Сечение провода и нагрузка (мощность) таблица
При монтаже электропроводки в квартире или в частном доме очень важно правильно подобрать сечение провода. Если взять слишком толстый кабель, то это «влетит вам в копеечку», так как его цена напрямую зависит от диаметра (сечения) токопроводящих жил. Применение же тонкого кабеля приводит к его перегреву и при несрабатывании защиты возможно оплавление изоляции, короткое замыкание и как следствие — пожар. Наиболее правильным будет выбор сечения провода в зависимости от нагрузки, что отражено в приведенных ниже таблицах.
Сечение кабеля
Сечение кабеля — это площадь среза токоведущей жилы. Если срез жилы круглый (как в большинстве случаев) и состоит из одной проволочки — то площадь/сечение определяется по формуле площади круга. Если в жиле много проволочек, то сечением будет сумма сечений всех проволочек в данной жиле.
Величины сечения во всех странах стандартизированы, причем стандарты бывшего СНГ и Европы в этой части полностью совпадают. В нашей стране документом, которым регулируется этот вопрос, являются «Правила устройства электроустановок» или кратко — ПУЭ.
Сечение кабеля выбирается исходя из нагрузок с помощью специальных таблиц, называемых «Допустимые токовые нагрузки на кабель.» Если нет никакого желания разбираться в этих таблицах — то Вам вполне достаточно знать, что на розетки желательно брать медный кабель сечением 1,5-2,5 мм², а на освещение — 1,0-1,5мм².
Для ввода одной фазы в рядовую 2-3 комнатную квартиру вполне хватит 6,0мм². Все равно на Ваших 40-80 м² большего оборудования не поместиться, даже с учетом электроплиты.
Многие электрики для «прикидки» нужного сечения считают, что 1мм² медного провода может пропустить через себя 10А электрического тока: соответственно 2,5 мм² меди способны пропустить 25А, а 4,0 мм² — 40А и т.д. Если Вы немного проанализируете таблицу выбора сечения кабеля, то увидите, что такой метод годится только для прикидки и только для кабелей сечением не выше 6,0мм².
Ниже дана сокращенная таблица выбора сечения кабеля до 35 мм² в зависимости от токовых нагрузок. Там же для Вашего удобства приведена суммарная мощность электрооборудования при 1-фазном (220В) и 3-фазном (380В) потреблении.
При прокладке кабеля в трубе (т.е. в любых закрытых пространствах) возможные токовые нагрузки на кабель должны быть меньше, чем при прокладке открыто. Это связано с тем, что кабель в процессе эксплуатации нагревается, а теплоотдача в стене или в земле значительно ниже, чем на открытом пространстве.
Когда нагрузка называется в кВт — то речь идет о совокупной нагрузке. Т.е. для однофазного потребителя нагрузка будет указана по одной фазе, а для трехфазного — совокупно по всем трем. Когда величина нагрузки названа в амперах (А) — речь всегда идет о нагрузке на одну жилу (или фазу).
Таблица нагрузок по сечению кабеля:
Сечение кабеля, мм² | Проложенные открыто | Проложенные в трубе | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
медь | алюминий | медь | алюминий | |||||||||
ток, А | мощность, кВт | ток, А | мощность, кВт | ток, А | мощность, кВт | ток, А | мощность, кВт | |||||
220В | 380В | 220В | 380В | 220В | 380В | 220В | 380В | |||||
0. 5 | 11 | 2.4 | ||||||||||
0.75 | 15 | 3.3 | ||||||||||
1 | 17 | 3.7 | 6.4 | 14 | 3 | 5.3 | ||||||
1.5 | 23 | 5 | 8.7 | 15 | 3.3 | 5.7 | ||||||
2.5 | 30 | 6.6 | 11 | 24 | 5.2 | 9.1 | 21 | 4.6 | 7.9 | 16 | 3.5 | 6 |
4 | 41 | 9 | 15 | 32 | 7 | 12 | 27 | 5.9 | 10 | 21 | 4.6 | 7.9 |
6 | 50 | 11 | 19 | 39 | 8.5 | 14 | 34 | 7.4 | 12 | 26 | 5.7 | 9.8 |
10 | 80 | 17 | 30 | 60 | 13 | 22 | 50 | 11 | 19 | 38 | 8. 3 | 14 |
16 | 100 | 22 | 38 | 75 | 16 | 28 | 80 | 17 | 30 | 55 | 12 | 20 |
25 | 140 | 30 | 53 | 105 | 23 | 39 | 100 | 22 | 38 | 65 | 14 | 24 |
35 | 170 | 37 | 64 | 130 | 28 | 49 | 135 | 29 | 51 | 75 | 16 | 28 |
Для самостоятельного расчета необходимого сечение кабеля, например, для ввода в дом, можно воспользоваться кабельным калькулятором или выбрать необходимое сечение по таблице.
Настоящая таблица касается кабелей и проводов в резиновой и пластмассовой изоляции. Это такие широко распространенные марки как: ПВС, ВВП, ВПП, ППВ, АППВ, ВВГ. АВВГ и ряд других. На кабели в бумажной изоляции есть своя таблица, на не изолированные провода и шины — своя.
При расчетах сечения кабеля специалист должен также учитывать методы прокладки кабеля: в лотках, пучками и т. п.
- Кроме того, величины из таблиц о допустимых токовых нагрузках должны быть откорректированы следующими снижающими коэффициентами:
- поправочный коэффициент, соответствующий сечению кабеля и расположению его в блоке;
- поправочный коэффициент на температуру окружающей среды;
- поправочный коэффициент для кабелей, прокладываемых в земле;
- поправочный коэффициент на различное число работающих кабелей, проложенных рядом.
Расчет сечения провода
Начнем не с таблицы, а с расчета. То есть, каждый человек, не имея под рукой интернет, где в свободном доступе ПУЭ с таблицами имеется, может самостоятельно определить сечение кабеля по току. Для этого потребуется штангенциркуль и формула.
Если рассмотреть сечение кабеля, то это круг с определенным диаметром.
Существует формула площади круга: S= 3,14*D²/4, где 3,14 – это Архимедово число, «D» — диаметр измеренной жилы. Формулу можно упростить: S=0,785*D².
Если провод состоит из нескольких жил, то замеряется диаметр каждой, вычисляется площадь, затем все показатели суммируются. А как вычислить сечение кабеля, если каждая его жила состоит из нескольких тоненьких проводков?
Процесс немного усложняется, но не сильно. Для этого придется подсчитать количество проводков в одной жиле, измерить диаметр одного проводка, вычислить его площадь по описанной формуле и умножить данный показатель на количество проводков. Это и будет сечение одной жилы. Теперь необходимо это значение умножить на количество жил.
Если нет желания считать проводки и измерять их размеры, надо просто замерить диаметр одной жилы, состоящий из нескольких проводов. Снимать размеры надо аккуратно, чтобы не смять жилу. Обратите внимание, что этот диаметр не является точным, потому что между проводками остается пространство.
Соотношение тока и сечения
Чтобы понять, как работает электрический кабель, необходимо вспомнить обычную водопроводную трубу. Чем больше ее диаметр, тем больше воды через нее будет проходить. То же самое и с проводами.
Чем больше их площадь, тем большей силы ток, через них пройдет, тем большую нагрузку такой провод выдерживает. При этом кабель не будет перегреваться, что является самым важным требованием правил пожарной безопасности.
Поэтому связка сечение – ток является основным критерием, который используется в подборе электрических проводов в разводке. Поэтому вам необходимо сначала разобраться, сколько бытовых приборов и какой общей мощности будет подключены к каждому шлейфу.
Сечение жилы провода, мм2 | Медные жилы | Алюминиевые жилы | ||
---|---|---|---|---|
Ток, А | Мощность, Вт | Ток, А | Мощность, Вт | |
0.5 | 6 | 1300 | ||
0.75 | 10 | 2200 | ||
1 | 14 | 3100 | ||
1.5 | 15 | 3300 | 10 | 2200 |
2 | 19 | 4200 | 14 | 3100 |
2.5 | 21 | 4600 | 16 | 3500 |
4 | 27 | 5900 | 21 | 4600 |
6 | 34 | 7500 | 26 | 5700 |
10 | 50 | 11000 | 38 | 8400 |
16 | 80 | 17600 | 55 | 12100 |
25 | 100 | 22000 | 65 | 14300 |
К примеру, на кухне обязательно устанавливается холодильник, микроволновка, кофемолка и кофеварка, электрочайник иногда посудомоечная машина. То есть, все эти прибору могут в один момент быть включены одновременно. Поэтому в расчетах и используется суммарная мощность помещения.
Узнать потребляемую мощность каждого прибора можно из паспорта изделия или на бирке.
- Для примера обозначим некоторые из них:
- Чайник – 1-2 кВт.
- Микроволновка и мясорубка 1,5-2,2 кВт.
- Кофемолка и кофеварка – 0,5-1,5 кВт.
- Холодильник 0,8 кВт.
Узнав мощность, которая будет действовать на проводку, можно подобрать ее сечение из таблицы. Не будем рассматривать все показатели данной таблицы, покажем те, которые преобладают в быту.
Чем отличается кабель от провода
Прежде чем перейти к основному содержимому, нам необходимо понять, что же мы все-таки хотим рассчитать, сечение провода или кабеля, в чем различия одного от другого!? Несмотря на то, что обыватель применяет эти два слова как синонимы, подразумевая под этим что-то свое, но если быть дотошными, то разница все же имеется.
Так провод это одна токопроводящая жила, будь то моножила или набор проводников, изолированная в диэлектрик, в оболочку. А вот кабель, это уже несколько таких проводов, объединенных в единое целое, в своей защитной и изоляционной оболочке. Для того, чтобы вам было лучше понятно, что к чему, взгляните на картинку.
Так вот, теперь мы в курсе, что рассчитывать нам необходимо именно сечение провода, то есть одного токопроводящего элемента, а второй будет уже уходить от нагрузки, обратно к питанию.
Однако мы порой и сами забываемся не лучше Вашего, так что если вы нас подловите на том, что где-то все же встретится слово кабель, то не сочтите уж за невежество, стереотипы делают свое дело.
Выбор кабеля
Делать внутреннюю разводку лучше всего из медных проводов. Хотя алюминиевые им не уступят. Но тут есть один нюанс, который связан с правильно проведенном соединении участков в распределительной коробке. Как показывает практика, места соединений часто выходят из строя из-за окисления алюминиевого провода.
Еще один вопрос, какой провод выбрать: одножильный или многожильный? Одножильный имеет лучшую проводимость тока, поэтому именно его рекомендуют к применению в бытовой электрической разводке. Многожильный имеет высокую гибкость, что позволяет его сгибать в одном месте по несколько раз без ущерба качеству.
Одножильный или многожильный
При монтаже электропроводки обычно применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ. В этом списке встречаются как гибкие кабели, так и с моножилой.
Здесь мы хотели бы сказать вам одну вещь. Если ваша проводка не будет шевелиться, то есть это не удлинитель, не место сгиба, которое постоянно меняет свое положение, то предпочтительно использовать моножилу.
Вы спросите почему? Все просто! Не смотря на то, насколько хорошо не были бы уложены в защитную изоляционною оплетку проводники, под нее все же попадет воздух, в котором содержится кислород. Происходит окисление поверхности меди.
В итоге, если проводников много, то площадь окисления намного больше, а значит токопроводящее сечение «тает» на много больше. Да, это процесс длительный, но и мы не думаем, что вы собрались менять проводку часто. Чем больше она проработает, тем лучше.
Особенно это эффект окисления будет сильно проявляться у краев реза кабеля, в помещениях с перепадом температуры и при повышенной влажности. Так что мы вам настоятельно рекомендуем использовать моножилу! Сечение моножилы кабеля или провода изменится со временем незначительно, а это так важно, при наших дальнейших расчетах.
Медь или алюминий
В СССР большинство жилых домов оснащались алюминиевой проводкой, это было своеобразной нормой, стандартом и даже догмой. Нет, это совсем не значит, что страна была бедная, и не хватало на меди. Даже в некоторых случая наоборот.
Но видимо проектировщики электрических сетей решили, что экономически можно много сэкономить, если применять алюминий, а не медь. Действительно, темпы строительства были огромнейшие, достаточно вспомнить хрущевки, в которых все еще живет половина страны, а значит эффект от такой экономии был значительным. В этом можно не сомневаться.
Тем не менее, сегодня другие реалии, и алюминиевую проводку в новых жилых помещениях не применяют, только медную. Это исходит из норм ПУЭ пункт 7.1.34 «В зданиях следует применять кабели и провода с медными жилами…».
Так вот, мы вам настоятельно не рекомендуем экспериментировать и пробовать алюминий. Минусы его очевидны. Алюминиевые скрутки невозможно пропаять, так же очень трудно сварить, в итоге контакты в распределительных коробках могут со временем нарушиться. Алюминий очень хрупкий, два-три изгиба и провод отпал.
Будут постоянные проблемы с подключением его к розеткам, выключателем. Опять же если говорить о проводимой мощности, то медный провод с тем же сечением для алюминия 2,5 мм.кв. допускает длительный ток в 19А, а для меди в 25А. Здесь разница больше чем 1 КВт.
Так что еще раз повторимся — только медь! Далее мы и будем уже исходить из того, что сечение рассчитываем для медного провода, но в таблицах приведем значения и для алюминия. Мало ли что.
Зачем производится расчет
Провода и кабели, по которым протекает электрический ток, являются важнейшей частью электропроводки.
Расчет сечения провода необходимо производить затем, чтобы убедится, что выбранный провод соответствует всем требованиям надежности и безопасной эксплуатации электропроводки.
Безопасная эксплуатация заключается в том, что если вы выберете сечение, не соответствующее его токовым нагрузкам, то это приведет к чрезмерному перегреву провода, плавлению изоляции, короткому замыканию и пожару.
Поэтому к вопросу о выборе сечения провода необходимо отнестись очень серьезно.
Что нужно знать
Основным показателем, по которому рассчитывают провод, является его длительно допустимая токовая нагрузка. Проще говоря, это такая величина тока, которую он способен пропускать на протяжении длительного времени.
Чтобы найти величину номинального тока, необходимо подсчитать мощность всех подключаемых электроприборов в доме. Рассмотрим пример расчета сечения провода для обычной двухкомнатной квартиры.
Таблица потребляемой мощности/силы тока бытовыми электроприборами
Электроприбор | Потребляемая мощность, Вт | Сила тока, А |
---|---|---|
Стиральная машина | 2000 – 2500 | 9,0 – 11,4 |
Джакузи | 2000 – 2500 | 9,0 – 11,4 |
Электроподогрев пола | 800 – 1400 | 3,6 – 6,4 |
Стационарная электрическая плита | 4500 – 8500 | 20,5 – 38,6 |
СВЧ печь | 900 – 1300 | 4,1 – 5,9 |
Посудомоечная машина | 2000 – 2500 | 9,0 – 11,4 |
Морозильники, холодильники | 140 – 300 | 0,6 – 1,4 |
Мясорубка с электроприводом | 1100 – 1200 | 5,0 – 5,5 |
Электрочайник | 1850 – 2000 | 8,4 – 9,0 |
Электрическая кофеварка | 630 – 1200 | 3,0 – 5,5 |
Соковыжималка | 240 – 360 | 1,1 – 1,6 |
Тостер | 640 – 1100 | 2,9 – 5,0 |
Миксер | 250 – 400 | 1,1 – 1,8 |
Фен | 400 – 1600 | 1,8 – 7,3 |
Утюг | 900 –1700 | 4,1 – 7,7 |
Пылесос | 680 – 1400 | 3,1 – 6,4 |
Вентилятор | 250 – 400 | 1,0 – 1,8 |
Телевизор | 125 – 180 | 0,6 – 0,8 |
Радиоаппаратура | 70 – 100 | 0,3 – 0,5 |
Приборы освещения | 20 – 100 | 0,1 – 0,4 |
После того как мощность будет известна расчет сечения провода или кабеля сводится к определению силы тока на основании этой мощности. Найти силу тока можно по формуле:
1) Формула расчета силы тока для однофазной сети 220 В:
расчет силы тока для однофазной сети
где Р — суммарная мощность всех электроприборов, Вт;
U — напряжение сети, В;
КИ= 0.75 — коэффициент одновременности;
cos для бытовых электроприборов- для бытовых электроприборов.
2) Формула для расчета силы тока в трехфазной сети 380 В:
расчет силы тока для трехфазной сети
Зная величину тока, сечение провода находят по таблице. Если окажется что расчетное и табличное значения токов не совпадают, то в этом случае выбирают ближайшее большее значение. Например, расчетное значение тока составляет 23 А, выбираем по таблице ближайшее большее 27 А — с сечением 2.5 мм2.
Какой провод лучше использовать
На сегодняшний день для монтажа, как открытой электропроводки, так и скрытой, конечно же большой популярностью пользуются медные провода.
- Медь, по сравнению с алюминием, более эффективна:
- она прочнее, более мягкая и в местах перегиба не ломается по сравнению с алюминием;
- меньше подвержена коррозии и окислению. Соединяя алюминий в распределительной коробке, места скрутки со временем окисляются, это приводит к потере контакта;
- проводимость меди выше чем алюминия, при одинаковом сечении медный провод способен выдержать большую токовую нагрузку чем алюминиевый.
Недостатком медных проводов является их высокая стоимость. Стоимость их в 3-4 раза выше алюминиевых. Хотя медные провода по стоимости дороже все же они являются более распространенными и популярными в использовании чем алюминиевые.
Расчет сечения медных проводов и кабелей
Подсчитав нагрузку и определившись с материалом (медь), рассмотрим пример расчета сечения проводов для отдельных групп потребителей, на примере двухкомнатной квартиры.
Как известно, вся нагрузка делится на две группы: силовую и осветительную.
В нашем случае основной силовой нагрузкой будет розеточная группа, установленная на кухне и в ванной. Так как там устанавливается наиболее мощная техника (электрочайник, микроволновка, холодильник, бойлер, стиральная машина и т. п.).
Для этой розеточной группы выбираем провод сечением 2.5мм2. При условии, что силовая нагрузка будет разбросана по разным розеткам. Что это значит? Например, на кухне для подключения всей бытовой техники нужно 3-4 розетки подключенных медным проводом сечением 2.5 мм2 каждая.
Если вся техника подключается через одну единственную розетку, то сечения в 2.5 мм2 будет недостаточно, в этом случае нужно использовать провод сечением 4-6 мм2. В жилых комнатах для питания розеток можно использовать провод сечением 1.5 мм2, но окончательный выбор нужно принимать после соответствующих расчетов.
Питание всей осветительной нагрузки выполняется проводом сечением 1.5 мм2.
Необходимо понимать, что мощность на разных участках электропроводки будет разной, соответственно и сечение питающих проводов тоже разным. Наибольшее его значение будет на вводном участке квартиры, так как через него проходит вся нагрузка. Сечение вводного питающего провода выбирают 4 – 6 мм2.
При монтаже электропроводки применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ.
Выбор сечения кабеля по мощности
Вот мы добрались и до сути нашей статьи. Однако всё, что было выше, упускать нельзя, а значит и мы умолчать не могли.
Если попытаться изложить мысль логично и по-простому, то через каждое условное сечение проводника может пройти ток определенной силы. Заключение это вполне логичное и теперь лишь осталось узнать эти соотношения и соотнести для разных диаметров провода, исходя из его типоряда.
Также нельзя умолчать, что здесь, при расчете сечения по току, в «игру вступает» и температура. Да, это новая составляющая – температура. Именно она способна повлиять на сечение. Как и почему, давайте разбираться.
Все мы знаем о броуновском движении. О постоянном смещении ионов в кристаллической решетке. Все это происходит во всех материалах, в том числе и в проводниках. Чем выше температура, тем больше будут эти колебания ионов внутри материала. А мы знаем, что ток — это направленное движение частиц.
Так вот, направленное движение частиц будет сталкиваться в кристаллической решетке с ионами, что приведет к повышению сопротивления для тока.
Чем выше температура, тем выше электрическое сопротивление проводника. Поэтому по умолчанию, сечение провода для определенного тока принимается при комнатной температуре, то есть при 18 градусах Цельсия. Именно при этой температуре приведены все справочные значения в таблицах, в том числе и наших.
Несмотря на то, что алюминиевые провода мы не рассматриваем в качестве проводов для электропроводки, по крайней мере, в квартире, тем не менее, они много где применяются. Скажем для проводки на улице. Именно поэтому мы также приведем значения зависимостей сечения и тока и для алюминиевых проводов.
Итак, для меди и алюминия будут следующие показатели зависимости сечения провода (кабеля) от тока (мощности). Смотрите таблицу.
Таблица проводников под допустимый максимальный ток для их использования в проводке:
С 2001 года алюминиевые провода для проводки в квартирах не применяются. (ПЭУ)
Да, здесь как заметил наш читатель, мы фактически не привели расчета, а лишь предоставили справочные данные, сведенные в таблицу, на основании этих расчетов. Но смеем вас замерить, что для расчетов необходимо перелопатить множество формул, и показателей. Начиная от температуры, удельного сопротивления, плотности тока и тому подобных.
Поэтому такие расчеты мы оставим для спецов. При этом необходимо заметить, что и они не являются окончательными, так как могут незначительно разнится, в зависимости от стандарта на материал и запаса провода по току, применяемого в разных странах.
А вот о чем мы еще хотели бы сказать, так это о переводе сечения провода в диаметр. Это необходимо, когда имеется провод, но по каким-то причинам маркировки на нем нет. В этом случае по диаметру провода можно вычислить сечения и наоборот из сечения диаметр.
Общепринятые сечения для проводки в квартире
Мы с вами много говорили о наименованиях, о материалах, об индивидуальных особенностях и даже о температуре, но упустили из вида жизненные обстоятельства.
Так если вы нанимаете электрика для того, чтобы он провел вам проводку в комнатах вашей квартиры или дома, то обычно принимаются следующие значения. Для освещения сечения провода берется в 1,5 мм 2, а для розеток в 2,5 мм 2.
Если проводка предназначена для подключения бойлеров, нагревателей, плит, то здесь уже рассчитывается сечение провода (кабеля) индивидуально.
Выбор сечения провода исходя из количества потребителей
О чем еще хотелось сказать, так это о том, что лучше использовать несколько независимых линий питания для каждого из помещений в комнате или квартире. Тем самым вы не будете применять провод с сечением 10 мм 2 для всей квартиры, проброшенный во все комнаты, от которого идут отводы.
Такой провод будет приходить на вводный автомат, а затем от него, в соответствии с мощностью потребляемой нагрузки будут разведены выбранные сечения проводов, для каждого из помещений.
Типовая принципиальная схема электропроводки для квартиры или дома с электрической плитой (с указанием сечения кабеля для электроприборов)
Токовые нагрузки в сетях с постоянным током
В сетях с постоянным током расчет сечения идет несколько по-другому. Сопротивление проводника постоянному напряжению гораздо выше, чем переменному (при переменном токе сопротивлением на длинах до 100 м вообще пренебрегают).
Кроме этого, для потребителей постоянного тока как правило очень важно, чтобы напряжение на концах было не ниже 0,5В (для потребителей переменного тока, как известно колебания напряжения в пределах 10% в любую сторону допустимы).
Есть формула, определяющая насколько упадет напряжение на концах по сравнению с базовым напряжением, в зависимости от длины проводника, его удельного сопротивления и силы тока в цепи:
U = ((p l) / S) I
- где:
- U — напряжение постоянного тока, В
- p — удельное сопротивление провода, Ом*мм2/м
- l — длина провода, м
- S — площадь поперечного сечения, мм2
- I — сила тока, А
Зная величины указанных показателей достаточно легко рассчитать нужное Вам сечение: методом подстановки, или с помощью простейших арифметических действий над данным уравнением.
Если же падение постоянного напряжения на концах не имеет значения, то для выбора сечения можно пользоваться таблицей для переменного тока, но при этом корректировать величины тока на 15% в сторону уменьшения, т.е. при постоянном токе справочные сечения кабеля могут пропускать тока на 15 % меньше, чем указано в таблице.
Подобное правило также работает для выбора автоматических выключателей для сетей с постоянным током, например: для цепей с нагрузкой в 25А, нужно брать автомат на 15% меньшего номинала, в нашем случае подходит предыдущий типоразмер автомата — 20А.
Кабель, передающий электрический ток, – один из важнейших элементов электрической сети. В случае выхода кабеля из строя работа всей системы становится невозможной, поэтому для предотвращения отказов, а также опасности возгорания от перегрева, следует произвести точный расчёт сечения кабеля по нагрузке.
Такой расчёт дает уверенность в безопасной и надёжной работе сети и приборов, но что ещё важнее – безопасности людей.
Выбор сечения, недостаточного для токовой нагрузки, приводит к перегреву, оплавлению и повреждению изоляции, а это, в свою очередь, – к короткому замыканию и даже пожару. Так что для проведения расчётов и тщательного выбора подходящего кабеля есть масса причин.
Что необходимо для расчёта по нагрузке
Основной показатель, помогающий рассчитать сечение и марку кабеля – предельно допустимая длительная нагрузка (по току). Если проще, то это – величина тока, которую кабель способен пропускать в условиях его прокладки без перегрева достаточно долго.
Для этого необходимо простое арифметическое суммирование мощностей всех электроприборов, которые будут включаться в сеть.
Следующим важным этапом, позволяющим достичь безопасности, является расчёт сечения кабеля по нагрузке, для чего необходимо подсчитать силу тока, используя формулу:
Для однофазной сети напряжением 220 В:
- Где:
- Р – это суммарная мощность для всех электроприборов, Вт;
- U — напряжение сети, В;
- COSφ — коэффициент мощности.
Для трёхфазной сети напряжением 380 В:
Наименование прибора | Примерная мощность, Вт |
---|---|
LCD-телевизор | 140-300 |
Холодильник | 300-800 |
Пылесос | 800-2000 |
Компьютер | 300-800 |
Электрочайник | 1000-2000 |
Кондиционер | 1000-3000 |
Освещение | 300-1500 |
Микроволновая печь | 1500-2200 |
Получив точное значение величины тока, следует обратиться к таблицам, позволяющим найти кабель или провод требуемого сечения и материала. Но если полученное значение величины тока не совсем совпадает с табличным значением, то не стоит «экономить», а лучше выбрать ближайшее, но большее значение сечения кабеля.
Пример: при напряжении сети 220 В полученное значение величины тока составило 22 ампера, ближайшее большее значение (27 А) имеет медный провод или кабель из меди, сечением 2,5 мм кв. Это означает, что оптимальным выбором станет именно такой кабель, а не с сечением 1,5 мм кв., имеющим значение допустимого длительного тока 19 А.
Сечение токо- проводящих жил, мм | Медные жилы проводов и кабелей | |||
---|---|---|---|---|
Напряжение 220В | Напряжение 380В | |||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66 | 260 | 171,6 |
Если выбирается кабель с алюминиевыми жилами, то лучше взять сечение жилы не 2,5, а 4 мм кв.
Сечение токо- проводящих жил, мм | Алюминиевые жилы проводов и кабелей | |||
---|---|---|---|---|
Напряжение 220В | Напряжение 380В | |||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132 |
Расчёт для помещений
youtube.com/embed/rEtBX9jb0aA?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Предыдущий расчёт позволил точно вычислить материал и сечение вводного кабеля, по которому будет идти общая максимальная нагрузка. Теперь следует произвести аналогичные расчёты по каждому помещению и его группам. И вот почему: нагрузка на розеточные группы может значительно отличаться.
Так, розетки с подключённой стиральной машиной и феном нагружены гораздо больше, чем розетка для миксера и кофеварки на кухне. Поэтому не стоит «упрощать» задачу, без раздумий укладывая провод сечением 2,5 квадрата на розетки, так как иногда этого просто не хватит.
Следует помнить, что суммарная нагрузка в помещении состоит из 1) силовой и 2) осветительной. И если с осветительной нагрузкой всё ясно – она выполняется медным проводом с сечением в 1,5 мм кв., то с розетками не так всё просто.
Следует помнить, что обычно кухня и ванная комната – наиболее «нагруженные» линии, так как именно там расположены холодильник, электрочайник, бойлер, микроволновка, а иногда и стиральная машинка. Поэтому лучше всего распределить эту нагрузку по различным розеточным группам, а не использовать блок на 5-6 розеток.
Иногда от «специалистов» можно услышать, что для розеток в остальных помещениях достаточно и «кабеля-полторушки», однако выдели бы вы те чёрные полосы, видные из-под обоев, которые оставляет после себя прогоревший кабель после включения в него масляного обогревателя или тепловентилятора!
- Наиболее распространенные марки проводов и кабелей:
- ППВ — медный плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
- АППВ — алюминиевый плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
- ПВС — медный круглый, количество жил — до пяти, с двойной изоляцией для прокладки открытой и скрытой проводки;
- ШВВП – медный круглый со скрученными жилами с двойной изоляцией, гибкий, для подключения бытовых приборов к источникам питания;
- ВВГ — кабель медный круглый, до четырех жил с двойной изоляцией для прокладки в земле;
- ВВП — кабель медный круглый одножильный с двойной ПВХ (поливинилхлорид) изоляцией, П — плоский (токопроводящие жилы расположены в одной плоскости).
Автор:
Сергей Владимирович, инженер-электрик.
Подробнее об авторе.
Таблица сечения кабеля по мощности и току — Best Energy
- Категория: Поддержка по стабилизаторам напряжения
- Опубликовано 24.08.2015 14:14
- Автор:
Abramova Olesya
Потребляемый ток определить достаточно просто, чтобы это сделать, достаточно воспользоваться формулой: I=P/U, где I – сила тока, P – мощность потребителя и U – напряжения линии, как правило, это 220В переменного тока. Чтобы рассчитать, какое требуется сечение, достаточно просуммировать токи всех потребителей и принять за расчет сечения, что:
открытая проводка
скрытая проводка
-
каждые 10 ампер = 1,25 мм.кв. медного провода;
-
каждые 8 ампер = 1,25 мм.кв. алюминиевого провода;
Таблица сечения кабеля по мощности и току
Сечение
| Медные жилы проводов и кабелей | |||
Токопроводящие жилы
| Напряжение 220В | Напряжение 380В | ||
мм. кв.
|
Ток, А
|
Мощность, кВт
|
Ток, А
|
Мощность, кВт
|
1,5
|
19
|
4,1
|
16
|
10,5
|
2,5
|
27
|
5,9
|
25
|
16,5
|
4
|
38
|
8,3
|
30
|
19,8
|
6
|
46
|
10,1
|
40
|
26,4
|
10
|
70
|
15,4
|
50
|
33,0
|
16
|
85
|
18,7
|
75
|
49,5
|
25
|
115
|
25,3
|
90
|
59,4
|
35
|
135
|
29,7
|
115
|
75,9
|
50
|
175
|
38,5
|
145
|
95,7
|
70
|
215
|
47,3
|
180
|
118,8
|
95
|
260
|
57,2
|
220
|
145,2
|
120
|
300
|
66,0
|
260
|
171,6
|
Сечение
| Алюминиевые жилы, проводов и кабелей | |||
токопроводящие жилы
| Напряжение, 220В | Напряжение, 380В | ||
мм. кв.
|
ток, А
|
Мощность, кВт
|
Ток, А
|
Мощность, кВт
|
2,5
|
20
|
4,4
|
19
|
12,5
|
4
|
28
|
6,1
|
23
|
15,1
|
6
|
36
|
7,9
|
30
|
19,8
|
10
|
50
|
11,0
|
39
|
25,7
|
16
|
60
|
13,2
|
55
|
36,3
|
25
|
85
|
18,7
|
70
|
46,2
|
35
|
100
|
22,0
|
85
|
56,1
|
50
|
135
|
29,7
|
110
|
72,6
|
70
|
165
|
36,3
|
140
|
92,4
|
95
|
200
|
44,0
|
170
|
112,2
|
120
|
230
|
50,6
|
200
|
132,0
|
Приведенные данные в таблице сечения кабеля по мощности и току могут быть крайне полезными при выборе стабилизаторов напряжения, нередко оказывается так, что вне зависимости от требуемой мощности, нет возможности устанавливать стабилизатор напряжения мощнее, чем это позволяет вводной кабель, который ограничивает максимальный ток и, соответственно, мощность.
Также на эти значения стоит опираться при создании новой проводки, обязательно учитывайте незначительный запас, чтобы кабель не находился длительное время в состоянии предельной нагрузки. Особенно рекомендуется избегать соединения алюминиевого и медного кабеля, т. к. подобные соединения не отличаются надежностью и долговечностью. Если подобного соединения избежать нельзя, применяйте мощные клеммные блоки с большой площадью соприкосновения с кабелями из разного металла.
Таблица сечения кабеля по мощности, току с характеристикой нагрузки
Сечение медных жил
|
Длительная нагрузка
|
Номинальный авт. выкл.
|
Предельный авт. выкл.
|
Максимальная мощность
| Характеристика однофазной бытовой нагрузки |
мм. кв
|
ток, А
|
Ток, А
|
Ток, А
|
кВт, при 220В
| |
1,5
|
19
|
10
|
16
|
4,1
|
освещение, сигнализация
|
2,5
|
27
|
16
|
20
|
5,9
|
розеточные группы, мелкая и средняя бытовая техника
|
4
|
38
|
25
|
32
|
8,3
|
водонагреватели и кондиционеры, электрические полы
|
6
|
46
|
32
|
40
|
10,1
|
электрические плиты и духовые шкафы
|
10
|
70
|
50
|
63
|
15,4
|
вводные питающие линии
|
youtube.com/embed/tXO5ndetv8Y?rel=0&fs=1&wmode=transparent» frameborder=»0″ allowfullscreen=»» title=»JoomlaWorks AllVideos Player»/>
Таблицы выбора сечения жилы при прокладке электрических проводов в резиновой или пластиковой (в том числе ПВХ=PVC) изоляции в зависимости от тока и нагрузки. Подходят для сетей 220/380В. Выбор сечения кабеля удлинителя в зависимости от длины и нагрузки. ИТАК: ПУЭЭ, Глава 1 нормирует допустимые длительные токи через различные виды проводов и кабелей. Другие главы регламентируют способы прокладки и прочие детали. Тем не менее мы приведем 3 таблицы для оперативного выбора площади сечения токопроводящей жилы кабеля (провода) для сетей 220/380В в зависимости от тока, нагрузки, температуры окружающей среды и способа прокладки, которыми сами пользуемся.
Таблица 1. Выбора сечения жилы при одиночной прокладке проводов при температуре жил +65, окружающего воздуха +25 и земли + 15°С
Таблица 2. Поправочные коэффициенты на токи для кабелей, неизолированных и изолированных проводов и шин в зависимости от температуры земли и воздуха
Таблица 3. Снижающие коэффициенты допустимых длительных токов в зависимости от способа прокладки (в пучках, в коробах, в лотках)
|
Таблица токовых нагрузок к сечению медных кабелей по ПУЭ
Любая электрическая схема требует точного инженерного расчета. Один из этапов вычислений – определение оптимального сечения жил кабелей, которые предполагается использовать для прокладки линий. При проектировании внутридомовой эл/проводки предпочтение отдается медным кабелям и проводам. Между диаметрами и токовыми нагрузками существует прямая зависимость, и все значения, для упрощения вычислений, сведены в соответствующие таблицы токовых нагрузок к сечению. Нужно лишь уметь правильно с ними работать.
Общая информация
Нужно учесть, что когда упоминается диаметр, это чисто условное определение, так как правильнее говорить – сечение провода или жилы кабеля. Разница принципиальная. В первом случае величина линейная и выражается она в мм. Во втором речь идет о площади, а она обозначается в мм². Поэтому замерять жилу при подборе кабеля (например, из запасов в сарае или гараже) линейкой, штангенциркулем или еще чем-то можно лишь для того, чтобы потом сделать соответствующий расчет токовой нагрузки. Формула известна из школы: S = π х D2/4 = π х 0,785 D2.
Рекомендации о приблизительных расчетах также не во всем верны. Например, на отдельных сайтах есть такой полезный совет – каждый «квадрат» медной жилы выдерживает до 10 А. Правильно. Но при этом не указывается, что данная пропорция справедлива лишь для цепей трехфазных (380). Внутридомовая проводка – это 220 В, и здесь соотношение несколько иное.
Таблицы
Что учесть при определении сечения
Выбирать провода на основании лишь расчетных данных (один в один) не рекомендуется. Дело в том, что в результате вычислений пользователь определяет, какой максимальный ток способна выдержать конкретная жила. Но нагружать провод так, чтобы он работал на пределе возможностей, нельзя. Во-первых, он будет постоянно нагреваться. Во-вторых, при малейших изменениях нагрузки в сторону увеличения его изоляция может не выдержать. Чем это грозит, понятно и без профессиональных комментариев – короткие замыкания, обрывы на линиях, воспламенения на отдельных участках. Следовательно, сечения кабелей целесообразно подбирать с некоторым запасом (примерно в 15% от расчетного значения).
При прокладке эл/проводки нужно учитывать и перспективу. Лучше заложить кабель с большим сечением, хотя это и выйдет дороже, чем потом, по мере того, как количество подключаемых потребителей увеличится, а нагрузка, соответственно, возрастет, заниматься переделками. А если монтаж осуществлен скрытым способом, то такой ремонт в итоге обернется еще большими финансовыми потерями (начиная с демонтажа облицовки помещения и далее по списку необходимых мероприятий).
Требования ПУЭ (редакция 7-я). В Правилах обозначены отдельные ограничения по минимально допустимому сечению жил в зависимости от методики монтажа кабелей. Если он ведется открытым способом, то не менее 4 «квадратов». Это обусловлено необходимостью обеспечения достаточной механической прочности линии. Имеет значение и материал изоляции. Сортамент кабельной продукции значительный, и этот момент также необходимо учитывать.
Вывод – табличные данные не следует трактовать однозначно, априори принимая их за абсолютно верные. Необходимо учесть все составляющие монтажа – способ, тип строения, назначение линии, разновидность (марку) кабеля и ряд других.
Расчет сечения кабеля
Сечение кабеля — это площадь среза токоведущей жилы. Если срез жилы круглый (как в большинстве случаев) и состоит из
одной проволочки — то площадь/сечение определяется по формуле площади круга. Если в жиле много проволочек, то сечением будет
сумма сечений всех проволочек в данной жиле.
Величины сечения во всех странах стандартизированы, причем стандарты бывшего СНГ и Европы в этой части полностью совпадают.
В нашей стране документом, которым регулируется этот вопрос, являются «Правила устройства электроустановок» или кратко — ПУЭ.
Сечение кабеля выбирается исходя из нагрузок с помощью специальных таблиц, называемых
«Допустимые токовые нагрузки
на кабель.»
Если нет никакого желания разбираться в этих таблицах — то Вам вполне достаточно знать, что на розетки желательно брать медный
кабель сечением 1,5-2,5мм², а на освещение — 1,0-1,5мм². Для ввода одной фазы в рядовую 2-3 комнатную квартиру
вполне хватит 6,0мм². Все равно на Ваших 40-80 м² большего оборудования не поместиться, даже с учетом электроплиты.
Многие электрики для «прикидки» нужного сечения считают, что 1мм² медного провода может пропустить через себя 10А
электрического тока: соответственно 2,5 мм² меди способны пропустить 25А, а 4,0 мм² — 40А и т.д. Если Вы немного
проанализируете таблицу выбора сечения кабеля, то увидите, что такой метод годится только для прикидки и только для кабелей
сечением не выше 6,0мм².
Ниже дана сокращенная таблица выбора сечения кабеля до 35 мм² в зависимости от токовых нагрузок. Там же для Вашего удобства
приведена суммарная мощность электрооборудования при 1-фазном (220В) и 3-фазном (380В) потреблении. Обратите внимание, что при
прокладке кабеля в трубе (т.е. в любых закрытых пространствах, как например, в стене) возможные токовые нагрузки на кабель должны
быть меньше, чем при прокладке открыто. Это связано с тем, что кабель в процессе эксплуатации нагревается, а теплоотдача в стене
или в земле значительно ниже, чем на открытом пространстве.
Важно Когда нагрузка называется в кВт — то речь идет о совокупной нагрузке. Т.е. для однофазного потребителя
нагрузка будет указана по одной фазе, а для трехфазного — совокупно по всем трем. Когда величина нагрузки
названа в амперах (А) — речь всегда идет о нагрузке на одну жилу (или фазу).
Сечение кабеля, мм² | Проложенные открыто | Проложенные в трубе | ||||||||||
медь | алюминий | медь | алюминий | |||||||||
ток, А | кВт | ток, А | кВт | ток, А | кВт | ток, А | кВт | |||||
220В | 380В | 220В | 380В | 220В | 380В | 220В | 380В | |||||
0,5 | 11 | 2,4 | ||||||||||
0,75 | 15 | 3,3 | ||||||||||
1,0 | 17 | 3,7 | 6,4 | 14 | 3,0 | 5,3 | ||||||
1,5 | 23 | 5,0 | 8,7 | 15 | 3,3 | 5,7 | ||||||
2,5 | 30 | 6,6 | 11,0 | 24 | 5,2 | 9,1 | 21 | 4,6 | 7,9 | 16,0 | 3,5 | 6,0 |
4,0 | 41 | 9,0 | 15,0 | 32 | 7,0 | 12,0 | 27 | 5,9 | 10,0 | 21,0 | 4,6 | 7,9 |
6,0 | 50 | 11,0 | 19,0 | 39 | 8,5 | 14,0 | 34 | 7,4 | 12,0 | 26,0 | 5,7 | 9,8 |
10,0 | 80 | 17,0 | 30,0 | 60 | 13,0 | 22,0 | 50 | 11,0 | 19,0 | 38,0 | 8,3 | 14,0 |
16,0 | 100 | 22,0 | 38,0 | 75 | 16,0 | 28,0 | 80 | 17,0 | 30,0 | 55,0 | 12,0 | 20,0 |
25,0 | 140 | 30,0 | 53,0 | 105 | 23,0 | 39,0 | 100 | 22,0 | 38,0 | 65,0 | 14,0 | 24,0 |
35,0 | 170 | 37,0 | 64,0 | 130 | 28,0 | 49,0 | 135 | 29,0 | 51,0 | 75,0 | 16,0 | 28,0 |
Если Вы внимательно изучили приведенную таблицу и таки желаете самостоятельно определить необходимое Вам сечение кабеля,
например, для ввода в дом, то Вам также необходимо знать следующее. Настоящая таблица касается кабелей и проводов в резиновой
и пластмассовой изоляции. Это такие широко распространенные марки как: ПВС, ВВП, ВПП, ППВ, АППВ, ВВГ. АВВГ и ряд других. На
кабеля в бумажной изоляции есть своя таблица, на не изолированные провода и шины — своя. При расчетах сечения кабеля специалист
должен также учитывать методы прокладки кабеля: в лотках, пучками и т.п. Кроме того, величины из таблиц о допустимых токовых
нагрузках должны быть откорректированы следующими снижающими коэффициентами:
поправочный коэффициент, соответствующий сечению кабеля и расположению его в блоке;
поправочный коэффициент на температуру окружающей среды;
поправочный коэффициент для кабелей, прокладываемых в земле;
поправочный коэффициент на различное число работающих кабелей, проложенных рядом.
Если и это Вас не останавливает — то открывайте
справочник под ред.Белоруссова на стр.503,
а мы снимаем шляпу.
Если деньги для Вас не проблема, тогда смело увеличивайте справочное сечение жилы на 50%, и спите спокойно: так как даже все
поправочные коэффициенты в сумме не дадут больше.
При расчете необходимого сечения кабеля основной критерий — это количество тепла, выделяемого кабелем при прохождении через него
электрического тока и температура окружающей среды. Вообще-то, любой электропроводник может пропустить через себя очень много тока,
вплоть до температуры своего плавления, а это в десятки раз больше, чем указано в справочниках. Обратите внимание, что в справочниках
приведены величины для длительных токовых нагрузок на кабель. А кратковременные нагрузки могут быть гораздо выше. Т.е.
запас всегда есть. Но при условии, что Вы приобрели кабель, произведенный по ГОСТу. Если же Вам вместо медного кабеля продали нечто,
сделанное из какого-то сплава и покрытое пластиком из вторичного полиэтилена (из использованных кульков и ПЭТ-бутылок), то зачем
Вам все эти таблицы: см. статью «Как выбрать кабель»
Токовые нагрузки в сетях с постоянным током
В сетях с постоянным током расчет сечения идет несколько по другому. Сопротивление проводника постоянному
напряжению гораздо выше, чем переменному (при переменном токе сопротивлением на длинах до 100 м вообще пренебрегают).
Кроме этого, для потребителей постоянного тока как правило очень важно, чтобы напряжение на концах было не ниже 0,5В (для потребителей
переменного тока, как известно колебания напряжения в пределах 10% в любую строону допустимы). Есть формула, определяющая
насколько упадет напряжение на концах по сравнению с базовым напряжением, в зависимости от длины проводника, его удельного сопротивления
и силы тока в цепи:
U = ((p l) / S) I, где
U — напряжение постоянного тока, В
p — удельное сопротивление провода, Ом*мм2/м
l — длина провода, м
S — площадь поперечного сечения, мм2
I — сила тока, А
Зная величины указанных показателей достаточно легко рассчитать нужное Вам сечение: методом подставновки, или с помощью простйеших арифметических
действий над данным уравнением.
Если же падение постоянного напряжения на концах не имеет значения, то для для выбора сечения можно пользоваться таблицей для переменного
тока, но при этом корректировать величины тока на 15% в сторону уменьшения, т.е. при постоянном токе справочные сечения кабеля могут пропускать тока на 15 %
меньше, чем указано в таблице. Подобное правило также работает для выбора автоматических выключателей для сетей с постоянным током, например: для цепей с
нагрузкой в 25А, нужно брать автомат на 15% меньшего номинала, в нашем случае подходит предыдущий типоразмер автомата — 20А.
Удельное электрическое сопротивление некоторых металлов, применяемых в электротехнике
Металл | Сопротивление, Ом·мм2/м |
Серебро | 0,015…0,0162 |
Медь | 0,01724…0,018 |
Золото | 0,023 |
Алюминий | 0,0262…0,0295 |
Вольфрам | 0,053…0,055 |
Цинк | 0,059 |
Никель | 0,087 |
Железо | 0,098 |
Платина | 0,107 |
Олово | 0,12 |
Свинец | 0,217…0,227 |
Внимание: это авторская статья, поэтому при использовании материала просьба делать ссылку на первоисточник.
author: Оleg Stolyarov
Расчёт сечения провода, кабеля
Материал изготовления и сечение проводов является, пожалуй, главными критериями, которыми следует руководствоваться при выборе проводов и силовых кабелей.
Напомним, что площадь поперечного сечения (S) кабеля вычисляется по формуле S = (Pi * D2)/4, где Pi – число пи, равное 3,14, а D – диаметр.
Почему так важен правильный выбор сечения проводов? Прежде всего, потому, что используемые провода и кабели – основные элементы электропроводки вашего дома или квартиры. А она должна отвечать всем нормам и требованиям надёжности и электробезопасности.
Главным нормативным документом, регламентирующим площадь сечения электрических проводов и кабелей являются Правила Устройства Электроустановок (ПУЭ).
Основные показатели, определяющие сечение провода:
-
Металл, из которого изготовлены токопроводящие жилы.
-
Рабочее напряжение, В.
-
Потребляемая мощность, кВт и токовая нагрузка, А.
Так, неправильно подобранные по сечению провода, не соответствующие нагрузке потребления, могут нагреваться или даже сгореть, просто не выдержав нагрузки по току, что не может не сказаться на электро- и пожаробезопасности вашего жилья. Случай очень частый, когда в целях экономии или по каким-либо другим причинам используется провод меньшего, чем это необходимо сечения.
Руководствоваться при выборе сечения провода поговоркой «кашу маслом не испортишь» тоже не стоит. Применение проводов большего, чем это действительно нужно сечения приведёт лишь к большим материальным затратам (ведь по понятным причинам их стоимость будет больше) и создаст дополнительные сложности при монтаже.
Так, говоря об электропроводке дома или квартиры, будет оптимальным применение: для «розеточных» — силовых групп медного кабеля или провода с сечением жил 2,5 мм² и для осветительных групп – с сечением жил 1,5 мм². Если в доме имеются приборы большой мощности, напр. эл. плиты, духовки, электрические варочные панели, то для их питания следует использовать кабели и провода сечением 4-6 мм2.
Предложенный вариант выбора сечений для проводов и кабелей является, наверное, наиболее распространенным и популярным при монтаже электропроводки квартир и домов. Что, в общем-то, объяснимо: медные провода сечением 1,5 мм² способны «держать» нагрузку 4,1 кВт (по току – 19 А), 2,5 мм² – 5,9 кВт (27 А), 4 и 6 мм² – свыше 8 и 10 кВт. Этого вполне хватит для питания розеток, приборов освещения или электроплит. Более того, такой выбор сечений для проводов даст некоторый «резерв» в случае увеличения мощности нагрузки, например, при добавлении новых «электроточек».
При использовании алюминиевых проводов следует иметь в виду, что значения длительно допустимых токовых нагрузок на них гораздо меньше, чем при использовании медных проводов и кабелей аналогичного сечения. Так, для жил алюминиевых проводов сечением 2, мм² максимальная нагрузка составляет чуть больше 4 кВт (по току это – 22 А), для жил сечением 4 мм² – не более 6 кВт.
Не последний фактор в расчете сечения жил проводов и кабелей – рабочее напряжение. Так, при одинаковой мощности потребления электроприборов, токовая нагрузка на жилы питающих кабелей или проводов электроприборов, рассчитанных на однофазное напряжение 220 В будет выше, чем для приборов, работающих от напряжения 380 В.
Сечение токопроводящей жилы, кв.мм | Медные жилы, проводов и кабелей | ||||
---|---|---|---|---|---|
Напряжение, 220 В
|
Напряжение, 380 В
| ||||
ток, А
|
мощность, кВт
|
ток, А
|
мощность, кВт
| ||
1,5
|
19
|
4,1
|
16
|
10,5
| |
2,5
|
27
|
5,9
|
25
|
16,5
| |
4
|
38
|
8,3
|
30
|
19,8
| |
6
|
46
|
10,1
|
40
|
26,4
| |
10
|
70
|
15,4
|
50
|
33
| |
16
|
85
|
18,7
|
75
|
49,5
| |
25
|
115
|
25,3
|
90
|
59,4
| |
35
|
135
|
29,7
|
115
|
75,9
| |
50
|
175
|
38,5
|
145
|
95,7
| |
70
|
215
|
47,3
|
180
|
118,8
| |
95
|
260
|
57,2
|
220
|
145,2
| |
120
|
300
|
66
|
260
|
171,6
|
Сечение токопроводящей жилы, кв.мм | Алюминиевые жилы, проводов и кабелей | |||
---|---|---|---|---|
Напряжение, 220 В
|
Напряжение, 380 В
| |||
ток, А
|
мощность, кВт
|
ток, А
|
мощность, кВт
| |
2,5
|
20
|
4,4
|
19
|
12,5
|
4
|
28
|
6,1
|
23
|
15,1
|
6
|
36
|
7,9
|
30
|
19,8
|
10
|
50
|
11
|
39
|
25,7
|
16
|
60
|
13,2
|
55
|
36,3
|
25
|
85
|
18,7
|
70
|
46,2
|
35
|
100
|
22
|
85
|
56,1
|
50
|
135
|
29,7
|
110
|
72,6
|
70
|
165
|
36,3
|
140
|
92,4
|
95
|
200
|
44
|
170
|
112,2
|
120
|
230
|
50,6
|
200
|
132
|
Калькулятор расчета сечения кабеля по диаметру
Правильный выбор электрического кабеля для питания электрооборудования – залог длительной и стабильной
работы установок. Использование неподходящего провода влечет за собой серьезные негативные последствия.
Физика процесса порчи электрической линии вследствие использования неподходящего провода такова: из-за
недостатка места в кабельной жиле для свободного передвижения электронов повышается плотность тока; это
приводит к избыточному выделению энергии и повышению температуры металла. Когда температура становится
слишком высокой, оплавляется изоляционная оболочка линии, что может стать причиной пожара.
Чтобы избежать неприятностей, необходимо использовать кабель с жилами подходящей толщины. Один из способов
определить площадь сечения кабеля – отталкиваться от диаметра его жил.
Калькулятор расчета сечения по диаметру
Для простоты вычислений разработан калькулятор расчета сечения кабеля по диаметру. В его основе лежат
формулы, по которым можно найти площадь сечения одножильных и многожильных проводов.
Измерять сечение нужно измеряя жилу без изоляции иначе нечего не получится.
Когда речь идет о вычислении десятков и сотен значений, онлайн-калькулятор способен существенно упростить жизнь
электрикам и проектировщикам электрических сетей за счет удобства и повышения скорости расчетов. Достаточно
ввести значение диаметра жилы, а при необходимости указать количество проволок, если кабель многожильный, и
сервис покажет искомое сечение провода.
Формула расчета
Вычислить площадь сечения электрического провода можно разными способами в зависимости от его типа. Для всех
случаев применяется единая формула расчета сечения кабеля по диаметру. Она имеет следующий вид:
D – диаметр жилы.
Диаметр жилы обычно указывается на оплетке провода или на общем ярлыке с другими техническими характеристиками.
При необходимости определить это значение можно двумя способами: с применением штангенциркуля и вручную.
Первым способом измерить диаметр жилы очень просто. Для этого ее необходимо очистить от изоляционной оболочки,
после чего воспользоваться штангенциркулем. Значение, которое он покажет, и есть диаметр жилы.
Если провод многожильный, необходимо распустить пучок, пересчитать проволоки и измерить штангенциркулем только
одну из них. Определять диаметр пучка целиком смысла нет – такой результат будет некорректным из-за наличия
пустот. В этом случае формула расчета сечения будет иметь вид:
D – диаметр жилы;
а – количество проволок в жиле.
При отсутствии штангенциркуля диаметр жилы можно определить вручную. Для этого ее небольшой отрезок необходимо
освободить от изоляционной оболочки и намотать на тонкий цилиндрический предмет, например, на карандаш. Витки
должны плотно прилегать друг к другу. В этом случае формула вычисления диаметра жилы провода выглядит так:
L – длина намотки проволоки;
N – число полных витков.
Чем больше длина намотки жилы, тем точнее получится результат.
Выбор по таблице
Зная диаметр провода, можно определить его сечение по готовой таблице зависимости. Таблица расчета сечения
кабеля по диаметру жилы выглядит таким образом:
Диаметр проводника, мм | Сечение проводника, мм2 |
0.8 | 0.5 |
1 | 0.75 |
1.1 | 1 |
1.2 | 1.2 |
1.4 | 1.5 |
1.6 | 2 |
1.8 | 2.5 |
2 | 3 |
2.3 | 4 |
2.5 | 5 |
2.8 | 6 |
3.2 | 8 |
3.6 | 10 |
4.5 | 16 |
Когда сечение известно, можно определить значения допустимых мощности и тока для медного или алюминиевого
провода. Таким образом удастся выяснить, на какие параметры нагрузки рассчитана токопроводящая жила. Для этого
понадобится таблица зависимости сечения от максимального тока и мощности.
В воздухе (лотки, короба,пустоты,каналы) | Сечение,кв.мм | В земле | |||||||||
Медные жилы | Алюминиевые жилы | Медные жилы | Алюминиевые жилы | ||||||||
Ток. А | Мощность, кВт | Тон. А | Мощность, кВт | Ток, А | Мощность, кВт | Ток. А | Мощность,кВт | ||||
220 (В) | 380 (В) | 220(В) | 380 (В) | 220(В) | 380 (В) | 220(В) | |||||
19 | 4.1 | 17.5 | 1,5 | 77 | 5.9 | 17.7 | |||||
35 | 5.5 | 16.4 | 19 | 4.1 | 17.5 | 7,5 | 38 | 8.3 | 75 | 79 | 6.3 |
35 | 7.7 | 73 | 77 | 5.9 | 17.7 | 4 | 49 | 10.7 | 33.S | 38 | 8.4 |
*2 | 9.7 | 77.6 | 37 | 7 | 71 | 6 | 60 | 13.3 | 39.5 | 46 | 10.1 |
55 | 17.1 | 36.7 | 47 | 9.7 | 77.6 | 10 | 90 | 19.8 | S9.7 | 70 | 15.4 |
75 | 16.5 | 49.3 | 60 | 13.7 | 39.5 | 16 | 115 | 753 | 75.7 | 90 | 19,8 |
95 | 70,9 | 67.5 | 75 | 16.5 | 49.3 | 75 | 150 | 33 | 98.7 | 115 | 75.3 |
170 | 76.4 | 78.9 | 90 | 19.8 | 59.7 | 35 | 180 | 39.6 | 118.5 | 140 | 30.8 |
145 | 31.9 | 95.4 | 110 | 74.7 | 77.4 | 50 | 775 | 493 | 148 | 175 | 38.5 |
ISO | 39.6 | 118.4 | 140 | 30.8 | 97.1 | 70 | 775 | 60.5 | 181 | 710 | 46.7 |
770 | 48.4 | 144.8 | 170 | 37.4 | 111.9 | 95 | 310 | 77.6 | 717.7 | 755 | 56.1 |
760 | 57,7 | 171.1 | 700 | 44 | 131,6 | 170 | 385 | 84.7 | 753.4 | 795 | 6S |
305 | 67.1 | 700.7 | 735 | 51.7 | 154.6 | 150 | 435 | 95.7 | 786.3 | 335 | 73.7 |
350 | 77 | 730.3 | 770 | 59.4 | 177.7 | 185 | 500 | 110 | 379 | 385 | 84.7 |
Перевод ватт в киловатты
Чтобы правильно воспользоваться таблицей зависимости сечения провода от мощности, важно правильно перевести ватты
в киловатты.
1 киловатт = 1000 ватт. Соответственно, чтобы получить значение в киловаттах, мощность в ваттах необходимо
разделить на 1000. Например, 4300 Вт = 4,3 кВт.
Примеры
Пример 1. Необходимо определить значения допустимых тока и мощности для медного провода с
диаметром жилы 2,3 мм. Напряжение питания – 220 В.
В первую очередь следует определить площадь сечения жилы. Сделать это можно по таблице или по формуле. В первом
случае получается значение 4 мм2, во втором – 4,15 мм2.
Расчетное значение всегда более точное, чем табличное.
С помощью таблицы зависимости сечения кабеля от мощности и тока, можно выяснить, что для сечения медной жилы
площадью 4,15 мм2 допустима мощность 7,7 кВт и ток 35 А.
Пример 2. Необходимо вычислить значения тока и мощности для алюминиевого многожильного провода.
Диаметр жилы – 0,2 мм, число проволок – 36, напряжение – 220 В.
В случае с многожильным проводом пользоваться табличными значениями нецелесообразно, лучше применить формулу
расчета площади сечения:
Теперь можно определить значения мощности и тока для многожильного алюминиевого провода сечением 2,26
мм2. Мощность – 4,1 кВт, ток – 19 А.
Токоведущие проводники с пониженными характеристиками для условий эксплуатации — Jade Learning
Снижение номинальных характеристик токонесущих проводов для условий использования
Автор: Джерри Дарем | 5 августа 2020 г.
Если вы спросите опытного электрика, сколько проводов № 12 AWG поместится в систему кабелепровода ЕМТ 3/4 дюйма, вы можете получить ответ типа «еще один!» Хотя это забавно (и обычно это правда), существуют меры предосторожности, которые должны быть приняты в соответствии с NEC всякий раз, когда проводники связываются вместе в кабельном канале, кабеле или даже в канаве в земле.
Аналогичные меры предосторожности необходимо также предпринять, если проводники устанавливаются при температуре выше 86 ° F. Оба условия способствуют накоплению тепла и плохой работе проводника.
Мы посмотрим, что NEC 2020 говорит об этих условиях использования, просмотрев:
- Раздел 210.19 (A) (1) — Непрерывные и прерывистые нагрузки. 125%
- Таблица 310.16 — Сила сопротивления проводников
- Таблица 310.15 (B) (1) — Температура, отличная от 86 ° F
- Таблица 310.15 (C) (1) — Более трех токоведущих проводников в кабелепроводе, кабеле или закопанных в землю
Непрерывные и прерывистые нагрузки — Раздел 210.19 (A) (1)
Раздел 210.19 (A) (1) предписывает электрикам выбирать размеры проводов на 100% номинальной нагрузки для всех непостоянных нагрузок, плюс 125% номинальной нагрузки для всех постоянных нагрузок в цепи. Однако, если электрик должен также применить поправочные коэффициенты к этим проводникам из Таблицы 310.15 (C) (1) для более чем трех токоведущих проводников в кабелепроводе и / или поправочные коэффициенты из таблицы 310.15 (B) (1) для температур выше 86 градусов по Фаренгейту, то NEC требует, чтобы мы сравнили результаты два требования и используйте большее из двух. Другими словами, если при увеличении проводников на 125% получается проводник большего размера, вы должны использовать этот провод. Но если применение поправочных коэффициентов для чрезмерных температур окружающей среды и связывание проводов дает провод большего размера, вы должны использовать этот провод.
Что такое увеличение на 125%?
Увеличение сечения проводника на 125% для продолжительной нагрузки служит дополнительным теплоотводом для схемы. Более крупный проводник обеспечивает большую площадь поверхности для отвода тепла в цепи и большую площадь поверхности для передачи тепла в окружающий воздух. Более крупный проводник отводит тепло от клемм, к которым подключен проводник. Но когда клеммы всех компонентов рассчитаны на работу на 100% от их отмеченного номинала, увеличивать диаметр проводника до 125%, чтобы он служил радиатором, не требуется.
Максимальное сопротивление проводника — таблица 310.16
Таблица 310.16 в NEC 2020 предоставляет значения силы тока проводов для проводки, которую мы используем каждый день. , когда условия использования не заставляют нас отклоняться от этих значений. Эти «условия использования» обычно включают температуру окружающей среды выше 86 ° F или более трех токоведущих проводов, установленных вместе в кабельном канале, кабеле или закопанных в землю. Или и .
Таблица 310.16 разделена на две меньшие таблицы с медными (Cu) проводниками с адресом в левой части таблицы и с алюминиевыми (Al) и покрытыми медью алюминиевыми проводниками с адресом в правой части таблицы.Медные проводники могут пропускать больше тока, чем алюминиевые проводники того же размера.
В таблице представлены три столбца номинальных температур: 60 ° C, 75 ° C и 90 ° C. Большинство проводников попадают в один из этих трех столбцов температуры.
Тепло генерируется внутри проводника, когда электрический ток течет по проводнику. Чем больше ток, тем больше тепла выделяется в проводнике. Изоляция, окружающая проводник, как правило, термореактивная или термопластическая изоляция, должна быть достаточно высокой, чтобы выдерживать это тепло.Таблица 310.16 ограничивает допустимую нагрузку на проводники в зависимости от их характеристик изоляции. Например, проводник №6 с температурой 90 ° C может пропускать больше тока, чем проводник №6 с температурой 60 ° C, не потому, что сам провод отличается, а потому, что изоляция проводника с температурой 90 ° C выдерживает больше тепла, не ломаясь. вниз. Когда тепло, выделяемое внутри проводника, превышает номинал изоляции проводника, изоляция, окружающая провод, может обесцветиться, стать хрупкой и со временем может отвалиться.
Если вы когда-либо видели белый заземленный провод с коричневым оттенком изоляции, вы видели провод, который используется с силой тока выше его номинальной.
Белый заземленный проводник перегрет.
Мы понимаем, что при протекании тока через проводник выделяется тепло, и насколько важно, чтобы изоляция проводника могла безопасно выдерживать это тепло без разрушения. Но существует другой тип тепла, который не менее важен для долговечности проводника — температура окружающей среды.Температура окружающей среды — это температура воздуха, окружающего ваши электрические провода после установки. Когда он слишком высок, это плохие новости для дирижера.
Температура окружающей среды, отличная от 86 ° F — Таблица 310.15 (B) (1)
Если температура вокруг проводника выше 86 ° F, тепло, выделяемое внутри проводника при нормальном использовании, не может эффективно рассеиваться через изоляцию. Если тепло не может эффективно отводиться от проводника, мы должны уменьшить количество тока, протекающего по проводнику, чтобы уменьшить тепло, выделяемое в проводнике.
Это уменьшение допустимого тока, протекающего по проводнику из-за температуры окружающей среды выше 86 ° F, называется «коррекцией температуры окружающей среды», и оно требует использования поправочных коэффициентов из таблицы 310.15 (B) (1) вместе со значениями из таблицы 310.16.
Поправочные коэффициенты в таблице 310.15 (B) (1) являются процентными, и они применяются к нормальным значениям допустимой нагрузки, приведенным в таблице 310.16, для уменьшения их значения. Например, медный провод THWN № 6 из Таблицы 310.Утверждается, что 16 стоит 65 ампер. Но согласно Таблице 310.15 (B) (1), когда тот же проводник установлен при температуре окружающей среды от 105 ° F до 113 ° F, он будет стоить только 82% от своего значения, или 53,3 ампера. (65 х 0,82 = 53,3)
Электрик должен не только беспокоиться о снижении температуры окружающей среды и ухудшении характеристик проводника, но также следует опасаться установки слишком большого количества токоведущих проводов вместе в кабельном канале, кабеле или закопанных в землю.Установка более трех токоведущих проводников вместе в одной кабельной канавке, кабеле или закрытой канаве оказывает такое же разрушающее воздействие на изоляцию проводника, как и установка проводников при повышенной температуре окружающей среды.
Более трех токоведущих проводников в кабеле, кабеле или земле — Таблица 310.15 (C) (1)
Таблица 310.15 (C) (1) требует снижения номинальных характеристик проводников, если более трех токоведущих проводов устанавливаются вместе в кабельном канале, кабеле или в закрытой канаве в земле.Например, таблица 310.15 (C) (1) требует, чтобы медный проводник THWN № 4, номинальный ток которого обычно составлял 85 ампер в соответствии с таблицей 310.16, был снижен до 80% от его значения при наличии 4-6 токоведущих проводов в связке. все вместе. Номинал того же проводника должен быть снижен до 70% от его нормального значения, когда имеется 7-9 токоведущих проводников, связанных вместе, и так далее. Допустимая нагрузка проводов продолжает уменьшаться в Таблице 310.15 (C) (1) по мере увеличения количества проводников, связанных вместе.
Если более трех токоведущих проводов проложены вместе в одной кабельной канавке, кабеле или закрытой канаве, допустимая токовая нагрузка каждого проводника должна быть уменьшена в соответствии с применимым поправочным коэффициентом из таблицы 310.15 (С) (1). Уменьшение тока в каждом проводнике снижает количество тепла, выделяемого в каждом проводнике. В совокупности это снижает общую рабочую температуру проводки в системе кабелепровода и предохраняет изоляцию проводов от преждевременного выхода из строя.
Изоляция проводника со временем ухудшается даже при нормальном использовании. Но когда проводник подвергается воздействию температур, превышающих допустимые для проводника, отказ происходит гораздо раньше. Проводник, используемый в нормальных условиях и в соответствии с инструкциями производителя, может обеспечить десятилетия надежной службы.
Что такое токопроводящий проводник?
Помните, что таблица 310.15 (C) (1) применяется только к токоведущим проводникам, и НЕ каждый проводник является токоведущим.
Этот белый заземленный проводник является токонесущим.
В разделе 310.15 (F) говорится, что заземляющий или соединительный провод (обычно голый или зеленого цвета) — это , а никогда не считается проводником с током. Однако в Разделе 310.15 (E) говорится, что белый заземленный (нейтральный) провод ЯВЛЯЕТСЯ токопроводящим, если он несет весь ток (амперы) в цепи, например, двухпроводная 120-вольтовая цепь, обслуживающая осветительную арматуру. .Но когда белый заземленный провод служит нейтральным проводником, где он несет только несбалансированную нагрузку между двумя фазными проводниками, обслуживающими одну и ту же нагрузку, он не является проводником с током. Электрик должен изучить Раздел 310.15 (E), чтобы ознакомиться с правилами установки нейтрального проводника в кабелепроводе.
Как ограничить ток?
Мы неоднократно заявляли, что допустимая нагрузка на проводник должна быть уменьшена, если проводник подвергается воздействию чрезмерных температур окружающей среды или если слишком много проводников с током установлено вместе в кабельном канале или подобном.Но как уменьшить эту пропускную способность? Как ограничить ток? Получим ли мы обещание от клиента о том, что он не будет подавать в схему больше усилителя, чем мы посоветовали, поскольку проводник был снижен? Конечно нет. Когда мы говорим, что ограничиваем ток или ток в цепи или проводниках, мы просто имеем в виду, что снижаем номинальные характеристики устройства защиты от сверхтока.
Если ток проводника обычно составляет 50 ампер, но температура окружающей среды требует, чтобы номинал проводника был снижен до 80%, мы просто должны уменьшить устройство максимального тока, чтобы оно сработало при новом номинальном значении допустимой токовой нагрузки проводника.
Помните, что уменьшение допустимой нагрузки проводника не всегда приводит к значению, которое соответствует номиналу стандартного предохранителя или автоматического выключателя из Таблицы 240.6 (A). К счастью, электрикам разрешается перейти к устройству максимального тока следующего стандартного размера в таблице, если номинал проводника не соответствует стандартным значениям из таблицы. Это разрешено до 800 ампер включительно.
Расчет коммерческих электрических нагрузок | EC&M
Благодарим вас за посещение одной из наших самых популярных классических статей.Если вы хотите получить обновленную информацию по этой теме, ознакомьтесь с недавно опубликованной статьейРасчет нагрузки — Часть 1 . |
Даже если вы работаете со штампованными чертежами, вам рано или поздно придется проводить расчеты коммерческой нагрузки в полевых условиях или на экзамене на получение лицензии. NEC охватывает коммерческие расчеты в ст. 220, но применимы и другие статьи. Например, вы должны знать определения в ст. 100, ознакомьтесь с тем, что такое ст. 210 говорит о продолжительных нагрузках и понимает требования к защите от сверхтоков, изложенные в Ст.240.
Два элемента, связанные с этим типом расчета, неоднократно нуждаются в уточнении:
- Напряжение
Напряжение, используемое для расчетов, зависит от расчетного напряжения системы. Таким образом, при расчете нагрузки ответвления, фидера и обслуживания вы должны использовать номинальное напряжение системы 120 В, 120/240 В, 208/120 В, 240 В, 347 В, 480/277 В, 480 В, 600 В / 347 В или 600 В, если не указано иное. указано (220.2) ( Рис.1 ниже).
- Округление
См. 200.2 (B), чтобы положить конец загадке округления. Если расчет в амперах превышает целое число на 0,5 или более, округлите до следующего целого числа. Если дополнительная сумма составляет 0,49 или меньше, округлите до следующего целого числа. Например, округлите 29,5А до 30А, но округлите 29,45А до 29А.
Удельные нагрузки. Арт. 220 не покрывает все специфические нагрузки. Например, вы найдете моторы в ст. 430 и кондиционеры в ст. 440. Чтобы узнать, следует ли вам искать другую статью, используйте индекс NEC.
Рис. 1. Не допускайте ошибки, используя в расчетах фактические полевые измерения напряжения системы. Если не указано иное, нагрузки должны быть рассчитаны с использованием номинального напряжения системы, например 120 В, 120/240 В, 208Y / 120 В, 240 В, 347 В, 480 Y / 277 В, 480 В, 600 Y / 347 В или 600 В.
Арт. 220 предъявляет особые требования к большинству нагрузок, включая следующие:
Сушилки. Подберите размеры проводов ответвительной цепи и устройства защиты от перегрузки по току для промышленных осушителей в соответствии с характеристиками, указанными на паспортной табличке устройства.Рассчитайте требуемую нагрузку питателя для сушилок при 100% номинальной мощности устройства. Если осушители работают непрерывно, вы должны рассчитать провод и защитное устройство на 125% нагрузки [210,19 (A), 215,3 и 230,42]. Таблица 220.18 Коэффициенты спроса не применимы к коммерческим сушилкам.
Давайте применим то, что мы только что узнали. Какой размер ответвления цепи и защита от перегрузки по току требуются NEC для сушилки мощностью 7 кВт с номинальным напряжением 240 В, когда сушилка находится в многоквартирной жилой прачечной (, рис.2 )?
I = P ÷ E
7000 Вт ÷ 240 В = 29 А
Допустимая токовая нагрузка проводника и устройства максимального тока должна быть не менее 29 А (240,4). Согласно Таблице 310.16, провод 10 AWG при 60 ° C рассчитан на 30 А. Следовательно, вы должны использовать прерыватель на 30 А с проводом 10 AWG.
Рис. 2. При определении надлежащей защиты параллельной цепи и сечения проводов для сушилки для белья, имеющейся в продаже, вы должны использовать требуемую нагрузку 100%. Сниженные коэффициенты спроса для нескольких сушилок (таблица 220.18) неприменимы в коммерческих условиях.
Электрообогрев [424,3 (B)]. Размер проводов ответвления и устройства защиты от сверхтоков для электрического обогрева должен составлять не менее 125% от общей тепловой нагрузки, включая двигатели нагнетателей. Рассчитайте нагрузку по запросу питателя / услуги для электрического нагревательного оборудования при 100% общей тепловой нагрузки.
Кухонное оборудование. Размер проводов параллельной цепи и защиты от перегрузки по току для коммерческого кухонного оборудования должен соответствовать характеристикам, указанным на паспортной табличке прибора.
Чтобы определить нагрузку на обслуживание коммерческого кухонного оборудования, которое имеет термостатическое регулирование или работает с перерывами, примените коэффициенты спроса из Таблицы 220.20 к общей нагрузке подключенного кухонного оборудования. Потребляемая нагрузка питателя или сервиса не может быть меньше суммы двух самых больших нагрузок устройства. Коэффициенты спроса, указанные в таблице 220.20, не применяются к оборудованию для отопления, вентиляции или кондиционирования воздуха.
Прачечное оборудование. Подбирайте эти цепи в соответствии с номинальными характеристиками, указанными на паспортной табличке прибора. Вы можете предположить, что цепь прачечной не является постоянной нагрузкой и что коммерческая цепь прачечной рассчитана на 1500 ВА — если иное не указано в чертежах проекта или экзаменационном вопросе.
Освещение. NEC требует минимальной нагрузки на квадратный фут для общего освещения, в зависимости от типа помещения [Таблица 220.3 (A)]. Для гостиничных номеров в гостиницах, мотелях, больницах и складских помещениях вы можете применить коэффициенты потребности в общем освещении из Таблицы 220.11 к общей нагрузке на освещение.
Предположим, что общая световая нагрузка для коммерческих помещений, кроме номеров мотелей, гостиниц, больниц и складских помещений, является постоянной. Рассчитайте его при 125% от общей осветительной нагрузки, указанной в Таблице 220.3 (А).
Емкости. Вы не можете выполнять все расчеты нагрузки на розетки одинаково. У NEC есть отдельные требования в зависимости от приложения.
Узел розетки с несколькими розетками. Для расчетов обслуживания считайте, что каждые 5 футов (или меньше) многорозеточной розетки в сборе составляют 180 ВА. Если вы можете с полным основанием ожидать, что блок розеток будет питать несколько устройств одновременно, при расчетах обслуживания учитывайте каждую ногу (или меньше) как 180 ВА.Обычно сборка розеток с несколькими розетками не является постоянной нагрузкой [220,3 (B) (8)].
Розетка ВА нагрузка. Минимальная нагрузка для каждой коммерческой или промышленной розетки общего пользования составляет 180 ВА на шнур [220,3 (B) (9)]. Обычно емкости не являются постоянной нагрузкой.
Количество розеток, разрешенных в цепи. Максимальное количество розеток, разрешенное в коммерческой или промышленной цепи, зависит от допустимой токовой нагрузки цепи. Чтобы вычислить это число, разделите номинальную мощность схемы в ВА на 180 ВА для каждой планки розетки.
Рис. 3. Минимальная нагрузка для каждой коммерческой розетки общего пользования составляет 180 ВА на шнур. В этом примере прерыватель на 15 А, 120 В может выдерживать нагрузку 1800 ВА (120 В x 15 А = 1800 ВА). Таким образом, вы можете установить в этой цепи до 10 розеток.
Давайте рассмотрим примерную задачу. Сколько розеток разрешено в цепи 15 А, 120 В ( Рис. 3 )?
Общая нагрузка цепи, ВА для цепи 15 А:
120 В × 15 А = 1800 ВА
Количество розеток на цепь:
1800 ВА ÷ 180 ВА = 10 розеток
Размер розетки. NEC разрешает использование цепей 15 А в коммерческих и промышленных помещениях, но некоторые местные нормы требуют минимального номинального тока 20 А (310,5).
Потребляемая нагрузка на розетку. Кроме жилых единиц, вы можете добавить — к нагрузкам освещения — нагрузки на розетки, рассчитанные не более чем на 180 ВА на розетку на 220,3 (B) (9). Вы также можете добавить фиксированные сборки с несколькими выходами, рассчитанные по 220,3 (B) (8). Оба они должны соответствовать факторам спроса, приведенным в Таблице 220.11 или Таблице 220.13.
Общее освещение и розетки для банков и офисов. Рассчитайте требуемую нагрузку на розетку при 180 ВА для каждой перемычки розетки [220,3 (B) (9)], если количество розеток известно, или 1 ВА на каждый квадратный фут, если число розеток неизвестно [Таблица 220.3 (A) Примечание b ].
Знаки. NEC требует, чтобы каждое коммерческое помещение, доступное для пешеходов, имело хотя бы одну ответвленную цепь 20 А для знака [600,5 (A)]. Нагрузка для требуемых наружных вывесок или контурного освещения должна составлять не менее 1200 ВА [220.3 (В) (6)]. Вывеска на выходе — это постоянная нагрузка. Вы должны установить загрузку устройства подачи на 125% от продолжительной нагрузки [215,2 (A) (1) и 230,42].
Следующий вопрос позволит вам попрактиковаться в том, что мы только что рассмотрели. Какая нагрузка требуется для одного электрического знака?
1,200 ВА × 1,25 = 1,500 ВА
Нейтральные расчеты. Нейтральная нагрузка — это максимальная несбалансированная требуемая нагрузка между заземленным (нейтральным) проводником и любым одним незаземленным (горячим) проводником — как определено расчетами в Ст.220, Часть B. Это означает, что вы не учитываете линейные нагрузки при выборе размеров заземленного (нейтрального) проводника. А как насчет снижения нагрузки? Это зависит от определенных факторов, которые мы рассмотрим дальше.
Редукция свыше 200А. Вы можете уменьшить расчетную нагрузку фидера / сервисной сети для 3-проводных, однофазных или 4-проводных, 3-фазных систем, которые питают линейные нагрузки для той части несбалансированной нагрузки, превышающей 200 А, с помощью множителя 70%.
Чтобы увидеть, как это будет работать для реальной установки, определите требуемую нагрузку нейтрали для симметричного трехпроводного фидера на 400 А, 120/240 В.
Общая нейтральная нагрузка для обслуживания 400 А:
Первые 200 А при 100%: 200 А × 1,00 = 200 А
Остаток при 70%: 200 А × 0,70 = 140 А
Общая нагрузка по запросу: 200 А × 140 А = 340 А
Уменьшение недопустимо. Вы не можете уменьшить нагрузку нейтрали для 3-проводных, однофазных цепей 208Y / 120 В или 480 Y / 277 В, которые состоят из двух линейных проводов и общего проводника (нейтрали) 4-проводной, 3-фазной звезды. система. Это связано с тем, что общий (нейтральный) провод трехпроводной схемы, подключенной к четырехпроводной трехфазной системе звездой, пропускает примерно такой же ток, что и фазные проводники [310.15 (B) (4) (b)].
Рис. 4. Подобрать размер заземленного (нейтрального) проводника может быть непросто. Просто помните, что вы не можете уменьшить требуемую нагрузку нейтрали для 3-проводных, однофазных цепей 208Y / 120V или 480Y / 277V, которые состоят из двух линейных проводов и общего проводника (нейтрали) 4-проводной, 3-проводной цепи. фазовая система.
В качестве доказательства этой теории см. Пример в Рис. 4 .
Кроме того, вы не можете уменьшить требуемую нагрузку нейтрали для нелинейных нагрузок, питаемых от 3-фазной, 4-проводной системы, соединенной звездой, потому что они производят тройные гармонические токи, которые складываются в нейтральный провод.В этой ситуации может потребоваться, чтобы нейтральный проводник был больше, чем нагрузка незаземленного проводника (220,22 FPN 2).
Знание правильного способа выполнения расчетов коммерческой нагрузки делает вас более ценными, поскольку вы можете сыграть ключевую роль в полевом проектировании, проверке и внедрении. Это еще один навык, который поможет вам сделать работу правильно с первого раза.
Определение размеров проводников, Часть XVIII | Журнал для подрядчиков электротехники
При выборе размеров проводников требуется нечто большее, чем просто выбор медного или алюминиевого проводника с правильной допустимой токовой нагрузкой из Таблицы 310.15 (B) (16) (ранее Таблица 310.16) в Национальном электротехническом кодексе (NEC). Проводники должны выбираться и устанавливаться в соответствии со всеми применимыми положениями, касающимися проводов.
Одно положение гласит, что допустимая нагрузка на проводник не должна превышать ограничения температуры клеммного соединения в 110,14 (C). Положение в 310.15 (A) (3) гласит, что проводники не должны быть связаны таким образом (в отношении типа цепи, используемого метода подключения или количества проводников), чтобы любой проводник превышал свою предельную температуру.Факторы, которые могут повлиять на номинальную температуру проводника, включают температуру окружающей среды, тепло, выделяемое внутри проводника в результате протекания тока нагрузки, скорость, с которой генерируемое тепло рассеивается в окружающую среду, и соседние проводники, несущие нагрузку. Эти факторы иногда называют условиями использования.
Другие положения, такие как требования к защите от сверхтоков в статье 240, также должны учитываться при выборе размеров проводов. Например, проводники (кроме гибких шнуров, гибких кабелей и арматурных проводов) должны быть защищены от перегрузки по току в соответствии с их допустимой амплитудой, указанной в 310.15, если иное не разрешено или не требуется в пунктах 240.4 (A) — (G). Раздел 240.4 (B) касается устройств максимального тока номиналом 800 А или меньше. Этот раздел часто называют правилом округления.
В соответствии с 240.4 (B), следующий более высокий стандартный номинал устройства максимального тока (выше допустимой токовой нагрузки защищаемых проводов) должен быть разрешен к использованию при соблюдении всех условий, указанных в 240.4 (B) (1) — (3). ) которые встретились.
Первое условие относится к ответвленной цепи розетки.В соответствии с 240.4 (B) (1), если защищаемые проводники не являются частью ответвленной цепи, которая питает более одной розетки для переносных нагрузок, соединенных шнуром и вилкой, должно быть разрешено округлять до следующего более высокий стандартный номинал устройства максимального тока (выше допустимой токовой нагрузки защищаемых проводов). Пока защищаемые проводники не являются частью ответвленной цепи, питающей более одной розетки для переносных нагрузок, подключаемых по шнуру и вилке, первое условие в 240.4 (A) будут выполнены.
Например, какие медные проводники THWN / THHN необходимы для питания однофазной ответвленной цепи 208 В (В) и 20 А (А) при следующих условиях? Эта ответвленная цепь будет обеспечивать освещение стоянки офисного здания. Нагрузка будет 15,2 А и будет непрерывной. Падение напряжения в этой ответвленной цепи не будет превышать рекомендацию в информационной записке № 4 210,19 (A) (1). Эти проводники ответвленной цепи будут находиться в кабельном канале. В этом кабельном канале будет в общей сложности шесть токоведущих проводов и заземляющий провод оборудования.Концевые заделки на обоих концах рассчитаны на температуру не менее 75 ° C. Максимальная температура окружающей среды составляет 38 ° C. Поскольку эти проводники будут находиться во влажном месте, в расчетах необходимо использовать тип THWN. Поскольку нагрузка непрерывная, умножьте всю нагрузку на 125 процентов. Минимальная допустимая нагрузка после умножения на 125 процентов составляет 19 А (15,2 125% = 19). В соответствии с 210.20 (A) предохранитель или прерыватель на 20 А должен защищать эту параллельную цепь. На основании только номинальных температур оконечных устройств и постоянной нагрузки допускается использование проводов 14 AWG (см. Рисунок 1).
Поскольку температура окружающей среды будет выше 30 ° C и в дорожке будет более трех токоведущих проводов, к проводникам должны применяться поправочные и регулировочные коэффициенты. Поскольку проводники 14 AWG были выбраны для удовлетворения требований к длительным нагрузкам и заделкам, проверьте, будет ли допустимая нагрузка на эти проводники равной или превышающей нагрузку после применения поправочных и регулирующих коэффициентов. Провод в этом примере имеет два номинала.
Провода типа THHN разрешается использовать только в сухих и влажных помещениях. Провода типа THWN допускаются в сухих и влажных помещениях. Поскольку эта ответвленная цепь будет находиться во влажном месте, не используйте допустимую нагрузку 90 ° C для проводника THHN. Хотя во влажных помещениях допускается использование проводов THWN / THHN, максимальная рабочая температура составляет всего 75 ° C. Медный провод 14 AWG, указанный в столбце 75 ° C таблицы 310.15 (B) (16), имеет допустимую допустимую нагрузку на ток 20 А. Максимальная температура окружающей среды в этом примере будет 38 ° C.Поправочный коэффициент таблицы 310.15 (B) (2) (a) в столбце 75 ° C (из-за проводника THWN) для температуры окружающей среды 38 ° C составляет 0,88. Регулирующий коэффициент по таблице 310.15 (B) (3) (a) для шести токоведущих проводов в дорожке качения составляет 80 процентов (или 0,80). После снижения номинальных характеристик из-за температуры окружающей среды и соседних проводников, несущих нагрузку, этот проводник имеет максимальную допустимую нагрузку 14 А (20 0,88 0,80 = 14,08 = 14). Провода сечением 14 AWG не допускаются, так как нагрузка составляет 15,2 А. Поэтому выберите провод следующего большего размера, чтобы убедиться, что проводник может выдерживать нагрузку после применения поправочных коэффициентов.Медный проводник сечением 12 AWG, указанный в столбце 75 ° C таблицы 310.15 (B) (16), имеет допустимую токовую нагрузку 25 А. После снижения номинальных характеристик из-за температуры окружающей среды и соседних проводников, несущих нагрузку, этот проводник имеет максимальную допустимую нагрузку 18 А (25 0,88 0,80 = 17,6 = 18).
Поскольку это будет ответвленная цепь на 20 А, необходимо использовать правило округления. Поскольку проводники, защищенные в этом примере, не являются частью ответвленной цепи, питающей более одной розетки для переносных нагрузок, подключаемых по шнуру и вилке, допустимо округление до следующего более высокого стандартного размера устройства максимального тока.Следующим по величине стандартным размером выше 18А является 20А. Таким образом, допускается использование медных проводов 12 AWG THWN / THHN (см. Рисунок 2).
Второе условие относится к стандартным номинальным значениям тока устройств максимального тока. В соответствии с 240.4 (B) (2), если допустимая токовая нагрузка проводника не соответствует стандартному номинальному току предохранителя или автоматического выключателя без настроек отключения по перегрузке, превышающих его номинал (но это должно быть разрешено иметь другие настройки отключения или номинальных значений) ), округление допускается.И наоборот, если допустимая токовая нагрузка проводника соответствует стандартному номинальному току предохранителя или автоматического выключателя, округление в большую сторону не допускается.
Например, медные проводники THHN какого сечения требуются для питания трехфазной ответвленной цепи 208 В, 50 А при следующих условиях? Нагрузка 50А будет прерывистой. Падение напряжения в этой ответвленной цепи не будет превышать рекомендацию в информационной записке № 4 210,19 (A) (1). Эти проводники ответвленной цепи будут находиться в кабельном канале.В этом кабельном канале будет три токоведущих проводника и заземляющий провод оборудования. Концевые заделки на обоих концах рассчитаны на температуру не менее 75 ° C. Максимальная температура окружающей среды составляет 30 ° C. Это ответвление будет установлено полностью в сухом месте. Поскольку нагрузка не является постоянной, нет необходимости умножать нагрузку на 125 процентов. Поправочные или регулирующие коэффициенты отсутствуют, поскольку температура окружающей среды не будет превышать 30 ° C, а в дорожке качения не будет более трех токоведущих проводов.Из-за заделки выберите провод из столбца 75 ° C таблицы 310.15 (B) (16). Так как нагрузка будет 50А, выберите провод с допустимой нагрузкой не менее 50А. Допустимая допустимая токовая нагрузка медного проводника 8 AWG, указанного в столбце 75 ° C, составляет 50 А. В соответствии с 240,6 (A) 50 А — это стандартный номинальный ток для предохранителей и автоматических выключателей с обратнозависимой выдержкой времени. Поскольку это стандартный номинальный ток, его нельзя округлять до следующего размера (см. Рисунок 3).
Не всегда необходимо использовать правило округления.Бывают случаи, когда допустимая токовая нагрузка проводника превышает номинал предохранителя или автоматического выключателя даже после применения поправочных и регулирующих коэффициентов.
В колонке следующего месяца будет продолжено обсуждение размеров проводников.
МИЛЛЕР , владелец Lighthouse Educational Services, ведет занятия и семинары по электротехнике. Он является автором «Иллюстрированного руководства к национальным электротехническим нормам и правилам» и «Руководства по подготовке к экзаменам электрика». С ним можно связаться по телефону 615.333.3336, [email protected] и www.charlesRmiller.com.
Symfony \ Component \ HttpKernel \ Exception \ NotFoundHttpException: Не найден маршрут для "GET /fncc2/article.php%3ftag%3dhow-to-determine-line-and-load-wires" в vendor / symfony / http-kernel / EventListener / RouterListener.php: 136 в Symfony \ Component \ HttpKernel \ EventListener \ RouterListener-> onKernelRequest (объект (RequestEvent), 'kernel.запрос ', объект (TraceableEventDispatcher)) (поставщик / symfony / диспетчер событий / Debug / WrappedListener.php: 126) в Symfony \ Component \ EventDispatcher \ Debug \ WrappedListener -> __ invoke (объект (RequestEvent), 'kernel.request', объект (TraceableEventDispatcher)) (поставщик / symfony / диспетчер событий / EventDispatcher.php: 264) в Symfony \ Component \ EventDispatcher \ EventDispatcher-> doDispatch (массив (объект (WrappedListener), объект (WrappedListener), объект (WrappedListener), объект (WrappedListener), объект (WrappedListener), объект (WrappedListener), объект), объект (WrappedListener), объект (WrappedListener) (WrappedListener), объект (WrappedListener), объект (WrappedListener), объект (WrappedListener)), 'ядро.запрос ', объект (RequestEvent)) (поставщик / symfony / диспетчер событий / EventDispatcher.php: 239) в Symfony \ Component \ EventDispatcher \ EventDispatcher-> callListeners (массив (объект (WrappedListener), объект (WrappedListener), объект (WrappedListener), объект (WrappedListener), объект (WrappedListener), объект (WrappedListener), объект) (WrappedListener) (WrappedListener), объект (WrappedListener), объект (WrappedListener), объект (WrappedListener)), 'kernel.request', объект (RequestEvent)) (поставщик / symfony / диспетчер событий / EventDispatcher.php: 73) в Symfony \ Component \ EventDispatcher \ EventDispatcher-> dispatch (объект (RequestEvent), 'kernel.request') (поставщик / symfony / диспетчер событий / отладка / TraceableEventDispatcher.php: 168) в Symfony \ Component \ EventDispatcher \ Debug \ TraceableEventDispatcher-> dispatch (объект (RequestEvent), 'kernel.request') (поставщик / symfony / http-kernel / HttpKernel.php: 134) в Symfony \ Component \ HttpKernel \ HttpKernel-> handleRaw (объект (запрос), 1) (поставщик / symfony / http-kernel / HttpKernel.php: 80) в Symfony \ Component \ HttpKernel \ HttpKernel-> handle (object (Request), 1, true) (поставщик / symfony / http-kernel / Kernel.php: 201) в Symfony \ Component \ HttpKernel \ Kernel-> handle (объект (Запрос)) (общедоступный / index.php: 30) |
по Марке Lamendola Какое правило заполнения кабелепровода? Первый, Базовая ссылка NEC — 300.17. NEC делает Обратите внимание, я сказал basic NEC.
Теперь вы можете упростить все это, поняв Переходя к таблице 1, главе 9, мы не находим целого Эти 40% подлежат дальнейшему снижению Некоторые люди не понимают, какие кондукторы рассчитывают Сделайте математику Заполнение кабелепровода требует расчета. В прошлом, Чтобы определить, сколько проводов вы можете проложить в заданном |
Размеры проводов для всех условий нагрузки
Время чтения: 18 минут.
Одна из наших основных обязанностей в торговле электроэнергией — это выбор электрических проводников, а одна из основных обязанностей электрических инспекторов — правильно оценивать эти решения о выборе.Признавая важность этого вопроса, целевая группа, назначенная для рассмотрения статьи 220 NEC 2005 г., решила рекомендовать добавить новый Пример 3A в Приложение D, охватывающий эту тему. Он фокусируется не на расчетах нагрузки, а на выборе проводника. В отличие от большинства примеров, нагрузки предусмотрены, 1 контекст является промышленным, а распределение составляет 480 Y / 277 В. Предложение было одобрено Техническим комитетом по корреляции NEC и принято CMP-2 с учетом комментариев общественности, как и все предложения.В этой статье используется установка, проиллюстрированная в предложенном примере (см. Рисунок 1 для наглядности), чтобы представить концепции, которые необходимо освоить. В этом примере предполагается, что заделки проводов 75 ° C, а затем рассчитывается защита от перегрузки по току и размеры проводов, необходимые для двух 3-фазных 4-проводных фидеров, работающих в общем кабельном канале через проход для доступа к инженерным сетям, который включает технологический пар, что приводит к температуре окружающей среды 35 ° C.
Фотография 1. Автоматический выключатель на 20 А, отмеченный как допустимый для оконечной нагрузки 75 ° C
Средние и концы проводов требуют отдельных расчетов
Ключ к правильному выбору проводника — помнить, что конец проводника отличается от его середины.Для расчета размеров проводников применяются особые правила в зависимости от предполагаемого функционирования концевых заделок. Совершенно другие правила направлены на обеспечение того, чтобы проводники по всей своей длине не перегревались при преобладающих нагрузках и условиях использования. Эти два набора правил не имеют ничего общего друг с другом — они основаны на совершенно разных термодинамических соображениях. В некоторых расчетах чисто случайно используются одинаковые множители. Иногда требования к заделке обеспечивают самый большой проводник, а иногда — требования по предотвращению перегрева проводника.Вы не можете сказать точно, пока не завершите все расчеты, а затем не проведете сравнение. Пока вы не привыкнете делать эти вычисления, делайте их на отдельных листах бумаги.
Ток всегда связан с теплом. Каждый проводник имеет некоторое сопротивление, и по мере увеличения тока вы увеличиваете количество тепла, при прочих равных условиях. Фактически, количество тепла быстро увеличивается пропорционально квадрату силы тока. Таблицы допустимой нагрузки в NEC по-другому отражают нагрев. Как выдержки из Таблицы 310.16, таблицы показывают, какой ток вы можете безопасно (то есть без перегрева изоляции) и непрерывно проводить через проводник при преобладающих условиях — что, по сути, является определением допустимой токовой нагрузки в Статье 100: «Ток в амперах, который проводник может непрерывно работать в условиях эксплуатации, не превышая его температурный допуск ».
Таблица 1. Таблица 310.16
Таблицы допустимой нагрузки показывают, как проводники реагируют на тепло. Таблицы пропускной способности (см. Таблицу 310.16, например) делают гораздо больше, чем описано в предыдущем абзаце. Они косвенно показывают значение тока, при котором проводник будет работать при определенном температурном пределе или ниже него. Помните, что нагрев проводника происходит из-за протекания тока через металл, имеющий заданную геометрию (как правило, длинный гибкий цилиндр заданного диаметра и металлического содержания). Другими словами, чтобы понять, насколько нагревается проводник, вы можете игнорировать различные стили изоляции.В качестве инструмента обучения давайте превратим это в «правило», а затем посмотрим, как NEC использует его: проводник, независимо от его типа изоляции, проходит при температуре ниже или ниже предельной температуры, указанной в столбце допустимой токовой нагрузки, когда после регулировки В условиях использования он пропускает ток, равный или меньший, чем предел допустимой токовой нагрузки, указанный в этом столбце.
Например, проводник THHN 10 AWG при 90 ° C имеет допустимую нагрузку 40 ампер. Наше «правило» говорит нам, что когда медные проводники 10 AWG несут 40 ампер при нормальных условиях использования, они достигают установившейся температуры в наихудшем случае 90 ° C чуть ниже изоляции.Между тем, определение допустимой нагрузки говорит нам, что независимо от того, как долго сохраняется эта температура, она не повредит проводник. Однако это не относится к устройству. Если провод на коммутационном устройстве слишком долго нагревается, это может привести к потере состояния металлических деталей внутри, вызвать нестабильность неметаллических деталей и привести к ненадежной работе устройств максимального тока из-за смещения калибровки.
Ограничения прерывания для защиты устройств
Из-за риска перегрева устройств производители устанавливают пределы температуры для проводов, которые вы надеваете на их клеммы.Учтите, что соединение металл-металл, которое является надежным в электрическом смысле, вероятно, проводит тепло так же эффективно, как и ток. Если вы подключите провод 90 ° C к автоматическому выключателю, и проводник достигнет 90 ° C (почти точка кипения воды), внутренняя часть этого выключателя не будет намного ниже этой температуры. Ожидать, что этот выключатель будет надежно работать даже с привинченным к нему источником тепла 75 ° C, означает многого.
Рис. 1. Схема, предложенная для нового примера 3A для NEC
2005 года.
Испытательные лаборатории принимают во внимание уязвимость устройств к перегреву, и в течение многих, многих лет существуют ограничения, запрещающие использование проводов, которые могут вызвать перегрев устройства.Эти ограничения теперь появляются в NEC 110.14 (C). Меньшие по размеру устройства (как правило, 100 А и ниже или с условиями подключения для проводов 1 AWG или меньше) исторически не предполагалось, что они будут работать с проводниками, рассчитанными на более 60 ° C, такими как тип TW. Для оборудования с более высоким номиналом предполагается наличие проводов 75 ° C, но, как правило, не выше для оборудования на 600 В и ниже. Это справедливо и сегодня для более крупного оборудования. (Оборудование среднего напряжения, более 600 вольт, имеет большие внутренние зазоры, и обычная поправка составляет 90 ° C на 110.40, но это оборудование выходит за рамки данной статьи.) Сегодня меньшее оборудование все чаще имеет рейтинг «60/75 ° C», что означает, что оно будет работать должным образом, даже если сечение проводников основано на столбце 75 ° C ( Таблица 310.16).
Фотография 1 показывает маркировку «60/75 ° C» на автоматическом выключателе на 20 А, что означает, что он может использоваться с проводниками 75 ° C или с проводниками 90 ° C, используемыми в соответствии с столбцом допустимой токовой нагрузки 75 ° C. Как на щитке, так и на устройстве на другом конце проводника должны быть сделаны одинаковые поправки на допустимую температуру 75 ° C.В противном случае применяется столбец 60 ° C. Однако всегда помните, что у проводников два конца. Для успешного использования проводов меньшего диаметра (с большей допустимой нагрузкой) на другом конце устройства должна быть нанесена аналогичная маркировка. Обратитесь к рисунку 2 для примера работы этого принципа.
Соединения — это заделки. Не все заделки происходят на электрических устройствах или утилизационном оборудовании. Некоторые заделки происходят в середине участка, когда один проводник соединяется с другим. Та же проблема возникает, когда мы производим полевое соединение с шиной, которая проходит между оборудованием.Шины, обычно прямоугольные в поперечном сечении, часто используются вместо обычных проводов в приложениях, требующих очень больших токов. Когда вы подключаетесь к одной из этих сборных шин (в отличие от сборной шины внутри панели) или от одного проводника к другому, вам нужно беспокоиться только о номинальной температуре компрессионных соединителей или других задействованных средств сращивания. Обратите внимание на отметку, например, «AL9CU» на выступе. Это означает, что вы можете использовать его как с алюминиевыми, так и с медными проводниками при температуре до 90 ° C, но только там, где наконечник «установлен отдельно» (текст NEC).
Температурная маркировка наконечников обычно означает меньше, чем кажется. Многие контакторы, щитовые панели и т. Д. Имеют клеммные наконечники с маркировкой, указывающей на допустимую температуру 90 ° C. Игнорируйте эту маркировку, потому что выступы не устанавливаются отдельно. Применяйте обычные правила завершения работы для этого типа оборудования. Здесь происходит то, что производитель оборудования покупает наконечники у другого производителя, который не хочет запускать две производственные линии для одного и того же продукта. Проушина, которую вы устанавливаете на сборной шине и безопасно используете при температуре 90 ° C, также работает, если она поставляется производителем вашего контактора.Но на контакторе вы не хотите, чтобы наконечник работал так сильно. Проушина не будет повреждена при 90 ° C, но оборудование, к которому она прикреплена, не будет работать должным образом.
Определение параметров защиты цепи для постоянно загружаемых устройств
NEC определяет непрерывную нагрузку как нагрузку, продолжающуюся три часа или дольше. Большинство бытовых нагрузок не являются непрерывными, но многие коммерческие и промышленные нагрузки являются непрерывными. Рассмотрим, например, ряды люминесцентных ламп в магазине. Не многие магазины всегда открыты менее трех часов за раз.Хотя непрерывная нагрузка не влияет на допустимую нагрузку на проводник (определяемую, как мы видели, как постоянную допустимую нагрузку по току), она оказывает большое влияние на электрические устройства. Точно так же, как устройство будет подвергаться механическому воздействию со стороны источника тепла, прикрепленного к нему болтами, оно также подвергается механическому воздействию, когда через него постоянно проходит ток, близкий к его номинальной нагрузке. Чтобы не уменьшить тепловую нагрузку на устройство и не повлиять на его рабочие характеристики, NEC ограничивает подключенную нагрузку не более чем 80% номинальной мощности цепи.Обратное значение 80 процентов равно 125 процентам, и вы увидите, что ограничение указано в обоих направлениях. Ограничение продолжительной части нагрузки до 80 процентов от номинальной мощности устройства означает то же самое, что и указание на то, что устройство должно быть рассчитано на 125 процентов от продолжительной части нагрузки. Если у вас есть как постоянная, так и прерывистая нагрузка в одной цепи, возьмите непрерывную часть на уровне 125 процентов, а затем добавьте прерывистую часть. Результат не должен превышать номинальных значений схемы.
Предположим, например, что нагрузка состоит из 51.6 ампер периодической нагрузки и 67,8 ампер непрерывной нагрузки (всего 119 ампер), как было предложено для примера 3A (рисунок 1) и показано только с основными элементами на рисунке 3. Мы будем использовать формат рисунка 3 на протяжении всей остальной части этого документа. статью, чтобы избежать путаницы, поскольку мы постепенно вводим усложняющие факторы, влияющие на эти расчеты. Рисунок 1 объединяет все аспекты процедуры расчета, и мы вернемся к нему в конце. А пока просто рассчитайте минимальную пропускную способность, которая нам необходима для нашего подключенного оборудования (не проводников), следующим образом:
Шаг 1:51.6 А x 1,00 = 51,6 А
Шаг 2: 67,8 A x 1,25 = 84,8 A
Шаг 3: Минимум = 136,4 A
Раздел 220.2 (B) позволяет отбрасывать незначительные доли ампера2. Устройство, такое как автоматический выключатель, которое будет выдерживать этот профиль нагрузки, должно иметь номинал не менее 136 ампер, даже если на самом деле через устройство проходит только 119 ампер. В случае устройств защиты от сверхтоков следующий более высокий стандартный размер будет составлять 150 ампер. В общем, для устройств защиты от сверхтоков, не превышающих 800 ампер, NEC позволяет округлить в большую сторону до следующего более высокого стандартного размера устройства максимальной токовой защиты.
Рис. 2. При оценке температуры заделки всегда учитывайте оба конца проводника.
Две распространенные ошибки. Зайдя так далеко, здесь легко сделать две ошибки. Во-первых, хотя вы можете округлить номинал устройства максимального тока, вы не можете округлить с точки зрения нагрузки проводника, даже одного ампера. Провод 1 AWG в колонне 75 ° C может выдерживать ток 130 ампер. Если ваша фактическая нагрузка составляет 131 ампер, вам необходимо использовать провод большего размера.Во-вторых, когда важны продолжительные нагрузки, вам необходимо создать дополнительный запас по размеру проводов, чтобы гарантировать правильную работу подключенных устройств. Этот последний пункт приводит к постоянной путанице, поскольку может показаться, что он противоречит тому, что мы говорили о допустимой нагрузке на ток проводника, как правило, как фактор, определяющий минимальный размер проводника.
Рис. 3. Устройства защиты от сверхтоков должны быть рассчитаны по размеру, чтобы выдерживать расчетную нагрузку плюс 25 процентов любых частей нагрузки, которые являются непрерывными.
Мы работаем с проводниками и опасаемся перегрева проводов. Производители устройств в этом смысле не беспокоятся о проводниках; они беспокоятся о том, что их устройства могут перегреться и не работать должным образом. Непрерывные нагрузки создают серьезные проблемы с точки зрения отвода тепла изнутри механического оборудования. Помните, что когда вы прикрепляете провод к устройству, они становятся одним в механическом, а также в электрическом смысле. Производители устройств полагаются на эти проводники как на теплоотвод, особенно при постоянной нагрузке.NEC позволяет это сделать, требуя увеличения размеров проводников, несущих постоянные нагрузки, в соответствии с той же формулой, которая применяется к устройству, а именно дополнительных 25 процентов непрерывной части нагрузки.
Снижение номинальных характеристик может существенно повлиять на нагрев проводника. Например, провод THHN 10 AWG может выдерживать 40 ампер в течение месяца без ущерба для себя. Но в этих условиях проводник будет представлять собой непрерывный источник тепла 90 ° C. Теперь посмотрите, что происходит, когда мы (1) определяем размер проводника для целей заделки на 125 процентов непрерывной части нагрузки и (2) используем столбец 75 ° C для анализа.Этот расчет предполагает, что оконечная нагрузка рассчитана на 75 ° C вместо значения по умолчанию 60 ° C:
Шаг 1: 1,25 x 40 A = 50 A
Шаг 2: Таблица 310.16 при 75 ° C = 8 AWG
Мы переходим от проводника 10 AWG к проводнику 8 AWG (6 AWG, если оборудование не имеет допусков для заделки 75 ° C). Это всего лишь один стандартный размер проводника, но посмотрите на него с точки зрения производителя устройства. 10 AWG, непрерывно выдерживающий 40 А, представляет собой непрерывную тепловую нагрузку до 90 ° C.А как насчет 8 AWG? Используйте таблицу допустимой нагрузки в обратном порядке, в соответствии с нашим «правилом». Сорок ампер — это допустимая токовая нагрузка проводника 8 AWG, 60 ° C. Следовательно, любой провод 8 AWG (THHN или другой) не будет превышать 60 ° C, если его нагрузка не превышает 40 ампер. При увеличении всего на один размер проводника температура оконечной нагрузки упала с 90 ° C до 60 ° C. NEC позволяет производителям рассчитывать на этот запас.
Напомним, что если у вас постоянная нагрузка на 40 ампер, автоматический выключатель должен иметь номинал не менее 125 процентов от этого значения, или 50 ампер.Кроме того, провод должен иметь такой же размер, чтобы выдерживать такое же значение тока, исходя из столбца допустимой токовой нагрузки 75 ° C (или 60 ° C, если не рассчитано на 75 ° C). Изготовитель и испытательная лаборатория рассчитывают, что относительно холодный проводник будет работать как теплоотвод для тепла, выделяемого внутри устройства в этих условиях непрерывной работы.
Рис. 4. Эти воображаемые тяговые коробки на каждом конце участка иллюстрируют, как отделить расчеты кабельных каналов / нагрева кабеля от расчетов заделки.
В примере с фидером (рис. 1), включая 125 процентов непрерывной части нагрузки, мы получаем проводник на 136 А, а следующий больший провод в столбце 75 ° C — 1/0 AWG.Используйте здесь столбец 75 ° C, потому что устройство на 150 А превышает пороговое значение в 100 А (ниже которого предполагается, что номинальный ток составляет 60 ° C). Помните, что через эти устройства на самом деле протекает только 119 ампер (67,8 + 51,6 ампер) тока. Дополнительные 17 ампер (разница между 119 и 136 ампер) — это фантомная нагрузка. Вы включаете его только для того, чтобы ваш окончательный выбор проводника был достаточно холодным, чтобы он мог работать в соответствии с допущениями, сделанными в различных стандартах на устройства.
Устройства, рассчитанные на 100-процентную непрерывную нагрузку.Существуют устройства, которые производятся и перечисляются так, чтобы постоянно соответствовать 100% своего рейтинга, и NEC признает их использование в порядке исключения. Обычно в этих приложениях используются очень большие размеры корпуса выключателя в диапазоне 600 А (хотя расцепители могут быть меньше). Эти продукты сопровождаются дополнительными ограничениями, такими как количество, которое может использоваться в одном корпусе, и минимальные требования к номинальной температуре для проводников, подключенных к ним. Сначала узнайте, как установить обычные устройства, а затем примените эти устройства со 100-процентным рейтингом, если вы столкнетесь с ними, обязательно применив все ограничения на установку, указанные в инструкциях, прилагаемых к этому оборудованию.Предупреждение о проводниках, имеющих два конца, применяется здесь с особой остротой; имейте в виду, что одно из этих устройств на одном конце цепи ничего не говорит о пригодности оборудования на другом конце.
Середина проводника — предотвращение перегрева проводников
Рис. 5. Пример, снова использующий устройство подачи с 51,6 А при непостоянной нагрузке и 67,8 А при постоянной нагрузке.
Ни одно из предыдущих обсуждений не имеет ничего общего с предотвращением перегрева проводника.Верно. Все, что мы сделали, — это удостоверились, что устройство работает так, как предполагают производитель и испытательная лаборатория с точки зрения ограничений. Теперь нужно убедиться, что проводник не перегревается. Опять же, емкость по определению — это непрерывная способность. Характеристики нагрева устройства в конце пробега не имеют никакого отношения к тому, что происходит в середине дорожки качения или кабельной сборки.
Повторюсь, на этом этапе вы должны разделить свое мышление. Мы просто закрыли конец проводника; Теперь перейдем к середине проводника.Помните, как вас просили сделать это на отдельных листах бумаги? Заблокируйте первый и забудьте все, что вы только что рассчитали. Это не имеет абсолютно никакого отношения к тому, что будет дальше. Только после того, как вы выполнили следующую серию вычислений, вы можете получить первый лист бумаги. И только после этого вы должны вернуться и посмотреть, какой результат представляет наихудший случай и, следовательно, определяет ваш выбор дирижера.
Мнимые ящики для тяги? Если у вас возникли проблемы с этим различием, а у многих возникают проблемы, примените воображаемую коробку для вытягивания на каждом конце пробега (рис. 4).В этой части статьи рассматривается выбор проводов для прокладки между двумя тяговыми коробками, и не более того. Первая часть статьи касалась выбора проводов подходящего размера для подключения к устройствам, и не более того. Последним шагом в этом процессе является сравнение двух результатов и выбор проводников, удовлетворяющих обоим наборам требований. В этот момент, и только в этот момент, вы можете выключить свой мысленный образ этих ящиков, потому что они больше не служат никакой цели.
Проверьте определение допустимой нагрузки.Токовая нагрузка проводника — это его допустимая токовая нагрузка в условиях эксплуатации. Для целей NEC на допустимую нагрузку влияют два полевых условия: взаимный нагрев и температура окружающей среды. Любой из них или оба могут применяться к любой электрической установке. Оба эти фактора уменьшают допустимую нагрузку, указанную в таблицах.
Рис. 6. Повышенные температуры окружающей среды также вызывают снижение допустимой токовой нагрузки проводов
Взаимное отопление. Под нагрузкой проводник рассеивает тепло через поверхность в окружающий воздух; если что-то замедляет или препятствует скорости рассеивания тепла, температура проводника увеличивается, возможно, до точки повреждения.Чем больше токопроводящих проводов находится в одной и той же кабельной трассе или кабельной сборке, тем ниже эффективность, с которой они могут рассеивать свое тепло. Чтобы покрыть этот эффект взаимного нагрева, NEC налагает штрафы за снижение номинальных значений токовой нагрузки стола. Штрафы увеличиваются с увеличением количества токоведущих проводов в кабельной трассе или кабельной сборке. Таблица 310.15 (B) (2) (a) NEC ограничивает допустимую нагрузку, указывая коэффициенты снижения номинальных значений, применимые к токовым нагрузкам стола. Например, если количество проводников превышает три, но меньше семи, допустимая нагрузка составляет только 80 процентов от табличного значения; если число больше шести, но меньше одиннадцати — 70 процентов; больше десяти, но меньше двадцати одного, 50 процентов и так далее.Однако, если длина дорожки не превышает 24 дюйма (классифицируется как ниппель), NEC предполагает, что тепло будет уходить от концов дорожки качения, а допустимая токовая нагрузка закрытых проводников не должна снижаться [см. 310.15 (B) (2) (а) Исключение № 3].
Считайте только токоведущие проводники для расчетов снижения номинальных характеристик. Заземляющие провода оборудования никогда не учитываются для корректировки токовой нагрузки, а предназначены для заполнения. Следует учитывать только один проводник в паре трехходовых переключателей. Нейтральный проводник, по которому проходит только несимметричный ток цепи (например, нейтральный провод трехпроводной однофазной цепи или четырехпроводной трехфазной цепи), в некоторых случаях не учитывается для снижения номинальных характеристик.Однако заземленные проводники не всегда являются нейтральными. Заземленный («белый») проводник двухпроводной схемы проводит тот же ток, что и провод под напряжением, и поэтому не является нейтралью. Если вы устанавливаете две такие двухпроводные цепи в кабелепровод, их следует рассматривать как четыре проводника.
Рис. 7. Два питателя на рис. 5, на которые повлияет добавление повышенной температуры окружающей среды, показанной на рис. 6
Как (и когда) считать нейтралов. Хотя нейтральные проводники учитываются для снижения номинальных характеристик только в том случае, если они действительно являются токонесущими, в коммерческих распределительных системах, получаемых из трехфазных, четырехпроводных трансформаторов, соединенных звездой, все чаще обнаруживаются очень сильно нагруженные нейтрали.Если цепь питает в основном электроразрядное освещение или другие нелинейные нагрузки, вы всегда должны учитывать нейтраль. Нейтральные элементы в предлагаемом Примере 3A подсчитываются по той же причине. Помните также, что каждый раз, когда вы прокладываете только два из трехфазных проводов трехфазной четырехпроводной системы вместе с нейтралью системы, эта нейтраль всегда несет примерно такую же нагрузку, что и незаземленные проводники, и ее необходимо учитывать. Такое расположение очень распространено в больших многоквартирных домах, где подводящий кабель к каждой квартире состоит из двухфазных проводов вместе с нейтралью, но в целом обслуживание трехфазное, четырехпроводное.
Однако нейтраль истинной однофазной трехпроводной системы (например, 120/240 вольт) не нужно учитывать, потому что гармонические токи полностью компенсируются в этих системах. Подавляющее большинство односемейных и небольших многоквартирных домов и большинство ферм имеют такое распределение, что значительно упрощает ваши расчеты по выбору кондуктора.
Снижение допустимой нагрузки проводника. Теперь, когда вы знаете, как подсчитать количество проводников с током в кабелепроводе, пора научиться применять правила NEC к результату.Использование NEC напрямую означает переход от таблицы допустимой нагрузки к коэффициенту снижения номинальных характеристик (на который вы умножаете) и сравнение результата с нагрузкой. Это замечательно для инспектора, который проверяет вашу работу (в резюме в конце статьи используется этот процесс), но это не поможет вам выбрать правильного дирижера в первую очередь. Вы хотите пойти другим путем: зная нагрузку, вы хотите выбрать правильный проводник. На рисунке 5 показан пример, где снова используется питатель с непостоянной нагрузкой 51,6 ампер и 67.8 ампер непрерывной нагрузки. Предположим, у вас есть два из этих фидеров, обеспечивающих одинаковые профили нагрузки и идущих по одному и тому же кабелепроводу. Это будет восемь токоведущих проводов в дорожке качения. В этой части анализа игнорируйте проблемы непрерывной загрузки и завершения. Помните, что для этого расчета вам следует использовать свежий лист бумаги.
Начните с 119 ампер фактической нагрузки (51,6 ампер + 67,8 ампер, с округлением до трех значащих цифр, как указано в предлагаемом новом примере 3A) и разделите (вы идете в другом направлении, поэтому вы используете обратное умножение) на 0 .7 [см. Таблицу 310.15 (B) (2) (a)], чтобы получить в этом случае 170 ампер. 2 Другими словами, любой проводник с допустимой токовой нагрузкой, равной или превышающей 170 ампер, математически гарантированно будет нести ток 119- надежно усилить фактическую нагрузку. Провод 1/0 AWG THHN с допустимой нагрузкой 170 ампер будет безопасно переносить эту нагрузку в условиях использования, и может показаться, что он работает. Будет ли он представлять ваш окончательный выбор, зависит от того, что следует из последующего анализа под заголовком «Выбор дирижера».
Рисунок 8.Существует ограниченное исключение из принципа слабого звена в цепи, проиллюстрированного на этом чертеже.
Проблемы с температурой окружающей среды. Высокая температура окружающей среды, как и в случае взаимного нагрева, препятствует отводу тепла проводника. Чтобы предотвратить перегрев, NEC предоставляет коэффициенты снижения номинальных значений температуры окружающей среды в нижней части таблиц допустимой нагрузки. В нашем примере проводники цепи проходят через температуру окружающей среды 35 ° C. Их допустимая нагрузка снижается (для проводников с температурой 90 ° C) до 96 процентов от базового числа в таблице допустимой нагрузки, как показано на рисунке 6.Здесь мы снова начинаем со 119 ампер и делим на 0,96, чтобы получить 124 ампер. Любой провод 90 ° C с допустимой токовой нагрузкой, равной или превышающей 124 А, будет безопасно переносить эту нагрузку.
Что произойдет, если у вас одновременно высокая температура окружающей среды и взаимный нагрев, как показано на рисунке 7? Разделите дважды, по одному разу на каждый коэффициент. В этом случае:
119 А ÷ 0,7 ÷ 0,96 = 177 А
Провод 2/0 AWG THHN (токовая нагрузка = 195 ампер) выдержит эту нагрузку, не повредившись. Опять же, это будет верно независимо от того, была ли нагрузка непрерывной, и было ли разрешено использовать устройства с выводами 90 ° C.Не обманывайте; расчет прекращения по-прежнему должен быть заперт в другом ящике.
При пониженной допустимой нагрузке применяется только к небольшой части пробега. Иногда вы будете сталкиваться с установками, в которых большая часть схемы соответствует таблице 310.16, но небольшая часть требует очень значительного снижения характеристик. Например, как показано на рисунке 8, длина вашего контура может составлять 208 футов, из которых 200 футов в нормальных условиях и 7 футов проходят через угол котельной с очень высокой температурой окружающей среды.NEC обычно соблюдает принцип «слабое звено в цепи» и требует, чтобы максимально допустимая токовая нагрузка была наименьшей где-либо в течение цикла. Однако для очень коротких интервалов, когда остальная часть цепи может работать как теплоотвод, NEC позволяет использовать более высокую допустимую нагрузку.
Рис. 9. Никогда не упускайте из виду тот факт, что в конце рабочего дня устройство защиты от сверхтоков должно защищать свои проводники.
В частности, в любое время, когда допустимая нагрузка изменяется во время цикла, определяют все точки перехода.На одной стороне каждой точки допустимая нагрузка будет выше, чем на другой стороне. Теперь измерьте длину проводника с более высокой допустимой нагрузкой (в данном примере участки, не находящиеся в котельной) и длину проводника с меньшей допустимой нагрузкой (в данном примере — в котельной). Сравните две длины. NEC 310.15 (A) (2) Исключение позволяет использовать более высокое значение допустимой нагрузки за пределами точки перехода для длины, равной 10 футам или 10 процентам длины цепи, имеющей более высокую допустимую нагрузку, в зависимости от того, что меньше.
В этом случае (200-футовый участок за пределами 8 футов в котельной) 10 процентов длины цепи, имеющей более высокую допустимую нагрузку, будут составлять 20 футов, но вы не можете применить правило к чему-либо более 10 футов. меньше или равно 10 футам (и меньше 10-процентного предела в 20 футов) применяется исключение, и вы можете игнорировать температуру окружающей среды в котельной при определении допустимой допустимой токовой нагрузки проводников, проходящих через нее. В словах исключения, «более высокая допустимая нагрузка» (которая применяется к трассе вне котельной) может использоваться за переходной точкой (стеной котельной) для «расстояния, равного 10 футам или 10 процентам длины. рассчитывается при более высокой допустимой нагрузке, в зависимости от того, что меньше.”
Выбор проводника
Теперь вы можете разблокировать ящик и вытащить расчет прекращения. Положите перед собой оба листа бумаги и спроектируйте наихудший случай, установив самый большой проводник, полученный в результате этих двух независимых расчетов. Расчет оконечной нагрузки (рис. 3) потребовал проводов сечением под столбцом 75 ° C не менее 136 ампер, хотя фактическая нагрузка составляла всего 119 ампер. Вы можете использовать 1/0, THHN или THW. Выбор проводов 90 ° C на основе только нагрузки или даже нагрузки, работающей на одном фидере при температуре окружающей среды 35 ° C (рис. 6), приведет к получению проводов 2 AWG, и устройства не будут работать правильно.
Предположим, вы поместили два фидера (восемь проводов) в кабелепровод, как показано на рисунке 5. Расчет заделки по-прежнему составляет 1/0, но, как мы видели, расчет снижения номинальных характеристик дорожки качения также составляет 1/0 AWG. Теперь правила прекращения и правила дорожки качения совпадают. Однако, если тот же канал проходит через зону с высокой температурой окружающей среды, вам потребуется 2/0 THHN или XHHW. Это пример того, где условия дорожки качения ограничивают, и вы соответственно выбираете размер. На этом этапе мы возвращаемся к основному вопросу, поставленному в предлагаемом примере 3A, как показано на рисунке 1, а именно к определению размеров фидера, а незаземленные фазные проводники оказались сечением 2/0 AWG.
Проводник должен быть всегда защищен
Никогда не упускайте из виду тот факт, что устройство максимального тока всегда должно защищать провод. Для цепей на 800 ампер и меньше 240,4 (B) позволяет использовать устройство перегрузки по току следующего более высокого стандартного размера для защиты проводников. Выше этой точки 240,4 (C) требует, чтобы допустимая токовая нагрузка проводника была не меньше номинала устройства максимального тока. В качестве окончательной проверки убедитесь, что размер устройства максимального тока, выбранного для выдерживания длительных нагрузок, защищает проводники в соответствии с этими правилами; в противном случае вам потребуется соответственно увеличить размер проводника.Обратитесь к обсуждению прерывистых нагрузок (ниже), чтобы увидеть пример того, где, даже после выполнения как согласования, так и расчетов допустимой нагрузки, это соображение вынуждает вас изменить результат.
Непрерывные нагрузки. Обратитесь к рисунку 9, который предполагает, что никакая нагрузка не является постоянной на фидерах, ранее показанных на рисунке 5, и что большая часть нагрузки между фазой и нейтралью является линейной. Теперь только шестифазные проводники в этом кабельном канале квалифицируются как проводники с током, и предположим, что температура окружающей среды не превышает 30 ° C.
Онлайн-калькуляторы и таблицы размеров проводов
Этот сайт предлагает множество простых в использовании калькуляторов и диаграмм силы тока проводов, которые помогут вам правильно определить размеры.
провода и кабелепровод в соответствии с NEC. Посетите калькуляторы и таблицы
страницы для полного списка ресурсов.
Калькулятор сечения провода
Введите информацию ниже, чтобы рассчитать соответствующий размер провода.
Размер проводника
Национальный электротехнический кодекс устанавливает требования к выбору электрических
провод для предотвращения перегрева, пожара и других опасных ситуаций.Правильный размер
Wire для многих различных приложений может стать сложным и непосильным. Сила тока — это мера электрического
ток, протекающий по цепи. Номинальная допустимая нагрузка на провод определяет силу тока, которую провод может безопасно
ручка. Чтобы правильно выбрать размер провода для вашего приложения, необходимо знать допустимую нагрузку на провод.
Однако множество различных внешних факторов, таких как температура окружающей среды и изоляция проводника, играют роль в определении
токовая нагрузка провода.
Допустимая нагрузка на провод рассчитывается таким образом, чтобы не превышать определенного повышения температуры при определенной электрической нагрузке. Нагрев проводника напрямую связан с его
I 2 R потери в цепи. Длина проводника прямо пропорциональна его сопротивлению. Однако площадь поперечного сечения проводника также может быть изменена, чтобы изменить
сопротивление проводника. При увеличении поперечного сечения проводника (или увеличении размера провода) сопротивление уменьшается, а допустимая допустимая токовая нагрузка увеличивается.При выборе размеров проводов следует руководствоваться здравым смыслом.
потому что большие проводники могут стать дорогостоящими и сложными в установке, в то время как небольшие проводники могут представлять потенциальную опасность. Используйте калькулятор выше, чтобы определить размер провода для основных применений, или просмотрите некоторые диаграммы токовой нагрузки проводов для значений токовой нагрузки проводов.
Падение напряжения
Падение напряжения может стать проблемой для инженеров и электриков при выборе кабеля для длинных проводов. Падение напряжения в цепи может происходить из-за использования слишком маленького сечения провода или слишком большой длины кондуктора.Для длинных проводов, где может возникнуть падение напряжения, используйте калькулятор падения напряжения для определения падения напряжения и калькулятор расстояния цепи для определения максимальной длины цепи.
Электродвигатели
Существует множество различных типов электродвигателей, от однофазных до трехфазных двигателей переменного тока, двигателей постоянного и низкого напряжения, синхронных и асинхронных двигателей. При проектировании фидера или ответвительной цепи с одним или несколькими электродвигателями необходимо учитывать несколько важных моментов.