Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Коэффициент теплосопротивления: Теплотехнические определения

Содержание

Почему важно знать коэффициент теплопроводности полиуретана и как это влияет на качество теплоизоляции?


Зачем знать коэффициент теплопроводности при выборе утеплителя, как он влияет на качество теплоизоляции и как рассчитать толщину слоя утепления. Читайте в статье.

ППУ для теплоизоляции в сравнении с другими утеплителями


Пенополиуретан (ППУ) — газонаполненная пластмасса, которая получается в результате смешивания полиола и полиизоцианата. После химической реакции вещество увеличивается в объеме от 5 до 25 раз в зависимости от формулы.


В строительстве ППУ применяют для теплоизоляции. Его теплопроводность позволяет защитить от холода кирпичные и деревянные дома, строения из газобетона и камня, блочные и бетонные конструкции. Материал не пропускает влагу и может защищать от воды. Имеет высокую адгезию, легко заполняет щели и пустоты, устойчив к растворам щелочей, кислот, осадкам. При длительной эксплуатации пенополиуретан не плесневеет. Он не восприимчив к грибкам, защищает от насекомых и грызунов. Служит дольше 30 лет.


Пенополиуретан не горит и не выделяет в атмосферу вредные вещества. Компания «Химтраст» предлагает материалы с разным классом горючести: от «Химтраст СКН-60 Г1» (трудногорючий) до «Химтраст СКН-30 Г3» (самозатухающий).


В строительстве для теплоизоляции используют базальтовое волокно, стекловату, полиуретан, пенопласт, пенополистирол. Коэффициент теплопроводности полиуретана один из самых низких среди утеплителей. Чем ниже коэффициент, тем тоньше нужен слой утеплителя. 



Средний коэффициент теплопроводности полиуретана — 0,028 Вт/(м·К). У открытоячеистого ППУ, который используют для тепло- и шумоизоляции закрытых помещений — 0,037 Вт/(м·К). У закрытоячеистого для наружных стен — 0,022 Вт/(м·К). Этот показатель говорит о том, насколько сильно материал сопротивляется проникновению холода извне и отдаче тепла наружу. Сравнение теплопроводности ППУ приведено в Приложении 3 СНиП 2-3-79.


Базальтовый утеплитель, стекловата и эковата


Базальтовым утеплителем (каменной ватой) часто укрывают здания. Он не горит и способен к самозатуханию. Теплопроводность материала — 0,04 Вт/(м·К), это тоже хороший показатель, но, в отличие от ППУ, слой базальтового утеплителя должен быть в два раза толще, чтобы защитить конструкцию. Такой же коэффициент у стекловаты и эковаты.

Экструдированный пенополистирол


Плитами из экструдированного пенополистирола защищают жилые дома от холодов. Теплопроводность материала — 0,032 Вт/(м·К), этого достаточно для утепления, однако нужно учитывать и другие свойства пенополистирола. Его класс горючести Г4, он легко воспламеняется и выделяет токсины.

Пенопласт


Пенопласт по плотности схож с пенополистиролом, только менее устойчив к механическому воздействию и держит тепло хуже. Коэффициент теплопроводности — 0,038 Вт/(м·К). Значит, его слой при утеплении должен быть на 30 % толще, чем ППУ.


За тепло в помещении отвечает не только теплопроводность ППУ при изоляции, но и другие материалы: кирпичная кладка, облицовочные панели, слой штукатурки, гидроизоляция. Все они имеют плотность и влияют на защиту здания от холода. 

Теплопроводность ППУ в сухом и влажном состоянии


При намокании любой материал впитывает влагу и расширяется. Разбухание приводит к частичной или полной потере теплоизоляционных свойств. Поэтому важно обращать внимание на водопоглощение по объему, которое измеряется в процентах. 


У закрытоячеистого ППУ типа «Химтраст СКН-40 Г2» этот показатель — 2 %, а у базальтовых утеплителей — 35 %. Это значит, что при попадании влаги большая часть теплоизоляционных свойств минеральной ваты, эковаты и стекловаты будет утрачена. С коэффициентом водопоглощения пенополиуретана сравнимы показатели пенополистирола и пенопласта: 1 % и 4 %. Однако при утеплении эти материалы нужно укладывать плитами и не допускать зазоров между ними, иначе тепло будет уходить сквозь щели. ППУ для теплоизоляции наносят на поверхность установками безвоздушного напыления единым слоем без швов и зазоров. Подробнее прочитать о напылении ППУ можно в этой статье.

Как рассчитать толщину слоя ППУ для теплоизоляции


Толщина слоя утеплителя зависит от коэффициента теплопроводности полиуретана. Но также на нее влияют климатическая зона, влажность внутри помещения, температура, влагопоглощение и свойства материала.


Расчет теплоизоляционного слоя регламентируется нормативными документами: СНиП 23-02-2002, СП 23-101-2004 «Проектирование тепловой защиты зданий», ГОСТ Р 54851-2011. 


Один из основных показателей для расчета толщины — суммарное сопротивление теплопередаче конструкций или термическое сопротивление. Оно обозначает необходимую разницу температур снаружи и внутри материала для прохождения энергии. Измеряется в (м²·K)/Вт. Чем выше величина показателя, тем надежнее утеплитель.


Чтобы рассчитать сопротивление, нужно толщину материала в метрах разделить на коэффициент теплопроводности пенополиуретана. 


dппу = (Rтреб — Rконстр) • ʎппу = (Rтреб — dконстр / ʎконстр) • ʎппу,


где dппу — требуемый слой ППУ в метрах,


Rтреб — требуемое сопротивление теплопередаче в (м²·K)/Вт,


Rконстр — сопротивление теплопередаче существующей ограждающей конструкции в (м²·K)/Вт,


ʎппу — коэффициент теплопроводности ППУ в Вт/(м•K),


ʎконстр — коэффициент теплопроводности существующей ограждающей конструкции в Вт/(м•K).


Подробнее о том, как найти оптимальную толщину слоя утеплителя, читайте в статье.



Для утепления помещения необходимо учитывать коэффициент теплопроводности материала. В зависимости от его физико-химических свойств определяется способность удерживать тепло. Чем ниже коэффициент теплопроводности, тем лучше защищает от холода. Также важно учитывать другие особенности теплоизоляторов: способность отталкивать влагу, горючесть, экологичность и срок эксплуатации.


Что такое теплопроводность и коэффициент теплопроводности. |

Теплопроводность.

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это  способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем «абстрактный дом». В «абстрактном доме» стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен  постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

 

Коэффициент теплопроводности.

Количество тепла, которое проходит через стены (а по научному — интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло. Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас  в качестве материалов для утепления зданий  наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов. Набирает популярность новый материал с улучшенными теплоизоляционными качествами — Неопор.

Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда)  и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2., то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур  стену сделать 10 см, то потери тепла будут уже 67 ватт. Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие «тепловое сопротивление материала». Это величина обратная теплопроводности.  Если, на пример, теплопроводность пенопласта толщиной 10 см — 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

 

 

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

Материал Коэфф. тепл. Вт/(м2*К)
Алебастровые плиты 0,470
Алюминий 230,0
Асбест (шифер) 0,350
Асбест волокнистый 0,150
Асбестоцемент 1,760
Асбоцементные плиты 0,350
Асфальт 0,720
Асфальт в полах 0,800
Бакелит 0,230
Бетон на каменном щебне 1,300
Бетон на песке 0,700
Бетон пористый 1,400
Бетон сплошной 1,750
Бетон термоизоляционный 0,180
Битум 0,470
Бумага 0,140
Вата минеральная легкая 0,045
Вата минеральная тяжелая 0,055
Вата хлопковая 0,055
Вермикулитовые листы 0,100
Войлок шерстяной 0,045
Гипс строительный 0,350
Глинозем 2,330
Гравий (наполнитель) 0,930
Гранит, базальт 3,500
Грунт 10% воды 1,750
Грунт 20% воды 2,100
Грунт песчаный 1,160
Грунт сухой 0,400
Грунт утрамбованный 1,050
Гудрон 0,300
Древесина — доски 0,150
Древесина — фанера 0,150
Древесина твердых пород 0,200
Древесно-стружечная плита ДСП 0,200
Дюралюминий 160,0
Железобетон 1,700
Зола древесная 0,150
Известняк 1,700
Известь-песок раствор 0,870
Ипорка (вспененная смола) 0,038
Камень 1,400
Картон строительный многослойный 0,130
Каучук вспененный 0,030
Каучук натуральный 0,042
Каучук фторированный 0,055
Керамзитобетон 0,200
Кирпич кремнеземный 0,150
Кирпич пустотелый 0,440
Кирпич силикатный 0,810
Кирпич сплошной 0,670
Кирпич шлаковый 0,580
Кремнезистые плиты 0,070
Латунь 110,0
Лед 0°С 2,210
Лед -20°С 2,440
Липа, береза, клен, дуб (15% влажности) 0,150
Медь 380,0
Мипора 0,085
Опилки — засыпка 0,095
Опилки древесные сухие 0,065
ПВХ 0,190
Пенобетон 0,300
Пенопласт ПС-1 0,037
Пенопласт ПС-4 0,040
Пенопласт ПХВ-1 0,050
Пенопласт резопен ФРП 0,045
Пенополистирол ПС-Б 0,040
Пенополистирол ПС-БС 0,040
Пенополиуретановые листы 0,035
Пенополиуретановые панели 0,025
Пеностекло легкое 0,060
Пеностекло тяжелое 0,080
Пергамин 0,170
Перлит 0,050
Перлито-цементные плиты 0,080
Песок 0% влажности 0,330
Песок 10% влажности 0,970
Песок 20% влажности 1,330
Песчаник обожженный 1,500
Плитка облицовочная 1,050
Плитка термоизоляционная ПМТБ-2 0,036
Полистирол 0,082
Поролон 0,040
Портландцемент раствор 0,470
Пробковая плита 0,043
Пробковые листы легкие 0,035
Пробковые листы тяжелые 0,050
Резина 0,150
Рубероид 0,170
Сланец 2,100
Снег 1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) 0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности) 0,230
Сталь 52,0
Стекло 1,150
Стекловата 0,050
Стекловолокно 0,036
Стеклотекстолит 0,300
Стружки — набивка 0,120
Тефлон 0,250
Толь бумажный 0,230
Цементные плиты 1,920
Цемент-песок раствор 1,200
Чугун 56,0
Шлак гранулированный 0,150
Шлак котельный 0,290
Шлакобетон 0,600
Штукатурка сухая 0,210
Штукатурка цементная 0,900
Эбонит 0,160

Коэффициент теплопроводности теплоизоляционных материалов

Одной из основных характеристик теплоизоляционных материалов является теплопроводность. Почти у всех есть понимание, что чем она меньше, тем лучше. Но что означает этот термин и что он нам дает? Как сравнить два типа изоляции, используя этот параметр? Предлагаем разобраться

Что такое коэффициент теплопроводности?

Согласно определения в своде правил СП 61.13330.2012:

Коэффициент теплопроводности — количество тепла, которое передается за единицу времени на единицу площади поверхности при температурном градиенте (изменении температуры), равном единице. Обозначается символом λ (лямбда), единица измерения Вт/(м·К).

Само свойство теплопроводности определяет способность материалов передавать тепловую энергию от более горячего тела к более холодному.

От чего зависит коэффициент?

При изучении данной характеристики было определено, что существует зависимость коэффициента теплопроводности от температуры и других параметров:

  • параметров состояния — температуры, давления
  • свойств — плотность, влажность, структуры

При изменении данных свойств и параметров меняется и теплопроводность.

Обозначение λ0 определяет коэффициент теплопроводности, который получен при испытаниях при температуре 0 °С. При этом температура является среднеарифметическим значением от: (температура на внешней поверхности изоляционного материала + температура на изолируемой поверхности)/2.

По аналогии λ20 — это коэффициент полученный при проведении замеров при температуре 20 °С.

Как это использовать на практике?

Данная характеристика позволяет определить возможность использования теплоизоляции в определенных условиях. Кроме того, Вы можете сравнивать различные виды теплоизоляционных материалов и выбирать наиболее подходящий.

Коэффициент теплопроводности теплоизоляционных материалов

1. Вспененный полиэтилен. Сравнивая продукцию из вспененного полиэтилена можно определить, что при температуре 10 °С минимальным коэффициентом теплопроводности будет обладать теплоизоляция ALMALEN — 0.032 Вт/мК — 0.034 Вт/мК. Это наименьший показатель в данном классе.

2. Вспененный каучук. В данной группе теплоизоляции можно выделить AF/Armaflex — для неё λ0 ºC ≤ 0,033 Вт/(м·К).

3. Базальтовый утеплитель. При выборе материалов из базальтовой ваты, стоит обратить внимание на Цилиндры Paroc HVAC Section AluCoat T — λ10 ºC ≤ 0,034 В/(м·К).

Правильно ли сравнивать только по λ?

Прежде всего стоит сравнивать показатели, определенные при одной температуре. Существуют различные стандарты определения коэффициента. Могут отличаться «стандартные тепловые режимы»: согласно ГОСТ 7076-99 показатель определяется при 25 °С, а при использовании европейского стандарта EN 12667:2001, нормой является 10 °С.

Также учитывайте планируемые условия эксплуатации материала: влажность, возможное воздействие пара, наличие критических перепадов температуры и так далее.

Расчет сопротивления теплопроводности стены для Новосибирска

Расчет произведен в соответствии с требованиями следующих нормативных документов:
СНиП 23-02-2003 «Тепловая защита зданий»
СП 23-101-2004 «Проектирование тепловой защиты зданий»
СП 131-13330-2012 «Строительная климатология»

 

1. Исходные данные:
Район строительства: Новосибирск
Тип здания или помещения: Жилое
Вид ограждающей конструкции: Наружные стены

 

2. Климатические параметры
Значение расчетной температуры внутреннего воздуха tint для жилых помещений определено в соответствии с ГОСТ 30494–2011:

tint=210С

Значение расчетной температуры наружного воздуха text принято по СП 131-13330-2012 (Таблица 3.1), равной значению средней температуры наиболее холодной пятидневки обеспеченностью 0,92:

text= -370С

Продолжительность отопительного периода Zht определена по СП 131-13330-2012 (Таблица 2):

Zht=2210сут

Средняя температура наружного воздуха за отопительный период textav принята по СП 131-13330-2012 (Таблица 3.1):

textav = -8,10С

Градусо–сутки отопительного периода Dd определены по СНиП 23-02-2003 (Формула 2):

Dd = (tint— textav) х Zht = (21+8,1) х 221= 6431 0С сут

 

 

3. Нормируемые теплоэнергетические параметры
Согласно п.5.3 СНиП 23-02-2003 нормируемое сопротивление теплопередаче определяется по формуле R=a•Dd+b (Таблица 4. (1)) и равно при расчетных условиях:

Rwreg = 0,00035 х 6431 + 1,4 = 3,65 м20С/Вт

где коэффициенты a и b для наружных стен жилых зданий принимаются из Таблицы 4 СНиП 23-02-2003

 

4. Приведенное сопротивление теплопередаче ограждающей конструкции
Приведенное сопротивление теплопередачи ограждающих конструкций рассчитывается по формуле:

Rwr = (1/8,7 + δ1/ λa1 + δ2/ λa2 + δ3/ λa3 + … + 1/23) x r,

где
δ1… — толщина ограждающего слоя №1… в метрах;
λa1 – расчетный коэффициент теплопроводности материала №1… в условиях эксплуатации А;
r – коэффициент теплотехнической однородности в растворных швах. Определяется по таблице… или рассчитывается на основе данных толщины растворного шва, применяемого раствора, используемой арматуры;

Для сравнения свойств теплопроводности самого материала условимся, что растворного шва не существует и поэтому коэффициент теплотехнической однородности будет равен:

r = 1

 

Важно! В расчетах необходимо использовать расчетный коэф. теплопроводности в условиях «А». Эти условия учитывают тепло-влажностные процессы во время проживания. Некоторые производители лукавят, когда производят подобные расчеты с применением λсух . Для высушенного материала λсух меньше чем λa, следовательно, толщина стены будет подсчитана неверно, так как в естественных условиях стена ни когда не будет сухой и будет обладать своей естественной влажностью.

 

Пример расчета приведенного сопротивления теплопередачи для наружной стены, выполненной из автоклавного газобетона:

Автоклавный газобетон (p=600кг/м3) ГОСТ 31359-2007 приложение А, коэффициент теплопроводности λа=0,160Вт/(м°С), толщина δ=560мм

Rwr = (1/8,7 + 0,560/0,160 + 1/23) x 1= 3,66 м20С/Вт

Сравниваем с нормируемым значением:

Rwr = 3,66 м20С/Вт  >  Rwreg =3,65 м20С/Вт

Таким образом, минимальная толщина стены для автоклавного газобетона марки по плотности D600 должна быть не меньше 581мм. При этом мы помним, что блоки укладываются на клей с использованием армирующей сетки и следовательно толщина стены будет немного больше, так как в этом случае коэф. теплотехнической однородности r будет меньше 1.

На данном примере определены толщины наружных стен для поризованного блока, неавтоклавного газобетона, пенобетона, арболита и полистиролбетона.

 

Таблица №1. Толщина наружной стены, рассчитанной по нормам СНиП применительно к Новосибирской области.

 












Наименование

Газобетон
автоклав.

Поризованный блок

Газобетон
неавтоклав.

Пенобетон

Арболит

Полистирол
бетон

ГОСТ

31359-2007

530-2012

25485-89

25485-89

19222-84

33929-2016

Марка по плотности

D600

D600

D600

D600

D450

Марка по прочности

B2,5

М100

B2,0

В2,0

В1,5

В1,5

Морозостойоксть

F100

F50

F50

F75

F50

F200

Плотность, кг/м3

600

800

600

600

600

450

Коэф. теплопроводности:

 

λ сух., Вт/(м°С)

0,122

0,180

0,140

0,140

0,120

0,105

λa (Нов-кая обл.),
Вт/(м°С)

0,160

0,210

0,160

0,160

0,180

0,118

Нормируемое сопротивление теплопередаче для Новосибирской обл., м2  0С/Вт

3,65

Толщина стены, удовлетворяющий требованиям СНиП, мм

560 740 560 560 630 413

 

Среди представленных образцов, самым теплым материалом для наружной стены оказался полистиролбетон. Если вы решили строить здание 2 — 3 этажа, то блоки из полистиролбетона — разумный выбор с точки зрения сохранения тепла, прочности, водопоглощения, и других характеристик.

 

Нормы теплопроводности стены

Автор Евгения На чтение 21 мин. Опубликовано

Нормы теплопроводности стены

Расчет толщины для наружных стен жилого дома

Часть 1. Сопротивление теплопередаче – первичный критерий определения толщины стены

Чтобы определится с толщиной стены, которая необходима для соответствия нормам энергоэффективности, рассчитывают сопротивление теплопередаче проектируемой конструкции, согласно раздела 9 «Методика проектирования тепловой защиты зданий» СП 23-101-2004.

Сопротивление теплопередаче – это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Это удельная величина, которая показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента – тем «теплее» материал.

Все стены (несветопрозрачные ограждающие конструкции) считаются на термоспротивление по формуле:

R=δ/λ (м 2 ·°С/Вт), где:

δ – толщина материала, м;

λ – удельная теплопроводность, Вт/(м ·°С) (можно взять из паспортных данных материала либо из таблиц).

Полученную величину Rобщ сравнивают с табличным значением в СП 23-101-2004.

Чтобы ориентироваться на нормативный документ необходимо выполнить расчет количества тепла, необходимого для обогрева здания. Он выполняется по СП 23-101-2004, получаемая величина «градусо·сутки». Правила рекомендуют следующие соотношения.

Таблица 1. Уровни теплозащиты рекомендуемых ограждающих конструкций наружных стен

Сопротивление теплопередаче (м 2 ·°С/Вт) / область применения (°С·сут)

Двухслойные с наружной теплоизоляцией

Трехслойные с изоляцией в середине

С невентили- руемой атмосферной прослойкой

С вентилируемой атмосферной прослойкой

Керамзитобетон (гибкие связи, шпонки)

Блоки из ячеистого бетона с кирпичной облицовкой

Примечание. В числителе (перед чертой) – ориентировочные значения приведенного сопротивления теплопередаче наружной стены, в знаменателе (за чертой) – предельные значения градусо-суток отопительного периода, при которых может быть применена данная конструкция стены.

Полученные результаты необходимо сверить с нормами п. 5. СНиП 23-02-2003 «Тепловая защита зданий».

Также следует учитывать климатические условия зоны, где возводится здание: для разных регионов разные требования из-за разных температурных и влажностных режимов. Т.е. толщина стены из газоблока не должна быть одинаковой для приморского района, средней полосы России и крайнего севера. В первом случае необходимо будет скорректировать теплопроводность с учетом влажности (в большую сторону: повышенная влажность снижает термосопротивление), во втором – можно оставить «как есть», в третьем – обязательно учитывать, что теплопроводность материала вырастет из-за большего перепада температур.

Часть 2. Коэффициент теплопроводности материалов стен

Коэффициент теплопроводности материалов стен – эта величина, которая показывает удельную теплопроводность материала стены, т.е. сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С. Чем ниже значение коэффициента теплопроводности стен – тем здание получится теплее, чем выше значение – тем больше придется заложить мощности в систему отопления.

По сути, это величина обратная термическому сопротивлению, рассмотренному в части 1 настоящей статьи. Но это касается только удельных величин для идеальных условий. На реальный коэффициент теплопроводности для конкретного материала влияет ряд условий: перепад температур на стенках материала, внутренняя неоднородная структура, уровень влажности (который увеличивает уровень плотности материала, и, соответственно, повышает его теплопроводность) и многие другие факторы. Как правило, табличную теплопроводность необходимо уменьшать минимум на 24% для получения оптимальной конструкции для умеренных климатических зон.

Часть 3. Минимально допустимое значение сопротивления стен для различных климатических зон.

Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона. Сначала вы выбираете материал для конструкции, просчитываете термосопротивление своей стены (часть 1), а потом сравниваете с табличными данными, содержащимися в СНиП 23-02-2003. В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).

Согласно п. 9.1.2 СП 23-101-2004, минимально допустимое сопротивление теплопередаче Rо (м 2 ·°С/Вт) ограждающей конструкции рассчитывается как

R1=1/αвн, где αвн – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 × °С), принимаемый по таблице 7 СНиП 23-02-2003;

R2 = 1/αвнеш, где αвнеш – коэффициент теплоотдачи наружной поверхности ограждающей конструкции для условий холодного периода, Вт/(м 2 × °С), принимаемый по таблице 8 СП 23-101-2004;

R3 – общее термосопротивление, расчет которого описан в части 1 настоящей статьи.

При наличии в ограждающей конструкции прослойки, вентилируемой наружным воздухом, слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в этом расчете не учитываются. А на поверхности конструкции, обращенной в сторону вентилируемой воздухом снаружи прослойки, следует принимать коэффициент теплоотдачи αвнеш равным 10,8 Вт/(м 2 ·°С).

Таблица 2. Нормируемые значения термосопротивления для стен по СНиП 23-02-2003.

Жилые здания для различных регионов РФ

Градусо-сутки отопительного периода, D, °С·сут

Нормируемые значения сопротивления теплопередаче , R, м 2 ·°С/Вт, ограждающих конструкций для стен

Астраханская обл., Ставропольский край, Краснодарский край

Белгородская обл., Волгоградская обл.

Алтай, Красноярский край, Москва, Санкт Петербург, Владимирская обл.

Нормируемое сопротивление теплопередаче по СНиП – таблица

Чтобы построить теплый дом – требуется утеплитель. Против этого уже никто не возражает. В современных условиях построить дом, отвечающий требованиям СНиП, без применения утеплителя невозможно.

То есть, деревянный или кирпичный дом, конечно, построить возможно. И строят все также. Однако чтобы соответствовать требованиям Строительных Норм и Правил, его коэффициент сопротивления теплопередаче стен R должен быть не менее 3,2. А это 150 см обычной кирпичной стены.

Для чего, спрашивается, строить «крепостную стену» в полтора метра, когда можно для получения такого же показателя R=3,2 использовать всего 15 см высокоэффективного утеплителя – базальтовой ваты или пенопласта?

А если вы проживаете не в Подмосковье, а в Новосибирской области или в ХМАО? Тогда для вас коэффициент сопротивления теплопередаче для стен будет другим. Каким? Смотрите таблицу.

Таблица 4. Нормируемое сопротивление теплопередаче СНиП 23-02-2003 (текст документа):

Внимательно смотрим и комментируем. Если что-то непонятно, задаем вопросы через ФОРМУ СВЯЗИ или пишем в адрес редактора сайта – ответ будет у вас на электронной почте или в разделе НОВОСТИ.

Итак, в данной таблице нас интересует два вида помещений – жилые и бытовые. Жилые помещения, это, понятно, в жилом доме, который должен соответствовать требованиям СНиП. А бытовые помещения — это утепленные и отапливаемые баня, котельная и гараж. Сараи, кладовые и прочие хозяйственные постройки утеплению не подлежат, а значит, и показателей по теплосопротивлению стен и перекрытий для них нет.

Все требования, регламентирующие приведенной сопротивление теплопередаче по СНиП, разделяются по регионам. Регионы отличаются друг от друга продолжительностью отопительного сезона в холодное время года и предельными отрицательными температурами.

Таблицу, в которой указаны градусо-сутки отопительного сезона для всех основных городов России, можно увидеть в конце материала (Приложение 1).

Для примера, Московская область относится к региону с показателем D = 4000 градусо-суток отопительного периода. Для этого региона установлены следующие показатели СНиП сопротивления теплопередаче (R):

  • Стены = 2,8
  • Перекрытия (пол 1 этажа, чердак или потолок мансарды) = 3,7
  • Окна и двери = 0,35

Чтобы сделать расчет толщины утеплителя, используем формулу расчета и таблицу для основных утеплителей, применяемых в строительстве. Все эти материалы есть на нашем сайте – доступны при переходе по ссылкам.

С расчетами по стоимости утепления все предельно просто. Берем сопротивление стены теплопередаче и подбираем такой утеплитель, который при своей минимальной толщине будет устраивать нас по бюджету и вписываться в требования СНиП 23-02-2003.

Смотрим теперь градусо-сутки отопительного сезона для своего города, в котором вы проживаете. Если вы живете не в городе, а рядом, то можете использовать значения на 2-3 градуса выше, так как фактическая зимняя температура в крупных городах на 2-3 градуса выше, чем в области. Этому способствуют большие теплопотери на теплотрассах и выброс тепла в атмосферу тепловыми электростанциями.

Таблица 4.1. Градусо-сутки отопительного сезона для основных городов РФ (Приложение 1):

Чтобы использовать данную таблицу в расчетах, где фигурирует нормируемое сопротивление теплопередаче, можно взять средние значения внутренней температуры помещений в +22С.

Но тут уж, как говорится, на вкус и цвет – кто-то любит, чтобы было тепло и ставит регулятор по воздуху своего газового котла на +24С. А кто-то привык жить в более прохладном доме и держит температуру помещений на уровне в +19С. Как видите, чем прохладнее постоянная температура в помещении, тем меньше у вас уходит газа или дров на отопление своего дома.

Кстати, доктора нам говорят, что жить в доме при температуре +19С гораздо полезнее, чем при +24С.

Нормы теплопроводности стены

Насколько хорошо наружные стены «хранят» тепло внутри дома показывает значение сопротивления теплопередаче. Рекомендуемое значение сопротивления теплопередаче внешней стены дома определяется в СНиП 23-02-2003 и зависит от размера градусо-суток отопительного периода данного района, т.е. зависит от региона, в котором строится дом.

В этом СНИП приведена Таблица 4 с округлёнными значениями градусо-суток отопительного периода и соответстующим значением сопротивления теплопередаче Rreq. Если число градусосуток некруглое, то согласно СНИП Rreq вычисляется по формуле:

Значения коэффициентов a и b приведены там же в СНиП 23-02-2003. Dd — это градусо-сутки отопительного периода, значение этого параметра вычисляется по формуле:

Здесь tint — это температура внутри дома; tht — средняя температура снаружи за весь отопительный период; zht — количество суток отопительного периода.

Приведу примерные минимальные значения сопротивления теплопередаче наружных стен для жилых зданий некоторых регионов России по этому СНиП. Напоминаю, что в ИЖС соблюдать этот строгий СНИП необязательно.

Город Необходимое сопротивление теплопередаче по новому СНИП, м 2 ·°C/Вт
Москва 3,28
Краснодар 2,44
Сочи 1,79
Ростов-на-Дону 2,75
Санкт-Петербург 3,23
Красноярск 4,84
Воронеж 3,12
Якутск 5,28
Иркутск 4,05
Волгоград 2,91
Астрахань 2,76
Екатеринбург 3,65
Нижний Новгород 3,36
Владивосток 3,25
Магадан 4,33
Челябинск 3,64
Тверь 3,31
Новосибирск 3,93
Самара 3,33
Пермь 3,64
Уфа 3,48
Казань 3,45
Омск 3,82

Чтобы определить сопротивление теплопередаче стены, нужно разделить толщину материала (м) на коэффициент теплопроводности материала (Вт/(м·°C)). Если стена многослойная, то полученные значения всех материалов нужно сложить, чтобы получить общее значение сопротивления теплопередаче всей стены.

Допустим, у нас стена построена из крупноформатных керамических блоков (коэффициент теплопроводности 0,14 Вт/(м·°C)) толщиной 50 см, внутри гипсовая штукатурка 4 см (коэффициент теплопроводности 0,31 Вт/(м·°C)), снаружи цементно-песчаная штукатурка 5 см (коэффициент теплопроводности 1,1 Вт/(м·°C)). Считаем:

R = 0,5 / 0,14 + 0,04 / 0,31 + 0,05 / 1,1 = 3,57 + 0,13 + 0,04 = 3,74 м 2 ·°C/Вт

Рекомендуемое значение Rreq для Москвы 3,28, для Ростова-на-Дону 2,75, таким образом в этих регионах наша стена удовлетворяет даже «строгому» СНиП 23-02-2003.

Что будет, если сопротивление теплопередаче вашей стены в частном доме немного не соответствует требуемому значению по СНиП 23-02-2003? Ничего не случится, дом ваш не развалится, вы не замёрзнете. Это лишь означает, что вы больше будете платить за отопление. А вот насколько больше — зависит от типа топлива для котла и цены на него.

В статьях и СНиПах может встретиться выражение приведенное сопротивление теплопередаче стены. Что в данном случае означает слово «приведенное»? Дело в том, что стены не бывают однородными, стена это не идеально одинаковый абстрактный объект. Есть входящие внутрь стены перекрытия, холодные оконные перемычки, какие-то детали на фасаде, металлические крепежи в стене и другие так называемые теплотехнические неоднородности. Все они влияют на теплопроводность и соответственно сопротивление теплопередаче отдельных участков стены дома, причем обычно в худшую сторону.

По этой причине используется приведенное сопротивление теплопередаче стены (неоднородной), оно численно равно условной стене из идеально однородного материала. Т.е. получается, что рассчитанное сопротивление теплопередаче без учета теплотехнических неоднородностей будет в большинстве случаев превышать реальное, т.е. приведенное сопротивление теплопередаче.

Есть довольно сложные методы расчета приведенного сопротивления теплопередаче, где учитываются стыки с перекрытиями, металлические крепежи утеплителей, примыкания к фундаменту и прочие факторы. Я писать их тут не буду, там пособие на десятки страниц с сотней формул и таблиц.

Что из этого следует? Необходимо строить будущую стену с сопротивлением теплопередаче, взятым «с запасом», чтобы подогнать его к реальному приведенному сопротивлению теплопередаче.

Буду рад вашим комментариям по теме статьи, каким-то дополнениям.
Помните, автор — обычный человек, у меня не всегда есть время ответить, если задаёте вопрос по своей стройке.

Показаны 25 последних комментариев. Показать все комментарии (39).

Дмитрий (07.02.2015 20:33)
Добрый вечер! С большим интересом читаю материалы на Вашем сайте. Спасибо Вам за проделанный труд. Посоветуйте, пожалуйста. Так как идет неуклонное ужесточение норм по утеплению стен, то, скорее всего, на перспективу нежелательно рассматривать однослойные стены, как бы этого не хотелось. Встретился такой вариант: кладка 1,5 кирпича, зазор 10 см, облицовка полкирпича полнотелой керамики. Зазор заливается ППУ плотностью около 30 кг/м куб. С учетом высокой адгезии должен получиться монолит с R>4. В закрытой конструкции ППУ разрушаться не должен, и таким образом, получается теплая стена с признаками однородной. Конечно, необходима качественная вентиляция. Подскажите, имеет ли право на жизнь данное решение?
Дмитрий (08.02.2015 18:17)
Дмитрий, по стеновому калькулятору посчитал – конденсат есть, но влагонакопление неопасное. Какой срок службы у ППУ, даже закрытого от солнца? Что с ним будет через 30 лет? И что вы понимаете под словом монолит? Будет две отдельные кирпичные кладки с ППУ между ними. Сопротивление теплопередаче, да, около 4.
Михаил (10.02.2015 13:41)
Дмитрий, добрый день! А что за числа (0,13 + 0,04) вы прибавили к 3,57?
Дмитрий (10.02.2015 16:36)
Михаил, это сопротивление теплопередаче наружной и внутренней штукатурок.
Руслан (10.04.2015 09:17)
Отличный сайт, только вот Читаю,читаю, а разобраться не могу.
Пирог: Сайдинг-20мм воздух-мембрана А- вата роклайт 100мм- воздух 50 мм- мембрана Б – имитация бруса 30 мм или дсп 20 мм.
Зимой замерзну? Живу в лен. области
Руслан (10.04.2015 09:22)
По тепловым характеристики каменная вата 100 мм равна 400 мм дерева. Из расчета этого и строю.
В брусовом доме с толщиной стены 400 мм я бы точно не замёрз.
А почитав какие люди пироги выдумывают, засомневался.
Дмитрий (19.04.2015 22:22)
Руслан, прошу прощения за задержку с ответом, уезжал надолго. В каркасниках для тепла самое главное утеплитель, по нему и считайте.
http://www.homeideal.ru/data/karkasnyedoma.html

Соответственно, сопротивление теплопередаче стены считайте по вате, остальным можно пренебречь:

0,1 м / 0,042 Вт/(м* гр.C) = 2,38 м2*гр.C/Вт

Маловато, но терпимо, хотя лучше, конечно, больше. Для Санкт-Петербурга сопротивление теплопередаче больше 3 рекомендуется по СНиП.

Руслан (22.04.2015 21:58)
Дмитрий, спасибо за ответ.
Конечно есть мысля снаружи проложить слой пенопласта (белого), а поверх сайдинг, но я так понял будет вата сыреть т.к. проницаемость разная. А вместе с ватой и весь каркас. Логично проложить изнутри, но с точки зрения экологичности.

П.С. Идеального дома не бывает. Всегда будет что-то, что сделает его просто хорошим.

Дмитрий (26.04.2015 00:03)
Руслан, не мудрите с ватой и пенопластом вместе. Выбирайте что-то одно. Я не рекомендуют пенопласт в вашем случае – читайте статью про ППС. Пенопласт должен закрываться с обеих сторон негорючими материалами. К тому же в каркасниках утеплитель должен занимать плотно всё пространство без пропусков, с минватой это можно сделать.
Руслан (12.05.2015 08:01)
Ок.Дмитрий спасибо за ответ.
Мария (03.06.2015 00:15)
Здравствуйте! Понравился Ваш сайт! Подскажите, пожалуйста, если стена изнутри наружу керамический блок 51, облицовочный кирпич вплотную, достаточно это для теплоизоляции? И еще как с точки зрения паропроницаемости? Прочла статью про ККБ. Боюсь, что специалистов нормальных, кто бы мог построить хорошо из ККБ,найти не получится. Может есть какой-то вариант из кирпича в комбинации с ККБ, но так чтобы строить было легче в плане придерживаемости инструкции?? Спасибо!
Дмитрий (03.06.2015 14:39)
Мария, здравствуйте.
51 блок + облицовочный вплотную – для европейской территории России сопротивление теплопередаче такой стены будет нормальным.
С паропроницаемостью тоже всё будет хорошо, только кирпич облицовочный покупайте многопустотный, а не полнотелый, у них несколько разные паропроницаемости.
Стройте всё по брошюре производителя, других вариантов нет.
Евгений (14.12.2015 00:52)
Вы приводите в таблице – “Необходимое сопротивление теплопередаче по новому СНИП, м2·°C/Вт” – правильно “максимальное значение теплопотерь”. Отсюда вывод: ваш пример не подходит ни где.
Светлана (06.04.2016 10:10)
Почему вы не учитываете коэффициент неоднородности ограждающей конструкции?
Евгений (10.05.2016 09:18)
Здравствуйте. Сайт отличный, всем знакомым буду советовать почитать. А о вермикулите и вермикулитовой штукатурке что нибудь знаете?
Андрей (26.01.2017 12:47)
Здравствуйте, нормальным ли будет такой пирог для дома ижс – облицовочный кирпич многопустотный (кладка в пол кирпича) вплотную через 10мм цементного раствора пеноблок d600 300мм внутренняя отделка известняковой штукатуркой 10-15 мм. Город Тверь. Достаточно ли будет сопротивление теплопередачи?
Владимир (18.04.2017 14:43)
Где указано, что данный СНиП не обязателен для ИЖС?
Спасибо.
Андрей (07.07.2017 20:23)
Скажите пожалуйста,вот построил пристройки из газобетона д500 толщиной 30см.Нужно ли его утеплять? Я лично хочу обшить профлистом снаружи и всё.Нужен совет?
Андрей (07.07.2017 20:25)
Пристройки жилой 3м на 5.5м
Николай (24.01.2018 12:20)
Благодарю за глубоко продуманный и выстраданный собственным опытом сайт! Читаю – и появляются вопросы. У меня по периметру дома с трёх сторон будут балконы шириной 1 метр ( продолжение монолитной плиты межэтажного перекрытия), площадь 33 кв. м., получается, их надо утеплять сверху. снизу и с торцов? Чем – может быть ЭППС?
Сергей (31.01.2018 22:43)
Хм, расчет показывает, что даже при минимальной теплопроводности сосны (0.09) толщины стены в 0,2 и даже 0,25 м совершенно недостаточно для любого города. Макс. сопротивление получается не более 2,2.
А ведь 0,2 м – стандартная толщина стены из бруса, а 0,25 м используют в Сибири.

Другой расчет показывает, что чтобы достичь сопротивления 3,28 (реком. для Москвы) при теплопроводности сосны 0,14, толщина стены должна быть аж 46 см! Где вы видели деревянные дома с такими стенами?

Расчет теплопроводности стены

Чтобы определить, какой толщины возводить стену при постройке дома, нужно научиться рассчитать теплопроводность стен. Этот показатель зависит от используемых строительных материалов, климатических условий.

Нормы толщины стен в южных и северных регионах будут различаться. Если не сделать расчет до начала строительства, то может оказаться так, что в доме зимой будет холодно и сыро, а летом слишком влажно.

Чтобы этого избежать, нужно высчитать коэффициент сопротивления теплопередачи материала для постройки стен и утеплителя.

Для чего нужен расчет

Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.

Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:

  • зимой стены будут промерзать;
  • на обогрев помещения будут затрачиваться значительные средства;
  • сместиться точка росы, что приведет к образованию конденсата и влажности в помещении, заведется плесень;
  • летом в доме будет так же жарко, как и под палящим солнцем.

Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.

От чего зависит теплопроводность

Проводимость тепла рассчитывают исходя из количества тепловой энергии, проходящей через материал площадью 1 кв. м. и толщиной 1 м при разнице температур внутри и снаружи в один градус. Испытания проводят в течение 1 часа.

Проводимость тепловой энергии зависит от:

  • физических свойств и состава вещества;
  • химического состава;
  • условий эксплуатации.

Теплосберегающими считаются материалы с показателем менее 17 ВТ/ (м·°С).

Выполняем расчеты

Расчет толщины стен по теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.

Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».

Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.

δ это толщина материала, используемого для строительства стены;

λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).

Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.

Значения параметров для жилых домов указаны в СНиП II-3-79 и СНиП 23-02-2003.

Допустимые значения в зависимости от региона

Минимально допустимое значение проводимости тепла для различных регионов указано в таблице:

Показатель теплопроводности Регион
1 2 м2•°С/Вт Крым
2 2,1 м2•°С/Вт Сочи
3 2,75 м2•°С/Вт Ростов—на—Дону
4 3,14 м2•°С/Вт Москва
5 3,18 м2•°С/Вт Санкт—Петербург

У каждого материала есть свой показатель проводимости тепла. Чем он выше, тем больше тепла пропускает через себя этот материал.

Показатели теплопередачи для различных материалов

Величины проводимости тепла материалами и их плотность указаны в таблице:

Материал Величина теплопроводности Плотность
Бетонные 1,28—1,51 2300—2400
Древесина дуба 0,23—0,1 700
Хвойная древесина 0,10—0,18 500
Железобетонные плиты 1,69 2500
Кирпич с пустотами керамический 0,41—0,35 1200—1600

Теплопроводность строительных материалов зависит от их плотности и влажности. Одни и те же материалы, изготовленные разными производителями, могут отличаться по свойствам, поэтому коэффициент нужно смотреть в инструкции к ним.

Расчет многослойной конструкции

Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.

В этом случае стоит работать по формуле:

Rобщ= R1+ R2+…+ Rn+ Ra, где:

R1-Rn- термическое сопротивление слоев разных материалов;

Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:

На основании этих подсчетов можно сделать вывод о том, можно ли применять выбранные стройматериалы, и какой они должны быть толщины.

Последовательность действий

Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.

Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.

Как выполнить подсчеты на онлайн калькуляторе

Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.

В сервис занесены сведения по каждой отдельной климатической зоне:

  • t воздуха;
  • средняя температура в отопительный сезон;
  • длительность отопительного сезона;
  • влажность воздуха.

Температура и влажность внутри помещения — одинаковы для каждого региона

Сведения, одинаковые для всех регионов:

  • температура и влажность воздуха внутри помещения;
  • коэффициенты теплоотдачи внутренних, наружных поверхностей;
  • перепад температур.

Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:

Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.

Толщина утеплителя для стен

Однослойные стены, выполненные только из обычного керамического или силикатного кирпича, не соответствуют современным нормативным параметрам по теплосбережению.

Для обеспечения требуемых теплозащитных характеристик наружных стен необходимо использовать эффективный утеплитель, установленный с наружной стороны или в толще конструкции стен.

Применение утеплителя, в многослойных конструкциях наружных стен, позволяет обеспечить требуемую теплозащиту стен во всех регионах России. За счет применения утеплителя потери тепла снижаются приблизительно в 2 раза, уменьшается расход строительных материалов, снижается масса стеновых конструкций, а в помещении создаются требуемые санитарно-гигиенические условия, благоприятные и комфортные для проживания.

Расчет теплоизоляции стен

Способность ограждений оказывать сопротивление потоку тепла, проходящему из помещения наружу, характеризуется сопротивлением теплопередачи R.

Требуемая толщина утеплителя наружной стены вычисляется по формуле:

  • αут – толщина утеплителя, м
  • R тр – нормируемое сопротивление теплопередаче наружной стены, м 2 · °С/Вт;
    (см. таблица 2)
  • δ – толщина несущей части стены, м
  • λ – коэффициент теплопроводности материала несущей части стены, Вт/(м · °С) (см. таблица 1)
  • λут– коэффициент теплопроводности утеплителя, Вт/(м · °С) (см. таблица 1)
  • r – коэффициент теплотехнической однородности
    (для штукатурного фасада r=0,9; для слоистой кладки r=0,8)

Для многослойных конструкций в формуле (1) δ/λ следует заменить на сумму

δi – толщина отдельного слоя многослойной стены;

λi – коэффициент теплопроводности материала отдельного слоя многослойной стены.

При выполнении теплотехнического расчета системы утепления с воздушным зазором термическое сопротивление наружного облицовочного слоя и воздушного зазора не учитываются.

Таблица 1

Материал Плотность,
кг/м 3
Коэффициент теплопроводности
в сухом состоянии λ, Вт/(м· о С)
Расчетные коэффициенты теплопроводности
во влажном состоянии*
λА,
Вт/(м· о С)
λБ,
Вт/(м· о С)
Бетоны
Железобетон 2500 1,69 1,92 2,04
Газобетон 300 0,07 0,08 0,09
400 0,10 0,11 0,12
500 0,12 0,14 0,15
600 0,14 0,17 0,18
700 0,17 0,20 0,21
Кладка из кирпича
Глиняного обыкновенного на цементно-песчаном растворе 1800 0,56 0,70 0,81
Силикатного на цементно-песчаном растворе 1600 0,70 0,76 0,87
Керамического пустотного плотностью 1400 кг/м 3 (брутто) на цементно-песчаном растворе 1600 0,47 0,58 0,64
Керамического пустотного плотностью 1000 кг/м 3 (брутто) на цементно-песчаном растворе 1200 0,35 0,47 0,52
Силикатного одиннадцати-пустотного на цементно-песчаном растворе 1500 0,64 0,70 0,81
Силикатного четырнадцати-пустотного на цементно-песчаном растворе 1400 0,52 0,64 0,76
Дерево
Сосна и ель поперек волокон 500 0,09 0,14 0,18
Сосна и ель вдоль волокон 500 0,18 0,29 0,35
Дуб поперек волокон 700 0,10 0,18 0,23
Дуб вдоль волокон 700 0,23 0,35 0,41
Утеплитель
Каменная вата 130-145 0,038 0,040 0,042
Пенополистирол 15-25 0,039 0,041 0,042
Экструдированный пенополистирол 25-35 0,030 0,031 0,032

*λА или λБ принимается к расчету в зависимости от города строительства (см. таблица 2).

Коэффициент теплопроводности | Мир сварки

Теплопроводность — это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Коэффициент теплопроводности материалов

Материал Температура, °С Коэффициент теплопроводности
кал/(см·с·град) Вт/(м·K)
 Металлы
Алюминий 20 0,538 225
Бериллий 20 0,45 188
Ванадий 20 0,074 31,0
Вольфрам 20 0,31 130
Гафний 20 0,053 22,2
Железо 20 0,177 77
Золото 20 0,744 311
Латунь 20 0,205–0,263 86–110
Магний 20 0,376 155
Медь 20 0,923 391
Молибден 20 0,340 145
Никель 20 0,220 92,5
Ниобий 20 0,125 52,5
Палладий 20 0,170 71,3
Платина 20 0,174 72,8
Ртуть 20 0,069 29,1
Свинец 20 0,083 34,7
Серебро 20 1,01 423
Сталь 20 0,048–0,124 20–52
Тантал 20 0,130 54,5
Титан 20 0,036 15,1
Хром 20 0,16 67,1
Цинк 20 0,265 110
Цирконий 20 0,050 21
Чугун 20 0,134 56
 Пластмассы
Бакелит 20 0,0006 0,23
Винипласт 20 0,0003 0,126
Гетинакс 20 0,0006 0,24
Мипора 20 0,0002 0,085
Поливинилхлорид 20 0,0005 0,19
Пенопласт ПС-1 20 0,0001 0,037
Пенопласт ПС-4 20 0,0001 0,04
Пенопласт ПХВ-1 20 0,0001 0,05
Пенопласт резопен ФРП 20 0,0001 0,045
Пенополистирол ПС-Б 20 0,0001 0,04
Пенополистирол ПС-БС 20 0,0001 0,04
Пенополиуретановые листы 20 0,0001 0,035
Пенополиуретановые панели 20 0,0001 0,025
Пеностекло легкое 20 0,0001 0,06
Пеностекло тяжелое 20 0,0002 0,08
Пенофенолпласт 20 0,0001 0,05
Полистирол 20 0,0002 0,082
Полихлорвинил 20 0,0011 0,44
Стеклотекстолит 20 0,0007 0,3
Текстолит 20 0,0005–0,0008 0,23–0,34
Фторопласт-3 20 0,0001 0,058
Фторопласт-4 20 0,0006 0,25
Эбонит 20 0,0004 0,16
Эбонит вспученный 20 0,0001 0,03
 Резины
Каучук вспененный 20 0,0001 0,03
Каучук натуральный 20 0,0001 0,042
Каучук фторированный 20 0,0001 0,055
Резина 20 0,0003–0,0005 0,12–0,20
 Жидкости
Анилин 0 0,0005 0,19
50 0,0004 0,17
100 0,0004 0,167
Ацетон 0 0,0004 0,17
50 0,0004 0,16
100 0,0004 0,15
Бензол 50 0,0003 0,138
100 0,0003 0,126
Вода 0 0,0013 0,551
20 0,0014 0,600
50 0,0016 0,648
100 0,0016 0,683
Глицерин 50 0,0007 0,283
100 0,0007 0,288
Гудрон 20 0,0007 0,3
Лак бакелитовый 20 0,0007 0,29
Масло вазелиновое 0 0,0003 0,126
50 0,0003 0,122
100 0,0003 0,119
Масло касторовое 0 0,0004 0,184
50 0,0004 0,177
100 0,0004 0,172
Спирт метиловый 0 0,0005 0,214
50 0,0005 0,207
Спирт этиловый 0 0,0004 0,188
50 0,0004 0,177
Толуол 0 0,0003 0,142
50 0,0003 0,129
100 0,0003 0,119
 Газы
Азот 15 0,00006 0,0251
Аргон 20 0,00004 0,0177
41 0,00004 0,0187
Вакуум (абсолютный) 20 0 0
Водород 15 0,00042 0,1754
Воздух 20 0,00006 0,0257
Гелий 43 0,00037 0,1558
Кислород 20 0,00006 0,0262
Ксенон 20 0,00001 0,0057
Метан 0 0,00007 0,0307
Углекислый газ 20 0,00004 0,0162
 Дерево
Древесина — доски 20 0,0004 0,15
Древесина — фанера 20 0,0004 0,15
Древесина твердых пород 20 0,0005 0,2
Древесно-стружечная плита ДСП 20 0,0005 0,2
Дуб вдоль волокон 20 0,0008–0,001 0,35–0,43
Дуб поперек волокон 20 0,0004–0,0005 0,2–0,21
Липа, береза, клен, дуб (15% влажности) 20 0,0004 0,15
Опилки — засыпка 20 0,0002 0,095
Опилки древесные сухие 20 0,0002 0,065
Сосна вдоль волокон 20 0,0009 0,38
Сосна поперек волокон 20 0,0004 0,15
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15 % влажности) 20 0,0004 0,15
Сосна смолистая (600…750 кг/куб.м, 15 % влажности) 20 0,0006 0,23
 Минералы
Алмаз 20 2,15-5,50 900-2300
Кварц 20 0,019 8
 Горные породы
Глинозем 20 0,006 2,33
Гравий 20 0,0009 0,36
Гранит, базальт 20 0,008 3,5
Грунт 10 % воды 20 0,004 1,75
Грунт 20 % воды 20 0,005 2,1
Грунт песчаный 20 0,003 1,16
Грунт сухой 20 0,0009 0,4
Грунт утрамбованный 20 0,003 1,05
Известняк 20 0,004 1,7
Камень 20 0,003 1,4
Песок 0 % влажности 20 0,0008 0,33
Песок 10 % влажности 20 0,002 0,97
Песок 20 % влажности 20 0,003 1,33
Песчаник обожженный 20 0,004 1,5
Сланец 20 0,005 2,1
 Различные материалы
Алебастровые плиты 20 0,001 0,47
Асбест (шифер) 20 0,0008 0,35
Асбест волокнистый 20 0,0003 0,15
Асбестоцемент 20 0,004 1,76
Асбоцементные плиты 20 0,0008 0,35
Асфальт 20 0,002 0,72
Асфальт в полах 20 0,002 0,8
Бетон на каменном щебне 20 0,003 1,3
Бетон на песке 20 0,002 0,7
Бетон пористый 20 0,003 1,4
Бетон с каменным щебнем 20 0,003 1,28
Бетон сплошной 20 0,004 1,75
Бетон термоизоляционный 20 0,0004 0,18
Битум 20 0,001 0,47
Бумага 20 0,0003 0,14
Бумага промасленная 20 0,0004 0,15
Бумага сухая 20 0,0002 0,1
Вата минеральная легкая 20 0,0001 0,045
Вата минеральная тяжелая 20 0,0001 0,055
Вата хлопковая 20 0,0001 0,055
Вермикулитовые листы 20 0,0002 0,1
Войлок асбестовый 20 0,0001 0,052
Войлок шерстяной 20 0,0001 0,045
Гипс строительный 20 0,0008 0,35
Гравий (наполнитель) 20 0,002 0,93
Железобетон 20 0,004 1,7
Зола древесная 20 0,0004 0,15
Известь-песок раствор 20 0,002 0,87
Иней 20 0,001 0,47
Ипорка (вспененная смола) 20 0,0001 0,038
Камышит (плиты) 20 0,0003 0,105
Картон 20 0,0003–0,0008 0,14–0,35
Картон строительный многослойный 20 0,0003 0,13
Картон теплоизолированный БТК-1 20 0,0001 0,04
Керамзитобетон 20 0,0005 0,2
Кирпич кремнеземный 20 0,0004 0,15
Кирпич пустотелый 20 0,001 0,44
Кирпич силикатный 20 0,002 0,81
Кирпич сплошной 20 0,002 0,67
Кирпич сплошной 20 0,002 0,67
Кирпич шлаковый 20 0,001 0,58
Кожа 20 0,0003 0,15
Лакоткань 20 0,0006 0,25
Лед 0 0,005 2,21
-20 0,006 2,44
-60 0,007 2,91
Обмотка непропитанная 20 0,0005–0,0010 0,2–0,4
Обмотка пропитанная 20 0,0003–0,0005 0,1–0,2
Пенобетон 20 0,0007 0,3
Пергамин 20 0,0002 0,08
Перлит 20 0,0001 0,05
Перлито-цементные плиты 20 0,0002 0,08
Плитка облицовочная 20 0,251 105
Плитка термоизоляционная ПМТБ-2 20 0,0001 0,036
Поролон 20 0,0001 0,04
Портландцемент раствор 20 0,001 0,47
Пробковая плита 20 0,0001 0,043
Пробковые листы легкие 20 0,0001 0,035
Пробковые листы тяжелые 20 0,0001 0,05
Рубероид 20 0,0004 0,17
Снег начавший таять 20 0,0015 0,64
Снег свежевыпавший 20 0,0003 0,105
Снег уплотненный 20 0,0008 0,35
Стекло 20 0,003 1,15
Стекловата 20 0,0001 0,05
Стекловолокно 20 0,0001 0,036
Толь бумажный 20 0,0006 0,23
Торфоплита 20 0,0001 0,065
Цементные плиты 20 0,005 1,92
Цемент-песок раствор 20 0,003 1,2
Шерсть 20 0,0001 0,05
Шлак гранулированный 20 0,0004 0,15
Шлак котельный 20 0,0007 0,29
Шлакобетон 20 0,0014 0,6
Штукатурка сухая 20 0,0005 0,21
Штукатурка цементная 20 0,002 0,9
Электрокартон 20 0,0004 0,17

Коэффициент теплопроводности — это… Что такое Коэффициент теплопроводности?

Теплопрово́дность — это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

В установившемся режиме поток энергии, передающейся посредством теплопроводности, пропорционален градиенту температуры:

где  — вектор потока тепла — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью), T — температура. Это выражение известно как закон теплопроводности Фурье.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, ΔT — перепад температур граней, h — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициенты теплопроводности различных веществ

Материал Теплопроводность, Вт/(м·K)
Алмаз 1001—2600
Серебро 430
Медь 382—390
Золото 320
Алюминий 202—236
Латунь 97—111
Железо 92
Платина 70
Олово 67
Сталь 47
Кварц 8
Стекло 1
Вода 0,6
Кирпич строительный 0,2—0,7
Пенобетон 0,14—0,3
Газобетон 0,1—0,3
Дерево 0,15
Шерсть 0,05
Минеральная вата 0,045
Пенополистирол 0,04
Пеноизол 0,035
Воздух (300 K, 100 кПа) 0,026
Воздух (сухой неподвижный) 0,024—0,031
Аргон 0,0177
Ксенон 0,0057
Аэрогель 0,003
Вакуум (абсолютный) 0 (строго)

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума стремится к нулю. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тепло в вакууме передаётся только излучением. Поэтому для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность хуже излучает и лучше отражает), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности K с удельной электрической проводимостью σ в металлах устанавливает закон Видемана — Франца:

где k — постоянная Больцмана, e — заряд электрона.

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. д. Инерционность в уравнения переноса первым ввел Максвелл[1], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[2]

Если время релаксации τ пренебрежимо мало, то это уравнение переходит в закон Фурье.

Примечания

  1. J. C. Maxwell, Philos. Trans. Roy. Soc. London 157 (1867) 49.
  2. C. Cattaneo, Atti Seminario Univ. Modena 3 (1948) 33.

См. также

Другие способы теплопередачи

Wikimedia Foundation.
2010.

Температурный коэффициент сопротивления | Основы резистора

Изменение сопротивления в зависимости от температуры

Температурный коэффициент сопротивления, или TCR, является одним из наиболее важных параметров, характеризующих рабочие характеристики резистора. {- 6} $$

Где TCR в ppm / ° C или ppm / ° K, R 1 в омах при комнатной температуре, R 2 — сопротивление при рабочей температуре в омах, T 1 — комнатная температура, а T 2 — рабочая температура (как в ° C, так и в ° K).Часто вместо TCR используется α.

Среднее значение TCR ΔR / R в ppm для диапазона температур от -55 до 25 ° C и от 25 до 125 ° C

Положительный или отрицательный температурный коэффициент сопротивления?

Резисторы

доступны с отрицательным, положительным или стабильным TCR в определенном диапазоне температур. Правильный выбор резистора может предотвратить необходимость температурной компенсации. В некоторых приложениях желательно иметь большой TCR, например, для измерения температуры.Резисторы для этих приложений называются термисторами и могут иметь положительный температурный коэффициент (PTC) или отрицательный температурный коэффициент (NTC).

Методы измерения TCR

Температурный коэффициент сопротивления резистора определяется путем измерения значений сопротивления в соответствующем температурном диапазоне. TCR рассчитывается как средний наклон значения сопротивления в этом интервале. Это верно для линейных соотношений, поскольку TCR постоянно при любой температуре.Однако многие материалы имеют коэффициент нелинейности. Например, нихром, популярный сплав для резисторов, имеет нелинейную зависимость между температурой и TCR. Поскольку TCR рассчитывается как средний наклон, поэтому очень важно указать TCR, а также температурный интервал. Способ измерения TCR стандартизирован в MIL-STD-202 Method 304. С помощью этого метода TCR рассчитывается для диапазона от -55 ° C до 25 ° C и от 25 ° C до 125 ° C. Поскольку наивысшее измеренное значение определяется как TCR, этот метод часто приводит к чрезмерному выбору резистора для менее требовательных приложений.

В таблице ниже приведен температурный коэффициент сопротивления для самых разных материалов. Обратите внимание, что точное значение зависит от чистоты материала, а также от температуры.

Материал

TCR / ° C

Кремний

-0,075

Германий

-0.048

Углерод (аморфный)

-0,0005

Манганин

0,000002

Константан

0,000008

Нихром

0.0004

Меркурий

0,0009

Золото

0,0034

цинк

0,0037

Медь

0.0039

Алюминий

0,0039

Свинец

0,0039

Платина

0,00392

Кальций

0.0041

Вольфрам

0,0045

Олово

0,0045

Утюг

0,005

Никель

0.006

Литий

0,006

Значения TCR зависят от чистоты и температуры.

Температурный коэффициент сопротивления | Физика проводников и изоляторов

Вы могли заметить в таблице удельных сопротивлений, что все значения указаны для температуры 20 ° C. Если вы подозревали, что это означает, что удельное сопротивление материала может изменяться с температурой, вы были правы!

Значения сопротивления для проводов при любой температуре, отличной от стандартной (обычно указываемой на уровне 20 Цельсия) в таблице удельного сопротивления, должны определяться по еще одной формуле:

Константа «альфа» (α) известна как температурный коэффициент сопротивления и символизирует коэффициент изменения сопротивления на градус изменения температуры.Так же, как все материалы имеют определенное удельное сопротивление (при 20 ° C), они также изменяют сопротивление в зависимости от температуры на определенную величину. Для чистых металлов этот коэффициент является положительным числом, что означает, что сопротивление увеличивается на с повышением температуры. Для элементов углерода, кремния и германия этот коэффициент является отрицательным числом, что означает, что сопротивление уменьшается на с повышением температуры. Для некоторых металлических сплавов температурный коэффициент сопротивления очень близок к нулю, а это означает, что сопротивление практически не изменяется при изменении температуры (хорошее свойство, если вы хотите построить прецизионный резистор из металлической проволоки!).В следующей таблице приведены температурные коэффициенты сопротивления для нескольких распространенных металлов, как чистых, так и легированных:

Температурные коэффициенты сопротивления при 20 градусах Цельсия
Материал Элемент / Сплав «альфа» на градус Цельсия
Никель Элемент 0,005866
Утюг Элемент 0,005671
Молибден Элемент 0.004579
Вольфрам Элемент 0,004403
Алюминий Элемент 0,004308
Медь Элемент 0,004041
Серебро Элемент 0,003819
Платина Элемент 0,003729
Золото Элемент 0,003715
цинк Элемент 0.003847
Сталь * Сплав 0,003
нихром Сплав 0,00017
Нихром V Сплав 0,00013
Манганин Сплав +/- 0,000015
Константан Сплав -0,000074

* = Стальной сплав с содержанием железа 99,5%, углерода 0,5% тысяч

Давайте посмотрим на пример схемы, чтобы увидеть, как температура может повлиять на сопротивление провода и, следовательно, на характеристики схемы:

Эта цепь имеет полное сопротивление проводов (провод 1 + провод 2) 30 Ом при стандартной температуре.Составив таблицу значений напряжения, тока и сопротивления получаем:

При 20 ° C мы получаем 12,5 В на нагрузке и 1,5 В (0,75 + 0,75) падаем на сопротивлении провода. Если бы температура поднялась до 35 ° по Цельсию, мы могли бы легко определить изменение сопротивления для каждого отрезка провода. Предполагая использование медной проволоки (α = 0,004041), получаем:

Пересчитав значения нашей схемы, мы увидим, какие изменения принесет это повышение температуры:

Как видите, на нагрузке снизилось напряжение (с 12.От 5 до 12,42 вольт), а падение напряжения на проводах выросло (с 0,75 до 0,79 вольт) в результате повышения температуры. Хотя изменения могут показаться незначительными, они могут быть значительными для линий электропередач, протянувшихся на несколько километров между электростанциями и подстанциями, подстанциями и нагрузками. Фактически, электроэнергетические компании часто должны учитывать изменения сопротивления линии в результате сезонных колебаний температуры при расчете допустимой нагрузки системы.

ОБЗОР:

  • Большинство проводящих материалов изменяют удельное сопротивление при изменении температуры.Вот почему значения удельного сопротивления всегда указываются для стандартной температуры (обычно 20 или 25 ° C).
  • Коэффициент изменения сопротивления на градус Цельсия при изменении температуры называется температурным коэффициентом сопротивления . Этот коэффициент представлен греческой строчной буквой «альфа» (α).
  • Положительный коэффициент для материала означает, что его сопротивление увеличивается с повышением температуры. Чистые металлы обычно имеют положительный температурный коэффициент сопротивления.Коэффициенты, приближающиеся к нулю, могут быть получены путем легирования некоторых металлов.
  • Отрицательный коэффициент для материала означает, что его сопротивление уменьшается с повышением температуры. Полупроводниковые материалы (углерод, кремний, германий) обычно имеют отрицательные температурные коэффициенты сопротивления.
  • Формула, используемая для определения сопротивления проводника при температуре, отличной от указанной в таблице сопротивлений, выглядит следующим образом:

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Удельное сопротивление, термическое сопротивление и температурный коэффициент — Европейский институт пассивных компонентов

R1.1 СОПРОТИВЛЕНИЕ (ρ)

Удельное сопротивление, ρ, — постоянная материала. Чем выше удельное сопротивление материала резистора, тем выше его сопротивление. Подключение можно обозначить как

………………………… [R1-1]

Здесь
R = сопротивление
l = длина проводника
A = площадь проводника.

В зависимости от того, в каких единицах выражаются l и A, мы получаем разные единицы ρ. Обычный способ — выразить l в м (eter) и A в мм. 2 ρ, а затем получить единицу Ωmm 2 / м.Если вместо этого мы выберем l в м и A в м 2 , единицей измерения ρ будет Ом x мм 2 / м, что обычно преобразуется в Ом · м. Это устройство часто используется для неметаллических материалов. Если нам известно значение ρ, выраженное в Ом · мм 2 / м, это значение необходимо умножить на коэффициент 10 -6 , чтобы получить значение в Ом · м. Таким образом, 10 -6 x Ом × мм 2 / м = 1 Ом · м.

R1.2 СОПРОТИВЛЕНИЕ ЛИСТА (Ом / квадрат)

Рисунок R1-1.Удельное поверхностное сопротивление r (кв.) [Ом / квадрат].

Удельное сопротивление листа — это мера сопротивления на единицу поверхности резистивных пленок. Элемент с квадратной поверхностью, показанный на рисунке R1-1, получает в соответствии с формулой [R1-1] сопротивление:

.

………………… [С1-2]

Таким образом, сопротивление на квадратную единицу, r (sq) , не зависит от размера поверхности. Именно толщина пленки и ее собственное удельное сопротивление определяют r (sq) (выраженное в Ом / квадрат).

R1.3 ТЕМПЕРАТУРА ПОВЕРХНОСТИ и ГОРЯЧЕЕ ЗОНО

Рисунок R1-2. Повышение температуры в зависимости от нагрузки. Ta = температура окружающей среды.

Повышение температуры поверхности корпуса резистора зависит от нагрузки, как в принципе показано на Рисунке R1-2. При повышении температуры увеличивается проводимость, излучение и конвекция (охлаждение воздуха) от корпуса резистора, что приводит к выравниванию температурной кривой.

На рисунке R1-3 показано распределение температуры по корпусу резистора.Рассеяние тепла на выводах или выводах SMD снижает температуру на концах. В середине тела мы регистрируем температурный максимум, так называемую температуру Hot Spot . Эта температура определяет как стабильность резистора, так и срок его службы.

Важно, чтобы спиральная или проволочная обмотка была равномерно распределена по всей свободной длине резистора. В противном случае мы получим усиленный эффект горячих точек, угрожающий жизни и стабильности.

Горячие точки имеют жизненно важное значение не только для самого резистора.Тепловое излучение может повлиять на соседние компоненты и печатные платы. Таким образом, убедитесь, что существует удовлетворительное расстояние от корпуса резистора до соседних термочувствительных компонентов.

Рисунок R1-3. Температуры:
Thsp = Температура горячей точки.
Ta = температура окружающей среды.

R1.4 ТЕПЛОВАЯ ПОСТОЯННАЯ ВРЕМЯ, τ Вт

Рисунок R1-4. Тепловая постоянная времени, τw.

Тепловая постоянная времени, τw , определяется как время прогрева поверхности резистора до достижения 63% или теоретически (1-1 / e) конечной температуры после ступенчатого увеличения приложенной нагрузки, обычно P R (Рисунок R1-4).Конечно, постоянная времени сильно зависит от размера корпуса резистора. Маленькое тело быстрее нагреется, чем большое. В таблице R1-1 указаны стандартные значения для некоторых размеров, классифицированных по DIN.

Таблица R1- 1 . Примеры тепловых постоянных времени и тепловых сопротивлений.

Размер DIN [1] 0204 0207 0414
Термическая постоянная времени, τw (с) 2 5 20
Термическое сопротивление, R th (K / W) 400 250 170

[1] Цилиндрические детали с выводами.

R1.5 ТЕПЛОВОЕ СОПРОТИВЛЕНИЕ, R th

Тепловое сопротивление R th выражается в К / Вт. Он описывает повышение температуры тела резистора под приложенной нагрузкой. Поскольку излучение вызывает поворот температурной кривой вниз при увеличении нагрузки, данные о R th относятся к нормализованному монтажу и нагрузке P R . (См. DIN 44 050). Как показано на Рисунке R3-5, перегрузка по мощности снижает R th .

Рисунок R1-5.Тепловое сопротивление при перегрузке P с и номинальной мощности P R .

В уравнении R1-3 описана связь между R th и текущими температурами. R th выражается в K / W, но из-за того, что уравнение имеет дело с разницей между двумя температурами, не имеет значения, используем ли мы ° C или K для обоих значений. Различия будут одинаково большими. K 2 -K 1 = [(° C 2 +273) — (° C 1 +273)] = ° C 2 — ° C 1 .

………… [С1-3]

T hsp = Температура горячей точки. в К или ° C
T a = темп. в К или ° C.
P = приложенная нагрузка, Вт.

В таблице R1-1 приведены некоторые примеры термического сопротивления для стандартных размеров DIN.

R1.6 ТЕМПЕРАТУРНЫЙ КОЭФФИЦИЕНТ СОПРОТИВЛЕНИЯ, TCR

Температурный коэффициент сопротивления TCR выражается в ppm / ° C.

……….[R1-4]

Для пояснения TC часто обозначают TCR, то есть температурный коэффициент сопротивления.

Пределы спецификаций и фактические изменения могут выглядеть так, как показано на следующем рисунке, где показано семейство компонентов.

Рисунок R1-6. Пример указанных лимитов TC и фактических записей.


ABC CLR: Глава R Резисторы

Удельное сопротивление, термическое сопротивление и температурный коэффициент

Контент, лицензируемый EPCI:

[1] EPCI Эксперты Европейского института пассивных компонентов оригинальные статьи
[2] Справочник по пассивным компонентам CLR от P-O.Фагерхольт *

* используется под авторским правом EPCI от CTI Corporation, США

Содержание этой страницы находится под международной лицензией Creative Commons Attribution-Share Alike 4.0.

Общие сведения о температурном коэффициенте сопротивления высокоточного резистора — Блог о пассивных компонентах

источник: eletimes article

В статье

Eletimes.com объясняется температурный коэффициент высокоточного резистора и его связь с другими параметрами и характеристиками.

Что такое температурный коэффициент сопротивления?

Температурный коэффициент сопротивления (TCR) — это расчет относительного изменения сопротивления на градус изменения температуры. Он измеряется в ppm / ° C (1 ppm = 0,0001%) и определяется как: TCR = (R2– R1) / R1 (T2– T1). Для высокоточных резисторов эта спецификация обычно выражается в частях на миллион (ppm) на градус Цельсия по отношению к нормальной комнатной температуре, обычно + 25 ° C.

Несмотря на важность этой спецификации, отдельные производители резисторов используют разные методы для определения TCR в своих опубликованных таблицах данных.В большинстве случаев это определение не дает достаточно информации, чтобы конечный пользователь мог точно предсказать влияние изменений температуры на значение сопротивления. Если такие опубликованные отклонения TCR вызывают беспокойство, конечно, они могут создать неопределенность измерения. В частности, в приложениях, где безусловными требованиями являются высокоточные характеристики резистора и температурная стабильность. Эта неопределенность возникает, когда нет достаточной уверенности в том, что спецификация TCR была рассчитана с достаточным количеством данных, чтобы можно было точно предсказать истинное влияние изменения температуры на характеристики резистора.

Например, некоторые производители могут указать TCR как ± 5 ppm / ° C или ± 10 ppm / ° C, без ссылки на температурный диапазон. Другие могут указывать TCR как ± 5 ppm / ° C от + 25 ° C до + 125 ° C, но опускать данные о других диапазонах температур. В высокоточных устройствах, таких как резисторы Bulk Metal® Foil, производимые Vishay Foil Resistors, опубликованные спецификации TCR включают номинальные типовые кривые, обычно от –55 ° C до + 125 ° C. Эти кривые определяют номинальные «холодные» (от –55 ° C до + 25 ° C) и «горячие» (от + 25 ° C до + 125 ° C) уклоны хорды.В их таблицах данных обычно указывается максимальный разброс для каждого наклона (например, ± 0,2 ppm / ° C и ± 1,8 ppm / ° C). В случае резистора из объемной металлической фольги интерпретация TCR по умолчанию, равная, например, ± 5 ppm / ° C, будет означать, что — в любой точке рабочего диапазона температур — сопротивление не изменится более чем на + 5 ppm. / ° С.

Бренд Vishay Foil Resistors компании Vishay Precision Group, Inc. (VPG) является давним мировым экспертом в области проектирования, разработки и производства надежных высокоточных резисторов из металлической фольги и датчиков тока питания для широкого спектра применений.Сотни стандартных конфигураций моделей являются производными от одного из самых обширных в отрасли портфелей корпусов, материалов, подложек и комбинаций марок металлической фольги по выбору заказчика. Передовые технологии производства гарантируют, что конструкции резисторов оптимизированы по характеристикам для обеспечения стабильной работы в соответствии с опубликованными спецификациями на протяжении всего срока их службы. Все высокоточные резисторы из металлической фольги VPG имеют одни из самых благоприятных отраслевых спецификаций TCR, которые рассчитываются единообразно в соответствии с передовыми отраслевыми стандартами.Это гарантирует их надежность во всех диапазонах сопротивления и рабочих температур.

В этой статье рассматривается TCR и его «передовая практика» интерпретации, как это рекомендовано на основе собственного обширного опыта VPG в области высокоточных резисторов. Общие цели должны состоять в том, чтобы лучше понять характеристики прецизионного резистора в зависимости от температуры; проиллюстрировать нюансы между опубликованными спецификациями TCR в зависимости от типа технологии и выбранного производителем метода расчета; и предложить дополнительную информацию об использовании данных TCR, как средства обеспечения того, чтобы указанный прецизионный резистор мог надежно работать в рамках предполагаемого применения.

Взаимосвязь между температурой и характеристиками высокоточного резистора

Влияние температуры на характеристики резистора отражается как внутренне, так и с точки зрения ее влияния на работу компонентов; и внешне, с точки зрения поведения резистора в среде установки. В конструкции резистора заложена концепция, согласно которой при протекании электрического тока через резистор выделяется определенное количество тепла. Это явление известно как эффект Джоуля.Тепловой отклик, создаваемый эффектом Джоуля, затем вызывает относительные механические изменения или напряжения внутри резистора. Эти напряжения вызваны дифференциальным тепловым расширением материалов конструкции резистора, величина которого может варьироваться в зависимости от самих материалов. Температура окружающей среды в месте установки может аналогичным образом влиять на отклик резистора с точки зрения выделения тепла, которое потенциально может повлиять на характеристики резистора.

Таким образом, оптимальной является конструкция, которая сводит к минимуму восприимчивость высокоточного резистора к внешним и внутренним нагрузкам при различных режимах использования и силовых нагрузках без ущерба для производительности и надежности.В резистивной технологии Bulk Metal Foil эта цель достигается за счет создания точного термомеханического баланса между выделяемым теплом, материалами конструкции и соответствующими производственными процессами. Таким образом, благодаря тщательному проектированию, необходимость компенсации воздействия тепла и стресса во время работы может быть практически устранена, что еще больше повысит стабильность работы. Признавая важную взаимосвязь между температурой и характеристиками высокоточных резисторов, группа исследований и разработок Vishay Foil Resistors гарантирует, что весь ассортимент сверхвысокопрецизионных резисторов разработан именно таким образом.

Например, при разработке элемента из объемной металлической фольги запатентованный холоднокатаный фольговый материал приклеивается к керамическому материалу. Этот материал фототравливается в резистивный рисунок, не создавая механических нагрузок на материал. После этого прецизионные резисторы настраиваются лазером на заданное значение сопротивления и допуск. Поскольку резистивный материал не вытягивается, не наматывается и не подвергается механическим воздействиям во время производственного процесса, высокоточный резистор из объемной металлической фольги может сохранять свои предполагаемые конструктивные характеристики и, следовательно, полную эксплуатационную надежность, включая TCR.

Напротив, другие распространенные методы изготовления резисторов, такие как намотка проволоки, тонкопленочное напыление или толстопленочное остекление, по своей природе имеют большую вероятность возникновения механических напряжений и, следовательно, большую вероятность термомеханического дисбаланса. Поэтому конечным пользователям рекомендуется обращать пристальное внимание на номинальные температурные характеристики, чтобы убедиться, что резистор работает в соответствии с опубликованными спецификациями. Строго придерживаясь этих значений, конечный пользователь может быть уверен в постоянной надежности резистора независимо от производственного процесса.Когда резистор работает при температурах выше номинальных, он может выйти из строя или получить другое повреждение, которое напрямую снижает точность. Если такие условия перегрева резистора сохраняются в течение длительного периода времени, отдельные значения сопротивления могут постоянно изменяться, что приводит к полной неисправности цепи. Хотя производители обычно разрабатывают продукты с определенным дополнительным запасом допустимых температурных пределов, выходящих за пределы опубликованных спецификаций, такая свобода действий может значительно варьироваться в зависимости от производителя.

Спецификации анализа TCR, уклонов хорды и скорости изменения

Несмотря на различия в конструкции и связанных производственных процессах, TCR остается одним из наиболее общепринятых индикаторов стабильности рабочих характеристик резисторов. TCR является обязательным условием для прогнозирования чувствительности резистора к колебаниям температуры окружающей среды, а также ожидаемого поведения компонентов как при низких, так и при высоких рабочих температурах. В результате TCR резисторов из объемной металлической фольги учитывает экстремальные теоретические условия в пределах индивидуальных спецификаций.Напротив, с другими технологиями, такими как тонкая пленка, производители обычно предпочитают представлять TCR в относительно узком температурном диапазоне, с меньшим акцентом или вниманием к экстремальным температурным эффектам.

В дополнение к ранее упомянутому определению, TCR можно дополнительно определить как изменение сопротивления между двумя температурами, деленное на разницу температур (крутизну хорды), или TCR = (ΔR / R) / ΔT. Обычно наклон холодной хорды определяют от –55 ° C до + 25 ° C, а наклон горячей хорды от + 25 ° C до + 125 ° C (в данном случае ΔT hot = 125-25 = + 100 ° C).Однако также может быть определен любой другой температурный интервал (ΔT). Чтобы определить скорость изменения сопротивления при любой температуре на этой кривой, TCR вычисляется математически, когда ΔT становится бесконечно малым (ΔT → 0):

TCR (ΔT → 0) = (dR / R) / dT

Хорошо известно, что изменение сопротивления в зависимости от температуры в резисторах NiCr не является линейным, а вместо этого обычно следует параболической схеме. Математически эту функцию можно описать как:

Y = aX2 + bX + c, где: Y = ΔR / R (обычно выражается в ppm)

X = T (Температура в ° C).

В этом случае для любой температуры T, Y будет выражать значение изменения сопротивления ΔR / R от номинального значения (при + 25 ° C) в ppm. Другими словами, для функции Y это будет выражаться производной функцией Y ‘. Эта функция определяет наклон (TCR) касательной к параболе и указывает, как изменяется TCR. Для приведенной выше функции параболы:

Y ′ = 2aX + b (Y ′ выражается в ppm / ° C)

Для простоты можно также использовать тот факт, что наклон хорды равен значению средней точки касательной соответствующего диапазона температур.Например, значение горячего наклона (от + 25 ° C до + 125 ° C) равно значению касательной (Y ‘) в средней точке, T = + 75 ° C.

Производители тонкопленочных резисторов обычно стремятся достичь наилучшего «горячего» наклона, сохраняя при этом «холодный» наклон в пределах указанного предела. Исследование, проведенное для сравнения и анализа объемной металлической фольги и тонкопленочного прецизионного резистора TCR с использованием метода расчета скорости изменения, показало, что изменение сопротивления из-за температуры может быть значительно больше, чем указанные пределы TCR.Это сравнение основано на тестировании двух групп различных прецизионных тонкопленочных резисторов NiCr, каждая от разных производителей, каждая из которых имеет TCR 5 ppm / ° C. Результаты этого исследования продемонстрировали, что максимальное изменение сопротивления (TCR) из-за изменений температуры по оси температур от -55 ° C до + 125 ° C будет варьироваться в резисторах с объемной металлической фольгой от -2,17 ppm / ° C до +2,2 ppm. / ° C, всего менее 4,37 частей на миллион / ° C. Для того же диапазона температур TCR образца тонкопленочного резистора от производителя A будет варьироваться от -3.От 6 ppm / ° C до +7,2 ppm / ° C, всего почти 11 ppm / ° C; и от производителя B от -9,1 ppm / ° C до +4,99 ppm / ° C, всего 14 ppm / ° C. Другими словами, прецизионные тонкопленочные резисторы могут демонстрировать TCR, который намного превышает указанные пределы, указанные в техническом паспорте производителя.

Важно подчеркнуть, что TCR резистора из объемной металлической фольги достигается путем согласования двух противоположных эффектов собственного увеличения сопротивления из-за повышения температуры и уменьшения сопротивления, связанного с сжатием, из-за того же повышения температуры.Эти два эффекта возникают одновременно, что приводит к необычно низкой, предсказуемой, воспроизводимой и контролируемой спецификации TCR. В результате резисторы с объемной металлической фольгой достигают максимальной внутренней стабильности и близкого к нулю TCR, спецификации, которая не зависит от экранирования или других искусственных средств для достижения однородных высокоточных характеристик резистора и температурной стабильности. Этот строгий метод расчета TCR, основанный на опыте VPG, используется для обеспечения высокоточной надежности резистора при полных значениях сопротивления и диапазонах рабочих температур.

Преимущества низкого TCR при применении высокоточных резисторов

Примеры преимуществ низкого TCR можно найти в тысячах успешных приложений. Для целей этой статьи мы рассмотрим три примера приложений, в которых низкий TCR дает определенные преимущества в производительности.

Прецизионные приборы

Transmille, ведущий британский производитель высокоточных цифровых мультиметров, искал резисторный компонент для новой серии из 8 штук.5- и 7,5-значные единицы. Чтобы достичь необходимой точности в 8,5 разряда, указанный резистор должен был обеспечивать чрезвычайно низкий TCR, высокую точность, повторяемость, низкую термо-ЭДС, низкий уровень шума, долговременную стабильность и минимальные гармонические искажения. Поскольку мультиметр был основан на аналоговой схеме, резистор должен иметь минимальное отклонение от начальных значений при работе при температурах выше комнатной. Заказчик выбрал резистор из металлической фольги VPG из-за его низкого значения TCR: <1 ppm / ° C максимум при + 20 ° C.В дополнение к чрезвычайно низкому TCR, резистор обеспечивал низкий PCR 5 ppm при номинальной мощности; долговечная стабильность ± 0,005% при +70 ° C в течение 2000 часов или ± 0,015% в течение 10 000 часов; термо-ЭДС <0,05 мкВ / ° C; и неизмеримый шум.

Чрезвычайно низкий TCR резистора из объемной металлической фольги позволил Transmille представить на рынке новый цифровой мультиметр, который может предложить лучшие в отрасли характеристики и необходимую точность в 8,5 разряда. Резистор продемонстрировал исключительную стабильность при максимально допустимом дрейфе, в течение тысяч часов работы в полевых условиях, даже в суровых условиях.В дальнейшем пользователь смог достичь такого уровня характеристик резистора довольно экономично. Это позволило Transmille представить на рынке новый высокопроизводительный цифровой мультиметр по очень конкурентоспособной цене.

Метрология вторичная ссылка

В другом примере VSL, Национальный метрологический институт (NMI) Нидерландов, обратился к VPG за решением для высокоточного резистора в качестве вторичного эталона в своих экспериментах с квантовым сопротивлением Холла (QHR).QHR — это всемирно признанный стандарт первичного квантового сопротивления со значениями около 12,9 кОм и 6,45 кОм. Чтобы служить адекватным вторичным эталонным эталоном, VSL нуждался в экономичном высокоточном резисторе, значения которого должны были точно соответствовать значениям первичного стандарта QHR, но при этом предлагать четко определенную четырехконтактную конфигурацию, низкий уровень шума, низкий TCR и отсутствие эффекта RH, наряду с превосходной долгосрочной стабильностью.

Основываясь на низком TCR, предлагаемом VPG, VSL выбрала один из сверхточных резисторов компании.Выбранный резистор объединяет 11 элементов в одном корпусе, что обеспечивает более низкий TCR и более длительный дрейф, чем можно было бы достичь с помощью одного резистивного элемента. Устройство предлагало необходимые клеммные соединения, герметичное уплотнение для защиты от влажности и заливку масла, что дополнительно гарантировало, что на значения сопротивления не повлияют резкие изменения температуры. Затем блоки были протестированы на предмет подтверждения значения TCR в соответствии с опубликованной спецификацией VPG. С этой целью резистор был впоследствии установлен в корпусе, термостатированном на 29.00 ± 0,02 ° C, для дальнейшего снижения эффектов TCR, затем измеряется по сравнению с первичным QHR в течение более чем пятилетнего периода. Результаты пятилетнего исследования показали, что фактическое долгосрочное TCR двух резистивных элементов из объемной металлической фольги составляло менее 0,5 ppm / ° C в диапазоне температур от +18 ° C до +28 ° C, с (очень ) малый температурный коэффициент второго порядка Beta. Это было значительно ниже первоначально опубликованной спецификации 2 ppm / ° C (от -55 ° C до +125 ° C) и доказало, что резисторы VPG являются надежным вторичным эталонным эталоном QHR.Здесь опубликованный TCR послужил дополнительным преимуществом с точки зрения его эмпирически подтвержденной способности превосходить опубликованные спецификации при долгосрочном использовании.

Драйверы тока для диодных лазеров

В другом примере недорогие и простые в использовании диодные лазеры являются виртуальным инструментом измерения в экспериментальной атомной физике. Чтобы диодный лазер мог поддерживать свою частоту, выходную мощность, ток и температуру, требуется тщательное регулирование параметров. Чтобы оптимально управлять расходами, физический факультет Калифорнийского государственного университета попытался создать собственный недорогой источник тока с низким уровнем шума для использования с лабораторными диодными лазерами.Чтобы генерировать достаточно стабильный лазерный поток, резистор считывания тока должен быть устойчивым как к внутреннему, так и к внешнему температурному дрейфу, иметь высокую мощность и низкую термо-ЭДС. Наиболее важным элементом драйвера тока является подсхема, отвечающая за регулирование тока, так как стабильность лазера не должна превышать общую стабильность чувствительного резистора. В этом приложении использование традиционных коммерческих контроллеров тока было слишком дорогостоящим. Следовательно, жизнеспособное резисторное решение должно быть недорогим и высокоточным.

При использовании прецизионного резистора из металлической фольги с низким TCR, стандартным 2 ppm / ° C (от –55 ° C до + 125 ° C, + 25 ° C), допуском 0,01% и мощностью 10 Вт рейтинг, конечный пользователь может интегрировать регулируемое напряжение в свою подсхему, и при этом по-прежнему контролировать количество тока, излучаемого из драйвера тока лазера. Последнее было достигнуто настройкой драйвера на заданное напряжение на регулируемом регуляторе напряжения. Это предварительно установленное значение общего сопротивления гарантирует, что падение напряжения будет достаточно большим для точного регулирования тока, но достаточно небольшим, чтобы не влиять на регулируемое напряжение питания.Здесь особое сочетание долговременной стабильности и низкого TCR сделало резистор из объемной металлической фольги оптимальным решением в рамках недорогого и высокоточного приложения. Решение оказалось жизнеспособным, поскольку пользователь был уверен в точности спецификации TCR.

«Истинное» значение TCR при выборе высокоточного резистора

Для инженеров, выбирающих высокоточные резисторы, спецификации TCR могут помочь им лучше предсказать обратимые сдвиги в сопротивлении компонентов от омического значения в пределах приложения, как при предполагаемых рабочих температурах, так и в среде установки.Такие данные позволяют получить представление об основных долгосрочных показателях эффективности резисторов и, в конечном итоге, о конструкциях готовых изделий. Поскольку методы расчета TCR могут различаться в зависимости от производителя, производственного процесса, материалов конструкции и других аспектов, для конечного пользователя важно понимать любые нюансы в выбранном методе. Это понимание, в свою очередь, помогает им лучше понять ценность таких данных как истинного показателя надежности компонентов. Методы VPG Foil Resistor для расчета TCR соответствуют строгим протоколам для высокоточных резисторов с целью помочь клиентам быть уверенными в долгосрочной надежности таких компонентов в сложных приложениях.


Узнайте больше о пассивных компонентах от экспертов отрасли! — Электронные курсы пассивных компонентов EPCI Academy для студентов и сертифицированные курсы для профессионалов:

Температурный коэффициент сопротивления (формула и примеры)

Как мы обсуждали на странице под заголовком, изменение сопротивления с температурой, электрическое сопротивление каждого вещества изменяется с изменением его температуры.

Что такое температурный коэффициент сопротивления?

Температурный коэффициент сопротивления измеряет изменения электрического сопротивления любого вещества на градус изменения температуры.

Возьмем проводник с сопротивлением R 0 при 0 o C и R t при t o C соответственно.
Из уравнения изменения сопротивления с температурой получаем

Это α o называется температурным коэффициентом сопротивления этого вещества при 0 o C.
Из приведенного выше уравнения ясно, что изменение В электрическом сопротивлении любого вещества из-за температуры в основном зависит от трех факторов —

  1. значение сопротивления при начальной температуре,
  2. повышение температуры и
  3. температурный коэффициент сопротивления α o .

Эти α o различаются для разных материалов, поэтому разные температуры различаются для разных материалов.

Таким образом, температурный коэффициент сопротивления при 0 o C любого вещества является обратной величиной предполагаемой температуры нулевого сопротивления этого вещества.

До сих пор мы обсуждали материалы, сопротивление которых увеличивается с повышением температуры. Тем не менее, есть много материалов, электрическое сопротивление которых уменьшается с понижением температуры.

На самом деле, в металле, если температура увеличивается, случайное движение свободных электронов и межатомные колебания внутри металла увеличиваются, что приводит к большему количеству столкновений.

Больше столкновений препятствует плавному течению электронов через металл; следовательно, сопротивление металла увеличивается с повышением температуры. Итак, температурный коэффициент сопротивления считаем положительным для металла.

Но в полупроводниках или другом неметалле количество свободных электронов увеличивается с повышением температуры.

Поскольку при более высокой температуре из-за достаточной тепловой энергии, подводимой к кристаллу, значительное количество ковалентных связей разрывается, и, следовательно, создается больше свободных электронов.

Это означает, что при повышении температуры значительное количество электронов попадает в зоны проводимости из валентных зон, пересекая запрещенную энергетическую зону.

По мере увеличения количества свободных электронов сопротивление этого типа неметаллических веществ уменьшается с увеличением температуры.Следовательно, температурный коэффициент сопротивления отрицателен для неметаллических веществ и полупроводников.

Если сопротивление приблизительно не изменяется с температурой, мы можем считать значение этого коэффициента равным нулю. Сплав константана и манганина имеет температурный коэффициент сопротивления, близкий к нулю.

Значение этого коэффициента непостоянно; это зависит от начальной температуры, на которой основано приращение сопротивления.

Когда приращение основано на начальной температуре 0 o C, значение этого коэффициента составляет α o , что является не чем иным, как обратной величиной соответствующей предполагаемой температуры нулевого сопротивления вещества.

Но при любой другой температуре температурный коэффициент электрического сопротивления не такой, как у этого α o . Фактически для любого материала значение этого коэффициента максимально при температуре 0 o ° C.

Скажем, значение этого коэффициента любого материала при любом t o C равно α t , тогда его значение можно определить по следующему уравнению,

Значение этого коэффициента при температуре t 2 o C в терминах того же самого при t 1 o C определяется как,

Обзор концепции температурного коэффициента сопротивления

Электрическое сопротивление проводников, таких как серебро, медь, золото, алюминий , так далее., зависит от процесса столкновения электронов в материале.

По мере увеличения температуры этот процесс столкновения электронов ускоряется, что приводит к увеличению сопротивления с повышением температуры проводника. Сопротивление проводов обычно повышается с повышением температуры.

Если проводник имеет сопротивление R 1 при t 1 o C и повышает температуру, его сопротивление становится R 2 при t 2 o C.

Это повышение сопротивления (R 2 — R 1 ) с повышением температуры (t 2 — t 1 ) зависит от следующих факторов:

Комбинируя вышеуказанные эффекты,

Где α — температурный коэффициент сопротивления материала при t 1 o C.

Из уравнения (1)

Если при определенной температуре, мы знаем сопротивление и температурный коэффициент сопротивления материала, мы можем узнать сопротивление материала при других температурах, используя уравнение (2).

Температурный коэффициент сопротивления некоторых материалов или веществ

Температурный коэффициент сопротивления некоторых материалов / веществ при 20 o C перечислены ниже —

Sl. № Материал / Вещества Химический символ / Химический состав Температурный коэффициент сопротивления / o C (при 20 o C)
1 Серебро Ag 0.0038
2 Медь Cu 0,00386
3 Золото Au 0,0034
4 Алюминий Al 0,00429
5 Вольфрам W 0,0045
6 Железо Fe 0,00651
7 Платина Pt 0.003927
8 Манганин Cu = 84% + Mn = 12% + Ni = 4% 0,000002
9 Ртуть Hg 0,0009
10 Нихром Ni = 60% + Cr = 15% + Fe = 25% 0,0004
11 Константан Cu = 55% + Ni = 45% 0,00003
12 Углерод С — 0.0005
13 Германий Ge — 0,05
14 Кремний Si — 0,07
15 Латунь Cu = 50-65% + Zn = 50-35% 0,0015
16 Никель Ni 0,00641
17 Олово Sn 0,0042
18 Цинк Zn 0.0037
19 Марганец Mn 0,00001
20 Тантал Ta 0,0033

Влияние температуры на температурный коэффициент температурного сопротивления материала

коэффициент сопротивления материала также изменяется с температурой.

Если α o — температурный коэффициент сопротивления материала при 0 o C, то из уравнения (2) сопротивление материала при t o C,

Где R 0 — Сопротивление материала при 0 o C

Аналогично, если температурный коэффициент сопротивления материала при t o C равен αt, тогда сопротивление материала при 0 o C, из уравнения (2)

Где R t — сопротивление материала при t o C

Из уравнений (3) и (4)

Где α 1 и α 2 температурный коэффициент сопротивления материала при t 1 o C и t 2 o C соответственно.

Следовательно, если мы знаем температурный коэффициент сопротивления материала при определенной температуре, мы можем узнать температурный коэффициент материала при любой другой температуре, используя уравнение (6).

Проводящие материалы имеют большой положительный температурный коэффициент сопротивления. Следовательно, сопротивление проводящих материалов (металлов) возрастает с повышением температуры.

Полупроводники и изоляционный материал имеют отрицательный температурный коэффициент сопротивления.Следовательно, сопротивление полупроводников и изоляторов уменьшается с повышением температуры.

Сплавы, такие как манганин, константан и т. Д., Имеют очень низкий и положительный температурный коэффициент сопротивления .

Следовательно, сопротивление сплавов увеличивается с повышением температуры.

Тем не менее, это повышение сопротивления очень низкое (почти незначительное) по сравнению с другими металлами, что делает эти сплавы пригодными для использования в измерительных приборах.

Термостойкость — обзор

5.2.2.3 Теплообмен внутри скважинного теплообменника и его основные влияющие факторы

В соответствии с основными принципами, обсуждавшимися ранее при работе с сильно связанными источниками тепла окружающей среды, при проектировании скважинного теплообменника (ППТО) фундаментальным является обеспечить — экономичным способом — нагнетание или извлечение тепла из земли без чрезмерной разницы температур между жидким теплоносителем и окружающей землей, тем самым минимизируя разницу между T 2r и T 2 (см. Рисунок 5.1). Эта разница температур сильно зависит от параметра, известного как тепловое сопротивление жидкости относительно земли, в котором двумя основными составляющими этого сопротивления являются тепловое сопротивление между жидкостью-теплоносителем и стенкой скважины, известное как тепловое сопротивление скважины , и тепловое сопротивление окружающего грунта от стенки скважины до некоторого подходящего среднего уровня температуры, называемого термическим сопротивлением грунта (см. Eskilson, 1987; Hellström & Kjellsson, 1998).

Термическое сопротивление грунта включает окружающий грунт от стенки скважины до некоторого эталонного уровня температуры, обычно естественной ненарушенной температуры грунта T 2 в приложениях типа GSHP. 5 В этом типе применения удобно рассматривать тепловую реакцию из-за скачкообразного изменения удельной скорости закачки тепла q (Вт / м) 6 , заданной на единицу длины ствола скважины, и связать температуру эволюция с зависящим от времени тепловым сопротивлением заземления R г , так что:

(5.2) Tb − T2 = qRg

, где T b — температура в стенке скважины. Единица термического сопротивления грунта R г — К / (Вт / м). Другим важным фактором при проектировании скважинных систем является тепловое сопротивление между теплоносителем в проточных каналах ствола скважины и стенкой ствола скважины. Тепловое сопротивление между флюидом и стенкой ствола скважины дает разницу температур между температурой флюида в коллекторе ( T f ) и температурой на стенке скважины ( T b ) для определенной удельной скорости теплопередачи. q (Вт / м):

(5.3) Tf − Tb = qRb

As T f представляет реальную температуру, при которой тепловой насос фактически забирает тепло из холодного резервуара (Tf≈T2r), из комбинации уравнения (5.2) и Уравнение (5.3) легко вывести:

(5.4) T2r − T2 = q (Rg + Rb)

Следовательно, с точки зрения производительности системы, мы можем видеть, что важно минимизировать термическое воздействие на грунт, а также на температуру ствола скважины. тепловое сопротивление. Однако тепловое сопротивление грунта сильно зависит от таких факторов, как удельное тепловое сопротивление грунта (в зависимости от типа или состава грунта), которое проектировщик не может изменить.Также важно отметить, что обычно используется несколько групп скважин. Тепловое взаимодействие между соседними скважинами разовьется через относительно короткое время, что повлияет на значение R г . Обычный подход здесь заключается в измерении с помощью так называемых методов импульсного или переходного отклика (TRT) (ASHRAE, 2002; Gehlin, 1998) индивидуального значения скважины R g , которое затем экстраполируется путем моделирования. через соответствующие так называемые g-функции на поведение всего скважинного поля.Наконец, R г также зависит от того, насколько интенсивно грунт использовался ранее для термической экстракции / закачки и, следовательно, от энергетического поведения системы (характеризуемого количеством часов, в течение которых система использовалась при полной нагрузке на протяжении всего нагрева. сезон).

Термическое сопротивление скважины зависит от расположения проточных каналов и тепловых свойств используемых материалов. Типичные значения, наблюдаемые при полевых испытаниях, варьируются от 0,01 К / (Вт / м) для разомкнутой коаксиальной схемы до примерно 0.25 К / (Вт / м) для одинарных U-образных труб из бентонитового раствора с плохим тепловым контактом с окружающей стенкой скважины. Для типичной скорости теплопередачи 50 Вт / м соответствующие перепады температур, которые могут возникнуть из-за термического сопротивления ствола скважины, будут варьироваться от 0,5 ° C до значений вплоть до 12,5 ° C, что потенциально может очень существенно повлиять на производительность системы. Чтобы свести к минимуму R b , для обеспечения лучшей теплопередачи используются заполняющие материалы (например, бентонит, бетон и т. Д.) В скважинах, залитых раствором.Однако в заполненных водой скважинах — очень популярных на севере Европы — теплопередача вызывает естественную конвекцию в скважинной воде и в окружающем проницаемом грунте. Этот эффект возможен только при соблюдении определенных условий грунта и приводит к снижению общего термического сопротивления скважины.

В целом термическое сопротивление ствола скважины зависит:

От качества раствора

От материала ствола скважины

От потока жидкости внутри ППТ. если условия потока ламинарные, тепловой контакт намного хуже, чем в условиях турбулентного потока

Возможное тепловое короткое замыкание между восходящими и нижними ветвями внутри ППТО

Использование более высоких скоростей потока может свести к минимуму последнее два фактора, но в результате возникает компромисс с увеличением потребности в насосах.

Наконец, при рассмотрении уравнения (5.4) можно пойти другим путем: ограничить удельную скорость отвода тепла, q . Это подход некоторых из наиболее известных стандартов для разработки мелководных геотермальных источников, таких как немецкий стандарт VDI 5450 (VDI, 2008). Здесь максимально допустимые показатели отвода тепла фиксируются в зависимости от различных почв и рабочих параметров данной системы. В первые годы внедрения BHE в Европе стандартным значением для Германии было значение 50 Вт / м (тогда как значение 55 Вт / м обычно принималось для Швейцарии).Эти значения использовались в то время при проектировании жилых зданий GSHP, и 50 Вт / м до сих пор являются практическим значением для определения размеров небольших установок. Однако из всех рассмотрений, сделанных ранее, очевидно, что система BHE не должна разрабатываться в соответствии с такими типами правил.

Удельное сопротивление и проводимость — температурные коэффициенты для обычных материалов

Удельное сопротивление равно

  • электрическое сопротивление единичного куба материала, измеренное между противоположными гранями куба

Калькулятор сопротивления электрического проводника

Этот калькулятор можно использовать для расчета электрического сопротивления проводника.

Коэффициент удельного сопротивления (Ом · м) (значение по умолчанию для меди)

Площадь поперечного сечения проводника (мм 2 ) — Калибр проводов AWG

x 10 -8

Алюминий 2. x 10 -8 3,8 x 10 -3 3,77 x 10 7
Алюминиевый сплав 3003, прокат 3,7 x 10 -8
Алюминиевый сплав 2014 , отожженный 3.4 x 10 -8
Алюминиевый сплав 360 7,5 x 10 -8
Алюминиевая бронза 12 x 10 -8
Животный жир 14 x 10 -2
Мышцы животных 0,35
Сурьма 41,8 x 10 -8
Барий (0 o В) 30.2 x 10 -8
Бериллий 4,0 x 10 -8
Медь бериллий 25 7 x 10 -8
Висма 115 x 10 -8
Латунь — 58% Cu 5,9 x 10 -8 1,5 x 10 -3
Латунь — 63% Cu 7.1 x 10 -8 1,5 x 10 -3
Кадмий 7,4 x 10 -8
Цезий (0 o C) 18,8 x 10 -8
Кальций (0 o C) 3,11 x 10 -8
Углерод (графит) 1) 3-60 x 10 -5 -4.8 x 10 -4
Чугун 100 x 10 -8
Церий (0 o C) 73 x 10 -8
Хромель (сплав хрома и алюминия) 0,58 x 10 -3
Хром 13 x 10 -8
Кобальт 9 x 10 -8
Константан 49 x 10 -8 3 x 10 -5 0.20 x 10 7
Медь 1,724 x 10 -8 4,29 x 10 -3 5,95 x 10 7
Мельхиор 55-45 (константан) 43 x 10 -8
Диспрозий (0 o C) 89 x 10 -8
Эрбий (0 o C) 81 x 10 -8
Эврика 0.1 x 10 -3
Европий (0 o C) 89 x 10 -8
Гадолий 126 x 10 -8
Галлий (1,1K) 13,6 x 10 -8
Германий 1) 1 — 500 x 10 -3 -50 x 10 -3
Стекло 1 — 10000 x 10 9 10 -12
Золото 2.24 x 10 -8
Графит 800 x 10 -8 -2,0 x 10 -4
Гафний (0,35K) 30,4 x 10 — 8
Hastelloy C 125 x 10 -8
Гольмий (0 o C) 90 x 10 -8
Индий ( 3.35K) 8 x 10 -8
Инконель 103 x 10 -8
Иридий 5,3 x 10 -8
Железо 9,71 x 10 -8 6,41 x 10 -3 1,03 x 10 7
Лантан (4,71K) 54 x 10 -8
Свинец 20.6 x 10 -8 0,45 x 10 7
Литий 9,28 x 10 -8
Лютеций 54 x 10 -8
Магний 4,45 x 10 -8
Магниевый сплав AZ31B 9 x 10 -8
Марганец 185 x 10 -8 1.0 x 10 -5
Ртуть 98,4 x 10 -8 8,9 x 10 -3 0,10 x 10 7
Слюда (мерцание) 1 x 10 13
Мягкая сталь 15 x 10 -8 6,6 x 10 -3
Молибден 5,2 x 10 -8
Монель 58 x 10 -8
Неодим 61 x 10 -8
Нихром (сплав никеля и хрома) 100 — 150 х 10 -8 0.40 x 10 -3
Никель 6,85 x 10 -8 6,41 x 10 -3
Никелин 50 x 10 -8 2,3 x 10 -4
Ниобий (Columbium) 13 x 10 -8
Осмий 9 x 10 -8
Палладий 10.5 x 10 -8
Фосфор 1 x 10 12
Платина 10,5 x 10 -8 3,93 x 10 -3 3,93 x 10 -3 x 10 7
Плутоний 141,4 x 10 -8
Полоний 40 x 10 -8
Калий 7.01 x 10 -8
Празеодим 65 x 10 -8
Прометий 50 x 10 -8
Протактиний 1,4 K) 17,7 x 10 -8
Кварц (плавленый) 7,5 x 10 17
Рений (1,7 K) 17.2 x 10 -8
Родий 4,6 x 10 -8
Твердая резина 1-100 x 10 13
Рубидий 11,5 x 10 -8
Рутений (0,49 K) 11,5 x 10 -8
Самарий 91,4 x 10 -8 9222

Скандий 50.5 x 10 -8
Селен 12,0 x 10 -8
Кремний 1) 0,1-60 -70 x 10 -3
Серебро 1,59 x 10 -8 6,1 x 10 -3 6,29 x 10 7
Натрий 4,2 x 10 -8
Грунт, типичный грунт 10 -2 -10 -4
Припой 15 x 10 -8
Нержавеющая сталь 10 6
Стронций 12.3 x 10 -8
Сера 1 x 10 17
Тантал 12,4 x 10 -8
11345 Тербий
Таллий (2,37K) 15 x 10 -8
Торий 18 x 10 -8
Тулий 67 x 10 -8
Олово 11.0 x 10 -8 4,2 x 10 -3
Титан 43 x 10 -8
Вольфрам 5,65 x 10 -8 4,5 x 10 -3 1,79 x 10 7
Уран 30 x 10 -8
Ванадий 25 x 10 -8
Вода дистиллированная 10 -4
Вода пресная 10 -2
Вода соленая 4
Иттербий 27.7 x 10 -8
Иттрий 55 x 10 -8
Цинк 5,92 x 10 -8 3,7 x 10 -3
Цирконий (0,55K) 38,8 x 10 -8

1) Примечание! — удельное сопротивление сильно зависит от наличия примесей в материале.

2 ) Примечание! — удельное сопротивление сильно зависит от температуры материала.Приведенная выше таблица основана на эталоне 20 o C.

Электрическое сопротивление в проводе

Электрическое сопротивление провода больше для более длинного провода и меньше для провода с большей площадью поперечного сечения. Сопротивление зависит от материала, из которого оно изготовлено, и может быть выражено как:

R = ρ L / A (1)

, где

R = сопротивление (Ом, Ω )

ρ = коэффициент удельного сопротивления (Ом · м, Ом · м)

L = длина провода (м)

A = площадь поперечного сечения провода (м 2 )

Фактором сопротивления, учитывающим природу материала, является удельное сопротивление.Поскольку он зависит от температуры, его можно использовать для расчета сопротивления провода заданной геометрии при различных температурах.

Обратное сопротивление называется проводимостью и может быть выражено как:

σ = 1 / ρ (2)

где

σ = проводимость (1 / Ом · м)

Пример — сопротивление алюминиевого провода

Сопротивление алюминиевого кабеля длиной 10 м и площадью поперечного сечения 3 мм 2 можно рассчитать как

R = (2.65 10 -8 Ом м) (10 м) / ((3 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,09 Ом

Сопротивление

Электрическое сопротивление компонента схемы или устройства определяется как отношение приложенного напряжения к протекающему через него электрическому току:

R = U / I (3)

, где

R = сопротивление (Ом)

U = напряжение (В)

I = ток (A)

Закон Ома

Если сопротивление постоянно диапазон напряжения, затем закон Ома,

I = U / R (4)

можно использовать для прогнозирования поведения материала.

Удельное сопротивление в зависимости от температуры

Изменение удельного сопротивления в зависимости от температуры можно рассчитать как

= ρ α dt (5)

где

dρ = изменение удельного сопротивления ( Ом м 2 / м)

α = температурный коэффициент (1/ o C)

dt = изменение температуры ( C)

Пример — изменение удельного сопротивления

Алюминий с удельным сопротивлением 2.65 x 10 -8 Ом м 2 / м нагревается от 20 o C до 100 o C . Температурный коэффициент для алюминия составляет 3,8 x 10 -3 1/ o C . Изменение удельного сопротивления можно рассчитать как

dρ = (2,65 10 -8 Ом · м 2 / м) (3,8 10 -3 1/ o C) ((100 o C) — (20 o C))

= 0.8 10 -8 Ом м 2 / м

Окончательное удельное сопротивление можно рассчитать как

ρ = (2,65 10 -8 Ом м 2 / м) + (0,8 10 -8 Ом · м 2 / м)

= 3,45 10 -8 Ом · м 2 / м

Калькулятор зависимости коэффициента удельного сопротивления от температуры

использоваться для расчета удельного сопротивления материала проводника в зависимости оттемпература.

ρ — Коэффициент удельного сопротивления (10 -8 Ом м 2 / м)

α — Температурный коэффициент (10 -3 63528 o C)

dt изменение температуры ( o C)

Сопротивление и температура

Для большинства материалов электрическое сопротивление увеличивается с температурой.Изменение сопротивления может быть выражено как

dR / R с = α dT (6)

, где

dR = изменение сопротивления (Ом)

84

R

84

R

с = стандартное сопротивление согласно справочным таблицам (Ом)

α = температурный коэффициент сопротивления ( o C -1 )

dT = изменение температура от эталонной температуры ( o C, K)

(5) может быть изменена на:

dR = α dT R s (6b)

«Температурный коэффициент сопротивления» — α — материала — это увеличение сопротивления резистора 1 Ом из этого материала при повышении температуры 9 0009 1 o С .

Пример — сопротивление медного провода в жаркую погоду

Медный провод с сопротивлением 0,5 кОм при нормальной рабочей температуре 20 o C в жаркую солнечную погоду нагревается до 80 o C . Температурный коэффициент для меди составляет 4,29 x 10 -3 (1/ o C) , а изменение сопротивления можно рассчитать как

dR = ( 4,29 x 10 -3 1/ o C) ((80 o C) — (20 o C) ) (0.5 кОм)

= 0,13 (кОм)

Результирующее сопротивление медного провода в жаркую погоду будет

R = (0,5 кОм) + (0,13 кОм)

= 0,63 ( кОм)

= 630 (Ом)

Пример — сопротивление угольного резистора при изменении температуры

Угольный резистор с сопротивлением 1 кОм при температуре 20 o C нагревается до 120 o С .Температурный коэффициент для углерода отрицательный -4,8 x 10 -4 (1/ o C) — сопротивление уменьшается с повышением температуры.

Изменение сопротивления можно рассчитать как

dR = ( -4,8 x 10 -4 1/ ° ° C) ((120 ° ° C) — (20 ° ° C) ) (1 кОм)

= — 0,048 (кОм)

Результирующее сопротивление резистора будет

R = (1 кОм) — (0.048 кОм)

= 0,952 (кОм)

= 952 (Ом)

Калькулятор зависимости сопротивления от температуры

Этот счетчик может использоваться для расчета сопротивления проводника в зависимости от температуры.

R с сопротивление (10 3 (Ом)

α температурный коэффициент (10 -3 1/ o)

dt Изменение температуры ( o C)

Температурные поправочные коэффициенты для сопротивления проводника

900

Температура проводника
(° C) 904 904 904 Преобразовать в 20 ° C
Обратно в преобразовать из 20 ° C
5 1.064 0,940
6 1,059 0,944
7 1,055 0,948
8 1,050 0,952
9 1,046 0,956
10 1,042 0,960
11 1,037 0,964
12 1,033 0.968
13 1,029 0,972
14 1,025 0,976
15 1,020 0,980
16 1,016 0,984
17 1,012 0,988
18 1,008 0,992
19 1,004 0,996
20 1.000 1.000
21 0,996 1.004
22 0,992 1.008
23 0,988 1.012
24 0.984 1.016
25 0,980 1,020
26 0,977 1,024
27 0,973 1.028
28 0,969 1,032
29 0,965 1,036
30 0,962 1,040
31 0,958 1,044
32 0,954 1,048
33 0,951 1,052

.