Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Коэффициент теплопроводности газобетона: Теплопроводность газобетона (газобетонных блоков)

Содержание

расчет стен дома для строительства

Толщина стен дома из газобетона – очень важный параметр, который нужно уметь правильно рассчитать, ориентируясь на действующие ГОСТы, СНиПы, особенности климата в регионе строительства, используемые отделочные материалы и т.д. Ввиду того, что пористый бетон демонстрирует прекрасные теплосберегающие характеристики, оптимальная толщина газобетона обычно в разы меньше в сравнении с другими материалами при условии тех же свойств.

Газобетон производят из цемента, песка, воды, алюминиевого порошка, который выступает в роли газообразователя, благодаря чему внутри структуры камня формируются воздушные поры. Наличие воздушных пузырей в застывшем материале уменьшает плотность и вес блока, повышает тепло/звукоизоляционные характеристики.

При выборе газобетона для строительства важно найти баланс между прочностью и теплосбережением – плотные и прочные блоки хуже сохраняют тепло, материал с большим числом пор гарантирует более высокий уровень теплосбережения, но недостаточно прочен для строительства. Таким образом, марки с низкой плотностью используют для изоляции, высокой – строительства.

Выбор газобетона для строительства дома:

  • До D350 – самонесущий утеплитель, теплоизоляционный газобетон.
  • D400-D600 – теплоизоляционно-конструкционные блоки.
  • D700 и выше марки – конструкционные блоки (для строительства).

Обычно газобетон не утепляют – стандартной толщины стен из газобетона марки D400-D500 с оптимальной прочностью и теплопроводностью на уровне 0.117-0.147 Вт/(м*К)) вполне достаточно и без утеплителя. Если же дом возводится в особо холодных регионах, то тут нужно выполнить верные расчеты и дополнить газобетон подходящим по показателям теплоизоляционным материалом.

Плюсы и минусы блочного материала

Как и любой другой строительный материал, газобетон обладает определенными преимуществами и недостатками. Ключевой фактор в определении главных особенностей газобетонных блоков – их особая пористая структура, которая влияет как на процесс монтажа, так и на эксплуатацию.

Главные достоинства газобетонных блоков:

  • Высокие показатели теплосбережения – благодаря наличию воздуха в структуре материала он прекрасно сохраняет тепло внутри здания, не требуя дополнительной изоляции и позволяя экономить на отоплении при проживании в доме до 30-40%.
  • Прекрасная звукоизоляция, что также важно для жилых домов.
  • Огнестойкость, безопасность и экологичность – для людей газобетон не представляет никакой опасности, плохо горит, в процессе эксплуатации не выделяет токсинов и т.д.
  • Простой, легкий и недорогой монтаж – за счет большого размера, идеальной геометрии и малого веса блоков строить дом можно своими руками, не привлекая дополнительно сотрудников или спецтехнику.
  • Возможность реализовать любой проект – за счет того, что газобетон хорошо режется и пилится, создание доборных блоков осуществляется быстро и без усилий.
  • Широкий выбор отделочных материалов – для защиты газобетона снаружи и внутри, и также придания ему эстетичного внешнего вида.
  • Малый вес всей конструкции, что позволяет сэкономить на фундаменте, некоторых элементах.
  • Возможность еще понизить теплопотери, выполняя кладку блоков не на цементный раствор, а на специальный клей, исключающий вероятность появления мостиков холода.

Из недостатков материала стоит отметить такие, как сравнительно невысокая прочность (поэтому из газобетона строят предпочтительно малоэтажные здания и перегородки внутренние в высотках), гигроскопичность (способность впитывать воду высокая, поэтому отделывать дом из газоблоков нужно правильно подобранными материалами, ассортимент которых сегодня достаточно велик).

Толщина несущих стен

Определяя, какая оптимальная толщина стены должна быть у дома в определенном регионе, желательно предварительно выполнить геологические изыскания, принять во внимание все климатические факторы, изучить свойства выбранной марки газобетона, других материалов, использующихся в строительстве. Обязательно выполняют расчет, составляют проект.

Что учитывают при определении толщины стены:

  • Требования и нормы СНиП 23-02-2003, который дает все нужные данные для экономии энергии и поддержания комфортной температуры внутри помещений, а также регламентирует все правила для здания с отоплением, постоянным проживанием.
  • Стойкость выбранной марки газобетона к температурам, морозу, влаге и т.д.
  • Материалы, используемые для защиты газобетона от увлажнения, утепления стен и т.д.
  • Планируемые расходы на отопление (и расчеты, стоит ли на этапе строительства вкладывать средства в дополнительные меры и материалы, чтобы потом экономить определенную сумму).

Определяясь с тем, какой толщины должна быть газобетонная стена, лучше всего выполнять теплотехнические расчеты по существующим правилам, что делают специалисты.

Если же оплачивать работу квалифицированного мастера не хочется или нет возможности, можно попробовать высчитать все самостоятельно.

Существующие нормы в строительстве из газобетона:

  • Минимальная толщина любых ограждающих конструкций для домов, дач сезонного проживания – 20 сантиметров для самонесущих конструкций из блока марки D400. Но специалисты советуют останавливаться, все-таки, на минимальных 30 сантиметрах.
  • При наличии подвала, цокольного этажа – из-за высоких нагрузок лучше брать D500-D600 с прочностью класса В3.5-В5, стены делать толщиной 40 сантиметров.
  • Минимальная толщина внутренних перегородок из блока марки D500 должна составлять 10-15 сантиметров, межквартирных – 30 сантиметров.
  • Несущие стены из газоблоков автоклавного твердения должны быть толщиной минимум 37.5 сантиметров, самонесущих – от 30 сантиметров.
  • Объекты в теплом климате, одноэтажные – толщина стен может быть 25 сантиметров.

Толщина перегородочных стен

Толщина стены из газобетона внутри помещения (перегородки) может быть меньше, чем толщина несущей, так как нагрузки тут меньшие. В расчетах учитывают несущую возможность материала и высоту перегородки. Так, если высота стены не превышает 3 метров, то достаточно будет толщины в 10 сантиметров. Если же высота доходит до 5 метров, лучше использовать блоки толщиной в 20 сантиметров.

При определении показателя лучше выполнять точные расчеты, но если нет, можно воспользоваться стандартными значениями. Перегородки несущего типа строят из блоков марок D500/D600 толщиной 7.2-20 сантиметров. Обычные перегородки можно возводить из блоков марок D350/D400 для улучшения тепло/звукоизоляционных характеристик.

При длине перегородки 8 метров и больше, высоте от 4 метров желательно обустройство армирующего пояса для повышения прочности и надежности всей конструкции.

Толщина стен для разных регионов

Рассчитывать, какой толщины должны быть внутренние и несущие стены, лучше специалисту, который знает все нормативы и требования, сможет учесть особенности и нюансы. Обычно при выборе толщины ориентируются на требуемые показатели теплосбережения и прочности. Основные расчеты касаются несущих стен, внутренние ненесущие перегородки можно делать тоньше.

Общие советы от мастеров такие: для средних регионов (по Москве и ближайшим городам) достаточно стандартных 40 сантиметров толщины, в теплых регионах берут за основу 30 сантиметров, в холодных – от 50 сантиметров. Но это достаточно усредненные показатели, ориентироваться желательно на максимально точные расчеты.

Принято брать за основу такие данные: для средней полосы России сопротивление стен теплопередаче, согласно СНиП, должно быть равным 3.2 Вт/м*С. Для регионов холоднее показатель выше, соответственно, теплее – ниже. Нужный уровень теплозащиты (указанный показатель в 3.2) дают такие варианты: 30 сантиметров толщины стены из блоков D300, 40 сантиметров из D400, 50 сантиметров из D500.

На общий показатель тепловой эффективности здания влияют толщина стен, утепление (не только стен, но и перекрытий, кровли, пола, армопоясов, окон, перемычек). Через недостаточно толстые стены здание теряет около 30-40% тепла. Для домов с постоянным проживанием оптимальным считают выбор блоков D400/D500 и толщину стен до 40-50 сантиметров. Дачный дом можно строить из блоков марки D400 с толщиной стен 25-30 сантиметров.

Если планируется утеплять стены, то они могут быть тоньше. Тут важно получить в итоге должный показатель теплозащиты, основывающийся на значениях газобетона и выбранного утеплителя (в его качестве могут выступать пенопласт, минеральная вата и т.д.). Таким образом, повышаются затраты на утеплитель, но понижаются на газобетон.

Чем выше значение теплозащиты материала, тем лучше. Показатели указаны в таблице:

Это таблица с коэффициентами теплопроводности газобетона разных марок (тут работает правило чем ниже, тем лучше):

Для понимания алгоритма выполнения расчетов можно рассмотреть такой пример. При желании построить дом в Москве и окрестностях тепловое сопротивление должно быть R=3.28. Применяется автоклавный газобетон D500 толщиной 30 сантиметров, используется утеплитель. Как найти искомый параметр:

  • Толщина стены из газобетона (0.3 метра) делится на коэффициент теплопроводности марки D500 (0.14) – тепловая сопротивляемость голой стены составляет R=0.3/0.14=2.14 м2*С/Вт.
  • От нужного значения нужно отнять полученный показатель: 3.28-2.14=1.14. Это тепловая сопротивляемость утеплителя.
  • Минеральная вата, к примеру, дает коэффициент теплопроводности 0.04. Если умножить 0.04 на 1.14, получается искомая толщина утеплителя: 0.04х1.14=0.0456=45 миллиметров=4.5 сантиметра. То есть, толщина утеплителя при стенах 30 сантиметров должна составлять около 5 сантиметров.

Зная стандартные значения, можно легко выполнить расчеты для любых марок газобетонных блоков и видов утеплителя.

Требования ГОСТов

Все строительные работы с использованием пористого легкого бетона должны выполняться в четком соответствии со специальными требованиями.

Главные рекомендации по ГОСТам и СНиПам:

  • Максимальная высота стены определяется только расчетным путем.
  • Высота и этажность зданий строго ограничены: из автоклавного газобетона допускается возводить здания до 5 этажей и не более 20 метров в высоту. Если постройки девятиэтажные, то самонесущие стены не должны быть выше 30 метров. Пеноблоки используются для строительства здания из трех этажей при условии максимальной высоты в 10 метров.
  • Важно соблюдать показатели прочности с учетом этажей: блоки класса В3.5 используют для 5-этажных объектов, для 2-3-этажных домов подойдут блоки классов В2 и В2.5 соответственно.
  • Для самонесущих стен используют блоки прочности класса В2-2.5.

Отзывы строителей

Задумываясь о том, какой толщины строить стены, желательно обратить внимание и на отзывы тех, кто уже работал с материалом и может делать определенные выводы.

Несколько полезных рекомендаций для создания прочного теплого дома:

  • Лучше всего использовать для кладки блоков специальный клей, который наносят на поверхность материала тонким слоем. Важно соблюдать оптимальную толщину слоя шва, так как в противном случае он может пропускать холод и понизить теплоизоляционные характеристики дома.
  • В холодных регионах дополнительно к выбору оптимальной толщины стены нужно позаботиться о теплоизоляции (с обеих сторон желательно).
  • При выполнении расчетов прочности берут во внимание дополнительную массу, которую создают теплоизоляционные материалы.

Дополнительные факторы для поиска оптимальной толщины стен:

  • Сезонность – для дачных домов будет достаточно толщины стен в 20 сантиметров, которые успешно выдержат массу кровельного перекрытия, защитят от осенней и весенней прохлады. Если жить планируется круглый год, то толщина должна составлять минимум 40 сантиметров.
  • Все несущие стены делают на 10-15 сантиметров больше толщины внутренних стен.
  • Наращивая высоту дома, выбирают блоки с более высокой прочностью. Для одноэтажного объекта достаточно стены от 25 сантиметров из конструкционно-изоляционных блоков, для двух и более этажей выбирают конструкционные блоки и толщину стен в 30-40 сантиметров (велика вероятность необходимости в теплоизоляции).
  • Сколько длится холодное время года, какова среднесуточная температура – все это требует учета при выборе толщины стен и теплоизоляции. Значение всегда выше для сибирских регионов.
  • Уменьшение толщины блоков осуществляется пропорционально увеличению слоя теплоизоляции или выбору более эффективного материала.

Заключение

Толщина газобетона – чрезвычайно важный параметр, определять который нужно по правилам и с учетом максимально широкого круга факторов. Самые главные из них – коэффициент теплопроводности материалов, климатические особенности региона, наличие/отсутствие слоя теплоизоляции и его характеристики, особенности конструкции и проекта здания. Лучше доверить расчеты специалистам либо ориентироваться на принятые стандарты.

Газобетон или кирпич, что лучше выбрать?

В этой статье под газобетоном мы будем понимать вид ячеистого бетона, который получают из смеси цемента, песка, воды и газообразующими добавками, которые образуют в бетоне пузыри, делающие плотность и теплопроводность бетона ниже.

Под кирпичом подразумевается знакомый всем, керамический строительный материал, производимый посредством обжига разных глиняных смесей. 

И обычный кирпич, и газобетон обладают рядом конкретных характеристик, по которым их можно сравнивать. Среди них:

  1. масса;
  2. прочность на сжатие;
  3. теплопроводность;
  4. морозостойкость;
  5. огнестойкость;
  6. паропрницаемость;
  7. влагопоглощение.

Обладая сведениями о выше упомянутых показателях, можно уже судить о том, подойдет ли вам данный материал с учётом расположения и предназначения будущей постройки. Поэтому далее мы подробно расскажем о каждом параметре.

Масса материала

Масса отдельных фрагментов формирует массу стен, а вот её следует учитывать при выборе типа закладываемого фундамента.

По этим причинам кирпичные стены требуют наличия под собой более сложного, а оттого и более дорогого фундамента (преимущественно монолитного или ленточного), а вот газобетонные стены в этом плане менее требовательны.

Но, у газобетона, в отличие от кирпича, очень слабая прочность на изгиб, а это значит, что усадка фундамент должен быть очень хорошо сделан. 

Хороший фундамент для газобетона не должен давать усадку, а морозное пучение не должно сдвигать его. Потому, большое внимание нужно уделить дренажу фундамента и подсыпке из непучинистых наполнителей (песка и щебня). 

В принципе, на хороших грунтах подойдет малозаглубленный фундамент с утепленной отмосткой, для более сложных грунтов лучше проводить геологию грунта.

В любом случае, выбор того или иного фундамента зависит от тяжести всего здания типа грунта, от глубины промерзания и от уровня грунтовых вод. А рассчет всего этого, дело сложное, которое лучше предоставить специалистам.

Сравнение газобетона и керамических блоков (видео)

Прочность газобетона на сжатие

Геометрия газоблоков и кирпичей

Газоблоки намного крупнее и ровнее чем кирпичи, какой из этого сделать вывод? А вот какой: коробка из газоблока строится гораздо быстрее. Швы между газоблоками получаются около 2 мм, что сводит до минимума теплопотери через шов. Отметим, что каждый ряд газоблока нужно выравнивать теркой, чтобы плоскость была идеальной, а шов равномерным, это очень важно. Ряды газоблока вравниваются теркой очень быстро и просто, так что не стоит этого боятся.

Также некоторые ряды газобетона нужно армировать. Более подробно про армирование газобетонной кладки смотрите в нашей статье.

Газобетон бывает автоклавным и неавтоклавным, сразу скажем, что автоклавный газобетон лучше по всем показателям, в том числе и по геометрии блоков, но автоклавный дороже. Более подробно про различия автоклавного и неавтоклавного газобетона читайте в нашей статье по ссылке.

К швам в кирпичной кладке нет таких требований. Также стоит отметить, что в доме из газобетона необходимо наличие монолитного железобетонного армопояса. А как вы понимаете, армопояс это непростая конструкция, требующая немало времени и средств. Время сэкономленное на кладке газобетона несколько отберется при устройстве армопояса.

Как можно догадаться, этот параметр указывает на то, какой уровень нагрузки способен выдерживать материал; рассчитывается в килограммах на 1 см². От прочности на сжатие значительно зависит общая прочность конструкции.

Чем стены здания выше, тем они тяжелее, и нагрузка на блоки (на сжатие) увеличивается, и требования к прочности на сжатие растет. Прочность на сжатие принято обозначать классами (от B0.5 до B60) и для газобетона этот показатель может быть в пределах от B0.5 до B20.

К примеру у качественного газобетона марки D500 класс прочности на сжатие равняется B3.5 что соответсвует нагрузке 46 кг/см².












Таблица, прочность на сжатие (газобетон)
Марка газобетона Класс прочности на сжатие Средняя прочность (кг/см²)
 D300 (300 кг/м³) B0,75 — B1 10 — 15
D400
 B1,5 — B2,5 25 -32
D500  B1,5 — B3,5 25 — 46
D600 B2 — B4 30 — 55
D700 B2 — B5 30 — 65
D800 B3,5 — B7,5 46 — 98
D900 B3,5 — B10 46 — 13
D1000 B7,5 — B12,5 98 — 164
D1100 B10 — B15 131 — 196
D1200 B15 — B20 196 — 262

У кирпича тоже есть своя маркировка по прочности (от М50 до М300 ). К примеру, марка кирпича М100 соответствует классу прочности на сжатие — B7.5 что соответствует нагрузке в 100 кг/см².










Таблица, прочность на сжатие (кирпич)
Марка кирпича Класс прочности на сжатие (класс) Средняя прочность (кг/см²)
M50 B3,5 50
M75 B5 75
M100 B7,5 100
M125 B10 125
M150 B12,5 150
M200 B15 200
M250 B20 250
M300 B25 300

Теплопроводность

Коэффициент теплопроводности свидетельствует о способностях материала проводить сквозь себя тепло. Этот показатель означает количество тепла, которое проходит за час времени сквозь 1 м³ материала при единичной разнице температуры на противоположных поверхностях. То есть чем коэффициент выше, тем хуже теплоизоляция.

На фотографии с тепловизора видно, какая температура поверхности в каких участках, чем ярче цвет, тем хуже в той области теплоизоляция.






Таблица теплопроводности кирпичей
Вид кирпича Коэффициент теплопро- водности  Кладка на цементно-песчаном растворе
 Красный глиняный (1800 кг/м³)  0,56  0,70
 Силикатный, белый (1500 кг/м³)
 0,70  0,85
 Керамический пустотелый (1400 кг/м³)  0,41  0,49
 Керамический пустотелый (1000 кг/м³)  0,31  0,35

 

Таблица теплопроводности газобетона








Марка и плотность газобетона Коэффициент теплопро- водности(сухой) Коэффициент теплопроводности(при влажности блоков 4%)
D300 (300 кг/м³) 0,080 0,082
D400 (400 кг/м³)
0,095 0,100
D500 (500 кг/м³) 0,118 0,127
D600 (600 кг/м³) 0,137 0,150
D700 (700 кг/м³) 0,165 0,192
D800 (800 кг/м³) 0,182 0,215

Сравнительный график теплопроводности кирпичей и газобетона

Так, по графику наглядно видно разницу в теплопроводности между различными кирпичами и газабетонами, к примеру, теплопроводность газобетона D500 в 4-5 раз ниже чем у красного полнотелого кирпича. Но это всё лабораторные цифры, на самом деле, в кладке разница между теплопроводностью несколько меняется, и теплопроводность будет отличаться уже не в 4-5 раз, а всего в три. 

Причиной этому являются так называемые «мостики холода», под которыми подразумеваются слои раствора между частями кладки.

В случае с газобетонными блоками используется специальный клей для тонких швов, что уменьшает теплопотери конструкции, но всё равно, реальные показатели кладки газобетона по теплопроводимости ниже чем представленные в таблице выше.

Также стоит отметить, что толщина швов в газобетонной кладке должна быть как можно меньше, в идеале (1-3 мм). Толстые швы в газобетоне сводят все его теплотехнические достоинства к минимуму.

Еще оним фактором, который ухудшает теплоизоляцию, является влажность блоков, чем влажность выше, тем хуже. А газобетон пористый и от того хорошо впитывает воду.

По теплотехническим нормам, теплые кирпичные стены должны иметь солидную толщину (1 м), тогда как для газобетонных стен хватит толщины в 0,3-0,5 м. Для самых холодных регионов может потребоваться кладка из газобетона толщиной аж 600 мм.

В общем, чем толще стены, чем тоньше швы и чем меньше влажность стены, тем лучше будет сохраняться тепло внутри помещения и тем больше вы сэкономите на отоплении дома.

Повторимся, что газобетон бывает разных марок, начиная от D200 и заканчивая D1200. Число в данном случае показывает плотность материала. Чем плотность выше, тем блок прочнее, но при этом его теплоизоляционные свойства хуже.

Газобетон марок D200-D300, используется как теплоизолятор, а блоки маркой D400 и выше используются как конструкционные блоки для стен.

В настоящее время строительство кирпичных стен с толщиной под 1 м – большая редкость, ибо это слишком накладно и по деньгам, и по количеству затрачиваемого времени, и по трудовым ресурсам.

Чаще всего возводят кирпичные стены в полтора-два кирпича с толщиной 38-50 см, а для теплоизоляции применяют гораздо толще слой теплоизоляционных материалов, чем при кладке газобетонных стен.

Морозостойкость

Данный показатель демонстрирует стойкость намоченого материала при воздействии минусовых температур. Он показывает, насколько хорошо материал может сохранять свою прочность при повторяющихся замораживаниях и оттаиваниях.

Морозостойкость обозначают буквой «F», цифра показывает количество циклов, которые материал должен выдержать.

Для строительства рекомендуют использовать кирпич, с морозостойкостью F15 — F25 циклов, У облицовочного кирпича морозостойкость от F50 до F100. У клинкерного F200.

Как правило, кирпич имеет гораздо более высокий коэффициент морозостойкости, чем газобетон, то есть кирпич является более стойким к морозу материалом, а от того и более долговечным.








Таблица морозостойкости кирпичей и газоблоков
Марка блока/кирпича Класс морозостойкости(F) Водопоглощение
Кирпич строительный полнотелый F50; F75 8%
Кирпич, пустотность 40%
F35; F50 6%
Кирпич силикатный F50; F75 8%
D600 (600 кг/м³) F15;F25 47%
D700 (700 кг/м³) F25;F35 40%
D800 (800 кг/м³) F25;F50 35%

Влагопоглощение

Показатель влагопоглощения свидетельствует о способностях материала по впитыванию и удерживанию влаги. Поглощение воды негативно отражается на прочности материалов, возрастает также и теплопроводность.

Так как газобетонные блоки способны впитывать в 4-5 раз больше влаги по сравнению с кирпичом, стены из газоблока должны дополнительно защищаться от попадания воды, что, конечно, идёт в минус газобетону. 

Тестирование влагопоглащения проводилось путем помещения блоков в емкость с водой. Спустя сутки, блоки и кирпичи доставали и взвешивали. Разницу между первоначальной и конечной массой переводили в проценты. 

К примеру, взяли кубик газобетона размером 10X10 см, вес его составлял 592 грамма, что соответствует марке D600. после 18 часов намокания, вес кубика составил 869 грамм. То есть, газобетон впитал в себя 277 грамм воды, что составляет 47% от его первоначальной массы. Многие производители газобетона пишут, что влагопоглощение их блоков составляет всего 20%, но что-то слабо в это верится после такого тестирования.

Огнестойкость газобетона и кирпича

Этот параметр показывает способность сопротивления строительных материалов при прямом воздействии высокой температуры от открытого огня. От степени огнестойкости зависит, насколько долго строительная конструкция сможет простоять до появления трещин и возникновения обрушений во время пожара.

В этом плане кирпич и газобетон не имеют особых различий, так как оба материала входят в первый класс огнестойкости (предел 2,5). Материалы обоих видов достаточно хороши, если речь заходит о противостоянии огню.

Вывод

Газобетон лучше сохраняет тепло, и у него лучше паропроницаемость, чем у кирпича. Но кирпич при этом в несколько раз прочнее на сжатие и излом. По влагостойкости и морозостойкости также выигрывает кирпич. Становится понятно, что кирпич более долговечен, и дом из кирпича может простоять намного дольше.

Но многие недостатки газобетона уберет качественная облицовка фасада, которая предотвратит намокание газоблоков. Более того, мокрый газобетон хуже сохранаяет тепло.

Газобетонные блоки обладают большими размерами, вследствие чего возводить коробку из них быстрее, также у газобетона лучше геометрия. Но швы между блоками газобетона должны быть очень тонкими(1-3 мм), иначе будут большие теплопотери.

Также в доме из газобетона необходим железобетонный армопояс, а в кирпичной кладке он не обязателен.

Газобетонные стены очень боятся неравномерной усадки фундамента и могут дать трещины. Так что желательно, под газобетон, делать тяжелый и очень качественный фундамент и дополнительно дать ему время настоятся, чтобы прошла основная усадка.

Мы составили сравнительный график различных показателей, в котором, чем столбец выше, тем лучше.

Иными словами, однозначного решения проблемы выбора между кирпичом и газобетоном не существует, так как оба материала имеют свои достоинства и недостатки. При выборе следует отталкиваться, прежде всего, от проекта будущей постройки, так как в одних случаях гораздо эффективней будет использование газобетона, а в других возможно лучше применить старый добрый кирпич.

Но в реалиях двадцать первого века, когда цена электроэнергию и другие источники отопления очень высоки, мы бы выбрали газобетон толщиной 400 мм с последующей облицовкой. Такой толщины хватит, чтобы обеспечить хорошую теплоизоляцию, не используя дополнительных утеплителей.

В случае с кирпичом, при кладке в 0.4 метра, нужно использовать около 10-15 см дополнительной теплоизоляции пенопластом, минватой или другими материалами. Но, кирпич проверен временем, и здания из него стоят по сто лет и более, связано это с хорошей морозостойкостью кирпича и высокой прочностью на сжатие.

Теплопроводность газобетона, технические характеристики, способы определения

Низкий коэффициент теплопроводности считается главным преимуществом газобетона наряду с легкостью, хорошей морозостойкостью и прочностью на сжатие. Его обеспечивает высокая (до 85 %) пористость структуры и закрытость ячеек, благодаря этому свойству материал успешно совмещает конструкционные и утепляющие функции и является оптимальным при строительстве энергосберегающих домов.

Факторы влияния и методы определения

Теплопроводность газоблока отражает его способность к передаче тепла от более нагретых частей к холодным в ходе движения молекул. В численном выражении данная характеристика измеряется в Вт/м·°C. Низкое значение у автоклавных газо- и пенобетона (не более 0,12-0,14 у востребованных марок D500 и D600) свидетельствует о хороших энергосберегающих свойствах, что позволяет сократить затраты на обогрев зданий в зимнее время и на кондиционирование – в летнее.

Все изготавливаемые изделия проходят обязательный контроль, подтверждающий данный коэффициент опытным путем, соответствующая информация указывается в сертификате продукции и является ориентиром при расчете толщины стен и перекрытий.

Метод проверки теплопроводности регламентирован требованиями ГОСТ 7076, его суть заключается в подаче стационарного теплового потока через блоки в перпендикулярном направлении и последующем измерении его плотности и температуры лицевой поверхности и граней образца.

Результаты сертификации продукции принято разделять на 2 группы, отражающих значения в сухом состоянии и при определенной влажности. Также теплопроводность напрямую зависит от состава и плотности. Ориентировочные показатели для самых востребованных в частном строительстве марок приведены ниже:

Коэффициент, Вт/м·°C Марка газоблоков
D300 D400 D500 D600
В сухом состоянии 0,072 0,096 0,12 0,14
При влажности 4 % 0,084 0,113 0,141 0,16

Теплопроводность снижается при поглощениях ячейками влаги, материал нуждается в защите от внутреннего пара и конденсатов и внешних осадков. У изделий, изготовленных на золе, при равной прочности она на несколько единиц меньше, чем у чисто песчаных (0,1 Вт/м·°C у марки D500, 0,13 у D600), но в первую очередь способность к удерживанию тепла зависит от их плотности и условий эксплуатации. Для сравнения – у незащищенных газобетонных стен, подвергаемым стандартным влажностным нагрузкам в пределах 60%, коэффициент повышается почти в два раза. По этой же причине помимо данной характеристики (отклонения не должны отходить на ± 20 %) в ходе выпуска блоков контролируется показатель отпускной влажности, допустимый нормами максимум не превышает 25-30 %.

Сравнение теплопроводности

В строительстве этот коэффициент учитывают прежде при выборе кладочных материалов для возведения стен, потребность в утеплителе. Ориентировочные значения для самых востребованных из них приведены в таблице:

Наименование Диапазон плотности, кг/м3 Теплопроводность, Вт/м·°C
Автоклавные газоблоки 280-1000 0,07-0,21
Пенобетон 300-1250 0,12-0,35
Плотный красный кирпич 1700-2100 0,67
Дерево (на примере соснового бруса) 500 0,18
То же, пористый 1500 0,44
Клинкер 1800-2000 0,8-1,6
Облицовочные марки 1800 0,93
Кирпич строительный 800-1500 0,23-0,3
Силикатный сплошной 1000-2200 0,5-1,3
То же, с тех.пустотами 0,7
Силикатный щелевой 0,4

На практике на теплопроводность стен оказывает влияние не только тип газоблоков, но и наличие и вид используемого соединительного раствора. Результаты сравнения для разных кладок приведены ниже:

Вид стены Диапазон плотности, кг/м3 Теплопроводность, Вт/м·°C
Газобетонные блоки, монтируемые на клей 630-820 0,26-0,34
То же, при использовании газосиликатных теплоизоляционных плит 540 0,24
Керамический сплошной кирпич на цементно-перлитовом растворе 1600 0,47
То же, на ЦПС 1800 0,56
То же, на цементно-шлаковом составе 1700 0,52
Керамический пустотный кирпич на ЦПР 1000-1400 0,35-0,47
Малоразмерные кладочные изделия 1730 0,8
Пустотелые стеновые 1220-1460 0,5-0,65
Силикатный 11-ти пустотный кирпич на ЦПС 1500 0,64
То же, 14-ти пустотный 1400 0,52

Результаты сравнения выявляют однозначное преимущество пористых материалов перед плотными и сплошными в плане способностей к энергосбережению. По этой причине и автоклавные газоблоки, и прошедший обычную сушку пенобетон выигрывают у кирпича при условии кладки их на тонкий шов облегченного раствора с близким показателями теплопроводности. Монтаж на ЦПС нивелирует это преимущество и приводит к образованию в стенах мостиков холода, то есть к потребности в наружном утеплении. Пенобетон в сравнении с газобетоном уступает в равномерности структуры (и как следствие – чуть хуже держит тепло), но при равной плотности их коэффициенты теплопередачи практически не отличаются.


 

от чего зависит, сравнение с другими материалами

Одна из характеристик, по которой выбирают газобетонные блоки – это теплопроводность. По ее показателю определяют, насколько хорошо материал способен удерживать тепло внутри здания. Один из самых низких коэффициентов теплопроводности имеет воздух. Именно благодаря его наличию в структуре блоков газобетона, они хорошо теплоизолирует стены. Воздух, находящийся в порах, замедляет процесс теплообмена между частицами материалов. Поэтому блоки имеют низкий коэффициент теплопропускаемости, более лучший, чем у кирпича, дерева или пеноблоков.

От чего зависит теплопроводность газоблока?

Газобетон состоит из пористой структуры. Появляются поры в результате выделения газа во время химической реакции раствора с алюминиевой пудрой. Занимают они около 80-85% всего его объема. Но в отличие от пенобетона, из-за такого способа производства создаются открытые, а не закрытые ячейки. По этой причине газобетон быстрее впитывает влагу по сравнению с пеноблоком. Прочность же зависит от толщины перегородок между ячейками.

Производится трех видов:

  • теплоизоляционный;
  • конструкционный;
  • конструкционно-теплоизоляционный.

Каждый из них имеет разный коэффициент теплопропускаемости, и, соответственно, сферу применения. Первый тип используется только в качестве теплоизоляции уже отстроенных стен зданий, маркируется D400. Второй и третий вид применяются для возведения домов и перегородок.

На теплопроводность газобетона влияют следующие факторы:

  • плотность;
  • влажность;
  • толщина;
  • пористость и структура пор.

Теплоизоляционные блоки имеют наибольшее количество ячеек в своей структуре, причем крупного размера. Из-за этого утепляющий газобетон имеет наименьшую плотность и низкую прочность. Так как для его изготовления использовалось небольшое количество цемента. В итоге перегородки между порами получились недостаточно прочными. Этот тип газоблоков нельзя применять для возведения несущих конструкций. Но зато они обладают наилучшими теплоизолирующими свойствами, благодаря большому количеству воздуха внутри.

Конструкционные газобетонные блоки имеют повышенную плотность, из-за чего их ячейки очень маленькие и их количество меньше, чем в теплоизоляционных, поэтому они хуже удерживают тепло. Этот тип материала используется для строительства оснований и несущих конструкций.

На теплопроводность также влияет влажность. Чем больше воды впитали газоблоки, тем меньше сухого воздуха осталось в ячейках, а значит, тем больше тепла сможет проходить через них. От толщины также меняется способность удерживать нагретый воздух, так, например, блоки шириной 30 см имеют более высокую теплосберегаемость, чем 20 см.

Сравнение газобетона с другими стройматериалами

Теплопроводность газоблока в сравнении с другими материалами заметно отличается. Она меняется в зависимости от структуры и плотности стройматериала. Коэффициент теплопропускаемости полнотелого силикатного кирпича (1800 кг/м3) составляет 0,87 Вт/м·К, пустотелого глиняного – 0,44 Вт/м·К, дерева (500 кг/м3) – 0,18 Вт/м·К, газоблоков D500 – 0,14 Вт/м·К. Чтобы стены одинаково удерживали тепло, то из кирпича потребуется построить сооружение толщиной 210 см, а из газобетона шириной чуть больше 40.

Различается теплопроводность кирпича и газоблока и других материалов с изменением влажности. При показателе 0% газобетон марки D600 имеет коэффициент 0,141 Вт/м·К, D500 – 0,0112 Вт/м·К, D400 – 0,096 Вт/м·К, пенобетон D600 – 0,151 Вт/м·К. Если влажность достигла 5%, то теплопропускаемость заметно ухудшается. У газобетона D500 составляет 0,147 Вт/м·К, D400 – 0,117 Вт/м·К, у пенобетона D600 – 0,211 Вт/м·К. На стены из дерева влага влияет еще значительнее. При плотности 500 кг/м3 и 0% влажности коэффициент теплопроводности – 0,146 Вт/м·К, при 5% – 0,183 Вт/м·К.

Толщину стен из газоблоков определяют в зависимости от климатического региона. Если это северные, то для наилучшей теплоизоляции дома потребуется дополнительное утепление. Иначе здание будет слишком быстро терять тепло. Стена шириной 20 см из D600 имеет показатель теплосберегаемости 0,72 Вт/м·К, 30 см – 0,46, 40 см – 0,35. Если конструкция построена из D400: 20 см – 0,51 Вт/м·К, 30 см – 0,32, 40 см – 0,25.

Чтобы не снижать утепляющие характеристики газоблоков, рекомендуется укладывать их на специальный клей. Тогда швы будут получаться минимальной ширины. Так как именно из-за толстых швов из цементно-песчаных растворов в кладке теряется больше тепла.

Для утепления стен из газобетона и пенобетона рекомендуется использовать влагопроницаемые утепляющие материалы, чтобы между теплоизоляцией и конструкций не образовывался конденсат. Из-за избыточной влажности не только повышается теплопроводность блоков, но и ухудшается микроклимат в доме. Наилучшим вариантом считается теплоизоляция из минеральной ваты. Ее толщина подбирается в зависимости от климатической зоны. Отделка газобетона гидроизоляционным слоем обязательна.

коэффициент газоблока d500, d400, паропроницаемость газобетонных блоков, что лучше, таблица

Для определения оптимальной толщины стен из газобетона, нужно точно знать требования, которым она должна соответствовать. Это требуется для того, чтобы защитить стены от низких и слишком высоких температурных показателей. Именно по этой причине при выборе газобетона стоит учитывать такой параметр, как теплопроводность.

Если вы строите несущую конструкцию, то на нее возложено удержание всех перекрытий, для этого важны показатели прочности. Чтобы определить все эти параметры, нужно выполнять необходимый расчет, который позволит оценить целесообразность применения рассматриваемого материала.

На что он влияет

Газобетон – это строительный материал, который обладает пористой структурой и может похвастаться низкими показателями теплопроводности. Благодаря этому удается удерживать тепловую энергию в комнате. Одним из преимуществ рассматриваемого материала остается его легкий вес, благодаря чему удается выполнять все строительные работы быстро и просто. Здесь можно ознакомиться с плюсами и минусами газобетонных блоков. Тут перечислены отличия газобетона от пенобетона. Также читайте, что лучше: что лучше газобетон или шлакоблок или пенобетон.

Кроме этого, по сравнению со стенами, построенными из кирпича и бетона, в конструкцию из газобетона можно вбивать такие крепежные элементы, как гвозди и скобы.

Так как сегодня остается очень актуальным вопрос о сохранении тепла в доме, то нужно разобраться, что собой представляет термин «теплопроводности» и на что оказывает влияние?

Теплопроводность – это способность материала преобразовывать тепло и выполнять, а затем транспортировать его по всему дому. Другими словами, если вы хотите, чтобы в доме постоянно сохранялось тепло в течение длительного времени, то нужно, чтобы показатель теплопроводности был минимальным. Для того чтоб вычислить рассматриваемой параметр, нужно измерить количество тепловой энергии, которое за 1 секунду может проходить через материал, толщиной 1 м и площадью 1 м2. Здесь можно прочитать о других технических характеристиках газобетонных блоков.

На видео рассказывается о теплопроводности газобетона:

Несмотря на то, что вы будет строить, нужно понимать, что газобетон – это очень действенный теплоизоляционный материал. Для того чтобы дом получился очень теплым, а все вычисления не были сравнены к нулю, необходимо соблюдать определенные правила:

  1. Дл соединения блоков необходимо задействовать специальный клей. Его стоит наносить на поверхность блока, а толщина слоя будет составлять несколько миллиметров.
  2. Когда шва образовались слишком толстыми, то они станут своеобразными мостиками холодами, в результате чего это слишком понизить качество газобетона.
  3. Во время строительства дома при умеренных условиях климата нужно позаботиться про утепление стен как снаружи, так и внутри.
  4. Когда вы выполняете расчет на прочность, то необходимо принимать во внимание дополнительную массу, которая будет образовываться при теплоизоляции стен.

Когда вы осуществляете выбор покрытия для строительства фасада на стенах из газобетона, то нужно всегда следовать одному правилу: каждый следующий слой обязан иметь больший коэффициент паропроницаемости по сравнению с предыдущим.

Как правило, может применяться несколько вариантов конструкций наружных стен из блоков:

  1. В один слой, с применением внешней штукатурки и армирующей сеткой. 
  2. В два слоя, с применением теплоизолятора и внешней штукатурки. 
  3. В два слоя, с отделкой кирпичом. 
  4. В три слоя, где необходимо позаботиться про монтаж вентилируемого фасада и использование теплоизолятора.

Если вы хотите обеспечить своей постройке уют и тепло, то недостаточно максимально увеличить толщину стены. Чаще всего применяют блоки Д600, марки В2,5 или же В3,5, толщина которых 300 мм. Но не стоит полагаться на опыт других, а выбирать газобетонные блоки после того, как были выполнены все расчеты на определение прочность и теплопроводность. Тут можно посмотреть, какая должна быть толщина несущей стены из газобетона. Если вы только планируете строительство, то читайте, какой фундамент нужен для дома из газобетона.

Показатели разных видов

Несмотря на то, что газобетон – это очень прочное и надежное изделие, перед его выбором важно ознакомиться со всеми техническими характеристиками и подобрать вариант, который сочетается с условиями эксплуатации. Перед постройкой любого строения необходимо правильно выполнить расчет на прочность и определение некоторых теплотехнических показателей. Однако произвести все эти манипуляции своими руками не всегда удается. Можно также нанять работников, которые смогут все сделать, но для этого нужно платить деньги, а не каждый рассчитывать на такие дополнительные расчеты. Здесь описаны размеры и вес газобетонных блоков.

В сложившейся ситуации необходимо учитывать примерные значения классов прочности и правильно выбрать толщину стены, учитывая назначение будущего строения.

На видео рассказывается о теплопроводности дерева и газобетона:

Многие производители советуют свои потребителям применять следующие виды газобетона:

  1. При строительстве одноэтажного дома в теплом климате, дач, гаражей можно использовать блоки с толщиной 200 мм. С учетом норм, представленная толщина применяться не может, а вот строительство дома из газобетона, параметр толщины у которых 300 мм.
  2. Когда нужно возвести подвальное помещение или цокольный этаж, то стоит задействовать блоки Д600, марка которых В3,5 с толщиной 300- 400 мм.
  3. Для межквартирных перегородок стоит применять газобетон Д500-Д600, марка которых В2,5 с параметром толщины 200-300 мм.
  4. Перегородки между комнатами можно построить с использованием таких же блоков, что и для стен, ограждающих квартиры. Единственное различие состоит в том, что их толщина должна быть 100-150 мм. При возведении стены в уже существующем доме необходимо позаботиться про звукоизоляцию, а не прочность.
  5. При строительстве нежилых комнатах стоит применять газобетон Д500. В этом случае расчет толщины материал должен быть выполнен с учетом возможных нагрузок, минимальное значение толщины будет составлять 300 мм.

Таблица 1 – Значение теплопроводности для различных видов газобетона

Марка по плотности D300 D400 D500 D600
Коэффициент теплопроводности в сухом состоянии, λ0[Вт/(м · ºС)] 0,072 0,096 0,12 0,14
Коэффициент теплопроводности при влажности 4%, λА [Вт/(м · ºС)] 0,084 0,113 0,141 0,160

Газобетонные блоки сегодня набирают широкую популярность в области строительства. И это не удивительно, так как для него характерны такие свойства, как прочность, надежность и длительный срок службы. Но перед тем как производить процесс возведения дома, важно точно выполнить расчеты на прочность, а также определить показатель теплопроводности, при котором удастся сохранить тепло в доме в течение длительного времени. Возможно, вам также будет нужна информация о деревянных перекрытиях в доме из газобетона. Также читайте, чем штукатурить стены из газобетона внутри. По ссылке описано, какой клей для газобетона лучше.

Характеристика теплопроводности газобетонных блоков

Вопрос сохранения тепла в домах раньше не стоял так остро, так как для возведения конструкций применялись материалы, создаваемые на основе тяжелых видов бетона, соответственно, здания и так очень хорошо сохраняли тепло.

Теперь же на выбор строительного материала оказывает влияние, как его стоимость, так и стоимость используемых энергоносителей в помещении. Они в определенный момент резко подорожали, поэтому более целесообразным стало использовать, в том числе, и в качестве способа утепления здания, газобетонные блоки.

Газобетон производят посредством реакции между алюминиевой пудрой и известью. Данную смесь вымешивают в цементном растворе, реакция же создает ячейки, которые получаются с разным диаметром. Такой материал получается пористым, что значительно снижает его вес, даже если отдельные элементы являются достаточно крупными на вид. Характеристики блоков, на которые нужно обращать внимание — это изоляционные свойства, паропроницаемость, но выделяется коэффициент теплопроводности.

Что нужно знать про коэффициент теплопроводности?

Применяется этот показатель ко всем строительным материалам, а означает он количество (за одни час) тепла, которое способно преодолеть 1 м³ материала, если на 1 ºС изменится окружающая температура, в ту или иную сторону. Измерение и его дальнейший расчет значения, которое измеряется в ваттах на метр-кельвин, происходит исключительно в лабораторных условиях. Самостоятельно газобетон тестировать не нужно, так как существуют уже готовые таблицы, где есть все основные характеристики.

Тепловые характеристики блоков

При строительстве здания очень важно правильно рассчитать толщину стен, так как она будет оказывать влияние не только на нагрузку, которую тоже превышать нельзя, но и на теплопроводность. Подход к вопросу должен быть серьезным, так как конечное предназначение здания может быть каким угодно. Для жилого помещения подойдет один коэффициент, для нежилого — другой. Также важным аспектом являются и климатические условия в том месте, где здание из газобетона будет возводиться.

Газобетон с различной плотностью используется для разных целей, то есть, если речь идет именно о теплоизоляции, то подойдут марки от D300 до D400, в качестве дополнительного утеплителя подойдут марки от D500 до D900, также они могут быть использоваться для строительства зданий с одним этажом и мансардной крышей. Для высоток, а, конкретнее, для несущих конструкций в них, лучше всего взять что-то из D1000 и более прочные. Цифра означает, сколько именно в кубометре бетона содержится твердых компонентов. Сама таблица выглядит так:

Таблица индекса изоляции шума в зависимости от марок газобетона
Показатель влажности Марка газобетона
D300 D400 D500 D600
Коэффициент теплопроводности, λ0(Вт/(м · ºС))
В сухом состоянии 0% 0,072 0,096 0,112 0,141
При влажности 5% 0,088 0,117 0,147 0,183

Что касается монтажа блоков, то он происходит посредством пазов и клея, соответственно, подобное сцепление не дает возможности теплу уходить. Но даже при изначально благоприятных условиях в вопросе утепления дома, значительное количество денежных средств можно сэкономить, зная, каким будет коэффициент теплопроводности блоков из газобетона при конкретной толщине стен.

Таблица зависимости коэффициента теплопроводности от толщины стен из газобетона
Толщина стены, мм Марка газобетона
D400 D500 D600
Коэффициент теплопроводности, λ0(Вт/(м · ºС))
120 0,82 1,01 1,16
200 0,51 0,61 0,72
240 0,41 0,52 0,58
300 0,32 0,42 0,46
360 0,27 0,33 0,38
400 0,25 0,31 0,35

Учитывая эти характеристики видно, что чем ниже коэффициент теплопроводности, тем выше теплоизоляция стены.

Влияние толщины швов

Нельзя обходить вниманием энергосберегающую способность газобетона, и уже на этом этапе на первый план выходит его толщина. Например, есть такое понятие, как мостик холода, который представляет собой слой цемента, который укладывается между блоками. От толщины слоя раствора также многое зависит.

При использовании шва с толщиной не более 2 мм, теплотехническая однородность не меняется — если сказать простыми словами, то при подобной толщине коэффициент теплопроводности не будет изменен. При использовании более толстого слоя раствора, до 12 мм, коэффициент возрастает примерно на 20%, при толщине 20 мм данный показатель увеличится вплоть до 30%, что является критичным.

Как сказывается показатель теплопроводности на использование материала?

В случае если стена из блоков является однослойной, и не имеет никакой отделки в принципе, то есть, внутри и снаружи оставлено все, как есть, то ее можно сделать оградой своего основного помещения, но при одном важном условии — относительная влажность в нем, когда отопление включено, не может превышать 55%. Еще следует учитывать и максимальный уровень накапливания влаги, то есть, к концу этого периода ее прирост не должен быть больше 1,5%. Когда этот материал используется для строительства стены в ванной комнате или в сауне, то есть, в помещении, которое точно будет иметь высокий показатель влажности, очень важно добиться того, чтобы водяные пары не попадали в газоблоки. То есть, при использовании керамической плитки потребуется затирать ее паронепроницаемым составом. Бани и сауны еще более требовательны к поглощению влаги, поэтому для пароизоляции следует применять минвату, пенополиэтилен или другой фольгированный материал.

Актуальным является вопрос дополнительного утепления. Это может быть популярная минвата, штукатурка или другой материал, не важно, так как в любом случае потребуется вычислять сопротивление паропроницания для данной стены.

ОПРЕДЕЛЕНИЕ ТЕПЛОПРОВОДНОСТИ ДЛЯ ЭЛЕМЕНТОВ ИЗ АВТОКЛАВИРОВАННОГО ПЕРИОДИЧЕСКОГО БЕТОНА, ИСПОЛЬЗУЕМЫХ В ЗАКРЫТЫХ КЛАДКАХ СТЕН

СОХРАНЕНИЕ ЗДАНИЙ ADOBE

BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică Gheorghe Asachi din Iaşi Tomul LVI (LX), Fasc.1, 2010 Secţia CONSTRUCŢII. «РИТЕКТУРА» СОХРАНЕНИЕ ЗДАНИЙ ADOBE К

Дополнительная информация

Энергия и здания

Энергетика и здания 59 (2013) 62 72 Списки содержания доступны на сайте SciVerse ScienceDirect Energy and Buildings на нашей страничке: www.elsevier.com/locate/enbuild Экспериментальное определение тепловых характеристик

Дополнительная информация

Европейский технический допуск

Уполномочен и уведомлен в соответствии со статьей 10 Директивы Совета 89/106 / EEC от 21 декабря 1988 г. о сближении законов, постановлений и административных положений государств-членов, касающихся

Дополнительная информация

Естественная конвекция.Сила плавучести

Естественная конвекция При естественной конвекции движение жидкости происходит за счет естественных средств, таких как плавучесть. Поскольку скорость жидкости, связанная с естественной конвекцией, относительно низкая, коэффициент теплопередачи

Дополнительная информация

YTONG Список продуктов. www.ytong.bg

YTONG Список продуктов www.ytong.bg 1 Блоки из пенобетона автоклавного твердения YTONG Ytong — это известный международный бренд, который представляет изделия из пенобетона.Продукция имеет неограниченную конструктивную

Дополнительная информация

Советники для реального строительства

Консультанты по реальному строительству baumit.com Эффективное и экономичное строительство от стен до изоляции Сравнение затрат и потребностей Комфортный микроклимат в помещении Экономия энергии защищает окружающую среду Правильная стена

Дополнительная информация

Модуль 3.7. Тепловой мост

Модуль 3.7 Результаты обучения тепловому мосту После успешного завершения этого модуля слушатели смогут: — Описывать детали конструкции, которые влияют на тепловые мосты. 2 Введение в термический

Дополнительная информация

Внутренняя система предотвращения плесени

Внутренняя изоляция и ремонтные панели Система компонентов, которые были разработаны для идеальной работы вместе для устранения повреждений, вызванных плесенью.Система состоит из досок, изоляционных клиньев, откос

Дополнительная информация

Проблемы сажи и накипи

Доктор Альбрехт Каупп Page 1 Проблемы сажи и накипи Проблема Сажа и накипь не только увеличивают потребление энергии, но также являются основной причиной выхода из строя трубок. Цели обучения Понимание значения

Дополнительная информация

Регламент тестирования EHPA

Правила испытаний EHPA Условия испытаний тепловых насосов воздух / вода, условия испытаний и методы испытаний на основе EN 14511-1-4 Дополнительные требования для присвоения международного знака качества для тепла

Дополнительная информация

ТЕПЛОПРОВОДНОСТЬ И КОЭФФИЦИЕНТ ТЕПЛОВОГО РАСШИРЕНИЯ КОМПОЗИТНЫХ ЛАМИНАТОВ GFRP С НАПОЛНИТЕЛЯМИ

ТЕХНИЧЕСКИЙ ПАСПОРТ

EPOXY — NG1001 — система на основе смолы для предварительной обработки Общая информация Описание: ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ EPOXY — NG1001 — это система на основе смолы на основе эпоксидной смолы для предварительной обработки горячего расплава и давления

Дополнительная информация

Основы притирки и полировки

Отчет лаборатории по основным применениям притирки и полировки 54 Притирка и полировка 1.0: Введение Притирка и полировка — это процесс, при котором материал точно удаляется с заготовки (или образца)

Дополнительная информация

4 Термомеханический анализ (ТМА)

172 4 Термомеханический анализ 4 Термомеханический анализ (ТМА) 4.1 Принципы ТМА 4.1.1 Введение Дилатометр используется для определения линейного теплового расширения твердого тела как функции температуры.

Дополнительная информация

Процесс термической обработки

Процесс термообработки Холитаун, Шотландия Соединенное Королевство Резисторы — Изоляция — Защита Чунцин, Китай C / C крепление, стержни и балки Изоляция St-Marys, США Gennevilliers, Франция Основные производственные площадки Industrial

Дополнительная информация

Термоклеи Ther-O-Bond 1500

Продукция / Интерфейсные материалы / Клеи Клеи Bond 1500 Эпоксидная литьевая система для заливки и инкапсуляции Bond 1600 Двухкомпонентная эпоксидная смола для склеивания Bond 2000 Акриловая адгезивная связка быстрого отверждения Высокая прочность

Дополнительная информация

ГЛАВА 6 ИЗМЕРЕНИЕ ИСПЫТАНИЯ НА ИЗНОС

84 ГЛАВА 6 ИЗМЕРЕНИЕ ИСПЫТАНИЯ НА ИЗНОС Износ — это процесс удаления материала с одной или обеих твердых поверхностей в твердотельном контакте.Поскольку износ — это явление удаления поверхности и происходит в основном

Дополнительная информация

Данные о продукте Green Thread

Green Thread Данные о продукте Области применения Разбавленные кислоты Каустические вещества Производимая вода Промышленные стоки Горячая вода Возврат конденсата Материалы и конструкция Все трубы, изготовленные методом намотки нитями с использованием

Дополнительная информация

Инструментальная сталь для холодных работ AISI O1

ФАКТЫ О СТАЛИ AISI O1 Инструментальная сталь для холодных работ Здесь начинается отличное оснащение! Эта информация основана на нашем текущем уровне знаний и предназначена для предоставления общих сведений о наших продуктах и ​​их

Дополнительная информация

Раздел 4: NiResist Iron

Раздел 4: Железо NiResist Раздел 4 Описание марок Ni-Resist…4-2 201 (Тип 1) Ni-Resist … 4-3 202 (Тип 2) Ni-Resist … 4-6 Списки акций … 4-8 4-1 Ni-Resist Описание марок Ni-Resist Dura-Bar

Дополнительная информация

Североамериканский нержавеющий

Плоские нержавеющие изделия в Северной Америке Лист нержавеющей стали марки 310S (S31008) / EN 1.4845 Введение: SS310 — это высоколегированная аустенитная нержавеющая сталь, предназначенная для работы при повышенных температурах.

Дополнительная информация

Силановые связующие агенты

Силановые связывающие агенты Содержание Введение 2-4 Характеристики 5 Аминофункциональные силановые связывающие агенты 6 Эпоксидно-функциональные силановые связывающие агенты 6 Винилфункциональные силановые связывающие агенты 7

Дополнительная информация

Подшипники скольжения из PTFE 04/10 149

10.04.149 1.0 ОБЩАЯ ИНФОРМАЦИЯ В широком диапазоне применений подшипники скольжения из PTFE превосходят обычные расширительные пластины, ролики и опоры коромысла. Они обслуживают нефтехимический завод,

Дополнительная информация

APE T углепластик Аслан 500

Полимерная лента, армированная углеродным волокном (CFRP), используется для структурного усиления бетона, кирпичной кладки или деревянных элементов с использованием техники, известной как укрепление на поверхности или NSM.Использование CFRP

Дополнительная информация

ОБРАБОТКА РАЗЛИЧНЫХ МАТЕРИАЛОВ

4 ОБРАБОТКА РАЗЛИЧНЫХ МАТЕРИАЛОВ СОДЕРЖАНИЕ ГЛАВЫ 4.1 Процессы формовки полимеров Процессы производства полимеров 4.2 Технология обработки резины Переработка резины в готовое изделие

Дополнительная информация

Пропиточная машина

Пропиточная машина Dasan Engineering произвела машину для нанесения полимерного покрытия и ламината для композитных и изоляционных материалов в дополнение к пропиточной и сушильной машине благодаря высокой эффективности

Дополнительная информация

Термопластичные композиты

Термопластические композиты Определение По определению, термопласт — это материал на основе полимера (высокомолекулярного соединения), которому можно придать форму в жидком (вязком) состоянии при температуре выше

Дополнительная информация

Оборудование для литья под давлением

Процесс литья под давлением Оборудование для литья под давлением Классификация термопластавтоматов 1.Машина для литья под давлением обрабатывающая способность стиль зажимное усилие (кН) теоретический объем впрыска (см3)

Дополнительная информация

Хорошие доски = результаты

Раздел 2: Изготовление печатных плат и паяемость Хорошие платы = результаты Изготовление плат — один из аспектов индустрии производства электроники, о котором инженеры по сборке SMT часто мало знают.

Дополнительная информация

Теплопроводность пенобетона по методу поверхности отклика

[1]
М.С. Баспинар, И. Демир, Э. Кахраман, Г. Горхан. Возможность использования летучей золы вместе с микрокремнеземом в производстве автоклавного газобетона. KSCE J. Civ. Англ. Vol. 18, No. 1 (2014), pp.47-5.

DOI: 10.1007 / s12205-014-0392-7

[2]
В.Кэри, К. Дулитл, С. Лин, Д. Лизардо и С. Марзен. Неавтоклавный газобетон повышенной прочности. Получено 2016 г. из http: / web. мит. edu / dlizardo / www / 3402_report. pdf.

[3]
М.Р. Джонс и А. Маккарти. Использование необработанной золы-уноса с низким содержанием извести в пенобетоне. Топливо Vol. 84, No. 11 (2005), pp. 1398-1409.

DOI: 10.1016 / j.fuel.2004.09.030

[4]
ГРАММ.К. Бехера, М. Моханти, С.Р. Баг, И. Саркар и С. Сингх. Шлак как крупный заполнитель и его влияние на механические свойства бетона. Int. J. Earth Sci. Англ. (2011), стр 899-902.

[5]
ЧАС.Махрафи и Г. Лебон. Влияние размера и пористости на теплопроводность нанопористого материала с распространением на нанопористые частицы, внедренные в матрицу-хозяин. Phys. Буквы A, Vol. 379 (12–13) (2015), стр. 968–973.

DOI: 10.1016 / j.physleta.2015.01.027

[6]
Б.Бхаттачарджи и С. Кришнамурти. Проницаемая пористость и теплопроводность строительных материалов. J. Mat. в Civ. Англ. Vol. 16, No. 4 (2004), pp. 322-330.

Коэффициент теплопроводности | Scientific.Net

Научно-практические основы метода получения тонкослойных теплоизоляционных покрытий

Авторы: А.М. Сычова, С.А. Мачнев, А. Шевчук

Аннотация: В статье представлен краткий обзор используемых в настоящее время тонкослойных теплоизоляционных красок и их характеристик. Предлагается новый состав тонкослойного теплоизоляционного покрытия. Введение в него твердых фаз неавтоклавного пенобетона со средней плотностью D150 с высокими значениями нормативной энтропии образования в нем научно обосновано с точки зрения повышения теплозащитных свойств.Показано, что такие фазы обладают преимуществом по сравнению с твердыми фазами используемых в настоящее время стеклянных и керамических микросфер. Также доказано, что наличие в составе тонкослойного теплоизоляционного покрытия из наноразмерных частиц в виде кремнезема способствует отражению падающего теплового потока за счет эффекта Тиндала и обеспечивает увеличение полидисперсности композиции. Приведен расчет полученного состава по формуле Ван Флека, применяемой в классической науке.

257

Измерение термических характеристик бетонов, работающих в экстремальных условиях

Авторы: Милена Кушнерова, Иван Копал, Войтех Вацлавик, Лукаш Гола, Томаш Дворский, Ян Валичек, Марта Харничарова, Войтех Шимичек

Аннотация: В статье представлены результаты экспериментального исследования по измерению тепловых характеристик бетонов на основе природных и искусственных заполнителей (стального шлака).Образцы бетонных композитов были приготовлены на основе природных заполнителей фракций 0/4, 4/8 и 8/16 мм и на основе стального шлака фр. 4/8 мм. Объемное соотношение отдельных фракций заполнителя во всех экспериментальных смесях, используемых для производства бетонных композитов, составляло 40:30:30 (fr. 0/4: 4/8: 8/16). Подготовленные образцы бетонных композитов на основе природного заполнителя и природного заполнителя в сочетании со стальным шлаком были подвергнуты испытаниям прочностных характеристик, водонепроницаемости, тепловых характеристик на коммерческом приборе ISOMET 2104 (измерение коэффициента теплопроводности λ, удельной теплоемкости емкость c и коэффициент температуропроводности a ), и нагрев в прототипе калориметрической камеры с компьютерным управлением.Основное внимание было уделено тестированию изменения значений коэффициентов теплопроводности λ в зависимости от изменения температур в диапазоне от -5 ° C до + 40 ° C. Измерения этих тепловых характеристик имеют очень высокую информативную ценность, особенно потому, что эти параметры материалов не приведены в таблицах для вновь разработанных строительных материалов, и поэтому они не исследуются при экстремальных температурах. Это причина, по которой они не могут использоваться в качестве важных данных при тепловых расчетах неизолированной бетонной конструкции (например,грамм. с использованием полистирола и / или стекловаты).

68

Исследование эффективной теплопроводности глазурованного пустотелого бетона

Авторы: Бинг Чжан, Чжун Цин Ченг

Аннотация: На основе анализа механизма теплопроводности глазурованного пустотелого бетона в данной статье разделены каналы теплопроводности в бетоне, построена модель коэффициента теплопроводности на основе теории минимального теплового сопротивления и подтверждена модель с использованием данные другой связанной литературы и данные нашего собственного эксперимента.Следствие показывает, что эта модель может точно рассчитать коэффициент теплопроводности в засушливом состоянии. Чтобы повысить точность этой модели, мы должны принять во внимание форму каркаса и тепловое сопротивление границы раздела между бетоном и каркасом.

823

Измерение теплотехнических параметров автоклавного газобетона.

Авторы: Алена Стругарова

Аннотация: Насыпная плотность и влажность — это факторы, которые существенно влияют на физические свойства автоклавного газобетона (ААБ), включая теплопроводность и другие теплотехнические характеристики.В этой статье показаны результаты измерений прочности на сжатие, капиллярного поглощения, водопоглощения и пористости AAC (золы на псевдоожиженной летучей золе) при различной объемной плотности, а также результаты теплопроводности AAC при различной объемной плотности и переменной влажности материал. Теплотехнические свойства измерялись портативным измерительным прибором Isomet 2104. Полученные результаты демонстрируют зависимость физических свойств, в том числе теплопроводности AAC, от насыпной плотности и влажности.Также была показана надежность и точность метода измерения.

100

Измерение физических свойств полимерных композитов на основе отходов, армированных частицами (WPPC)

Авторы: Дарина Досталова, Михал Вацек, Либор Матейка, Ян Пенчик, Томаш Поспишил, Роман Брзон

Резюме: Недавно в Технологическом университете Брно был разработан уникальный полимерный композит на основе отходов (WPPC) из переработанного пеностекла и полипропилена.WPPC был разработан так, чтобы обеспечить как хорошие термические, так и механические свойства, чтобы стать предпочтительным материалом для теплоизоляционных деталей конструкций. Однако, прежде чем WPPC сможет надежно использоваться проектировщиками-строителями, необходимо точно определить физические свойства WPPC. Поэтому мы изучили термическую, механическую и влагопоглощающую способность WPPC. В этой работе мы сначала представляем структуру материалов WPPC и трудности, связанные с экспериментальным определением физических свойств WPPC.Во-вторых, мы представляем измерения коэффициента теплопроводности с использованием нескольких экспериментальных методов, чтобы показать расхождения между этими методами. В-третьих, мы показываем и обсуждаем сжимающие свойства WPPC, включая модуль Юнга, прочность и предел текучести, а также их зависимости от температуры испытания. В-четвертых, мы представляем измерение влагопоглощения. Наконец, мы сравнили экспериментально определенные физические параметры WPPC с параметрами других распространенных строительных материалов, чтобы четко показать возможности применения WPPC.Подводя итог, мы представляем экспериментальное исследование, в котором представлены не только ценные данные о физических свойствах WPPC, но также трудности и расхождения, связанные с этими экспериментами, и мы оцениваем потенциал WPPC как строительного материала.

96

Мониторинг тепловых параметров легких периметральных стен из дерева

Авторы: Марианна Шуштякова, Павол Дюрица

Аннотация: На основе первоначальных измерений, которые были выполнены на стенке образца, представлены частичные результаты длительного мониторинга.Стена представляла собой легкую деревянно-каркасную конструкцию, построенную в климатической камере в лаборатории павильонного типа кафедры строительных конструкций и градостроительства факультета гражданского строительства Жилинского университета. Статья посвящена изменению тепловых свойств утеплителей в течение суток под влиянием реальных погодных условий.

315

Влияние содержания карбонильного никеля на теплофизические свойства металлополимерных материалов на основе ароматического полиамида фенилона

Авторы: Александр Буря, Екатерина Ериомина, Сян Ян Цянь, Сян Мин Фэн

Аннотация: Введение мелких частиц карбонильного никеля в термостойкий полиамидфенилон может значительно улучшить теплофизические характеристики КМ и расширить диапазон рабочих температур изделий из этих материалов.При введении карбонильного никеля в количестве 5-20 мас.% Термоустойчивость фенилона С-1 увеличивается на 10-30 градусов (наиболее существенно при содержании 20%), теплопроводность увеличивается на 38%, а температуропроводность увеличивается. композитных материалов составляет от 1,75 ∙ 10-4 до 1,9 ∙ 10-4, что в 1,3 — 1,4 раза выше, чем у исходного фенилона.

509

Влияние плотности и температуры окружающей среды на коэффициент теплопроводности теплоизоляционных пенополистирольных и полиуретановых материалов для пищевой упаковки

Авторы: Хай Янь Сон, Синь Синь Чэн, Лэй Чу

Аннотация: Коэффициент теплопроводности — важный показатель оценки эффективности теплоизоляционного материала.Чтобы обеспечить теоретическую основу для выбора теплоизоляционных материалов, мы проверяем коэффициент теплопроводности пенополистирола (EPS) и жесткого пенополиуретана (PU) с различной плотностью при различных температурах окружающей среды, а затем определяем влияние плотности материала и температуры окружающей среды на коэффициент теплопроводности пищевых изоляционных упаковочных материалов. В соответствии с национальным стандартом GB / T10297-1998 (Метод испытания теплопроводности неметаллических твердых материалов методом горячей проволоки) мы проверяем коэффициент теплопроводности образцов различной плотности при различных температурах окружающей среды.Результат показывает, что при той же температуре коэффициент теплопроводности сначала увеличивается, а затем уменьшается с увеличением плотности. При той же плотности коэффициент теплопроводности увеличивается с увеличением температуры окружающей среды.

152

Оценка моделирования коэффициента теплопроводности на основе бетона с минимальным термическим сопротивлением

Авторы: Чао Чжао, Ду Шун Тин

Аннотация: Коэффициент теплопроводности является одним из важных параметров теплопроводности бетона и имеет относительно большое влияние на температурное поле внутри его конструкции.В данной статье исследуется основное оборудование эксперимента по коэффициенту теплопроводности бетонов и требования к конфигурации первичных материалов. В то же время он изучает создание модели коэффициента теплопроводности бетона на основе теоретической основы моделирования теплопроводности, разделения путей тепловых потоков и пути K в формуле коэффициента теплопроводности.

3320

Анализ влияния температуры на теплопроводность изоляционного блока из вторичного сырья

Авторы: Алена Калужова, Ян Пенчик, Либор Матейка, Либор Матейка, Томаш Поспишил, Дарина Досталова

Аннотация: Возрастающие требования к тепловой защите зданий способствуют развитию конструктивного и материального проектирования строительных объектов.Правильное конструктивное проектирование деталей ведет к устранению мостов холода и улучшению внутренней среды. Управление отходами — одна из основных черт устойчивого строительства. Решение этой проблемы — продление жизненного цикла продукта за счет вторичной переработки. В докладе обсуждается разработка блока теплоизоляционных материалов из вторичного сырья — теплоизоляционного композиционного материала — TICM [1]. Равномерное диспергирование зерен отходов пеностекла (наполнителя) в полимерном наполнителе из переработанных термопластов (ПП, ПНД) вызывает образование композита частиц.Решающие свойства при выборе материалов, которые будут применяться, включают в основном коэффициент теплопроводности, объемную плотность, прочность на сжатие и водопоглощение. Однако коэффициент теплопроводности λ [Вт / мК] меняется в зависимости от температуры и влажности окружающей среды.

242

Теплопроводность

Теплопроводность

Теплопроводность (λ) — это внутреннее свойство материала, которое связывает его способность проводить тепло.Передача тепла за счет теплопроводности включает передачу энергии внутри материала без какого-либо движения материала в целом. Проводимость имеет место, когда в твердой (или неподвижной жидкой) среде существует градиент температуры. Кондуктивный тепловой поток происходит в направлении уменьшения температуры, потому что более высокая температура означает более высокую молекулярную энергию или большее движение молекул. Энергия передается от более энергичных молекул к менее энергичным, когда соседние молекулы сталкиваются.

Теплопроводность определяется как количество тепла ( Q ), передаваемое через единицу толщины ( L ) в направлении, перпендикулярном поверхности единичной площади ( A ) из-за градиента единичной температуры (Δ ). T) в установившемся режиме и когда теплопередача зависит только от температурного градиента.В форме уравнения это выглядит следующим образом:

Теплопроводность = тепло × расстояние / (площадь × градиент температуры)

λ
= Q × L / ( A × Δ T )

Приблизительно Значения теплопроводности для некоторых распространенных материалов представлены в таблице ниже.

Материал

Теплопроводность
Вт / м, o K

Теплопроводность
(кал / сек) / (см 2 , o C / см)

Воздух при 0 ° C

0.024

0,000057

Алюминий

205,0

0,50

Латунь

109,0

Бетон

0,8

0.002

Медь

385,0

0,99

Стекло обычное

0,8

0,0025

Золото

310

Лед

1.6

0,005

Утюг

0,163

Свинец

34,7

0,083

Полиэтилен HD

0,5

Полистирол вспененный

0.03

Серебро

406,0

1.01

Пенополистирол

0,01

Сталь

50,2

Вода при 20 ° C

0.0014

Дерево

0,12-0,04

0,0001

K Определение: Коэффициент теплопроводности

Что означает К? K означает коэффициент теплопроводности. Если вы посещаете нашу неанглийскую версию и хотите увидеть английскую версию коэффициента теплопроводности, прокрутите вниз, и вы увидите значение коэффициента теплопроводности на английском языке.Имейте в виду, что сокращение K широко используется в таких отраслях, как банковское дело, вычислительная техника, образование, финансы, правительство и здравоохранение. Помимо K, коэффициент теплопроводности может быть сокращением для других аббревиатур.

K = коэффициент теплопроводности

Ищете общее определение K? K означает коэффициент теплопроводности. Мы с гордостью вносим аббревиатуру K в самую большую базу данных сокращений и акронимов. На следующем изображении показано одно из определений K на английском языке: Коэффициент теплопроводности.Вы можете скачать файл изображения для печати или отправить его своим друзьям по электронной почте, Facebook, Twitter или TikTok.

Значения K в английском

Как упоминалось выше, K используется как аббревиатура в текстовых сообщениях для обозначения коэффициента теплопроводности.