Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Как регулировать давление в компрессоре: Как установить реле давления на компрессор — Moy-Instrument.Ru

Содержание

Техническая эксплуатация спиральных компрессоров холодильных установок

Как показывает практика, спиральные компрессоры иногда преждевременно выходят из строя, поэтому существует необходимость рассмотреть основные неисправности и способы их предотвращения.

Производством таких агрегатов в настоящее время занимаются многие предприятия, и конструктивно они отличаются незначительно. В статье рассмотрены примеры в основном компрессоров компании Copeland.

Качество монтажа холодильной установки, как правило, проявляется в начальный период ее эксплуатации. При этом, чтобы в дальнейшем обеспечить бесперебойную работу холодильного агрегата, необходимо произвести следующие процедуры: настройку главной защиты компрессора — по высокому и низкому давлению, дополнительную защиту — по температуре нагнетания и температуре масла, контроль и регулировку перегрева терморегулирующего вентиля, дозаправку системы хладагентом и маслом.

Внешние диагностические признаки отказов спиральных компрессоров в процессе эксплуатации следующие: невозможность запуска по причине выхода из строя встроенного электродвигателя, отсутствие или недостаточная производительность из-за заклинивания компрессора, вращение может сопровождаться металлическими звуками и стуками.

Первый вид отказов происходит при перегорании обмоток электродвигателя по нескольким причинам: нарушение электропитания (отсутствие одной фазы или перекос фаз, выход из строя магнитных пускателей), некорректная работа защитных устройств компрессора (датчика температуры нагнетания, тепловой и токовой защиты, реле контроля фаз, блока управления температурным режимом), перегрев обмоток электродвигателя во время пусков и/или работы в аварийных режимах.

Второй вид отказа спирального компрессора вызван механическими поломками его деталей, которые, как правило, являются следствием нарушения правил эксплуатации агрегата обслуживающим персоналом.

Как известно, основные детали спирального компрессора — подвижная и неподвижная спирали; обе спирали геометрически одинаковы (рис. 1). Подвижная спираль совершает плоскопараллельное или орбитальное движение внутри неподвижной спирали. Специальная противоповоротная муфта (муфта Ольдгейма) препятствует вращению спиралей вокруг своей оси, обеспечивая минимальный зазор боковых поверхностей спиралей.

 

Рис. 1. Рабочие органы спиральных компрессоров: а, б – подвижная и неподвижная спирали; в – противоповоротная муфта

Хладагент, захватываемый порциями из периферии спиралей, движется к центру и сжимается, достигая максимального давления в центре при смыкании спиралей, после чего выталкивается через отверстие в неподвижной спирали (рис. 2) [2].

Рис. 2. Области давлений в межспиральном пространстве компрессора

В конструкции предусмотрено плавающее уплотнение, которое при работе поднято и отсекает область высокого давления (камеру) от камеры низкого давления: происходят всасывание и нагнетание (рис. 3) [3].

Рис. 3. Конструкция плавающего уплотнения и движение хладагента в положении «Установившийся режим»

Вал спирального компрессора должен вращаться только в одном направлении. Обратное его вращение во время остановки компрессора вызывает металлический звук и стук. Другие диагностические признаки обратного вращения спиралей: давление на всасывании не падает до нужного уровня, давление на нагнетании не растет до нужного уровня, рабочий ток меньше указанного в каталоге, компрессор отключается спустя несколько минут работы, срабатывает встроенная защита. Длительное обратное вращение в итоге может привести к поломке спирального блока, а также к перегреву электродвигателя, поскольку расход газа через компрессор недостаточен для отведения тепла.

В начальный период запуска холодильной установки необходимо проверить направление вращения спиралей, которое определяется по манометрам на нагнетательной и всасывающей сторонах. В этом положении камера высокого давления сообщается с камерой низкого давления. Плавающее уплотнение находится в нижнем положении (рис. 4) [3, 4], а обратный клапан закрыт. Постоянство разницы давлений свидетельствует об отсутствии нагнетания компрессором; в этом случае следует поменять местами две фазы на электродвигателе для его вращения в другом направлении.

Рис. 4. Давление в камерах всасывания и нагнетания в положении «Стоп»

Спиральные компрессоры чувствительны к загрязнению перекачиваемого газа, так как мелкие частицы оседают на поверхности спиралей, снижая герметичность рабочей камеры. В случае сгорания электродвигателя герметичного компрессора при его замене на линии всасывания следует использовать фильтры-осушители с сердечником из 100%-ного активированного алюминия. Такой фильтр подлежит первой замене после 72 часов работы. Следует использовать в отделителях жидкости (на всасывании) и в терморегулирующем вентиле фильтры с ячейками минимально допустимого размера. Ячейки должны задерживать такие частицы, которые могут перекрыть отверстие терморегулирующего вентиля. Частицы меньшего размера не смогут причинить ущерба [3].

Перед запуском контур холодильной установки вакуумируется. Вакуумирование системы только со стороны всасывания спирального компрессора может привести к тому, что компрессор временно не будет запускаться. Причина этого состоит в том, что при повышении давления на плавающее уплотнение возможно сцепление его со спиралями. Следовательно, до полного выравнивания давления плавающее уплотнение и спирали будут плотно прижаты друг к другу. А вот падение давления на всасывании может стать причиной перегрева и срабатывания термозащиты (открытия термодиска). Однако поток газа может быть недостаточным для быстрого срабатывания защиты, в результате — выход компрессора из строя в из-за перегрева (рис. 5).

Рис. 5. Встроенная термозащита электродвигателя компрессора

Для защиты компрессора от работы «под вакуумом» следует применять реле низкого давления. Плавающее уплотнение обеспечивает защиту от работы «под вакуумом». Компрессор перестанет сжимать при превышении степени сжатия 10. Работа компрессора «под вакуумом» запрещается, так как она способствует образованию электрической дуги на металлических деталях проходных контактов и, как следствие, сгоранию обмоток электродвигателя компрессора.

Опасные режимы (степень сжатия более 20) для компрессоров (расчет по абсолютному давлению) вызваны тремя причинами. Первая из них — слишком «глубокая» откачка паров перед остановкой (уставка реле низкого давления очень низкая). Вторая причина вызывается тем, что уставка реле высокого давления слишком высока при очень высокой температуре конденсации. Третья причина — ледяная пробка в терморегулирующем вентиле (из-за влаги в контуре).

Спиральный компрессор способен бесперебойно работать в различных неблагоприятных условиях (зависит от компоновки и условий эксплуатации системы) благодаря двум видам согласования: осевому и радиальному. Осевое согласование позволяет механическим частям (спиралям и подшипникам) разгружаться в случае очень высокой степени сжатия (более 20). Первая ступень разгрузки спиралей создает внутренний частичный байпас сжатого газа в область низкого давления поверх торцов спиралей (рис. 6).

Рис. 6. Движение хладагента при первой ступени разгрузки спиралей (положение «Пуск»)

Вторую ступень разгрузки осуществляет плавающее уплотнение, которое подходит к положению, близкому к остановке. Байпас полный, минуя спиральный блок. Эта система разгрузки самонастраивающаяся: механические части возвращаются в положение нормальной работы как только степень сжатия становится менее 20. Уплотнение отжимается в осевом направлении вниз, пропуская газ из области высокого давления в область низкого. Отжимается также вверх в осевом направлении неподвижная спираль (рис. 7).

Рис. 7. Осевое согласование в положении «Чрезмерное давление»

Вращающаяся спираль контактирует с неподвижной спиралью во время работы компрессора. До начала работы боковые поверхности спиралей не соприкасаются друг с другом. В случае залива жидкостью или попадания механических частиц специальная конструкция эксцентрикового вала и втулки позволяет подвижной и неподвижной спиралям разъединяться в горизонтальном направлении (рис. 8).

Рис. 8. Конструкция механизма радиального согласования и положение спиралей при попадании твердой частицы

Такая конструкция радиального согласования спирального компрессора допускает лишь кратковременное и небольшое попадание жидкого хладагента или масла. При значительном попадании масла на рабочие органы вероятна возможность гидравлического удара. Признаками микрогидроударов являются выщербины на боковых поверхностях спиралей (рис. 9).

Рис. 9. Признаки микрогидроударов на боковой поверхности начального витка спирали

Результатом серьезного гидравлического удара является разрушение спиралей компрессора ввиду невозможности сжатия ими жидкости, повреждаются также муфта Ольдгейма и ве

Как отрегулировать прессостат на компрессоре

Всем привет! Эта тема будет интересна владельцам достаточно мощных компрессоров на 220 вольт и хреновой сети…

Чем производительнее компрессор тем сложнее ему стартануть при просадке напряжения. На мощных компрессорах для облегчения пуска стоят разгрузочные клапаны и пусковые конденсаторы. Если компрессор перестал запускаться то в первую очередь стоит проверить инерционный выключатель пускового конденсатора.

стоит он на валу электродвигателя.

выглядит примерно так

более детальное фото

когда двигатель не вращается он замыкает контакты пускового конденсатора

Если всё хорошо то двигатель стартует легко и непринуждённо!

когда двигатель раскручивается до расчётных оборотов то грузики начинают отдаляться от оси вращения, нажим исчезает и цепь размыкается.

Совсем ненадёжная я вам скажу конструкция…

Сам механизм так и норовит сползти в сторону, периодически приходится его проверять. иначе контакты будут прижиматься неплотно и подгорать как у меня на фото.

Да и сам узел кривой до безобразия. При замене этой контактной группы долго дорабатывал её напильником…

а заодно немного засверлил посадочное отверстие на валу. так надеюсь не уползёт)))

НО на будущее есть планы заменить эту гравицапу на реле времени и контактор. Так будет гораздо надёжнее.

Резгрузочный клапан это отдельная тема. Основной есть у всех. находится он в прессостате

Если клапан в прессостате работает то после того как компрессор накачает ресивер и выключится то раздаётся характерный ЧИХ, это клапан стравливает давление с магистрали.

Именно с магистрали, толстой трубки которая идёт от головки/головок к ресиверу, а не из ресивера. Из ресивера давление не стравливается благодаря обратному клапану

2 толстых отвода это вход магистрали и выход в ресивер, а тонкий это отвод на прессостат.

На некоторых компрессорах установлен дополнительный разгрузочный клапан подпорного типа. он пропускает воздух в атмосферу до определённого давления, а затем закрывается.

Тем самым давая компрессору раскрутиться и выйти на рабочие обороты.

Ставится он перед обратным клапаном!

У меня его не было, дабы облегчить жизнь компрессору добавил его сам.

Резать трубки не хотелось, поэтому пришлось прибегнуть к помощи тройника и переходников

Зато в любой момент всё можно вернуть в исходное состояние.

Если всё работает а компрессор всё равно стартует только при пустом ресивере то придётся мутить разгрузочный предресивер.

Из баллона ёмкостью 1-2 литра и врезать его в магистраль

После того как компрессор заполнит основной ресивер и выключится клапан в прессостате стравит давление из магистрали и с врезанного в него предресивера

Для таких целей хорошо подойдёт небольшой огнетушитель аля ОП-2.

Но есть идея и получше!

Тут два в одном) Заодно и воздух перед попаданием в ресивер охлаждается)))

Сайт об электронике, технике и ОС UNIX

27.08.2016 by admin | 0 comments

После подключения дополнительного ресивера к компрессору, возникла проблема — а какое давление держать в дополнительном ресивере? Ресивер компрессора рассчитан на 10 Атм, точнее прессостат отключает компрессор при достижении этого давления. Дополнительный ресивер работал с компрессором который качал до 8 Атм. Держать в нём давление в 10 Атм было страшновато — ресивер старый, какое у него состояние внутри — неизвестно. А ежели качать его до 8 Атм, то получается он не будет работать, и пользы от него никакой. Поэтому, понадобиться сделать регулировку прессостата.

Изначально я хотел сделать следующее — оставить отключение на 10 Атм, а включение перенести на 6,5 Атм, ибо весь имеющийся у меня пневмоинструмент более 6 Атм для своей работы не требует. Для этого, открутил винтик и снял крышку с прессостата.

Под ней имеется болт или винт(на разных моделях по разному), рядом с которым нанесены стрелки и знаки + и — . Вращение в +, увеличит давление, которое компрессор будет накачивать в ресивер до выключения. Вращение в минус соответственно, наоборот.

И тут меня ожидал сюрприз — прессостат оказался с фиксированной «дельтой», т.е. у него выставляется либо порог включения, либо выключения, а второй порог будет задаваться автоматически на некоторую фиксированную величину вниз или вверх. У моего это примерно 2 Атм.
Так как для меня важнее было полнее использовать имеющийся в ресиверах воздух, то я перенастроил давление включения на 6,5 Атм.

Соответственно, давление при котором компрессор перестаёт качать стало примерно 8,5 Атм. Теперь оба ресивера будут работать совместно. Кроме того, компрессору должно стать полегче — всё-таки качает до меньшего давления, и кроме того, будет дольше отдыхать между включениями.

Кроме того, закрепил на стене влагоотделитель с редуктором. Позже куплю хомутов и закреплю их под потолком, чтобы пустить по ним шланг подводящий воздух. Также думаю ввернуть какой-нибудь анкерный крюк, чтобы за него фиксировать рабочий шланг — ежели я его вдруг зацеплю и дёрну, то не сорву со стены влагоотделитель.

Готовые компрессоры поставляются покупателям с заводскими настройками. Разработчики оптимизируют режим работы агрегата, чтобы продлить ресурс, повысить производительность и упростить обслуживание. Иногда требуется решать вопрос, как настроить компрессор, чтобы он отвечал условиям эксплуатации, отличающимся от условно стандартных. Производители разрешают некоторые изменения, описывая в инструкции, какие именно настройки допустимо корректировать.

Как настроить компрессор на автоматическое включение?

Эта функция работает на сжимающих воздух аппаратах «по умолчанию». Поршневые компрессоры имеют повторно-кратковременный режим работы. Двигатель включается автоматически и приводит в действие нагнетающие поршни, когда требуется накачать воздух в ресивер. Обеспечив заданное давление в пневматической системе, установка отключается.

Управляет режимом реле компрессии (прессостат). Это устройство дает управляющую команду на двигатель, когда давление в пневмосистеме достигает заданной величины. При достижении максимума реле срабатывает на отключение двигателя – нагнетание прекращается. Когда степень сжатия опускается до заданного минимума, прессостат включает электромотор, чтобы закачать воздух в систему.

Вопрос о настройке на автоматическое включение, возникает, если имеются проблемы с реле давления. Обычно вопрос не в том, чтобы двигатель вообще включался. Часто требуется настроить автоматическое включение при нужной степени сжатия рабочей среды.

Как настроить компрессор на нужное давление?

Компрессоры поставляются с заводскими установками на включение и выключение. Как правило, изменить стандартные настройки покупатели решают по двум причинам.

Первое: такие изменения продиктованы техническими характеристиками подключенного инструмента.

Второе: желание сэкономить энергию и снизить нагрузку на пневмосистему.

Например, к системе подключается пневмоинструмент, у которого порог максимального давления ниже, чем выставлено на нагнетающем агрегате. Если не снизить уровень компрессии, инструмент выйдет из строя. Можно воспользоваться редукционным клапаном, отрегулировав степень сжатия подаваемого в пневматическую систему воздуха, но это будет полумера. Зачем заставлять компрессорную установку работать с усилием, нагнетая больше, чем нужно?

Другой случай: реле срабатывает при минимальной компрессии в 8 атмосфер, а подключенному пневмоинструменту для работы достаточно значения в 6 бар. Если настроить компрессор на более низкое давление, можно сэкономить до 10% электроэнергии. Снижается нагрузка на пневмосистему: трубы, шланги, фитинги, арматуру.

Чтобы настроить компрессор на нужное давление, требуется изменить настройки прессостата. Вмешиваться в функционал этого устройства следует, только если других вариантов решения проблемы нет. Лучше поручить эту работу специалисту.

Как настроить прессостат компрессора?

Выполнение этой операции должно проводиться при заполненном ресивере, но выключенном питании. Следует включить компрессор, дождаться, пока сработает реле давления, и двигатель остановится. Фактические показания максимальной компрессии фиксируются по манометру. Затем следует отсечь подачу электричества.

Категорически запрещено производить манипуляции с реле давления, если компрессор не отключен от питания!

Надо снять крышку прессостата. Он находится на ресивере или на подающей магистрали, обычно с красной или белой кнопкой «запуск компрессора». Коробочка из черного пластика. Под крышкой находится два винта (иногда – гайки). Больший винт (обозначен литерой P) регулирует максимальное давление, при котором двигатель отключается. Вращая винт в сторону значков «+» или «-», выставляют требуемое значение. Если установить слишком высокую степень сжатия, сработает предохранительный клапан.

Там же расположен винт меньшего размера (обозначен символами ΔP). Это регулировка разницы между максимальным и минимальным давлением (гистерезис). Для изменения значения нужно поворачивать винт в сторону значков «плюс» или «минус». На недорогих моделях эта функция может отсутствовать.

Некоторые производители оснащают реле третьим винтом. Он регулирует включение. Задает минимальное значение давления, на которое прессостат среагирует, запуская электродвигатель для нагнетания воздуха.

Стандартный гистерезис, на который производитель выставляет реле, – 2 бара. Не стоит сильно уменьшать это значение, иначе двигатель будет включаться слишком часто. Такой режим работы сокращает срок службы электрической системы компрессора. Если сделать разницу больше, мотор будет включаться реже, но увеличится перепад давления в пневмосистеме.

В ходе регулировки придется проверять результаты перенастройки опытным путем, включая компрессор. Не забывайте отключать подачу электричества перед каждой манипуляцией с реле давления. Это залог вашей безопасности. Дело в том, что контактор прессостата является размыкателем цепи электроснабжения двигателя, поэтому находится под напряжением.

В компрессорах с электронным контролем настройки осуществляются через пульт цифрового модуля управления. Достаточно найти в меню вкладку «настройка основных параметров» и выбрать нужные значения максимального и минимального давления.

Теги: как настроить компрессор на нужное давление, как настроить компрессор на автоматической, как настроить компрессор на автоматическое включение, как настроить прессостат компрессора

Как работает автомобильный кондиционер и что в нём ломается?








 21.03.2020

Как устроена система кондиционирования в автомобиле?

Компрессор приводится ремнем от коленвала. Компрессор сжимает поступающий в него в газообразном состоянии хладагент. При сжатии хладагента выделяется много тепла.

Сжатый и нагретый приблизительно до 100° хладагент поступает в радиатор-конденсатор. Проходя через конденсатор хладагент охлаждается примерно до 45° и переходит из газообразного состояния в жидкое. Т.е. конденсируется. Находящийся на конденсаторе ресивер-осушитель накапливает жидкий хладагент. В его же колбе находится вещество-осушитель, который впитывает влагу после сборки и вакуумирования всей системы. В этой же колбе может присутствовать и фильтр, удерживающий продукты износа компрессора.

 

 

На нашем YouTube-канале вы можете посмотреть видеообзор про автомобильные кондиционеры.

 

 

Выбрать и купить компрессор кондиционера для вашего автомобиля вы можете в нашем каталоге б/у запчастей.

 

Из конденсатора жидкий хладагент под достаточно высоким давлением порядка 17 бар направляется в испаритель. На пути в испаритель он проходит через расширительный клапан или терморегулирующий вентиль. У этого клапана 2 функции: снизить давление хладагента и регулировать его подачу в испаритель. Проходя через расширительный клапан давление хладагента снижается до 4 бар. При этом хладагент испаряется и поглощает тепло из окружающей среды, охлаждаясь до 10°. При такой температуре он поступает в испаритель.

 

 

Вместо термовентиля может использоваться расширительная дросселирующая вставка, которая непрерывно дозирует подачу фреона в испаритель. В этом случае в испарителе собирается жидкий хладагент. В таком состоянии он не должен попасть в компрессор, что вызовет его гидроудар. Поэтому по пути к компрессору фреон попадает в отдельный аккумулятор, в котором он просто доиспараятся.

 

Испаритель относится к системе вентиляции салона. К нему вентилятор направляет воздух, попадающий в салон. В испарителе хладагент испаряется, отбирая тепло из окружающей среды. Т.е. он охлаждает и осушает проходящий сквозь испаритель воздух. Испарившийся в испарителе хладагент вновь направляется к компрессору.

 

 

Выбрать и купить испаритель кондиционера для вашего автомобиля вы можете в нашем каталоге б/у запчастей.

 

Аккумулятор-осушитель используется в системе кондиционирования с дросселирующей вставкой вместо термовентиля.

 

 

Вообще во время работы всей системы кондиционирования температура испарителя поддерживается на определенном уровне, порядка 10°. Регулирование производится всё в том же расширительном клапане, но в другом его контуре с термостатом. Это происходит следующим образом. Чем сильнее хладагент нагреется в испарителе, тем выше будет его давление. Это давление давит на мембрану термостата. Таким образом, чем теплее выходящий из испарителя хладагент, тем сильнее он давит на мембрану, а та через шток сильнее открывает шаровой клапан, который выпускает больше хладагента к испарителю.

 

Виды компрессора кондиционера в автомобилях

На автомобилях используются 3 вида компрессоров кондиционера. Самый распространенный тип: поршневые. Существуют варианты с переменным и фиксированным рабочим объемом. Соответственно в конструкции компрессора может быть от 5 до 7 поршней или 10 поршней. Поршневые компрессоры могут иметь как непостоянный, так и постоянный привод.

 

 

Менее распространены компрессоры роторного типа. Ротор может иметь лопасти либо представлять собой подвижную спираль, погруженную в такую же неподвижную спираль. Роторные компрессоры обоих типов распространены на японских автомобилях.

 

 

C 2012 года всё шире применяются компрессоры кондиционера с электрическим приводом и спиральным ротором.

 

Как работает компрессор кондиционера

Единственная функция компрессора кондиционера – это принять испаренный в испарителе хладагент, сжать его до более высокого давления и направить в конденсатор для охлаждения и перехода в жидкое состояние. Вся система кондиционирования может иметь саморегулирование или управляться внешними командами. В обоих случаях используется соответствующий управляющий клапан.

 

 

Управляющий клапан компрессора кондиционера

Управляющий клапан присутствует у компрессоров переменного рабочего объёма. Клапан может иметь механическое или электронное управление. Данный клапан управляет перетеканием газообразного хладагента между картером компрессора и линией всасывания. Картер в данном случае – это полость позади поршней, в которой расположен качающийся приводной диск.

 

Как происходит изменение рабочего объема компрессора?

Когда необходима высокая производительность компрессора, на его вход поступает газообразный хладагент под большим давлением. Как мы знаем, его давление повышается, т.к. слишком много хладагента испарилось в испарителе.

Это давление давит на поршни компрессора. При этом управляющий клапан стравливает давление газа из картера в линию всасывания. В этом случае давление всасывания над поршнями будет выше, чем давление, которое «подпирает» их из картера. Следовательно, это давление будет заставлять поршни увеличивать их ход. Таким образом, увеличивается и рабочий объем цилиндров компрессора.

Когда в испарителе испаряется меньше хладагента, то и давление на линии всасывания будет ниже. Для уменьшения рабочего объема цилиндров часть сжатого поршнями газа (хладагента) направляется в картер. Это давление давит на поршни сзади, заставляя их уменьшить рабочий ход.

Таким образом, изменение рабочего объема компрессора происходит за счет баланса сил на поршнях и под ними – в картере.

 

 

Качающийся диск

При изменении рабочего объёма компрессора происходит изменение угла качающегося диска. Тут надо понимать, что качающийся диск служит только для приведения в возвратно-поступательное движение поршней от вала компрессора. При этом диск обеспечивает гибкую связь поршней с собой. Диск не прикладывает никакой силы, которая способна заставить поршни изменить свой ход. Изменение хода поршней происходит только за счёт баланса давления газов.

 

Компрессорное масло

Помимо хладагента в системе кондиционирования присутствует специальное масло. Оно смазывает все пары трения. Масло циркулирует как по всему контуру, так и присутствует в картере компрессора. В зависимости от типа компрессора и применяемого хладагента используются разные типы масел, которые категорически нельзя смешивать друг с другом, т.к. может образоваться парафин, способный закупорить систему.

Компрессорное масло полностью прозрачное и почти бесцветное. Может иметь ярко зеленый цвет при наличии в нём красителя.

 

Неисправности и поломки компрессора и системы кондиционирования

Самая распространенная поломка системы кондиционирования – это утечка хладагента через негерметичные уплотнения или трещинки. При недостатке фреона снижается производительность системы кондиционирования. При совсем низком уровне фреона система может полностью отключить компрессор во избежание его поломки. Низкий уровень фреона определяется при его заправке по количеству и перепадам давления в системе. На крупную пробоину указывают потеки компрессорного масла. Хотя в большинстве случаев приходится добавлять в систему специальный краситель, видимый в ультрафиолете.

 

Врагами цилиндропоршневой группы или ротора компрессора являются повышенное трение из-за недостатка масла или повышенное давление хладагента. Также повышенное давление приводит к перегреву компрессора и масла, которое становится чересчур жидким. Эти факторы приводят к тому, что пары трения задирают друг друга, вся система засоряется алюминиевой пудрой.

Почему возникает избыточное давление хладагента? Первой причиной являются факторы, препятствующие нормальной конденсации. Это загрязнение конденсатора или неработающий вентилятор на нём. Также избыток давления может быть вызван лишним заправленным объемом хладагента.

Если в систему кондиционирования попала металлическая стружка, то ее нужно обязательно промыть и даже заменить испаритель и конденсатор. Иначе стружка очень быстро прикончит новый установленный компрессор.

 

Поломки других механических и электронных компонентов, таких как расширительный клапан, управляющий клапан довольно редки. Они проявляются в том, что кондиционер не холодит так, как надо, но при этом фреона в системе достаточно и утечек нет.

 

Муфта постоянного привода

Поршневые компрессоры кондиционера часто имеют постоянный привод. Т.е. их вал постоянно вращается при работе двигателя, никакого электромагнита в шкиве нет, провода к муфте не подведены.

Муфты постоянного привода могут быть пластиковыми или металлическими, могут иметь привод от ремня или от вала. Внутри такой муфты обязательно присутствуют простейшие резиновые демпферы. Демпферы расположены между шкивом и приводной пластиной, которая посажена непосредственно на вал компрессора. Приводная пластина также называется «срывной» или «предохранительной».

Это значит, что в случае заклинивания вала компрессора или избыточного давления в его корпусе приводная пластина буквально разрушается: происходит обрыв в специальном предохранительном элементе или участке пластины. При этом разрывается связь между валом и шкивом компрессора. Также обрыв предохранительной пластины происходит из-за биения приводного ремня, неисправности натяжного ролика, заклинивании обгонной муфты генератора.

 

 

Возможны и другие поломки приводной пластины. Муфта постоянного привода, отслужившая большой срок, может начать стучать во время работы двигателя. Стук возникает из-за разрушения резиновых демпферов и появления люфта. Т.е. соединительные штыри приводной пластины будут стучать по пазам в шкиве. Через некоторое время игнорирование стука приводит к тому, что все штыри срезает, т.е. опять же разрушается связь шкива с валом компрессора.

 

 

На некоторых автомобилях используются компрессоры постоянного привода, в муфте которых нет эластичного демпфера, а используется амортизирующий грузик. Такие муфты разрушаются из-за проблем с натяжением приводного ремня.

Муфта постоянного привода вращается на подшипнике, посаженном на шейку передней крышки кондиционера. Если появляется люфт подшипника, то в большинстве случаев его можно заменить на новый. Но при этом посадочная плоскость на шейке не должна быть изношена.

 

 

При установке новой приводной пластины на многие компрессоры для автомобилей группы VAG крайне важно не забыть установить на вал компрессора регулировочную шайбу. Без нее при завинчивании пластина просто сломается так, как это задумано производителем в случае заклинивания вала компрессора.

 

 

Электромагнитная муфта

Второй вариант привода компрессора кондиционера – с помощью электромагнитной муфты. В этом случае шкив и вал компрессора не находятся в постоянном соединении. Шкив посажен на подшипник, установленный на шейке передней крышки корпуса компрессора, и свободно вращается от ремня навесного оборудования. С валом компрессора соединена приводная пластина с резиновым или пружинным демпфером. Внутри шкива находится электромагнитная катушка. Когда на нее подается напряжение, возникает магнитное поле, которое притягивает и прижимает к шкиву приводную пластину. В этом случае шкив и вал компрессора вращаются вместе как единое целое. Когда напряжение с катушки снимается, приводная пластина выходит из зацепления со шкивом: между ними создается зазор.

 

 

Чаще всего электромагнитная муфта начинает проскальзывать. А именно проскальзывает приводная пластина относительно шкива. Далеко не во всех случаях проскальзывание начинается из-за износа привалочных поверхностей муфты. Обычно в самом компрессоре появляется излишние давление хладагента, что сильно нагружает муфту и вызывает ее проскальзывание.

Ну а дальше процесс разрушения идёт очень быстро: трущиеся приводная пластина и шкив разрушают привалочные поверхности, при этом выделяется очень много тепла, которое запекает резиновые компоненты и может сжечь электромагнитную катушку.

 

 

От перегрева в результате пробуксовки муфту защищает термопредохранитель, который размыкает цепь питания электромагнита.

В некоторых видах муфт предусмотрен резиновый демпфер приводной пластины, который разрушается в том случае, если вал компрессора вращается с повышенным усилием или заклинил.

Люфт всей муфты возникает из-за износа подшипника и шейки передней крышки корпуса компрессора. Если шейка изношена, то и после установки нового подшипника шкив будет вращаться с люфтом и биением.

 

 

Подшипник муфты

Если разваливается подшипник муфты, то муфта гремит и люфтит во время работы двигателя. Если пренебрегать этими симптомами и не торопиться в сервис, то подшипник может провернуться и задрать шейку передней крышки компрессора. В этом случае даже после установки нового подшипника или муфты люфт шкива никуда не денется. Для полноценного ремонта придется покупать или новую переднюю крышку, или б/у компрессор. Также есть варианты с восстановлением шейки.

Также люфтящая муфта быстро изнашивает приводной ремень и его натяжной ролик.

 

Как выбрать б/у компрессор кондиционера на авторазборке?

Если компрессор непостоянного привода, необходимо проверить вращение шкива. Шкив должен вращаться легко, без люфта, биения и постороннего шума. Другими словами, он должен вращаться легко, ровно и бесшумно.

Далее проверяем вращение вала. При этом не должно быть посторонних звуков и шорохов. При вращении вала туда-сюда не должно быть слышно стуков.

Если из портов компрессора сочится масло, можно проверить его чистоту: масло должно быть прозрачным.

EPA Test Prep 2 Type 1 Flashcards by Joel Jorgensen

Знание Геном TM

Сертифицировано Brainscape

Просмотрите более 1 миллиона курсов, созданных лучшими студентами, профессорами, издателями и экспертами, которые охватывают весь мир «усваиваемых» знаний.

  • Вступительные экзамены
  • Экзамены уровня A

  • Экзамены AP

  • Экзамены GCSE

  • Вступительные экзамены в магистратуру

  • Экзамены IGCSE

  • Международный Бакалавриат

  • 5 национальных экзаменов

  • Вступительные экзамены в университет

  • Профессиональные сертификаты
  • Бар экзамен

  • Водитель Эд

  • Финансовые экзамены

  • Сертификаты управления

  • Медицинские и сестринские сертификаты

  • Военные экзамены

  • MPRE

  • Другие сертификаты

  • Сертификаты технологий

  • TOEFL

  • Иностранные языки
  • арабский

  • китайский язык

  • французкий язык

  • Немецкий

  • иврит

  • Итальянский

  • Японский

  • корейский язык

  • Лингвистика

  • Другие иностранные языки

  • португальский

  • русский

  • испанский

  • TOEFL

  • Наука
  • Анатомия

  • Астрономия

  • Биохимия

  • Биология

  • Клеточная биология

  • Химия

  • науки о Земле

  • Наука об окружающей среде

  • Генетика

  • Геология

  • Наука о жизни

  • Морская биология

  • Метеорология

  • Микробиология

  • Молекулярная биология

  • Естественные науки

  • Океанография

  • Органическая химия

  • Периодическая таблица

  • Физическая наука

  • Физика

  • Физиология

  • Растениеводство

  • Класс науки

  • Зоология

  • Английский
  • Американская литература

  • Британская литература

  • Классические романы

  • Писательское творчество

  • английский

  • Английская грамматика

  • Фантастика

  • Высший английский

  • Литература

  • Средневековая литература

  • Акустика

  • Поэзия

  • Пословицы и идиомы

  • Шекспир

  • Орфография

  • Vocab Builder

  • Гуманитарные и социальные науки
  • Антропология

  • Гражданство

  • Гражданское

  • Классика

  • Связь

  • Консультации

  • Уголовное правосудие

  • География

  • История

  • Философия

  • Политическая наука

  • Психология

  • Религия и Библия

  • Социальные исследования

  • Социальная работа

  • Социология

  • Математика
  • Алгебра

  • Алгебра II

  • Арифметика

  • Исчисление

  • Геометрия

  • Линейная алгебра

  • Математика

  • Таблицы умножения

  • Precalculus

  • Вероятность

  • Статистические методы

  • Статистика

  • Тригонометрия

  • Медицина и уход
  • Анатомия

  • Системы тела

  • Стоматология

  • Медицинские курсы и предметные области

  • Медицинские осмотры

  • Медицинские специальности

  • Медицинская терминология

  • Разные темы здравоохранения

  • Курсы медсестер и предметные области

  • Медсестринские специальности

  • Другие области здравоохранения

  • Фармакология

  • Физиология

  • Радиология и диагностическая визуализация

  • Ветеринарная

  • Профессии
  • ASVAB

  • Автомобильная промышленность

  • Авиация

  • Парикмахерская

  • Катание на лодках

  • Косметология

  • Бриллианты

  • Электрические

  • Электрик

  • Пожаротушение

  • Садоводство

  • Домашняя экономика

  • Садоводство

  • HVAC

  • Дизайн интерьера

  • Ландшафтная архитектура

  • Массажная терапия

  • Металлургия

  • Военные

  • Борьба с вредителями

  • Сантехника

  • Полицейская

  • Сточные Воды

  • Сварка

  • Закон
  • Закон Австралии

  • Банкротство

  • Бар экзамен

  • Предпринимательское право

  • Экзамен в адвокатуру Калифорнии

  • Экзамен CIPP

  • Гражданский процесс

  • Конституционное право

  • Договорное право

  • Корпоративное право

  • Уголовное право

  • Доказательства

  • Семейное право

  • Экзамен в адвокатуру Флориды

  • Страховое право

  • Интеллектуальная собственность

  • Международный закон

  • Закон

  • Закон и этика

  • Правовые исследования

  • Судебные разбирательства

  • MBE

  • MPRE

  • Закон о аптеках

  • Право собственности

  • Закон о недвижимости

  • Экзамен в адвокатуре Техаса

  • Проступки

  • Трасты и имения

  • Здоровье и фитнес
  • Нетрадиционная медицина

  • Класс здоровья и фитнеса

  • Здоровье и человеческое развитие

  • Урок здоровья

  • Наука о здоровье

  • Человеческое развитие

  • Человеческий рост и развитие

  • Душевное здоровье

  • Здравоохранение

  • Спорт и кинезиология

  • Йога

  • Бизнес и финансы
  • Бухгалтерский учет

  • Бизнес

  • Экономика

  • Финансы

  • Управление

  • Маркетинг

  • Недвижимость

  • Технологии и машиностроение
  • Архитектура

  • Биотехнологии

  • Компьютерное программирование

  • Информационные технологии

  • Инженерное дело

  • Графический дизайн

  • Информационной безопасности

  • Информационные технологии

  • Информационные системы управления

  • Еда и напитки
  • Бармен

  • Готовка

  • Кулинарное искусство

  • Гостеприимство

  • Питание

  • Вино

  • Изобразительное искусство
  • Изобразительное искусство

  • История искусства

  • Танец

  • Музыка

  • Другое изобразительное искусство

  • Случайное знание
  • Астрология

  • Блэк Джек

  • Культурная грамотность

  • Знание реабилитации

  • Мифология

  • Национальные столицы

  • Люди, которых вы должны знать

  • Покер

  • Чаша для викторины

  • Спортивные викторины

  • Карты Таро

Как работают датчики давления? — Омега Инжиниринг

текст. перейти к содержанию
text.skipToNavigation

переключить

  • Услуги
    • Конфигурируемые

      • Конфигурируемые

      • Датчик термопары

        • Датчик термопары

      • Датчики RTD

        • Датчики RTD

      • Датчики давления

        • Датчики давления

      • Термисторы

        • Термисторы

    • Калибровка

      • Калибровка

      • Инфракрасная температура

        • Инфракрасная температура

      • Относительная влажность

        • Относительная влажность

      • Давление

        • Давление

      • Сила / деформация

        • Сила / деформация

      • Расход

        • Поток

      • Температура

        • Температура

    • Обслуживание клиентов

      • Служба поддержки клиентов

    • Индивидуальное проектирование

      • Заказное проектирование

    • Заказ по номеру детали

      • Заказ по номеру детали:

  • Ресурсы

Чат

Чат

Тележка

    • Услуги

      • Услуги

      • Конфигурируемые

        • Конфигурируемые

        • Датчик термопары

        • Датчики RTD

        • Датчики давления

        • Термисторы

      • Калибровка

        • Калибровка

        • Инфракрасная температура

        • Относительная влажность

        • Давление

        • Сила / деформация

        • Поток

        • Температура

      • Обслуживание клиентов

        • Служба поддержки клиентов

      • Индивидуальное проектирование

        • Заказное проектирование

      • Заказ по номеру детали

        • Заказ по номеру детали:

    • Ресурсы

      • Ресурсы

    • Справка

      • Справка

    • Измерение температуры

      • Измерение температуры

      • Датчики температуры

        • Датчики температуры

        • Зонды датчика воздуха

        • Ручные зонды

        • Зонды с промышленными головками

        • Зонды со встроенными разъемами

        • Зонды с выводами

        • Профильные зонды

        • Санитарные зонды

        • Зонды с вакуумным фланцем

        • Реле температуры

      • Калибраторы температуры

        • Калибраторы температуры

        • Калибраторы Blackbody

        • Калибраторы сухих блоков и ванн

        • Ручные калибраторы

        • Калибраторы точки льда

        • Тестеры точки плавления

      • Инструменты для измерения температуры и кабеля

        • Инструменты для измерения температуры и кабеля

        • Обжимные инструменты

        • Сварщики

        • Инструмент для зачистки проводов

      • Термометры с циферблатом и стержнем

        • Циферблатные и стержневые термометры

        • Термометры циферблатные

        • Цифровые термометры

        • Стеклянные термометры

      • Температура провода и кабеля

        • Температурный провод и кабель

        • Удлинительные провода и кабели

        • Монтажные провода

        • Кабель с минеральной изоляцией

        • Провода для термопар

        • Нагревательный провод и кабели

      • Бесконтактное измерение температуры

        • Бесконтактное измерение температуры

        • Фиксированные инфракрасные датчики температуры

        • Портативные инфракрасные промышленные термометры

        • Измерение температуры человека

        • Тепловизор

      • Этикетки, лаки и маркеры температуры

        • Этикетки, лаки и маркеры температуры

        • Необратимые температурные этикетки

        • Двусторонние температурные этикетки

        • Температурные маркеры и лаки

      • Защитные гильзы, защитные трубки и головки

        • Защитные гильзы, защитные трубки и головки

        • Защитные головки и трубки

        • Защитные гильзы

      • Чувствительные элементы температуры

        • Чувствительные элементы температуры

      • Датчики температуры поверхности

        • Датчики температуры поверхности

      • Проволочные датчики температуры

        • Проволочные датчики температуры

      • Температурные соединители, панели и блоки в сборе

        • Температурные соединители, панели и блоки в сборе

        • Проходы

        • Панельные соединители и узлы

        • Разъемы температуры

        • Клеммные колодки и наконечники

      • Регистраторы данных температуры и влажности

        • Регистраторы данных температуры и влажности

      • Измерители температуры, влажности и точки росы

        • Измерители температуры, влажности и точки росы

    • Контроль и мониторинг

      • Контроль и мониторинг

      • Движение и положение

        • Движение и положение

        • Двигатели переменного и постоянного тока

        • Акселерометры

        • Датчики смещения

        • Захваты

        • Датчики приближения

        • Поворотные датчики перемещения и энкодеры

        • Регуляторы скорости

        • Датчики скорости

        • Шаговые приводы

        • Шаговые двигатели

      • Сигнализация

        • Сигнализация

      • Метры

        • Метры

        • Счетчики и расходомеры

        • Многоканальные счетчики

        • Счетчики процесса

        • Счетчики специального назначения

        • Тензометры

        • Измерители температуры

        • Таймеры

        • Универсальные измерители входа

      • Переключатели процесса

        • Переключатели процесса

        • Реле потока

        • Реле уровня

        • Ручные выключатели

        • Реле давления

        • Реле температуры

      • Контроллеры

        • Контроллеры

        • Контроллеры влажности и влажности

        • Контроллеры уровня

        • Контроллеры пределов

        • Многоконтурные контроллеры

        • ПИД-регуляторы

        • ПЛК

        • Регуляторы давления

        • Термостаты

      • Дополнительные платы

        • Дополнительные платы

      • Реле

        • Реле

        • Программируемые реле

        • Модули твердотельного ввода-вывода

        • Твердотельные реле

      • Воздух, почва, жидкость и газ

        • Воздух, почва, жидкость и газ

        • Преобразователи воздуха и газа

        • Контроллеры качества воды

        • Датчики качества воды

        • Датчики качества воды

      • Клапаны

        • Клапаны

        • Поршневые клапаны с угловым корпусом

        • Сливные клапаны

        • Предохранительные клапаны блокировки

        • Игольчатые клапаны

        • Пропорциональные клапаны

        • Электромагнитные клапаны

    • Проверка и проверка

      • Проверка и проверка

      • Бороскопы

        • Бороскопы

      • Портативные счетчики

        • Портативные счетчики

        • Токоизмерительные клещи

        • Децибел-метры

        • Газоанализаторы

        • Детекторы утечки газа

        • Метры Гаусса

        • Твердость

        • Светомеры

        • Мультиметры

        • Скорость

        • Измерители температуры, влажности и точки росы

        • Измерители вибрации

        • Анемометры

        • Манометры

      • Аэродинамические трубы

        • Аэродинамические трубы

      • Весы и весы

        • Весы и весы

      • Тепловизионный

        • Тепловизор

      • Воздух, почва, жидкость и газ

        • Воздух, почва, жидкость и газ

        • Газоанализаторы

        • Решения для калибровки

        • Анализаторы хлора

        • Бумага для измерения pH

        • pH-метры

        • Измерители вязкости

Воздушный компрессор высокого давления с парой холодильных компрессоров

[Ed] из Ed’s Systems, он же [Aussie50], потребовалось некоторое время, чтобы продемонстрировать свой воздушный компрессор высокого давления Frankenstein, который он склеил из двух холодильных компрессоров. Два компрессора Danfoss SC15 могут производить более 400 фунтов на квадратный дюйм и могут работать весь день при давлении 300 фунтов на квадратный дюйм без перегрева. Сдвоенные блоки могут быстро нагреться до давления, учитывая небольшой «бак» гидроаккумулятора, но высокая CFM не является целью этой сборки. [Эд] использует эту систему для уничтожения некоторых ЖК-панелей свинцом, шарикоподшипниками и другими высокоскоростными снарядами, выпущенными из модифицированного пескоструйного пистолета. Просто немного воздуха при 400 фунтах на квадратный дюйм — все, что вам нужно для этой игрушки-терминатора.

Не думайте, что разрушение будет расточительным; [Эд] старается отремонтировать, перестроить, повторно использовать, перепрофилировать и еще кое-что, прежде чем аккуратно разделить и отсортировать все детали для переработки.Эта модификация включала в себя множество оборудования, утилизированного от старых демонтажных работ, такого как шланги высокого давления, соединители, аккумулятор и реле отключения давления.

Сначала кажется странным видеть, что что-то, разработанное для хладагента R22, так хорошо сжимает воздух. [Эд] занимается преобразованием холодильных систем в обслуживание воздушных компрессоров. В старых видеороликах «потерпел неудачу и успешно» [Эд] показывает все тонкости создания бесшумных воздушных компрессоров с использованием резервуаров для хранения большей емкости.[Эд] не привыкать ко всем вариациям бытовых и коммерческих холодильных систем, поэтому он годами обеспечивает надежную и бесперебойную работу домашних воздушных компрессоров.

Не думайте, что это единственная загробная жизнь старых холодильных компрессоров, мы видели, что они тоже отстой. Вы получите еще несколько интересных моментов и сможете посмотреть видеообзор [Эда] его домашнего компрессора после перерыва.

Если строительство собственного цеха компрессора из использованных холодильных систем не является достаточным стимулом, подумайте о снижении шума в цехе.Если вы использовали компрессоры холодильника, они должны работать очень тихо по сравнению с большинством стандартных промышленных воздушных компрессоров.