роль острых ребер, пор, шероховатости и других дефектов поверхности. Эти обстоятельства для большинства высокодисперсных твердых тел весьма серьезны. Обычно предпочитают использовать твердые тела с определенной, хорошо изученной поверхностью, а в качестве меры с.мачивания величину СО 9. [c.280]

    Удельная теплоемкость изменяется нелинейным образом в области относительных содержаний воды меньше 0,38 г/г белка. Данные рис. 6.1 для области малого содержания воды с помощью преобразования координат перенесены на рис. 6.2, на котором построена зависимость кажущейся удельной теплоемкости белка ФСр2 от степени гидратации. Функция ФСр2 есть мера избыточной удельной теплоемкости, нормализованная к единице количества белка [14]. Данные рис. 6.2 показывают, что процесс гидратации протекает ступенчато. В профиле удельной теплоемкости можно различить четыре области (I—IV). Область 1, соответствующая степеням гидратации выше 0,38, представляет собой результат добавления объемной воды к системе. Поэтому в пределах области / величина ФСр (нормализованная неидеальность системы) постоянна и равна величине, соответствующей разбавленному раствору. Подъем и последующее падение величины ФСр в пределах области IV и на стыке областей III и II можно рассматривать как отражение выделения теплоты реакции. Что же касается значения теплоты реакции в области IV, то измерения, выполненные методом ПК-спектроскопии [21], показали, что взаимодействие с водой [c.120]


Удельная теплоемкость — обзор

2.31.2.2.1 Линейное сканирование

Наиболее распространенным режимом работы DSC является нагрев или охлаждение с постоянной скоростью. Основным результатом такого эксперимента является график зависимости скорости теплового потока от времени. Если температура позиции образца известна, то данные также могут быть представлены как зависимость скорости теплового потока от температуры. (Следует знать, что обычно измеряется температура около образца, а не температура самого образца.) На рисунке 2 показан типичный пример.

Рис. 2. Температурный профиль и измеренная скорость теплового потока для (а) пустых кастрюль, (б) калибровочного стандарта сапфира (31,3 мг) и (в) изначально аморфного ПЭЭК (29 мг). Скорость нагрева β = 20 K мин −1 .

Данные PerkinElmer Pyris Diamond DSC. Воспроизведено с разрешения Schick, C. Anal. Биоанал. Chem. 2009 , 395 , 1589–1611. 35

Из кривых теплового потока, показанных на Рис. 2 , удельную теплоемкость c p (T) можно получить следующим образом:

[8] cp (T) = cp, сапфир (T) msapphireβmsampleβΦsample (T) −Φempty (T) Φsapphire (T) −Φempty (T) = K (T) Φsample (T) −Φempty (T) msampleβ

с

K (T) = cp, сапфир (T) msapphireβΦsapphire (T) −Φempty (T)

, где K ( T ) — это зависящий от температуры калибровочный коэффициент, который можно сохранить для использования в будущем.Здесь все измерения собираются с одинаковой скоростью сканирования. Изотермы в начале и в конце сканирования используются для корректировки небольших изменений тепловых потерь между измерениями пустого, сапфирового и образца путем совмещения этих частей кривых. Небольшие изменения потерь неизбежны, поскольку термические свойства, такие как теплопроводность, образцов различны. С другой стороны, проверка скорости теплового потока на изотермах позволяет нам проверить правильность размещения и тепловые контакты всех частей измерительной системы, перемещаемых во время смены образца.В частности, изотерма высоких температур не должна слишком сильно отличаться между последовательными измерениями.

Удельная теплоемкость — это наиболее полезная величина, доступная от DSC, поскольку она напрямую связана со свойствами образца и, согласно уравнениям [1] — [5], напрямую связана со стабильностью и порядком. Тем не менее, часто отображается только скорость теплового потока, полученная в результате измерения одного образца. Есть несколько причин, по которым это не следует представлять:

1.

На каждом графике теплового потока необходимо указать эндотермическое или экзотермическое направление, поскольку направление графика не стандартизировано.

2.

Кривые, измеренные при разных скоростях сканирования, сравнить непросто.

3.

Если не разделить на массу образца, кривые для разных образцов нельзя сравнивать.

4.

Если измерения пустой чаши не вычитаются, кривые могут быть искривленными, и построение базовой линии для интегрирования пиков может быть затруднено.

5.

Если калибровочный коэффициент теплового потока K ( T ) зависит от температуры, полученная теплота плавления и другие подобные параметры могут быть ошибочными.

Выполнение поправок (3) — (5) дает удельную теплоемкость, заданную уравнением [8]. Поскольку большинство программных пакетов DSC включают определение удельной теплоемкости в соответствии с уравнением [8], настоятельно рекомендуется определять удельную теплоемкость, а не представлять кривые расхода тепла. Несмотря на то, что представление данных об удельной теплоемкости предпочтительнее, могут быть причины не делать этого. Нормализация кривой теплового потока по скорости сканирования и массе образца может привести к «измерениям псевдо c p », которые можно использовать для определения зависящей от температуры кристалличности и других величин, как показано в ссылке 8.Но есть еще один очень веский аргумент в пользу представления удельной теплоемкости, а не «псевдо c p » или скорости теплового потока. Для более чем 200 полимеров данные об удельной теплоемкости от 0 до 1000 К доступны в банке данных ATHAS (ATHAS-DB). 36 Эти данные можно использовать для сравнения результатов измерений в стеклообразном или жидком состоянии с рекомендованными значениями. Это позволяет легко проверить качество измеренных данных, хотя следует иметь в виду, что точность рекомендованных данных банка данных составляет всего около 6%. Рисунок 3 показывает удельную теплоемкость (согласно уравнению [8]), рассчитанную на основе данных, показанных на Рисунке 2 .

Рис. 3. Зависимость удельной теплоемкости от температуры для первоначально аморфного образца ПЭЭК. Данные из Рисунок 2 . Справочные данные (прямые) для полностью аморфного (жидкого) и кристаллического (твердого) ПЭЭК доступны в ATHAS-DB. 36

Воспроизведено с разрешения Schick, C. Anal. Биоанал. Chem. 2009 , 395 , 1589–1611. 35

Более подробное обсуждение оценки кривых, показанных на Рис. 3 , приведено в ссылке 35.

Помимо измерений сканирования при нагревании, DSC позволяет охлаждение в широком диапазоне скоростей охлаждения. В зависимости от прибора и интересующего диапазона температур скорость охлаждения может достигать 750 K мин. -1 (HyperDSC ™ PerkinElmer, США). 20,37–39 Но, как правило, диапазон температур для контролируемого охлаждения с максимальной скоростью ограничен.Измерения, выполняемые в широком диапазоне скоростей нагрева или охлаждения, требуют оптимизации условий эксперимента. Масса образца должна масштабироваться обратно пропорционально скорости сканирования. При низких скоростях, когда тепловая задержка не является проблемой, масса образца должна быть большой, чтобы иметь хорошее отношение сигнал / шум. При высоких скоростях, когда сигналы большие, масса образца должна быть небольшой, чтобы минимизировать тепловой поток к образцу, который пропорционален скорости и вызывает тепловую задержку. Проблемы, связанные с тепловым запаздыванием, температурной калибровкой и воспроизводимостью в экспериментах ДСК с быстрым сканированием, были интенсивно изучены, и были даны соответствующие рекомендации. 37,40,41 На рисунке 4 показаны кривые охлаждения в области кристаллизации полиэтилена низкой плотности (PE). При скоростях выше 200 K мин -1 контролируемое охлаждение до 100 ° C было невозможно из-за ограниченной охлаждающей способности используемого механического промежуточного охладителя. Если требуется более высокая скорость охлаждения, следует использовать жидкий азот. Для более низких скоростей сканирования, показанных на рис. 4 , масса образца должна быть достаточно большой, чтобы обеспечить хорошее отношение сигнал / шум.Для более высоких скоростей большой образец (4 мг) вызывает некоторую тепловую задержку, как обсуждается в учебниках и ссылках 37, 40 и 42. Это также видно по уширению пика кристаллизации при 20 К мин. -1 по сравнению с с образцом 0,4 мг при той же скорости охлаждения. Данные, представленные на Рисунке 4 , предоставляют информацию о кинетике кристаллизации и могут быть проанализированы с использованием различных кинетических моделей. 43–48

Рис. 4. Кривые охлаждения в области кристаллизации полиэтилена низкой плотности.Образцы имеют массу 4 мг в алюминиевом поддоне 25 мг для скоростей охлаждения до -20 K мин. -1 и массу 0,4 мг в алюминиевой фольге 2 мг для более высоких скоростей охлаждения. Теплоемкость отложена вниз.

Данные PerkinElmer Pyris 1 DSC. Воспроизведено с разрешения Schick, C. Anal. Биоанал. Chem. 2009 , 395 , 1589–1611. 35

Как показано на рис. 4 , DSC имеет широкий динамический диапазон, который может быть расширен как минимум на 1 порядок в сторону более низких скоростей; таким образом он покрывает 3 порядка величины.Расширение на несколько порядков в сторону более высоких скоростей обсуждается в разделе 2.31.3.2. Возможность достаточно быстрого охлаждения образца позволяет нам изучать формирование структуры в ситуациях, далеких от равновесия, таких как «квазиизотермическая кристаллизация при глубоком переохлаждении».

Учебник по физике

На предыдущей странице мы узнали, что делает тепло с объектом, когда оно накапливается или выделяется. Прирост или потеря тепла приводят к изменениям температуры, изменению состояния или выполнения работы.Тепло — это передача энергии. Когда объект приобретается или теряется, внутри этого объекта будут происходить соответствующие изменения энергии. Изменение температуры связано с изменением средней кинетической энергии частиц внутри объекта. Изменение состояния связано с изменением внутренней потенциальной энергии, которой обладает объект. А когда работа сделана, происходит полная передача энергии объекту, над которым она выполняется. В этой части Урока 2 мы исследуем вопрос . Как измерить количество тепла, полученного или выделенного объектом?

Удельная теплоемкость

Предположим, что несколько объектов, состоящих из разных материалов, нагреваются одинаково.Будут ли предметы нагреваться одинаково? Ответ: скорее всего, нет. Разные материалы будут нагреваться с разной скоростью, потому что каждый материал имеет свою удельную теплоемкость. Удельная теплоемкость относится к количеству тепла, необходимому для изменения температуры единицы массы (скажем, грамма или килограмма) на 1 ° C. В учебниках часто указывается удельная теплоемкость различных материалов. Стандартные метрические единицы — Джоуль / килограмм / Кельвин (Дж / кг / К). Чаще используются единицы измерения — Дж / г / ° C.Используйте виджет ниже, чтобы просмотреть удельную теплоемкость различных материалов. Просто введите название вещества (алюминий, железо, медь, вода, метанол, дерево и т. Д.) И нажмите кнопку «Отправить»; результаты будут отображаться в отдельном окне.

Удельная теплоемкость твердого алюминия (0,904 Дж / г / ° C) отличается от удельной теплоемкости твердого железа (0,449 Дж / г / ° C). Это означает, что для повышения температуры данной массы алюминия на 1 ° C потребуется больше тепла, чем для повышения температуры той же массы железа на 1 ° C.Фактически, для повышения температуры образца алюминия на заданное количество потребуется примерно вдвое больше тепла по сравнению с тем же изменением температуры того же количества железа. Это связано с тем, что удельная теплоемкость алюминия почти вдвое больше, чем у железа.

Теплоемкость указана из расчета на грамм или на килограмм . Иногда значение указывается на основе на моль , и в этом случае оно называется молярной теплоемкостью. Тот факт, что они перечислены на основе на количество , является показателем того, что количество тепла, необходимое для повышения температуры вещества, зависит от того, сколько в нем вещества.Эту истину, несомненно, знает всякий, кто варил на плите кастрюлю с водой. Вода закипает при температуре 100 ° C на уровне моря и при слегка пониженной температуре на возвышенностях. Чтобы довести кастрюлю с водой до кипения, ее сначала нужно поднять до 100 ° C. Это изменение температуры достигается за счет поглощения тепла горелкой печи. Быстро замечаешь, что для того, чтобы довести до кипения полную кастрюлю с водой, требуется значительно больше времени, чем для того, чтобы довести до кипения наполовину полную. Это связано с тем, что полная кастрюля с водой должна поглощать больше тепла, чтобы вызвать такое же изменение температуры.Фактически, требуется вдвое больше тепла, чтобы вызвать такое же изменение температуры в двойной массе воды.

Удельная теплоемкость также указана из расчета на К или на ° C. Тот факт, что удельная теплоемкость указана из расчета на градус , указывает на то, что количество тепла, необходимое для повышения данной массы вещества до определенной температуры, зависит от изменения температуры, необходимого для достижения этой конечной температуры.Другими словами, важна не конечная температура, а общее изменение температуры. Для изменения температуры воды с 20 ° C до 100 ° C (изменение на 80 ° C) требуется больше тепла, чем для повышения температуры того же количества воды с 60 ° C до 100 ° C (изменение на 40 ° C). ° С). Фактически, для изменения температуры данной массы воды на 80 ° C требуется вдвое больше тепла по сравнению с изменением на 40 ° C. Человек, который хочет быстрее довести воду до кипения на плите, должен начать с теплой водопроводной воды вместо холодной.

Это обсуждение удельной теплоемкости заслуживает одного заключительного комментария. Термин «удельная теплоемкость» является неправильным обозначением . Этот термин означает, что вещества могут иметь способность удерживать вещь , называемую теплотой. Как уже говорилось ранее, тепло — это не то, что содержится в объекте. Тепло — это то, что передается к объекту или от него. Объекты содержат энергию в самых разных формах. Когда эта энергия передается другим объектам с разной температурой, мы называем переданную энергию тепловой или тепловой энергией .Хотя это вряд ли приживется, более подходящим термином будет удельная энергоемкость.

Связь количества тепла с изменением температуры

Удельная теплоемкость позволяет математически связать количество тепловой энергии, полученной (или потерянной) образцом любого вещества, с массой образца и ее результирующим изменением температуры. Связь между этими четырьмя величинами часто выражается следующим уравнением.

Q = m • C • ΔT

где Q — количество тепла, передаваемого к объекту или от него, m — масса объекта, C — удельная теплоемкость материала, из которого состоит объект, а ΔT — результирующее изменение температуры объекта. Как и во всех других ситуациях в науке, значение дельта (∆) для любой величины вычисляется путем вычитания начального значения количества из окончательного значения количества. В этом случае ΔT равно T конечный — T начальный .При использовании приведенного выше уравнения значение Q может быть положительным или отрицательным. Как всегда, положительный и отрицательный результат расчета имеет физическое значение. Положительное значение Q указывает, что объект получил тепловую энергию из окружающей среды; это соответствовало бы повышению температуры и положительному значению ΔT. Отрицательное значение Q указывает на то, что объект выделяет тепловую энергию в окружающую среду; это соответствовало бы снижению температуры и отрицательному значению ΔT.

Знание любых трех из этих четырех величин позволяет человеку вычислить четвертое количество. Обычная задача на многих уроках физики включает решение проблем, связанных с отношениями между этими четырьмя величинами. В качестве примеров рассмотрим две проблемы ниже. Решение каждой проблемы разработано для вас. Дополнительную практику можно найти в разделе «Проверьте свое понимание» внизу страницы.

Пример проблемы 1
Какое количество тепла требуется для повышения температуры 450 граммов воды с 15 ° C до 85 ° C? Удельная теплоемкость воды 4.18 Дж / г / ° C.

Как и любая проблема в физике, решение начинается с определения известных величин и соотнесения их с символами, используемыми в соответствующем уравнении. В этой задаче мы знаем следующее:

м = 450 г
С = 4,18 Дж / г / ° C
Т начальная = 15 ° С
T окончательная = 85 ° C

Мы хотим определить значение Q — количество тепла.Для этого мы использовали бы уравнение Q = m • C • ΔT. Буквы m и C известны; ΔT можно определить по начальной и конечной температуре.

T = T окончательный — T начальный = 85 ° C — 15 ° C = 70 ° C

Зная три из четырех величин соответствующего уравнения, мы можем подставить и решить для Q.

Q = m • C • ΔT = (450 г) • (4,18 Дж / г / ° C) • (70 ° C)
Q = 131670 Дж
Q = 1.3×10 5 J = 130 кДж (округлено до двух значащих цифр)

Пример задачи 2
Образец 12,9 грамма неизвестного металла при температуре 26,5 ° C помещают в чашку из пенополистирола, содержащую 50,0 граммов воды при температуре 88,6 ° C. Вода охлаждается, и металл нагревается, пока не будет достигнуто тепловое равновесие при 87,1 ° C. Предполагая, что все тепло, теряемое водой, передается металлу, а чашка идеально изолирована, определите удельную теплоемкость неизвестного металла.Удельная теплоемкость воды составляет 4,18 Дж / г / ° C.

По сравнению с предыдущей проблемой это гораздо более сложная проблема. По сути, эта проблема похожа на две проблемы в одной. В основе стратегии решения проблем лежит признание того, что количество тепла, потерянного водой (Q вода ), равно количеству тепла, полученного металлом (Q металл ). Поскольку значения m, C и ΔT воды известны, можно вычислить Q water .Это значение воды Q равно значению металла Q . Как только значение металла Q известно, его можно использовать со значениями m и ΔT металла для расчета металла Q . Использование этой стратегии приводит к следующему решению:

Часть 1: Определение потерь тепла водой

Дано:

м = 50,0 г
С = 4,18 Дж / г / ° C
Т начальная = 88,6 ° С
Т финал = 87.1 ° С
ΔT = -1,5 ° C (T конечная — T начальная )

Решить для Q воды :

Q вода = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (-1,5 ° C)
Q вода = -313,5 Дж (без заземления)
(Знак — означает, что вода теряет тепло)

Часть 2: Определите стоимость металла C

Дано:

Q металл = 313.5 Дж (используйте знак +, так как металл нагревается)
m = 12,9 г
Т начальная = 26,5 ° С
T окончательная = 87,1 ° C
ΔT = (T конечный — T начальный )

Решить для металла C :

Переставьте металл Q = m металл • C металл • ΔT металл , чтобы получить металл C = Q металл / (м металл • ΔT металл )

C металл = Q металл / (м металл • ΔT металл ) = (313.5 Дж) / [(12,9 г) • (60,6 ° C)]
C металл = 0,40103 Дж / г / ° C
C металл = 0,40 Дж / г / ° C (округлено до двух значащих цифр)

Тепло и изменения состояния

Приведенное выше обсуждение и соответствующее уравнение (Q = m • C • ∆T) связывает тепло, полученное или потерянное объектом, с результирующими изменениями температуры этого объекта. Как мы узнали, иногда тепло накапливается или теряется, но температура не меняется.Это тот случай, когда вещество претерпевает изменение состояния. Итак, теперь мы должны исследовать математику, связанную с изменениями состояния и количества тепла.

Чтобы начать обсуждение, давайте рассмотрим различные изменения состояния, которые можно наблюдать для образца вещества. В таблице ниже перечислены несколько изменений состояния и указаны имена, обычно связанные с каждым процессом.

Процесс

Изменение состояния

Плавка

От твердого до жидкого

Замораживание

От жидкости к твердому веществу

Испарение

От жидкости к газу

Конденсация

Газ — жидкость

Сублимация

Твердое тело в газ

Депонирование

Газ — твердое вещество

В случае плавления, кипения и сублимации к образцу вещества должна быть добавлена ​​энергия, чтобы вызвать изменение состояния.Такие изменения состояния называют эндотермическими. Замораживание, конденсация и осаждение экзотермичны; энергия высвобождается образцом материи, когда происходят эти изменения состояния. Таким образом, можно заметить, что образец льда (твердая вода) тает, когда его помещают на горелку или рядом с ней. Тепло передается от горелки к образцу льда; энергия приобретается льдом, вызывая изменение состояния. Но сколько энергии потребуется, чтобы вызвать такое изменение состояния? Есть ли математическая формула, которая могла бы помочь в определении ответа на этот вопрос? Безусловно, есть.

Количество энергии, необходимое для изменения состояния образца материи, зависит от трех вещей. Это зависит от того, что такое субстанция, от того, сколько субстанции претерпевает изменение состояния, и от того, какое изменение состояния происходит. Например, для плавления льда (твердая вода) требуется другое количество энергии, чем для плавления железа. И для таяния льда (твердая вода) требуется другое количество энергии, чем для испарения того же количества жидкой воды. И, наконец, для плавления 10 требуется другое количество энергии.0 граммов льда по сравнению с таянием 100,0 граммов льда. Вещество, процесс и количество вещества — это три переменные, которые влияют на количество энергии, необходимое для того, чтобы вызвать конкретное изменение состояния. Используйте виджет ниже, чтобы исследовать влияние вещества и процесса на изменение энергии. (Обратите внимание, что теплота плавления — это изменение энергии, связанное с изменением состояния твердое-жидкое.)

Значения удельной теплоты плавления и удельной теплоты испарения указаны из расчета на количество .Например, удельная теплота плавления воды составляет 333 Дж / грамм. Чтобы растопить 1,0 грамм льда, требуется 333 Дж энергии. Чтобы растопить 10 граммов льда, требуется в 10 раз больше энергии — 3330 Дж. Такое рассуждение приводит к следующим формулам, связывающим количество тепла с массой вещества и теплотой плавления и испарения.

Для плавления и замораживания: Q = m • ΔH сварка
Для испарения и конденсации: Q = m • ΔH испарение

, где Q представляет количество энергии, полученной или высвобожденной во время процесса, m представляет собой массу образца, ΔH плавления представляет собой удельную теплоту плавления (на грамм) и ΔH испарения представляет собой удельную теплоемкость плавления. испарение (из расчета на грамм).Подобно обсуждению Q = m • C • ΔT, значения Q могут быть как положительными, так и отрицательными. Значения Q положительны для процесса плавления и испарения; это согласуется с тем фактом, что образец вещества должен набирать энергию, чтобы плавиться или испаряться. Значения Q отрицательны для процесса замораживания и конденсации; это согласуется с тем фактом, что образец вещества должен терять энергию, чтобы замерзнуть или конденсироваться.

В качестве иллюстрации того, как можно использовать эти уравнения, рассмотрим следующие два примера задач.

Пример задачи 3
Элиза кладет в свой напиток 48,2 грамма льда. Какое количество энергии будет поглощено льдом (и высвобождено напитком) в процессе таяния? Теплота плавления воды 333 Дж / г.

Уравнение, связывающее массу (48,2 грамма), теплоту плавления (333 Дж / г) и количество энергии (Q): Q = m • ΔH fusion .Подстановка известных значений в уравнение приводит к ответу.

Q = м • ΔH плавление = (48,2 г) • (333 Дж / г)
Q = 16050,6 Дж
Q = 1,61 x 10 4 Дж = 16,1 кДж (округлено до трех значащих цифр)

Пример Задачи 3 включает в себя довольно простой расчет типа plug-and-chug. Теперь мы попробуем пример задачи 4, который потребует более глубокого анализа.

Пример задачи 4
Какое минимальное количество жидкой воды на 26.5 градусов, которые потребуются, чтобы полностью растопить 50,0 граммов льда? Удельная теплоемкость жидкой воды составляет 4,18 Дж / г / ° C, а удельная теплота плавления льда — 333 Дж / г.

В этой задаче лед тает, а жидкая вода остывает. Энергия передается от жидкости к твердому телу. Чтобы растопить твердый лед, на каждый грамм льда необходимо передать 333 Дж энергии. Эта передача энергии от жидкой воды ко льду охлаждает жидкость.Но жидкость может охладиться только до 0 ° C — точки замерзания воды. При этой температуре жидкость начнет затвердевать (замерзнуть), а лед полностью не растает.

Мы знаем следующее о льду и жидкой воде:

Информация о льду:

м = 50,0 г
ΔH плавление = 333 Дж / г

Информация о жидкой воде:

С = 4.18 Дж / г / ° C
Т начальная = 26,5 ° С
T окончательная = 0,0 ° C
ΔT = -26,5 ° C (T конечная — T начальная )

Энергия, полученная льдом, равна энергии, потерянной из воды.

Q лед = -Q жидкая вода

Знак — указывает, что один объект получает энергию, а другой объект теряет энергию. Мы можем вычислить левую часть приведенного выше уравнения следующим образом:

Q лед = m • ΔH плавление = (50.0 г) • (333 Дж / г)
Q лед = 16650 Дж

Теперь мы можем установить правую часть уравнения равной m • C • ΔT и начать подставлять известные значения C и ΔT, чтобы найти массу жидкой воды. Решение:

16650 Дж = -Q жидкая вода
16650 Дж = -м жидкая вода • C жидкая вода • ΔT жидкая вода
16650 Дж = -м жидкая вода • (4.18 Дж / г / ° C) • (-26,5 ° C)
16650 Дж = -м жидкая вода • (-110,77 Дж / ° C)
м жидкая вода = — (16650 Дж) / (- 110,77 Дж / ° C)
м жидкая вода = 150,311 г
м жидкая вода = 1,50×10 2 г (округлено до трех значащих цифр)

Еще раз о кривых нагрева и охлаждения

На предыдущей странице Урока 2 обсуждалась кривая нагрева воды.Кривая нагрева показывала, как температура воды увеличивалась с течением времени по мере нагрева образца воды в твердом состоянии (т. Е. Льда). Мы узнали, что добавление тепла к образцу воды может вызвать либо изменение температуры, либо изменение состояния. При температуре плавления воды добавление тепла вызывает преобразование воды из твердого состояния в жидкое состояние. А при температуре кипения воды добавление тепла вызывает преобразование воды из жидкого состояния в газообразное.Эти изменения состояния произошли без каких-либо изменений температуры. Однако добавление тепла к образцу воды, не имеющей температуры фазового перехода, приведет к изменению температуры.

Теперь мы можем подойти к теме кривых нагрева на более количественной основе. На диаграмме ниже представлена ​​кривая нагрева воды. На нанесенных линиях есть пять помеченных участков.

Три диагональных участка представляют собой изменения температуры пробы воды в твердом состоянии (участок 1), жидком состоянии (участок 3) и газообразном состоянии (участок 5).Две горизонтальные секции представляют изменения в состоянии воды. На участке 2 проба воды тает; твердое вещество превращается в жидкость. В секции 4 образец воды подвергается кипению; жидкость превращается в газ. Количество тепла, передаваемого воде в секциях 1, 3 и 5, связано с массой образца и изменением температуры по формуле Q = m • C • ΔT. А количество тепла, переданного воде в секциях 2 и 4, связано с массой образца и теплотой плавления и испарения по формулам Q = m • ΔH fusion (раздел 2) и Q = m • ΔH испарение (раздел 4).Итак, теперь мы попытаемся вычислить количество тепла, необходимое для перевода 50,0 граммов воды из твердого состояния при -20,0 ° C в газообразное состояние при 120,0 ° C. Для расчета потребуется пять шагов — по одному шагу для каждого раздела приведенного выше графика. Хотя удельная теплоемкость вещества зависит от температуры, в наших расчетах мы будем использовать следующие значения удельной теплоемкости:

Твердая вода: C = 2,00 Дж / г / ° C
Жидкая вода: C = 4,18 Дж / г / ° C
Газообразная вода: C = 2.01 Дж / г / ° C

Наконец, мы будем использовать ранее сообщенные значения ΔH fusion (333 Дж / г) и ΔH испарения (2,23 кДж / г).

Раздел 1 : Изменение температуры твердой воды (льда) с -20,0 ° C до 0,0 ° C.

Используйте Q 1 = m • C • ΔT

, где m = 50,0 г, C = 2,00 Дж / г / ° C, T начальная = -200 ° C и T конечная = 0,0 ° C

Q 1 = m • C • ΔT = (50.0 г) • (2,00 Дж / г / ° C) • (0,0 ° C — -20,0 ° C)
Q 1 = 2,00 x10 3 Дж = 2,00 кДж

Раздел 2 : Таяние льда при 0,0 ° C.

Используйте Q 2 = m • ΔH сварка

, где m = 50,0 г и ΔH плавление = 333 Дж / г

Q 2 = м • ΔH плавление = (50,0 г) • (333 Дж / г)
Q 2 = 1,665 x10 4 Дж = 16.65 кДж
Q 2 = 16,7 кДж (округлено до 3 значащих цифр)

Раздел 3 : Изменение температуры жидкой воды с 0,0 ° C на 100,0 ° C.

Используйте Q 3 = m • C • ΔT

, где m = 50,0 г, C = 4,18 Дж / г / ° C, T начальная = 0,0 ° C и T конечная = 100,0 ° C

Q 3 = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (100,0 ° C — 0,0 ° C)
Q 3 = 2.09 x10 4 Дж = 20,9 кДж

Раздел 4 : Кипячение воды при 100,0 ° C.

Использовать Q 4 = m • ΔH испарение

, где m = 50,0 г и ΔH испарение = 2,23 кДж / г

Q 4 = m • ΔH испарение = (50,0 г) • (2,23 кДж / г)
Q 4 = 111,5 кДж
Q 4 = 112 кДж (округлено до 3 значащих цифр)

Раздел 5 : Изменение температуры жидкой воды со 100.От 0 ° C до 120,0 ° C.

Используйте Q 5 = m • C • ΔT

, где m = 50,0 г, C = 2,01 Дж / г / ° C, T начальная = 100,0 ° C и T конечная = 120,0 ° C

Q 5 = m • C • ΔT = (50,0 г) • (2,01 Дж / г / ° C) • (120,0 ° C — 100,0 ° C)
Q 5 = 2,01 x10 3 J = 2,01 кДж

Общее количество тепла, необходимое для превращения твердой воды (льда) при -20 ° C в газообразную воду при 120 ° C, является суммой значений Q для каждого участка графика.То есть

Q итого = Q 1 + Q 2 + Q 3 + Q 4 + Q 5

Суммирование этих пяти значений Q и округление до нужного количества значащих цифр приводит к значению 154 кДж в качестве ответа на исходный вопрос.

В приведенном выше примере есть несколько особенностей решения, над которыми стоит задуматься:

  • Первое: длинная задача была разделена на части, каждая из которых представляет собой одну из пяти частей графика.Поскольку было вычислено пять значений Q, они были помечены как Q 1 , Q 2 и т. Д. Этот уровень организации требуется в многоступенчатой ​​задаче, такой как эта.
  • Секунда: Внимание было уделено знаку +/- на ΔT. Изменение температуры (или любой величины) всегда рассчитывается как конечное значение величины за вычетом начального значения этой величины.
  • Третий: На протяжении всей задачи внимание уделялось подразделениям.Единицы Q будут либо в Джоулях, либо в килоджоулях, в зависимости от того, какие количества умножаются. Отсутствие внимания к устройствам — частая причина сбоев в подобных проблемах.
  • Четвертый: На протяжении всей задачи внимание уделялось значащим цифрам. Хотя это никогда не должно становиться основным акцентом какой-либо проблемы в физике, это, безусловно, деталь, на которую стоит обратить внимание.

Здесь, на этой странице, мы узнали, как рассчитать количество тепла, задействованного в любом процессе нагрева / охлаждения и в любом процессе изменения состояния.Это понимание будет иметь решающее значение, когда мы перейдем к следующей странице Урока 2, посвященной калориметрии. Калориметрия — это наука, связанная с определением изменений энергии системы путем измерения теплообмена с окружающей средой.

Проверьте свое понимание

1. Вода имеет необычно высокую удельную теплоемкость. Какое из следующих утверждений логически следует из этого факта?

а.По сравнению с другими веществами горячая вода вызывает сильные ожоги, потому что она хорошо проводит тепло.
б. По сравнению с другими веществами вода при нагревании быстро нагревается до высоких температур.
c. По сравнению с другими веществами, образец воды требует значительного количества тепла, чтобы изменить ее температуру на небольшое количество.

2. Объясните, почему в больших водоемах, таких как озеро Мичиган, в начале июля может быть довольно прохладно, несмотря на то, что температура наружного воздуха около или выше 90 ° F (32 ° C).

3. В таблице ниже описан термический процесс для различных объектов (выделен красным жирным шрифтом). Для каждого описания укажите, набирается или теряется тепло объектом, является ли процесс эндотермическим или экзотермическим, и является ли Q для указанного объекта положительным или отрицательным значением.

Процесс

Получено или потеряно тепло?

Эндо- или экзотермический?

Вопрос: + или -?

а.

Кубик льда помещают в стакан с лимонадом комнатной температуры, чтобы охладить напиток.

г.

Холодный стакан лимонада стоит на столе для пикника под жарким полуденным солнцем и нагревается до 32 ° F.

г.

Конфорки на электроплите выключаются и постепенно остывают до комнатной температуры.

г.

Учитель вынимает из термоса большой кусок сухого льда и опускает его в воду. Сухой лед возгоняется, образуя газообразный диоксид углерода.

e.

Водяной пар в увлажненном воздухе ударяется о окно и превращается в каплю росы (каплю жидкой воды).

4. Образец металлического цинка массой 11,98 грамма помещают в баню с горячей водой и нагревают до 78,4 ° C. Затем его удаляют и помещают в чашку из пенополистирола, содержащую 50,0 мл воды комнатной температуры (T = 27,0 ° C; плотность = 1,00 г / мл). Вода прогревается до температуры 28.1 ° С. Определите удельную теплоемкость цинка.

5. Джейк берет из туалета банку с газировкой и выливает ее в чашку со льдом. Определите количество тепла, теряемого содой комнатной температуры при плавлении 61,9 г льда (ΔH fusion = 333 Дж / г).

6. Теплота сублимации (ΔH сублимации ) сухого льда (твердый диоксид углерода) составляет 570 Дж / г. Определите количество тепла, необходимое для превращения 5,0-фунтового мешка сухого льда в газообразный диоксид углерода.(Дано: 1,00 кг = 2,20 фунта)

7. Определите количество тепла, необходимое для повышения температуры 3,82-граммового образца твердого пара-дихлорбензола с 24 ° C до его жидкого состояния при 75 ° C. Пара-дихлорбензол имеет температуру плавления 54 ° C, теплоту плавления 124 Дж / г и удельную теплоемкость 1,01 Дж / г / ° C (твердое состояние) и 1,19 Дж / г / ° C (жидкое состояние).

Удельная теплоемкость | Безграничная физика

Тепловая мощность

Теплоемкость измеряет количество тепла, необходимое для повышения температуры объекта или системы на один градус Цельсия.

Цели обучения

Объясните энтальпию в системе с постоянным объемом и давлением

Ключевые выводы

Ключевые моменты
  • Теплоемкость — это измеримая физическая величина, которая характеризует количество тепла, необходимое для изменения температуры вещества на заданную величину. Он измеряется в джоулях на Кельвин и выражается в.
  • Теплоемкость — это обширное свойство, которое зависит от размера системы.
  • Теплоемкость большинства систем непостоянна (хотя ее часто можно рассматривать как таковую).Это зависит от температуры, давления и объема рассматриваемой системы.
Ключевые термины
  • теплоемкость : количество тепловой энергии, необходимое для повышения температуры объекта или единицы материи на один градус Цельсия; в джоулях на кельвин (Дж / К).
  • энтальпия : общее количество энергии в системе, включая внутреннюю энергию и энергию, необходимую для вытеснения окружающей среды

Тепловая мощность

Теплоемкость (обычно обозначается заглавной буквой C, часто с индексами) или теплоемкость — это измеримая физическая величина, которая характеризует количество тепла, необходимое для изменения температуры вещества на заданную величину.В единицах СИ теплоемкость выражается в джоулях на кельвин (Дж / К).

Теплоемкость объекта (обозначение C ) определяется как отношение количества тепловой энергии, переданной объекту, к результирующему увеличению температуры объекта.

[латекс] \ displaystyle {\ text {C} = \ frac {\ text {Q}} {\ Delta \ text {T}}.} [/ Latex]

Теплоемкость — это обширное свойство, поэтому она масштабируется в зависимости от размера системы. Образец, содержащий вдвое больше вещества, чем другой образец, требует передачи вдвое большего количества тепла (Q) для достижения такого же изменения температуры (ΔT).Например, если для нагрева блока железа требуется 1000 Дж, то для нагрева второго блока железа, масса которого в два раза больше массы первого, потребуется 2000 Дж.

Измерение теплоемкости

Тепловая мощность большинства систем непостоянна. Скорее, это зависит от переменных состояния исследуемой термодинамической системы. В частности, это зависит от самой температуры, а также от давления и объема системы, а также от способов изменения давлений и объемов при переходе системы от одной температуры к другой.Причина этого заключается в том, что работа давления-объема, выполняемая в системе, повышает ее температуру за счет механизма, отличного от нагрева, в то время как работа объема-давления, выполняемая системой, поглощает тепло, не повышая температуру системы. (Из-за температурной зависимости калория формально определяется как энергия, необходимая для нагрева 1 г воды с 14,5 до 15,5 ° C, а не обычно на 1 ° C.)

Таким образом, можно выполнять различные измерения теплоемкости, чаще всего при постоянном давлении и постоянном объеме.Измеренные таким образом значения обычно имеют нижний индекс (соответственно p и V) для обозначения определения. Газы и жидкости обычно также измеряются при постоянном объеме. Измерения при постоянном давлении дают большие значения, чем при постоянном объеме, потому что значения постоянного давления также включают тепловую энергию, которая используется для выполнения работы по расширению вещества против постоянного давления при повышении его температуры. Эта разница особенно заметна для газов, где значения при постоянном давлении обычно составляют от 30% до 66.На 7% больше, чем при постоянной громкости.

Термодинамические соотношения и определение теплоемкости

Внутренняя энергия замкнутой системы изменяется либо за счет добавления тепла в систему, либо из-за того, что система выполняет работу. Напоминая о первом законе термодинамики,

[латекс] \ text {dU} = \ delta \ text {Q} — \ delta \ text {W} [/ latex].

За работу в результате увеличения объема системы можем написать:

[латекс] \ text {dU} = \ delta \ text {Q} — \ text {PdV} [/ latex].

Если тепло добавляется при постоянном объеме, то второй член этого соотношения исчезает и легко получается

[латекс] \ displaystyle {\ left (\ frac {\ partial \ text {U}} {\ partial \ text {T}} \ right) _ {\ text {V}} = \ left (\ frac {\ partial \ text {Q}} {\ partial \ text {T}} \ right) _ {\ text {V}} = \ text {C} _ {\ text {V}}} [/ latex].

Это определяет теплоемкости при постоянном объеме , C V . Еще одна полезная величина — теплоемкость при постоянном давлении , C P .При энтальпии системы, заданной

[латекс] \ text {H} = \ text {U} + \ text {PV} [/ latex],

наше уравнение для d U меняется на

[латекс] \ text {dH} = \ delta \ text {Q} + \ text {VdP} [/ latex],

и, следовательно, при постоянном давлении имеем

[латекс] (\ frac {\ partial \ text {H}} {\ partial \ text {T}}) _ {\ text {P}} = (\ frac {\ partial \ text {Q}} {\ partial \ text {T}}) _ {\ text {P}} = \ text {C} _ {\ text {P}} [/ latex].

Удельная теплоемкость

Удельная теплоемкость — это интенсивное свойство, которое описывает, сколько тепла необходимо добавить к определенному веществу, чтобы повысить его температуру.

Цели обучения

Обобщите количественную взаимосвязь между теплопередачей и изменением температуры

Ключевые выводы

Ключевые моменты
  • В отличие от общей теплоемкости, удельная теплоемкость не зависит от массы или объема. Он описывает, сколько тепла необходимо добавить к единице массы данного вещества, чтобы повысить его температуру на один градус Цельсия. Единицы измерения удельной теплоемкости — Дж / (кг ° C) или эквивалентно Дж / (кг · K).
  • Теплоемкость и удельная теплоемкость связаны соотношением C = см или c = C / м.
  • Масса m, удельная теплоемкость c, изменение температуры ΔT и добавленное (или вычитаемое) тепло Q связаны уравнением: Q = mcΔT.
  • Значения удельной теплоемкости зависят от свойств и фазы данного вещества. Поскольку их нелегко рассчитать, они измеряются эмпирическим путем и доступны для справки в таблицах.
Ключевые термины
  • удельная теплоемкость : Количество тепла, которое должно быть добавлено (или удалено) из единицы массы вещества, чтобы изменить его температуру на один градус Цельсия.Это интенсивное свойство.

Удельная теплоемкость

Теплоемкость — это обширное свойство, которое описывает, сколько тепловой энергии требуется для повышения температуры данной системы. Однако было бы довольно неудобно измерять теплоемкость каждой единицы вещества. Нам нужно интенсивное свойство, которое зависит только от типа и фазы вещества и может быть применено к системам произвольного размера. Эта величина известна как удельная теплоемкость (или просто удельная теплоемкость), которая представляет собой теплоемкость на единицу массы материала.Эксперименты показывают, что передаваемое тепло зависит от трех факторов: (1) изменения температуры, (2) массы системы и (3) вещества и фазы вещества. Последние два фактора заключены в значении удельной теплоемкости.

Теплопередача и удельная теплоемкость : Тепло Q, передаваемое для изменения температуры, зависит от величины изменения температуры, массы системы, а также от вещества и фазы. (а) Количество переданного тепла прямо пропорционально изменению температуры.Чтобы удвоить изменение температуры массы m, вам нужно добавить в два раза больше тепла. (б) Количество переданного тепла также прямо пропорционально массе. Чтобы вызвать эквивалентное изменение температуры в удвоенной массе, вам нужно добавить в два раза больше тепла. (c) Количество передаваемого тепла зависит от вещества и его фазы. Если требуется количество тепла Q, чтобы вызвать изменение температуры ΔT в данной массе меди, потребуется в 10,8 раз больше тепла, чтобы вызвать эквивалентное изменение температуры в той же массе воды, при условии отсутствия фазовых изменений ни в одном из веществ.

Удельная теплоемкость : В этом уроке тепло связано с изменением температуры. Мы обсуждаем, как количество тепла, необходимое для изменения температуры, зависит от массы и задействованного вещества, и эта взаимосвязь представлена ​​удельной теплоемкостью вещества C.

Зависимость от изменения температуры и массы легко понять. Поскольку (средняя) кинетическая энергия атома или молекулы пропорциональна абсолютной температуре, внутренняя энергия системы пропорциональна абсолютной температуре и количеству атомов или молекул.Поскольку переданное тепло равно изменению внутренней энергии, тепло пропорционально массе вещества и изменению температуры. Передаваемое тепло также зависит от вещества, так что, например, количество тепла, необходимое для повышения температуры, меньше для спирта, чем для воды. Для одного и того же вещества передаваемое тепло также зависит от фазы (газ, жидкость или твердое тело).

Количественная связь между теплопередачей и изменением температуры включает все три фактора:

[латекс] \ text {Q} = \ text {mc} \ Delta \ text {T} [/ latex],

где Q — символ теплопередачи, m — масса вещества, а ΔT — изменение температуры.Символ c обозначает удельную теплоемкость и зависит от материала и фазы.

Удельная теплоемкость — это количество тепла, необходимое для изменения температуры 1,00 кг массы на 1,00 ° C. Удельная теплоемкость c — это свойство вещества; его единица СИ — Дж / (кг⋅К) или Дж / (кг⋅К). Напомним, что изменение температуры (ΔT) одинаково в единицах кельвина и градусов Цельсия. Обратите внимание, что общая теплоемкость C — это просто произведение удельной теплоемкости c и массы вещества m, i.е.,

[латекс] \ text {C} = \ text {mc} [/ latex] или [латекс] \ text {c} = \ frac {\ text {C}} {\ text {m}} = \ frac {\ текст {C}} {\ rho \ text {V}} [/ latex],

где ϱ — плотность вещества, V — его объем.

Значения удельной теплоемкости обычно необходимо искать в таблицах, потому что нет простого способа их вычислить. Вместо этого они измеряются эмпирически. Как правило, удельная теплоемкость также зависит от температуры. В таблице ниже приведены типичные значения теплоемкости для различных веществ.За исключением газов, температурная и объемная зависимость удельной теплоемкости большинства веществ слабая. Удельная теплоемкость воды в пять раз больше, чем у стекла, и в десять раз больше, чем у железа, что означает, что для повышения температуры воды на такое же количество тепла требуется в пять раз больше тепла, чем у стекла, и в десять раз больше тепла для повышения температуры. воды как для железа. Фактически, вода имеет одну из самых высоких удельной теплоемкости из всех материалов, что важно для поддержания жизни на Земле.

Удельная теплоемкость : Указана удельная теплоемкость различных веществ.Эти значения идентичны в единицах кал / (г⋅C) .3. cv при постоянном объеме и 20,0 ° C, если не указано иное, и среднем давлении 1,00 атм. В скобках указаны значения cp при постоянном давлении 1,00 атм.

Калориметрия

Калориметрия — это измерение теплоты химических реакций или физических изменений.

Цели обучения

Проанализировать взаимосвязь между газовой постоянной для получения идеального выхода газа и объемом

Ключевые выводы

Ключевые моменты
  • Калориметр используется для измерения тепла, выделяемого (или поглощаемого) в результате физических изменений или химической реакции.Наука об измерении этих изменений известна как калориметрия.
  • Для проведения калориметрии очень важно знать удельную теплоемкость измеряемых веществ.
  • Калориметрия может выполняться при постоянном объеме или постоянном давлении. Тип выполняемого расчета зависит от условий эксперимента.
Ключевые термины
  • калориметр постоянного давления : прибор, используемый для измерения тепла, выделяемого во время изменений, не связанных с изменениями давления.
  • калориметр : Устройство для измерения тепла, выделяемого или поглощаемого в результате химической реакции, изменения фазы или какого-либо другого физического изменения.
  • калориметр постоянного объема : прибор, используемый для измерения тепла, выделяемого во время изменений, не связанных с изменением объема.

Калориметрия

Обзор

Калориметрия — это наука об измерении теплоты химических реакций или физических изменений. Калориметрия выполняется калориметром.Простой калориметр состоит из термометра, прикрепленного к металлическому контейнеру с водой, подвешенному над камерой сгорания. Слово калориметрия происходит от латинского слова calor , что означает тепло. Шотландский врач и ученый Джозеф Блэк, который первым осознал разницу между теплом и температурой, считается основоположником калориметрии.

Калориметрия требует, чтобы нагреваемый материал имел известные тепловые свойства, то есть удельную теплоемкость.Классическое правило, признанное Клаузиусом и Кельвином, состоит в том, что давление, оказываемое калориметрическим материалом, полностью и быстро определяется исключительно его температурой и объемом; это правило применяется для изменений, не связанных с фазовым переходом, таких как таяние льда. Есть много материалов, которые не соответствуют этому правилу, и для них требуются более сложные уравнения, чем приведенные ниже.

Ледяной калориметр : первый в мире ледяной калориметр, использованный зимой 1782-83 гг. Антуаном Лавуазье и Пьером-Симоном Лапласом для определения тепла, выделяющегося при различных химических изменениях; расчеты, основанные на предыдущем открытии скрытой теплоты Джозефом Блэком.Эти эксперименты составляют основу термохимии.

Базовая калориметрия при постоянном значении

Калориметрия постоянного объема — это калориметрия, выполняемая при постоянном объеме. Это предполагает использование калориметра постоянного объема (один из типов называется калориметром бомбы). Для калориметрии постоянного объема:

[латекс] \ delta \ text {Q} = \ text {C} _ {\ text {V}} \ Delta \ text {T} = \ text {mc} _ {\ text {V}} \ Delta \ text {T} [/ латекс]

, где δQ — приращение тепла, полученного образцом, C V — теплоемкость при постоянном объеме, c v — удельная теплоемкость при постоянном объеме, а ΔT — изменение температуры.

Измерение изменения энтальпии

Чтобы найти изменение энтальпии на массу (или на моль) вещества A в реакции между двумя веществами A и B, вещества добавляются в калориметр, а начальная и конечная температуры (до начала реакции и после ее завершения) ) отмечены. Умножение изменения температуры на массу и удельную теплоемкость веществ дает значение энергии, выделяемой или поглощаемой во время реакции:

[латекс] \ delta \ text {Q} = \ Delta \ text {T} (\ text {m} _ {\ text {A}} \ text {c} _ {\ text {A}} + \ text { m} _ {\ text {B}} \ text {c} _ {\ text {B}}) [/ latex]

Разделение изменения энергии на количество присутствующих граммов (или молей) A дает изменение энтальпии реакции.Этот метод используется в основном в академическом обучении, поскольку он описывает теорию калориметрии. Он не учитывает потери тепла через контейнер или теплоемкость термометра и самого контейнера. Кроме того, объект, помещенный внутри калориметра, показывает, что объекты передают свое тепло калориметру и жидкости, а тепло, поглощаемое калориметром и жидкостью, равно теплу, отдаваемому металлами.

Калориметрия постоянного давления

Калориметр постоянного давления измеряет изменение энтальпии реакции, протекающей в растворе, в течение которой атмосферное давление остается постоянным.Примером может служить калориметр кофейной чашки, который состоит из двух вложенных друг в друга чашек из пенополистирола и крышки с двумя отверстиями, в которую можно вставить термометр и стержень для перемешивания. Внутренняя чашка содержит известное количество растворенного вещества, обычно воды, которое поглощает тепло от реакции. Когда происходит реакция, внешняя чашка обеспечивает изоляцию. Тогда

[латекс] \ text {C} _ {\ text {P}} = \ frac {\ text {W} \ Delta \ text {H}} {\ text {M} \ Delta \ text {T}} [/ латекс]

, где C p — удельная теплоемкость при постоянном давлении, ΔH — энтальпия раствора, ΔT — изменение температуры, W — масса растворенного вещества, а M — молекулярная масса растворенного вещества.Измерение тепла с помощью простого калориметра, такого как калориметр для кофейной чашки, является примером калориметрии постоянного давления, поскольку давление (атмосферное давление) остается постоянным во время процесса. Калориметрия постоянного давления используется для определения изменений энтальпии, происходящих в растворе. В этих условиях изменение энтальпии равно теплоте (Q = ΔH).

Удельная теплоемкость идеального газа при постоянном давлении и объеме

Идеальный газ имеет различную удельную теплоемкость при постоянном объеме или постоянном давлении.

Цели обучения

Объясните, как рассчитать индекс адиабаты

Ключевые выводы

Ключевые моменты
  • Удельная теплоемкость газа при постоянном объеме задается как [латекс] (\ frac {\ partial \ text {U}} {\ partial \ text {T}}) _ {\ text {V}} = \ text {c} _ {\ text {v}} [/ latex].
  • Удельная теплоемкость при постоянном давлении для идеального газа задается как [латекс] (\ frac {\ partial \ text {H}} {\ partial \ text {T}}) _ {\ text {V}} = \ text {c} _ {\ text {p}} = \ text {c} _ {\ text {v}} + \ text {R} [/ latex].
  • Коэффициент теплоемкости (или индекс адиабаты) — это отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме.
Ключевые термины
  • Фундаментальное термодинамическое соотношение : В термодинамике фундаментальное термодинамическое соотношение выражает бесконечно малое изменение внутренней энергии в терминах бесконечно малых изменений энтропии и объема для замкнутой системы, находящейся в тепловом равновесии, следующим образом: dU = TdS-PdV. Здесь U — внутренняя энергия, T — абсолютная температура, S — энтропия, P — давление, V — объем.
  • индекс адиабаты : Отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме.
  • удельная теплоемкость : Отношение количества тепла, необходимого для повышения температуры единицы массы вещества на единицу градуса, к количеству тепла, необходимому для повышения температуры той же массы воды на такое же количество.

Удельная теплоемкость идеального газа при постоянном давлении и объеме

Теплоемкость при постоянном объеме nR = 1 Дж · К −1 любого газа, включая идеальный, равна:

[латекс] (\ frac {\ partial \ text {U}} {\ partial \ text {T}}) _ {\ text {V}} = \ text {c} _ {\ text {v}} [/ латекс]

Это безразмерная теплоемкость при постоянном объеме; обычно это функция температуры из-за межмолекулярных сил.Для умеренных температур константа одноатомного газа c v = 3/2, а для двухатомного газа c v = 5/2 (см.). Макроскопические измерения теплоемкости дают информацию о микроскопической структуре молекул.

Молекулярные внутренние колебания : Когда газ нагревается, поступательная киентная энергия молекул в газе увеличивается. Кроме того, молекулы газа могут улавливать множество характерных внутренних колебаний. Потенциальная энергия, накопленная в этих внутренних степенях свободы, вносит вклад в удельную теплоемкость газа.

Теплоемкость при постоянном давлении 1 Дж · К −1 идеальный газ составляет:

[латекс] (\ frac {\ partial \ text {H}} {\ partial \ text {T}}) _ {\ text {V}} = \ text {c} _ {\ text {p}} = \ текст {c} _ {\ text {v}} + \ text {R} [/ latex]

где H = U + pV — энтальпия газа.

Измерение теплоемкости при постоянном объеме может быть чрезвычайно трудным для жидкостей и твердых тел. То есть небольшие изменения температуры обычно требуют большого давления для поддержания постоянного объема жидкости или твердого вещества (это означает, что содержащий сосуд должен быть почти жестким или, по крайней мере, очень прочным).Легче измерить теплоемкость при постоянном давлении (позволяющем материалу свободно расширяться или сжиматься) и определить теплоемкость при постоянном объеме, используя математические соотношения, выведенные из основных законов термодинамики.

Используя фундаментальную термодинамическую связь, мы можем показать:

[латекс] \ text {C} _ {\ text {p}} — \ text {C} _ {\ text {V}} = \ text {T} (\ frac {\ partial \ text {P}} { \ partial \ text {T}}) _ {\ text {V}, \ text {N}} (\ frac {\ partial \ text {V}} {\ partial \ text {T}}) _ {\ text { p}, \ text {N}} [/ latex]

, где частные производные взяты при постоянном объеме и постоянном количестве частиц, а также при постоянном давлении и постоянном количестве частиц, соответственно.

Коэффициент теплоемкости или показатель адиабаты — это отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме. Иногда его также называют коэффициентом изоэнтропического расширения:

.

[латекс] \ gamma = \ frac {\ text {C} _ {\ text {P}}} {\ text {C} _ {\ text {V}}} = \ frac {\ text {c} _ { \ text {p}}} {\ text {c} _ {\ text {v}}} [/ latex]

Для идеального газа оценка приведенных выше частных производных в соответствии с уравнением состояния, где R — газовая постоянная для идеального газа, дает:

[латекс] \ text {pV} = \ text {RT} [/ латекс]

[латекс] \ text {C} _ {\ text {p}} — \ text {C} _ {\ text {V}} = \ text {T} (\ frac {\ partial \ text {P}} { \ partial \ text {T}}) _ {\ text {V}} (\ frac {\ partial \ text {V}} {\ partial \ text {T}}) _ {\ text {p}} [/ latex ]

[латекс] \ text {C} _ {\ text {p}} — \ text {C} _ {\ text {V}} = — \ text {T} (\ frac {\ partial \ text {P}} {\ partial \ text {V}}) _ {\ text {V}} (\ frac {\ partial \ text {V}} {\ partial \ text {T}}) _ {\ text {p}} ^ { 2} [/ латекс]

[латекс] \ text {P} = \ frac {\ text {RT}} {\ text {V}} \ text {n} \ to (\ frac {\ partial \ text {P}} {\ partial \ text {V}}) _ {\ text {T}} = \ frac {- \ text {RT}} {\ text {V} ^ {2}} = \ frac {- \ text {P}} {\ text { V}} [/ latex]

[латекс] \ text {V} = \ frac {\ text {RT}} {\ text {P}} \ text {n} \ to (\ frac {\ partial \ text {V}} {\ partial \ text {T}}) ^ {2} _ {\ text {p}} = \ frac {\ text {R} ^ {2}} {\ text {P} ^ {2}} [/ latex]

заменяющий:

[латекс] — \ text {T} (\ frac {\ partial \ text {P}} {\ partial \ text {V}}) _ {\ text {V}} (\ frac {\ partial \ text {V }} {\ partial \ text {T}}) _ {\ text {p}} ^ {2} = — \ text {T} \ frac {- \ text {P}} {\ text {V}} \ frac {\ text {R} ^ {2}} {\ text {P} ^ {2}} = \ text {R} [/ latex]

Это уравнение сводится просто к тому, что известно как соотношение Майера:

Юлиус Роберт Майер : Юлиус Роберт фон Майер (25 ноября 1814 — 20 марта 1878), немецкий врач и физик, был одним из основоположников термодинамики.Он известен прежде всего тем, что в 1841 году сформулировал одно из первоначальных утверждений о сохранении энергии (или то, что сейчас известно как одна из первых версий первого закона термодинамики): «Энергия не может быть ни создана, ни уничтожена. В 1842 году Майер описал жизненно важный химический процесс, который теперь называют окислением, как основной источник энергии для любого живого существа. Его достижения не были замечены, и заслуга в открытии механического эквивалента тепла была приписана Джеймсу Джоулю в следующем году.фон Майер также предположил, что растения превращают свет в химическую энергию.

[латекс] \ text {C} _ {\ text {P}} — \ text {C} _ {\ text {V}} = \ text {R} [/ latex].

Это простое уравнение, связывающее теплоемкость при постоянной температуре и при постоянном давлении.

Решение задач калориметрии

Калориметрия используется для измерения количества тепла, выделяемого или потребляемого в химической реакции.

Цели обучения

Объясните, что калориметр бомбы используется для измерения тепла, выделяемого в реакции горения

Ключевые выводы

Ключевые моменты
  • Калориметрия используется для измерения количества тепла, передаваемого веществу или от него.
  • Калориметр — это устройство, используемое для измерения количества тепла, участвующего в химическом или физическом процессе.
  • Это означает, что количество тепла, производимого или потребляемого в реакции, равно количеству тепла, поглощаемого или теряемого раствором.
Ключевые термины
  • теплота реакции : изменение энтальпии в химической реакции; количество тепла, которое система отдает своему окружению, чтобы она могла вернуться к исходной температуре.
  • сжигание : Процесс, в котором два химических вещества объединяются для получения тепла.

Калориметры

предназначены для минимизации обмена энергией между исследуемой системой и ее окружением. Они варьируются от простых калориметров для кофейных чашек, используемых студентами начального курса химии, до сложных калориметров-бомб, используемых для определения энергетической ценности пищи.

Калориметрия используется для измерения количества тепла, передаваемого веществу или от него. Для этого происходит обмен тепла с калиброванным объектом (калориметром).Изменение температуры измерительной части калориметра преобразуется в количество тепла (поскольку предыдущая калибровка использовалась для определения его теплоемкости). Измерение теплопередачи с использованием этого подхода требует определения системы (вещества или веществ, подвергающихся химическому или физическому изменению) и ее окружения (других компонентов измерительного устройства, которые служат для обеспечения теплом системы или поглощения тепла от система). Знание теплоемкости окружающей среды и тщательные измерения масс системы и окружающей среды, а также их температуры до и после процесса позволяют рассчитать передаваемое тепло, как описано в этом разделе.

Калориметр — это устройство, используемое для измерения количества тепла, участвующего в химическом или физическом процессе. Например, когда в растворе в калориметре происходит экзотермическая реакция, тепло, выделяемое в результате реакции, поглощается раствором, что увеличивает его температуру. Когда происходит эндотермическая реакция, необходимое тепло поглощается тепловой энергией раствора, что снижает его температуру. Затем изменение температуры, а также удельная теплоемкость и масса раствора можно использовать для расчета количества тепла, задействованного в любом случае.

Калориметры для кофейных чашек

Студенты-общехимики часто используют простые калориметры, изготовленные из полистирольных стаканчиков. Эти простые в использовании калориметры типа «кофейная чашка» обеспечивают больший теплообмен с окружающей средой и, следовательно, дают менее точные значения энергии.

Устройство калориметра постоянного объема (или «бомбы»)

Калориметр бомбы : Это изображение типичной установки калориметра бомбы.

Калориметр другого типа, который работает с постоянным объемом, в просторечии известный как калориметр бомбы, используется для измерения энергии, производимой реакциями, которые дают большое количество тепла и газообразных продуктов, таких как реакции горения.(Термин «бомба» происходит из наблюдения, что эти реакции могут быть достаточно интенсивными, чтобы напоминать взрывы, которые могут повредить другие калориметры.) Этот тип калориметра состоит из прочного стального контейнера («бомба»), который содержит реагенты и сам является погружен в воду. Образец помещается в бомбу, которая затем заполняется кислородом под высоким давлением. Для воспламенения образца используется небольшая электрическая искра. Энергия, произведенная в результате реакции, улавливается стальной бомбой и окружающей водой.Повышение температуры измеряется и, наряду с известной теплоемкостью калориметра, используется для расчета энергии, производимой в результате реакции. Калориметры бомбы требуют калибровки для определения теплоемкости калориметра и обеспечения точных результатов. Калибровка выполняется с использованием реакции с известным q, например измеренного количества бензойной кислоты, воспламененного искрой от никелевой плавкой проволоки, которая взвешивается до и после реакции. Изменение температуры, вызванное известной реакцией, используется для определения теплоемкости калориметра.Калибровка обычно выполняется каждый раз перед использованием калориметра для сбора данных исследования.

Пример: идентификация металла путем измерения удельной теплоемкости

Кусок металла весом 59,7 г, который был погружен в кипящую воду, был быстро перенесен в 60,0 мл воды при начальной температуре 22,0 ° C. Конечная температура составляет 28,5 ° C. Используйте эти данные, чтобы определить удельную теплоемкость металла. Используйте этот результат, чтобы идентифицировать металл.

Решение

Предполагая идеальную теплопередачу, выделяемое металлом тепло является отрицательной величиной тепла, поглощаемого водой, или:

[латекс] \ text {q} _ {\ text {metal}} = — \ text {q} _ {\ text {water}} [/ latex]

В развернутом виде это:

[латекс] \ text {c} _ {\ text {metal}} \ times \ text {m} _ {\ text {metal}} \ times \ left (\ text {T} _ {\ text {f, металл }} — \ text {T} _ {\ text {i, metal}} \ right) = \ text {c} _ {\ text {water}} \ times \ text {m} _ {\ text {water}} \ times \ left (\ text {T} _ {\ text {f, water}} — \ text {T} _ {\ text {i, water}} \ right) [/ latex]

Отметив, что, поскольку металл был погружен в кипящую воду, его начальная температура была 100.{\ text {o}} \ text {C} [/ latex]

Наша экспериментальная удельная теплоемкость наиболее близка к значению для меди (0,39 Дж / г ° C), поэтому мы идентифицируем металл как медь.

Как рассчитать удельную теплоемкость различных веществ — стенограмма видео и урока

Разница между теплом и температурой

Давайте рассмотрим пример, который поможет нам понять разницу между теплом и температурой. Рассмотрим два стакана с кипящей водой по 1 литру в одном и 2 литра в другом.Если оба кипят, у них одинаковая температура. Видите ли, температура определяется как среднее количество кинетической энергии в веществе, где кинетическая энергия — это энергия движения. Молекулы в каждом горшке имеют одинаковую среднюю энергию движения или среднее количество кинетической энергии. Другими словами, молекулы воды в каждом горшке движутся с одинаковой скоростью. Температура измеряется в градусах Цельсия, Фаренгейта или даже Кельвина.

Две емкости с кипящей водой будут иметь одинаковую температуру, независимо от их объема.

Однако два литра кипящей воды содержат больше тепла, чем один литр кипящей воды, даже если они имеют одинаковую температуру. В контексте удельной теплоемкости тепла, — это общее количество энергии в веществе, а тепло иногда называют тепловой энергией, где единиц энергии — это способность выполнять работу. В научном сообществе энергия измеряется в джоулях, но также может быть выражена в калориях.

Хотя тепло и температура — разные меры, они, безусловно, связаны. Температура увеличивается по мере добавления тепла к веществу. Точно так же температура снижается по мере удаления тепла.

Как рассчитать удельную теплоемкость

Давайте проведем небольшой эксперимент. Все, что нам нужно, — это стакан с водой, термометр и источник питания, вырабатывающий тепло. Блок питания будет измерять количество тепла, которое мы добавляем в воду. Допустим, мы нагревали 10 мл (10 граммов) воды на 10 градусов по Цельсию.При этом блок питания регистрирует 420 джоулей. Это означает, что потребовалось 420 джоулей тепловой энергии, чтобы поднять 10 граммов воды на 10 градусов по Цельсию.

Мы можем использовать эту информацию для расчета удельной теплоемкости воды. Все, что нам нужно, — это выяснить, сколько тепла требуется для повышения температуры одного грамма воды на один градус Цельсия.

Уравнение удельной теплоемкости выглядит следующим образом:

S.H.C. = Тепловая энергия / (масса вещества * изменение температуры)

Уравнение гласит: «Удельная теплоемкость равна тепловой энергии на грамм на градус Цельсия.’

Теперь, если мы вставим наши результаты, мы получим следующее:

S.H.C. = 420 джоулей / (10 граммов * 10 градусов Цельсия) = 4,2 джоулей на грамм на градус Цельсия

Что это означает? Это означает, что требуется 4,2 джоулей тепловой энергии, чтобы поднять один грамм воды на один градус Цельсия. Чтобы упростить запоминание, давайте переведем джоули в калории. Помните, что оба являются единицами измерения энергии. В 1 калории 4,2 джоуля. Следовательно, мы можем сказать, что удельная теплоемкость воды составляет 1 калорию на грамм на градус Цельсия.Это довольно легко запомнить!

Если мы проделаем тот же эксперимент с алкоголем, потребуется 255 джоулей, чтобы поднять 10 граммов на 10 градусов по Цельсию. Таким образом, удельная теплоемкость спирта составляет 2,55 джоулей / грамм / градус Цельсия. Насколько это аккуратно? Это довольно здорово!

Применение удельной теплоемкости

Эта диаграмма ранжирует удельную теплоемкость веществ, причем вода имеет самую высокую удельную теплоемкость.

Как я уже упоминал в первом абзаце, не все вещества имеют одинаковую удельную теплоемкость.На самом деле удельная теплоемкость воды довольно высока. Удельная теплоемкость спирта примерно вдвое меньше, чем у воды — мы рассчитали это в приведенном выше примере. Удельная теплоемкость воздуха меньше, чем у спирта. Еще ниже камни и металлы. Ну как нам вся эта информация помогает?

Проще говоря, жизнь на этой планете была бы невозможна, если бы не высокая удельная теплоемкость воды. Материалы с высокой удельной теплоемкостью, такие как вода, могут поглощать и выделять много тепла без значительного изменения температуры.Рассмотрим океан. Океан поглощает тепло днем ​​и выделяет тепло ночью, что помогает нам поддерживать относительно постоянную температуру атмосферы. Вот почему прибрежные регионы имеют умеренный климат по сравнению с большим количеством внутренних регионов. На более личном уровне наши тела содержат много воды — на самом деле, это в основном вода. Вода в нашем организме помогает поддерживать относительно постоянную внутреннюю температуру, и это необходимо нам для поддержания жизни.

Резюме урока

Итак, удельная теплоемкость — это количество энергии, необходимое для изменения температуры вещества.В этом контексте тепла иногда называют тепловой энергией, и это полная энергия, содержащаяся в веществе. Energy — это просто способность выполнять работу. Тепловая энергия, как и другие виды энергии, измеряется в джоулях (Дж) или калориях (кал).

Температура — это средняя кинетическая энергия вещества, выражаемая в градусах Цельсия, Фаренгейта или Кельвина. Температура вещества изменяется по мере добавления или отвода тепла от вещества.

Удельная теплоемкость измеряется путем определения того, сколько тепловой энергии необходимо, чтобы поднять один грамм вещества на один градус Цельсия. Удельная теплоемкость воды составляет 4,2 джоуля на грамм на градус Цельсия или 1 калорию на грамм на градус Цельсия. Эта высокая удельная теплоемкость воды позволяет воде поглощать и выделять много тепла и поддерживать довольно постоянную температуру.

Результаты обучения

По завершении этого урока вы сможете:

  • Определить удельную теплоемкость и энергию
  • Разница между теплом и температурой
  • Объясните, как рассчитать удельную теплоемкость
  • Обобщите важность воды, имеющей высокую удельную теплоемкость

Измерение тепла с помощью термометра

Для измерения тепла используются два класса приборов, а именно, термометры и пирометры.Термометры используются только для измерения сравнительно низких температур, и в данной статье мы полностью ограничимся этим классом.
Современная физика продемонстрировала, что тепло — это просто способ движения в материи, и принципы, от которых зависит его измерение, возможно, труднее понять, чем ложная теория, преобладавшая до утверждения этой доктрины. До тех пор, пока тепло считалось веществом, пусть даже невесомым, было нетрудно понять, как его поглощение телом могло определенно увеличивать это тело, поскольку древесина увеличивается за счет поглощения воды.Труднее понять, почему тело увеличивается из-за увеличения движения его частиц. Если мы, однако, откажемся от рассмотрения вопроса «почему» в данном случае и ограничимся законом или способом, которым происходит это расширение, мы можем прийти к определенным и практическим результатам. Тем не менее уместно заявить, что ультиматум, которого достигла наука в отношении причины этого расширения, состоит в том, что хедт в некотором роде противостоит сплоченности. В настоящее время совершенно бесполезно пытаться пойти дальше этого.Однако тот факт, что такое расширение имеет место как в твердых телах, так и в жидкостях, и что оно в определенных пределах является достаточно однородным по определению в веществах, чтобы стать средством измерения температур, которым эти вещества подвергаются, является основой термометрических измерений.
Но следует отчетливо иметь в виду еще один момент; термометры измеряют только физическое тепло. Таким образом, один фунт пара при 313 Fah. содержит достаточно тепла, чтобы нагреть пять с половиной фунтов воды до той же температуры, что легко продемонстрировать экспериментально.Отсюда следует, что абсолютное или общее количество единиц тепла, содержащихся в любом веществе, должно определяться каким-либо другим способом, кроме термометра, и что градус на термометре не может считаться единицей тепла. Что тогда такое единица тепла. Было решено учитывать количество тепла, необходимое для подъема одного фунта воды с 33 Fah. до 33 Фах. как единица тепла, и хотя, несомненно, есть некоторые небольшие источники ошибок в методе, он достаточно точен, чтобы учесть количество тепла, необходимое для поднятия одного фунта воды на один градус, где-то между 33 Fah.и 313 Fah. как постоянная величина.
Это также правильный вывод, что любое конкретное вещество в однородном состоянии, что касается когезионной способности его частиц, должно иметь одинаковую температуру, пока оно поддерживает это состояние, поскольку тепло является силой, противоположной когезии. Чем больше тепла, тем меньше сцепление, и наоборот. Вода, переходя из жидкого в твердое состояние, поддерживает такую ​​однородность состояния; поэтому его температуру можно считать постоянной. Он также поддерживает такую ​​же однородность состояния при переходе из жидкого состояния в пар при температуре кипения.Таким образом, точки замерзания и кипения воды можно рассматривать как два характерных ориентира температуры, от которых степень расширения некоторого однородно или почти равномерно расширяющегося вещества, например ртути, погруженной в воду в двух названных условиях, отмечается на шкала, деления могут быть произвольно сделаны в каждом направлении по одной и той же шкале, которая будет указывать температуры выше или ниже этих точек.
По шкале Цельсия высота столбика ртути, погруженного в ледяную воду, равна нулю, а расстояние между этой точкой и высотой того же столбца, погруженного в кипящую воду, делится на сто градусов, а по шкале Фаренгейта — первая указанная высота. 33 градуса выше нуля, и делит пространство между этой высотой и высотой, на которой ртуть стоит в кипящей воде, на сто восемьдесят делений, или градусов.Наше внимание требует то, как можно определить количество тепла в любом теле по термометрическим показаниям. Установлен следующий закон. Общее количество тепла в любом теле — это сумма его скрытого тепла и его ощутимого тепла. Скрытое тепло определяется известной способностью исследуемого тела при заданных температурах поглощать тепло или, другими словами, делать его скрытым. Этот термин, скрытая теплота, не подходит, хотя мы все равно вынуждены использовать его из-за отсутствия лучшего.Мы используем его только для того, чтобы различать тепло, которое, действуя в массе материи и расходуя свою энергию в антагонизме со связным притяжением, не может быть распознано с помощью ощущений, например, свободного или чувственного тепла. Скрытая или удельная теплоемкость различных тел стала предметом тщательного изучения, и были составлены справочные таблицы, чтобы предоставить готовые средства вычисления; но удельная теплоемкость всех тел изменяется по любой причине, которая уменьшает или увеличивает расстояние между частицами, составляющими их массу.Сжатие пара снижает его удельную теплоемкость, но увеличивает его температуру, и наоборот. Таким образом, удельная теплоемкость пара постоянна только при постоянном давлении.
Теперь будет видно, что общее количество тепла, содержащегося в любом теле, можно определить с помощью термометра, только когда его удельная теплоемкость для всех температур была заранее определена. Это было сделано для многих веществ, включая воду и пар, для которых измерение тепла имеет наивысшее значение, поскольку только с помощью такого измерения могут быть решены вопросы экономии парогенераторов.Количество воды, испарившейся при постоянной температуре на фунт потребляемого горючего при постоянном давлении, является единственным надежным тестом экономичности парового котла. Когда испарение происходит при 313, требуемая однородность давления и, следовательно, температуры легко поддерживается, чего не было бы, если бы двигатель приводился в движение генерируемым паром или если бы была сделана попытка произвести пар с постоянной более высокой температура. Температуру питательной воды можно легко поддерживать на постоянной отметке, либо на уровне 313, либо при более низкой температуре, и количество этой воды, которое фунт топлива превратит в пар при 313, является точным показателем мощности бойлер для передачи тепла через корпус в содержащуюся в нем воду.

Определение удельной теплоемкости

Удельная теплоемкость указывает на способность вещества накапливать тепло. Этот размер вещества соответствует количеству тепла, необходимому для нагрева определенного количества вещества на градуса Кельвина. Он характерен для каждого вещества и может использоваться для идентификации материалов. Единица измерения удельной теплоемкости — килоджоули на килограмм, умноженные на Кельвин [кДж / (кг * К)] .

В принципе, проводится различие между удельной теплоемкостью при изменении температуры при постоянном давлении (cp) и при постоянном объеме (cv) .Подача тепла под постоянным давлением одновременно вызывает увеличение объема, на что расходуется часть энергии. Это различие важно только при рассмотрении газов и паров.

Удельная теплоемкость твердых тел в основном используется в строительной отрасли для оценки поведения строительных материалов. Летом ткани с высокой теплоемкостью надолго сохраняют прохладу в помещении. Зимой они дольше сохраняют тепло в зданиях. Теплоемкость также является основанием для выбора материалов для печей и отопительных конструкций .

Изначально удельная теплоемкость была измерена путем погружения нагретого образца материала в воду . После температурной компенсации удельную теплоемкость образца рассчитывали на основе разницы температур между началом и концом эксперимента. Поскольку в формуле необходимо было учитывать теплоемкость экспериментальной установки, процесс был несколько громоздким.

Современные измерители

Linseis основаны на дифференциальной сканирующей калориметрии (ДСК) и дифференциальном термическом анализе (ДТА). Эти методы обеспечивают получение высокоточных результатов за короткое время . Измерения можно проводить в широком диапазоне температур. В результате дополнительно можно определить температурную зависимость удельной теплоемкости.

Тепло

Тепло


Нагрев

Heat — это способ передачи энергии между системами.
и его окружение, которое часто, но не всегда, меняет
температура системы.Тепло не сохраняется, может быть
либо созданы, либо уничтожены. В метрической системе тепло
измеряется в единицах калорий, калорий, которые определяются как
количество тепла, необходимое для повышения температуры одного грамма
вода от 14,5 o C до 15,5 o C.

В системе СИ единицей тепла является джоуль .


Тепловая мощность

Теплоемкость вещества — это количество тепла.
требуется для повышения температуры определенного количества чистого
вещества на один градус (Цельсия или Кельвина).Калорийность была
определяется так, чтобы теплоемкость воды была равна единице.


Удельная теплоемкость

Удельная теплоемкость вещества — это количество
калорий, необходимых для повышения температуры одного грамма на 1 o C.
Поскольку один градус по шкале Цельсия равен одному Кельвину,
удельная теплоемкость в метрической системе может быть указана в единицах измерения
либо кал / г- o C, либо кал / г-К.Единицы теплоемкости
в системе СИ — Дж / г-К. Поскольку в
калорийность, удельная теплоемкость воды составляет 4,184 Дж / г-К.

Легкость, с которой вещество приобретает или
теряет тепло, также может быть описано с точки зрения его молярной теплоты
емкость
, которая является теплом, необходимым для повышения температуры
один моль вещества либо на 1 o C, либо на 1
К. В метрической системе единицами молярной теплоемкости являются
поэтому либо кал / моль- o ° C, либо кал / моль-K.В СИ
В системе единицы молярной теплоемкости — Дж / моль-К.


Скрытая теплота

Когда лед нагревается, тепло, которое изначально поступает в систему
используется для растапливания льда. Когда лед тает, температура остается
постоянная при 0 o C. Количество тепла, необходимое для плавления
лед исторически называют скрытой теплотой плавления .
Как только лед растает, температура воды медленно
увеличивается с 0 o C до 100 o C.Но однажды
вода закипает, тепло, которое попадает в образец, используется для
преобразовать жидкость в газ и температуру образца
остается постоянным, пока жидкость не испарится. Количество тепла
требуется для кипячения или испарения жидкости, исторически
называется скрытой теплотой испарения .

Более 200 лет назад Джозеф Блэк выделил разумных
тепло
и скрытое тепло .Тепло, поднимающее
температура системы может быть определена, но тепло, которое приводит к
изменение состояния системы с твердого на жидкое или
переход от жидкости к газу скрыт. Как скрытое изображение на
фотографическая пленка, которая не была проявлена, или скрытые отпечатки пальцев
что не видно невооруженным глазом, скрытое тепло
тепло, которое поступает в систему без изменения температуры
система.


Тепло и кинетика
Молекулярная теория

Система — небольшая часть Вселенной в
которые нас интересуют, например, вода в стакане или газ
застряли в поршне и цилиндре, как показано на рисунках ниже.