Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Как проверить высоковольтный конденсатор: Как проверить конденсатор?

Содержание

Как проверить и разрядить высоковольтный конденсатор микроволновки

При массовом использовании в быту микроволновых печах СВЧ происходит и большое количество нарушений в их работе, поломки. Многих людей, кто столкнулся с этим, интересует, как проверить своими силами конденсатор микроволновки. Здесь можно узнать ответ на этот вопрос.

Конденсатор для микроволновки

Принцип устройства

Конденсатор является приспособлением, имеющим способность копить определенный заряд электричества. Он представляет собой две пластины из металла, установленные параллельно, между которыми находится диэлектрик. Увеличение площади пластин увеличивает накопленный заряд в устройстве.

Конденсаторы бывают 2-х видов: полярные и неполярные. Все полярные приспособления – электролитические. Емкость их от 0.1 ÷ 100000 мкФ.

При проверке полярного приспособления важно соблюдение полярности, когда плюсовая клемма присоединена к плюсовому выводу, а минусовая к минусовому.

Высоковольтными являются именно полярные конденсаторы, у неполярных – малая емкость.

Микроволновка с указанием места расположения конденсатора

В цепь питания магнетрона микроволновки входит диод, трансформатор, конденсатор. Через них к катоду идет до 2-х, 3-х киловольт.

Конденсатор – это большая деталь весом до 100 гр. К нему присоединяется вывод диода, второй на корпусе. Вблизи блока размещается также цилиндр. Конкретно данный цилиндр представляет собой высоковольтный предохранитель. Он не должен допустить перегревание магнетрона.

Расположение конденсатора

Как разрядить конденсатор в микроволновке

Разрядить его возможно такими способами:

Отключив от электросети, конденсатор разряжают, осмотрительно замкнув отверткой его клеммы. Хороший разряд свидетельствует о его исправном состоянии. Такой способ разрядки самый распространенный, хотя некоторые считают его опасным, способным нанести вред и разрушить приспособление.

Разряд конденсатора отвертками

У высоковольтного конденсатора есть интегрированный резистор. Он работает для разряда детали. Приспособление располагается под высочайшим напряжением (2 кВ), и потому есть необходимость в его разряде в основном на корпус. Детали с ёмкостью более 100 мкФ и напряжением от 63V лучше разряжать через резистор 5-20 килоОм и 1 – 2 Вт. Для чего концы резистора объединяют с клеммами приспособления на некоторое количество секунд, чтобы снять заряд. Это необходимо для предотвращения возникновение сильной искры. Потому надо побеспокоиться об личной безопасности.

Как проверить высоковольтный конденсатор микроволновки

Высоковольтный конденсатор проверяют его подключением вместе с лампой 15 Вт Х 220 В. Дальше выключают объединенные конденсатор и лампочку из розетки. При рабочем состоянии детали лампа станет светиться в 2 раза меньше, чем обычно. При нарушениях в работе лампочка ярко светит или не светится вообще.

Проверка с лампочкой

Конденсатор микроволновки имеет емкость 1.07 мф, 2200 в, потому испытать его с поддержкою мультиметра достаточно просто:

1. Необходимо подключить мультиметр так, чтобы измерять сопротивление, а именно наибольшее сопротивление. На устройстве сделать до 2000k.

2. Потом необходимо включить незаряженное приспособление к клеммам мультиметра, не дотрагиваясь их. При рабочем состоянии показания станут 10 кОм, переходящие в бесконечность (на мониторе 1).

3. Потом необходимо изменить клеммы.

4. Когда при включении его к устройству на мониторе мультиметра ничто не поменяется, это означает, приспособление в обрыве, когда будет нуль, означает, что в нем пробой. При показании в устройстве постоянного сопротивления, пусть небольшого значения, значит, в приспособлении есть утечка. Его необходимо сменить.

Проверка мультиметром

Проверка мультиметром

Эти испытания сделаны на невысоком напряжении. Часто неисправные приспособления не показывают нарушения на невысоком напряжении. Потому для испытания нужно применять или мегаомметр с напряжением одинаковым напряжению конденсатора, или будет нужен наружный источник высокого напряжения.

Мультиметром его элементарно так испытать невозможно. Он продемонстрирует лишь, что обрыва нет и короткое замыкание. Для этого необходимо в режиме омметра присоединить его к детали – в исправном состоянии он продемонстрирует невысокое сопротивление, которое за некоторое количество секунд вырастет по бесконечности.

Неисправный конденсатор имеет утечку электролита. Сделать определение емкости особым устройством не трудно. Надо его подключить, поставить на большее значение, и соприкоснуться клеммами к выводам. Сверить с нормативными. Когда отличия маленькие (± 15 %), деталь исправна, но когда их нет или значительно ниже нормы, значит, она пришло в негодность.

Для испытания детали омметром:

1. Надо снять наружную крышку и клеммы.

2. Разрядить его.

3. Переключить мультиметр для испытания сопротивления 2000 килоОм.

4. Исследуйте клеммы на присутствие механических дефектов. Плохой контакт станет негативно воздействовать на качество измерения.

5. Соедините клеммы с концами устройства и смотрите за числовыми измерениями. Когда числа начинают изменяться так: 1…10…102.1, означает, что деталь в рабочем состоянии. Когда значения не изменяются или появляется нуль, значит приспособление в нерабочем состоянии.

6. Для другого испытания приспособление надо разрядить и снова подтвердить.

Проверка омметром

Проверка омметром

Испытать конденсатор для обнаружения нарушений в работе возможно и тестером. Для этого надо настроить измерения в килоОм, и смотреть за испытанием. При соприкосновении клемм сопротивление должно снизиться практически до нулевой отметки, и за несколько секунд подрасти до показания на табло 1. Наиболее замедленным этот процесс будет, когда включить замеры на 10-ки и сотки килоОм.

Работа по проверке конденсатора

Проходные конденсаторы магнетрона в микроволновке проходят проверку тоже тестером. Надо тронуть выводами устройства вывод магнетрона и его корпуса. Когда на табло будет 1 — конденсаторы исправны. При появлении показаний сопротивления означает, что один из них пробит или в утечке. Их надо сменить на новые детали.

Проверка исправности проходных конденсаторов

Одной из причин нарушений работы конденсатора есть утрата части емкости. Она становится другой, не так, как на корпусе.

Найти это нарушение при поддержке омметра трудно. Нужен датчик, который есть не в каждом мультиметре. Обрыв в детали бывает при механических воздействиях не так часто. Значительно чаще происходит нарушения за счет пробоя и утраты емкости.

Микроволновка не производит нагревание микроволной из-за того, что в детали есть утечка, которая не обнаруживается обыкновенным омметром. Потому надо целенаправленно испытать деталь при поддержке мегомметра с использованием высокого напряжения.

Действия при испытании будут следующие:

  1. Нужно поставить наибольший предел измерения в режиме омметра.
  2. Щупами измерительного устройства дотрагиваемся до выводов детали.
  3. Когда на табло отражается «1», показывает нам, что сопротивление более 2-ух мегаом, следственно, в рабочем состоянии, в другом варианте мультиметр продемонстрирует меньшее значение, что значит, что деталь в нерабочем состоянии и пришла в негодность.

Перед тем как начинать починку всех электроустройств, нужно удостовериться, что нет питания.

После проверки деталей надо принимать меры к замене тех из них, которые находятся в нерабочем состоянии, новыми, более совершенными.

Разряд конденсатора на корпус

Как проверить конденсатор свч мультиметром

1.2.7. Проверка компонентов

Отключайте сетевой шнур печи от питающей розетки каждый раз перед тем, как снять кожух. Начинайте любые работы внутри печи только после того, как разрядите высоковольтный конденсатор и отключите провода от первичной обмотки высоковольтного трансформатора.

При проверке и настройке микроволнового блока печи ее следует нагрузить, вставив чашу с 1 литром воды в печь.

Проверка выходной мощности СВЧ печи

  1. Поместите емкость с 200 мл воды (температура 10. 18 °С) на вращающийся поднос.
  2. Установите полную выходную мощность печи и включите ее на 5 минут.
  3. Для исправной печи температура воды после этого должна превышать 80 °С.

Для проверки работы гриля:

  1. Поместите пищу, подходящую для приготовления грилем, и включите гриль на 5 мин.
  2. При исправном гриле после этого его поверхность должна быть красного цвета.

Магнетрон микроволновой печи

  1. Сопротивление между выводами накала должно быть менее 1 Ом.
  2. Сопротивление утечки накал—корпус должно быть «бесконечность» (прибор включен на предел R x 1000).

Если ремонт был связан с демонтажем или заменой магнетрона, при обратной установке магнетрона в печь обратите особое внимание на отсутствие повреждений и правильную установку изолирующей прокладки.

Высоковольтный конденсатор микроволновой печи

Измеряется утечка между выводами конденсатора и каждым выводом и корпусом конденсатора. Во всех случаях мультиметр, включенный в режим R x 1000, должен показывать бесконечность.

Высоковольтный диод микроволновой печи

Измеряется его сопротивление в прямом и обратном направлении. При этом мультиметр включается в режим R x 1000. При подсоединении «+» вывода мультиметра к аноду диода (измерение сопротивления диода в прямом направлении) прибор должен показать конечную величину сопротивления. При подключении «-» вывода мультиметра к аноду диода (измерение сопротивления диода в обратном направлении) прибор должен показать бесконечность. Следует использовать измеритель с источником питания не менее 9 В. Косвенным признаком, указывающим на возможную неисправность высоковольтного диода, является нагрев высоковольтного конденсатора. В этом случае, если высоковольтный конденсатор исправен, следует заменить высоковольтный диод.

Высоковольтный трансформатор микроволновой печи

Традиционным методом проверки исправности трансформатора является измерение напряжений на его обмотках. Однако, в случае с высоковольтными трансформаторами СВЧ-печей такой подход неприменим из-за присутствия опасного напряжения величиной около 2 кВ на вторичной обмотке трансформатора. В связи с этим все фирмы-изготовители СВЧ-печей рекомендуют проверять исправность высоковольтного трансформатора путем измерения сопротивления его обмоток. Сопротивления обмоток высоковольтного трансформатора для каждого типа печи приведены в разделе, посвященном этой печи.

Для измерения сопротивлений обмоток трансформатор следует отключить от всех подходящих к нему проводов и проверить соответствие сопротивления его обмоток приведенному в таблице отдельно для каждого вида печи. Кроме того, следует проверить мегомметром (либо тестером, включенным на предел измерения сопротивления R x 1000) сопротивление изоляции между обмотками трансформатора, а также сопротивление изоляции между обмотками трансформатора и шасси.

Признаками, указывающими на неисправность трансформатора, являются:

  1. характерный гул;
  2. чрезмерный нагрев трансформатора;
  3. обугливание катушки трансформатора;
  4. запах гари из высоковольтной части печи.

Часто такое состояние может быть вызвано отказом высоковольтного диода или конденсатора либо пробоем внутри магнетрона. Поэтому замена трансформатора производится только после проверки всех высоковольтных элементов печи.

Еще один способ проверки качества высоковольтного трансформатора сводится к измерению тока холостого хода. При этом от трансформатора отключаются провода, подходящие к на-кальной и вторичной обмотке, а последовательно с первичной обмоткой включается амперметр переменного тока. Амперметр устанавливается на диапазон измерения 1 А. После этого на первичную обмотку трансформатора через амперметр подают номинальное питающее напряжение 220 В, 50 Гц. В исправном трансформаторе (без межслойных и межобмоточных замыканий) ток холостого хода первичной обмотки должен быть в диапазоне 0,3. 0,5 А. Превышение током холостого хода величины 1 . 2 А свидетельствует о неисправности трансформатора.

Предохранитель микроволновой печи

Мультиметр должен показывать сопротивление предохранителя, близкое к нулю. Если предохранитель сгорел, следует до замены предохранителя проверить первичный, вторичный и защитный выключатель. Если предохранитель сгорел из-за неправильной работы выключателя, следует заменить выключатель до установки нового предохранителя. Следует устанавливать предохранитель только того же типа и номинала, что и у сгоревшего.

Нагреватель микроволновой печи

До начала измерений следует отключить от них провода, а также дождаться остывания нагревателя. Сопротивление нагревателя должно составлять в разных типах печей 30. 50 Ом при температуре 20. 30 °С. Сопротивление утечки с выводов нагревателя на шасси печи измеряется специальным мегомметром с выходным напряжением 500 В и пределом измерения сопротивления 100 МОм. Сопротивление утечки должно быть не менее 500 кОм.

Термостаты магнетрона и гриля микроволновой печи

Должны иметь сопротивление около нуля при температуре 10. 150 °С и бесконечное сопротивление при температуре более 120. 150 °С. Температура может быть разной для термостатов из печей разных производителей.

Транзисторы электронного блока управления

В СВЧ-печах применяются транзисторы двух типов:

  • обычные п-р-п- и р-п-р-транзисторы;
  • коммутирующая микросборка из п-р-п- или р-п-р-транзистора.

Отличие заключается в наличии в микросборках двух резисторов — между базой и эмиттером транзистора и между базой транзистора сборки и ее внешним выводом. Использование резисторов в микросборках позволяет непосредственно подключать их к выводам процессора управления и тем самым уменьшать количество элементов на печатной плате блока управления. Для сравнения результаты «прозвонки» тестером транзистора и микросборки приведены в табл. 1.1.

  1. Cледует производить после любого обслуживания печи.
  2. После отключения проводов с элементов правильно установите их на прежнее место.
  3. При рассоединении разъемов или соединителей следует тянуть не за провода, а за соединители.

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Любая техника выходит из строя и микроволновые печи в том числе. Внешний вид может не подавать сигналов о проблеме. Холодная или слегка теплая пища после разогрева — тревожный признак. Нужно проверить магнетрон в микроволновке.

Что такое магнетрон

Работа агрегатов для нагрева пищи невозможна без одного внутреннего компонента — мощной электронной лампы. Ее называют магнетроном. Он вырабатывает микроволны для воздействия на молекулы воды в продуктах. Это происходит благодаря взаимодействию магнитного поля с потоком электронов.

Диапазон частот от 0,5 до 100 ГГц. В непрерывном режиме мощность может начинаться с нескольких Вт и заканчиваться десятками кВт, а в импульсном быть от 10 Вт до 5 МВт. Мощность большинства печек 700–850 Вт, что позволяет стакан воды довести до кипения за 2–3 минуты. У магнетрона микроволновки высокий КПД — 80 %. Бывают перестраиваемые и неперестраиваемые приборы. У первых возможно изменение частотных характеристик до 10 %.

Принцип работы

Работает деталь путем торможения электронов в соединенных магнитном и электрическом полях. Применяется в приборах радиолокации и в микроволновых печах. Для нагрева пищи используется энергия антенны — штенгеля с плотно посаженным колпачком из металла. Керамический цилиндр изолирует корпус магнетрона от антенны. Наружная обшивка с фланцем формируют магнитопровод. Он распределяет магнитное поле, исходящее от кольцевых магнитов. Радиатор охлаждает деталь во время работы микроволновки. Уровень проникающего излучения снижает фильтрующая коробка. Индуктивные выводы образуют высокочастотный фильтр вместе с проходными конденсаторами.

Схема включения

Магнетрон для микроволновки — значимая деталь. В него включены такие компоненты:

  • антенна — источник излучения;
  • металлический цилиндр, изолирующий антенну от рабочей поверхности;
  • магнитопровод для распространения магнитных полей;
  • магниты, распределяющие потоки;
  • радиатор, охлаждающий прибор;
  • фильтры, обеспечивающие безопасный уровень излучения;
  • разъем подключения питания с двумя контактами.

Как проверить на исправность

Замена детали дорого стоит, поэтому многие предпочитают купить новую микроволновку. Однако не стоит избавляться от старой техники. Проверьте магнетрон свч печки на исправность, чтобы удостовериться в его поломке. Главные признаки неисправности — дым, искры и звуки из печи. При их отсутствии сделайте общую проверку или диагностику с помощью тестера.

Общая проверка

Отключите микроволновку от подачи электроэнергии. Выдерните шнур питания из розетки. Визуальный осмотр внутреннего отсека печи должен выявить оплавленные места, сгоревшие или потемневшие участки. Так можно обнаружить сгоревший предохранитель. Если ничего не заметили, без измерительного прибора не обойтись.

Проверка при помощи тестера

Скрытую неполадку выявит проверка магнетрона тестером. Диагностируйте не подсоединенную к микроволновке деталь.

Рекомендуются поэтапные действия:

  1. Подключите щупы тестера к клеммам магнетрона. Если накал отгорел, будет показана бесконечность.
  2. Осмотреть основную печатную плату, в которую встроены диоды, резисторы, варистор и прочее. Для проверки не выпаивайте элементы, прозвон можно делать прямо на плате.
  3. Если термический предохранитель прозвонить при комнатной температуре, он должен выдавать сигнал.
  4. Высоковольтный конденсатор проверяется только на пробой. В нормальном состоянии он показывает бесконечность. В неисправном — сопротивление, близкое к нулю.
  5. Диагностика высоковольтного диода. Последовательное соединение диодов в его составе не дает возможность осмотреть его. Уровень внутреннего сопротивления высок для измерения. Убедитесь, что по этой части нет пробоя. В этом поможет мегомметр.

Возможные неисправности

Рассмотрите внутренности детали: сломана может быть только часть. Найдите компонент, который вызвал неполадку. Эта информация поможет устранить поломку.

  • Прогоревший колпачок — один из ключевых элементов. Контролирует вакуумность трубки. Он может искрить. Проблема решается заменой на другой колпачок.
  • Ненадлежащая работа радиатора, деталь очень сильно греется.
  • Обрыв нити накаливания из-за перегрева. Диагностировать эту проблему можно специальным тестером. Исправная нить выдает напряжение 5–7 Ом. Если работа нарушена, напряжение снизится до 2–3 Ом. Нерабочая нить показывает при диагностике бесконечность.
  • Поломка фильтрующего блока, в рабочем состоянии он покажет бесконечность. В случае пробоя проходных конденсаторов фильтра тестер покажет численное сопротивление. Неисправные конденсаторы можно заменить.
  • Нарушение герметичности магнетрона из-за перегрева. Устранить эту проблему сможет только специалист.
  • Поломка высоковольтного диода.
  • Отсутствующие контакты в предохранителе, который защищает от перегрева. Решается заменой на новый предохранитель, лучше фирменного изготовления.
  • Неисправный конденсатор высокого напряжения.

Но есть и другие неполадки, которые сложно обнаружить самостоятельно. Потребуются специальное оборудование, опыт и знания. Все перечисленные проблемы, кроме разгерметизации, можно починить своими руками.

Установка и подключение нового магнетрона

Если отремонтировать деталь не получается, придется заменить магнетрон. Это касается дорогих моделей, в таком случае затраты оправданы. Лучшим вариантом будет посетить сервисный центр, но заменить можно и самостоятельно. Убедитесь, что отработанная деталь и новая совпадают по мощности и расположению отверстий.

Подключить новый магнетрон к СВЧ-печи нетрудно, в нем всего два контакта. Обо всех обозначениях можно узнать из схемы. Уделите внимание таким моментам:

  • длина новой детали должна быть такой же, как в старой;
  • диаметр антенны в обоих устройствах должен быть одинаковым;
  • обязательно плотное примыкание к волноводу.

Обращение в сервисный центр в случае неполадок должно быть в приоритете. Если техника уже не на гарантии, самостоятельный осмотр и ремонт сэкономят на работе специалистов.

Как проверить высоковольтный конденсатор мультиметром

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Приветствую всех друзья и читатели сайта «Электрик в доме». Думаю всем известно, что такое конденсатор. Если кто не видел данный элемент микросхем, то точно слушал о нем. Самой распространенной причиной неисправности в радиоэлектронике является повреждение именно этого элемента. Современная бытовая техника «начинена» электроникой и поломка такой крохотной детали приводит к потере функциональности всего механизма в целом.

Чтобы определить какой именно конденсатор в схеме вышел из строя их необходимо проверить на работоспособность. И желательно это делать с помощью электронный приборов, та как визуальный осмотр не дает заключения о неисправности.

Делать мы это будем с помощью недорогого и функционального прибора – мультиметра. В прошлой статье я писал о том, как с его помощью можно выполнить проверку сопротивления, а сегодня рассмотрим методику, как проверить конденсатор мультиметром.

Написать данную статью меня попросил один из подписчиков. Я как всегда постараюсь изложить материал доступным языком, но если останутся вопросы, не стесняйтесь задавать их в комментариях.

Проверка конденсатора мультиметром

Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.

Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.

Существует два вида конденсаторов:

Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.

Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.

Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад).

Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.

Как проверить конденсатор с помощью приборов

Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.

Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.

Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.

Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-».

При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться – «1» (единица), можно ложно подумать что конденсатор неисправен.

Проверяем конденсатор мультиметром в режиме омметра

В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.

Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.

Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).

Друзья забыл отметить, перед выполнением проверки необходимо разряжать конденсатор. Для этого необходимо закоротить его выводы на металлический предмет (отвертку, щуп, провод и т.п.). Так показания будут более точными.

Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

Почему так происходит? Почему на дисплее можно наблюдать « плавающие значения сопротивления »? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.

Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.

Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.

Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.

Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).

Сперва нужно снять заряд, для этого закорачиваем выводы отверткой:

На дисплее прибора наблюдаем как начинает изменятся сопротивление:

По результатам данной проверки можно сделать вывод, что все варианты конденсаторов находятся в исправном состоянии.

Как проверить емкость конденсатора мультиметром

Одной из основных характеристик любого конденсатора является «емкость». Для того чтобы понять рабочий конденсатор или нет необходимо измерить данную характеристику и сравнить показатели с теми которые указаны производителем на корпусе устройства. Если под рукой есть хороший прибор, то измерить емкость конденсатора мультиметром не составит труда. Но здесь есть свои нюансы.

Если пытаться измерить емкость с помощью щупов (как в моем случае с мультиметром DT9208A) то у Вас ничего не получится. Дело в том, что емкость нельзя проверить, просто подключив щупы к конденсатору. Так как проверить емкость конденсатора мультиметром и можно ли вообще это сделать?

Для этой цели на мультиметре есть специальные разъемы «гнезда» -CX+. «-» и «+» означают полярность подключения.

Давайте проверим емкость керамического кондера «104К». Напомню, маркировка 104 расшифровывается: 10 – значение в пФ, 4-количество нулей (100000 пФ = 100 нФ = 0.1 мкФ).

Выставляем переключатель мультиметра на необходимую отметку – ближайшее большее значение (я установил на отметке 200 нФ). Берем конденсатор и вставляем ножки в разъемы мультиметра -CX+. Какой стороной вставлять не важно, так как данный кондер – неполярный. На дисплее мы видим значение емкости – 102.6 нФ. Что соответствует номинальным характеристикам.

Следующий экземпляр электролитический конденсатор с номинальной емкостью 3.3 мкФ. Переключатель выставляем на отметке 20 мкФ. Теперь нужно правильно «воткнуть» кондер в разъемы с соблюдением полярности. Для этого нужно знать какая ножка «плюс», а какая «минус». Узнать это не составит труда, так как производитель уже позаботился об этом. Если присмотреться на корпусе видно специальная отметка – черная полоса с обозначением нуля. Со стороны этой ножки располагается «минус», с противоположной «плюс».

Вставляем наш конденсатор в посадочные гнезда мультиметра. На фото видно, что емкость данного экземпляра равна 3.58 мкФ, что соответствует номинальным параметрам. Таким простым способом выполняется проверка конденсатора мультиметром.

Другой пример кондер емкостью 5.6 мкФ. При проверке данный экземпляр показал емкость 5.9 мкФ, что тоже соответствует норме.

Кондер МБГО, емкостью 1 мкФ показал результат 1.08, что также соответствует норме.

Если при замерах окажется что емкость сильно отличается от номинальных значений (или вовсе равна нулю) это значит, что конденсатор неисправен и его нужно заменить.

Как проверить конденсатор тестером (стрелочным прибором)

Друзья завалялся у меня в гараже измерительный прибор времен СССР – Ц4313 . Он вполне рабочий, поэтому я решил поэкспериментировать и выполнить проверку им.

Почему я решил использовать его? Методика проверки не изменяется но, аналоговыми приборами (стрелочными) работу выполнять наглядно проще. Проще в плане визуального отслеживания. Здесь придется наблюдать не за изменением цифр на дисплее, а за отклонением стрелки прибора. Причем стрелка будет отклоняться сначала в одну сторону, затем в другую.

Чтобы настроить тестер Ц4313 на измерение сопротивления нужно нажать кнопку «rx». Вставляем щупы прибора в рабочие контакты. Для начала берем конденсатор и разряжаем его. Затем касаемся щупами контактов кондера. Если конденсатор исправный стрелка сначала отклонится , а затем по мере заряда плавно возвратится в исходное (нулевое) положение. Скорость перемещения стрелки зависит от того какой емкости испытуемый конденсатор.

Если стрелка прибора не отклоняется или отклонилась и зависла в определенном положении, это говорит о том, что конденсатор неисправный.

На этом все дорогие друзья, надеюсь, данная статья, как проверить конденсатор мультиметром цифровым и стрелочным была для вас интересной и раскрыла все вопросы. Если что, не стесняйтесь писать комментарии. Также особая благодарность за РЕПОСТ в соц.сетях.

Наши электросети не отличаются стабильностью параметров, что часто приводит к выходу из строя техники. Чаще всего выходят из строя диоды выпрямительного моста и конденсаторы. В этой статье поговорим о том, как проверить конденсатор мультиметром, как понять что он вышел из строя.

Необходимый минимум сведений

Как известно, конденсаторы имеют определенную емкость и служат для накопления и непродолжительного хранения электрического заряда. При подаче напряжения заряд какое-то время должен увеличиваться, затем происходит резкое снижение уровня — разряд, и все повторяется снова — заряд/разряд. Чем больше емкость конденсатора, тем более длительное время необходимо для накопления заряда. По сути, это все свойства, которые стоит знать для проверки конденсатора мультиметром.

Узнать рабочий конденсатор или нет несложно. Нужен только мультиметр. Можно недорогой. Главное — рабочий

Если говорить о видах, то способ производства конденсаторов на проверку не влияет. Проверяют работоспособность бумажных, тонкопленочных, электролитических, жидкостных, керамических, твердотельных и всех других, абсолютно одинаково. Не влияет на способ проверки и положение элемента на плате — входные, помехоподавляющие, шунтирующие — без разницы. Не имеет значения и вольтаж. Низковольтные — на 6 В или 50 В, высоковольтные на 1000 В — проверка одинаковая.

Единственное, что необходимо принимать во внимание — полярный конденсатор или нет. Как, наверное, понятно по названию, полярные конденсаторы требовательны к полярности питания. Так как при проверке мультиметром, прибор тоже подает питание на проверяемый элемент, положение щупов при проверке полярного конденсатора должно быть строго определенным:

  • Красный щуп — к положительному выводу.
  • Черный щуп — к минусовому (отрицательному).

Для неполярных положение щупов может быть любым. Еще, наверное, стоит сказать, как опознать полярные конденсаторы. Это всегда электролитические (полярные) емкости, которые выглядят обычно как небольшие бочонки. На полярных на корпусе у одного из выводов идет полоса контрастного цвета. Если корпус белый — полоса черная, корпус черный — полоса белая (светло-серая). Вот этой полосой отмечается отрицательный вывод (минус).

Внешний вид электролитического (полярного) конденсатора и его обозначение на схемах

Перед тем как проверить конденсатор мультиметром, осмотрите его корпус. Если полосы нет — можно не задумываться о положении щупов.

Как проверить конденсатор мультиметром без функции определения емкости

Для определения поврежденного конденсатора даже не всегда нужны приборы. Часто достаточно внешнего осмотра. Признаком того, что емкость вышла из строя, является вздутие корпуса, потеки любого цвета. Если внешние изменения есть, можно даже не измерять, а сразу менять. Это очень часто возвращает работоспособность вышедшей из строя бытовой технике и другой электрической и электронной аппаратуры.

Визуально бывает проще всего определиться с неисправностью электролитических конденсаторов импортного производства. Если конденсатор вздулся или дополнительно разгерметизировался в месте насечки, его необходимо заменить в обязательном порядке

Если внешних изменений нет, приступаем к проверке. Чаще всего у домашних радиолюбителей имеется цифровой мультиметр. Марка его не важна, но необходимо чтобы он мог мерить сопротивление и/или имел функцию проверки диодов. Можно использовать и стрелочные. Они даже удобнее — движущаяся или замершая на месте стрелка более информативна. Только помните, что это не измерения, а лишь проверки. То есть, с их помощью мы не можем измелить ёмкость конденсатора, а лишь убеждаемся в его работоспособности.

Перед тем как проверить конденсатор мультиметром, обязательно разрядите емкость. Если этого не сделать, в некоторых случаях измерительный прибор может выйти из строя.

Разрядить конденсатор можно двумя способами:

  • прикоснувшись к выводам высокоомным сопротивлением — 0,5-1 мОм;
  • при помощи лампы накаливания — центральный контакт лампы на одну ножку, корпусом прикоснуться к другой.

Безопасный и надежный способ разрядить конденсатор — замыкаем выводы при помощи обычной лампы накаливания на 220 В

Разряжать емкость при помощи обычного проводника не стоит — можно добиться выходя из строя элемента. Это может сработать без особого вреда только на емкостях, рассчитанных на невысокий вольтаж и имеющих небольшую емкость. Исправные лампы накаливания есть у всех, так что лучше используйте их.

В режиме омметра

Перед тем как проверить конденсатор мультиметром в режиме измерения сопротивлений, надо вспомнить, как изменяется его сопротивление в процессе работы. Без заряда сопротивление близко к нулю, но не ноль. По мере накопления заряда оно растет.

Еще раз: сопротивление разряженной емкости очень невелико — почти ноль. Но короткого быть не должно. То есть, если поставить мультиметр на прозвонку и прикоснуться к выводам разряженного конденсатора, звенеть не будет. Если звенит — можно дальше не тестировать, элемент не исправен.

Проверить работоспособность можно так: переводим переключатель мультиметра в режим измерения сопротивлений. Предел изменений зависит от параметров измеряемого конденсатора. Чем выше напряжение, на которое рассчитан элемент, тем выше ставим предел. Например, для 50 В выставляем 20 кОм, для 1000 В выбираем 2 МОм. И, лучше, выставить более высокий предел, чем низкий.

Подготовив прибор, к разряженному элементу прикладываем щупы, смотрим на экран. Сначала высвечивается цифра 1, затем показания начинают расти. Это накапливается заряд. В какой-то момент рост прекращается, на экране снова цифра «1». Конденсатор зарядился.

Конденсатор заряжается, его сопротивление растет

Поменяв местами щупы, мы меняем полярность питания. На экране сразу высвечиваются цифры с «минусом» впереди, затем они уменьшаются — идет разряд. После перехода через ноль, цифры начинают расти — идет заряд, затем снова высвечивается единица. Конденсатор проверили на работоспособность и он исправен. Если «поведение испытуемого» отличается от описанного, значит элемент нерабочий. Теперь вы знаете, как проверить конденсатор мультиметром в режиме омметра.

Проверка напряжения на заряженном конденсаторе

Убедиться что заряд накоплен можно, если измерить напряжение на выводах заряженной емкости. Переводим мультиметр в режим измерения постоянного напряжения. Предел измерений выбираем в зависимости от параметров элемента. Напряжение, на которое он рассчитан указано обычно на корпусе. Для мелких деталей придется поискать в технических характеристиках. Предел измерений выставляем не меньше указанного.

Измерение напряжения на заряженном конденсаторе с помощью мультиметра

Дальше все аналогично: прикладываем щупы к выводам и следим за показаниями. Значение не меняется, но может быть как с плюсом, так и с минусом. Это и есть напряжение на заряженной емкости. Если выводы закоротить через нагрузку, цифра начинает уменьшатся — происходит разряд. Чем закоротить? При небольшом вольтаже — до 50 В — можно одним из щупов. Для более мощных лучше использовать или все ту же лампу накаливания, или сопротивление на один мегаом. Теперь вы знаете не только как проверить конденсатор мультиметром, но и как измерить напряжение на заряженной емкости.

В режиме прозвонки диодов

Если на мультиметре есть режим прозвонки диодов, можно проверить работоспособность конденсатора с его помощью. Этот метод позволяет на слух определить пригодность элемента.

Вот такой значок обозначает прозвонку диодов

Все еще проще: ставим переключатель в положение прозвонки диодов, прикладываем щупы. Ждем некоторое время. Если емкость исправна, время от времени слышится «писк». Чем больше емкость конденсатора, тем дольше время ожидания и тем короче «писк». Если писка нет — емкость нерабочая.

Мультиметр с функцией измерения емкости

Как проверить конденсатор мультиметром, который может измерять емкости, написано в инструкции по эксплуатации к прибору. Но, обычно, сколько-нибудь значимых отличий в измерениях между разными приборами нет, так что можем описать порядок действий. Все что требуется:

  • перевести переключатель прибора в нужный сектор;
  • выбрать диапазон измерений;
  • приложить щупы к выводам конденсатора;
  • просмотреть показания на экране.

Как проверить конденсатор мультиметром

В некоторых моделях мультиметров в корпусе рядом со шкалой измерений есть специальные отверстия, в которые вставляются конденсаторы. В этом случае переключатель переводится в положение измерения емкости, выбираем предел измерений. Затем вставляется конденсатор, ждем пока на экране высветятся результаты измерений.

Со специальными гнездами для установки емкостей

Емкость конденсатора написана на корпусе, кроме слишком малых для этого видов. Показания мультиметра не всегда совпадают с тем, что указано на корпусе. Но рядом с номиналом стоит допуск точности в процентах. Если отклонения в рамках этого допуска, элемент считается исправным. Если нет — надо менять.

Как правило, обычные мультиметры не позволяют измерять конденсаторы малой емкости — меньше 100 пикофарад. Для этих целей необходим специализированный прибор, например, цифровой измеритель емкости CM7115A или Mastech MY6013A.

Как проверить конденсаторы на плате, не выпаивая

Как известно, измерить емкость конденсатора не выпаивая его невозможно. Зато узнать рабочий конденсатор или нет достаточно просто, если он не зашунтирован низкоомной цепью. Его исправность можно проверить мультиметром в режиме измерения сопротивлений или постоянного напряжения. Любым из этих способов можно найти неисправный конденсатор на плате.

Сначала осматриваем элементы визуально, вздутые и имеющие потеки проверяем в первую очередь. А порядок проверки и все, что вы должны увидеть на приборе, описано выше. Разницы никакой. Но еще раз: на плате можно только определить исправность конденсатора. Чтобы проверить его емкость, узнать не уменьшилась ли она, хотя бы один вывод конденсатора надо выпаять.

Проверить конденсатор на работоспособность мультиметром можно и не выпаивая его с платы

Вся процедура проверки работоспособности точно такая же. Если позволяет монтаж, можно прикасаться щупами к ножкам емкости с лицевой стороны. Если детали расположены так, что к ним не подлезть, определитесь где с изнаночной стороны они припаяны, прикасайтесь щупами к местам пайки «с изнаночной стороны платы».

Особенности SMD конденсаторов

Современные технологии позволяют делать радиодетали очень малых размеров. С применением SMD технологии компоненты схем стали миниатюрными. Несмотря на малые размеры, проверка SMD конденсаторов ничем не отличается от более габаритных. Если надо узнать, рабочий он или нет, сделать это можно прямо на плате. Если необходимо измерить емкость, надо выпаять, затем провести измерения.

SMD технологии позволяют делать миниатюрные радиоэлементы

Проверка работоспособности SMD конденсатор проводится точно также как электролитических, керамических и всех других. Щупами надо прикасаться к металлическим выводам по бокам. Если они залиты лаком, лучше плату перевернуть и тестировать «с тыльной» стороны, определив, где находятся выводы.

Танталовые SMD конденсаторы могут быть полярными. Для обозначения полярности на корпусе, со стороны отрицательного вывода, нанесена полоса контрастного цвета

Даже обозначение полярного конденсатора похоже: на корпусе возле «минуса» нанесена контрастная полоса. Полярными SMD конденсаторами могут быть только танталовые, так что если видите на плате аккуратный прямоугольник с полосой вдоль короткого края, к полоске прикладывайте щуп мультиметра который подключен к минусовой клемме (черный щуп).

Как проверить конденсатор в микроволновке с помощью мультиметра

В микроволновке имеется конденсатор, который накапливает заряд электричества и служит для выравнивания бросков напряжения при включенной печи. Он представляет собой деталь с двумя металлическими пластинами. В микроволновку устанавливаются конденсаторы различного типа в зависимости от ее конструкции и мощности. Деталь эта имеет большие размеры и весит до 100 г. В этой статье даются рекомендации, как проверить, работает конденсатор в СВЧ или он неисправен.

Проверка конденсатора

Сегодня микроволновые печи является распространенными приборами, применяемыми в быту. Во время эксплуатации микроволновки возникают случаи, когда необходимо проверить, работает ли конденсатор. Данная необходимость возникает при подозрении, что печь работает некорректно и со сбоями. Такую проверку можно выполнить своими руками, без привлечения специалистов. Но ее нужно производить очень осторожно, чтобы случайно не вышли из строя другие элементы СВЧ. Как же правильно осуществить тестирование устройства?

Как найти конденсатор в микроволновке

Первое, что нужно сделать при каких-либо манипуляциях с конденсатором, — отключить микроволновку от электросети в целях исключения негативного воздействия электрического тока на человека. Далее нужно открутить заднюю крышку СВЧ и снять панель, которая закрывает устройство. Найти деталь несложно, если знать, что он из себя представляет по внешнему виду. Обычно он расположен недалеко от трансформатора.

Несмотря на то, что микроволновая печь отключена от сети, есть риск поражения электрическим током, так как эта деталь его накапливает (до 2 кВ). Поэтому прибор необходимо разрядить на корпус. Для разрядки нужно замкнуть чем-нибудь его клеммы, например отверткой. Это наиболее распространенный способ, но считается, что он небезопасен для самого устройства. Только после разрядки прибора его можно подвергать различным манипуляциям. Личная безопасность прежде всего!

Использование мультиметра для проверки

Определить работоспособность конденсатора можно при помощи обычной лампочки мощностью от 40 Вт. Если во время касания проводов клемм устройства лампочка не загорается, но проскакивает искра, то оно находится в рабочем состоянии. Если один провод закрепить на клемме конденсатора, а второй – на его корпусе, можно проверить корпус на пробой. Если искра не обнаруживается, а лампочка не горит, то прибор находится в рабочем состоянии. Если же имеется искрение или лампочка горит вполнакала, то деталь нерабочая. Такой способ применим, если не имеется под рукой мультиметра.

Для более детальной диагностики конденсатора используется специальный прибор — мультиметр. Он предназначен для тестирования приборов и отдельных их деталей. Это устройство имеет два режима: мультиметра и омметра. В режиме «мультиметр» устройство работает на небольшом напряжении. В этом случае прибор покажет только отсутствие обрыва или же присутствие короткого замыкания (КЗ). Для детальной проверки тестер необходимо перевести в режим «омметр». Чтобы испытать конденсатор в этом режиме достаточно: снять крышку, снять клеммы, затем разрядить устройство, перевести прибор в режим «омметр» (сопротивление = 2000 кОм), затем проверить клеммы на отсутствие дефектов (так как плохой контакт влияет на достоверность измерений) и, наконец, соединить клеммы с деталью.

Модели используемого омметра:

Признаки исправного и неисправного конденсатора

Если устройство не работает, то значения на приборе или не изменяются, или имеют нулевое значение. Такой прибор больше непригоден для использования. Если конденсатор протек и имеется протечка электролита, то значение на дисплее будет показывать постоянное маленькое сопротивление. Такая деталь также подлежит замене, использовать ее уже нельзя. Прибор, пробитый вследствие короткого замыкания, показывает нулевое сопротивление на приборе и также подлежит утилизации.

Если при поверке устройства показания прибора изменяются от минимального до единицы, это означает, что деталь работает нормально. Его можно оставить в микроволновке для дальнейшего применения в работе. Для очередной проверки конденсатор необходимо разрядить снова.

Бывает, что деталь утрачивает только часть емкости. Она становится отличной от емкости на корпусе. В таком случае при диагностике необходим датчик, который имеется не в любом мультиметре. Обрыв вследствие механического воздействия случается не очень часто. Чаще возникают пробой или утрата емкости.

Проверку конденсаторов в СВЧ нужно производить своевременно, так как они являются ответственной деталью в СВЧ и непосредственно влияют на ее работоспособность.

Важно соблюдать все основные правила при поверке конденсатора в микроволновке для того, чтобы вовремя находить проблему в работе печи и устранить ее, не обладая специальными знаниями. Прежде, чем начинать диагностику и ремонт электроприборов, нужно обязательно удостовериться, что электропитание отключено.

Бытовая техника Микроволновая печь

Взял и Починил. Ремонт бытовой техники. Запчасти.

Диагностика микроволновой печи

Диагностика микроволновой печи

В данной статье мы с вами разберемся с тем, как провести диагностику микроволновой печи и как в ходе диагностики выяснить, что именно вышло из строя.  

Примечание: Для диагностики вам понадобится длинная отвертка (для разрядки конденсатора) и мультиметр (желательно такой, которой способен делать замер до 200 МОм)  

Итак, начнем!

РАЗБОРКА МИКРОВОЛНОВОЙ ПЕЧИ И РАЗРЯДКА ВЫСОКОВОЛЬТНОГО КОНДЕНСАТОРА

1) Прежде чем что-то начать делать с микроволновой печью, убедитесь, что она отключена от сети питания!

2) Далее откручиваем крышку. Как правило, крышка закручена на шурупы сзади микроволновой печи. Еще могут быть винты по бокам. После того, как все шурупы откручены, необходимо сдернуть крышку.

3) ВНИМАНИЕ! Несмотря на то, что вы отключили микроволновую печь от сети, вы все еще можете оказаться в опасности быть пораженным электрическим током. В правом нижнем углу вы увидите небольшой металлических «бочонок». Это высоковольтный конденсатор. Именно на этом устройстве может быть напряжение (достаточно большое, около 2100 вольт) несмотря на то, что вы отключили микроволновую печь от питания. Прежде чем что-то делать необходимо разрядить высоковольтный конденсатор. Если этого не сделать, вы можете оказаться в большой опасности быть пораженным электрическим током!!!

Разряжается конденсатор разными способами. Я расскажу о том, как это сделать подручными способом. Нужно взять длинную отвертку, прижать ее металлическую часть к корпусу микроволновки, а кончиком отвертки коснуться каждого по-отдельности контакта конденсатора (то есть контакт конденсатора должен быть замкнут на корпус). Проделав такую процедуру, вы можете быть уверены, что конденсатор разряжен. Далее можно приступать к диагностике.

 

ПРОВЕРКА ПРЕДОХРАНИТЕЛЕЙ

Начнем диагностику с проверки предохранителей. В микроволновой печи, в основном, 2-3 предохранителя.

1) Первый предохранитель – это предохранитель платы питания. Плата питания находится в правом верхнем углу. К ней подходят контакты сетевого шнура. Для того, чтобы проверить исправность предохранителя необходимо выставить мультиметр на прозвонку и поставить щупы по разные стороны предохранителя. Если предохранитель исправен, то мультиметр будет показывать 0 и при этом издавать звук (если ваш мультиметр оборудован динамиком), иначе мультимер будет «молчать».

 

Примечание: Предохранитель в плате питания, как правило просто так не сгорает, возможно есть причина. В случае поломки предохранителя в плате питания скорее всего неисправность надо искать в микровыключателях двери или в высоковольтном трансформаторе.

2) Следующий предохранитель находится на основной плате микроволной печи. В некоторых моделях данного предохранителя нет. Принцип проверки аналогичный.

Примечание: Если данный предохранитель перегорел, то однозначно сказать в чем причина нельзя. Но суть все же такова: нужно искать короткое замыкание. Оно может быть в плате, проводах и т.д.

3) Далее нужно проверить высоковольтный предохранитель между высоковольтным трансформатором и конденсатором. Как правило этот предохранитель спрятан в корпусе. Принцип проверки аналогичный.

Примечание: Данный предохранитель может сгореть из-за неисправности высоковольтного диода, конденсатора, магнетрона. Все нужно проверять. Принципы проверки описаны ниже.

ПРОВЕРКА ВЫСОКОЛЬНОГО ТРАНСФОРМАТОРА

Высоковольтный трансформатор в микроволновой печи преобразует 220 вольт в ~2000-2500 вольт. Расположен он внизу, примерно посередине боковины микроволновой печи. У трансформатора проверяется входная и выходная обмотки.

1) ПРОВЕРКА ВХОДНОЙ ОБМОТКИ. Для того, чтобы проверить входную обмотку, необходимо выставить мультиметр на сопротивление ~200 Ом и поставить щупы на контакты входной обмотки. Показания должны быть небольшие, около 0.8-4 Ом.

Далее выставляем мультиметр на самое большое сопротивление и ставим щупы на корпус и на каждый из контактов по-отдельности. Это проверка на пробой. Мультиметр не должен ничего показывать. Если есть какие-то показания, то трансформатор нужно менять.

2) ПРОВЕРКА ВЫХОДНОЙ ОБМОТКИ. Для того, чтобы проверить выходную обмотку, необходимо выставить мультиметр на сопротивление ~200 Ом и поставить щупы на контакт выхода и на корпус микроволновой печи. Показания должны быть примерно 190-300 Ом.

Примечание: Если сопротивление выходной обмотки будет слишком маленьким, то будет сгорать предохранитель платы питания. В таком случае нужно менять высоковольтный трансформатор.

ПРОВЕРКА ВЫСОКОВОЛЬТНОГО ДИОДА

Высоковольтный диод (как и любой диод) основан на принципе пропускания тока только в одну сторону. Подключается он одним контактом к корпусу микроволновой печи, а другим к высоковольтному конденсатору.

Для проверки диода нам понадобится мультиметр, который способен делать измерения в десятки мегаом. Перед проверкой контакт диода необходимо снять с конденсатора.

1) Для того, чтобы проверить высоковольтный диод, необходимо выставить мультиметр на самое большое сопротивление (в нашем случае – это 200 МОм) и поставить щупы на контакты диода, при этом щупы надо менять местами. В одном положении щупов нормальным измерением считается 4-30 МОм, в другом положении показаний быть совсем не должно. Если при перемене местами щупов показания прибора одни и те же, то диод необходимо менять

ПРОВЕРКА ВЫСОКОВОЛЬТНОГО КОНДЕНСАТОРА

1) Осмотрите конденсатор. Если он вздутый, то можно даже не прозванивать: его необходимо менять

2) Если визуально конденсатор целый, то необходимо выставить на мультиметре сопротивление ~200 Ом и поставить щупы на контакты конденсатора. На приборе не должно быть показаний.

3) Теперь нужно выставить на мультиметре самое большое сопротивление (опять же, в нашем случае – это 200 МОм). Дальше нужно один щуп поставить на корпус конденсатора, а другой щуп поставить на каждый контакт по-отдельности. На приборе не должно быть показаний ни с первым контактом, ни со вторым. Это проверка на пробой.

ПРОВЕРКА МАГНЕТРОНА

1) Открутите и снимите магнетрон. Осмотрев устройство, вы увидите круглые магниты внутри него. Данные магниты не должны иметь трещин. Если вы заметили трещину в любом из магнитов, то магнетрон необходимо менять.

2) Если магнтиты магнетрона целые, то далее необходимо выставить на мультиметре сопротивление ~200 Ом. После этого нужно поставить щупы на контакты магнетрона. Прибор должен показать очень маленькое сопротивление, примерно 0,2-0,9 Ом 

3) Теперь необходимо прибор выставить на самое большое сопротивление (у нас — это 200 МОм). Дальше нужно поставить один щуп на корпус магнетрона, а другой щуп поставить на каждый контакт по-отдельности. На приборе не должно быть показаний ни с первым контактом, ни со вторым (показания могут быть, но должно быть не меньше 120 МОм). Это проверка на пробой.

4) Далее необходимо выставить на мультиметре сопротивление ~200 Ом. После этого нужно поставить один щуп на корпус магнетрона, а другой щуп на колпачок. Прибор должен показать очень маленькое сопротивление, примерно 0,2-0,9 Ом 

Статья находится в разработке…

2.3. Как точно установить неисправность высоковольтного диода

2.3. Как точно установить неисправность высоковольтного диода

Высоковольтный диод может применяться разных типов, его назначение и принцип работы один. Диод обычно обозначен на плате как DB1, а сам тип может иметь разные обозначения, к примеру 1 °C1В 3000 К S13, Shine 50 Hz 1368 и др.

Например, можно заменять высоковольтный диод от разных СВЧ-печей без какого-либо ущерба для устройства. В моей практике проверены замены на CL01-12, 060TM, HVR-1X, 2X062H, L5KVF; разные производители по-своему маркируют его.

На рис. 2.3 представлен вид на высоковольтный диод, применяющийся в современных бытовых СВЧ-установках.

Рис. 2.3. Вид на высоковольтный диод

По электрическим характеристикам высоковольтный диод рассчитан на ток до 700 мA при напряжении пробоя до 5 кВ.

Такими параметрами объясняется также и невозможность его практической проверки («прозвонки») с помощью обычных «бытовых» тестеров-мультиметров с максимальным пределом измерения сопротивления 2 МОм.

В таком случае тестер показывает «обрыв». Отпирающее диод напряжение заряжает конденсатор до амплитудного значения. При этом напряжение на магнетроне очень мало, по сравнению с рабочим. При изменении полярности напряжения диод запирается, и к магнетрону прикладывается суммарное напряжение на обмотке и конденсаторе.


Чтобы проверить этот высоковольтный диод и убедиться в его работоспособности, можно пойти двумя путями. Первое – проверять в режиме измерения сопротивления омметром с пределом измерения сопротивления до 200 МОм (для измерения сопротивления изоляции проводов), второе – проверить практически, включив в цепь переменного напряжения 100–220 В.

Чтобы практически проверить высоковольтный диод, уместно обратить внимание на простую электрическую схему, представленную на рис. 2.4.

Рис. 2.4. Электрическая схема для простой проверки высоковольтного диода в составе СВЧ-печи

В бытовых условиях наиболее часто пользуются именно этим способом: с соблюдением правил безопасности, одним контактом диод подключают последовательно в электрическую цепь 220 В к одному из проводников и в режиме измерения постоянного напряжения в диапазоне 250 В (и выше) замеряют напряжение между другим проводником (сети 220 В) и другим контактом высоковольтного диода. При условии, что напряжение в этих точках есть и диод предварительной проверкой омметром не был короткозамкнутым, признается его исправность. Прикладывать диод к источнику более низких напряжений нецелесообразно, ибо он рассчитан на высокие напряжения до 10 кВ.

Если упала мощность нагрева СВЧ-печи – это заметно по слабому разогреву продуктов и (или) необходимости затрачивать заметно большее время на разогрев, при том что еще недавно «печка грела хорошо». Разумеется, этот случай не является сложным по затратам финансов и времени, и замена магнетрона не нужна. Для поиска неисправности рассмотрим два пути.

Первое – проверяем конденсатор, именно он влияет на мощность генерации магнетрона, то есть на мощность разогрева рабочей камеры. Конденсатор 150 мкФ на рабочее напряжение 400 В. Проверять конденсатор необходимо после визуальной проверки слюдяной (или – в некоторых случаях – пластиковой) прокладки в рабочей камере напротив волновода магнетрона. Прокладка (иначе ее называют заглушкой) необходима для защиты антенны магнетрона (волновода) от попадания туда частиц самих разогреваемых продуктов.







Данный текст является ознакомительным фрагментом.




Продолжение на ЛитРес








Как проверить конденсатор в микроволновке: показания мультиметра

Принцип действия и конструкция магнетрона

Слово «magnetis» дословно переводится с греческого, как «магнит». выглядит следующим образом:

  • медная деталь в форме цилиндра – это анод-резонатор;
  • элемент, внутри которого расположена нить накала – катод;
  • кольцевидные комплектующие, находящиеся на торцах магнетрона для микроволновой печи, являются магнитами.

Ключевой принцип работы магнетрона в микроволновке – это торможение электронных потоков, которые пересекаются под углом 90 градусов. Происходит данный процесс в магнитном и электрическом полях. Кольцевые магниты образуют поле. В качестве проводника выступает специальный кожух, оборудованный фланцем. Именно с помощью этого элемента деталь крепится к волноводу.

СВЧ-волны появляются в результате взаимодействия электронного потока, образованного эмитированным катодом, и магнитного поля. Проволочная петля идентифицирует эти волны, а потом передаёт их наружу с помощью специальной антенны. Данный излучатель расположен внутри цилиндра, сделанного из керамики. Теперь вы знаете, что такое магнетрон, и как работает эта комплектующая.

Как было сказано ранее, в качестве излучателя волны выступает антенна – это небольшая труба, которую принято называть штенгелем. Антенна также обеспечивает выкачку воздуха из лампы. На данном элементе надёжно зафиксирован колпак, сделанный из металла. В процессе работы магнетрон в микроволновке необычайно сильно нагревается. Вероятность перегрева исключается благодаря особой конструкции.

Рассматриваемая комплектующая дополнена пластинчатым радиатором. Этот элемент постоянно обдувается вентилятором, что заметно снижает температуру. Дополнительный уровень защиты от перегрева обеспечивают температурные предохранители. Неотъемлемым компонентом также выступает высокочастотный фильтр, который препятствует проникновению излучения. Данная деталь создаётся при помощи специальных конденсаторов и выходов.

Впрочем, наличие специального оборудования и поверхностных знаний в радиоэлектронике позволяет отремонтировать СВЧ-печь самостоятельно в домашних условиях. Есть только одно условие – придерживайтесь экспертных рекомендаций и действуйте чётко в соответствии с пошаговыми инструкциями.

Важная деталь

Качественный ремонт изделия так же, как и его диагностика могут быть проведены только при условии понимания состава диода.

По своей сути, изделие высоковольтного типа является соединением большого количества простых выпрямительных диодов. Все они преимущественно идентичны, и вместе составляют один корпус. Сборка каждого такого изделия не подразумевает использования разнообразных резисторов и конденсаторов, которые призваны выравнивать напряжение. Вольт-амперная характеристика диода является нелинейной. При этом сопротивление изделия зависит от напряжения, которое прилагается в процессе работы.

Описанная конструкция является достаточно сложной. А поэтому проверять диод бывает нелегко

Данное приспособление создано для проведения диагностики разного рода устройств. Пользоваться ним достаточно легко. Следует только научиться устанавливать на приборе правильный режим

Чтобы проверить диоды необходимо переключить мультиметр в диапазон «R x 1000». Когда плюсовый вывод устройства присоединяется к аноду высоковольтного диода – выполняется проверка сопротивления. Обычный тестер в таком случае не сможет определить объективные показатели.

Следующий тип теста подразумевает подключение минусового контакта. В данном случае проверяется показатель в обратном направлении. Его значение должно соответствовать бесконечности.

Это интересно: Мультиварка: мастер на все блюда

Возможные неисправности

Рассмотрите внутренности детали: сломана может быть только часть. Найдите компонент, который вызвал неполадку. Эта информация поможет устранить поломку.

Причины неисправности:

  • Прогоревший колпачок — один из ключевых элементов. Контролирует вакуумность трубки. Он может искрить. Проблема решается заменой на другой колпачок.
  • Ненадлежащая работа радиатора, деталь очень сильно греется.
  • Обрыв нити накаливания из-за перегрева. Диагностировать эту проблему можно специальным тестером. Исправная нить выдает напряжение 5–7 Ом. Если работа нарушена, напряжение снизится до 2–3 Ом. Нерабочая нить показывает при диагностике бесконечность.
  • Поломка фильтрующего блока, в рабочем состоянии он покажет бесконечность. В случае пробоя проходных конденсаторов фильтра тестер покажет численное сопротивление. Неисправные конденсаторы можно заменить.
  • Нарушение герметичности магнетрона из-за перегрева. Устранить эту проблему сможет только специалист.
  • Поломка высоковольтного диода.
  • Отсутствующие контакты в предохранителе, который защищает от перегрева. Решается заменой на новый предохранитель, лучше фирменного изготовления.
  • Неисправный конденсатор высокого напряжения.

Но есть и другие неполадки, которые сложно обнаружить самостоятельно. Потребуются специальное оборудование, опыт и знания. Все перечисленные проблемы, кроме разгерметизации, можно починить своими руками.

Несколько советов по замене

Если стало понятно, что причина поломки именно в магнетроне или его отдельных частях, заменить которые не представляется возможным, то можно поменять магнетрон. В качестве нового не обязательно брать деталь того же производителя. Достаточно убедиться, что новая и старая деталь имеют одинаковый размер, а также точки подключения расположены аналогично. Подключение магнетрона осуществляется с помощью двух контактов.

Перед установкой проверяем 3 момента:

  1. Длина сменного узла аналогична длине старой.
  2. У обоих механизмов антенны имеют одинаковый диаметр.
  3. После подключения магнетрон плотно примыкает к волноводу, если это не так, что излучение будет неравномерным, и часть мощности будет теряться, иными словами, микроволновка будет работать неполноценно.

Диоды высокого напряжения

Тестирование диода. Высоковольтные диоды.

Что такое высоковольтные диоды ➤ Диод представляет собой сложный электрический компонент, состоящий из нескольких различных материалов. При использовании в общем электрическом устройстве диод имеет положительный анодный вывод, который потребляет энергию и отрицательный катод, который позволяет его отключить. Почти в каждом диоде это односторонняя операция — власть не может вернуться назад. Между этими двумя терминалами находится полупроводящий материал, который позволяет двигателю двигаться через него.

Что такое высоковольтные диоды ➤ Именно этот полупроводник превращает общий диод в высоковольтный диод. Эти полупроводники создаются с помощью процесса, называемого легированием. На каждый конец полупроводника применяется легирующая примесь: одна легирующая добавка создает положительный заряд, а другая отрицательна. Площадь между двумя концами остается нелегированной и обычно называется внутренним слоем или p-n-соединением. Допирующие* материалы и размер p-n-перехода важны для общей диодной функции.

Что такое высоковольтные диоды ➤ Лавинные диоды — это тип высоковольтного диода, который может обрабатывать большие объемы энергии. Лавинный эффект возникает, когда заряд начинает увеличиваться в диоде без последующего увеличения внешней мощности. Этот эффект разрушит нормальные диоды, но лавинный диод продолжит работу до тех пор, пока внешнее напряжение не улавливает или система не сравняется.

Что такое высоковольтные диоды ➤ Датчик подавления переходного напряжения — это диод, который защищает системы от высоковольтных перегрузок. Этот диод имеет очень большое p-n соединение, которое препятствует передаче мощности через систему. Когда в систему попадают большие мощные импульсы, этот высоковольтный диод будет потреблять дополнительную мощность и перемещать всплеск в наземную систему. Часто это единственная функция для одного из этих диодов — при отсутствии избыточной мощности на землю она вообще не передает никакой мощности.

Что такое высоковольтные диоды ➤ Последний общий высоковольтный диод — это тот, который работает иначе, чем почти любой другой диод. Зенеровский диод может фактически передавать мощность обратно через свою систему. Когда мощность достигает определенного уровня, диодно-специально-допированный p-n-переход начинает позволять власти двигаться назад через систему, создавая временное узкое место. Это блокирует питание от движения достаточно долго, чтобы напряжение стабилизировалось без ущерба для устройства. После этого p-n-соединение возвращается к работе как обычный диод.

Крупнейшие производители и поставщики высоковольтных диодов

Промышленное производство диодов в России расположено в Москве, Санкт-Петербурге, и других городах страны.

Из крупнейших производителей и поставщиков высоковольтных диодов можно выделить компании:

  • ЗАО «Элеком» г. Пенза;
  • ЗАО «Протон-Электротекс», г. Орел;
  • ПАО «Электровыпрямитель»», г. Саранск;
  • ЗАО «Группа Кремний Эл», г. Брянск, правопреемник Брянского завода полупроводниковых приборов;
  • Научно-исследовательский институт полупроводниковых приборов АО «НИИПП», г. Томск.

Производством высоковольтных диодов занимаются компании «Ростехкомплект», «Анион Электроникс».

Среди зарубежных поставщиков основное место занимают китайские компании «Anshan Suly Electronics» (диоды для СВЧ-печей, диоды из кремния) и «Anshan Leadsun Electonics» (мостовые выпрямительные диоды).

Специфика конструкции высоковольтных диодов

По своей конструкции диод СВЧ печи представляет собой большое количество последовательных соединений, образующих в итоге единую форму. Данный элемент имеет в своём составе выпрямительные диоды. Технологически они изготавливаются абсолютно одинаково, мало того, заключаются в общий корпус. Сборка высоковольтного диода не подразумевает использования конденсаторов и резисторов, которые могли бы выровнять напряжение.

Как итог: диоду данного типа свойственна нелинейная вольт-амперная характеристика. Потому данные по сопротивлению у высоковольтных диодов напрямую зависят от того, напряжение какой величины было приложено.

Такой характер сборки делает анализ работоспособности СВЧ диода достаточно затруднительным.

Запомните!   Проверка СВЧ диода при помощи тестера — неосуществима. Никаких точных показаний, данных по прямому и обратному сопротивлению тестер не продемонстрирует.

Куда лучше будет применить мультиметр. При этом снимать показания по сопротивлению необходимо и для прямого, и для обратного направления.

Перед подключением мультиметра необходимо установить на нём режим R x 1000. В результате, когда «+» вывод прибора подсоединяется к аноду СВЧ диода, сопротивление будет измерено по прямому направлению. Отображённая на дисплее величина при этом будет конечной. Когда подключение осуществляется через катод («-» вывод), то значение будет бесконечным.

Что такое диоды высокого напряжения?

Именно этот полупроводник превращает общий диод в высоковольтный диод. Эти полупроводники создаются с помощью процесса, называемого легированием. На каждый конец полупроводника применяется легирующая примесь: одна легирующая добавка создает положительный заряд, а другая отрицательна. Площадь между двумя концами остается нелегированной и обычно называется внутренним слоем или p-n-соединением. Допирующие материалы и размер p-n-перехода важны для общей диодной функции.

Лавинные диоды — это тип высоковольтного диода, который может обрабатывать большие объемы энергии. Лавинный эффект возникает, когда заряд начинает увеличиваться в диоде без последующего увеличения внешней мощности. Этот эффект разрушит нормальные диоды, но лавинный диод продолжит работу до тех пор, пока внешнее напряжение не улавливает или система не сравняется.

Датчик подавления переходного напряжения — это диод, который защищает системы от высоковольтных перегрузок. Этот диод имеет очень большое p-n соединение, которое препятствует передаче мощности через систему. Когда в систему попадают большие мощные импульсы, этот высоковольтный диод будет потреблять дополнительную мощность и перемещать всплеск в наземную систему. Часто это единственная функция для одного из этих диодов — при отсутствии избыточной мощности на землю она вообще не передает никакой мощности.

Последний общий высоковольтный диод — это тот, который работает иначе, чем почти любой другой диод. Зенеровский диод может фактически передавать мощность обратно через свою систему. Когда мощность достигает определенного уровня, диодно-специально-допированный p-n-переход начинает позволять власти двигаться назад через систему, создавая временное узкое место. Это блокирует питание от движения достаточно долго, чтобы напряжение стабилизировалось без ущерба для устройства. После этого p-n-соединение возвращается к работе как обычный диод.

Возможные неисправности

Внутренняя схема магнетрона содержит множество деталей, и, если случается поломка, то причина может крыться именно в них. Случается так, что одна из частей пришла в негодность, но влияет на работу всей лампы. Следует понять, в чем причина неисправности, и решить проблему в домашних условиях. Как именно, мы расскажем далее.

  • Металлический колпачок отвечает за сохранность вакуума внутри трубы.Зачастую он ломается, и требуется новая замена;
  • Радиатор может прийти в негодность, если деталь перегорает;
  • Нить накаливания в результате перегрева может оборваться. Для выявления такой неисправности нужен специальный прибор;
  • Фильтр может также перестать нормально функционировать, следует проверять тестером. Исправный элемент будет показывать бесконечность, а сломанный — численное сопротивление;
  • Изменение герметичности детали из-за перегрева;
  • Нарушение работы высоковольтного диода;
  • Неисправность конденсатора высокого напряжения;
  • Разлом контактов предохранителя, основная задача которого не допускать перегрева.

Возможно, вам также будет интересно

Американская компания Hittite Microwave выпускает обширную номенклатуру сверхскоростных цифровых и логических (High Speed Digital Logic) монолитных микросхем пикосекундного диапазона. К ним фирма относит следующие устройства: Clock Dividers — делители частоты тактовых импульсов; Fanout Buffers — быстродействующие буферы; Flip-Flops — высокоскоростные триггеры; Logic Gates — высокоскоростные логические устройства; NRZ-to-RZ Converters — конверторы NRZ в RZ; Seleсtors — селекторные устройства. Микросхемы Clock Dividers — это

Введение Для датчиков инерции, рассмотренных в предыдущих публикациях, в наибольшей степени характерна системная и функциональная интеграция, поддерживаемая развитостью технологий и массовым спросом на них . Системность МЭМС заложена в самом определении МЭМС (микроэлектромеханические системы) и реализуется в объединении сенсорной части в одном корпусе или на кристалле с ASIC-микросхемой, обеспечивающей полную цепочку формирования сенсорного сигнала вплоть

Датчик электрической проводимости CombiLyz от Baumer

Pin-диоды, предлагаемые заводом «ОПТРОН»

Завод производит все перечисленные виды pin-диодов СВЧ- и ВЧ-диапазонов. Параметры переключательных диодов представлены в табл. 1, ограничительных — в табл. 2.

Таблица 1. СВЧ-переключательные pin-диоды
Тип прибораКорпусПробивное напряжение, В

Рассеиваемая мощность Р, Вт

Общая емкость Сд, пФНакопленный заряд Qнк/Iпр Нк/мАПрямое сопротивление mp/Iпр Ом/мА
2(К)507А,

Б

КД105500

300

50,8 — 1,2200/1001,5/100
2(К)509А,

Б

КД10520020,9 — 1,2

0,7-1,0

25/251,5/100
2(К)515АКД1051000,50,4-0,715/252,5/25
2(К)520А

Б

КД105800

600

40,4-1,0300/1002/100

3/100

2(К)537А,

Б

КД-16-1600

300

203400-1000/100

200-1500/100

0,5/100

1,0/100

2(К)536А-5,6

Б-5,6

Б/к30010,08-0,16

0,12-0,21

150/101,5/100
2(К)541А-5,6

Б-5,6

Б/к3000,50,15-0,22

0,18-0,25

60-150/1003,0/100
2(К)543А-5,6

Б-5,6

Б/к1000,50,12-0,19

0,15-0,22

0,5-3/51,5/5
2(К)546А-5,6

Б-5,6

Б/к 3000,50,12-0,250-200/1001,5/5
2(К)554А-5,6

Б-5,6

Б/к500

150

0,50,025-0,082,0/100
Таблица 2. СВЧ-ограничительные pin-диоды
Тип прибораКорпусПробивное напряжение, ВРассеиваемая мощность Р, ВтОбщая емкость Сд, пФНакопленный заряд Qнк/Iпр Нк/мАПрямое сопротивление mp/Iпр Ом/мА
2(К)А534А

Б

КД-10230-110

40-110

0,25

0,15

0,4-0,65

0,35-0,5

0,22-1,0/100,9-1,8/10
2(К)А522А-2

Б-2

Б/к70

100

0,30,35-0,75

0,1-1,0

1/501,8/100

2,0/100

2(К)А550А-5Б/к100-18050,2-0,60,3-1,0/200,6-1,0/100

5.3. Смесительные диоды СВЧ

Смесительный полупроводниковый диод – это полупроводниковый диод, предназначенный для преобразования высокочастотных сигналов в сигнал промежуточной частоты.

К смесительному диоду подводится сигнал и напряжение от специального генератора – гетеродина. В связи с нелинейностью ВАХ диода происходит образование сигнала разностной (промежуточной) частоты. Дальнейшее усиление входного сигнала осуществляется на этой промежуточной частоте, которая должна быть выше частот, соответствующим низкочастотным шумам, обратно пропорциональным частоте.

Основным параметром смесительных диодов, определяющим эффективность преобразования входных сигналов высокой частоты в сигналы промежуточной частоты, является параметр Lпрб называемый потери преобразования смесительного диода и равный отношению мощности СВЧ-сигнала на входе диодной камеры к мощности сигнала промежуточной частоты, выделяемой в нагрузке смесительного диода в рабочем режиме:

В большинстве приемных устройств СВЧ-диапазона отсутствуют усилители перед смесителем. Поэтому чувствительность всего приемного устройства, возможность различить полезный сигнал на фоне шумов зависят от уровня шумов смесительного диода. Уровень шумов смесительного диода (и других приборов) оценивают шумовым отношением nш – отношением номинальной мощности шумов диода в рабочем режиме к номинальной мощности тепловых шумов соответствующего активного сопротивления при той же температуре и одинаковой полосе частот.

Другим параметром, характеризующим шумы смесительного диода и других приборов и систем, является коэффициент шума – отношение мощности шумов на выходе к той ее части, которая вызвана тепловыми шумами источника сигнала:

Обобщенным параметром приемного устройства, в смесителе которого использован диод с определенными потерями преобразования и шумовым соотношением, является нормированный коэффициент шума – значение коэффициента шума приемного устройства со смесительным диодом на входе при коэффициенте шума усилителя промежуточной частоты Fупч, равном 1,5 дБ:

Одним из вспомогательных параметров смесительных диодов служит выпрямительный ток Iвп – постоянная составляющая тока, протекающая в выходной цепи диода в рабочем режиме. Этот параметр используется для контроля исправности смесительного диода и гетеродина приемника, от которого на смесительный диод подается определенная мощность СВЧ-колебаний с определенной длинной волны.

Другим вспомогательным параметром является коэффициент стоячей волны по напряжению СВЧ-диода Kст U – коэффициент стоячей волны по напряжению в передающей линии СВЧ, когда она нагружена на определенную диодную камеру с СВЧ-диодом в рабочем режиме. Чем лучше согласовано входное сопротивление камеры (с диодом) с волновым сопротивлением тракта, тем меньше коэффициент стоячей волны по напряжению и потери принимаемого сигнала.

Полезные рекомендации

Ниже предоставлено несколько советов, которые помогут продлить срок эксплуатации микроволновой печи и срок службы магнетрона:

В случае появления треска или искр во время работы прибора, необходимо прекратить использование печи, и выяснить основную причину. В любом случае, ремонт неисправности – это дешевле, чем покупка новой СВЧ-печи. Чаще всего виновником таких признаков является перегорание защитного колпачка магнетрона.
Регулярно следите за состоянием слюдяной накладки, которая предназначена для защиты выхода волновода в камеру. В нее часто попадает жир и крошки от пищи, что приводит к поломке. В случае неисправности колпачка, слюда может быть прогоревшей, что становится основной причиной поломки магнетрона

Поэтому важно держать накладку в чистоте, так как жир, который попал на нее, под воздействием температуры приобретает электропроводность. Это становится причиной появления искр в камере печи.
При нестабильном напряжении, лучше подключать микроволновую печь через стабилизатор

Из-за незначительных падений и колебаний, некоторые детали печи могут выходить из строя. При падении мощности ускоряется износ катода магнетрона.
Помните, что основной причиной поломки может быть не только магнетрон, но и другие детали. Поэтому для начала важно провести проверку величины напряжения в области подключения печи к электросети, а также состояние слюдяной пластины.

Магнетрон является главной составляющей частью любой микроволновой печи. И при правильном уходе за бытовым прибором, а также при своевременном обнаружении повреждений, возможно продлить срок службы данного устройства.

Высоковольтные выпрямительные диоды

Высоковольтные выпрямительные диоды являются частью выпрямительной установки состоящей из:

  • трансформатора;
  • диода;
  • сглаживающей установки.

Такая установка необходима, чтобы из переменного тока сделать постоянный. У всех видов высоковольтных выпрямительных диодов есть свои особенности.

Одними из самых распространенных являются высоковольтные диоды типа КД243 и быстродействующие диоды (ток проходит через них за пико секунды) типа КД247, КД258 и КД257.

Корпус диодов КД 243 и 247 сделан из пластмассы и может выдерживать морозы до -60 градусов по Цельсию.

КД 257 и 258 сделаны из стекла каплевидной формы и могут работать при температуре окружающей среды +175 градусов С.

Оцените статью:

Микроволновая печь не нагревается? Как безопасно разрядить высоковольтный конденсатор СВЧ

Итак, ваша микроволновая печь не нагревается, и вы провели небольшое исследование. Вы почти уверены, что дело не в дверной защелке, так что это должен быть диод, магнетрон или что-то среднее между ними. Вы решили, что хотите заняться этим ремонтом. Однако замена любой части устройства для микроволнового нагрева сопряжена с исключительно опасной задачей, которую вы обязательно должны выполнить в первую очередь: разрядить микроволновый конденсатор.

Быстрый ответ

Если вы пришли за быстрым и простым объяснением, вот основной принцип:

Вам нужно будет обезопасить себя от поражения электрическим током. Затем коснитесь положительной и отрицательной клемм конденсатора тем же металлическим предметом. В некоторых клеммах подойдет длинная отвертка с резиновой ручкой. В других случаях вам могут понадобиться плоскогубцы с резиновыми ручками. Вы можете увидеть или не увидеть искру.

Зачем нужен разряд конденсатора

Ваша микроволновая печь — удивительно опасное устройство, и не из-за самих микроволн.Вы, вероятно, уже знаете, что микроволновая печь требует много электроэнергии для работы и может даже перевернуть ваши выключатели, если она установлена ​​на слабую цепь с другими приборами с высокими требованиями, такими как вакуум, работающий одновременно.

Однако вы можете не знать, что ваша микроволновая печь имеет часть, называемую высоковольтным конденсатором, которая на самом деле удерживает опасное количество электричества даже после того, как микроволновая печь была отключена от сети. Это чрезвычайно опасно, поскольку может привести к поражению электрическим током сразу после отключения от сети и по-прежнему может вызвать неприятный шок даже через несколько дней после того, как микроволновая печь была отключена от сети.Конденсатор отлично подходит для того, чтобы еда была достаточно горячей во время работы микроволновой печи. Но когда настало время внутреннего ремонта, конденсатор — самая большая угроза вашей безопасности.

К счастью, вы можете довольно легко разрядить конденсатор, если сначала примете все необходимые меры безопасности.

Предупреждение о безопасности

Не беритесь за эту задачу или за любой ремонт, требующий разрядки конденсатора, если вы не очень уверены в себе и не знаете, как защитить себя от поражения электрическим током.Мы шаг за шагом проведем вас через весь процесс, но мы не хотим, чтобы кто-то пострадал. Обычно рекомендуется, чтобы только квалифицированные специалисты по ремонту выполняли разрядку конденсатора и ремонт, который требует этого.

Собери припасы

Инструменты и расходные материалы, которые вам понадобятся для этого ремонта, просты. Поскольку мы на самом деле не выполняем замену на этом этапе, вам не понадобится именованная деталь для замены. Этого достаточно, чтобы разобрать микроволновую печь и безопасно снять электричество с конденсатора.Вот что вам понадобится:

  • Отвертка, оба типа,
  • Динамометрическая отвертка
  • Прорезиненные рабочие перчатки или резиновые перчатки для чистки
  • Плоскогубцы для игл

Соблюдайте меры безопасности

Надевайте резиновые перчатки или прорезиненные рабочие перчатки. Это абсолютно необходимо, когда вы снимаете футляр с микроволновой печи, чтобы убедиться, что вы не подвергаетесь риску поражения электрическим током.

Разберите микроволновку

Эти инструкции являются общими, хотя конструкции микроволн могут отличаться.Следуйте инструкциям, и если ваша микроволновая печь отличается, обратитесь к руководству пользователя по разборке. Мы полностью снимаем шкаф / ящик для микроволновой печи

.

— Отключите микроволновую печь

Если вы еще этого не сделали, убедитесь, что микроволновая печь не подключена к розетке и не имеет внешнего источника питания.

— Снятие пластины и ролика скольжения

Начните с удаления места прядения и скользящего ролика. Они будут только дребезжать и могут сломаться, когда вы разбираете микроволновую печь.

— Снять верхнюю решетку за дверью

Если у вашей микроволновой печи есть решетка за дверцей, то сверху будут винты. Отвинтите эти винты и откройте дверцу микроволновой печи. Сдвиньте решетку влево и снимите ее, приподняв. Это оставит открытую щель за дверцей микроволновой печи, когда дверца будет закрыта. Закройте дверцу микроволновой печи.

— Снимите нижнюю панель

Закройте дверцу микроволновой печи и переверните микроволновую печь на заднюю стенку, чтобы можно было снять нижнюю панель.Удалите все крепежные винты вокруг нижней панели. Затем отложите нижнюю панель в сторону.

— Извлеките футляр для микроволновой печи из тела

Теперь вам нужно открутить большую часть винтов на внешней стороне микроволновой печи, удерживающих шкаф или коробку на месте. Когда футляр станет на ощупь свободным, его можно будет поднять и вытащить. Будьте осторожны, чтобы не зацепить что-либо вроде шнура или его частей, которые остаются частью корпуса микроволновой печи. Теперь, когда вы надеваете рабочие перчатки.И потому, что внутренняя часть панели может быть острой, и потому, что вы только что обнажили электрическую внутреннюю часть.

Найдите конденсатор и клеммы

Конденсатор не всегда находится в одном и том же месте для каждой микроволны. Найдите его, просмотрев руководство для вашей марки и модели микроволновой печи или найдите предмет, у которого явно есть два контакта. Он будет иметь красный провод и белый провод, ведущие к двум болтам, соединенным с удлиненным металлическим контейнером внутри металлического корпуса.Если вы не уверены, обратитесь к своему руководству, чтобы точно определить местонахождение конденсатора. Помните, что это опасно, поэтому не начинайте просто ковыряться. Существует несколько моделей конденсаторов, мы постараемся познакомить вас с базовым описанием того, как изготавливаются конденсаторы.

Разрядить конденсатор

— Выбери свой инструмент

Взглянув на свой конденсатор, решите, какой инструмент вам понадобится для его разрядки. Если клеммные винты открыты, вы можете просто положить отвертку с плоским наконечником и хорошо изолированную отвертку сразу вдоль них обоих.Это может вызвать искру. В качестве альтернативы, если винты клемм утоплены за пластиковой трубкой, вам понадобятся плоскогубцы.

— Обеспечение безопасности

Убедитесь, что ваши перчатки надежно надеты и что у выбранного вами инструмента есть прорезиненные ручки.

— прикоснитесь к обоим клеммам одним и тем же металлическим инструментом

Если вы выбрали отвертку, положите наконечник или корпус отвертки так, чтобы металл соединял обе клеммы. Если вы используете плоскогубцы, аккуратно отделите носик и воткните половину носа в каждую клемму.Обязательно прикоснитесь к обоим клеммам, чтобы между ними могло протекать электричество через промежуточный металлический объект.

— Подождите 2-5 секунд

Подождите 5 секунд, прежде чем снимать инструмент. Возможно, вы видели большую искру или маленькую искру в сердце. В любом случае, вы только что избавили себя от риска очень неприятного шока.

Продолжайте замену или ремонт

Наконец, вы готовы продолжить работу по ремонту, которая привела вас к этому моменту.Теперь вы можете быть уверены, что ваш высоковольтный конденсатор не разрядится в вашу руку или локоть, пока вы приступаете к намеченному ремонту.

Как проверить конденсатор? Использование различных методов

Как проверить конденсатор с помощью мультиметра? Различные методы проверки конденсаторов

В электронных схемах конденсатор является одним из наиболее часто используемых компонентов. При поиске неисправностей в таких схемах необходимо знать , как проверить конденсатор .

В этой статье мы обсудим, как проверить конденсатор на наличие хорошего, короткого замыкания или открытого состояния , используя различные методы.

Перед испытанием конденсатора необходимо узнать о самом конденсаторе.

Конденсатор

Конденсатор — это электронный компонент с двумя выводами, способный накапливать заряд в электрическом поле. Он состоит из двух металлических пластин, разделенных средой, известной как диэлектрик .

Когда конденсатор подключен к батарее, между металлическими пластинами возникает электрическое поле. Благодаря этому электрическому полю металлические пластины накапливают заряд.

Способность конденсатора накапливать заряд называется емкостью . Он измеряется в фарадах и обозначается как F .

Клеммы конденсатора

Есть два вывода конденсатора, т.е. положительный и отрицательный, также известные как анод , и катод , соответственно.

Конденсаторы бывают двух типов в зависимости от полярности вывода.

Полярные конденсаторы

Конденсаторы Polar

, также известные как электролитические конденсаторы , используют электролит в качестве одного из своих выводов для увеличения емкости накопления заряда. Он имеет большую емкость по сравнению с неполярными конденсаторами.

Его пластины поляризованы, т.е. две уникальные клеммы, известные как анод (положительный) и катод (отрицательный).

При использовании полярного конденсатора очень важно проверить полярность его клеммы .На клемме анод всегда должно поддерживаться на более высокое напряжение , чем на ее клеммах катод . Изменение полярности может повредить конденсатор и даже разрушить его.

Проще говоря, всегда соединяйте положительную клемму с положительной клеммой, а отрицательную — с отрицательной клеммой аккумулятора.

Неполярный конденсатор

Неполярный конденсатор или неполяризованный конденсатор без полярности . Между его клеммами нет никакой разницы.Оба вывода могут действовать как катод и анод.

Неполярные конденсаторы имеют очень низкую емкость в диапазоне от нескольких пикофарад до нескольких микрофарад.

Также прочтите: Тест транзисторов для идентификации клемм, типа и состояния.

Нет положительных и отрицательных выводов. Клемма, подключенная к положительной клемме батареи, действует как анод. В то время как клемма, подключенная к отрицательной клемме аккумулятора, действует как катод.Изменение полярности батареи не влияет на конденсатор.

Визуальная идентификация клемм

Как известно, неполярные конденсаторы не имеют разных выводов. Таким образом, нет необходимости идентифицировать его терминалы.

Однако очень важно идентифицировать выводы полярного электролитического конденсатора.

Первый метод

При изготовлении стержень Anode полярного конденсатора был сделан на длиннее на по сравнению с катодным стержнем.Этот метод работает только тогда, когда конденсатор не используется. Второй метод работает как с новыми, так и с использованными конденсаторами.

Второй метод

Отрицательный вывод конденсатора обозначен на его корпусе маркировкой «», указывающей на катодную ножку .

Однако полярные конденсаторы SMD имеют маркировку над положительной клеммой (анод).

Различные методы проверки конденсаторов

Для проверки конденсатора необходимо удалить конденсатор из его цепи, если он есть в какой-либо цепи.Затем разряжает конденсатор, так как он может иметь некоторый накопленный заряд. Это может повредить ваше испытательное оборудование.

Чтобы правильно развести конденсатор , подключите резистор между его выводами. Заряд будет рассеиваться через резистор.

A Мультиметр — важный инструмент, необходимый для проверки конденсатора . Ниже рассматриваются различные методы проверки конденсаторов с помощью мультиметра.

Проверка конденсатора с помощью проверки целостности цепи

Метод проверки целостности конденсатора показывает, является ли он разомкнутым, коротким или хорошим .

  • Удалите подозрительный конденсатор из цепи.
  • Разрядите с помощью резистора.
  • Установите мультиметр в режим проверки целостности .
  • Поместите красный щуп мультиметра на анод, а черный (общий) щуп на катод конденсатора.
  • Если мультиметр показывает признак обрыва цепи ( гудок или светодиод ), а затем он останавливается (показывает OL ). Значит конденсатор хороший .

Также прочтите: Различия между конденсатором и батареей

  • Если конденсатор не показывает никаких признаков непрерывности, конденсатор открыт .
  • Если мультиметр издает непрерывный звуковой сигнал, конденсатор замкнут и нуждается в замене.

Проверить конденсатор с помощью теста на сопротивление

Тест сопротивления также используется для проверки конденсатора. Этот тест может выполнять как цифровой, так и аналоговый мультиметр.Метод остается одинаковым для обоих мультиметров.

  • Удалите конденсатор из его цепи.
  • Разрядите конденсатор с помощью резистора.
  • Установите ручку мультиметра в режим с высоким сопротивлением (выше 10 кОм).
  • Поместите красный щуп на анод, а черный щуп на катодный вывод конденсатора.
  • Показание сопротивления должно начинаться с некоторой точки посередине и начинаться с , увеличиваясь с до бесконечности .Он показывает, что конденсатор хороший .

Также прочтите: Как проверить диод и методы тестирования диодов, светодиодов и стабилитронов

  • Если конденсатор показывает высокое сопротивление даже после разряда, конденсатор открыт .
  • Если конденсатор показывает 0 или очень низкое сопротивление, это короткое замыкание .

Причина увеличения сопротивления в том, что изначально был конденсатор , заряжающий от мультиметра.Таким образом, он позволяет току проходить через него (в этом случае омметр измеряет сопротивление ). Когда конденсатор полностью зарядил , он больше не пропускал ток. Из-за чего он выглядит как открытый путь ( бесконечное сопротивление )

Проверка конденсатора в емкостном режиме

Режим измерения емкости — это уникальный режим в цифровых мультиметрах, используемый для измерения емкости. Если вы хотите проверить конденсатор с помощью этого метода, вам нужно знать, как считывать значение конденсатора.

Как считать значение конденсатора:

Электролитический конденсатор обычно указывает полное значение, как показано на рисунке ниже.

Однако значение керамического конденсатора записывается в виде кода. Вы можете преобразовать / расшифровать его, используя его особый метод. Пример считывания керамического конденсатора приведен ниже.

Керамический конденсатор показывает номер 103 .

  • Первые две цифры являются значащими цифрами и пишется как есть.Например, 10 .
  • Третья цифра « 3 » показывает множитель 10 3 . Таким образом, общая емкость составляет 10 * 10 3 , что равно 10000 пФ .
  • Керамические конденсаторы измеряются в пикофарадах 10 -12 F .
  • Итак, емкость этого конденсатора составляет 10 нФ .

Следующим шагом будет поиск допуска . Он дает минимальный и максимальный диапазон, в котором емкость может отличаться от номинального значения.

Некоторые общие значения допуска указаны буквами j, k, l, m и n , чтобы добавить / вычесть процент от 5,10,15,20 и 30 соответственно.

Теперь перейдем к тесту измерения емкости.

  • Удалите конденсатор из его цепи.
  • Разрядите конденсатор с помощью резистора.
  • Установите мультиметр в режим измерения емкости .
  • Некоторые модели мультиметров имеют специальные клеммы для измерения емкости.

  • Поместите щупы мультиметра на конденсатор.
  • Если измеренная емкость соответствует записанному значению (включая допуск) конденсатора, это значит, что конденсатор хороший .

Проверьте конденсатор с помощью теста напряжения:

Способность конденсатора заключается в том, чтобы накапливать заряд, который отражается как напряжение на его выводах.

Этот тест показывает, что конденсатор может удерживать заряд или нет.Если конденсатор хороший , он будет хранить некоторый заряд. который будет отображаться как напряжение на его клемме, и мы можем измерить его с помощью вольтметра .

Перед испытанием конденсатора на испытание напряжением вам необходимо узнать о номинальном напряжении конденсатора .

Номинальное напряжение конденсатора всегда указывается рядом с его значением емкости, как показано на рисунке ниже.

При зарядке конденсатора от аккумулятора напряжение аккумулятора должно быть на ниже, чем на номинальное напряжение конденсатора.В противном случае конденсатор перегорит .

В этом тесте мы используем конденсатор номиналом 63 В с 12-вольтовой батареей.

  • Удалите конденсатор из его цепи.
  • Обозначьте клеммы и разрядите конденсатор с помощью резистора.
  • Подключите положительный полюс аккумулятора к положительному, а отрицательный — к отрицательному на конденсаторе. ( будьте осторожны, не касайтесь клемм аккумулятора вместе)
  • Дайте зарядить в течение нескольких секунд.
  • Снимите аккумулятор.
  • Установите мультиметр в диапазон настройки вольтметра постоянного тока более 12 В.
  • Запишите начальное мгновенное показание напряжения конденсатора.
  • , если показание находится около 12 вольт, конденсатор хороший .
  • Если показание напряжения намного ниже 12 В, конденсатор неисправен и не может хранить достаточный заряд.

Как проверить конденсатор путем расчета постоянной времени RC

Постоянная времени RC (обозначается греческим словом tau ‘τ’ ) — это время, в течение которого конденсатор заряжается до 63.2% его приложенного напряжения.

Постоянная времени τ вычисляется по сопротивлению , умноженному на емкости :

τ = R C

В этом уравнении резистор R имеет известное значение, и во время этого теста мы измерим τ .

В этом тесте мы используем батарею 12 В с резистором 10 кОм . Мы соединили их последовательно с конденсатором. Мы используем вольтметр для измерения напряжения на конденсаторе и секундомер для измерения времени.

  • Настройте схему , как показано ниже.
  • Подключите клеммы аккумулятора, чтобы начать зарядку конденсатора.
  • Включите секундомер, как только вы подключите клеммы аккумулятора.
  • Наблюдать за показаниями напряжения с помощью вольтметра.
  • Как только он достигнет 63,2% из 12v (что составляет 7,5v ). Запишите время на секундомере.

Также прочтите: Цифровой логический шлюз NAND (универсальный шлюз), его символы, схемы и детали IC

Предположим, секундомер показывает 9 секунд .

  • Используйте уравнение постоянной времени RC для расчета емкости.

C = τ / R

С = 9/10 3

C = 0,9 мФ = 900 мкФ

  • Сравните это рассчитанное значение емкости с указанным значением конденсатора.
  • Если разница очень мала, включая диапазон допуска от 10% до 20%. Конденсатор хороший .
  • Если рассчитанное значение емкости слишком низкое, чем указанное значение.конденсатор плохой .

Визуальная проверка конденсатора

Вы можете определить неисправный конденсатор, просто наблюдая за его признаками.

Неисправный или поврежденный конденсатор будет иметь любой из следующих признаков.

Выпуклый верхний дефлектор:

В электролитических конденсаторах есть отверстие (на самом деле не выпускное отверстие, а слабые места) в форме X, K, T на его вершине. Он предназначен для сброса давления во время выхода конденсатора из строя, чтобы избежать повреждения (взрыва) любых других компонентов.

При выходе из строя электролит внутри конденсатора выделяет газ. Этот газ создает давление и разрушает верхнее вентиляционное отверстие. В результате иногда возникает выпуклая вершина или электролитический разряд . Разряд бывает черного, оранжевого или белого цвета в зависимости от электролитических химикатов.

Выпуклый нижний и приподнятый корпус

Иногда при выходе из строя конденсатора не выходит из строя верхнее вентиляционное отверстие. в таком случае давление внутри проходит через нижнюю часть .Дно электролитического конденсатора покрыто резиной . Газ внутри выталкивает эту резину наружу, из-за чего нижняя часть выпирает , а также поднимает корпус над своей печатной платой.

Керамические конденсаторы и конденсаторы поверхностного монтажа

Вы можете определить неисправный керамический конденсатор по следующим признакам.

    ,

  • , имеет поврежденной обсадной трубы или отверстие в обсадной колонне.
  • Любая из его ножек повреждена рядом с кожухом.
  • Трещины в корпусе.

Вы также можете прочитать:

Как проверить конденсатор?

Как проверить конденсатор?

В этом руководстве мы увидим, как проверить конденсатор и выяснить, работает ли конденсатор должным образом или он неисправен. Конденсатор — это электронный / электрический компонент, который хранит энергию в виде электрического заряда. Конденсаторы часто используются в печатных платах электроники или небольшом количестве электрических приборов и выполняют множество функций.

Когда конденсатор помещается в активную цепь (цепь с протекающим активным током), в конденсаторе (на одной из его пластин) начинает накапливаться заряд, и как только пластина конденсатора больше не может удерживать заряд, происходит накопление заряда. выпущен обратно в цепь через другую пластину.

Это действие называется зарядкой и разрядкой конденсатора. В основном конденсаторы можно разделить на электролитические и неэлектролитические.

Как и все электрические и электронные компоненты, конденсатор также чувствителен к скачкам напряжения, и такие колебания напряжения могут необратимо повредить конденсаторы.

Электролитический конденсатор

часто выходит из строя из-за разряда большего тока за короткий период времени или не может удерживать заряд из-за высыхания со временем. С другой стороны, неэлектролитические конденсаторы выходят из строя из-за утечек.

Существуют различные методы проверки правильности работы конденсатора. Давайте посмотрим на некоторые методы проверки конденсатора.

ПРИМЕЧАНИЕ: Некоторые из упомянутых здесь методов могут быть не лучшими способами проверки конденсатора. Но мы включили эти методы только для того, чтобы указать возможности.Не суди.

Метод 1 Проверка конденсатора с помощью мультиметра с настройкой емкости

Это один из самых простых, быстрых и точных способов проверки конденсатора. Для этого нам понадобится цифровой мультиметр с функцией измерителя емкости. Большинство цифровых мультиметров среднего и высокого уровня имеют эту функцию.

Измеритель емкости цифровых мультиметров часто отображает емкость конденсатора, но несколько счетчиков отображают другие параметры, такие как ESR, утечку и т. Д.

  • Чтобы проверить конденсатор с помощью цифрового мультиметра с измерителем емкости, можно выполнить следующие шаги.
  • Отсоедините конденсатор от печатной платы и полностью разрядите его.
  • Если на его корпусе видны номиналы конденсатора, запишите это. Обычно емкость в фарадах (часто микрофарадах) печатается на корпусе вместе с номинальным напряжением.
  • На цифровом мультиметре установите ручку настройки емкости.
  • Подключите щупы мультиметра к клеммам конденсатора.В случае поляризованного конденсатора подключите красный щуп к положительной клемме конденсатора (обычно более длинный провод), а черный щуп к отрицательной клемме. В случае неполяризованного конденсатора, подключите его в любом случае, поскольку они не имеют полярности.
  • Теперь проверьте показания цифрового мультиметра. Если показания мультиметра ближе к реальным значениям (указанным на конденсаторе), то конденсатор можно считать хорошим конденсатором.
  • Если разница между фактическим значением и измеренным показанием значительно (или иногда равна нулю), то вам следует заменить конденсатор, так как он мертв.

Используя этот метод, можно измерить емкость конденсаторов от нескольких нанофарад до нескольких сотен микрофарад.

Метод 2 Проверка конденсатора с помощью мультиметра без настройки емкости

Большинство дешевых цифровых мультиметров не имеют измерителя емкости или настроек емкости. Даже с этими мультиметрами мы можем проверить конденсатор.

  • Снимите конденсатор со схемы или платы и убедитесь, что он полностью разряжен.
  • Установите мультиметр на измерение сопротивления, т. Е. Установите ручку в положение «Ом» или «Настройки сопротивления». Если существует несколько диапазонов измерения сопротивления, выберите более высокий диапазон (часто от 20 кОм до 200 кОм).
  • Подключите щупы мультиметра к выводам конденсатора (красный к плюсу и черный к минусу в случае поляризованных конденсаторов).
  • Цифровой мультиметр покажет значение сопротивления на дисплее и вскоре отобразит сопротивление разомкнутой цепи (бесконечность).Запишите показания, отображаемые за этот короткий период.
  • Отсоедините конденсатор от мультиметра и повторите тест несколько раз.
  • Каждая попытка теста должна показывать аналогичный результат на дисплее для исправного конденсатора.
  • Если при дальнейших испытаниях сопротивление не изменилось, конденсатор неисправен.

Этот метод тестирования конденсатора может быть неточным, но позволяет различать хорошие и плохие конденсаторы. Этот метод также не дает данных о емкости конденсатора.

Метод 3 Испытание конденсатора путем измерения постоянной времени

Этот метод применим, только если известно значение емкости и если мы хотим проверить, исправен ли конденсатор или нет. В этом методе мы измеряем постоянную времени конденсатора и выводим емкость из измеренного времени. Если измеренная емкость и фактическая емкость одинаковы, то конденсатор исправен.

Постоянная времени конденсатора — это время, необходимое конденсатору для зарядки до 63.2% от приложенного напряжения при зарядке через известный резистор. Если C — емкость, R — известный резистор, то постоянная времени TC (или греческий алфавит Tau — τ) задается как τ = RxC.

  • Сначала убедитесь, что конденсатор отключен от платы и правильно разряжен.
  • Подключите известный резистор (обычно резистор 10 кОм) последовательно с конденсатором.
  • Завершите электрическую цепь, подключив источник питания известного напряжения.
  • Включите источник питания и измерьте время, за которое конденсатор зарядится до 63.2% от напряжения питания. Например, если напряжение питания составляет 12 В, то 63,2% от этого значения составляет около 7,6 В.
  • Используя время и сопротивление, измерьте емкость и сравните ее со значением, указанным на конденсаторе.
  • Если они похожи или почти равны, конденсатор функционирует нормально. Если разница огромна, нам нужно заменить конденсатор.

Также можно рассчитать время разряда. В этом случае время разряда конденсатора до 36.Можно измерить 8% пикового напряжения.

Метод 4 Проверка конденсатора с помощью простого вольтметра

Все конденсаторы рассчитаны на максимальное допустимое напряжение. Для этого метода проверки конденсатора мы будем использовать номинальное напряжение конденсатора.

  • Снимите конденсатор с платы или схемы и правильно его разрядите. При желании можно удалить из цепи только один вывод.
  • Посмотрите номинальное напряжение на конденсаторе.Обычно он обозначается как 16 В, 25 В, 50 В и т. Д. Это максимальное напряжение, которое может выдерживать конденсатор.
  • Теперь подключите выводы конденсатора к источнику питания или батарее, но напряжение должно быть меньше максимального номинального значения. Например, на конденсаторе с максимальным номинальным напряжением 16 В вы можете использовать батарею на 9 В.
  • Зарядите конденсатор на короткое время, скажем, 4–5 секунд и отключите питание.
  • Установите цифровой мультиметр на настройки вольтметра постоянного тока и измерьте напряжение на конденсаторе.Подключите соответствующие клеммы вольтметра и конденсатора.
  • Начальное значение напряжения на мультиметре должно быть близко к подаваемому напряжению в исправном конденсаторе. Если разница большая, значит конденсатор неисправен.

Следует учитывать только начальные показания мультиметра, так как значение будет медленно падать. Это нормально.

Метод 5 Тестирование конденсатора с помощью аналогового мультиметра (измеритель AVO)

Аналоговые мультиметры

, как и цифровые мультиметры, могут измерять различные величины, такие как ток (A), напряжение (V) и сопротивление (O).Чтобы проверить конденсатор с помощью аналогового мультиметра, мы собираемся использовать его функцию омметра.

  • Как обычно, отключите конденсатор и разрядите его. Вы можете разрядить конденсатор, просто закоротив провода (очень опасно — будьте осторожны), но простой способ — использовать нагрузку, такую ​​как резистор высокой мощности или светодиод.
  • Установите аналоговый мультиметр в положение омметра и, если имеется несколько диапазонов, выберите более высокий диапазон.
  • Подсоедините выводы конденсатора к щупам мультиметра и наблюдайте за показаниями мультиметра.
  • Для исправного конденсатора сопротивление вначале будет низким и будет постепенно увеличиваться.
  • Если сопротивление постоянно низкое, конденсатор закорочен, и его необходимо заменить.
  • Если стрелка не движется или сопротивление всегда имеет более высокое значение, конденсатор является открытым конденсатором.

Этот тест может применяться как к сквозным, так и к поверхностным конденсаторам.

Метод 6 Замыкание выводов конденсатора (традиционный метод — только для профессионалов)

Описанный здесь метод — один из старейших методов проверки конденсатора и проверки того, хороший он или плохой.

Предупреждение: Этот метод очень опасен и предназначен только для профессионалов. Его следует использовать как последний вариант для проверки конденсатора.

Безопасность: Метод описан для источника переменного тока 230 В. Но из соображений безопасности можно использовать источник питания 24 В постоянного тока. Даже при 230 В переменного тока нам необходимо использовать последовательный резистор (высокой номинальной мощности) для ограничения тока.

  • Проверяемый конденсатор должен быть отключен от цепи и должным образом разряжен.
  • Подключите выводы конденсатора к клемме питания. Для 230 В переменного тока необходимо использовать только неполяризованные конденсаторы. Для 24 В постоянного тока можно использовать как поляризованные, так и неполяризованные конденсаторы, но с правильным подключением поляризованных конденсаторов.
  • Включите источник питания на очень короткое время (обычно от 1 до 5 секунд), а затем выключите его. Отсоедините выводы конденсатора от источника питания.
  • Замкните клеммы конденсатора металлическим контактом.Убедитесь, что вы хорошо изолированы.
  • Искра конденсатора может использоваться для определения состояния конденсатора. Если искра большая и сильная, значит конденсатор в хорошем состоянии.
  • Если искра малая и слабая, нужно заменить конденсатор.

Этот метод можно использовать для конденсаторов с меньшей емкостью. Этот метод может только определить, может ли конденсатор удерживать заряд или нет.

Испытания конденсаторной батареи | Electrical4U

Стандарт ANSI, IEEE, NEMA или IEC используется для тестирования батареи силовых конденсаторов.
Существует три типа испытаний конденсаторных батарей. Это

  1. проектных или типовых испытаний.
  2. Производственные испытания или текущие испытания.
  3. Полевые испытания или предпусковые испытания.

Испытания конструкции или типовые испытания конденсаторной батареи

Когда производитель запускает новую конструкцию силового конденсатора, необходимо проверить, соответствует ли новая партия конденсаторов стандарту. Конструктивные или типовые испытания не выполняются на отдельных конденсаторах, они выполняются на некоторых случайно выбранных конденсаторах, чтобы гарантировать соответствие стандарту.

Во время запуска новой конструкции, после того, как эти испытания конструкции выполнены, нет необходимости повторять эти испытания для какой-либо последующей партии продукции до тех пор, пока конструкция не будет изменена. Типовые испытания или проектные испытания обычно разрушительны и дороги.
Типовые испытания, проводимые на конденсаторной батарее: —

  1. Испытание на устойчивость к импульсам высокого напряжения.
  2. Испытание втулки.
  3. Испытание на термическую стабильность.
  4. Испытание напряжения радиоизлучения (RIV).
  5. Тест на спад напряжения.
  6. Тест разряда короткого замыкания.

Испытание на устойчивость к импульсам высокого напряжения

Это испытание обеспечивает выдерживаемость изоляции, используемой в конденсаторном блоке. Изоляция, предусмотренная на конденсаторном блоке, должна выдерживать высокое напряжение во время переходных процессов перенапряжения.
Есть три типа конденсаторных блоков.

  1. Конденсаторный блок с одинарной втулкой

    Здесь одна клемма конденсаторного элемента выходит из литья через проходную втулку, а другая клемма конденсаторного элемента напрямую соединена с самим обналичиванием.Здесь кэширование конденсаторного блока служит одним выводом конденсаторного блока, так как один вывод конденсаторного блока подключается к стойке ввода через элементы конденсатора, импульс высокого напряжения со стендом не может быть проведен в этом блоке.

  2. Конденсаторный блок с двойной втулкой

    Здесь два конца конденсаторного элемента оканчиваются на заборе через две отдельные втулки. Здесь обналичивание полностью изолировано от обналичивающего органа.

  3. Конденсаторный блок с тремя втулками

    В трехфазном конденсаторном блоке линейный вывод каждой фазы трехфазных конденсаторных элементов выходит из кэширования через три отдельных ввода.

    Этот тест выполняется только для конденсаторного блока с несколькими вводами. Перед подачей импульса высокого напряжения весь ввод должен быть закорочен проводом с высокой проводимостью. Тело кассы должно быть правильно заземлено.
    Если требуется испытать более одного блока с некоторым номинальным уровнем изоляции BIL или базовым уровнем изоляции, то все вводы из партий должны быть закорочены вместе.
    В этом испытании стандартное импульсное напряжение крышки прикладывается к каждой стойке проходного изолятора. Рекомендуемый импульс перенапряжения — 1.2/50 мкс. Если конденсаторный блок имеет два разных ввода BIL, то подаваемое импульсное напряжение основано на вводе с низким BIL. Если при трех последовательных приложениях номинального импульсного напряжения на проходном изоляторе не происходит перебоев, считается, что устройство выдержало испытание.

Испытание проходного изолятора

Если в предыдущем импульсном испытании не было перебоев, нет необходимости в отдельном испытании проходного изолятора. Но если есть вспышка в первых трех последовательных приложениях импульсного перенапряжения, то остальные три последовательных перенапряжения применяются дальше.Если во втулке не происходит дополнительного перегорания, втулка считается прошедшей испытание.

Тест на термостабильность силового конденсатора

Этот тест проводится для проверки того, насколько конденсаторный блок является термостабильным. Для этого теста испытательный блок устанавливается между двумя фиктивными конденсаторными блоками. Эквивалентные конденсаторные блоки должны иметь такие же размеры, как и тестовый блок.
Экземпляры и испытательный блок должны быть установлены таким же образом, как они были бы практически установлены на конструкции конденсаторной батареи.
Для уменьшения циркуляции воздуха все три конденсатора находятся внутри закрытого корпуса. Экземпляры могут иметь конденсаторные блоки того же номинала, что и тестовый образец, или это резисторная модель тестового устройства. Модель резистора означает, что вместо элементов конденсатора внутри корпуса конденсатора помещаются резисторы для создания того же теплового эффекта, что и исходный конденсаторный блок при той же мощности. Воздух внутри шкафа не должен циркулировать принудительно. На все три образца, т.е. испытательный конденсатор и два фиктивных конденсатора, подается испытательное напряжение, которое рассчитывается по формуле, приведенной ниже,

Где
В T — испытательное напряжение,
В R — номинальное напряжение испытательного блока,
W M — максимально допустимая потеря мощности,
Вт A — фактическая потеря мощности.
Хотя испытательное напряжение рассчитывается по приведенной выше формуле, испытательное напряжение должно быть ограничено до того значения, которое дает максимум 144% от номинального значения KVAR конденсаторного блока. После расчета или оценки и приложения напряжения оно должно поддерживаться с точностью ± 2% в течение 24 часов периода испытания.

Испытание напряжения радиовоздействия

Это испытание проводится при номинальной частоте и 115% от номинального действующего напряжения конденсатора. Этот тест проводится только на блоке, имеющем более одного проходного изолятора.Поскольку единичный вводный блок имеет корпус, напрямую соединенный с элементами конденсатора. Во время испытания корпус многопроходного блока должен быть должным образом заземлен. Испытательный конденсатор следует хранить при комнатной температуре, а его ввод должен быть сухим и чистым. Устройство следует установить в рекомендованном положении. Во время измерения на частоте 1 МГц напряжение радиочастоты не должно превышать 250 мкВ.

Тест на спад напряжения

Здесь конденсаторный блок заменяется постоянным напряжением, значение которого равно пиковому значению номинального переменного напряжения блока.После зарядки устройства дайте ему разрядиться каким-либо образом и измерьте падение напряжения. Если напряжение упадет до менее 50 В в течение 5 минут в случае конденсаторного блока с номинальным напряжением более 600 В (среднеквадратичное значение), то блок считается прошедшим испытание на спад напряжения. Это падение напряжения должно происходить в течение 1 мин в случае конденсаторного блока с номинальным напряжением менее 600 В (действующее значение).

Тест разряда короткого замыкания

Этот тест проводится для проверки герметичности всех внутренних соединений конденсаторного блока.Не только герметичность, он также проверяет размер проводов и их электрические свойства, правильно или неправильно выбраны и спроектированы в конденсаторном блоке. В этом испытании конденсаторные блоки заряжаются до 2,5-кратного значения номинального действующего напряжения. Затем конденсаторный блок разряжается. Эту зарядку и разрядку следует выполнять не менее 5 раз. Емкость конденсаторного блока измеряется перед подачей зарядного напряжения, а также после пятой разрядки блока. Регистрируется разница между начальной и конечной емкостями, и она не должна быть больше разницы емкостей блока при коротком замыкании одного конденсаторного элемента или срабатывании одного предохранительного элемента.
Это означает, что
(Первоначально измеренная емкость — емкость, измеренная после пятого разряда) <(емкость блока со всеми элементами и плавким элементом - емкость при закороченном одном конденсаторном элементе или срабатывании одного предохранителя)

Регулярное испытание батареи конденсаторов

Плановые испытания также называются производственными испытаниями. Эти испытания должны проводиться на каждом конденсаторном блоке производственной партии, чтобы гарантировать индивидуальные рабочие параметры.

Кратковременное испытание на перенапряжение

В этом испытании постоянное напряжение 4.К стойкам вводов конденсаторного блока прикладывают 3-кратное номинальное действующее напряжение или переменное напряжение, превышающее 2-кратное номинальное действующее напряжение. Ограничение емкости конденсатора должно выдерживать любое из этих напряжений не менее 10 секунд. Температура устройства во время испытания должна поддерживаться на уровне 25 ± 5 градусов. В случае трехфазного конденсаторного блока, если элементы трехфазного конденсатора соединены звездой с нейтралью, подключенной через четвертый ввод или через корпус, напряжение, приложенное между фазными выводами, будет в √3 раза выше упомянутых выше напряжений.То же напряжение, что и выше, будет приложено к фазному выводу и нейтральному выводу.
Для трехфазного блока, подключенного по схеме «треугольник», номинальное напряжение соответствует фазному напряжению.
Емкость должна быть измерена до и после подачи испытательного напряжения. Изменение емкости должно быть менее 2% от первоначально измеренной емкости или вызвано отказом одного емкостного элемента или плавкого предохранителя, в зависимости от того, что меньше.

Проверка напряжения между клеммами и корпусом

Это испытание применимо только тогда, когда внутренние конденсаторные элементы блока изолированы от его корпуса.Это испытание подтверждает способность выдерживать перенапряжение изоляции между металлическим корпусом и элементами конденсатора. Испытательное напряжение прикладывают между корпусом и стойкой ввода в течение 10 секунд. Для конденсаторного блока, имеющего вводы с различными BIL, это испытание проводится на основе нижнего ввода BIL.

Проверка емкости

Это испытание проводится для того, чтобы убедиться, что каждый конденсаторный блок в партии или партии должен выдавать не более 110% своей номинальной VAR во время нормальных рабочих условий, при которых происходит зарядка приложения номинального напряжения и частоты до блок в пределах возможного температурного предела, который считается градусом C.Если измерение выполняется при любой температуре, отличной от 25 o C, то результат должен быть рассчитан в соответствии с 25 o C.

Испытание конденсаторных блоков на утечку

Этот тест проводится, чтобы убедиться, что предел свободен. от любой утечки. В этом испытании испытательный образец нагревается внешней печью, чтобы заставить изолирующую жидкость выходить из корпуса, если есть какая-либо точка утечки. Этот тест гарантирует, что все соединения надежно герметизированы и затянуты.

Тест разрядного резистора

Этот тест проводится на каждом конденсаторном блоке, чтобы убедиться, что внутреннее разрядное устройство или резистор способен разряжать конденсаторный блок от его начального остаточного напряжения до 50 В или менее за указанный срок. Начальное остаточное напряжение может быть в 2 раза больше номинального действующего напряжения конденсатора.

Тест определения потерь

Этот тест проводится на каждом конденсаторном блоке, чтобы продемонстрировать, что потери, возникающие в блоке во время работы, меньше максимально допустимой потери блока.

Проверка работоспособности предохранителя блока конденсатора с внутренним предохранителем

В этом испытании конденсаторный блок сначала заряжается постоянным напряжением (DC), в 1,7 раза превышающим номинальное действующее напряжение конденсаторного блока. Затем этому блоку позволяют производить разряд через зазор, расположенный как можно ближе, без какого-либо дополнительного сопротивления разрядной цепи.
Емкость конденсатора следует измерить перед подачей зарядного напряжения, а также после разрядки устройства. Разница этих двух измерений должна быть меньше разницы емкостей при срабатывании внутреннего плавкого элемента.

Испытания перед вводом в эксплуатацию или установкой конденсаторной батареи

Когда конденсаторная батарея практически установлена ​​на месте, должны быть выполнены некоторые специальные тесты, чтобы убедиться, что соединение каждого блока и батареи в целом в порядке и согласно технические характеристики.

Измерение емкости

Чувствительный измеритель емкости используется для измерения емкости батареи в целом, чтобы убедиться, что подключение батареи соответствует спецификации. Если измеренное значение не соответствует расчету, в банке должно быть какое-то неправильное соединение, которое необходимо исправить.Для измерения емкости батареи нам не нужно прикладывать полное номинальное напряжение, а только 10% от номинального напряжения для определения емкости блока. Формула емкости:

, где V — напряжение, приложенное к батарее,
I — ток питания и
ω = 377,7, что является постоянным качеством.

Высоковольтное испытание изоляции

Высоковольтное испытание изоляции может быть выполнено в соответствии с NBMA CP-1

Что такое испытание батареи конденсаторов и почему оно проводится

Конденсаторная батарея

представляет собой комбинацию множества конденсаторов одинакового номинала, соединенных параллельно или последовательно друг с другом для сбора электрической энергии.Полученный в результате банк затем используется для противодействия или коррекции запаздывания коэффициента мощности или фазового сдвига в источнике питания переменного тока. Их также можно использовать в источниках питания постоянного тока для увеличения общего количества накопленной энергии или для увеличения мощности пульсаций по току источника питания.

Конденсаторные батареи обычно используются для

  • Коррекция коэффициента мощности
  • Компенсация реактивной мощности

Конденсаторы имеют противоположный эффект по сравнению с индуктивными двигателями, поскольку они нейтрализуют большой ток, и, таким образом, эта конденсаторная батарея снижает ваши счета за электроэнергию.

Почему проводится тестирование батареи конденсаторов?

Блоки конденсаторов

являются важным аспектом вашей энергосистемы, обеспечивающим правильную коррекцию коэффициента мощности. Блок коррекции коэффициента мощности имеет различные функциональные настройки в зависимости от положения, в котором они установлены. Влага, время, гармоники и температура изменяют коррекцию коэффициента мощности конденсаторных батарей. Уже установленные конденсаторные батареи, если они не были протестированы или не обслуживались в течение определенного времени, перестают функционировать на самом высоком уровне.Со временем работа конденсаторов может ослабнуть, что снизит коэффициент мощности вашей энергосистемы, что приведет к потере коэффициента мощности.

Что делается во время тестирования батареи конденсаторов?

Для проверки конденсаторной батареи используется стандарт IEEE или ANSI. Есть 3 типа проверки конденсаторных батарей. Их

  • Испытания конструкции или типовые испытания
  • Производственные испытания или плановые испытания
  • Полевые испытания или пуско-наладочные испытания

Испытания конструкции или типовые испытания конденсаторной батареи

Когда производитель запускает новую конструкцию силового конденсатора, необходимо проверить, соответствует ли новая партия конденсатора стандарту.Типовые испытания или испытания конструкции не проводятся на одном конденсаторе, вместо этого они проводятся на некоторых случайно выбранных конденсаторах, чтобы убедиться в соответствии стандарту.

Во время запуска новой конструкции, после того, как эти испытания конструкции выполнены, нет необходимости повторять эти испытания для какой-либо последующей партии продукции до тех пор, пока конструкция не будет изменена. Дизайн-тесты или типовые испытания обычно дороги или разрушительны.

Типовые испытания, проведенные на конденсаторной батарее: —

  • Испытание на устойчивость к импульсам высокого напряжения.
  • Испытание втулок.
  • Испытание на термическую стабильность.
  • Испытание напряжения радиоизлучения (RIV).
  • Тест на спад напряжения.
  • Тест разряда короткого замыкания.

Текущий тест конденсаторной батареи

Регулярные испытания также называются производственными испытаниями. Эти испытания должны проводиться на каждом конденсаторном блоке производственной партии, чтобы гарантировать индивидуальные рабочие параметры.

Кратковременное испытание на перенапряжение

В этом тесте постоянное напряжение 4.К стойкам вводов конденсаторного блока прикладывают 3-кратное номинальное действующее напряжение или переменное напряжение, превышающее 2-кратное номинальное действующее напряжение. Диапазон конденсаторов должен выдерживать любое из этих напряжений не менее десяти секунд. Температура устройства во время испытания должна поддерживаться на уровне 25 ± 5 градусов. В случае трехфазного конденсаторного блока, если элементы трехфазного конденсатора соединены звездой с нейтралью, подключенной через четвертый ввод или через корпус, напряжение, приложенное между фазными выводами, будет в √3 раза выше упомянутых выше напряжений.То же напряжение, что и выше, будет приложено к фазному выводу и нейтральному выводу.

Проверка напряжения между клеммами и корпусом

Это испытание применимо только тогда, когда внутренние конденсаторные элементы блока изолированы от его корпуса. Это обеспечивает выдерживаемость перенапряжения изоляции между элементами конденсатора и металлическим корпусом. Испытательное напряжение прикладывают между корпусом и стойкой ввода в течение 10 секунд. Для конденсаторного блока, имеющего вводы с различными BIL, это испытание проводится на основе нижнего ввода BIL.

Тест емкости

Это испытание проводится для того, чтобы убедиться, что каждый конденсаторный блок в партии или партии должен давать не более 110% своей номинальной VAR во время нормального функционирования в пределах возможного температурного предела, который считается ˚C. Если измерение проводится при любой температуре, отличной от 25 ° C, то результат с меандрами должен быть рассчитан в соответствии с 25 ° C.

Испытание конденсаторных блоков на герметичность

Это испытание проводится для того, чтобы убедиться в отсутствии утечки на пределе.В этом испытании испытательный образец нагревается внешней печью, чтобы заставить изолирующую жидкость выходить из корпуса, если есть какая-либо точка утечки. Этот тест позволяет убедиться, что все соединения затянуты и герметизированы правильно.

Тест разрядного резистора

Это испытание проводится на каждом конденсаторном блоке, чтобы убедиться, что внутреннее разрядное устройство или резистор способен разрядить конденсаторный блок от его начального остаточного напряжения до 50 В или менее в течение указанного срока.Начальное остаточное напряжение может быть в 2 раза больше номинального действующего напряжения конденсатора.

Тест определения потерь

Этот тест проводится на каждом конденсаторном блоке, чтобы продемонстрировать, что потери, возникающие в блоке во время работы, меньше максимально допустимой потери блока.

Проверка работоспособности предохранителя внутреннего конденсаторного блока с предохранителями

В этом испытании конденсаторный блок сначала заряжается постоянным напряжением (DC), в 1,7 раза превышающим номинальное среднеквадратичное напряжение конденсаторного блока.Тогда этот блок может производить разряд через зазор, расположенный как можно ближе, без какого-либо дополнительного сопротивления разрядной цепи. Емкость конденсатора следует измерять перед подачей зарядного напряжения и после разрядки блока. Отклонение этих двух измерений должно быть меньше, чем изменение емкости при срабатывании внутреннего предохранителя.

Пусконаладочные работы или монтажные испытания конденсаторной батареи

Когда конденсаторная батарея практически установлена ​​на месте, должны быть выполнены некоторые специальные тесты, чтобы убедиться, что соединение каждого блока и батареи в порядке и в соответствии со спецификациями.

Измерение емкости

Для определения емкости батареи в целом используется чувствительный измеритель емкости, чтобы убедиться, что подключение батареи соответствует требованиям. Если измеренное значение не соответствует расчету, в банке должно быть какое-то неправильное соединение, которое необходимо исправить. Мы должны применять полное номинальное напряжение для определения емкости батареи, а не только десять процентов от номинального напряжения, чтобы определить емкость блока. Формула емкости: где, V — напряжение, приложенное к батарее, I — ток питания и ω = 377.7, что является постоянным качеством.

Испытание изоляции высоким напряжением

Этот тест проводится в соответствии с NBMA CP-1.

Как проводится тестирование батареи конденсаторов?

Провести оценку рисков на месте

  • Перед выполнением этой задачи любые угрозы на объекте должны быть оценены и определены с помощью соответствующих мер контроля.
  • Если какие-либо опасности не могут быть уменьшены или преодолены до подходящего предела, не продолжайте выполнение задачи и обратитесь за помощью к своему руководителю.

Все работы, которые необходимо проделать с обесточенной батареей конденсаторов

  • Все испытания следует проводить при обесточенной конденсаторной батарее и при соблюдении соответствующих мер контроля для предотвращения случайного контакта с соседней находящейся под напряжением установки или нарушения запретных зон.
  • Выдать разрешение на тестирование и следовать требованиям P53 «Управление сетевым процессом». Согласно данным полевых испытаний первичной установки и вторичных систем подстанции, риски безопасности, применимые к конденсаторам, включают:
  1. Контакт с высоким напряжением на первичных соединениях конденсаторной батареи
  2. Максимальный ток короткого замыкания
  3. Накопленная энергия в заряженных конденсаторах

Выполнить вторичную изоляцию

  • Оценить необходимость вторичной изоляции систем защиты.
  • При проведении этой оценки следует учитывать чувствительность защиты конденсаторной батареи и возможность для тестируемого конденсатора непреднамеренно разрядить накопленную энергию в систему защиты.
  • В большинстве случаев необходима вторичная изоляция системы защиты.

Рекордная информация о заводе

Запишите идентификационные данные каждого конденсаторного блока

  • Наименование производителя
  • Типовое описание производителя
  • Серийный номер производителя
  • Год выпуска
  • Измеренная емкость и номинальная емкость Cn, как указано на паспортной табличке
  • Серийный номер каждой емкости конденсатора
  • Номинальная мощность Qn
  • Номинальное напряжение Un
  • Номинальный ток в
  • Температурная категория

Визуальный осмотр состояния конденсаторной батареи

  • Осмотрите внешние поверхности и убедитесь, что конденсаторные блоки и реакторы чистые и сухие.
  • Проверьте правильность основных соединений.
  • Проверить заземление монтажных рам и корпуса конденсаторной батареи.

Измерение сопротивления изоляции

  • Испытания сопротивления изоляции, перечисленные ниже, должны проводиться в течение одной минуты каждое.
  • Для этих испытаний необходимо отсоединить предохранительные трансформаторы тока / трансформаторы напряжения, подключенные к нулевой точке батареи.

  • Если несколько компонентов соединены параллельно, например, конденсаторные батареи, нет необходимости проводить отдельное измерение сопротивления изоляции каждого компонента.
  • Чтобы убедиться, что оцениваемые конденсаторы изменились соответствующим образом для точного измерения ИК-излучения, убедитесь, что конденсатор был заряжен мегомметром таким образом, чтобы изменение ИК-излучения за 1-минутный период составляло менее 5%.

Измерение емкости

  • Измерьте емкость каждого отдельного конденсаторного блока с помощью емкостного моста. Использование любого испытательного оборудования должно выполняться в соответствии с инструкциями по эксплуатации, относящимися к используемому оборудованию.
  • Обратите внимание, что емкостные мосты клещевого типа обычно можно использовать без отключения конденсаторных блоков от батареи.
  • Рекомендуется не отсоединять конденсаторные блоки для измерения, чтобы избежать непреднамеренного повреждения вводов конденсаторных блоков.
  • Обратите внимание, что втулки имеют строго определенные пределы максимального крутящего момента, которые нельзя превышать при затяжке соединений.
  • С другой стороны, необходимо подключить источник переменного тока для последовательной вставки в конденсаторный блок.
  • Напряжение, измеренное на каждой единице, из которого можно рассчитать емкость по формуле:
    C = I / (2 x Pi x f x V)
    Где C = емкость в фарадах. V = индуцированное напряжение в вольтах. I = подаваемый ток в амперах. f = частота подаваемого тока.
  • Расчет емкости должен выполняться в период, когда температура на батарее стабильна.

Измерение реактивного сопротивления

  • Если установлены реакторы ограничения пускового тока или реакторы настройки, измерьте реактивное сопротивление реакторов.
  • Предпочтительный метод состоит в том, чтобы ввести большой переменный ток и определить напряжение, индуцированное на реакторе, из которого можно рассчитать реактивное сопротивление по формуле:
    Z = V / I
    Где Z = реактивное сопротивление в омах. V = индуцированное напряжение в вольтах. I = подаваемый ток в амперах.
  • Эта формула игнорирует резистивную составляющую импеданса, что является допустимым упрощением для типичных реакторов (добротность типичного реактора с воздушным сердечником превышает 40.

Провести испытание высоким напряжением

  • Высоковольтные испытания конденсаторов постоянным и переменным током необходимы только в том случае, если этого требует владелец, и обычно их спрашивают только о том, есть ли производственные или серийные проблемы, которые необходимо решить.
  • В качестве альтернативы, это может потребоваться по усмотрению инженера-наладчика, когда выведенный из эксплуатации банк возвращается в эксплуатацию. Конденсатор должен выдерживать испытательное напряжение постоянного тока, приложенное в течение 10 секунд между клеммами первичной обмотки.
  • Применяемый уровень напряжения:
    Utest = Un x 4,3 x 0,75
    Где Utest = приложенное испытательное напряжение. Un = номинальное напряжение конденсатора.
  • Конденсатор также должен выдерживать 1-минутное испытание на устойчивость к промышленной частоте испытательным напряжением, приложенным между выводами конденсатора и землей.

Проверка баланса каждого банка

  • Выполните проверку баланса каждого банка, вставив измеренную величину емкости в соответствующую программу балансировки.
  • При необходимости поменяйте местами банки для достижения приемлемого баланса банка.

Выполнить первичный впрыск

  • Первичная инжекция может выполняться для проверки работоспособности схем защиты блока батарей путем перемычки емкостей конденсаторов батареи и использования источника тока низкого напряжения для инжекции через соответствующие трансформаторы тока.
  • Если для подтверждения правильности баланса конденсаторной батареи требуется первичный впрыск, его следует проводить в то время, когда температура относительно стабильна и однородна по всей батарее.
  • Подключите сбалансированный трехфазный источник к входным клеммам банка и определите:
    • Напряжение, приложенное к каждой фазе (фаза к фазе и фаза к нейтрали).
    • Линейный ток каждой фазы.
    • Напряжение звезды конденсаторной батареи относительно нейтрали.
    • Напряжение / ток, измеренные при защите от несимметрии.
    • Вторичный ток от каждой жилы ТТ измерения / защиты.
  • Подтвердите, что любой несбалансированный ток / напряжение при масштабировании от первичного испытательного напряжения впрыска до фактического номинального напряжения ниже порога, необходимого для срабатывания аварийного сигнала несбалансированности или отключения.

Полный перечень пуско-наладочных работ

Конденсаторная батарея, вводимая в эксплуатацию впервые, требует проверки следующих пунктов (если применимо) перед подачей питания:

  • Проверить детали из листового металла на отсутствие повреждений при транспортировке и правильную сборку.
  • Убедитесь, что все стационарно закрепленные панели правильно закреплены болтами.
  • Проверить герметичность всей дверной фурнитуры.
  • Проверить правильность работы дверных замков.
  • Проверить внешний вид, чистоту лакокрасочного покрытия и отсутствие царапин.
  • Проверьте правильность и надежность заделки всех кабелей управления.
  • Убедитесь, что конденсаторы аккуратны и не имеют повреждений и протечек.
  • Убедитесь, что соединения сборных шин затянуты правильно.
  • Убедитесь, что соединения втулки конденсатора затянуты правильно.
  • Проверить работу выключателя массы.
  • Проверить работу изолятора.
  • Проверить работу таймеров разряда и электрической блокировки с системами управления, а также высоковольтными выключателями и переключателями, способными запитать батарею.
  • Проверить работу точечных реле, включая адаптивную способность реле POW.
  • Убедитесь, что имеются ключи системы блокировки.
  • Проверить работу освещения шкафа.
  • Проверить работу нагревателя.
  • Убедитесь, что все предохранители / перемычки на месте.
  • Убедитесь, что все вторичные перемычки ТТ замкнуты.
  • Проверить наружные заборы и ворота.
  • Убедитесь, что все таблички и шильдики находятся на своих местах.
  • Записать сведения о заводе по управлению активами для SAP / MIMS.
  • Проверить работу всех функций управления и защиты.

Подавать питание и проводить испытания под нагрузкой

  • После подачи питания сохраните вторичные токи и напряжения на всех вторичных цепях защиты и измерения, включая измерения нулевой последовательности, фазы и несбалансированности.
  • Подтвердите и запишите правильность работы и адаптивность устройства переключения точки на волну. Может потребоваться несколько тестовых включений.

Преимущества тестирования конденсаторных батарей

  • Уменьшить линейный ток системы
  • Повышает уровень напряжения нагрузки
  • Уменьшить системные потери
  • Повышает коэффициент мощности источника тока
  • Уменьшить нагрузку генератора
  • Уменьшить капитальные вложения на мегаватт нагрузки.
  • Уменьшить счет за электроэнергию

советов по разрядке конденсатора с помощью мультиметра

Конденсатор будет накапливать избыточную электрическую энергию, которую он подает на центральный прибор или устройство в случае отключения или нехватки электроэнергии. Однако, если вы хотите работать с конденсатором для нового устройства, обязательно сначала разрядите конденсатор из соображений безопасности.

И сегодня мы обсудим, как разрядить конденсатор с помощью мультиметра.Наше руководство также будет включать рекомендации по разрядке конденсатора переменного тока с печатной платы и использованию инструмента для разрядки конденсатора.

Итак, не упустите шанс узнать о технике безопасной разрядки конденсатора.

Как разрядить конденсатор с помощью мультиметра

Когда мы говорим о разрядке конденсатора с помощью мультиметра, среди нас часто возникает неправильное представление. Итак, давайте сначала проясним одну вещь —

Мультиметр не используется напрямую для разряда накопленной энергии конденсатора.Вместо этого люди используют его для измерения напряжения и мощности конденсатора, чтобы узнать, полностью он разряжен или нет.

Для этого можно использовать различные инструменты, такие как лампочка или самодельный разрядный инструмент. Но все начинается с проверки реального заряда конденсатора.

Первый шаг: проверка заряда конденсатора

Шаг 1: Отключите от источника питания

Убедитесь, что конденсатор отключен от источника питания.Если вы работаете с конденсатором в автомобиле, отключите аккумулятор. А для бытовой техники отключите устройство от розетки.

Шаг 2: Настройка мультиметра

Вам необходимо настроить мультиметр на максимальное допустимое напряжение постоянного тока. Поскольку разные мультиметры имеют разное ограничение постоянного напряжения, прочтите руководство пользователя, чтобы узнать конкретный предел постоянного напряжения мультиметра.

Затем поверните ручку, чтобы установить максимальное напряжение DV. Максимальное значение постоянного тока гарантирует, что вы получите наиболее точные показания конденсатора.

Шаг 3: Подключение мультиметра к конденсатору

Подключите два щупа мультиметра к двум головкам конденсатора. Не имеет значения, к какой конденсаторной головке вы подключаете черный или красный щуп или наоборот. Осторожно удерживайте щупы на выводе конденсатора и проверьте показания на дисплее.

Шаг 4. Понимание показаний

В зависимости от емкости конденсатора на дисплее мультиметра могут отображаться значения от нескольких вольт до нескольких сотен вольт.Если показание выше 10 В, это считается опасным, поскольку все, что выше 10 В, может вызвать поражение электрическим током.

Несколько важных примечаний к показаниям напряжения конденсатора:

  • Конденсатор не требует разряда, если показание ниже 10 В.
  • Вы можете использовать отвертку или лампочку, чтобы разрядить конденсатор напряжением от 10 до 99 В.
  • Если конденсатор имеет напряжение выше 100 В, из соображений безопасности используйте специальный инструмент для разряда конденсатора.

Теперь мы обсудим различные способы разрядки конденсатора с помощью лампочек, отверток и разрядного инструмента.

Метод 1: как разрядить конденсатор с помощью лампочки

Если у вас есть конденсаторная батарея с более высоким значением напряжения, вы можете использовать электрическую лампочку, чтобы надежно разрядить ее. Три стандартных напряжения конденсатора постоянного тока: 100 В, 200 В и 300 В. Вы можете использовать лампочку с мощностью 75 Вт для разряда этих конденсаторов.

Эти шаги включают:

  1. Откройте все переключатели на плате питания.Затем увеличьте напряжение на конденсаторе до 100 В, при этом все переключатели должны быть должным образом разомкнуты.
  2. Когда напряжение достигнет 100В, выключите переключатель зарядки устройства.
  3. Подождите несколько секунд, пока дисплей цифрового мультиметра (DMM) не покажет результат строго при 100 В.
  4. Когда вы увидите показания при 100 В, разомкните цепь переключателя зарядки.
  5. После этого осторожно замкните соседний разрядный выключатель устройства.
  6. Как только выключатель разрядки замкнется, подключенные лампочки начнут светиться тусклым светом.
  7. Через несколько секунд снова разомкните выключатель разрядки.
  8. Вам нужно повторить шаги с 200 В и 300 В, чтобы конденсатор правильно сгорел от использованных лампочек.
  9. Наконец, надежно замкните закорачивающий переключатель, чтобы защитить конденсатор от поражения электрическим током.
  10. Используйте мультиметр, чтобы проверить, правильно ли разряжен конденсатор.

Метод 2: Используйте отвертку

Еще один простой способ разрядить конденсатор — использовать отвертку.Это менее сложно и не требует особых навыков.

  1. Сначала возьмите изолированную отвертку. Резиновая или пластиковая ручка отвертки работает как изолированный барьер, предотвращающий удары.
  2. Когда у вас под рукой окажется изолированная отвертка, внимательно осмотрите ручку. Если пластик или резина ручки изношены, не используйте отвертку. На прорезиненной части ручки отвертки не должно быть трещин и повреждений.
  3. Теперь вам нужно удерживать конденсатор активной рукой.Убедитесь, что вы не касаетесь клемм конденсатора. В целях безопасности рекомендуется брать обе стороны корпуса конденсатора.
  4. Когда вы держите корпус конденсатора, сосредоточьтесь на его нижнем конце. Когда вы используете не доминирующую руку, чтобы схватить конденсатор, ваша рука и палец образуют «С-образную форму». Он предлагает вам максимальный контроль над захватами.
  5. Теперь осторожно коснитесь отверткой двух полюсов конденсатора одновременно. Как только вы подсоедините отвертку к планкам, она скоро разрядит устройство.
  6. Через несколько секунд снимите отвертку с конденсатора. Затем соедините его с полюсами конденсатора, чтобы проверить, разряжен ли он должным образом. Если нет искр, конденсатор разряжен правильно.

Метод 3: Использование разгрузочного инструмента

Если вы хотите снять с конденсатора большое количество напряжения, рекомендуется использовать разрядный инструмент. Вы можете создать устройство своими руками.

Вещи вам понадобятся:

  • Два зажима из кожи аллигатора
  • Проволока 12 калибра
  • Ленты электрические
  • Резистор 50 Вт 20 кОм

Шаги включают:

Шаг 1: Сборка необходимого инструмента

Вы должны помнить, что разрядный инструмент — это просто небольшой резистор.Провода соединены зажимами типа «крокодил» для поглощения напряжения конденсатора. Итак, организуйте все необходимые элементы в одном месте, чтобы создать элемент разгрузки.

Шаг 2. Подготовка проводов и зажимов типа «крокодил»

Во-первых, оберните два зажима типа «крокодил» электрическими лентами. Оберните один зажим черной лентой, а другой — красной лентой, чтобы быстро определить, для каких концов резистора. Затем с помощью ножниц разрежьте проволоку на две равные части по 6 дюймов каждая.

Когда вы используете более длинные провода, вы можете легко соединить концы с полюсами конденсатора.

Шаг 3: Отсечение изоляции провода

Используйте инструмент для зачистки проводов, чтобы отрезать примерно ½ дюйма от изоляции провода, чтобы вывести медный провод. В качестве альтернативы вы можете использовать лезвие бритвы или острый нож, чтобы аккуратно разрезать изоляцию. Затем вы можете пальцами потянуть оставшуюся часть проволоки.

Какой бы процесс вы ни выполняли, убедитесь, что вы не повредили провод.

Шаг 4. Соедините провод с резистивными пробниками

После того, как вы вытащили металлическую часть провода, вам нужно соединить его один конец с резистором. Вы можете использовать припой, чтобы прикоснуться к одному концу каждого провода одним полюсом резистора. После того, как вы соединили кабели с полюсами резистора, другая сторона каждого провода может быть присоединена к конденсатору.

Шаг 5: Заворачивание паяльных швов

Это довольно простой шаг. Используйте черные и красные электрические ленты, чтобы обернуть каждую точку пайки провода.Он защищает соединение от любой ненадежной активности. Кроме того, он защищает от случайного поражения электрическим током.

Шаг 6: Соединение зажимов типа «крокодил» с проводом

На этот раз используйте свои навыки пайки, чтобы соединить свободные концы провода зажимами из крокодиловой кожи. Припаяв зажимы типа «крокодил» к проводу, оберните их электрическими лентами для безопасности.

Шаг 7: Соединение зажимов типа «крокодил» с полюсами конденсатора

Поместите конденсатор на ровную деревянную поверхность и убедитесь, что он не двигается.Теперь соедините каждый проводной зажим типа «крокодил» с одним полюсом конденсатора. Когда полюса связаны с резистором через провода, он быстро разряжает весь конденсатор.

Шаг 8: Проверьте правильность разрядки

Теперь подключите мультиметр к конденсаторным щупам и проверьте показания, чтобы выяснить, правильно ли разряжен конденсатор. Когда вы установите на мультиметре максимальное напряжение и подключите конденсатор, показание должно быть ниже 10 В.

Если показание выше 10 В, правильно подсоедините зажимы типа «крокодил» и продолжите разряд еще раз.

Вы можете следовать этим инструкциям, чтобы узнать, как разряжать конденсатор переменного тока.

Заключительные слова:

Для разрядки конденсатора не нужны знания в области ракетостроения. Это также не требует каких-либо экспертных навыков. Тем не менее, когда вы работаете над разрядкой конденсатора с помощью мультиметра, вы должны быть внимательны и действовать осторожно, чтобы не допустить поражения электрическим током.

Также обратите внимание, что мультиметр используется только для измерения напряжения конденсатора; он не играет активной роли в самом разгрузочном проекте. Вам понадобится подходящий разрядный инструмент или отвертка, чтобы завершить весь процесс.

Плохой высоковольтный конденсатор в микроволновой печи

Невестка принесла мне его микроволновую печь Model Piccolo от Panasonic с жалобой на отсутствие обогрева.Я уже ремонтировал его дважды — один для замены магнетрона, второй для замены высоковольтного диода.

Комплект был включен в розетку. Передний дисплей загорелся, что указывало на исправность предохранителя.

Открыл духовку. Визуальный осмотр не выявил никаких проблем. Для теста чашку с водой поместили в духовку и запустили 1-минутный бег. Сразу после начала теста я с трудом увидел быструю маленькую искру, вылетевшую за пределы установки.Поскольку мои глаза не были сфокусированы на этой области, было невозможно определить точную точку, в которой возникла искра. Сначала я предположил, что это может быть высоковольтный трансформатор, но не был уверен. Через 1 минуту печь остановилась, и, как и ожидалось, вода была все еще холодной.

Я подготовил мультиметр и подключил его к первичной клемме высоковольтного трансформатора. Перезапустил тест, и мультитестер считал номинальное напряжение сети, как и ожидалось, что означает, что предыдущие цепи (в основном контакты блокировки безопасности, связанные с дверцей микроволновой печи) были в порядке.Здесь уместно сообщить, что напряжение в сети в моем городе составляет 127 В переменного тока (в Бразилии используются два напряжения, в зависимости от региона: 127 или 220 В переменного тока). В этом отчете о техническом обслуживании все тесты и работа будут основываться на напряжении 127 В переменного тока.

Значит проблема в трансформаторе на. Комплект был отключен от настенной розетки, конденсатор разряжен в целях безопасности, и было проведено статическое испытание компонентов высокого напряжения. Высоковольтный диод был в порядке, что было проверено с помощью аналогового мультитестера в масштабе x10K, что соответствует данному случаю.Конденсатор также был проверен аналоговым тестером — также в масштабе x10k — на двух клеммах, показав нормальный начальный ход иглы при зарядке и последующий возврат иглы в точку покоя после завершения зарядки. Трубка магнетрона была заменена на другую из моего запаса, хорошо работающую. Еще одна минутная проверка показала, что проблема не решена — вода в чашке осталась холодной.

Итак, мое внимание было сосредоточено на высоковольтном трансформаторе, единственном компоненте, который еще не проверялся.В каждой обмотке был проведен тест на омическое сопротивление, в результате чего все в порядке. В приведенной ниже таблице показаны результаты омических испытаний, проведенных для этого трансформатора, а также для другого трансформатора, сохраненного из старой микроволновой печи Electrolux, которая была утилизирована из-за общей коррозии. Можно заметить, что значения совпадают — я считаю нормальным различие значений во вторичном ВН. Значения изоляции между обмотками также были измерены, в результате тоже все в порядке.

* Сторона низкого напряжения вторичной обмотки ВН подключена к сердечнику трансформатора.

Таким образом, правильное заземление достигается путем надежного крепления корпуса к шасси микроволновой печи с помощью ряда винтов, которые необходимо надежно затянуть.

Однако этот тип испытаний показывает только то, что обмотки являются проводящими, не обнаруживая других проблем, таких как короткое замыкание между витками. Как тогда можно сделать более эффективный тест? Большая проблема заключается в том, что напряжение на вторичной обмотке нельзя измерить обычным способом, поскольку в этой точке существуют высокие значения, около 2 кВ или более.Такая мера включает два аспекта: трудности с получением измерителя для этой величины напряжения и проблемы безопасности. Давайте пересмотрим работу схемы генерации высокого напряжения для питания трубки магнетрона, питаемой от этого трансформатора.

Источник: https://fccid.io/ACLAP7B51/Operational-Description/Operational-Description-2924321

Сетевое напряжение подается на первичную обмотку. Вторичная обмотка выдает напряжение около 2 кВ переменного тока.Это напряжение подается на полуволновой выпрямитель с удвоением напряжения, состоящий из высоковольтного диода и конденсатора (значения обычно находятся в диапазоне от 0,77 мкФ до 1 мкФ). Эта схема обеспечивает высокое напряжение (положительное заземление), которое используется для питания трубки магнетрона. Обратите внимание, что в этом случае схема магнетрона необычна по сравнению с обычными схемами электронных ламп: анод (положительная сторона) напрямую соединен с массой (землей), а катод (отрицательная сторона) находится под потенциалом по отношению к земле.Лампа имеет прямой нагрев, это означает, что нить накала 3,3 В (питаемая от отдельной низковольтной обмотки трансформатора) выполняет две функции: это ресурс нагрева, который обеспечивает внутреннюю эмиссию, а также служит катодом. Присоединение анода к массе осуществляется по простой причине: анод напрямую соединен с корпусом магнетрона. Во время работы трубка становится слишком горячей, и, помимо радиатора, существующего в самом магнетроне, корпус — и, следовательно, анод — напрямую (механически и электрически) связан с массой оборудования, что оптимизирует отвод тепла, упрощает установку и позволяет избежать использование дополнительных радиаторов.Другие аспекты, на которые следует обратить внимание: используются только один диод и только один конденсатор; а использование удвоителя напряжения означает, что вторичной обмотке трансформатора требуется только половина витков. Все это делает схему рентабельной, простой и легкой в ​​обслуживании без потери эффективности.

Что касается источника постоянного тока, подаваемого на магнетронную трубку, рекомендуется указать, что напряжение не равно 4 кВ постоянного тока и не представляет собой сигнал постоянного тока. Как уже упоминалось, очень сложно (или почти невозможно) измерить конкретную форму сигнала в этой точке с помощью осциллографа.Теоретически, однако, это можно оценить, исходя из работы удвоителя напряжения. Для следующего объяснения предположим, что вторичное напряжение составляет 2 кВ переменного тока. Общее напряжение, приложенное к магнетрону, представляет собой сумму двух частичных напряжений, полученных в каждом полупериоде волны переменного тока, подаваемой вторичной обмоткой трансформатора. За один полупериод, когда диод имеет прямую поляризацию, конденсатор заряжается при напряжении 2 кВ * 1,41 (квадратный корень из 2) ≈ 2,8 кВ, стремясь поддерживать это заряженное значение постоянным.В это время, поскольку диод имеет прямую поляризацию, на магнетрон не подается напряжение — только очень небольшое прямое напряжение диода, которое несущественно для работы магнетрона. В следующем полупериоде диод имеет обратную поляризацию, и переменное напряжение, подаваемое вторичной обмоткой трансформатора (пиковое значение 2,8 кВ переменного тока), суммируется с существующим напряжением, уже заряженным в конденсаторе, сохраняя ту же полярность и создавая 5,6 кВ импульс, подаваемый на магнетрон. Следовательно, на магнетронную трубку, по сути, подается пульсирующее напряжение постоянного тока с частотой 50 или 60 импульсов в секунду (в зависимости от частоты сети — 50 или 60 Гц).Не все это знают, но правда в том, что при активации магнетрон не работает постоянно — он работает только половину времени, запрограммированного на передней панели. См. Ниже, как будет выглядеть расчетная форма волны — видно, что она состоит из 50 (или 60) пакетов в секунду, каждый из которых имеет пик 5,6 кВ.

Линия, обозначенная как Diode On (не в масштабе) на приведенном выше рисунке, соответствует напряжению, развиваемому в высоковольтном диоде при прямой поляризации, очень-очень маленьком напряжении по сравнению с 5.На магнетрон подается величина 6 кВ. Очевидно, что это напряжение не оказывает никакого влияния на работу магнетрона.

Возвращаясь к трансформатору. Я представил две разные формы для тестирования, обе легко выполнить на стенде:

  1. a) Понижение напряжения на первичной обмотке. Поскольку коэффициент трансформации трансформатора постоянный, напряжение, развиваемое на вторичной стороне, соответственно снижается, что позволяет выполнять измерения безопасно и в пределах нормального диапазона обычных мультиметров;
  2. b) Подача номинального сетевого напряжения (127 В переменного тока в моем случае) на первичной стороне и измерение на вторичной стороне через резистивный делитель напряжения, который также снижает напряжение до диапазона обычных измерительных приборов.Тем не менее, этот второй метод приводит к некоторым проблемам с безопасностью (см. Важные предупреждения в конце этой статьи).

Любой из этих двух методов дает дополнительное преимущество: любой из них позволяет определить коэффициент трансформации трансформатора со значительной точностью.

Я выполнил реализацию этих двух методов, как показано в последовательности.

Измерение при пониженном напряжении

Трансформатор с напряжением 127 В перем. Тока на первичной стороне и 2 кВ перем. Тока на вторичной стороне имеет соотношение 1:15.Передаточное отношение 7 витков (в случае 220 В переменного тока на первичной стороне это соотношение составляет 1: 9). Я отключил женские разъемы Faston на первичной стороне, оставив вилки в трансформаторе свободными. На этот свободный вход поступало низкое напряжение, полученное от вторичной обмотки понижающего трансформатора, который был у меня в ящике для мусора. Один из выходных выводов плюс центральная лента использовались для питания первичной обмотки высоковольтного трансформатора микроволновой печи. См. Ниже реализованную схему:

Вторичное напряжение выбранного трансформатора обозначено как 2 x 7.5 В переменного тока, при фактическом измерении напряжения на каждой клемме 7,6 В.

Перейдем к расчетам: при 7,6 В перем. Тока, приложенном к первичной обмотке, измеренное напряжение на вторичной обмотке составило 139,2 В пер. Тока, что дает соотношение витков трансформатора 1: 18,3.

При использовании этого метода следует учитывать два момента: значение измеряется без нагрузки, а используемый маломощный понижающий трансформатор делает практически невозможным включение какой-либо нагрузки на вторичную обмотку.Во всяком случае, это разумное свидетельство состояния трансформатора, которое в данном случае оказалось хорошим. Основываясь на этом эссе и учитывая, что соотношение витков не меняется, можно с разумной точностью предположить, что при подаче 127 В переменного тока напряжение на вторичной обмотке будет 2,32 кВ переменного тока.

Измерение с делителем напряжения

В этом методе измерения вышеупомянутый понижающий трансформатор больше не используется — сохраняется нормальное подключение трансформатора, при этом сетевое напряжение регулярно подается на первичную обмотку трансформатора через существующую цепь ремонтируемого агрегата.Для измерения на вторичной стороне был построен резистивный делитель напряжения с использованием ряда резисторов из моего запаса. Реализацию этого делителя напряжения и фото его можно посмотреть ниже:

Очевидно, это здание не является «чудом века». На самом деле он некрасивый, но хорошо себя зарекомендовал и был быстро построен. Этот делитель напряжения «сложной конструкции» учитывает три помещения:

1) Измерение на отводе делителя напряжения соответствует 10% от общего напряжения, приложенного к верхней стороне делителя.Это позволяет проводить измерения обычными измерительными приборами — мультиметрами или осциллографами;

2) Было принято использование нескольких последовательно соединенных резисторов, чтобы разделить градиенты потенциала и рассеяние вдоль них — это означает, что не следует концентрировать высокие значения напряжения и не выделять чрезмерное тепло в каком-либо резисторе. Такой подход приводит к некоторым особенностям: повышенная безопасность, предотвращение возникновения дуги, распределенное рассеяние и возможность улучшить выбор резисторов для комбинирования с целью получения правильных значений с использованием существующего резистора в мастерской и

3) Нагрузка на высоковольтную цепь очень мала.При 2 кВ — в данном случае — переменный ток составляет около 10 мА (среднеквадратичное значение).

Этот третий пункт означает, что измерение выполняется практически без нагрузки на цепь высокого напряжения (поскольку излучаемая мощность магнетрона, отвечающего за нагрев продуктов, составляет около 800 Вт для данной микроволновой печи, эта лампа потребляет почти В 20 раз больше). Из-за этого измерение выполняется в состоянии, близком к открытому состоянию выхода, что имеет тенденцию к увеличению значения измеряемого напряжения, в основном при измерениях постоянного тока, как будет показано далее.В этом более позднем случае, конечно, из-за нагрузки, накладываемой магнетроном во время нормальной работы, напряжение определенно несколько меньше.

Это устройство было подключено ко вторичной обмотке трансформатора (очевидно, отключенной от цепи, как видно справа на фотографии ниже — стрелка указывает на вывод фастона, извлеченный из высоковольтного конденсатора) с первичной обмоткой трансформатора. с напряжением 127 В перем. Напряжение переменного тока на отводе составило 322,6 В, что не соответствует ожиданиям — теоретически оно должно быть чуть больше 200.Я не смог понять причину, по которой это происходит. Возможно, из-за того, что измерения производятся на «холостом ходу». Может кто-нибудь объяснить это? Как бы то ни было, все остальные измерения, приведенные ниже, согласованы.

Два измерения были повторены на стенде в другом вышеупомянутом трансформаторе. Я не делал снимков этого, так как это не имеет прямого отношения к текущим работам по техническому обслуживанию. Во всяком случае, это была хорошая возможность не только проверить состояние этого другого трансформатора, но и подтвердить работу резистивной схемы.Значения, полученные в этом дополнительном измерении, показали значения, очень близкие к первому.

Вернемся к бывшему трансформатору: как показали измерения, он был в хорошем состоянии. Он был повторно подключен к цепи, и был проведен еще один тест. Тем не менее, проблема все еще на, то есть, даже все компоненты практически не проверяли воду в чашке упорно остающийся холоде!

До этого момента резистивный делитель использовался только для измерения переменного тока непосредственно от вторичной обмотки трансформатора.Именно тогда я решил использовать его для измерения постоянного напряжения на выходе удвоителя напряжения (точка, в которой соединены диод, конденсатор и нить накала магнетрона). Сначала я отключил устройство от розетки, разрядил конденсатор до массы — хотя и знал, что в этом случае нет необходимости, но в любом случае это рекомендуемая практика — и подключил к этой точке верхнюю часть делителя напряжения. Комплект снова включили, мультиметр подключили к отводу делителя напряжения и… напряжение не измерялось.

Я очень запутался. Все вроде было нормально, с напряжением на вторичной обмотке трансформатора и со всеми компонентами, которые были тщательно проверены. Даже в этом случае проблема продолжалась.

В этот момент у меня возникло вдохновение измерить сопротивление между выходом удвоителя напряжения (соединение компонентов, упомянутых выше) и массой, очевидно, снова выполняя действие разряда в конденсаторе. Бинго! Практически нулевое Ом. Явное короткое замыкание, но возник вопрос: откуда это короткое замыкание?

Магнетронная трубка была отключена от цепи вытягиванием фастонового соединителя накала.Диод тоже был отключен (разъемы Faston на этот раз быстрые и практичные). Тест конденсатора был повторен и показал, что, по крайней мере, один конденсатор все еще исправен, а стрелка мультиметра показывала зарядку и возвращалась в точку покоя. Все изменилось, когда я решил измерить сопротивление между шасси микроволновой печи и двумя выводами конденсатора. Корпус конденсатора представляет собой алюминиевую конструкцию, которая крепится винтом к корпусу микроволновой печи с помощью специального зажима.Когда я приложил щупы измерителя сопротивления между шасси и одной из клемм конденсатора (подключенных непосредственно к магнетрону), короткое замыкание стало очевидным. Я только что понял суть проблемы!

После того, как конденсатор был извлечен из шасси, еще одно окончательное испытание выявило сопротивление 23,7 Ом между корпусом и одной из клемм.

При визуальном осмотре обнаружено обгоревшее пятно, которое можно увидеть на фото ниже:

На этот раз я, наконец, обнаружил, что искра вышла за пределы микроволновой печи, установленной в начале поиска неисправности.Конечно же, конденсатор. Был установлен новый конденсатор и проведен еще один тест на сопротивление, подтверждающий, что короткого замыкания больше не существует.

Для проведения финального теста делитель напряжения снова был подключен к катодной точке. Включил установку и, наконец, получил напряжение постоянного тока, которое на отводе делителя составляло 335 В. Поскольку отвод составляет 10% от общего напряжения, можно предположить, что питание магнетрона составляет около 3,35 кВ. Но это не совсем так. В этом случае измеренное значение служит только для справки — оно просто говорит о наличии напряжения, но не определяет его точно.Причина уже объяснялась: питание магнетрона состоит из импульсных напряжений на один полупериод, тогда как в следующем цикле напряжение отсутствует. Измерительный прибор должен подвергнуться какой-то специальной обработке, а этого не происходит. Подходящим измерением будет осциллограф на отводе. Если бы он у меня был, фотография с экрана была бы включена в эту статью для лучшей оценки. Всем, у кого он есть, я был бы признателен, если бы смог увидеть снимок с экрана.

Чтобы закончить ремонтные работы, я снял свой делитель напряжения «сложной конструкции», восстановил и проверил всю схему, убедившись, что все в порядке. Заменил чашку с водой внутри и снова установил операцию на 1 минуту. По истечении этого времени духовка остановилась и счастливый конец: горячая вода в чашке. Микроволновая печь успешно отремонтирована.

ПРЕДУПРЕЖДЕНИЕ 1 : всем, кто решит построить описанный делитель напряжения, я рекомендую установить его на печатной плате и защитить схему соответствующим изолирующим кожухом.Полезно делать пробники с подходящими зажимами из кожи аллигатора хорошего качества (никогда не забудьте сначала разрядить конденсатор). Другой момент — это тепло, выделяемое резисторами: я заметил, что они немного нагрелись, поэтому рассеяние этих компонентов должно быть правильно рассчитано в схеме, предназначенной для постоянного использования.

ПРЕДУПРЕЖДЕНИЕ 2 : измерять высоковольтную часть микроволновых печей, как правило, не рекомендуется. При этом необходимо учитывать, что проблемы с духовкой могут быть диагностированы окончательно, особенно с учетом небольшого количества компонентов.Вы можете проводить измерения в высоковольтном секторе только в том случае, если считаете себя хорошо подготовленным инженером или техником и полностью осведомлены о связанных с этим рисках.

Эту статью для вас подготовил Энрике Хорхе Гимарайнш Ульбрих из Куритибы, Бразилия. Техник-электронщик на пенсии. Любит электронику, телекоммуникации, автомобили и внуков.