Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Обозначение на электрических принципиальных схемах: расшифровка графических и буквенно-цифровых обозначений

Содержание

Условные обозначения в электрических схемах: графические, буквенные

Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим. 

Неправильно, но наглядно и условные обозначения в электрических схемах не нужны

На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.

Содержание статьи

Виды схем в электрике

Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:

  • Функциональные, на которых отображаются основные узлы устройства, без детализации. Внешне выглядит как набор прямоугольников с проложенными между ними связями. Дает общее представление о функционировании объекта.

    На функциональной схеме указаны блоки и связи между ними

  • Принципиальные. Этот тип схем подробный, с указанием каждого элемента, его контактов и связей. Есть принципиальные схемы устройств, есть — электросетей. Принципиальные схемы могут быть однолинейными и полными. На однолинейных изображены только силовые цепи, а управление и контроль прорисованы на отдельном листе. Если электросеть или устройство несложное, все можно разместить на одном листе. Это и будет полная принципиальная схема.

    Принципиальная схема детализирует устройство

  • Монтажная. На монтажных схемах присутствуют не только элементы, но и указано их точное расположение. В случае с электросетями (проводкой в доме или квартире) указаны конкретные места расположения светильников, выключателей, розеток и других элементов. Часто тут же проставлены расстояния и номиналы. На монтажных схемах устройств указано расположение деталей на печатной плате, порядок и способ их соединения.

    На монтажной отображается местоположение и прохождение кабелей/линий связи

Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

Базовые изображения и функциональные признаки

Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.

Виды контактов

Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.

Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.

Функции подвижных контактов

Основные функции могут выполнять только неподвижные контакты.

Функции неподвижных контактов

 

 

Условные обозначения однолинейных схем

Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т. д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.

Основная особенность графических условных обозначений в электросхемах  в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.

Обозначения элементов на однолинейной схеме

Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.

Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.

Условные обозначения катушек контакторов и реле разных типов (импульсная, фотореле, реле времени)

В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.

Условные обозначения разъемного (вилка-штепсель) и разборного (клеммная колодка) соединения), измерительных приборов

Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.

Изображение шин и проводов

В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).

Обозначение линий связи, шин и их соединений/ответвлений/пересечений

Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.

Как обозначаются провода, кабели, количество жил и способы их прокладки

На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.

Как изображают выключатели, переключатели, розетки

На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.

Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.

Условные обозначения выключателей на чертежах и схемах

Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).

В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.

Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)

Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.

Светильники на схемах

В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.

Изображение ламп (накаливания, светодиодных, галогенных) и светильников (потолочных, встроенных, навесных) на схемах

В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.

Элементы принципиальных электрических схем

Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.

Обозначение электрических элементов на схемах устройств

 

Изображение радиоэлементов на схемах

Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.

 

 

Буквенные условные обозначения в электрических схемах

Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.

Буквенные обозначения элементов на схемах: основные и дополнительные

В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.

Буквенно цифровые обозначения в схемах

Схемы электрические. Типы схем / Хабр

Привет Хабр!

Чаще в статьях приводят вместо электрических схем красочные картинки, из-за этого возникают споры в комментариях.

В связи с этим, решил написать небольшую статью-ликбез по типам электрических схем, классифицируемых в Единой системе конструкторской документации (ЕСКД).


На протяжении всей статьи буду опираться на ЕСКД.

Рассмотрим ГОСТ 2.701-2008 Единая система конструкторской документации (ЕСКД). Схемы. Виды и типы. Общие требования к выполнению.

Данный ГОСТ вводит понятия:

  • вид схемы — классификационная группировка схем, выделяемая по признакам принципа действия, состава изделия и связей между его составными частями;
  • тип схемы — классификационная группировка, выделяемая по признаку их основного назначения.

Сразу договоримся, что вид схем у нас будет единственный — схема электрическая (Э).
Разберемся какие типы схем описаны в данном ГОСТе.

Далее рассмотрим каждый тип схем более подробно применительно для электрических схем.
Основной документ: ГОСТ 2.702-2011 Единая система конструкторской документации (ЕСКД). Правила выполнения электрических схем.
Так, что же такое и с чем «едят» эти схемы электрические?
Нам даст ответ ГОСТ 2. 702-2011: Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи.

Схемы электрические в зависимости от основного назначения подразделяют на следующие типы:

Схема электрическая структурная (Э1)

На структурной схеме изображают все основные функциональные части изделия (элементы, устройства и функциональные группы) и основные взаимосвязи между ними. Графическое построение схемы должно обеспечивать наилучшее представление о последовательности взаимодействия функциональных частей в изделии. На линиях взаимосвязей рекомендуется стрелками обозначать направление хода процессов, происходящих в изделии.
Пример схемы электрической структурной:

Схема электрическая функциональная (Э2)

На функциональной схеме изображают функциональные части изделия (элементы, устройства и функциональные группы), участвующие в процессе, иллюстрируемом схемой, и связи между этими частями. Графическое построение схемы должно давать наиболее наглядное представление о последовательности процессов, иллюстрируемых схемой.
Пример схемы электрической функциональной:

Схема электрическая принципиальная (полная) (Э3)

На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии установленных электрических процессов, все электрические взаимосвязи между ними, а также электрические элементы (соединители, зажимы и т.д.), которыми заканчиваются входные и выходные цепи. На схеме допускается изображать соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям. Схемы выполняют для изделий, находящихся в отключенном положении.
Пример схемы электрической принципиальной:

Схема электрическая соединений (монтажная) (Э4)

На схеме соединений следует изображать все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, зажимы и т. д.), а также соединения между этими устройствами и элементами. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии. Расположение изображений входных и выходных элементов или выводов внутри графических обозначений и устройств или элементов должно примерно соответствовать их действительному размещению в устройстве или элементе.
Пример схемы электрической соединений:

Схема электрическая подключения (Э5)

На схеме подключения должны быть изображены изделие, его входные и выходные элементы (соединители, зажимы и т.д.) и подводимые к ним концы проводов и кабелей (многожильных проводов, электрических шнуров) внешнего монтажа, около которых помещают данные о подключении изделия (характеристики внешних цепей и (или) адреса). Размещение изображений входных и выходных элементов внутри графического обозначения изделия должно примерно соответствовать их действительному размещению в изделии. На схеме следует указывать позиционные обозначения входных и выходных элементов, присвоенные им на принципиальной схеме изделия.
Пример схемы электрической подключений:

Схема электрическая общая (Э6)

На общей схеме изображают устройства и элементы, входящие в комплекс, а также провода, жгуты и кабели (многожильные провода, электрические шнуры), соединяющие эти устройства и элементы. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии.
Пример схемы электрической общей:

Схема электрическая расположения (Э7)

На схеме расположения изображают составные части изделия, а при необходимости связи между ними — конструкцию, помещение или местность, на которых эти составные части будут расположены.
Пример схемы электрической расположения:

Схема электрическая объединенная (Э0)

На данном виде схем изображают различные типы, которые объединяются между собой на одном чертеже.
Пример схемы электрической объединенной:
PS

Это моя первая статья на Хабре не судите строго.

Условные обозначения в электрических схемах (УГО) графические и буквенные по ГОСТ

Условные графические обозначения (УГО) элементов электрических схем проектов электроснабжения необходимы для упрощения понимания содержания документации. Символы и УГО на однолинейных схемах электроснабжения помогают проектировщикам и монтажникам без применения дополнительных манипуляций правильно читать графические чертежи.

Умение понимать обозначения на электрических схемах – одна из ключевых составляющих, без которой невозможно стать грамотным специалистом. На начальном этапе все проектировщики, монтажники, а также инженеры сектора ПТО и сметчики должны изучить техническую документацию, ознакомиться с действующими ГОСТами для составления и понимания содержания проектов. Главный документ ГОСТ 2.702-2011 – правила составления электросхем в единой системе конструкторской документации (ЕСКД).

Однолинейная схема электроснабжения

Условно-графические обозначения в электросхемах ГОСТ незаменимы при проектировании вводно-распределительных устройств, распределительных подстанций, шкафов управления и учета, этажных щитов, блок-схем и схем замещения.

Полные данные по условно-графическим и буквенным обозначениям можно скачать в файле.

Обозначения розеток и выключателей на чертежах

Проект внутреннего электроснабжения – совокупность схем и чертежей силовых розеточных сетей и сети освещения. В электропроводках используют однополюсные, двухполюсные и трехполюсные выключатели. Бывают для открытой и скрытой проводки, с различными степенями защиты – для нормальных условий эксплуатации, влаго- пылезащищенные и т.д. Трех- и двухклавишные устройства также имеют визуальные различия на электросхемах. что важно при составлении ведомостей потребности материалов. В противном случае из-за невнимательности инженера повышается риск закупки неподходящего либо более дорогостоящего оборудования.

Также узел может быть совмещенным – одна розетка и несколько бытовых выключателей, сдвоенные включатели или розетки. УГО переключателя схоже на обычный выключатель, имеет два направления действия, что отображено на схемах.

Обозначение выключателей на схемах

 

Распределительные коробки на схеме обозначаются аналогично.

Обозначения выключателей на схемах

Выключатели – самое распространенное устройство в электротехнике, т.к. выполняет главные функции – включения и выключения цепей.

На электросхемах подстанций всегда указываются, какие цепи в нормальном режиме должны быть разомкнуты (резервные), а какие запитаны – основные линии.

Магнитные контакторы имеет схожее с автоматическим выключателем изображение.  Ввиду различий принципа действия  и более широко функционала имеет соответствующее УГО.

Предохранители конструктивно и технически отличаются от автоматических выключателей. Имеют более широкий спектр применения – чаще используются для электроснабжения промышленных объектов ввиду более высокой надежности и меньшей рыночной стоимости. На однолинейных схемах выполнены в виде прямоугольника с продольной чертой посреди – изображение плавкой вставки.

Обозначение трехполюсного рубильника на однолинейной схеме имеет кардинальные отличия от однополюсных моделей.

На принципиальных электросхемах содержится другая информация и содержат другую элементную базу. Для правильного чтения технической документации  необходимо помнит разницу между однолинейной и принципиальной электросхемами: последняя содержит информацию о наличии элементов, без указания их физического расположения.

Как обозначаются трансформаторы на схемах

Для каждого вида трансформатора есть отдельное УГО. Используются на первичных, однолинейных схемах, опросных листах, листах расчетов токов короткого замыкания и т.д.

Обозначение заземлений на схемах

Заземление на электросхемах выполняют в зависимости от типа. Заземляющие контуры используются абсолютно на всех электрических схемах, т.к. главным свойством нормальной работы электросети является ее безопасность.

Общее заземление
Чистое (бесшумное) заземление
Защитное заземление

Буквенные обозначения на электрических схемах

На электросхемах применяется буквенная аббревиатура на латинице, где виды элементов указывают одной буквой. Многобуквенная кодировка используется для уточнения кода конкретного  элемента. Первая буква в таких обозначениях всегда указывает на тип устройства.

Устройства общего назначения имеют код A. К ним относят мазеры усилители различного рода и т.д.

Буквой B на электросхемах выполняют преобразователи неэлектрической величины в электрическую (микрофоны, фотоэлементы, тепловые датчики, пьезоэлементы, датчики давления, датчики скорости, звукосниматели, детекторы).

С – конденсаторы.

Схемы интегральные, микросборки обозначают символом D. К ним относят логические элементы, интегральные схемы аналоговые и цифровые, устройства задержки и хранения информации.

Элементы различного назначения (электрические лампочки, пиропатроны, элементы нагрева) идентифицируют символом E.

Предохранители, разрядники, дискретные элементы защиты по току мгновенного и инерционного действия, по напряжению и др. кодируются буквой F.

G – батареи и другие источники питания.

H – индикаторы и сигнальные элементы (приборы световой, символьной  и звуковой сигнализации).

Буквой K обозначают реле на схеме (токовые, электротепловые, указательные) времени и напряжения, магнитные пускатели.

Дроссели и катушки индуктивности имеют обозначение L.

M – буквенное обозначение двигателей постоянного и переменного тока.

Измерительные приборы (измерители импульсов, амперметры, счетчики активной и реактивной электроэнергии, вольтметры, фиксаторы времени, омметры, ваттметры) идентифицируют буквой P, за исключением аббревиатуры PE.

Q – обозначения в электротехнике короткозамыкателей, разъединителей и автоматов в силовых цепях.

На однолинейных схемах резисторы обозначают символом R (шунты, варисторы, терморезисторы, потенциометры).

S – обозначение на схеме автоматических выключателей без контактов силовых цепей, коммутационных устройств (кнопочные выключатели, пакетные переключатели).

T – трансформаторы (тока, напряжения), автотрансформаторы, электромагнитные стабилизаторы.

U – преобразователи (модуляторы и демодуляторы), устройства связи, выпрямители, инверторы, генераторы частоты.

V – полупроводники (диоды, тиристоры, транзисторы), электровакуумные приборы.

Антенны, элементы сверх высоких частот (ответвители, короткозамыкатели, вентили, фазовращатели, трансформаторы) имеют условный символ W.

X – контактные соединения и соединители (гнезда, штыри, токосъемники).

Устройства механические с электромагнитным приводом (электромагниты, тормоза, муфты, электромагнитные плиты и патроны) идентифицируются символом Y.

Z – фильтры, ограничители.

Символьное обозначение применяется на равне с графическим, на узкопрофильных электросхемах используются оба типа одновременно. Буквенные обозначения элементов на зарубежных схемах аналогичны. Для лучшего запоминания каждому специалисту необходима своя таблица электрика, с описаниями именно тех элементов, которые используются в работе.

Как Обозначается Рубильник на Электрической Схеме: Описание

Требования ЕСКД к обозначению рубильников

Обозначение на схеме рубильника достаточно однозначно. Оно прописано в ЕСКД, а зарубежные системы метрики прописываются в соответствии со стандартом ISO. При этом обозначение рубильников в обоих этих системах практически идентичны. Но, как обычно, имеются и свои нюансы, на которые мы и обратим ваше внимание в этой статье.

Основные понятия электрических схем

Прежде чем разбирать отображение рубильника или другого оборудования на схеме, давайте разберемся с несколькими вопросами. Первый из них — виды электрических схем, а второй — это основные обозначения на схеме, что позволит вам их читать.

Виды схем

Прежде всего следует знать, что если вы откроете ГОСТ 2.725-68, который по сей день действует в нашей стране, то просто не обнаружите там такого устройства как рубильник. Более того, вы столкнётесь с таким понятием как однолинейные и многолинейные схемы. Поэтому. прежде чем разбираться с тем, каково обозначение рубильника на схеме, давайте разберемся с самими схемами.

Четырехлинейная электрическая схема

  • Начнем наш разговор с многолинейной схемы, как наиболее подробной и правильной. Как известно в нашей стране для передачи электрической энергии используется трехфазная сеть. Поэтому наиболее правильно на схемах обозначать каждую фазу с оборудованием и устройствами, к которым они подключаются. Такая схема называется трехлинейной.

Трехлинейная схема электрической сети

  • В низковольтных сетях кроме трех фаз практически всегда имеется N или PEN проводник. То есть, проводов четыре. Соответственно, и схема становится четырехлинейной.
  • Кроме того, существуют низковольтные сети, в которых используются пять проводов. Три из них фазные, один нулевой – N и один защитного заземления – PE. Для отображения такой схемы следует использовать пятилинейную схему.
  • Для однофазной сети, согласно норм ПУЭ, должно использоваться три провода – фазный, нулевой и защитного заземления. А значит, и схема должна быть трехлинейная. Но часто, как на видео, для однофазной сети используется двухлинейная схема, когда на схеме отображены только фазный и нулевой провод.
  • Практически всегда двухлинейная схема применяется для отображения схем, работающих на постоянном токе. Ведь для работы такой схемы нам потребуются два проводника – «+» и «-».

Та же самая схема, но в однолинейном варианте

  • Конечно, такие многолинейные схемы значительно более точные, но инструкция допускает использование однолинейной схемы. Что это такое? Однолинейная схема — это такой тип отображения электрической сети, при которой все три фазы, а также нулевые и проводники защитного заземления при их наличии, изображаются одним проводником.

Однолинейная схема с изображением трансформаторов тока – ТА в трехлинейном варианте

  • Такие схемы очень удобны при отображении больших электрических сетей, где нет отличий в схеме разных фаз. И даже если незначительные отличия есть, то часто используется принцип, при котором большая часть схемы выполняется однолинейной, а отдельный кусок, например, трехлинейным.

Основные обозначения на схеме

Любая схема электрическая принципиальная – рубильников, или любого другого оборудования, имеет целый ряд обозначений, понимание которых обеспечит возможность прочтения схемы.

В нашей статье мы рассмотрим основные из них. Все эти нормы прописаны в правилах устройства электроустановок, и являются обязательными для всех схем.

Обозначение фазных проводов

Начнем с обозначения фазных проводов. Оно должно быть либо буквенным, либо цветовым. Фазные провода обозначаются символами А, В, С или соответственно желтым, зеленым и красным цветом.

Обратите внимание! Достаточно часто обозначение фазных проводов вы можете встретить как L1, L2, и L3. Такое обозначение не предусмотрено ПУЭ, но часто встречается у иностранных компаний. И наши отечественные специалисты часто перенимают такой способ обозначения.

  • Нулевой проводник обозначается – N. Часто вместо буквенного обозначения применяется обозначение цветом – голубым.
  • Проводник защитного заземления обозначается – РЕ. На цветных схемах он обозначается желто-зеленым цветом. Но так как цена на цветные схемы несколько выше чаще встречается только буквенное обозначение фаз и защитных проводников.

Обозначение нулевого и защитного проводника

Обратите внимание! Достаточно часто на схемах вы можете встретить обозначение PEN. Оно говорит нам о том, что перед нами совмещенный проводник защитного заземления и нулевого провода. Они обозначаются голубым цветом с желто-зелеными полосками на концах. Но на схемах это правило часто игнорируют.

Обозначение проводников постоянного тока

Что касается цепей постоянного тока, то здесь все несколько иначе. Положительная и отрицательная жила обозначается соответственно «+» и «-». А цветовое обозначение, соответственно – красный и синий цвет. Нулевая жила обозначается М и должна иметь голубой цвет.

Варианты обозначения рубильников

Ну вот, теперь мы готовы разобрать рубильник и обозначение на схеме этого элемента. Для большей наглядности все варианты обозначения мы свели в таблицу.

Рубильник на однолинейной схеме

Даже если вы рисуете схему своими руками, то вы должны придерживаться определенных норм. Эти нормы вы можете увидеть на наших картинках. Перед вами обозначение рубильника на однолинейной схеме, либо на многолинейных схемах при установке рубильника только на одной из фаз.

Трехфазный рубильник с пофазным отключением

Разбирая рубильники, мы уже отмечали, что в трехфазном исполнении они могут как содержать планку крепления, обеспечивающую одновременное замыкание всех трех фаз, так и не иметь ее. На данном фото представлен рубильник с возможностью пофазного отключения.

Трехфазный рубильник с управлением всеми тремя фазами

Если трехфазный рубильник имеет данную планку, то это обязательно должно быть отраженно на схеме. Поэтому на всех трех и более линейных схемах, эта планка отображается. То есть, перед нами рубильник с одновременной коммутацией всех трех фаз.

Внимание: Тут хотелось бы отметить, что подобным образом отображаются и двухфазные рубильники. На которых соответственно отображается два рубильника, соединенных планкой. Дабы не засорять нашу таблицу, мы не будем указывать такое обозначение рубильника на схеме.

Перекидной рубильник на трехлинейной схеме

Отдельным вариантом является обозначение так называемых перекидных рубильников. Это рубильники, которые имеют три положения – «включено» положение 1, «включено» положение 2 и «отключено». Как обозначается такой рубильник на трехлинейной схеме, вы можете видеть на приведенном рисунке.

Перекидной рубильник на однолинейной схеме

Обозначение на схемах рубильника перекидного типа для однолинейных схем, представлено на картинке слева. Отличие состоит лишь в том, что указываются не все три фазы, а лишь одна условно средняя.

Переход из однолинейной в трехлинейную схему

Мы уже говорили, что в некоторых случаях вы можете встретить переход однолинейной схемы в многолинейную. Приведенное обозначение рубильника на электрической схеме, как раз и является таким вариантом.

Рубильник с замкнутой фазой «С» в нормальном режиме работы

Обратите внимание! На всех приведенных вариантах с пофазным управлением рубильника, возможно соединение одного или нескольких элементов, что сигнализирует об их нормально замкнутом положении.  То есть, при нормальных условиях работы, данные ножи рубильника должны быть включены, а изображенные разомкнутыми элементы, должны быть отключены.

Вывод

Рубильник на электросхеме, и обозначение других элементов на схеме, могут иметь множество вариаций. Это связано как с особенностями начертания схемы, так и задачами, стоящими перед конструктором. Но в любом случае, они отвечают нормам ЕСКД и подчиняются единому правилу, которое вы легко можете уловить из приведенных нами наиболее распространенных вариантов обозначения.

Условные обозначения на электрических схемах по ГОСТ: буквенные, графические

Чтобы понять, что конкретно нарисовано на схеме или чертеже, необходимо знать расшифровку тех значков, которые на ней есть. Это распознавание еще называют чтением чертежей. А чтоб облегчить это занятие почти все элементы имеют свои условные значки. Почти, потому что стандарты давно не обновлялись и некоторые элементы рисуют каждый как может. Но, в большинстве своем, условные обозначения в электрических схемах есть в нормативны документах.

Условные обозначения в электрических схемах: лампы,трансформаторы, измерительные приборы, основная элементная база

Нормативная база

Разновидностей электрических схем насчитывается около десятка, количество различных элементов, которые могут там встречаться, исчисляется десятками если не сотнями. Чтобы облегчить распознавание этих элементов, введены единые условные обозначения в электрических схемах. Все правила прописаны в ГОСТах. Этих нормативов немало, но основная информация есть в следующих стандартах:

Нормативные документы, в которых прописаны графические обозначения элементной базы электрических схем

Изучение ГОСТов дело полезное, но требующее времени, которое не у всех есть в достаточном количестве. Потому в статье приведем условные обозначения в электрических схемах — основную элементную базу для создания чертежей и схем электропроводки, принципиальных схем устройств.

Обозначение электрических элементов на схемах

Некоторые специалисты внимательно посмотрев на схему, могут сказать что это и как оно работает. Некоторые даже могут сразу выдать возможные проблемы, которые могут возникнуть при эксплуатации. Все просто — они хороша знают схемотехнику и элементную базу, а также хорошо ориентируются в условных обозначениях элементов схем. Такой навык нарабатывается годами, а, для «чайников», важно запомнить для начала наиболее распространенные.

Обозначение светодиода, стабилитрона, транзистора (разного типа)

Электрические щиты, шкафы, коробки

На схемах электроснабжения дома или квартиры обязательно будет присутствовать обозначение электрического щитка или шкафа. В квартирах, в основном устанавливается там оконечное устройство, так как проводка дальше не идет. В домах могут запроектировать установку разветвительного электрошкафа — если из него будет идти трасса на освещение других построек, находящихся на некотором расстоянии от дома — бани, летней кухни, гостевого дома. Эти другие обозначения есть на следующей картинке.

Обозначение электрических элементов на схемах: шкафы, щитки, пульты

Если говорить об изображениях «начинки» электрических щитков, она тоже стандартизована. Есть условные обозначения УЗО, автоматических выключателей, кнопок, трансформаторов тока и напряжения и некоторых других элементов. Они приведены следующей таблице (в таблице две страницы, листайте нажав на слово «Следующая»)

Номер Название Изображение на схеме
1 Автоматический выключатель (автомат)
2 Рубильник (выключатель нагрузки)
3 Тепловое реле (защита от перегрева)
4 УЗО (устройство защитного отключения)
5 Дифференциальный автомат (дифавтомат)
6 Предохранитель
7 Выключатель (рубильник) с предохранителем
8 Автоматический выключатель со встроенным тепловым реле (для защиты двигателя)
9 Трансформатор тока
10 Трансформатор напряжения
11 Счетчик электроэнергии
12 Частотный преобразователь
13 Кнопка с автоматическим размыканием контактов после нажатия
14 Кнопка с размыканием контактов при повторном нажатии
15 Кнопка со специальным переключателем для отключения (стоп, например)

Элементная база для схем электропроводки

При составлении или чтении схемы пригодятся также обозначения проводов, клемм, заземления, нуля и т.д. Это то, что просто необходимо начинающему электрику или для того чтобы понять, что же изображено на чертеже и в какой последовательности соединены ее элементы.

Номер Название Обозначение электрических элементов на схемах
1 Фазный проводник
2 Нейтраль (нулевой рабочий) N
3 Защитный проводник («земля») PE
4 Объединенные защитный и нулевой проводники PEN
5 Линия электрической связи, шины
6 Шина (если ее необходимо выделить)
7 Отводы от шин (сделаны при помощи пайки)

Пример использования приведенных выше графических изображений есть на следующей схеме. Благодаря буквенным обозначениям все и без графики понятно, но дублирование информации в схемах никогда лишним не было.

Пример схемы электропитания и графическое изображение проводов на ней

Изображение розеток

На схеме электропроводки должны быть отмечены места установки розеток и выключателей. Типов розеток много — на 220 В, на 380 в, скрытого и открытого типа установки, с разным количеством «посадочных» мест, влагозащищенные и т.д. Приводить обозначение каждой — слишком длинно и ни к чему. Важно запомнить как изображаются основные группы, а количество групп контактов определяется по штрихам.

Обозначение розеток на чертежах

Розетки для однофазной сети 220 В обозначаются на схемах в виде полукруга с одним или несколькими торчащими вверх отрезками. Количество отрезков — количество розеток на одном корпусе (на фото ниже иллюстрация). Если в розетку можно включить только одну вилку — вверх рисуют один отрезок, если два — два, и т.д.

Условные обозначения розеток в электрических схемах

Если посмотрите на изображения внимательно, обратите внимание, что условное изображение, которое находится справа, не имеет горизонтальной черты, которая отделяет две части значка. Эта черта указывает на то, что розетка скрытого монтажа, то есть под нее необходимо в стене сделать отверстие, установить подрозетник и т.д. Вариант справа — для открытого монтажа. На стену крепится токонепроводящая подложка, на нее сама розетка.

Также обратите внимание, что нижняя часть левого схематического изображения перечеркнута вертикальной линией. Так обозначают наличие защитного контакта, к которому подводится заземление. Установка розеток с заземлением обязательна при включении сложной бытовой техники типа стиральной или посудомоечной машины, духовки и т.д.

Обозначение трехфазной розетки на чертежах

Ни с чем не перепутаешь условное обозначение трехфазной розетки (на 380 В). Количество торчащих вверх отрезков равно количеству проводников, которые к данному устройству подключаются — три фазы, ноль и земля. Итого пять.

Бывает, что нижняя часть изображения закрашена черным (темным). Это обозначает что розетка влагозащищенная. Такие ставят на улице, в помещениях с повышенной влажностью (бани, бассейны и т.д.).

Отображение выключателей

Схематическое обозначение выключателей выглядит как небольшого размера кружок с одним или несколькими Г- или Т- образными ответвлениями. Отводы в виде буквы «Г» обозначают выключатель открытого монтажа, с виде буквы «Т» — скрытого монтажа. Количество отводов отображает количество клавиш на этом устройстве.

Условные графические обозначения выключателей на электрических схемах

Кроме обычных могут стоять проходные выключатели — для возможности включения/выключения одного источника света из нескольких точек. К такой же небольшой окружности с противоположных сторон пририсовывают две буквы «Г». Так обозначается одноклавишный проходной переключатель.

Как выглядит схематичное изображение проходных выключателей

В отличие от обычных выключателей, в этих при использовании двухклавишных моделей добавляется еще одна планка, параллельная верхней.

Лампы и светильники

Свои обозначения имеют лампы. Причем отличаются лампы дневного света (люминесцентные) и лампы накаливания. На схемах отображается даже форма и размеры светильников. В данном случае надо только запомнить как выглядит на схеме каждый из типов ламп.

Изображение светильников на схемах и чертежах

Радиоэлементы

При прочтении принципиальных схем устройств, необходимо знать условные обозначения диодов, резисторов, и других подобных элементов.

Условные обозначения радиоэлементов в чертежах

Знание условных графических элементов поможет вам прочесть практически любую схему — какого-нибудь устройства или электропроводки. Номиналы требуемых деталей иногда проставляются рядом с изображением, но в больших многоэлементных схемах они прописываются в отдельной таблице. В ней стоят буквенные обозначения элементов схемы и номиналы.

Буквенные обозначения

Кроме того, что элементы на схемах имеют условные графические названия, они имеют буквенные обозначения, причем тоже стандартизованные (ГОСТ 7624-55).

  Название элемента электрической схемы Буквенное обозначение
1 Выключатель, контролер, переключатель В
2 Электрогенератор Г
3 Диод Д
4 Выпрямитель Вп
5 Звуковая сигнализация (звонок, сирена) Зв
6 Кнопка Кн
7 Лампа накаливания Л
8 Электрический двигатель М
9 Предохранитель Пр
10 Контактор, магнитный пускатель К
11 Реле Р
12 Трансформатор (автотрансформатор) Тр
13 Штепсельный разъем Ш
14 Электромагнит Эм
15 Резистор R
16 Конденсатор С
17 Катушка индуктивности L
18 Кнопка управления Ку
19 Конечный выключатель Кв
20 Дроссель Др
21 Телефон Т
22 Микрофон Мк
23 Громкоговоритель Гр
24 Батарея (гальванический элемент) Б
25 Главный двигатель Дг
26 Двигатель насоса охлаждения До

Обратите внимание, что в большинстве случаев используются русские буквы, но резистор, конденсатор и катушка индуктивности обозначаются латинскими буквами.

Есть одна тонкость в обозначении реле. Они бывают разного типа, соответственно маркируются:

  • реле тока — РТ;
  • мощности — РМ;
  • напряжения — РН;
  • времени — РВ;
  • сопротивления — РС;
  • указательное — РУ;
  • промежуточное — РП;
  • газовое — РГ;
  • с выдержкой времени — РТВ.

В основном, это только наиболее условные обозначения в электрических схемах.  Но большую часть чертежей и планов вы теперь сможете понять. Если потребуется знать изображения более редких элементов, изучайте ГОСТы.

Условные обозначения на чертежах и схемах элементов электрической цепи

Умение читать электросхемы – это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта

Сам Электрик

условные обозначения в электрических схемах, как графические, так и буквенные.

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео по теме:

Буквенные

Мы уже рассказывали Вам, как расшифровать маркировку проводов и кабелей. В однолинейных электросхемах также присутствуют свои буквы, которые дают понять, что включено в сеть. Итак, согласно ГОСТ 7624-55, буквенное обозначение элементов на электрических схемах выглядит следующим образом:

  1. Реле тока, напряжения, мощности, сопротивления, времени, промежуточное, указательное, газовое и с выдержкой по времени, соответственно – РТ, РН, РМ, РС, РВ, РП, РУ, РГ, РТВ.
  2. КУ – кнопка управления.
  3. КВ – конечный выключатель.
  4. КК – командо-контроллер.
  5. ПВ – путевой выключатель.
  6. ДГ – главный двигатель.
  7. ДО – двигатель насоса охлаждения.
  8. ДБХ – двигатель быстрых ходов.
  9. ДП – двигатель подач.
  10. ДШ – двигатель шпинделя.

Помимо этого в отечественной маркировке элементов радиотехнических и электрических схем выделяют следующие буквенные обозначения:

На этом краткий обзор условных обозначений в электрических схемах закончен. Надеемся, теперь Вы знаете, как обозначаются розетки, выключатели, светильники и остальные элементы цепи на чертежах и планах жилых помещений.

Также читают:

  • Как работает магнитный пускатель
  • Какие бывают электрические схемы
  • Как рассчитать количество кабеля для электропроводки

Как невозможно читать книгу без знания букв, так невозможно понять ни один электрический чертеж без знания условных обозначений.

В этой статье рассмотрим условные обозначения в электрических схемах: какие бываю, где найти расшифровку, если в проекте она не указана, как правильно должен быть обозначен и подписан тот или иной элемент на схеме.

Но начнем немного издалека…
Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.

Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.

Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?

«Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»

Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».

Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.

В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.

Виды и типы электрических схем

Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению».
В соответствии с этим ГОСТ, схемы разделяются на 10 видов:

  1. Схема электрическая
  2. Схема гидравлическая
  3. Схема пневматическая
  4. Схема газовая
  5. Схема кинематическая
  6. Схема вакуумная
  7. Схема оптическая
  8. Схема энергетическая
  9. Схема деления
  10. Схема комбинированная

Виды схем подразделяются на восемь типов:

  1. Схема структурная
  2. Схема функциональная
  3. Схема принципиальная (полная)
  4. Схема соединений (монтажная)
  5. Схема подключения
  6. Схема общая
  7. Схема расположения
  8. Схема объединенная

Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.

ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.

ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.

Графические обозначения в электрических схемах

В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:

  • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
  • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
  • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:

с использованием девяти функциональных признаков:

Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:

Наименование Изображение
Автоматический выключатель (автомат)
Выключатель нагрузки (рубильник)
Контакт контактора
Тепловое реле
УЗО
Дифференциальный автомат
Предохранитель
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле)
Выключатель нагрузки с предохранителем (рубильник с предохранителем)
Трансформатор тока
Трансформатор напряжения
Счетчик электрической энергии
Частотный преобразователь
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления автоматически
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вытягивания кнопки
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс)
Контакт замыкающий с замедлением, действующим при срабатывании
Контакт замыкающий с замедлением, действующим при возврате
Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Контакт размыкающий с замедлением, действующим при срабатывании  
 Контакт размыкающий с замедлением, действующим при возврате  
 Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Катушка контактора, общее обозначение катушки реле
Катушка импульсного реле
Катушка фотореле
Катушка реле времени
Мотор-привод
Лампа осветительная, световая индикация (лампочка)
Нагревательный элемент
Разъемное соединение (розетка):

гнездоштырь

Разрядник
Ограничитель перенапряжения (ОПН), варистор
Разборное соединение (клемма)
Амперметр
Вольтметр
Ваттметр
Частотометр

Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.

Буквенные обозначения в электрических схемах

Буквенные обозначения определены ГОСТ 2.710-81 «ЕСКД. Обозначения буквенно-цифровые в электрических схемах».

Обозначения дифавтоматов и УЗО в этом ГОСТ отсутствует. На различных сайтах и форумах в интернете долго обсуждали как же правильно обозначать УЗО и дифавтомат. ГОСТ 2.710-81 в п.2.2.12. допускает использование многобуквенных кодов (а не только одно- и двухбуквенных), поэтому до введения нормативного обозначения я для себя принял трехбуквенное обозначение УЗО и дифавтомата. К двухбуквенному обозначению рубильника я добавил букву D и получил обозначение УЗО. Аналогично поступил с дифавтоматом.

Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено.

Обозначения основных элементов, используемых в однолинейных схемах электрических щитов:

Наименование Обозначение
Автоматический выключатель в силовых цепях QF
Автоматический выключатель в цепях управления SF
Автоматический выключатель с дифференциальной защитой (дифавтомат) QFD
Выключатель нагрузки (рубильник) QS
Устройство защитного отключения (УЗО) QSD
Контактор KM
Тепловое реле F, KK
Реле времени KT
Реле напряжения KV
Фотореле KL
Импульсное реле KI
Разрядник, ОПН FV
Плавкий предохранитель FU
Трансформатор тока TA
Трансформатор напряжения TV
Частотный преобразователь UZ
Амперметр PA
Вольтметр PV
Ваттметр PW
Частотометр PF
Счетчик активной энергии PI
Счетчик реактивной энергии PK
Фотоэлемент BL
Нагревательный элемент EK
Лампа осветительная EL
Прибор световой индикации (лампочка) HL
Штепсельный разъем (розетка) XS
Выключатель или переключатель в цепях управления SA
Выключатель кнопочный в цепях управления SB
Клеммы XT

Изображение электрооборудования на планах

Хотя ГОСТ 2.701-2008 и ГОСТ 2.702-2011 предусматривают вид электрической схемы «схема расположения», при проектировании зданий и сооружений следует руководствоваться ГОСТ 21.210-2014 «СПДС. Изображения условные графические электрооборудования и проводок на планах». Данный ГОСТ устанавливает условные обозначения электропроводок, прокладок шин, шинопроводов, кабельных линий, электрического оборудования (трансформаторов, электрических щитов, розеток, выключателей, светильников) на планах прокладки электрических сетей.

Эти условные обозначения применяются при выполнении чертежей электроснабжения, силового электрооборудования, электрического освещения и других чертежей. Также данные обозначения используются для изображении потребителей в однолинейных принципиальных схемах электрических щитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Условные графические обозначения линий проводок и токопроводов

К сожалению, AutoCAD в базовой поставке не содержит все необходимые типы линий.

Проектировщики решают эту проблему по-разному:

  • большинство выполняет отрисовку проводки обычной линией, а потом дополняет обозначениями кружков, квадратиков и пр.;
  • продвинутые пользователи AutoCAD создают собственные типы линий.

Я — сторонник второго способа, т.к. он гораздо удобнее. Если вы используете специальный тип линии, то при её перемещении все «дополнительные» обозначения также перемещаются, ведь они часть линии.

Создать собственный тип линии в AutoCAD достаточно просто. Вы потратите некоторое время на освоение этого навыка, зато сэкономите потом массу времени при проектировании.

Изображение вертикальной прокладки удобнее всего сделать при помощи блоков AutoCAD, а лучше при помощи динамических блоков.

Условные графические изображения шин и шинопроводов

Отрисовку шин и шинопроводов в AutoCAD удобно выполнять при помощи полилинии и/или динамических блоков.

Условные графические изображения коробок, шкафов, щитов и пультов

Наименование Изображение
Коробка ответвительная
Коробка вводная
Коробка протяжная, ящик протяжной
Коробка, ящик с зажимами
Шкаф распределительный
Щиток групповой рабочего освещения
Щиток групповой аварийного освещения
Щиток лабораторный
Ящик с аппаратурой
Ящик управления
Шкаф, панель, пульт, щиток одностороннего обслуживания, пост местного управления
Шкаф, панель двухстороннего обслуживания
Шкаф, щит, пульт из нескольких панелей одностороннего обслуживания
Шкаф, щит, пульт из нескольких панелей двухстороннего обслуживания
Щит открытый
Ящик трансформаторный понижающий (ЯТП)

Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков.

Условные графические обозначения выключателей, переключателей

ГОСТ 21.210-2014 не предусматривает условных изображения для светорегуляторов (диммеров) и отдельного изображения для кнопочных выключателей, поэтому я ввёл для них собственные обозначения в соответствии с п.4.7.

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов выключателей.

Условные графические обозначения штепсельных розеток

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов розеток.

Условные графические обозначения светильников и прожекторов

Радует, что в обновленной версии ГОСТ добавлены изображения светодиодных светильников и светильников с компактными люминесцентными лампами.

Отрисовку светильников в AutoCAD удобно выполнять при помощи динамических блоков.

Условные графические обозначения аппаратов контроля и управления

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков.

Подпишитесь и получайте уведомления о новых статьях на e-mail

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТа Краткое описание
2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68 Требования к размерам отображения элементов в графическом виде.
21.614 88 Принятые нормы  для планов электрооборудования и проводки.
2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

  • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
  • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

Пример однолинейной схемы

  • Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема  стационарного сигнализатора горючих газов

Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.

Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е – ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.

УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.

Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D – Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

Обозначение электродвигателей на схемахУГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)

Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В – ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

Пример изображения на монтажных схемах розеток скрытой установки

Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

Обозначение выключатели скрытой установкиОбозначение розеток и выключателей

Видео по теме:

Буквенные обозначения

В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

Буквенные обозначения основных элементов

К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

Принципиальная схема простой защелки

с транзисторами

Защелка в основном означает «зафиксировать в определенном состоянии». В электронике Latch Circuit — это схема, которая блокирует свой выход, когда применяется мгновенный входной сигнал запуска, и сохраняет это состояние даже после того, как входной сигнал удален. Это состояние будет оставаться неопределенным, пока не будет сброшено питание или не будет подан внешний сигнал. Схема защелки аналогична SCR (кремниевый выпрямитель) и может быть очень полезна в цепях сигнализации, где небольшой сигнал запуска включает сигнализацию на неопределенное время, пока не будет сброшен вручную.Ранее мы построили несколько цепей сигнализации:

Сегодня мы собираемся построить очень простую и дешевую схему защелки с использованием транзисторов, эта схема может использоваться для запуска сетевых нагрузок переменного тока и сигналов тревоги .

Компоненты:

  • Резисторы — 10к (2), 100к (2), 220 Ом (1)
  • Транзисторы- BC547, BC557
  • Конденсатор — 1 мкФ
  • реле- 6в
  • Диод- 1N4148
  • светодиод
  • Источник питания — 5-12 В

Схема

:

Принципиальная схема цепи фиксации проста и может быть легко построена.Резисторы R1 и R4 работают как токоограничивающие резисторы для транзистора Q1, а резисторы R2 и R3 работают как токоограничивающие резисторы для транзистора Q2. В основаниях BJT-транзисторов необходимо использовать ограничивающие ток резисторы, иначе они могут сгореть. Назначение других компонентов объяснено в «Рабочем разделе» ниже.

Рабочее пояснение:

Прежде чем перейти к объяснению, мы должны отметить, что транзистор Q1 BC547 представляет собой NPN-транзистор , который проводит или включается, когда к его базе прикладывается небольшое положительное напряжение.А транзистор BC557 — это PNP-транзистор , который проводит или включается, когда на его базу подается отрицательное напряжение (или земля).

Первоначально оба транзистора находятся в выключенном состоянии, а реле деактивировано. База PNP-транзистора BC557 подключена к положительному напряжению с помощью токоограничивающего резистора R3, чтобы он не проводил случайно. Конденсатор C1 был использован в качестве меры предосторожности, чтобы предотвратить случайное и ложное срабатывание цепи.

Теперь, когда небольшое положительное напряжение подается на базу транзистора BC547, он включает транзистор, и база транзистора Q2 BC557 подключается к земле.Резисторы R2 и R3 предотвращают короткое замыкание в этом состоянии. Теперь, когда база транзистора BC557 заземляется, он начинает проводить и питает катушку реле, которая активирует реле и включает устройство, подключенное к реле. В нашем случае светодиод будет светиться.

Это нормальное поведение до сих пор, но что делает его схемой «защелкивания». Если вы заметили, коллектор транзистора BC557 подключен к базе транзистора BC547 через токоограничивающий резистор R4. И когда транзистор BC557 включается, ток течет в двух направлениях: сначала на реле, а затем на базу транзистора Q1.Таким образом, это напряжение обратной связи, подаваемое на базу транзистора BC547, удерживает транзистор BC547 включенным в течение неопределенного периода времени, даже после того, как входное напряжение триггера снято. Это, в свою очередь, удерживает второй транзистор включенным на неопределенное время, и мгновенно формируется защелка или замок .

Теперь сигнализация или устройство, подключенное к реле, будет оставаться включенным до сброса питания. Или к этой схеме можно добавить кнопку сброса, чтобы вывести из строя защелку. Эта кнопка соединяет базу транзистора BC547 с землей, которая отключает Q1 и Q2 и ломает защелку.

Если вы не хотите фиксировать какие-либо устройства переменного тока , а просто хотите включить светодиод или зуммер, вы можете просто удалить реле и подключить светодиод напрямую вместо реле с помощью резистора.

Диод 1N4148 используется для предотвращения обратного тока, когда транзистор выключен. Каждая катушка индуктивности (в реле) производит равную и противоположную ЭДС при внезапном выключении, это может привести к необратимому повреждению компонентов, поэтому для предотвращения обратного тока необходимо использовать диод.Узнайте здесь о работе реле.

Понимание электричества — код, схемы и конструкция

Основные электрические определения

Электричество — это поток электрической энергии через проводящий материал. Электроника относится к использованию изменяющихся электрических свойств для передачи информации. Электронные датчики преобразуют некоторые другие формы энергии (свет, тепло, звуковое давление и т. Д.) В электрическую, чтобы мы могли интерпретировать происходящее в электронном виде.Например, микрофон изменяет волны звукового давления в воздухе на изменяющееся электрическое напряжение. Усиливая и считывая этот электрический сигнал, мы можем интерпретировать, какой звук вызвал его. Этот процесс преобразования одной энергии в другую называется преобразованием , а устройства, которые это делают, называются преобразователями . Большая часть технической работы физических вычислений заключается в выяснении того, какую форму энергии выделяет человек, и какой преобразователь вы можете купить или построить, чтобы считывать эту энергию.Однако для этого необходимо кое-что понять об электричестве. Мы начнем с нескольких терминов, которые мы будем использовать для обозначения электрических свойств и компонентов. После этого мы поговорим о важных отношениях между некоторыми из этих терминов.

Ток — это мера величины потока электронов в цепи. Он измеряется в амперах или амперах. Многие люди объясняют электрический поток, используя аналогию с потоком воды. Следуя этой аналогии, ток будет означать, сколько воды (или электричества) проходит через определенную точку.Чем выше сила тока, тем больше протекает вода (или электричество).

Напряжение — это мера электрической энергии цепи. Измеряется в вольтах. В аналогии с водой, напряжение будет давлением воды. Думайте о гейзере как о высоком напряжении, а о душе в недорогой квартире на пятом этаже многоквартирного дома как о низком напряжении (если вы не один из тех счастливчиков, у которых хороший напор воды!).

Сопротивление — это мера способности материала противостоять потоку электричества.Измеряется в Ом. Губка в трубе будет действовать как резистор, ограничивая ток (и напряжение), протекающий по трубе.

Схема — это замкнутый контур, содержащий источник электроэнергии (например, аккумулятор) и нагрузку (например, лампочку). Каждая цепь должна иметь какую-то нагрузку. Вся электрическая энергия в цепи должна использоваться нагрузкой. Нагрузка преобразует электрическую энергию в другую форму энергии. Цепь без нагрузки называется коротким замыканием.При коротком замыкании источник питания передает всю свою энергию по проводам и обратно к себе, и либо провода плавятся (если вам повезет), либо взрывается аккумулятор, либо происходит что-то еще катастрофическое.

Ниже представлена ​​очень простая схема, состоящая из лампы, выключателя и батареи. Электрическая энергия, поступающая от батареи, преобразуется лампочкой в ​​тепловую и световую энергию.

Существует два распространенных типа цепей: постоянного или постоянного тока и переменного или переменного тока.В цепи постоянного тока ток всегда течет в одном направлении. В цепи переменного тока полюса цепи меняются местами в регулярном повторяющемся цикле. В одной части цикла один полюс имеет более высокий потенциал (положительный), а другой — более низкий (отрицательный). В следующей части цикла второй полюс более положительный, а первый — более отрицательный. Большинство цепей, о которых мы будем говорить в этом классе, будут цепями постоянного тока. Схематические диаграммы представляют собой схемы цепей с символами, представляющими компоненты в цепи.Многие из типичных символов показаны ниже.

Компоненты

Проводники — это материалы, по которым свободно проходит электрический ток.

Изоляторы — это материалы, препятствующие прохождению электричества.

Резисторы противостоят, но не полностью блокируют электрический ток. Они используются для управления течением тока. Ток может проходить через резистор в любом направлении, поэтому не имеет значения, каким образом они подключены в цепи.Обозначаются они так:

Конденсаторы накапливают электричество, пока в них протекает ток, а затем высвобождают энергию, когда входящий ток снимается. Иногда они поляризованы, то есть ток может течь через них только в определенном направлении, а иногда это не так. Если конденсатор поляризован, он будет отмечен на схеме как таковой. Не подключайте поляризованный конденсатор в обратном направлении; он может взорваться.

Конденсаторы обозначаются следующим образом:

Диоды пропускают электрический ток в одном направлении и блокируют его в другом направлении.Из-за этого их можно включать в цепь только в одном направлении. Обозначаются они так:

Светодиоды (светодиоды) — это специальные типы диодов, которые излучают свет, когда через них протекает ток. Обозначаются они так:

Есть много других типов компонентов, с которыми вы столкнетесь:

  • переключатели управляют протеканием тока через переход в цепи:
  • транзисторы и реле коммутационные устройства:
  • термисторы изменяют сопротивление при изменении температуры;
  • фоторезисторы изменяют сопротивление при изменении света;
  • датчики изгиба изменяют сопротивление в ответ на изгиб или изгиб;
  • пьезоэлектрические устройства создают переменное напряжение в ответ на незначительные изменения давления.

Отношения

Напряжение (В), ток (I) и сопротивление связаны (R) по следующей формуле:
Вольт = Ампер x Ом, или

В = I x R

Ток (I), напряжение (В) и сопротивление (R) также связаны с электрической мощностью (P) (измеряется в ваттах) следующим образом: Ватты = Вольт x Ампер или

W = V x A

Электрический ток течет из мест с более высокой потенциальной энергией в места с более низкой потенциальной энергией (т.е.е. от положительного к отрицательному).

Земля — это место в цепи, в котором потенциальная энергия электронов равна нулю. Иногда эта точка соединяется с реальной землей через заземленную электрическую цепь, водопровод или каким-либо другим способом. В принципе, подойдет любой проводник, идущий на землю.

Несколько важных правил:

Ток идет по пути наименьшего сопротивления к земле. Итак, если у него есть выбор из двух путей в цепи, и один имеет меньшее сопротивление, он выберет именно этот путь.

В любой данной цепи полное напряжение на пути цепи равно нулю . Каждый компонент, который предлагает сопротивление, снижает напряжение, и к тому времени, когда мы дойдем до конца контура цепи, напряжения не останется.

Количество тока, идущего в любую точку цепи, такое же, как количество тока, выходящего из этой точки.

Эти последние два правила дают нам возможность выяснить, что происходит, когда мы подключаем компоненты в цепь.Когда мы смотрим на то, как компоненты в схеме размещаются относительно друг друга, есть два способа сделать это: один за другим или бок о бок. Когда они расположены один за другим, мы говорим, что компоненты находятся в серии друг с другом. Рядом они находятся на параллелях друг к другу.

Давайте посмотрим, как изменяются ток и напряжение, когда компоненты включены последовательно или параллельно:

Когда два компонента расположены последовательно, они размещаются один за другим, например:

Когда резисторы включены последовательно, напряжение на каждом резисторе падает, а общее сопротивление равно сумме всех резисторов.Мы знаем, что в приведенной выше схеме ток везде постоянный. Мы знаем, что напряжение падает на каждом резисторе, и мы знаем, что сумма всех падений напряжения равна напряжению на батарее. Итак, V в = V 1 + V 2 . Если нам известны номиналы резисторов, мы можем использовать формулу V = I x R для вычисления точных напряжений в каждой точке. Когда два компонента включены параллельно, они размещаются рядом друг с другом, например:

Для резисторов, включенных параллельно, напряжение на них одинаковое, но ток делится между ними.Однако общий ток постоянен, поэтому мы знаем, что разделенный ток через параллельные резисторы равен полному току. Итак, I 1 + I 2 = I итого .

Хотя иногда полезно подумать о математических отношениях параллельных и последовательных цепей, часто более полезно думать о них с точки зрения практических эффектов. Опять же, подумайте о метафоре воды. Для последовательного примера, если один резистор понижает напряжение (давление воды), только меньшее напряжение (струйка воды) проходит через следующий.В параллельном примере количество воды из основного потока (общий поток) делится на два потока, но общее количество воды, протекающей через эти два потока, равно исходному количеству воды. Помня об этих основных отношениях, вы сможете понять, какое влияние оказывает один компонент на другой, когда вы видите их вместе в цепи, даже если вы не знаете (или не заботитесь) об их точном математическом соотношении.

Когда вы будете готовы приступить к созданию схем, прочтите примечания на макетных платах, чтобы быстро узнать, как использовать макетные платы без пайки.

Electronics Club — Принципиальные схемы

Electronics Club — Принципиальные схемы

Следующая страница: Условные обозначения цепей

См. Также: Блок-схемы

Принципиальные схемы показывают, как электронные компоненты соединяются вместе.
Каждый компонент представлен символом, некоторые из которых показаны ниже.
см. страницу с обозначениями схем для других.

Электрические схемы и расположение компонентов

На принципиальных схемах

максимально четко показаны подключения со всеми проводами.
нарисованы аккуратно прямыми линиями.Фактическая компоновка компонентов обычно
сильно отличается от принципиальной схемы, и это может сбивать с толку
новичок. Секрет в том, чтобы сконцентрироваться на соединениях , а не на самом
позиции компонентов.

Принципиальная схема и макет стрипборда для проекта таймера
показаны ниже — принципиальная схема явно отличается от раскладки на стрипборде.

Принципиальная схема полезна при тестировании цепи и для понимания того, как она работает.Вот почему инструкции к проектам обычно включают принципиальную схему, а также
макет монтажной платы или печатной платы, необходимый для построения схемы.



Схема принципиальных

Рисование принципиальных схем несложно, но для рисования потребуется немного практики.
аккуратные, понятные схемы. Это полезный навык как для науки, так и для электроники.
Вам, безусловно, потребуется рисовать принципиальные схемы, если вы разрабатываете свои собственные схемы.

Следуйте этим советам для достижения наилучших результатов:

  • Используйте правильный символ для каждого компонента.
  • Провода нарисуйте прямыми линиями (используйте линейку).
  • Поместите «каплю» () на стыках.
  • Обозначьте такие компоненты, как резисторы и конденсаторы, их номиналами.
  • Положительное (+) питание должно быть вверху, а отрицательное (-) питание.
    внизу. Отрицательное напряжение обычно обозначается как 0 В, ноль вольт.
    (это объясняется на странице напряжения.

    Если вы рисуете схему для науки, см. Ниже
    о рисовании «электроники».

Если схема сложная:

  • Постарайтесь расположить диаграмму так, чтобы сигналы текли слева направо: входы и
    элементы управления должны быть слева, выходы — справа.
  • Вы можете не указывать символы батареи или источника питания, но должны включать (и этикетку)
    линии питания вверху и внизу.

Схема принципиальных схем «Электроника»

Принципиальные схемы для электроники нарисованы с положительным (+) питанием вверху.
и отрицательное (-) питание внизу. Это может быть полезно для понимания работы
цепи, потому что напряжение уменьшается при движении вниз по схеме.

Принципиальные схемы для science традиционно рисуются с аккумулятором или
блок питания вверху.В этом нет ничего плохого, но обычно нет преимущества в
рисовать их таким образом, и я думаю, что это менее полезно для понимания схемы.

Я предлагаю вам всегда рисовать свои принципиальные схемы «электронным способом», даже для науки!
( Надеюсь, ваш учитель естественных наук не будет возражать — расскажите, пожалуйста, об этом сайте. )

Следующая страница: Условные обозначения схем | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет
используется только для ответа на ваше сообщение, оно не будет передано никому.
На этом веб-сайте отображается реклама, если вы нажмете на
рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.
Рекламодателям не передается никакая личная информация.
Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов.
(включая этот), как объяснил Google.
Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста
посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2020

Веб-сайт размещен на Tsohost

Глава 12 Практика электрических чертежей

Презентация на тему: «Глава 12 Практика электрического рисования» — стенограмма презентации:

1

Глава 12 Практика электрических чертежей

2

Цель В этой главе описаны типы электрических чертежей и условные обозначения.Он охватывает электрические схемы, блок-схемы, электрические схемы и архитектурные электрические схемы.

3

Введение На принципиальных схемах батареи, переключатели, лампы, резисторы, конденсаторы и катушки индуктивности представлены символами, называемыми «графическими символами», поскольку они представляют какой-либо объект в значительно упрощенной графической форме. Графические символы позволяют людям, говорящим на разных языках, рисовать и читать одни и те же электрические схемы.

4

Введение (продолжение)
Электрические «принципиальные электрические схемы» не обязательно отражают внешний вид схемы. Они действительно показывают, формально и легко для понимания, как работает схема. Поток электричества можно понять лучше, чем если бы посмотреть на фактическую проводку.

5

Введение (продолжение)
Все электрические чертежи должны соответствовать действующему стандарту AS / NZS 1102 «Графические символы для электротехники», который разделен на различные разделы, каждый из которых охватывает определенную группу символов.Используемые символы в большинстве случаев совпадают с используемыми в ISO, DIN и других мировых стандартах. Когда все чертежи выполняются в соответствии с установленной стандартной практикой, их становится легче читать и понимать.

6

Принципиальные схемы. Независимо от того, насколько тщательно и точно нарисован графический рисунок электрической цепи, различные соединения трудно увидеть. Упрощенные и стилизованные соединения и использование обозначенных символами компонентов обеспечивает более четкое представление схемных соединений.Полученный рисунок известен как принципиальная схема.

7

Принципиальные схемы (продолжение)
Провода и компоненты разделены и разнесены, хотя чертеж не похож на физическое расположение. Вместо механического представления структуры схемы принципиальная схема предназначена для иллюстрации соединений между компонентами и потока мощности (или потока сигналов) через схему.

8

Принципиальные схемы (продолжение)
Ранние схемы электрических цепей составляли свои собственные символы для обозначения компонентов. Довольно часто вместе с рисунком давали символический ключ, в котором перечислялись символы.

9

Принципиальные схемы (продолжение)
Местные и национальные стандартные стили рисунков и стандартные символы были приняты более крупными группами, которым необходимо было поделиться рисунками.В конце концов международная организация, Международный электротехнический комитет (МЭК), сформулировала международный стандарт графического представления. AS / NZS 1102 очень близок к стандарту IEC.

10

Условные обозначения в линейной работе
Предполагается, что линия, представляющая проводник на принципиальной схеме, имеет нулевое сопротивление, и поэтому это не более чем утверждение, что два компонента соединены вместе.Длина провода для принципиальной схемы не важна.

11

Условные обозначения в линейной работе (продолжение)
Проводники всегда представляются прямыми линиями с поворотами под прямым углом, независимо от пути, по которому проходит фактический проводник. Эти линии могут присоединяться к компонентам схемы или другим проводникам. Когда проводники соединяются с другими проводниками, стык обычно обозначается отличительной точкой на стыке.

Схема импульсного источника питания

с пояснениями

Каталог

1. История развития импульсного источника питания

Импульсный источник питания заменил транзисторный линейный источник питания более 30 лет. Первым появляется импульсный блок питания серии. Топология главной цепи аналогична топологии линейного источника питания. Однако после того, как силовой транзистор находится в состоянии переключения, была разработана технология управления с широтно-импульсной модуляцией (ШИМ).Он используется для управления импульсным преобразователем для получения импульсного источника питания PWM. Он характеризуется частотой импульсов 20 кГц или широтно-импульсной модуляцией. Эффективность импульсного источника питания PWM может достигать 65% ~ 70%, в то время как эффективность линейного источника питания составляет всего 30% ~ 40%. В эпоху глобального энергетического кризиса это вызвало повсеместную озабоченность. Линейный источник питания работает на промышленной частоте, поэтому его заменяет импульсный источник питания PWM с рабочей частотой 20 кГц, что позволяет значительно экономить энергию.Это известно как революция 20 кГц в истории развития технологий электропитания. Поскольку микросхемы ULSI продолжают уменьшаться в размерах, блоки питания становятся намного больше микропроцессоров; для аэрокосмической, подводной и военной промышленности, а также для портативных электронных устройств с батарейным питанием (таких как портативные калькуляторы, мобильные телефоны и т. д.) требуется меньший и более легкий источник питания. Поэтому к импульсному источнику питания предъявляются требования к компактности и легкости, в том числе к объему и весу магнитных компонентов и конденсаторов.Кроме того, импульсный источник питания должен иметь более высокий КПД, лучшую производительность и более высокую надежность.

Импульсный источник питания 12 В, 10 А (со схемой и пояснением)

2. Основной принцип импульсного источника питания

2.1 Основной принцип импульсного источника питания с ШИМ

Понять рабочий процесс довольно легко. импульсный источник питания. В линейном источнике питания силовой транзистор работает в линейном режиме.В отличие от линейного источника питания, импульсный источник питания с ШИМ позволяет силовому транзистору работать во включенном и выключенном состояниях. В обоих состояниях произведение вольт-ампер, приложенное к силовому транзистору, всегда мало (напряжение низкое, а ток большой при включении; напряжение высокое, а ток небольшой в выключенном состоянии). Произведение вольт-ампер на силовом устройстве — это потери, производимые силовым полупроводниковым прибором.

По сравнению с линейными источниками питания, импульсные источники питания с ШИМ работают более эффективно с помощью «прерывателя», который должен преобразовывать входное напряжение постоянного тока в импульсное напряжение с амплитудой, равной амплитуде входного напряжения.Продолжительность включения импульса регулируется контроллером импульсного источника питания. Когда входное напряжение фиксируется в виде прямоугольной волны переменного тока, его амплитуда может быть увеличена или уменьшена трансформатором. Количество групп напряжений на выходе можно увеличить, увеличив количество вторичных обмоток трансформатора. Наконец, после выпрямления и фильтрации этих сигналов переменного тока получается выходное напряжение постоянного тока.

Основное назначение контроллера — обеспечение стабильного выходного напряжения, а его рабочий процесс очень похож на линейный контроллер.Это означает, что функциональный блок опорного напряжение и ошибки усилитель контроллера может быть разработан, чтобы быть идентичны линейным регулятор. Они отличаются тем, что выходной сигнал усилителя ошибки (напряжение ошибки) проходит через блок преобразования импульсов напряжения перед включением силового транзистора.

Импульсные источники питания

имеют два основных режима работы: прямое преобразование и повышающее преобразование. Хотя расположение различных частей мало отличается, рабочий процесс сильно различается, и они имеют разные преимущества в конкретных ситуациях.

Преимущество прямого преобразователя заключается в том, что выходное напряжение имеет более низкий пик пульсаций, чем повышающий преобразователь, и может выдавать относительно высокую мощность. Прямой преобразователь может обеспечивать мощность в несколько киловатт.

Повышающий преобразователь имеет высокий пиковый ток и поэтому подходит только для приложений с мощностью не более 150 Вт. Во всех топологиях эти преобразователи используют самые маленькие компоненты и поэтому популярны в приложениях с малой и средней мощностью.

2.2 Принцип работы импульсного источника питания

(1) Входная мощность переменного тока выпрямляется и фильтруется в постоянный ток.

(2) Управляйте переключающей трубкой с помощью высокочастотного сигнала ШИМ (широтно-импульсной модуляции) и подавайте постоянный ток на первичную обмотку переключающего трансформатора.

(3) Вторичная обмотка переключающего трансформатора индуцирует высокочастотное напряжение, которое подается на нагрузку посредством выпрямления и фильтрации.

(4) Выходная часть возвращается в схему управления через определенную схему для управления коэффициентом заполнения ШИМ для достижения стабильного выхода.

3. Состав схемы импульсного источника питания

Основная схема импульсного источника питания состоит из входного фильтра электромагнитных помех (EMI), схемы выпрямления и фильтрации, схемы преобразования мощности и схемы контроллера ШИМ. , а также схему выпрямления и фильтрации на выходе. Вспомогательная схема имеет схему защиты от перенапряжения на входе, схему защиты от перенапряжения на выходе, схему защиты от перегрузки по току на выходе и схему защиты от короткого замыкания на выходе.

Принципиальная схема импульсного блока питания выглядит следующим образом:

Рисунок 1. Блок-схема цепи импульсного источника питания

4. Принцип входной цепи и общей цепи

4.1 Принцип входной цепи выпрямления и фильтрации переменного тока

Рисунок 2. Схема входного фильтра, цепь выпрямителя

① Схема защиты от молнии: Когда происходит удар молнии и в электросети генерируется высокое напряжение, схема состоит из MOV1, MOV2, MOV3, F1, F2, F3 и FDG1.Когда напряжение, приложенное к варистору, превышает его рабочее напряжение, его сопротивление уменьшается, так что энергия высокого напряжения расходуется на варисторе. Если ток слишком велик, F1, F2 и F3 сгорит и защитит последующую цепь.

② Схема входного фильтра: сеть фильтров с двойным π-типом, состоящая из C1, L1, C2 и C3, в основном подавляет электромагнитный шум и сигналы помех от входного источника питания, чтобы предотвратить помехи в источнике питания, а также предотвращает помехи от высокочастотных помех. генерируется самим источником питания из-за вмешательства в электросеть.Когда питание включено, C5 должен быть заряжен. Поскольку мгновенный ток велик, добавление RT1 (термистора) может эффективно предотвратить импульсный ток. Поскольку мгновенная энергия полностью расходуется на резисторе RT1, сопротивление RT1 уменьшается после повышения температуры через определенное время (RT1 — отрицательная составляющая температурного коэффициента). В это время потребление энергии очень мало, и последующая схема может нормально работать.

③ Схема фильтра выпрямителя: после того, как напряжение переменного тока выпрямляется с помощью BRG1, оно фильтруется с помощью C5 для получения относительно чистого постоянного напряжения.Если емкость C5 станет меньше, пульсации переменного тока на выходе увеличатся.

4.2 Принцип цепи входного фильтра постоянного тока

Рисунок 3. Цепь входного фильтра постоянного тока

① Схема входного фильтра: сеть фильтров с двойным π-типом, состоящая из C1, L1, C2 и C3, в основном подавляет электромагнитный шум и сигналы помех от входного источника питания, чтобы предотвратить помехи в источнике питания, а также предотвращает помехи от высокочастотных помех. генерируется самим источником питания из-за вмешательства в электросеть.C3 и C4 — конденсаторы безопасности, а L2 и L3 — индукторы дифференциального режима.

② R1, R2, R3, Z1, C6, Q1, Z2, R4, R5, Q2, RT1 и C7 образуют антипомпажную цепь. В момент запуска из-за наличия C6 Q2 не проводит, и ток образует петлю через RT1. Q2 включается, когда напряжение на C6 повышается до регулируемого значения Z1. Если утечка C8 или последующая цепь замкнута накоротко, падение напряжения, создаваемое током на RT1, увеличивается в момент запуска, и Q1 включается, так что Q2 не включается без напряжения затвора, и RT1 сгорает в короткие сроки для защиты последующей цепи.

5. Схема преобразования мощности

5.1 Принцип работы МОП-транзистора

В настоящее время наиболее широко используемым полевым транзистором с изолированным затвором является МОП-транзистор (МОП-транзистор), который работает за счет использования электроакустического эффекта поверхность полупроводника и также известна как устройства с поверхностным полевым эффектом. Поскольку его затвор находится в непроводящем состоянии, входное сопротивление может быть значительно улучшено до 105 Ом. МОП-транзистор использует величину напряжения затвор-исток для изменения величины индуцированного заряда на поверхности полупроводника, тем самым управляя током стока.

5.1.1 Общая схема

Рисунок 4. Схема преобразования мощности

5.1.2 Принцип работы

R4, C3, R5, R6, C4, D1 и D2 образуют буфер и соединены с переключающим МОП-транзистором параллельно, так что напряжение на переключающей трубке снижается, электромагнитные помехи уменьшаются, а вторичный пробой не происходит. происходят. Когда переключающая трубка Q1 выключена, первичная обмотка трансформатора может легко создавать всплески напряжения и всплески тока.Эти компоненты вместе могут хорошо поглощать всплески напряжения и тока. Пиковый сигнал тока, измеренный от R3, участвует в управлении продолжительностью включения текущего рабочего цикла и, следовательно, является текущим пределом текущего рабочего цикла. Когда напряжение на R5 достигает 1 В, UC3842 перестает работать, и трубка Q1 немедленно выключается. Емкости перехода CGS и CGD в R1 и Q1 вместе образуют RC-цепь, а заряд и разряд конденсатора напрямую влияют на скорость переключения переключающего транзистора.Если R1 слишком мал, это вызовет колебания, и электромагнитные помехи будут очень большими; если R1 слишком велик, это снизит скорость переключения переключающей трубки. Z1 обычно ограничивает напряжение GS МОП-транзистора до 18 В или менее, таким образом защищая МОП-транзистор. Управляемое затвором напряжение Q1 представляет собой пилообразную волну. Когда коэффициент заполнения больше, чем больше время проводимости Q1, тем больше энергии сохраняет трансформатор. Когда Q1 отключен, трансформатор выделяет энергию через D1, D2, R5, R4 и C3.В то же время он достигает цели сброса магнитного поля, которое готово для следующего накопления и передачи энергии трансформатора. ИС регулирует скважность пилообразной волны на выводе 6 в соответствии с выходным напряжением и током, таким образом стабилизируя выходной ток и напряжение всей машины. C4 и R6 представляют собой контуры поглощения всплесков напряжения.

5.2 Схема двухтактного преобразования мощности

Рисунок 5.Схема двухтактного преобразования мощности

Q1 и Q2 включатся по очереди.

5.3 Схема преобразования мощности с приводным трансформатором

Рисунок 6. Схема преобразования мощности с приводным трансформатором

T2 — приводной трансформатор, T1 — переключающий трансформатор, а TR1 — токовая петля.

6. Схема выходного выпрямителя и фильтра

6.1 Схема прямого выпрямителя

Рисунок 7.Схема прямого выпрямителя

T1 — это переключающий трансформатор, у которого фазы первичного и вторичного полюсов совпадают по фазе. D1 — выпрямительный диод, D2 — обратный диод, а R1, C1, R2 и C2 — схемы сброса напряжения. L1 — это индуктивность свободного хода, а C4, L2 и C5 образуют фильтр π-типа.

6.2 Схема обратного выпрямителя

Рисунок 8. Схема обратного выпрямителя

T1 — это коммутирующий трансформатор с противоположными фазами первичного и вторичного полюсов.D1 — выпрямительный диод, а R1 и C1 — схемы сброса напряжения. L1 — это индуктивность свободного хода, R2 — фиктивная нагрузка, а C4, L2 и C5 образуют фильтр π-типа.

6.3 Схема синхронного выпрямителя

.