Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Онлайн расчет бетонной перемычки: Онлайн расчет перемычек. Расчет железобетонной балки сборно-монолитного перекрытия

Содержание

Онлайн расчет перемычек. Расчет железобетонной балки сборно-монолитного перекрытия

Онлайн калькулятор для расчета желебобетонных балок перекрытия дома

Далее Пересчитать

Назначение калькулятора

Калькулятор для расчёта железобетонных балок перекрытий предназначен для определения габаритов, конкретного типа и марки бетона, количества и сечения арматуры, требующихся для достижения балкой максимального показателя выдерживаемой нагрузки.

Соответственно СНиП 2.03.01-84 «Бетонные и железобетонные конструкции» габариты железобетонных балок перекрытия и их устройство подсчитываются по дальнейшим принципам:

  • Минимальная высота балки перекрытия должна составлять не меньше 1/20 части длины перекрываемого проёма. К примеру при длине проёма в 5 м минимальная высота балок должна составлять 25 см;
  • Ширина железобетонной балки устанавливается по соотношению высоты к ширине в коэффициентах 7:5;
  • Армировка балки состоит минимум из 4 арматур – по два прута снизу и сверху. Применяемая арматура должна составлять не меньше 12 мм в диаметре. Нижнюю часть балки можно армировать прутами большего сечения, чем верхнюю;
  • Железобетонные балки перекрытия бетонируются без перерывов заливки, одной порцией бетонной смеси, чтобы не было расслоения бетона.

Дистанцию между центрами укладываемых балок определяют длиной блоков и установленной шириной балок. К примеру, длина блока составляет 0,60 м, а ширина балки 0,15. Дистанция между центрами балок будет равна – 0,60+0,15=0,75 м.

Принцип работы

Согласно ГОСТ 26519-85 «Конструкции железобетонные заглублённых помещений с перекрытием балочного типа. Технические условия» формула расчёта полезной нагрузки железобетонных балок перекрытия складывается из следующих характеристик:

  • Нормативно-эксплуатационная нагрузка на балки перекрытия с определённым коэффициентным запасом. Для жилых зданий данный показатель нагрузки составляет 151 кг на м2, а коэффициентный запас равен 1,3. Получаемая нагрузка – 151*1,3=196,3 кг/м2;
  • Нагрузка от общей массы блоков, которыми закладываются промежутки между балками. Блоки из лёгких материалов, к примеру из пенобетона или газобетона, показатель плотности которых D-500, а толщина 20 см будут нести нагрузку – 500*0,2=100 кг/м2;
  • Испытываемая нагрузка от массы армированного каркаса и последующей стяжки. Вес стяжки с толщиной слоя 5 см и показателем плотности 2000 кг на м3 будет образовывать следующую нагрузку – 2000*0,05=100 кг/м2 (масса армировки добавлена в плотность бетонной смеси).

Показатель полезной нагрузки железобетонной балки перекрытия составляется из суммы всех трёх перечисленных показателей – 196,3+100+100=396,3 кг/м2.

omega-beton.ru

Нагрузка на перемычки железобетонные. Расчет железобетонных перемычек

Нагрузка на перемычки железобетонные. Расчет железобетонных перемычек

При возведении кирпичных стен неизбежно возникает необходимость установки над оконным проемом железобетонной перемычки. Они представляют собой железобетонные балки с различным сечением и длиной, изготовленные на заводе. Чтобы выбрать необходимый типоразмер изделия, необходимо произвести предварительные расчеты, которые будут учитывать такие данные как нагрузка на перемычку и ширина проема.

При этом, говоря о нагрузке, имеют в виду собственный вес перемычки суммарно с весом стены и перекрытия. В случае с жилыми домами, где нагрузки не так высоки, все случаи принято разбивать на три группы:

  1. На стену опирается перекрытие.
  2. Перекрытие на стену не опирается, а сам она является самонесущей.
  3. Перемычку укладывают в перегородке из кирпича толщиной 12 см.

Виды железобетонных перемычек

Прежде чем приступить к расчетам, давайте немного ознакомимся с видами самих перемычек. Чтобы понимать, какие варианты вам доступны, следует открыть сайт любого производителя ЖБИ и посмотреть, какие виды перемычек железобетонных присутствуют в их номенклатуре. Перейдя по ссылке, вы увидите длинный список типоразмеров с их характеристиками. Чтобы научиться быстро ориентироваться в нем, следует научиться расшифровывать маркировку. Сделаем это на примере перемычки 2ПБ 16-2 :

  • 2ПБ – эта часть маркировки означает принадлежность изделия к какому-то виду и типу сечения. В данном случае – перемычка брусковая второго типа сечения .
    • Брусковые перемычки (ПБ) могут иметь ширину 120 или 250 мм, что делает необходимым использование сразу нескольких изделий в случаях, когда толщина перегородки превышает 120 мм. Производят также плитные перемычки (ПП), ширина которых бывает 380 и 510 мм.
    • Второй тип сечения (2ПБ) имеет размеры 120х140 мм. Другие типы имеют следующие габариты: 1ПБ – 120х65 мм, 3ПБ – 120х220 мм, 4ПБ – 120х290 мм, 5ПБ – 50х220 мм.
  • 16 – эта часть шифра говорит о длине изделия, которая равняется 1550 мм. Размер выражен в дециметрах и округлен.
  • 2 – последняя цифра условного обозначения означает нагрузку, на прием которой рассчитана перемычка. В данном случае это 200 кг/м. Приблизительно понимать эти данные следует так: перемычки с индексом нагрузки 1 обычно используют для перегородок; индекс 8, говорит о том, что такие изделия с легкостью справляются с самонесущими стенами; индексом 27 обладают перемычки, применяемые в стенах, на которые опираются перекрытия.

Теперь, зная разнообразие железобетонных перемычек, можно переходить непосредственно к расчету.

Как подбирать железобетонные перемычки

Итак, давайте сперва введем какие-то исходные данные. Допустим, нам надо рассчитать, какую перемычку следует брать для перекрытия пролета шириной 1350 мм в самонесущей стене толщиной 240 мм при высоте стены над проемом – 800 мм. Стройка ведется в зимних условиях.

Толщина стены 240 мм говорит о том, что нам понадобятся две брусковые перемычки шириной по 120 мм. В зимний период на самонесущую перемычку берут нагрузку от высоты стены, равной расчетному пролету. Расчетный пролет считается так:

1350 + 2*100/3 = 1420 мм

100 мм в данном случае – это минимальная глубина опирания перемычки. Так как высота кладки оказалась меньше расчетного пролета, в дальнейшем в расчетах будем использовать именно ее – 800 мм.

0,24*0,8*1,8*1,1/2 = 0,19 т/м = 190 кг/м

В этих расчетах 1,8 т/м3 – это вес кирпича, 1,1 – коэф. надежности, 2 – количество перемычек. Итак, нам необходимо выбирать перемычку из тех, чей индекс нагрузки не менее 2-х.

Как мы уже говорили выше, минимальная глубина опирания данных перемычек составляет 10 см, значит наименьшая возможная длина перемычки в нашем случае равна:

1350 + 100*2 = 1550 мм

Из списка типоразмеров нам могла бы подойти перемычка 2ПБ 16-2 длиной как раз 1550 мм и расчетной нагрузкой до 200 кг/м. Однако нам еще следует учесть нагрузку от собственного веса балки, которая равна 70/1,55 = 45 кг/м. То есть суммарная нагрузка будет составлять 190 + 45 = 235 кг/м, что превышает максимально допустимую для данной перемычки.

В нашем случае подойдет перемычка 2ПБ 19-3. Собственная нагрузка для нее составляет 80/1,94 = 41 кг/м. Тогда суммарная будет равна 190 + 41 = 231 кг/м, что не превышает допустимые 300 кг/м для этой балки. Длина перемычки составляет 1940 мм, и это тоже подходит для наших условий.

В настоящее время в строительстве, сборное железобетонное перекрытие, является самым распространённым. Перекрытие из железобетонных плит выполняется по кирпичным и монолитным стенам. А также по стенам из пенобетона, предварительно укреплённого монолитным поясом.

Укладка железобетонных плит перекрытия.

После того как стены выполнены под отметку верха этажа, можно приступать к перекрытию.

Основным правилом при укладке плиты перекрытия , это соблюдение глубины опирания плиты. Опирания плиты перекрытия на кладку стены должно быть 80–120 мм, а на бетонную стену или консоль балки, 65–120 мм.

Перед укладкой плит, на стену накладывается цементный раствор марки 100 и разравнивается до толщины 8–13 мм. Плиты, с помощью крана, поочерёдно и плотно «друг к другу» укладываются на раствор, при этом должен вестись контроль по соблюдению уровня низа плит. Перепады плит, за счёт толщины растворного шва – недопустимы.

За счёт конусообразных торцов, между плитами остаются швы, которые забиваются цементным раствором марки 100.

Железобетонные плиты, которые имеют длину более шести метров, свариваются между собой арматурными прутьями толщиной 10–12 мм, для этого в верхней зоне таких плит предусмотрены специальные металлические детали. Также к закладным деталям плит привариваются выпуска из гладкой арматуры толщиной 12 мм, для закладки их в стену. Такие выпуска должны быть загнуты в стене и длина их рассчитывается таким образом, чтобы они полностью «прятались» в несущей стене.

В том случае, если перекрытие этажа ведётся в два ряда плит, то эти ряды свариваются между собой.

Укладка железобетонных перемычек.

Железобетонные перемычки укладываются над оконными и дверными проёмами, для дальнейшего продолжения стен. Перемычки бывают несущие и ненесущие (заполнитель). Отличаются они между собой своей несущей способностью.

Несущие перемычки укладываются над проёмами несущих стен, такие перемычки способны нести нагрузки, уложенной на них несущей стены и перекрытия. Глубина опирания перемычки на кирпичную стену – 250 мм.

Ненесущие перемычки укладываются над проёмами перегородок и ненесущих стен, такие перемычки служат заполнением стены или перегородки и несут они только нагрузку уложенной на них кирпичной кладки. Глубина опирания железобетонных перемычек на кирпичную стену, 250 мм, на кирпичную кладку перегородки, 200 мм.

Все железобетонные перемычки укладываются на раствор марки 100, с толщиной шва 8–12 мм.

Опирание перекрытия на газобетон осуществляется посредством специальных армопоясов. Его изготовление необходимо для приема нагрузок от силы тяжести и конструкционных материалов следующих этажей или крыши. Что такое армопояс? Это монолитная конструкция из железобетона, повторяющая контуры стен. Армопояс возводится на несущих стенах, которые строят, применяя газобетон.

Для заливки армопояса подготавливают опалубку для бетона, которая представляет собой конструкцию для создания формы, в которую для жесткости укладывают арматуру.

Если опирание плит осуществляется на внутренние стены дома, стены строят таким образом, чтобы они опирались на фундамент. Армопояс на внутренних стенах под плитами перекрытия усиливает конструкцию, так как происходит распределение нагрузки по всей площади плиты. Армопоясом не считается конструкция, выполненная кирпичной кладкой на

indrikgrad.ru

Расчет железобетонной балки сборно-монолитного перекрытия

 

Для ориентировочного расчета балки сборно-монолитного перекрытия удобно использовать программу-калькулятор. Файл Excel с программой-калькулятором можно скачать, если перейти по этой ссылке и выбрать в меню «Файл» — «Загрузить». К сожалению, найти фамилию автора программы мне не удалось.

Расчет начинают с определения величины желаемой полезной нагрузки. Для расчета сборно-монолитного перекрытия полезная нагрузка складывается:

  1. Из нормативной эксплуатационной нагрузки перекрытия с коэффициентом запаса  (из СНиП). Например, для жилых помещений нормативная эксплуатационная нагрузка 150 кг/м2, коэффициент запаса 1,3, получаем эксплуатационную нагрузку 150 х 1,3=195 кг/м2.
  2. Из нагрузки от веса блоков, которыми заполняется межбалочное пространство. Например, блоки газобетонные плотностью 500 кг/м3 (D=500) толщиной 0,2 м. создадут нагрузку 500 х 0,2=100 кг/м2.
  3. Из нагрузки от веса армированной стяжки. Например, бетонная стяжка толщиной 0,05 м. при плотности бетона 2100 кг/м3 создаст нагрузку 2100 х 0,05=105 кг/м2 (вес арматурной сетки включен в показатель плотности бетона).

Итого желаемая полезная нагрузка на балку составит 195+100+105=400 кг/м2 Далее указываем длину перекрываемого пролета. Например, длина пролета 4,6 м.

Шаг балок — это расстояние между центрами балок, определяется размерами блока и принятой шириной балки. Например, длина блока 0,61 м., ширина балки 0,12 м., шаг балок 0,61+0,12=0,73 м.

Ширина перекрываемого пролета, стоимость бетона и арматуры указываются для того, чтобы калькулятор расчитал количество и стоимость материалов для перекрытия. На расчет параметров армирования эти показатели не влияют.

В разделе «Параметры балки» в первых двух строчках указываются рекомендуемые размеры балки. Принимая во внимание рекомендуемые размеры, выбираем размеры балки исходя из конструктивных соображений. Поскольку используются блоки толщиной 200 мм. и толщина стяжки 50 мм., то принимаем высоту балки 0,25 м. Если стяжка будет заливаться бетоном не одновременно с балками, то высота балки должна приниматься без учета стяжки.

Выбираем количество прутков арматуры из конструктивных соображений. Защитный слой бетона для арматуры должен быть не менее 20 мм., а расстояние между прутками должно превышать размер фракции щебня в бетоне.

На заключительном этапе анализируем результаты расчета и пытамся оптимизировать расходы на устройство перекрытия.

Подбирая число прутков арматуры стараемся уменьшить  вес арматуры на балку. Увеличивая ширину балки пробуем избежать применения поперечной арматуры, при этом правда будет увеличиваться объем бетона на одну балку.

Для нашего примера окончательно выбираем два прутка арматуры в один ряд. Диаметр стержня арматуры 12 мм. Поперечная арматура не нужна. Верхняя арматура также не нужна, так как балка заливается бетоном на месте.

Эта программа-калькулятор позволяет рассчитать перекрытие с равномерно распределенной нагрузкой. Она не применима, если на перекрытие, кроме распределенной, также воздействует значительная сосредоточенная нагрузка от веса каменных перегородок, печей, каминов и пр.

Следующая статья:

Расчет толщины утеплителя перекрытия или покрытия мансарды.

Предыдущая статья:

Сборно-монолитное перекрытие из легких каменных блоков
Еще статьи на эту тему

domekonom.su

Расчет балки (перемычки) | ImhoDom.Ru

Вот тут есть программка в Экселе, по которой можно расчитать балку (сечение и армирование).

http://izba.su/forum/showthread.php?1230-%D0%A1%D0%BE%D1%84%D1%82-%D0%B4%D0%BB%D1%8F-%D1%81%D1%82%D1%80%D0%BE%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE-%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F/page5

Применяется она с учетом вот этих разъяснений…

http://www.sovetporemontu.ru/item170.html

Но я со своим гуманитарным складом ума и таким же образованием не могу в этом всем разобраться!

Может тут кто-нибудь на форуме мне помочь?

Вводные данные такие…

На втором этаже в несущей центральной стене у меня по проекту большой пролет. Там нужно сделать балку. Изначально пролет таким не был, по центру была подпорка-колонна. Но по моей просьбе проектировщик ее убрал, получился широкий проем в стене.

Насколько я понимаю, с учетом снеговых нагрузок на эту балку будет распределяться вес не выше 2,4 тонны на погонный метр.Сверху балки будет продолжение из несколько рядов кирпичной стены (кирпич полнотелый) толщиной 380 мм, далее — армопояс на который будут опираться деревянные балки перекрытия. Выше — холодный чердак (утепление базальтовая вата) и затем крыша. Конструкция крыши, как почти у всех, из дерева. Покрытие — мягкая черепица.Так вот, длина этого пролета 3960мм. Плюс сколько нужно с каждой стороны для опирания на стену?И как понять какую нужно делать высоту этой балки и какое армирование, если бетон будет самый обычный, В15? По ссылке уж очень сложно мне разобраться в формулах! 🙂

В моем проекте заложены в этом месте три перемычки 4ПБ-48-8-П, но я что-то сомневаюсь. Опирание получается аж по 40 см с каждой стороны. Не много ли? Ну и по допустимой нагрузке мне кажется, что будет совсем на грани. Три эти перемычки держат 2,4 т. на метр. Проектировщик сказал, что если я так уж переживаю, то можно сделать сварную железную балку из швеллеров и двутавра. Она будет держать 3750 кг\м.

Но ведь там по этой центральной стене пойдет коньковый брус. Будет центр кровли опираться в это место… Не лучше все же сделать по месту единую бетонную балку с хорошим армированием?Сможете помочь и исходя из вышеуказанных данных сказать какие должны быть ее параметры?

imhodom.ru

подбор перемычек

Рассылка»Новости проекта»

Добавлено: 07 Окт 2011   roki-os

Подбор сборных перемычек

Состав архива

Перемычка_2.2.xls

Комментарии

Комментарии 1-6 из 6

РастОК

, 11 октября 2011 в 20:31

#6

Гы. Это не подбор перемычек, а ведомость которую заполнять нужно вручную. Никаких действий тут не предусматривается, либо это какой-то из пробных вариантов. Оформление очень хромает. А сама идея хорошая, нужно будет самому такую сделать. Паролей тоже никаких я не обнаружил.

roki-os

, 11 октября 2011 в 10:24

#5

для самых продвинутых пользователей пароль 000 (три нуля), если доработаете выкладываете, делал давно принцип расчета смутно помню

roki-os

, 11 октября 2011 в 10:21

#4

заполняешь исходные данные, он тебе ответ выдает по схеме

vladas

, 11 октября 2011 в 01:15

#3

вопросов немало

ДенисКа

, 10 октября 2011 в 21:48

#2

Удобная наверное штука, тока вот воспользоваться нельзя! Может и пароль напишешь, ежели это не девичья фамилия твоей матери….

lera_lev

, 10 октября 2011 в 19:47

#1

не работает…

673236732267321673206731967318

Комментарии могут оставлять только зарегистрированные участникиАвторизоваться

dwg.ru

Расчёт железобетонной балки

    Не смотря на то, что заводы железобетонных изделий производят большое количество готовой продукции, все же иногда приходится делать железобетонную балку перекрытия или железобетонную перемычку самому. Практически все видели строителей-монтажников, засовывающих в опалубку какие-то железяки, и почти все знают, что это — арматура, обеспечивающая прочность конструкции, вот только определять количество и диаметр арматуры, закладываемой в железобетонные конструкции, хорошо умеют только инженеры-технологи. Железобетонные конструкции, хотя и применяются вот уже больше сотни лет, но по-прежнему остаются загадкой для большинства людей, точнее, не сами конструкции, а расчет железобетонных конструкций. 

    Расчёт железобетонной балки — это одна из наиболее часто встречающихся задач в частном секторе. Столкнувшись с задачей расчёта фундамента для своего дома я разложил его на множество «условно» отдельных балок, посчитал все возможные нагрузки и принялся за расчёты. Конечно, прежде всего я попытался разобраться в алгоритме расчёта и попытался посчитать всё вручную. Потом я нашёл несколько программок для расчёта жб балок и перепроверил свои расчёты. Не удовлетворившись данными этих программок, составил Exel-табличку, которая впоследствии переросла в программу калькулятор. Потом расчёты затянули меня на несколько месяцев в сопромат и программирование и как результат — вот довольно серьёзная программа расчёта ж/б балок. 

С 12,01,2021 flash не поддерживается по умолчанию. 
Вот способ от одного из подписчиков:
Шаг1. Удалить с компа все версии флэшплеера, у Adobe есть на сайте прога для этого.
Шаг 2. Скачать и установить флэшплеер версии 27 или ниже.

Метод работает в браузере Яндекс. Говорят, что ещё на Мозиле работает.  Правда, в Хроме не работает всё равно.

После ввода любых числовых значений не забываем нажимать Enter, чтобы калькулятор их посчитал! 

    Процесс расчёта

     Основная идея расчёта сводится к тому, чтобы добиться баланса между прочностью бетона на сжатие и прочностью арматуры на растяжение. Иногда, в процессе расчётов каких-нибудь явно нереальных балок и нагрузок, можно увидеть, что калькулятор предлагает какое-то расчётное армирование, но при этом прочность балки не обеспечивается. Это следует понимать как то, что при таком сечении балки обеспечить прочность только арматурой невозможно. Т.е. калькулятор выдаёт сечение арматуры, при котором и бетон и арматура разрушатся одновременно и при этом наращивание армирования уже не приведёт к желаемому результату. Нужно либо уменьшать нагрузки/пролёты, либо увеличивать высоту/ширину сечения бетона.

 1. Геометрические параметры балки

      Некоторые программки, типа «Строитель+», расчитывают балку исходя из того, что известны длина пролёта, распределённая нагрузка на балку и марка бетона. В результате расчёта мы получим высоту, ширину и количество арматуры для обеспечения прочности балки. Это на начальном этапе не так и плохо, но зачастую геометрию нам диктуют условия строительства. Например, имея газобетонную стену шириной 290мм целесообразно сделать и балку перекрытия, скажем, над гаражными воротами шириной 290мм. Или, если вы хотите утеплить в последствии эту балку 5 см пенопласта, то нужно сделать ширину балки 240мм. Высоту тоже удобнее связать с высотой блока, ну или с 0,5 высоты блока, чтобы минимизировать отходы и работу по подрезке блоков. В случае балок внутри помещения зачастую у нас могут возникнуть ограничения по высоте балки. Например, проектируя гараж мы хотели получить выход на его крышу из «французского» окна второго этажа. При этом в гараже семиметровый пролёт, перекрываемый жб балкой — условие выхода из окна накладывало на высоту балки жёстке ограничение — не более 50см. Расчитывая ленту ростверка для фундамента по технологии ТИСЭ я так-же стремился сделать его по возможности ниже, чтобы на входе в дом было минимально возможное количество ступеней. 

     Итак, всеми этими примерами я хотел сказать то, что геометрические параметры зачастую нам заданы внешними факторами и порой требуется посчитать, сможем ли мы вложиться в отведённое нам пространство, а если не сможем, то сколько нужно арматуры, чтобы это стало возможным. Конечно, для того, чтобы с чего-то начать подбор сечения в случае расчёта с нуля, неплохо было бы иметь какую-то отправную точку. Для этого нам нужно знать хотя бы два параметра: длину балки и нагрузку на балку. Двух этих параметров программе будет достаточно, чтобы предположить минимально возможные высоту и ширину балки (в столбике с расчётами мелким курсивом).

    Пример из моей стройки. Я, не зная ещё ничего о форме своей ленты-ростверка на столбах ТИСЭ, размышлял следующим образом. Диаметр столбов ТИСЭ у меня 200мм. В процессе их заливки я местами немного ошибался, то они на пару миллиметров толще, то уже, то при бурении бур увело в сторону на 5мм, то ветер сдувал разметочную верёвочку и т.п. В общем, я принял ширину ленты 220мм (200мм — столб + 20мм запас). Далее, высота балки обычно принимается как b / 0.3 ÷ 0.5, т.е. высота лежит в диапазоне 440 ÷ 730 мм. Нагрузки от каркасного дома у меня не большие, максимум 2500кг/м.п., а максимальный пролёт между столбами равен 2800мм в свету (ограничен несущей способностью грунта и диаметром расширения столба ТИСЭ). Потому рассчитываю балку сечением 440 х 220. При таких вводных данных получается, что для армирования достаточно 2 прута диаметром 10мм в одном ряду и процент армирования лежит ниже рекомендованного порога в 0,3%. Это не плохо, но экономически необосновано — нужно слишком много бетона! Поскольку ширину балки уменьшать некуда, уменьшаем высоту. Минимально рекомендованная 250мм, округляю её до целого числа 300мм (опалубку легче делать из двух досок 150мм). Считаем. Армирования достаточно 3 х 12мм и процент армирования в оптимальных пределах. Высота в 300мм меня устраивает по эргономическим соображениям, а расход бетона снижен на 32%. Ещё парочка расчётов со значениями высоты 250мм и 350мм показала, что 250мм требует уже большего расхода арматуры, и цена за арматуру начинает перевешивать экономию на бетоне, а 350мм вроде и не плохо, но усложняется конструкция опалубки и нужно «лишних» 2 куба бетона. Конечно, я не упомянул о классе бетона! Но, у нас в городе разница за куб бетона В20 и В30 не такая уж и большая, и я выбирал всегда бетон класса В30. Известны случаи, когда реальный класс бетона несколько не соответствует заказываемому, поэтому я предпочёл заказывать бетон более высокого класса в расчёте на то, что он, вероятно, на самом деле В25, а то и вовсе В20.

2. Определение опор балки

    С точки зрения сопромата, будет ли это перемычка над дверным или оконным проемом или балка перекрытия, значения не имеет. А вот то как именно балка будет опираться на стены имеет большое значение. С точки зрения строительной физики любую реальную опору можно рассматривать или как шарнирную опору, вокруг которой балка может условно свободно вращаться или как жесткую опору. Определить расчётную схему не сложно:

  • Балка на шарнирных опорах. Если железобетонная балка устанавливается в проектное положение после изготовления, ширина опирания балки на стены меньше 200 мм, при этом соотношение длины балки к ширине опирания больше 15/1 и в конструкции балки не предусмотрены закладные детали для жесткого соединения с другими элементами конструкции, то такая железобетонная балка однозначно должна рассматриваться как балка на шарнирных опорах. Это наиболее вероятная схема в частном домостроении.

  • Защемлённая на концах балка. Если железобетонная балка изготавливается непосредственно в месте установки, то такую балку можно рассматривать, как защемленную на концах только в том случае, если и балка и стены, на которые балка опирается, бетонируются одновременно или при бетонировании балки предусмотрены закладные детали для жесткого соединения с другими элементами конструкции. Во всех остальных случаях балка рассматривается, как лежащая на двух шарнирных опорах.

  • Консольная балка. Балка, один или два конца которой не имеют опор, а опоры находятся на некотором расстоянии от концов балки, называется консольной. Например плиту перекрытия над фундаментом, выступающую за пределы фундамента на несколько сантиметров, можно рассматривать как консольную балку. 

  • Многопролетная балка. Иногда возникает необходимость рассчитать железобетонную балку перекрытия, которая будет перекрывать сразу две или даже три комнаты, монолитное железобетонное перекрытие по нескольким балкам перекрытия или перемычку над несколькими смежными проемами в стене. В таких случаях балка рассматривается как многопролетная на шарнирных опорах. Это уже значительно более сложная в расчёте конструкция. Её, конечно, можно рассматривать как отдельные шарнирно опёртые балки, но это совсем не так! При равных по длине пролётах самый большой изгибающий момент образуется не в пролётах, а над опорами и в этом случае особое значение приобретает рассчёт арматуры именно верхнего ряда. Мой калькулятор пока умеет рассчитывать лишь двухпролётные балки.

Лента-ростверк в фундаменте ТИСЭ однозначно относится к Многопролётным балкам, однако, я её рассчитывал, как набор несвязанных между собой шарнирно опёртых балок, нагруженных равномерной нагрузкой от стен дома. В реальности, конечно, все сегменты ленты армированы максимально длинными кусками арматуры (12 метров), соблюдая все правила армирования по расположению стыков, нахлёстов, примыканий, длин анкеровки и установке поперечных хомутов. Что даёт мне значительный запас по прочности в условиях очень «ажурного» сечения балки. Такую конструкцию целесообразнее расчитывать в два прохода: все центральные элементы — это балки с двумя защемлёнными концами, а пролёты возле углов и Т-образные примыкающие пролёты — по схеме с одним защемлённым и одним шарнирно-опираемым концами. Чем больше пролётов в балке, тем ближе она будет к подобному упрощению (начиная с 5 пролётов — разбежка ). 

3. Определение нагрузки на балку

      Нагрузки бывают распределёнными и сосредоточенными. В жизни, конечно, всё сложнее: распределённые нагрузки могут быть равномерно и неравномерно изменяющимися, сосредоточенные нагрузки почти всегда сопровождаются некоторыми распределёнными, а ещё все эти сочетания могут быть статическими или динамическими, или обоими одновременно!  С одной стороны конструкцию следует рассчитывать на максимально неблагоприятное сочетание нагрузок, с другой стороны теория вероятности говорит о том, что вероятность такого сочетания нагрузок крайне мала и рассчитывать конструкцию на максимально неблагоприятное сочетание нагрузок, значит неэффективно тратить строительные материалы и людские ресурсы. Поэтому при расчете конструкций динамические нагрузки используются с различными поправочными коэффициентами, учитывающими вероятность сочетания нагрузок, но как показывает практика, учесть все невозможно. Для примера я покажу вам свои расчёты нагрузки на ленту-ростверк:

Как видите, динамическая нагрузка вносит очень ощутимый вклад в суммарное значение всех нагрузок, хотя она вряд ли когда-нибудь случится. Для дальнейших расчётов я округлил нагрузку в 2242кг*м.п. до 2500кг*м.п., Вдруг я на старости лет увлекусь роялем и бильярдом одновременно =)

К этой же нагрузке стоит добавить ещё и нагрузку от собственного веса балки. При размерах 0,22 х 0,3 х 3 метров объём балки составит 0,198 м³, что при плотности железобетона 2500кг на кубометр составит 495кг. В калькуляторе эти величины так-же вычисляются, и автоматически добавляются к полезной нагрузке, если стоит галочка напротив строчки «Добавлять вес балки?»

     Поскольку стены дома конструктивно обшиты ОСП-плитами, равномерно распределяющими нагрузку от стоек каркаса по всему обвязочному брусу я принимаю нагрузку, как равномерно распределённую.

4. Класс арматуры

     В последнее время я несколько раз уже покупал арматуру, и ни разу не видел арматуру диаметров 10 — 16мм другого класса, кроме как А500С. Это самая подходящая арматура, рекомендованная современными правилами. Тем не менее, в программу-калькулятор я включил почти всю линейку современных классов арматуры (от А240 до А1000) и те классы, которые были в старых сводах правил (типа А-I, A-II, A-III). Мало ли, кто где какую арматуру раздобудет. Для расчётов и на практике я использовал арматуру класса А500С диаметром 12мм.

5. Армирование

     Этот пункт в калькуляторе находится в разделе исходных данных, однако имеет некоторую «обратную связь» от расчётов. Задавая количество прутов арматуры в растянутой зоне балки программа рассчитает требуемый диаметр этих прутов и если выбранный диаметр меньше расчётного, покажет это. Как выбрать количество прутов? Для этого в раздлах СНиП есть ряд правил, которые я описал в статье «правила армирования». В общем случае, если это не узенькая слабонагруженная перемычка над окном, рекомендуется не менее двух прутов. Есть ограничения и на максимальное количество прутов, обусловленное расстоянием между прутами. Это минимальное расстояние определено необходимостью свободного протекания бетонной смеси в тело ленты между стержнями арматуры фундамента при заливке бетона, возможностью его уплотнения и хорошей связи бетона с арматурой для совместной работы под нагрузкой. Минимальное расстояние между стержнями продольной арматуры не может быть меньше наибольшего диаметра стержней арматуры и не менее 25 мм для нижнего ряда арматуры и 30 мм — для арматуры верхнего ряда при двух рядах армирования. Таким образом, максимальное количество прутов:

N=b-2a/(D+25)

округлённое до меньшего целого. В моём примере ширина балки b=220мм, толщина защитного слоя a=35мм (задана пластиковыми фиксаторами арматуры типа «звёздочка»), диаметр  арматуры D=12мм:

N=220-2*35/(12+25)=4

С целью уменьшения арматурных работ я выбрал 3 прута. До расчётов диаметра мы еще дойдём.

6. Максимально допустимый относительный прогиб

      Все строительные, и не строительные тоже, конструкции прогибаются! Не бывает таких материалов, которые не гнутся совсем. Железобетон не исключение, он может прогибаться под нагрузками в некоторых пределах без разрушительных последствий, причём порой на достаточно большие величины. СНиП 2.01.07-85 «Нагрузки и воздействия» регламентирует максимально допустимые прогибы, причем часть из этих ограничений связаны не с конструктивными проблемами бетонных балок, а просто с эстетическими (некрасиво, если плита перекрытия над головой прогибается на 10см, не смотря на то, что прочность обеспечена!) Выбираем требуемый в конкретном случае прогиб. В моём примере выбран прогиб 1/200, что означает, что при пролёте 3 м максимальный прогиб может составить 15 мм.

7. Изгибающий момент  (начало расчётов)

   Определение изгибающего момента — ключевое действие в расчёте. Все последующие вычисления будут опираться на эту величину. К сожалению, существует очень много самых разнообразных случаев приложения нагрузки к балке, да и балки бывают на разных опорах, да ещё и балки бывают статически определимые и неопределимые. Потому нету одной универсальной формулы, по которой можно вычислить изгибающий момент в любой ситуации (возможно, математики скажут, что я не прав, но двойные интегралы в уравнениях общего вида лежат за гранью моего понимания). Для определения наиболее подходящей для каждого конкретного случая формулы я порекомендую вот этот сайт, формулами которого я пользовался для написания своего калькулятора. В моём примере с равномерно распределённой нагрузкой (2500кг/м + собственный вес балки 495 кг / 3 м = 2665 кг/м) и шарнирно опёртой балкой изгибающий момент считается по формуле:

М=ql²/8

М=2665 х 3²/8=2998 кгс*м

Если бы нагрузка была сосредоточенной посередине балки, то:             М=Ql/4.

8. Высота сжатой зоны

      Следующим важным шагом является определение высоты сжатой зоны бетона и сравнение её с граничным условием. 

     Железобетон — это композитный материал, прочностные свойства которого зависят от множества факторов, точно учесть которые при расчете достаточно сложно. Кроме того бетон хорошо работает на сжатие, а арматура хорошо работает на растяжение, а при сжатии возможно вспучивание арматуры. Поэтому конструирование железобетонной конструкции сводится к определению сжатых и растянутых зон. В растянутых зонах устанавливается арматура. При этом высота сжатой и растянутой зоны зараннее неизвестна и потому применять обычные методы подбора сечения, как для деревянной или металлической балки, не получится.

    Для начала определяем граничную высоту сжатой зоны. Это такая высота бетона, при которой его предельное напряжение на сжатие наступает одновременно с предельным напряжением в арматуре на растяжение. Т.е. при такой высоте сжатой зоны будет достигнут баланс между двумя разнонаправленными силами, сжатием и растяжением, и при превышении нагрузки произойдет одновременное разрушение бетона и обрыв арматуры. Граничная высота считается по следующей формуле:

ξr= ω/(1+Rs/Rpr*(1- ω/1,1))

где ω — характеристика сжатой зоны бетона, определяемая по формуле:

ω = k — 0,008 · Rb

где в свою очередь k — коэффициент, принимаемый равным для бетона:     тяжёлого — 0,85;      мелкозернистого — 0,80;

Rb — сопротивление бетона класса В25 сжатию: 14.5 МПа.

Итого: ω = 0,85 — 0,008 · 14,5 = 0,734.

Rpr — предельное напряжение в арматуре сжатой зоны сечения, принимаемое равным 500 Н / мм²

Rs — сопротивление арматуры класса А500 растяжению, 435 МПа. 

ξr=0,734/(1+435/500*(1-0,734/1,1))=0,57

Поскольку это относительная высота, её можно перевести в абсолютную: ξr*h=171мм.

    Высота сжатой зоны бетона c учётом сжатых стержней арматуры:

x=(RsAs-RscAsc)/(Rb*b)

где As — площадь сечений растянутой арматуры, в нашем примере 3 прута по 12мм, Asc — площадь сжатой арматуры (2 прута 10мм):

As=пR²*N;

 As=3,14*0,6²*3=3,39 см²     Asc=3,14*0,5²*2=1,57 см²

x=(435*3,39-400*1,57)/(14,5*22)=2,66 см

9. Коэффициенты Аm и Ar

      Расчёт требуемой площади арматуры можно вести по алгоритму, изображённому ниже:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Для расчёта необходимого сечения арматуры нужно вычислить коэффициент Аm.

Аm=М/(Rb*h0²*b)

Поскольку М у нас в кг*м, Rb в Мпа, а величины b и h0 в см нужно всё привести к единым размерностям. М=2998 кг*м=299800 кг*см,  Rb=14.5 МПа=147,86 кг/см² , теперь можно считать:

Am=299800/(147,86*26,5²*22)=0,131

Если значение Am будет больше Ar, то потребуется увеличить сечение бетонной балки, или повысить класс бетона. Если же таких возможностей или желаний нет, то необходимо устанавливать арматуру в сжатой зоне бетона!

Коэффициент Ar вычисляется по формуле:

Ar=ξr(1-0,5ξr)

Ar=0,57(1-0,5*0,57)=0,408

Условие Am<Ar у нас выполняется, значит сжатой арматуры добавлять не требуется.

10. Площадь растянутой арматуры

      Расчёт необходимой площади сечения растянутой арматуры ведётся по формуле:

Fa=M/(Rs*h0*η)

где η = 0,5*(1+√(1-2*Am)) = 0,5*(1+√0,738) = 0,93

Поскольку у нас в расчёте опять размерности не совпадают, приведём все данные к единой системе, для удобства — к сантиметрам.

Rb=14.5 МПа=147,86 кг/см², Rs=435 МПа=4435,76 кг/см² .

Fa=299800/(4435,76*26,5*0,93)=2,74 см²

Поскольку количество стержней мы уже предварительно выбрали (N=3), то площадь сечения одного стержня должна быть не менее Fa/N = 2,74 / 3 = 0,914 см². Несложно посчитать диаметр этого стержня:

D=√(S/π)*20     D=10,79 мм

Округляем до ближайшего большего значения из номенклатурного ряда — 12мм. Итого, получается для армирования балки из моего примера достаточно 3 прута арматуры диаметром 12мм.

11. Проверка

   Поскольку площадь растянутой арматуры отличается от расчётной, можно провести обратный расчёт для того, чтобы узнать, насколько большой у нас получился запас прочности. Сначала вновь пересчитываем площадь арматуры:

As=N*π*(D/2)² = 3,39 см²

Затем считаем максимальный изгибающий момент. Если условие Am<Ar выполняется и высота сжатой зоны х>0, то используется формула:

Mmax=Rb*b*х*(h0-0.5*х)+Rsс*Asс*(h0-a)

Mmax=147,86*22*2,66*(26,5-0,5*2,66)+4078,86*1,57*(26,5-3,5) =365078 кг*см      (3650,7 кг*м = 35,8 кН*м)

где a — толщина защитного слоя бетона 3,5 см, Rsc — Предел прочности арматуры на сжатие Rsc=400 МПа=4078,86 кг/см²

Если х меньше или равен нулю, то используется другая формула: Mmax=Rs*As*(h0-а)

А если не выполняется условие Am<Ar, то:                          Mmax=Ar*Rb*b*h0²+Rsс*Asс*(h0-a)

Для того, чтобы перевести это значение в распределённую нагрузку, воспользуемся формулой из пункта 7:

q=8M/l²

 q=8*3650,7/3²=3245 кг*м

Поскольку наша расчётная нагрузка составляет 2665 кг*м (с учётом собственного веса), то получается запас по прочности 21%.

12. Процент армирования

   Процент армирования балки, это не самая критически важная величина в расчёте, потому я её оставил на последнем месте. Считается эта величина по формуле:

μ = (Fa+Fa’)/b*h0*100

μ=(3,39+1,57)/(22*26,5)*100=0,85%

Существуют рекомендованные диапазоны процента армирования балок от 0,3 до 4% (для колонн до 5%), выведенные изходя из экономических и конструктивных соображений, и наш результат отлично вписывается в этот диапазон.

13. Прогиб

   Нередко бывает так, что прочность балки по первой группе предельных состояний достаточна, а вот расчёт по второй группе выходит за пределы допустимых деформаций. Потому расчёт на прогиб мне показался достаточно необходимым, чтобы потратить своё время и включить его в калькулятор. Приводимый ниже расчет не совсем соответствует рекомендациям СНиП 2.03.01-84 и СП 52-101-2003, тем не менее позволяет приблизительно определить значение прогиба по упрощенной методике. И хотя шарнирно опертая безконсольная однопролетная балка c прямоугольной формой поперечного сечения, на которую действует равномерно распределенная нагрузка — это частный случай на фоне множества возможных видов нагрузок, расчетных схем и геометрических форм сечения, тем не менее это очень распространенный частный случай в малоэтажном строительстве.

     Прогиб балки для моего примера считается по формуле:

f = k5qlᶣ/384EIp

Эта формула очень похожа на класическую формулу прогибов, как в расчётах деревянных элементов и отличается наличием коэффициента k. Этот коэффициент учитывает изменение высоты сжатой области сечения по длине балки при действии изгибающего момента. При равномерно распределенной нагрузке и работе бетона в области упругих деформаций значение коэффициента для приближенных расчетов можно принимать k = 0.86. Использование этого коэффициента позволяет определять прогиб балки (плиты) переменного сечения, как для балки постоянного сечения с высотой hmin. Таким образом в приведенной формуле остается только 2 неизвестных величины — расчетное значение модуля упругости бетона и момент инерции приведенного сечения Ip в том месте, где высота сечения минимальна. Остается только определить этот самый момент инерции, а модуль упругости примем равный начальному. Момент инерции приведённого сечения Ip вычисляется довольно сложным и запутанным методом, в процессе которого необходимо решать кубическое уравнение, поэтому, если очень хочется вникнуть в суть и пересчитать всё самому, отправлю вас на сайт, где этот метод описан по шагам с картинками, чтобы совсем уж не копировать сайт автора )   

      Момент инерции балки J и момент сопротивления W калькулятор расчитывает по методике, описанной на указанном сайте и выдаёт результат в двух первых строчках правого столбца с расчётами.

14. Прочность по наклонным сечениям

      Этим расчётом никогда нельзя пренебрегать, поскольку бетон не переносит

растягивающих усилий, а возле опор, на которые опирается балка, создаются

именно такие усилия, которые к тому-же не скомпенсированы никакой арматурой

(если не ставить хомуты). Если расчёт по прогибу и по прочности проходит, то это

совсем не означает, что балка не разрушится возле опоры из-за наклонной трещины.

Суть возникновения этой трещины изображена на картинке справа. 

     Для начала нам нужно определить реакции опор.

Поскольку мы рассматриваем нашу балку как шарнирно опёртую, то реакции левой и правой опор будут равны между собой, т.е. нагрузка между ними распределиться поровну.

Qопоры = q*L*0,5 = 2665 * 3 * 0,5 = 3998 кг = 39,2 кН (4т на  каждую опору)

Прочность балки по наклонным сечениям обеспечивается прочностью бетона и поперечной арматуры, расположенной в теле балки.

Выясняем необходимость постановки поперечного армирования по расчету из условия:

 Qопоры ≤ Qmin 

где Qmin — расчетная поперечная сила, воспринимаемая железобетонным элементом без поперечной арматуры.

Расчетную поперечную силу Qmin, воспринимаемую элементом без вертикальной и (или) наклонной арматуры, допускается определять по формуле (7.78a) п.п. 7.2.1.6 СНБ 5.03.01-02 :

Qmin = ϕс * Rbt * b * ho

где коэффициент ϕс принимается равным:

 для тяжелого бетона — 0,6;
 для мелкозернистого — 0,5.

Rbt — сопротивление бетона растяжению Rbt=1,05 МПа=1050 кПа, а b и h0 выражены в миллиметрах.

Qmin = 0,6 * 1,05 * 220 * 265 = 36729 H = 36,7 кН

Поскольку Qопоры (39,2 кН) > Qmin (36,7 кН), бетон возле опоры не выдерживает нагрузки и требуется расчёт поперечного армирования. 

15. Поперечное армирование

      Диаметр хомутов в вязанных каркасах должен быть не менее 5 мм при h ≤ 800 мм и 8 мм при h > 800 мм. Высота нашего сечения 300 мм, но для хомутов у нас запасена арматура диаметром 6мм. Хомуты представляют из себя изогнутую рамочку, обхватывающую продольную арматуру, а значит площадь сечения хомута является удвоенной площадью сечения арматуры диаметром 6мм: 

 Asw = 3,14*0,3²*2 = 0,5652 см².

      Максимально допустимый расчётный шаг хомутов определяем по формуле (Пособие по проектированию жбк, к СНиП 2.03.01-84 п.п. 3.29 (46)):

Smax = ϕb4 * Rbt * b * ho²/Q

Smax = 1,5 * 1050 кПа * 0,22 м * 0,265² м / 39,2 кН = 0,62 м

где фb4 | фb3 | фb2:

 — для тяжёлого бетона: 1,5 | 0,6 | 2,00

 — для мелкозернистого и лёгкого плотностью выше D 1900: 1,2 | 0,5 | 1,7

 — для лёгкого D < 1900 и пористого: 1,0 | 0,4 | 1,5

    Однако, согласно СНБ 5.03.01-02 п.п. 11.2.21, в железобетонных элементах, в которых поперечная сила не может быть воспринята только бетоном, поперечную арматуру следует устанавливать с выполнением следующих конструктивных требований, определяющих шаг поперечных стержней:

— при h ≤ 450 мм — не более h/2 и 150 мм; 
— при h > 450 мм — не более h/3 и 300 мм; 

— не более 3/4h и 500 мм;

     Таким образом, в средней части пролета шаг поперечных стержней принимаем S = 3/4*30 = 22 см, (что не превышает 3/4h = 3/4*30 = 22,5 см). Исходя из равномерного распределения по длине центральной части у меня получилось 25 см, что, в принципе, допустимо в виду незначительного превышения Qопоры над Qmin.

      В приопорных участках шаг поперечных стержней не должен превышать 15 см и не более h/2 = 30/2 = 15 см. Принимаем 15 см.

Вычисляем интенсивность усилий в поперечных стержнях на единицу длины балки:

qs = Rsw * Asw / S

qs = 290 000 кПа * 0,00005652 м²  / 0,15 м = 109,27 кН/м

где Rsw — сопротивление растянутой поперечной арматуры класса АIII = 290 МПа;

Asw — площадь сечения арматуры хомута;

S — расстояние между хомутами в этой проекции, S = 15 cм.

Минимальная интенсивность:

qsmin = фb3 * Rbt * b / 2

qsmin = 0,6 * 1050 * 0,22 /2 = 69,3 кН/м

Требуемая интенсивность:

qsтр = Q² / (4 * Mb)

где Mb = фb2 * Rbt * b * ho²

Mb = 2 * 1050 * 0,22 * 0,265² = 32,44 кН·м

qsтр = 39,2² / (4 * 32,44) = 11,84 кН/м

Так как принятая интенсивность (109 кН/м) больше требуемой (11,84 кН/м) и больше минимальной (69,3 кН/м), оставляем шаг S = 15 см.

16. Ширина приопорных участков

      Ширину приопорных участков вычислим по длине проекции опасной наклонной трещины на продольную ось балки:

с0 = √(Mb/qs) = √(32,44 / 109,27) = 0,55 м

Учитывая границы с0 в расчёте (ho < c0 < 2ho), принимаем с0 = 53 см. Несущую способность наклонного сечения проверяем по условию:

Qmax = Mb / c0 + qs * c0 = 32,44 / 0,55 + 109,27 * 0,55 = 119 кН

Qmax (119 кН) > Qопоры (39,2 кН)

Условие выполняется! Такой запас несущей способности у нас образовался благодаря хомутам диаметром 6 мм. Для данного случая можно было использовать хомуты диаметром 5мм, которые даже в приопорных учасках можно было бы ставить на расстоянии, как и в средней части пролёта — 25 см,  но требования СНБ написаны не просто так!

 

P.S.: Если у вас балка планируется неразрезная многопролётная и с более-менее равными пролётами (+/-10%), и вы её надеетесь посчитать самостоятельно, то вам может пригодиться график эпюр изгибающих моментов. Для совсем ручного счёта рекомендую пролистать статейку про монолитное реблисто-балочное перекрытие.

Расчет железобетонных перемычек. Виды железобетонных перемычек.

При возведении кирпичных стен неизбежно возникает необходимость установки над оконным проемом железобетонной перемычки. Они представляют собой железобетонные балки с различным сечением и длиной, изготовленные на заводе. Чтобы выбрать необходимый типоразмер изделия, необходимо произвести предварительные расчеты, которые будут учитывать такие данные как нагрузка на перемычку и ширина проема. Расчет железобетонных перемычек.

При этом, говоря о нагрузке, имеют в виду собственный вес перемычки суммарно с весом стены и перекрытия. В случае с жилыми домами, где нагрузки не так высоки, все случаи принято разбивать на три группы:

  1. На стену опирается перекрытие.
  2. Перекрытие на стену не опирается, а сам она является самонесущей.
  3. Перемычку укладывают в перегородке из кирпича толщиной 12 см.

 

Виды железобетонных перемычек.

Прежде чем приступить к расчетам, давайте немного ознакомимся с видами самих перемычек. Чтобы понимать, какие варианты вам доступны, следует открыть сайт любого производителя ЖБИ и посмотреть, какие виды перемычек железобетонных присутствуют в их номенклатуре. Перейдя по ссылке, вы увидите длинный список типоразмеров с их характеристиками. Чтобы научиться быстро ориентироваться в нем, следует научиться расшифровывать маркировку. Сделаем это на примере перемычки 2ПБ 16-2:

  • 2ПБ – эта часть маркировки означает принадлежность изделия к какому-то виду и типу сечения. В данном случае – перемычка брусковая второго типа сечения.
    • Брусковые перемычки (ПБ) могут иметь ширину 120 или 250 мм, что делает необходимым использование сразу нескольких изделий в случаях, когда толщина перегородки превышает 120 мм. Производят также плитные перемычки (ПП), ширина которых бывает 380 и 510 мм.
    • Второй тип сечения (2ПБ) имеет размеры 120х140 мм. Другие типы имеют следующие габариты: 1ПБ – 120х65 мм, 3ПБ – 120х220 мм, 4ПБ – 120х290 мм, 5ПБ – 50х220 мм.
  • 16 – эта часть шифра говорит о длине изделия, которая равняется 1550 мм. Размер выражен в дециметрах и округлен.
  • 2 – последняя цифра условного обозначения означает нагрузку, на прием которой рассчитана перемычка. В данном случае это 200 кг/м. Приблизительно понимать эти данные следует так: перемычки с индексом нагрузки 1 обычно используют для перегородок; индекс 8, говорит о том, что такие изделия с легкостью справляются с самонесущими стенами; индексом 27 обладают перемычки, применяемые в стенах, на которые опираются перекрытия.

Теперь, зная разнообразие железобетонных перемычек, можно переходить непосредственно к расчету.

Как подбирать железобетонные перемычки.

Расчет железобетонных перемычек. Итак, давайте сперва введем какие-то исходные данные. Допустим, нам надо рассчитать, какую перемычку следует брать для перекрытия пролета шириной 1350 мм в самонесущей стене толщиной 240 мм при высоте стены над проемом – 800 мм. Стройка ведется в зимних условиях.

Толщина стены 240 мм говорит о том, что нам понадобятся две брусковые перемычки шириной по 12 мм. В зимний период на самонесущую перемычку берут нагрузку от высоты стены, равной расчетному пролету. Расчетный пролет считается так:

1350 + 2*100/3 = 1420 мм

100 мм в данном случае – это минимальная глубина опирания перемычки. Так как высота кладки оказалась меньше расчетного пролета, в дальнейшем в расчетах будем использовать именно ее – 800 мм.

Далее определяем нагрузку на 1 погонный метр изделия:

0,24*0,8*1,8*1,1/2  = 0,19 т/м = 190 кг/м

В этих расчетах 1,8 т/м3 – это вес кирпича, 1,1 – коэффициент надежности, 2 – количество перемычек. Итак, нам необходимо выбирать перемычку из тех, чей индекс нагрузки не менее 2-х.

Как мы уже говорили выше, минимальная глубина опирания данных перемычек составляет 10 см, значит наименьшая возможная длина перемычки в нашем случае равна:

1350 + 100*2 = 1550 мм

Из списка типоразмеров нам могла бы подойти перемычка 2ПБ 16-2 длиной как раз 1550 мм и расчетной нагрузкой до 200 кг/м. Однако нам еще следует учесть нагрузку от собственного веса балки, которая равна 70/1,55 = 45 кг/м. То есть суммарная нагрузка будет составлять 190 + 45 = 235 кг/м, что превышает максимально допустимую для данной перемычки.

В нашем случае подойдет перемычка 2ПБ 19-3. Собственная нагрузка для нее составляет 80/1,94 = 41 кг/м. Тогда суммарная будет равна 190 + 41 = 231 кг/м, что не превышает допустимые 300 кг/м для этой балки. Длина перемычки составляет 1940 мм, и это тоже подходит для наших условий.

Заключение.

Приведенный пример основан на конкретных данных, которые могут значительно отличаться в зависимости от изменяющихся условий. В отдельных случаях должны учитываться другие дополнительные данные. Например, длина перекрытия пролетом или летний период строительства. Все это будет отражаться на расчетах, но базовый принцип, изложенный в этой статье, является их основой.

 

Расчет индивидуальной железобетонной балки

При возведении зданий и сооружений для устройства перекрытий и стеновой кладки над различными проемами часто, помимо применения железобетонных балок и перемычек заводского изготовления, возникает необходимость в устройстве индивидуальных монолитных железобетонных балок непосредственно на строительной площадке.

Что касается строительства с применением несъемной опалубки, то индивидуальные балки являются его неотъемлемой структурной частью. При наличии конструкторской проектной документации вопросов по их устройству не возникает.

Но на площадках индивидуальных застройщиков весьма распространена практика строительства по архитектурным проектам, так называемым эскизникам, и расчеты монолитных балок приходится выполнять по ходу строительства.

Разберем, как можно выполнить расчет железобетонной балки самостоятельно.

Что принять за основу расчета (общие рекомендации)

 

 

 

 

 

 

 

 

 

Основными нормативами для расчетов железобетонных конструкций являются методики, изложенные в Пособиях к СНиП 2.03.01-84 и СП 52-101-2003.

Конечно, правильнее применять более «свежие» методики, но, судя по отзывам специалистов, для людей, решивших самостоятельно разобраться и рассчитать вручную железобетонную конструкцию, не имея предварительного опыта и специального образования, проще воспользоваться старой методикой.

При этом нужно учесть, что весь расчет следует выполнять в рамках одних нормативов. Если уж начали рассчитывать по новому, значит, во всем применяйте данные нового СП.

Для примера, как они могут различаться, приведем таблицы расчетных значений сопротивления бетона сжатию:

Расчетные значения сопротивления бетона сжатию (СНиП 2.03.01-84*(1996))

 

 

Расчетные значения сопротивления бетона сжатию (СП 52-101-2003)

Разница очевидна и по выбору типа бетона, и по количеству расчетных значений.

В дополнение приведем соответствие классов бетона по СНиП 2.03.01-84 маркам бетона по СНиП II-21-75, все еще используемым в обиходе (соответствие — по столбцам):

Марки бетона (СНиП II-21-75)

М50М75М100М150М200М250М300М350М400М450М500М600М700М800

Классы бетона (СНиП 2.03.01-84)

В3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60

Железобетон – материал, включающий в себя несколько составляющих, поэтому учесть работу каждого элемента в общей структуре балки (под влиянием всех факторов на ее несущую способность) весьма затруднительно и под силу лишь профессионалам, которые имеют опыт практических расчетов на основе сопромата.

Конечно, существуют специальные расчетные программы, но они весьма не дёшевы и имеют их крупные проектные организации. Для единичного же расчета углубляться в изучение этих программных комплексов нет особой целесообразности.

На помощь может прийти универсальная программа расчета железобетонной балки. Ее работа основана на автоматическом расчете основных параметров при введении исходных данных, таких как: длина перекрываемого пролета, тип железобетонной опоры, значения нагрузок и прочее.

Область применения бетонных блоков для стен подвалов довольно обширна. Кроме возведения ленточного фундамента, они применяются при строительстве технических подпольев и стен цокольных этажей, используются для обнесения опасных участков дорог, а также при постройке гаражей.

При строительстве любых сооружений и зданий основным из требований к конструкции является надежность, должное сопротивление деформированию во время воздействия различных нагрузок. О железобетонных балках перекрытия читайте здесь.

Встроенный в программу калькулятор бетонной балки определит количество арматуры, в зависимости от заданного диаметра стержней и сечения.

Ориентирами же могут служить следующие базовые положения:

  • Вся арматура в железобетонной конструкции должна располагаться внутри бетона не ближе 2см от его поверхности
  • Арматура должна работать на растяжение, поэтому устанавливать её следует в нижней части конструкции. В верхнем поясе рабочие арматурные стержни устанавливают в случаях, отдельного изготовления балки на строительной площадке с последующим подъемом краном для установки её в проектное положение
  • Диаметр сечения рабочей (продольной) арматуры принимается не менее 12мм и класс её – АIII
  • Высота сечения не менее(!) 1/20 части перекрываемого пролета (6м/20 = 0,3м)
  • Значение отношения высоты к ширине от 2 до 4 (h/b = 2~4)

Также калькулятор железобетонной балки способен выполнить расчет на прочность и рассчитать прогиб.

Определение типа опирания балки

В зависимости от типа опирания (см. Устройство буронабивных свай) выбирается метод расчета. Рассмотрим основные типы опор железобетонных балок на несущие конструкции.

Шарнирный тип опирания.

 

Таковым считается случай, когда в проектное положение устанавливают предварительно изготовленную железобетонную балку.

Причем конструкцией не предусмотрены никакие закладные детали для последующего жесткого соединения с конструктивными элементами здания. Как правило при таком типе опирания ширина плоскости опирания на несущие конструкции (стены, колонны) не превышает 20см.

Жестко защемленная балка.

Чтобы считать балку жестко защемленной на концах, условия должны быть следующими: балка бетонируется одновременно с прилегающими конструкциями в составе монолитной стены, в ее конструкции имеются закладные детали для последующего жесткого соединения с остальными конструктивными элементами.

При бетонировании создает монолитные узлы соединений конструкций.

Многопролетное опирание.

При необходимости перекрыть несколько последовательно расположенных пролетов опирание балки выполняется на несколько опорных конструкций (колонны, простенки между окон).

Такое опирание рассчитывается как многопролетное в случае, если опоры шарнирные). Если опоры жесткие, то расчет ведется по каждому отдельному пролету, как по самостоятельной балке.

Консольное опирание.

Речь о таком типе опирания ведется, когда один или оба конца балки не имеют опор, а так же при отступе опор от концов на некоторое расстояние (свес с опоры).

Например: часть плиты перекрытия выпущена за пределы стены в виде козырька. Такую плиту можно рассматривать балкой с консольной опорой.

Нагрузки на балку

Еще из курса физики известно: все, что неподвижно закреплено (прибито, приклеено и пр.) на чём-либо – это статическая нагрузка.

Соответственно, движущиеся (прыгающие, сотрясающие и т.п.) объекты создают динамические нагрузки.

Но в свою очередь эти нагрузки в случае строительной физики подразделяются на сосредоточенные и равномерные. К сосредоточенным нагрузкам можно отнести, к примеру, бетонную скульптуру, установленную на перемычке (балке) арки.

С равномерными нагрузками несколько сложнее, так как они подразделяются еще на подгруппы: равномерно распределенные по всей поверхности, равномерно изменяющиеся по длине или ширине и неравномерно изменяющейся, соответственно.

Для сосредоточенной нагрузки единицей измерения принят килограмм (килограмм-сила (кгс), ньютон (Н)).

Единицей измерения для распределенной нагрузки принято отношение кгс/м?, однако, при расчетах сборных железобетонных балок для перекрытия значение распределенной нагрузки принимается на метр погонный (м.п.). Для построения эпюр изгибающих моментов к расчету принимается только длина, а высота и ширина игнорируются.

Чтобы перейти от метров квадратных к погонным, когда идет расчёт балки перекрытия, значение распределенной нагрузки умножим на показатель расстояния между балками перекрытия (их осями).

А если определяем нагрузку на перемычку, то плотность лежащего на перемычке материала конструкции, умножаем на ширину и высоту этой конструкции.

Арматура для изготовления стропильных и подстропильных железобетонных балок должна быть предварительно напряженной, для отдельных типов допускаются исключения предусмотренные ГОСТом.

При изготовлении железобетонных конструкций, плотность укладки бетона контролируют по коэффициенту уплотнения (отношение действительной плотности бетона к ее расчетному значению). О данном виде изделий читайте в этой статье.

От тщательности сбора и расчета нагрузок на балку зависит конструктивная надежность сооружения.

Но если со статическими нагрузками все более-менее ясно, то рассчитать возможные динамические нагрузки на все случаи жизни – занятие неблагодарное и приведет к малообоснованному удорожанию строительства.

Поэтому динамические нагрузки принимаются с различными коэффициентами, приближающими к реалиям возможности возникновения одномоментно различных динамических воздействий в данном конкретном месте.

Приведем некоторые значения, наиболее часто учитываемых при расчетах, нагрузок:

  • Вес сборных железобетонных плит заводского изготовления (h=220 мм) 310 ~ 350кг/м2;
    Объемный вес бетона М200 — 2450 кг/м3;
  • Полезная нагрузка на перекрытие с учетом различных коэффициентов:
    жилые помещения ~200 кг/м2
    офисные помещения ~ 250 кг/м2
  • Вес покрытия пола из керамической плитки с цементно-песчаной стяжкой толщиной 25-30мм ~ 100 кг/м2
  • Снеговые, дождевые, сейсмические и прочие нагрузки от природных факторов нужно принимать по СНиП 23-01-99*(«Строительная климатология») с учетом климатического района строительства.

Таким образом, выполнить расчет железобетонной балки вручную вполне возможно, но, на наш взгляд, гораздо рациональнее будет потрачено время, если воспользоваться какой-либо программой для расчета.

Мне нравится3Не нравится3

Калькулятор Бетон-Онлайн v.1.0 — расчет состава бетона на фундамент. Пропорции бетона для бетономешалки.

Калькулятор Бетон-Онлайн v.1.0

Расчет состава бетона для одного замеса в бетономешалке, а также любой другой емкости. Под калькулятором вы найдете пояснения и алгоритм работы, по которому осуществляется расчет.

Нужно получить:

Марка (класс) бетона
M100 | B7,5M150 | B10M150 | B12,5M200 | B15M250 | B20M300 | B22,5M350 | B25M350 | B26,5M400 | B30M450 | B35M550 | B40M600 | B45Выберите марку (класс) бетона, которую хотите получить.
М100 (В7.5) Из-за низкой прочности используется в основном при подготовительных бетонных работах.
Может быть использован в виде «подушки» под фундамент, бордюр, тротуарную плитку, дорожное полотно и т.п.
М150 (В12.5) Бетон данной марки имеет достаточную прочность для заливки разных типов фундамента под малые сооружения. Также используется для заливки стяжек пола, укладки бетонных дорожек.
М200 (В15) Одна из самых востребованных марок бетона (наравне с М300) используемых в загородном строительстве. Основное применение: заливка фундамента (свайно-ростверкового, ленточного, плитного), изготовление бетонных дорожек, стен, лестниц.
М250 (В20) Используется для заливки фундамента, малонагруженных плит перекрытий, изготовление лестниц, подпорных стен.
М300 (В22.5) Наравне с М200 имеет большую популярность в частном строительстве. Данная марка бетона за счет своей универсальности позволяет использовать его для заливки фундамента под практически любой дом в загородном секторе, а также для изготовления лент заборов, плит перекрытий.
М350 (В25) Основное применение: изготовление плит перекрытий, несущих стен, колон, железобетонных изделий и конструкций, отлив монолитных фундаментов.
М400 (В30) Редко используется в загородном строительстве. Используется для изготовления поперечных балок, подпорных стенок, конструкций мостов и гидротехнических сооружений, заливки чаш бассейнов, цокольных этажей монолитных зданий.
М450(B35) Основное применение: банковские хранилища, мостовые конструкции, метростроение, гидротехнические сооружения.
М550 (В40) Основное применение: железобетонные конструкции специального назначения (хранилища банков, плотин, дамб, метростроении).
М600 (В45) Основное применение: фундаментные основы для комплексных и масштабных объектов, мостовые опоры, гидротехнические сооружения, объекты особого назначения (бункеры и т.п.). http://www.gvozdem.ru

Подвижность смеси
Ж4Ж3Ж2Ж1П1П2П3П4Выберите подвижность (жесткость) бетонной смеси.
Бетонные смеси по удобоукладываемости разделяются на подвижные и жесткие. Определяется класс подвижности и жесткости по осадке конуса. Подвижность определяется в см, жесткость в сек.
Ж1 (5-10сек) | Ж2 (11-20сек) | Ж3 (21-30сек) | Ж4 (31сек и более)
П1 (ОК 1-4см) | П2 (ОК 5-9см) | П3 (ОК 10-15см) | П4 (ОК более 16см)
Ж1-Ж4 — бетон данной жесткости применяется в дорожном строительстве и в изготовлении определенных железобетонных изделий.
П1-П2 — используется в производстве стеновых и фундаментных блоков, железобетонных изделий, тротуарной плитки, брусчатки и т.п.
П3-П4 — подвижность бетонной смеси, которая в основном используется в частном строительстве при заливке фундаментов, лестниц, плит, балок, колонн и т.п.
П5 — данные бетонные смеси называются литыми (как и П4) и используется для подачи бетона бетононасосом на большую высоту, а также для заливки конструкций с большим содержанием арматуры и закладных деталей.

У нас есть:

Изменить насыпную плотность цемента

*Пояснения к калькулятору

  • Калькулятор может посчитать объем как для целого числа, так и для дробного.
    Пример: объем бетона 3м3, объем бетона 50л (0,05м3).
  • Если у вас щебень имеет смешанную фракцию 5-20мм, то необходимо выбрать максимальную фракцию, то есть 20мм.
  • Суперпластификатор С-3 (Дофен, СП-1, СП-3) в калькуляторе используется в сухом виде. Если вы используете суперпластификатор в жидком виде, то необходимо самостоятельно сделать перерасчет на сухое вещество добавки.
  • При расчете 1 замеса в емкости с вертикальной загрузкой (ведро, корыто, ящик и т.п.) используется коэффициент выхода бетонной смеси согласно насыпной плотности составляющих.
  • При расчете 1 замеса в бетономешалке используется средний коэффициент выхода бетонной смеси, рассчитанный по выборке собранной из реальных данных замешивания в бетономешалках разного номинального объема.
  • Если кол-во замесов получается больше 1, то кол-во компонентов для последнего замеса вычисляется самостоятельно согласно рассчитанным пропорциям. (Расчет компонентов для последнего замеса можно также реализовать в калькуляторе при необходимости. Просьба отписаться в комментариях если это действительно нужно).

Алгоритм по расчету пропорций компонентов бетона

Для расчета составляющих для изготовления тяжелого бетона была взята за основу книга В.П. Сизова: Руководство для подбора составов тяжелого бетона.

1. Рассчитываем В/Ц (водоцементное соотношение) по формулам:

2. Определяем расход воды для щебня (гравия) разной фракции:

Водопотребность песка в калькуляторе не учтена и взята по умолчанию 7% (песок средней крупности).

3. Определяем расход цемента:

При использование суперпластификатора С-3 либо аналога (Дофен, СП-1, СП-3) сокращается расход цемента и воды для получения заданной подвижности (жесткости) бетонной смеси.

4. Определяем коэффициент раздвижки частиц. Данные по раздвижке были взяты из приложения №4 книги М. Файнера «Новые закономерности в бетоноведении и их практическое приложение«.

Для смесей жесткостью Ж3-Ж4 было взято усредненное значения коэффициента раздвижки зерен равное 1,1.

5. Определяем расход щебня:

6. Определяем расход песка:

Для расчета использовались следующие данные:

  • насыпная плотность цемента  —  1300 кг/м3
  • насыпная плотность песка  —  1500 кг/м3
  • насыпная плотность щебня  —  1480 кг/м3
  • истинная плотность цемента  —  3100 кг/м3
  • истинная плотность песка  —  2630 кг/м3
  • истинная плотность щебня  —  2600 кг/м3

Применение суперпластификатора С-3 в подборе состава бетона

Назначение суперпластификатора в данной калькуляторе — получение заданной подвижности (жесткости) бетонной смеси без уменьшения прочности бетона.

Для расчета использовалась «Таблица 1. Изменение подвижности бетонной смеси» из книги Ю.П. Чернышева: «Пластичный бетон».

Полезная информация по применению суперпластификатору С-3 (Дофен):

1.

Полная версия:  Рекомендации по изготовлению ж/б конструкций с добавкой СП. (НИИЖБ)

2. 

Полная версия книга М.В. Младова «Катехизис по бетону»

Расчет компонентов для одного замеса в бетономешалке

1. Определяем коэффициент выхода бетонной смеси:

2. Определяем расход компонентов бетонной смеси для одного замеса

  • Цемент для одного замеса = (Vб*β/1000)*Ц
  • Вода для одного замеса = (Vб*β/1000)*В
  • Песок для одного замеса = (Vб*β/1000)*П
  • Щебень для одного замеса = (Vб*β/1000)*Щ

где Ц, В, П, Щ расход материалов на 1м3 бетона.

Данный расчет можно использовать для расчета компонентов бетонной смеси для любой тары вертикальной загрузки (корыто, ящик каменщика) в который вы будете замешивать смесь.

Для реального расчета в бетономешалке был взят коэффициент выхода смеси из бетономешалки равный 0,44. Для расчета коэффициента была составлена выборка по ответам людей с разных строительных форумов, которые производили замесы своими бетономешалками с разными рабочими объемами.  © www.gvozdem.ru

Если у вас получается слишком жесткая смесь можно пойти двумя способами, чтобы сделать ее более пластичной:

  1. добавление пластификатора;
  2. добавление воды и цемента в соотношении рассчитанного В/Ц.

Скорость твердения бетона. Зависимость от времени и температуры — таблица

ГОСТы, книги, программы и калькуляторы для расчета состава бетона

ГОСТы:
ГОСТ 25192-2012 Бетоны – Классификация и общие технические требования
ГОСТ 26633-91 Бетоны тяжелые и мелкозернистые
ГОСТ 7473-2010 Смеси бетонные
СНиП 82-02-95 Нормы расхода цемента при изготовление железобетонных изделий 

Книги: 
М. Файнера «Новые закономерности в бетоноведении и их практическое приложение»
В.П. Сизова «Руководство для подбора составов тяжелого бетона»
М.В. Младова «Катехизис по бетону»
Ю.П. Чернышева: «Пластичный бетон»

Методические пособия:
Порядок подбора и согласования рецептов цементобетонных смесей
Методическое пособие по приготовлению бетонных смесей

Программы и калькуляторы:
Приложение КСУБС (Дворкин)
Приложение  Concrete
Калькулятор по расчету бетона-1.xls
Калькулятор по расчету бетона-2.xls
Калькулятор по расчету бетона-3.xls
М.Файнер «Составы бетона общестроительного назначения». Приложение 7

Строительные калькуляторы

Статьи по бетонным работам:

Калькулятор расчёта кубов бетона онлайн для фундамента

Онлайн калькулятор, представленный на данной странице, поможет рассчитать и подобрать состав бетонных смесей, используемых с различной целью. В зависимости от назначения они могут содержать разные пластифицирующие добавки и другие компоненты, увеличивающие плотность, устойчивость к влаге и придающие дополнительные свойства.

Первое, что нужно учесть при работе с калькулятором – полученный результат может отличаться от реального. Приложение позволяет получить общее представление о количестве материалов, необходимых для строительных работ.

Поможем рассчитать бетон для фундамента

Рассчитать бетон для фундамента

Хотя готовые железобетонные конструкции чаще всего встречаются в ассортименте строительных компаний, их вполне можно создать самостоятельно. При закладке ленточного фундамента использование армирования в виде стальной арматуры позволяет увеличить пластичность полученной конструкции и ее прочностные характеристики.

Для строительства используются «легкие» и «тяжелые» бетонные смеси, объемная масса которых превышает 1800 килограмм на м3. Облегченные бетоны создаются на базе наполнителей со сниженной массой. Как правило, они дополнительно повышают теплоизоляционные свойства и сопротивляемость к влаге. Такие свойства делают их идеальным выбором для создания конструкций во внутреннем пространстве зданий, где не требуется повышенная прочность.

При замешивании «легких» смесей используется цемент марки М100 и М150, что помогает значительно сократить стоимость куба за счет отсутствия сильного динамического воздействия. Тяжелые бетоны обладают увеличенной прочностью и сниженным показателем пористости, что придает повышенную устойчивость к механической нагрузке.

Чтобы посчитать требуемый объем строительной смеси, нужно учитывать такие параметры:

  • прочность. Основной показатель железобетонной конструкции, отображающий его способность выдержать разрушительное воздействие. Ориентируясь по этим показателям можно определить, можно ли применить строительную смесь при возведении высотного здания, фундамента или гидротехнических конструкций. Для отображения используется маркировка от В3,5 до В60, такие бетоны могут выдержать от 5 до 100 Мпа нагрузки на квадратный метр;
  • температурное расширение и огнеупорность. Демонстрирует способность сохранить целостность при высокой температуре и прямом воздействии огня;
  • пористость и устойчивость к влаге, морозу. Определенные добавки помогают повысить стойкость ж/б изделий к воде и разрушению в результате температурного расширения.

От соотношения параметров зависит сфера применения бетона. Получив рекомендации по соотношению используемых при замешивании материалов, вы сможете использовать калькулятор, чтобы примерно рассчитать необходимые затраты и объемы стройматериалов.

Правильный расчет позволит оптимизировать расходы, избежать образования избытка стройматериалов и получить строительную смесь с необходимыми характеристиками.

Онлайн калькулятор для бетона

Оставьте свою заявку на расчёт количества бетона и наш оператор свяжется с вами в ближайшее время, готовым сделать расчёт бетона онлайн.

какое ее количество нужно, как вычислить параметры опалубки и сечения

Ленточный фундамент занимает основное место среди всех опорных конструкций для зданий и сооружений.

Он способен эффективно работать на самых сложных грунтах, имеет оптимальный набор эксплуатационных качеств.

Монолитные конструкции ленты не теряют своих рабочих качеств до 150 лет, что превышает срок службы стен дома.

Такие высокие возможности возникли из-за высокой жесткости и прочности ленты, которые обеспечивает совместная работа и металлической арматуры.

Каждый из них выполняет свою функцию, в сумме обеспечивая надежность и высокую несущую способность ленточного основания.

Содержание статьи

Как работает арматура в ленточном фундаменте

Арматурный каркас необходим для компенсации осевых противонаправленных (растягивающих) нагрузок, возникающих в ленте при появлении деформирующих воздействий — изгибающих или скручивающих усилий.

Особенность бетона состоит в способности принимать гигантские давления без каких-либо последствий.

При этом, он практически беззащитен перед разнонаправленными усилиями, быстро покрывается трещинами и разрушается.

Поэтому для ленты крайне опасны любые усилия, приложенные в одной точке — например, боковые или вертикальные нагрузки пучения. Арматурные стержни предназначены для приема этих усилий на себя.

Существует горизонтальная (рабочая) и вертикальная арматура. Основные нагрузки принимают горизонтальные стержни.

Они имеют больший диаметр и рифленую поверхность, обладающую хорошим сцеплением с бетоном.

Вертикальные стержни выполняют две функции:

  • Фиксация рабочей арматуры в необходимом положении до момента заливки бетоном.
  • Частичная компенсация скручивающих усилий.

Первая задача основная, а вторая — дополнительная, поскольку наличие таких специфических нагрузок наблюдается довольно редко.

В большинстве случаев вертикальная (гладкая) арматура служит лишь опорной конструкцией, удерживающей рабочие стержни в необходимом положении до момента заливки.

Они довольно толстые, так как — процесс с достаточно интенсивными воздействиями на каркас, сосредоточенными в одной точке (место падения тяжелого материала в опалубку), а также распределенными по всей длине (штыкование, обработка виброплитой).

Онлайн калькулятор

Как рассчитать ленточный фундамент дома? В этой вам может специально разработанный сервис — ленточного фундамента.

Инструкция по работе с калькулятором

В сети интернет имеется немало онлайн-калькуляторов, помогающих рассчитать параметры ленточных фундаментов по всем важным позициям. Расчет арматуры с их помощью занимает буквально пару минут.

Например, на сайте необходимо лишь внести собственные данные в соответствующие окошечки программы и нажать кнопку «рассчитать».

Дается схема армирования, в которой надо указать основные параметры — количество рабочих стержней в одном ряду, общее число рядов, расстояние между вертикальными прутками и т.п. В отдельном окне указывается стоимость арматуры за единицу.

В результате программа выдает количество арматуры и общую цену. Расчет производится просто и быстро, кроме арматуры ресурс выдает параметры всех элементов ленты — , количества бетона и т.д.

Недостатком данного калькулятора можно считать необходимость заранее знать схему армирования, диаметр стержней и рыночную стоимость материала.

Если требуется определить количество и сечение стержней, ресурс бесполезен. Он дает только количественную информацию, не касаясь качественных моментов, что иногда не совсем то,что нужно.

ВАЖНО!

Не все онлайн-калькуляторы работают по такому алгоритму. Имеются и другие, определяющие именно размеры и общие параметры арматурного каркаса, которые станут полезными для получения первичной информации. Стоимость материала следует узнавать непосредственно у продавцов, поскольку в этом вопросе имеется масса специфических факторов.

Порядок расчета

Рассмотрим, как рассчитать арматурный каркас ленты самостоятельно.

Прежде всего, необходимо определить количество рабочих стержней в одном ряду. Для этого понадобится использовать требование СП 52-101-2003, ограничивающее максимальное расстояние между соседними прутками в 40 см.

Учитывая, что погружения рабочей арматуры не должна превышать 2-5 см, получаем:

  • Для лент толщиной менее 50 см — 2 рабочих стержня.
  • Для лент шире 50 см — 3 стержня.

В случаях, когда можно использовать и 2, и 3 стержня в одном ряду, обычно стараются подстраховаться и принять большее значение, так как фундамент — ответственный и важный участок постройки.

Вторым этапом является определение диаметра рабочих стержней. Для этого понадобится рассчитать площадь сечения рабочей части ленты, умножив ширину на высоту.

Общая площадь сечения арматуры составляет 0,1% от сечения (это минимально возможное значение, его можно увеличить, но нельзя уменьшать).

Получив это значение, надо разделить его на число рабочих стержней. По таблице диаметров арматурных прутков находится наиболее удачный вариант, который и принимается в работу.

Диаметр вертикальной арматуры выбирается исходя из высоты ленты:

  • При высоте до 60 см — 6 мм.
  • От 60 до 80 см — 8 мм.

Диаметр поперечных стержней обычно принимается равным 6 мм.

Для подсчета количества рабочих стержней надо умножить их число в решетке на общую длину ленты, после чего полученное значение делится на длину рабочего прутка (обычно 6 м, но это значение лучше узнать у продавцов точно).

Вертикальную арматуру рассчитывают путем умножения количества хомутов на длину единицы.

Количество получают делением общей длины ленты на шаг хомутов (обычно 50-70 см).

Пример вычисления необходимых параметров

Рассмотрим расчет арматуры для ленточного фундамента на примере.

Допустим, что высота ленты составляет 100 см, а ширина — 40 см (распространенный вариант ).

Тогда площадь сечения составит:

40 • 100 = 4000 см2.

Определяем общую площадь сечения арматуры (минимальную):

4000 : 1000 = 4 см2.

Поскольку ширина ленты составляет 40 см, то в одной решетке нужно разместить 2 стержня, а общее количество составляет 4 шт.

Тогда минимальная площадь сечения одного прутка составит 1 см2. По таблицам СНиП (или из иных источников) находим наиболее близкое значение. В данном случае можно использовать арматурные стержни толщиной 12 мм.

Определяем количество продольных стержней. Допустим, общая длина ленты составляет 30 м (лента 6 : 6 м с одной перемычкой 6 м).

Тогда количество рабочих стержней при длине 6 м составит:

(30 : 6) • 4 = 20 шт.

Определяем количество вертикальных стержней. Допустим, шаг хомутов составляет 50 см.

Тогда при длине ленты 30 м понадобится:

30 : 0,5 = 60 шт.

Определяем длину одного хомута.

Для этого от ширины и высоты сечения отнимаем по 10 см и складываем результаты:

(40 — 10) + (100 — 10) = 120 см. Длина одного хомута равна 120 • 2 = 140 см = 2,4 м.

Общая длина вертикальной арматуры:

2,4 • 60 = 144 м. Количество стержней при длине 6 м составит 144 : 6 = 24 шт.

ОБРАТИТЕ ВНИМАНИЕ!

Полученные значения следует увеличивать на 10-15%, чтобы иметь запас на случай ошибок или непредвиденных расходов материала.

Виды и размеры

Существует две основные :

  • Металлическая.
  • Композитная.

Металлические стержни, используемые для сборки арматурного каркаса, имеют ребристую или гладкую поверхность.

Ребристые стержни идут на горизонтальную (рабочую) арматуру, так как они имеют повышенную силу сцепления с бетоном, необходимую для качественного выполнения своих функций.

Вертикальные прутки, как правило, гладкие, так как их задача сводится к поддержанию в нужном положении рабочих стержней до момента заливки. Диаметр стержней колеблется в пределах от 5,5 до 80 мм. используются рабочие стержни 10, 12 и 14 мм и гладкие 6-8 мм.

Композитная арматура состоит из разных элементов:

  • Стекло.
  • Углерод.
  • Базальт.
  • Арамид.
  • Полимерные добавки.

Наиболее широко применяется стеклопластиковая арматура.

Она имеет наибольшую прочность, самая жесткая и устойчивая к растягивающим нагрузкам из всех остальных вариантов.

Как и все виды композитных стержней, стеклопластиковая арматура полностью устойчива к воздействию влаги.

Производители заявляют о неизменности эксплуатационных качеств в течение всего периода службы, но на практике справедливость такого утверждения пока не проверена. Проблема композитной арматуры в сложности технологии, из-за которой качество материала у разных производителей заметно отличается.

Кроме того, композитные стержни не способны сгибаться, что неудобно при сборке каркасов и снижает прочность угловых соединений каркаса.

ВАЖНО!

Среди строителей отношение к композитной арматуре сложное. Не отрицая положительных качеств, они не слишком доверяют малоизученным строительным материалам, не прошедшим полный цикл эксплуатации. Кроме того, металлическая арматура имеет вполне определенные технические характеристики, тогда как композитные виды обладают довольно большим разбросом свойств. Все эти факторы ограничивают применение композитных стержней.

Как сделать правильный выбор

Выбор арматурных стержней основан на расчетных данных и предпочтениях строителей.

Обычно выбирают металлические стержни, хотя и композитную арматуру с каждым годом все активнее применяют при строительстве ленточных оснований. Предпочтение металлическим пруткам отдается из-за возможности придать им необходимый изгиб, чего со стеклопластиковыми стержнями сделать невозможно.

Особенно это важно при строительстве лент с криволинейными участками или при наличии углов перелома, отличных от 90°.

Кроме того, металлическая арматура экономичнее, так как позволяет делать хомуты из одного прутка, без необходимости создавать несколько точек соединения.

Диаметры стержней давно отработаны на практике, нередко их выбирают без предварительного расчета — при около 30 см используют пруток 10 мм, для лент шириной 40 см выбирают 12-мм стержни, а при ширине более 50 см — 14 мм. Толщину вертикальной арматуры определяют по высоте ленты, до 70 см выбирают 6 мм, а при высоте свыше 70 см — 8 мм и более.

Полезное видео

В данном разделе Вы также сможете посмотреть как производится расче на примере реальной стройки:

Заключение

Грамотно выбранная схема армирования и сам материал обеспечивают прочность и устойчивость ленты к возможным нагрузкам.

Сложные и проблемные грунты, склонные к пучению или сезонным подвижкам, требуют ответственного и внимательного подхода к .

Необходимо учитывать, что все расчетные значения определяют минимальные параметры конструкции, требующие некоторого увеличения для определенного запаса прочности.

Выбирая арматуру и схему армирования, надо умножать все значения на 1,2-1,3 (коэффициент надежности), чтобы снизить риск появления непредвиденных факторов.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Столы для пролетов перемычки для начинающих

Таблицы диапазона нагрузок

сложно интерпретировать, но техническая команда Stressline всегда готова помочь.

Мы часто предполагаем, что таблицы диапазонов нагрузки, представленные в нашем руководстве по перемычкам, легко понять, что для тех, кто обладает знаниями; наверное есть. Тем не менее, для любого, кто только начинает работать в отрасли, не всегда легко справиться с интерпретацией значений нагрузки для перемычек из предварительно напряженного бетона и стальных перемычек.

В этой публикации рассматриваются таблицы диапазонов нагрузок, представленные как для бетонных, так и для стальных перемычек, и демонстрируется, как следует интерпретировать значения в них. Этот пост не поможет вам с расчетами, чтобы определить, какие нагрузки вам нужно будет выдержать перемычка — это для другого поста в блоге.

Перемычки прошли независимые испытания

Первое, что нам нужно сделать, это то, что таблицы диапазона нагрузки в этом посте основаны на наших собственных продуктах. Эти продукты имеют маркировку CE, и для получения этой аккредитации перемычки проходят самые строгие испытания в соответствии с Регламентом по строительной продукции (CPR).Это означает, что они проходят независимое тестирование. Значения в наших таблицах были независимо проверены третьей стороной.

Таблица диапазона нагрузки перемычки

: Краткое руководство

Теперь у нас есть краткое справочное руководство таблицы диапазона нагрузки перемычки, которое вы можете просмотреть в Интернете или бесплатно загрузить в формате PDF. Когда вы закончите читать это, почему бы не загрузить руководство для использования в будущем.

Определения пролета перемычки

Мы рассмотрим таблицы диапазонов нагрузок для двух стальных перемычек с обоих концов диапазона «прочности».Сначала мы убедимся, что знаем, какие значения включены в таблицу.

Стандартная длина — Это довольно понятно и просто означает длину перемычки. Стандартно наши стальные перемычки увеличиваются в длину на 150 мм, эти два значения представляют длину перемычки, к которой относятся значения в этом столбце. Если это 600 | 1200, это означает, что детали диапазона нагрузки могут быть применены к любой перемычке от 600 мм до 1200 мм.

Номинальная высота — Высота перемычки в мм.

Вес — Вес перемычки в кг на метр.

SWL — Это означает безопасную рабочую нагрузку, но также может упоминаться как обслуживаемая рабочая нагрузка. Это значение представляет собой нагрузку в килоньютонах (кН) и просто означает нагрузку, которую эта конкретная перемычка может выдержать безопасно и .

RM — Это означает «Момент сопротивления». RM довольно сложно объяснить, и, откровенно говоря, лучше всего описывается квалифицированным инженером. Проще говоря, это сила (измеряемая в килоньютон-метре; кНм), при которой перемычка ломается.Вы можете узнать больше о моменте сопротивления здесь.

Есть вопрос?

Если у вас есть вопросы, вы можете написать нам напрямую. Внизу страницы находится быстрый раздел «задать вопрос», просто введите свое имя и адрес электронной почты (он не будет передан другим пользователям) и оставьте свой вопрос в поле… легко.

Понимание коэффициентов нагрузки на перемычку

Понимание соотношений нагрузок жизненно важно для понимания выбора перемычки.

Значения SWL в наших таблицах диапазона нагрузок часто зависят от соотношений нагрузок.Эти соотношения представляют собой отношение нагрузки, которую перемычка может нести как внутренняя створка к наружной створке. Соотношения различаются для разных приложений.

  • 1: 1 — Перемычки, поддерживающие только кирпичную кладку
  • 3: 1 — Перемычки, поддерживающие кирпичные и деревянные полы
  • 5: 1 — Перемычки, поддерживающие бетонные перекрытия
  • 19: 1 — Перемычки для карнизов

Как применяются эти коэффициенты, будет продемонстрировано в примерах ниже.

Столы для пролетов стальных перемычек

Эта первая таблица диапазона нагрузок предназначена для стандартной 50-миллиметровой перемычки с полостью.Вторая таблица предназначена для перемычки из композитного материала повышенной прочности (CXHD) толщиной 50 мм.

SL50 Стандартные длины 600
1200
1350
1500
1650
1800
1950
2100
2250
2400
2550
3000
3150
3900
4050
4200
4350
4800
Номинальная высота (мм) 95 113 134 140 153 190 190 225 225
Масса (кг / м) 6.2 6,8 7,4 7,6 8,0 9,2 13,8 15,5 17,8
SWL 1: 1 | 3: 1 (кН) 16 17 22 23 24 28 28 28 28
SWL 19: 1 (кН) 12 13 17 18 19 22 22 22 22
RM (кНм) 2.2 2,9 4,5 5,6 6,8 10,0 13,3 16,2 16,2
SL50 CXHD 225 Стандартные длины 600
1800
1950
3000
3150
3900
4050
4500
4650
4800
4950
5100
Номинальная высота (мм) 236 236 236 236 236 236
Масса (кг / м) 19.0 19,0 19,0 19,0 19,0 19,0
SWL 1: 1 | 3: 1 (кН) 89 71 55 42 37 32
SWL 19: 1 (кН) 75 60 46 40 35 30
RM (кНм) 21,5 21,5 21.5 20,5 20,5 20,5

Предположим, вам нужна перемычка шириной 900 мм. Посмотрите на детали первого столбца каждой из двух таблиц.

900 мм SL50 имеет высоту 95 мм и вес 6,2 кг на метр.

Глядя на цифры SWL, вы можете увидеть, что если нагрузка на пол составляет 1: 1 (то есть на внутреннюю и внешнюю створку приходится одинаковый вес, то SL50 на высоте 900 мм может выдерживать нагрузку 8 кН на каждую створку.

Если вам нужна была перемычка для карниза, то вы должны использовать соотношение 19: 1, что означает, что эта перемычка будет принимать нагрузку на внутреннюю створку 11,4 кН и нагрузку на внешнюю створку 0,6 кН (округление в большую сторону). В реальности; это, вероятно, не лучшая перемычка для работы.

Глядя на перемычку CXHD, можно увидеть, что SWL для 19: 1 составляет 75, что соответствует примерно 71 кН на внутренней створке и 4 кН на внешней створке. Этот уровень используется при экстремальных нагрузках.

Как я уже сказал в начале поста, расчеты для определения того, какой будет ваша нагрузка, относятся к другому посту, но как только вы это узнаете (и другие факторы, влияющие на выбор перемычки), вы сможете быстро увидеть, какой вид перемычки необходимо использовать для работы.

Таблицы пролетных нагрузок из предварительно напряженного бетона

Таблицы диапазонов нагрузок для перемычек из предварительно напряженного бетона очень похожи на таблицы для стальных перемычек, за исключением двух значений.

UDL означает равномерно распределенную нагрузку, которая измеряется в килоньютонах на метр (кН / м). Однако принцип тот же; чем выше значение, тем лучше нагрузка на перемычку.

кНм или кН / м?

Примечание: не путайте кНм с кН / м. кНм — это сила, измеренная в килоньютонах, умноженных на метры, кН / м — килоньютон на метр (или деленные на метр).

Пролет — это очень просто длина проема. Если у вас есть свободный пролет 1200 мм, вам понадобится перемычка длиной 1500 мм, чтобы разместить требуемый пролет 150 мм с каждой стороны проема.

R15 — популярный бетонный продукт; здесь вы можете увидеть значения таблицы нагрузок для длины до 1800 мм.

R15 140 x 100 Стандартные длины 1050 1200 1350 1500 1650 1800
Прозрачный интервал (мм) 750 900 1050 1200 1350 1500
Масса (кг / м) 33.0 33,0 33,0 33,0 33,0 33,0
UDL (кН / м) 35,9 * 26,3 19,3 14,8 11,8 9,5
RM (кНм) 3,0 3,0 3,0 3,0 3,0 3,0

* Это значение UDL ограничено сдвигом, что означает, что UDL было бы выше, если бы не сила сдвига, которая первой сломала бы перемычку.

Надеюсь, это предоставит простое введение в диапазоны нагрузки перемычки и значения значений в таблицах диапазонов нагрузки. Однако, если у вас есть какие-либо вопросы о выборе перемычки, расчетах нагрузки или спецификации перемычки, наша техническая команда будет рада помочь. Свяжитесь с ними по адресу [email protected].

Расчет сечения железобетонной балки

Добро пожаловать в наш бесплатный калькулятор сечения армированной балки. Этот мощный инструмент может рассчитать прочность (или допустимую нагрузку) на сдвиг и изгиб широкого диапазона сечений балки.Это чрезвычайно быстрый и точный способ проверить результаты или, возможно, рассчитать начальные размеры сечения балки путем проб и ошибок в ряде различных комбинаций сечений. Этот калькулятор бетонной балки рассчитает расчетную нагрузку для двутавровой балки (lvl), тавровой балки и прямоугольных сечений с армированием.

Калькулятор сечения арматурной балки — это очень простой инструмент, который является небольшой частью нашего полнофункционального программного обеспечения для проектирования железобетонных балок, предлагаемого SkyCiv.Это программное обеспечение будет отображать полный отчет и рабочий пример расчетов конструкции железобетона в соответствии со стандартами проектирования ACI, AS и Eurocode. Эти результаты включают проверки крутящего момента, проверки на сдвиг, детализацию и осевые требования. Полная версия также позволяет пользователям добавлять дополнительные слои арматуры (включая верхние слои), а также срезные хомуты.

Как и другие наши калькуляторы, этот калькулятор прочности железобетонной балки очень прост в использовании. Начните с простого ввода «Добавить / редактировать секцию», чтобы добавить секцию главной балки.Как только это будет завершено, вам нужно будет добавить стальные арматурные стержни (или аналогичные), нажав «Добавить / изменить стальную арматуру». Также имеется кнопка «Настройки», с помощью которой вы можете редактировать параметры, используемые калькулятором, такие как арматура и прочность бетона. Используйте приведенную ниже схему в качестве ориентира для определения размеров секции.

Этот калькулятор арматуры (также известный как составной калькулятор) в настоящее время проходит бета-тестирование, поэтому, пожалуйста, оставляйте отзывы или ошибки в разделе комментариев ниже.

Получите больше возможностей в нашем полном программном обеспечении для проектирования железобетона на основе проектных кодов ACI 318, AS 3600 и Еврокода 2.

Добавить / изменить сечение
Добавить / изменить параметры стальной арматуры

Результат Значение Блок
Площадь
I xx
I гг
Центроид (Y)
Центроид (X)
Q x :
Q y :
Z x :
Z y :

Нет результатов по емкости.Введите сечение и / или стальную арматуру для результатов по прочности /

Результат Обозначение Значение Блок
Сила растяжения Т
Сила сжатия бетона CC
Сила сжатия стали CS
Глубина блока сжатия γdn
Глубина до нейтральной оси дн
Момент нагрузки Mu

ПРИНЦИП:

Расчет из железобетона в соответствии с ACI Concrete, AS 3600 или Еврокод 2 Стандарты проектирования бетона

I xx = момент инерции относительно оси x

I yy = момент инерции относительно оси y

Центроид (X) = Расстояние от самого дальнего левого угла секции балки до центроида секции.
Центроид (Y) = Расстояние от нижней части секции балки до центроида секции.

Q x = Статический момент площади вокруг оси x

Q y = Статический момент площади вокруг оси y

Z x = Модуль упругости сечения относительно оси x

Z y = Модуль упругости сечения относительно оси Y

Проектирование перемычки — Портал гражданского строительства

Конструкция перемычки

ВВЕДЕНИЕ
Прежде чем перейти к проектированию, важно понять важность перемычек в конструкции.Перемычка — это горизонтальный структурный элемент, который находится наверху дверей, окон и т. Д. Для поддержки верхней нагрузки, падающей на эти отверстия. Они используются для несения нагрузки, для передачи нагрузки на боковые стены, а иногда и в декоративных целях. Они могут быть деревянными или бетонными; однако бетон широко используется благодаря своей прочности и долговечности. Они также могут быть подвергнуты предварительному напряжению для лучшей несущей способности.

Ширина перемычки должна быть равна толщине проема, а глубина — в диапазоне от l / 12 до l / 8 пролета.Минимальная ширина перемычки должна составлять 80 мм. Более того, они должны иметь достаточную опору с каждого конца. Кроме того, длина перемычки в случае каменной стены рассчитывается путем измерения общей ширины проема и добавления 150 мм для концевых опор на каждом конце. В доме уровень перемычки обычно совпадает с уровнем потолка двери или окна. Для жилых целей его высота составляет 2,1 метра или 7 футов. Высота дверного заедания, которое не закреплено или закреплено, — это уровень перемычки.

Здесь показан пример расчета армирования и других аспектов конструкции перемычки. Расчет конструкции перемычки аналогичен расчету конструкции балки. Разница заключается в диаметре, взятом для арматуры, так как в случае балки используются большие диаметры, а в случае перемычек — малые диаметры.

Для перемычек берется прозрачная крышка 25 мм, такая же, как прозрачная крышка для балок. Для расчета используется средство проектирования СП-16. Марка используемого бетона — М20, сталь — Fe 500.Поскольку имеется частичная фиксация, вместо wl 2 /8 используется формула изгибающего момента wl 2 /10. В этом примере используются другие данные, если они не указаны. Расчет выполняется простым способом для облегчения понимания проблемы. Высота здания взята 3 метра, и в эту высоту также включена ширина балки для упрощения вывода в примере.

КОНСТРУКЦИЯ LINTEL

Высота этажа с балкой = 3 м.
Пусть размер балки перемычки = 125 мм × 201 мм.
Высота стенки над перемычкой = 3-2,02-0,201-0,45
= 0,33 мм.

С использованием стального арматурного стержня 12 φ и прозрачной крышки 25 мм.
Следовательно, d в наличии = 201-25- [12/2] = 170 мм.

Расчет нагрузки
Нагрузка на стену над перемычкой = 0,33 × 0,125 × 25 = 1,031 кН / м.

Собственный вес перемычки = 0,125 × 0,201 × 25 = 0,63 кН / м

Общая нагрузка = 1,031 + 0.63 = 1,661 кН / м

Расчет конструкции BM
Примем максимальную длину пролета = 4,42 м.
С учетом частичной фиксации на концах,
Максимальный изгибающий момент (BM) = wL 2 /10

= [1,661 × 4,42 2 ] / 10
= 3,24 кН-м.

Факторный изгибающий момент (BM), M u = 1,5 × 3,24 = 4,86 ​​кН-м.

Теперь M u / bd 2
= [4,86 x 10 6 ] / [125 x 170 2 ] = 1.24 Н / мм 2

Следовательно, предусмотрено одинарное усиление.

Из таблицы 2 Помощника по проектированию СП-16.

P t = 0,382%
Следовательно, 100A st / bd = 0,382

A st = [0,382 x bd] / 100
A st = [0,382 x 125 x 170] / 100
A st = 81,17 мм 2
= 0,81 см 2 прибл.

№ арматуры = 2 шт. с

Предоставим арматуру диаметром 2-12 мм на растяжение арматуры (226 мм 2 ) и

Прутки диаметром 2-10 м в качестве номинального армирования в верхнем слое.

Проверка на сдвиг
Максимальное поперечное усилие (SF), V = [wL] / 2
= [1,661 × 4,42] / 2
= 3,67 кН

Факторное поперечное усилие, V u = 1,5 × 3,67 = 5,505 кН

Опять же, P t = [100A st ] / bd = [100 x 226] / [125 x 170] = 1,06%

Следовательно, τ c = 0,64 Н / мм 2 (согласно таблице 61 вспомогательных средств проектирования SP-16)

Индуцированное напряжение сдвига, τV u / bd
= [5,505 x 1000] / [125 x 170] = 0.26 Н / мм 2

Следовательно, τ c > τ v

Следовательно, безопасен на сдвиг.

Расстояние между поперечной арматурой должно быть минимум из следующих
i. 300 мм
ii. 0,75 d = 0,75 × 170 = 127,5 мм.

Следовательно, мы используем 2-L 6φ @ 150 мм c / c.

Следовательно,

Предоставляем сечение (125 мм × 201 мм)

2-12 φ как нижнее усиление и 2-10 φ как верхнее усиление.

Обеспечьте 2-L 6φ @ 150 мм поперечное сечение арматуры на сдвиг.

Канварджот Сингх

Канварджот Сингх — основатель Civil Engineering Portal, ведущего веб-сайта по гражданскому строительству, который был признан лучшим онлайн-изданием CIDC. Он прошел гражданское обучение в университете Тапар, Патиала, и работал над этим веб-сайтом со своей командой инженеров-строителей.

Расчет

перемычек … мое понимание / математика совершенно неверны ?!

Привет всем,

Я просто пытаюсь получить ваш совет относительно того, достаточно ли бетонной перемычки для моих нужд, так как мои подсчеты расходятся с поставщиком стали RSJ, который рекомендует один из своих собственных продуктов.

Это немного многословно, но я хотел показать вам всю свою работу.

Я хотел бы прорезать дверной проем диаметром 1000 мм на первом этаже двухэтажной двускатной стены, построенной из двойной обшивки из красного кирпича викторианской эпохи. Для наглядности стена больше не является внешней, так как много лет назад к ней пристроили пристройку. В стене нет отверстий наверху, где я бы хотел прорезать, и поднимается на скатную крышу из глиняной черепицы. Балки первого этажа, которые находятся непосредственно над предполагаемым положением перемычки (не обращайте внимания на шкалу мусора на моем эскизе ниже!), Поддерживают балку 3.Спальня 6м х 3м с высотой потолка 2,3м. Поскольку потолок спальни выступает над стеновыми панелями, площадь чердака составляет всего 1,5 метра. Чердак не заселен и остается пустым.

У меня есть рисунок для иллюстрации:

Итак … Я рассчитал нагрузку следующим образом:

Высота первого этажа над перемычкой = 0
Высота первого этажа над перемычкой = 2,3 м
Высота чердака = 1,5 м
Общая высота стены = 3,8 м
Общая площадь колонны над проемом 1 м = 3.8 м2

60 кирпичей на м2 при 2 кг на кирпич = 120 кг на м2
Общий вес колонны над проемом = 456 кг
456 кг x 10 = 4560 Ньютонов или 4,56 кН

Затем я прочитал о умножении на 1,6 для учета живого нагрузка на первый этаж; не уверен, где я это читал, но он застрял в моей голове и может объяснить несоответствие, если это совершенно неправильно!

Нагрузка, скорректированная с учетом балок первого этажа = 7,29 кН

Итак, я просмотрел спецификации для бетонных перемычек и обнаружил, что могу купить перемычку 100 мм x 65 мм x 1500 мм (давая мне концевые подшипники 250 мм с каждой стороны) с грузоподъемностью 9.84 кН / м , изрядная сумма по моим расчетам. Очевидно, я собирался установить две перемычки, по одной на каждой обшивке на одинаковой высоте.

Однако, когда я дал тот же эскиз компании Catnic, они вернулись и предложили мне использовать одну из их стальных изделий для обеих шкур с SWL 49kN , но они не предоставили свои полные расчеты.

Ясно, что я считаю, что перемычки 9,84 кН / м достаточно, когда кто-то другой рекомендует сталь 49 кН!

Где я ошибся в расчетах пакетов fag?

* B Прежде чем кто-либо скажет: «Просто спросите SE», я предпочитаю попытаться получить хорошее представление о проблеме, прежде чем продолжить, отсюда и возникает вопрос.Полные расчеты от профессионала будут получены для удовлетворения BC, когда работа начнется.

Расчет материалов для вашей перемычки — Секреты строительного подрядчика

После фундамента и строительного участка / немецкого бетона следующая область внимания — перемычка, когда вы подняли блок на нужный уровень. Перемычка просто упоминается как структурный элемент, который используется в ходе строительства, обычно в верхней части окон и дверей или других проемов, но ниже крыши, который также используется для переноса груза / блоков, которые затем размещаются сверху.Перемычка может быть из разных элементов, но в нашем случае для обсуждения мы взяли общую бетонную перемычку. Бетон перемычки может быть сборным (отливка с помощью модели, сформированной перед установкой или подъемом в нужное положение) или отлитой на месте (отливка на месте по мере продолжения строительства непосредственно поверх блоков). Необходимые материалы: гранит, цемент, острый песок, дерево и железные стержни. . Чтобы определить, как будет размещена перемычка, вы должны учитывать расстояние, которое она должна преодолевать дверью, окнами или арками, а также учитывать, что бетон будет опираться на какую-то часть блоков.Для бетонного пространства перемычки половину или одну треть длины можно использовать в качестве припуска, где перемычка будет расширяться, чтобы иметь возможность легко опираться на опору, а также нести дополнительные блоки, идущие сверху. Например, для двери 900 мм лучше, чтобы общая бетонная перемычка составляла 1800 мм, то есть с припусками по 450 мм с обеих сторон. Для большинства перемычек железные стержни будут работать, поскольку для этого подходят четыре стержня, обычно 12 мм, а те, которые образуют кольца вокруг каждой перемычки, будут сделаны из 10 мм. Расстояние между кольцами может составлять от 150 мм до 300 мм, но в среднем можно использовать 200 мм.Для обшивки этой бетонной перемычки также потребуются доски и дерево 2 на 3, чтобы она могла нести влажную бетонную смесь, которая будет налита на нее для образования перемычки. -Используя приведенный выше план в качестве образца для расчета количества материала, необходимого для нашей бетонной перемычки. Из-за большого количества отверстий по периметру, мы собираемся сделать перемычку вокруг всего здания как ВАРИАНТ А, чтобы рассчитать ЖЕЛЕЗНЫЕ УДИЛИЩА-

Складываем весь периметр -12,925 м + 12,925 м + 21,0 м + 21,0 м = 67,85 м

Для дверей сделаем каждую дверь равной 0.9 м как 1,8 м, то есть свесы по 0,45 м с обеих сторон, которые будут опираться на стены по бокам. 16 дверей = 16 х 1,8 м = 28,8 м.

Таким образом, общая длина перемычки здания составляет 67,85 м + 28,8 м (двери) = 96,65 м. Помните, что 12-миллиметровые железные стержни, которые являются направляющими, имеют четыре числа.

Следовательно, умножьте 96,65 на 4 = 386,6 м. Разделите полученное на 12 м, что составляет длину железных стержней на штуку на рынке.

Общая длина 12-миллиметровой направляющей стержня = 386,6 м / 12 = 44 длины / штуки 12-миллиметровых стержней, которые можно купить на рынке.

Для ВАРИАНТА B — Для окна возьмем среднее значение 1,2, равное 2 м для 13 окон = 26 метров (м для метров) Для окна размером 0,6 м позвольте сделать каждый 1 м (плюс выступ с двух сторон) Для 8 окон = 8 м

Таким образом, общая длина перемычки здания составляет 26 м + 8 м + 28,8 м (двери) = 62,8 м. Помните, что 12-миллиметровые железные стержни, которые являются направляющими, имеют четыре числа.

Следовательно, 62,8 умножьте на 4 = 251,2 м. Разделите полученное на 12 м, что составляет длину железных стержней на штуку на рынке.

Общая длина для направляющей стержня 12 мм = 251.2 м / 12 = 21 длина / кусок стержней 12 мм, которые можно купить на рынке.

Для колец не забывайте, что мы используем интервал 200 мм (проверьте изображение «а»), чтобы узнать количество колец, необходимое в ВАРИАНТЕ A 96,65 м,

96,65 м делим на 0,2 м = 483,25 кольца.

Для каждого кольца ширина и высота перемычки принимаются за размер блока, равный 225 мм или 0,225 м. Таким образом, 0,225 м x 4 = 0,9 (не забывайте, что железные стержни должны пересекать друг друга, но это считается незначительным и игнорируется, а также залитый бетон должен покрывать железные стержни, поэтому кольца не обязательно быть на длине 225 мм).0,9 x 483,25 кольца = 435. Затем разделите на 12 = 36 отрезков 10-миллиметровых железных стержней.

ДЛЯ ВАРИАНТА B

Для колец не забывайте, что мы используем интервал 200 мм (проверьте изображение «а»), чтобы узнать количество колец, требуемых в ВАРИАНТЕ B длиной 62,8 м,

62,8 м делим на 0,2 м = 314 колец.

Для каждого кольца ширина и высота перемычки принимаются за размер блока, равный 225 мм или 0,225 м. Таким образом, 0,225 м x 4 = 0,9 (не забывайте, что железные стержни должны пересекать друг друга, но это считается незначительным и игнорируется, а также залитый бетон должен покрывать железные стержни, поэтому кольца не обязательно быть на длине 225 мм).0,9 x 314 колец = 283 м. Затем разделите на 12 = 24 отрезка 10-миллиметровых железных стержней, чтобы купить их на рынке.

Для расчета мешков с цементом, гравием / гранитом и песком используйте объем 522,6 x 0,225 x 0,225. Просмотрите эти статьи, а также прочтите комментарии, они очень полезны. http://buildingcontractorsecrets.com/2011/07/how-to-calculate-the-numbers-of-bags-of-cement-in-the-foundation-of-a-simple-bungallow-from-a-building- план / http://buildingcontractorsecrets.com/2009/08/how-to-calculate-materials-in-concrete/

Бесплатный калькулятор луча | ClearCalcs

Как использовать бесплатный калькулятор балки

Калькулятор балки ClearCalcs позволяет пользователю ввести геометрию и загрузку балки для анализа за несколько простых шагов.Затем он определяет изгибающий момент, диаграммы сдвига и прогиба, а также максимальные требования, используя мощный механизм анализа методом конечных элементов.

Регистрация учетной записи ClearCalcs откроет дополнительные расширенные функции для проектирования и анализа балок и множества других структурных элементов. ClearCalcs позволяет проектировать из стали, бетона и дерева в соответствии со стандартами Австралии, США и ЕС.

Лист разделен на три основных раздела:

  1. «Ключевые свойства», где пользователь вводит геометрию выбранного сечения и опор балки.
  2. «Нагрузки», где можно ввести распределенные, точечные и приложенные моментные нагрузки,
  3. «Сводка», в котором отображаются основные выходные данные и диаграммы.

Раздел «Комментарии» также включен для того, чтобы пользователь мог оставить какие-либо конкретные примечания по дизайну. Щелчок по любой из меток ввода / свойства дает описательное справочное объяснение.

1. Свойства входного ключа

Свойства балки и сечения задаются путем ввода непосредственно в поля ввода.

Длина балки — это общая длина балки, включая все пролеты балки, в мм или футах.

Модуль Юнга установлен на значение по умолчанию 200 000 МПа или 29 000 фунтов на квадратный дюйм для конструкционной стали, но может быть изменен пользователем.

Площадь поперечного сечения зависит от выбранного сечения балки и по умолчанию имеет значения для обычной стальной балки.

Второй момент площади (или момент инерции) также зависит от выбранного сечения балки и снова по умолчанию соответствует свойствам обычной стальной балки.

Свойства E, A и Ix для других секций балки можно получить из библиотеки свойств секций ClearCalcs.Кроме того, вы можете создать свой собственный раздел, используя наш бесплатный калькулятор момента инерции.

Положение опор слева позволяет пользователю вводить любое количество опор и указывать их положение по длине балки. Тип опоры может быть закрепленным (фиксированный в перемещении, свободном вращении) или фиксированным (фиксированный как при перемещении, так и при повороте) и выбирается из раскрывающегося меню. Требуется минимум одна фиксированная опора или две штифтовые опоры.

Вычислитель балок также учитывает пролет консолей на каждом конце, поскольку положение первой опоры не обязательно должно быть равно 0 мм, а положение последней опоры не обязательно должно быть равно длине балки.

Реакции на каждой из опор автоматически обновляются по мере добавления, изменения или удаления опор в зависимости от указанной нагрузки.

2. Входные нагрузки

Калькулятор поддерживает различные типы нагрузок, которые можно применять в комбинации. Каждой загрузке может быть присвоено имя пользователем.

Знаковое обозначение, используемое для нагружения (показаны положительные значения):

Распределенные нагрузки указываются в единицах силы на единицу длины, кН / м или plf, вдоль балки и могут применяться между любыми двумя точками.В калькуляторе можно использовать два разных типа:

Равномерная нагрузка имеет постоянную величину по всей длине приложения. Следовательно, начальная и конечная величины, указанные пользователем, должны быть одинаковыми.

Линейные нагрузки имеют переменную величину по длине приложения. Различные начальные и конечные величины должны быть указаны пользователем, и они могут использоваться для представления треугольных или трапециевидных нагрузок.

Точечные нагрузки указываются в единицах силы, кН или тысячах фунтов, и площади, приложенной в дискретных точках вдоль балки.Например, они могут представлять реакции других элементов, соединенных с балкой. Пользователь вводит имя, величину и местоположение слева от луча.

В приведенном ниже примере диаграммы из сводного раздела показана двухпролетная неразрезная балка с линейно распределенной нагрузкой на заплату и точечной нагрузкой.

3. Выходные данные сводки вычислений

После задания нагрузки и геометрии калькулятор автоматически использует механизм конечно-элементного анализа ClearCalcs для определения моментов, поперечных сил и прогибов.Максимальные значения каждого из них выводятся как «Требование момента» , «Требование сдвига» и «Прогиб» вместе с диаграммами по длине балки.

Положительные значения означают отклонение вниз, а отрицательные значения — отклонение вверх. Знаковое соглашение, используемое на диаграммах поперечной силы и изгибающего момента, следующее (показаны положительные значения):

Использование курсора для наведения курсора на любую точку на диаграммах изгибающего момента, поперечной силы или прогиба дает конкретные значения в этом месте вдоль балки.В приведенном ниже примере показаны выходные параметры для двухпролетной неразрезной балки с линейно распределенной коммутационной нагрузкой и точечной нагрузкой.

Связующая балка: блок связующей балки по сравнению с блоком перемычки

В мире бетонных блоков для каменной кладки (CMU) выделяются два типа блоков по тому, как они обеспечивают прочность и поддержку конструкции: блоки из связующих балок и блоки для перемычек. Оба помогают улучшить целостность здания за счет усиления, но у них есть ключевые различия. Различия касаются того, где соединительные балки и перемычки наиболее эффективны и как они влияют на несущие характеристики конструкции.У каждого вида свое место.

Связующие балки — это горизонтальный элемент, встроенный в стену для добавления поддержки конструкции. Связующая балка состоит из специализированных блоков, заполненных цементным раствором, чтобы удерживать на месте прочный стальной стержень. Они добавляют стальную арматуру к конструкциям, которым может потребоваться нечто большее, чем просто традиционные CMU, чтобы удерживать их в достаточной степени. Использование соединительной балки помогает связать здание более цельно. Он связывает арматуру как по горизонтальной, так и по вертикальной осям, делая стену более единым целым через соединение.

Вопреки названию, соединительная балка не должна перекрывать ширину конструкции. Он может быть наклонным или ступенчатым. Блок с продольной арматурой можно рассматривать как связующую балку. Затирка играет роль в создании связующих балок, так как это то, что удерживает арматурные стержни на месте по всей конструкции.

Часто можно встретить соединительные балки наверху отдельно стоящей стены или в качестве анкеровки на полу или крыше. Они могут помочь равномерно распределить вес по стене и защитить от сильного ветра, землетрясений и т. Д.В бассейнах, гаражах и амбарах также часто используются блоки несущих балок CMU. Связующие балки также являются достаточной альтернативой перемычкам, о которых мы поговорим в следующем разделе.

Обычно балки находятся в верхнем ряду каждой стены, а также на каждом этаже и диафрагме крыши. Чтобы обеспечить полное разделение движений между стенами, балка обычно должна заканчиваться по обе стороны от контрольного стыка. В некоторых случаях, например, если соединительная балка является элементом коллектора или поясом диафрагмы, в этом соединении требуется непрерывность, и соединительные балки являются жизнеспособным вариантом.

Помимо общего армирования стены, соединительные балки могут использоваться и в других целях, в том числе:

  • Улучшение противодействующих систем. Связующие балки могут добавлять массу к кирпичной стене, которая поддерживает точечные и распределенные нагрузки, или, соответственно, вес в одном месте или равномерно распределять по элементу. Эта поддержка применяется как к боковым, так и к гравитационным системам сопротивления. Система бокового сопротивления определяет сопротивление здания силам, возникающим из-за боковых механизмов, таких как ветер или землетрясения, а система сопротивления гравитации учитывает силы, возникающие из-за гравитации.
  • Контроль трещин. Еще одно частое применение соединительных балок — это защита от трещин. Например, в плавательных бассейнах часто используют скрепляющие балки для предотвращения растрескивания. Поскольку бассейны подвержены сильным перепадам температуры и влажности, трещины могут быстро стать проблемой. В некоторых конструкциях управляющие швы приводят к недостаточной несущей способности конструкции, и горизонтальное усиление связующей балки является достаточной альтернативой. Эффективный контроль трещин происходит при горизонтальном армировании с максимальным расстоянием 48 дюймов в центре.При поиске идеального расстояния расчеты основываются на коэффициентах теплового расширения и пределе текучести арматуры. Правильный интервал может ограничить ширину трещин, но сохранить эластичность стали.
  • Соединить пересекающиеся стены. Еще одно применение соединительных балок — соединение пересекающихся стен, если между ними необходимо передавать нагрузки. Например, если поперечной стене не хватает необходимой пропускной способности, к ее концу присоединяется пересекающаяся стена в качестве фланца для увеличения пропускной способности. Связующая балка в месте точечной нагрузки может существенно увеличить эффективную длину опоры для конструкции связки штабеля.
  • Усиление реакции на землетрясения. Наконец, соединительные балки также могут использоваться в районах с высокой сейсмической активностью. Места, подверженные землетрясениям, выигрывают от улучшенной пластичности конструкции с балками в поперечных стенах. Сейсмическая классификация строительной площадки, а также поперечные нагрузки и подробное обозначение стены, работающей на сдвиг, помогают определить минимальные требования. Для более высокой сейсмической детализации обычно требуются соединительные балки, но более низкие требования к сейсмической детализации иногда могут быть достигнуты с помощью армирования швов.

Итак, теперь, когда мы знаем, что это такое и где используются соединительные балки, давайте взглянем на один из наиболее важных компонентов одного из них: блок соединительных балок.

Найти дилера

Блок связующей балки

Благодаря своей конструкции стандартные CMU не предлагают никаких способов соединения горизонтальных опор внутри конструкции. Их стороны закрыты, с открытыми секциями посередине для добавления вертикального армирования, но без связи с их горизонтальными соседями.Чтобы решить эту проблему, существует специальный блок, который при необходимости добавляет структурную целостность.

Блок соединительной балки предварительно изготовлен. Многие подрядчики предпочитают использовать U-образные блоки или блоки соединительных балок с выбивкой, которые обеспечивают два различных варианта установки арматуры в полевых условиях. Части добавленных лямок или выбивных панелей удаляются во время строительства для вставки горизонтальных арматурных стержней.

  • U-образный блок: В этом случае блок имеет форму буквы U, с выемкой сбоку или снизу.Ключевая функция этой выемки — обеспечить возможность размещения как вертикальных, так и горизонтальных укреплений. Высота поперечной перемычки существенно уменьшена, что обеспечивает доступ к балке.
  • Выбивка: В блоках балок с выбивным соединением панели снимаются с помощью молотка или киянки. Эти панели разработаны таким образом, чтобы они легко выскакивали в поле и оставляли место для штанги, которая могла пересечь блок.

Одним из ключевых преимуществ блоков связующей балки CMU является то, что они могут объединять два разных типа армирования.Как горизонтальное, так и вертикальное усиление легко реализовать в блоке соединительной балки. Блоки перемычки сплошные снизу, поэтому они не могут принимать вертикальные арматурные балки. Этот фактор означает, что любое приложение, требующее как вертикального, так и горизонтального армирования, должно использовать блоки соединительных балок вместо блоков перемычек.

Блоки соединительных балок также могут иметь «двойные» сердечники, где есть два углубления, образующие W-образную форму. Конструкция позволяет более равномерно распределять арматурные балки.Также может потребоваться усиление стыков в стене с помощью соединительных балок, если балки находятся дальше друг от друга. Армирование стыков — это, по сути, лестница из оцинкованной проволоки, которая выравнивается с отверстиями в CMU и помогает уменьшить воздействие напряжения от усадки.

Раствор или бетон обычно покрывают стальные арматурные стержни, которые удерживаются на месте с помощью сетки или тканевых вставок. Сталь, используемая в стержнях, должна соответствовать стандартам ASTM, поэтому арматура класса 60 является популярным выбором.

Блоки балок

CMU Bond обычно представляют собой бетон, который представляет собой комбинацию цемента, воды и крупного заполнителя, такого как камень или песок. Прочность бетона на сжатие или то, насколько хорошо он выдерживает давление, варьируется от 1000 до 5000 фунтов на квадратный дюйм, в зависимости от нескольких факторов, таких как тип бетона, строительный раствор и ориентация кирпичей. Все это сводится к очень прочному материалу.

Связующая балка помогает улучшить сопротивление стены сдвиговым нагрузкам или весу, вызывающему сдвиговое напряжение.Напряжение сдвига — это давление скольжения, которое возникает перпендикулярно стандартному напряжению, например гравитационному давлению на стену. Связующая балка помогает сделать стену менее похожей на набор блоков, а больше похожей на единую связную структуру, поэтому блоки с меньшей вероятностью «соскользнут» друг с другом из-за напряжения. Все элементы стены более тщательно интегрированы, обеспечивая прочность и устойчивость к таким проблемам, как ветер, сейсмическая активность и растрескивание. Связующие балки обычно имеют высоту одного ряда.

Блок перемычки

Блок перемычки

CMU выполняет ту же функцию, что и блоки балок, являясь ключевым структурным элементом для многих зданий.Блоки перемычки объединяются, образуя балки перемычки. Эти балки поддерживают конструкцию, передавая нагрузки сверху балки на стены по обе стороны от проема. Они также являются сборными и сделаны из предварительно напряженного бетона. Блоки перемычки для каменной кладки аналогичны по размеру традиционным CMU, за исключением того, что они имеют U-образную форму с твердым дном. Форма является источником наиболее значительного различия между блоками соединительных балок и блоками перемычек. Блоки перемычки нельзя использовать с вертикальным армированием.Их следует использовать только для стен, которые не нуждаются в такой структурной опоре.

Перемычки и блоки перемычек изготавливаются из различных материалов, в том числе:

  • Древесина: Хотя она может быть дороже других материалов, древесина часто используется там, где она легко доступна. Одним из недостатков древесины является то, что она не особо прочная и не огнестойкая.
  • Камень: Камень также чаще встречается в районах, где его много.Это может быть дорого в тех регионах, где он недоступен. Он используется в основном с каменными конструкциями и не выдерживает больших поперечных напряжений, возникающих из-за изгиба.
  • Железобетон: Железобетон — это тот же материал, который используется в блоках связующих балок. Он невероятно распространен благодаря своей прочности, огнестойкости, долговечности и универсальности. Перемычка из бетонных блоков также очень экономична, поскольку ее относительно просто построить и купить в виде сборных блоков.Основным недостатком бетона является его слабость к растягивающим нагрузкам, поэтому мы армируем его стальными стержнями.
  • Кирпич: Кирпичные перемычки обычно подходят только для небольших нагрузок и небольших проемов не более 90 см.
  • Армированный кирпич: Для более высоких нагрузок в армированном кирпиче используются стержни из мягкой стали. Стыки залиты бетоном, кирпичи огнестойкие и долговечные.
  • Сталь: Стальные перемычки подходят для больших нагрузок и широких проемов, и они популярны в кирпичном строительстве.Здесь заметна глубина перемычки, так как может потребоваться использование швеллеров или стальных балок.

Выбор материала обычно зависит от нескольких факторов, включая доступность определенных веществ, структурные потребности здания и стоимость материалов. Например, древесина и камень относительно дороги и более распространены в определенных областях, в то время как железобетон доступен по цене и может быть адаптирован практически к любому размеру или форме, поскольку производители изготавливают их с помощью форм.Бетон, кирпич и сталь обычно более доступны, чем другие варианты. Если сделана из кирпича или дерева, перемычка может называться коллектором.

Чаще всего блоки перемычек используются над дверями, окнами и каминами. Они создают несущий элемент, который может быть функциональным, декоративным или и тем, и другим. Декоративные блоки могут быть покрыты резьбой, чтобы выходить за дверной проем, и присутствуют в культурах по всему миру.

Блоки перемычки

CMU имеют U-образную форму, как блоки соединительных балок, но у них нет выбивных панелей или частей сетки, которые необходимо удалить строителю.Нижняя часть этих блоков постоянная. Горизонтальные арматурные стержни могут быть помещены в «U» и пространство заполнено раствором и цементом. Существенный недостаток блоков перемычки заключается в том, что их нельзя комбинировать с вертикальной арматурой, проходящей через конструкцию, из-за твердости дна. Блоки перемычек нельзя использовать в приложениях, требующих такого усиления, поскольку они не предлагают такой интегрированной поддержки.

Иногда блоки перемычки используются как часть непрерывной соединительной балки по дну стены.Для такого использования основание должно быть покрыто сеткой, чтобы затирка оставалась на месте.

Что такое перемычки?

Перемычки — это горизонтальные структурные элементы, которые проходят через проем в здании, например окно или дверной проем. Их также можно назвать балками или заголовками, в зависимости от области и используемых материалов. Эти материалы включают цемент, заполнители, раствор, раствор и стальные арматурные стержни, которые должны соответствовать международным стандартам ASTM. Часто перемычки служат не только для обеспечения структурной поддержки, но и для украшения.Конструктивно они помогают распределять вес находящейся над ними нагрузки по боковым стенкам проема. С точки зрения орнамента они представляют собой идеальное место для художественных работ и резьбы, создавая фокус над дверью.

Эти резные фигурки — одна из причин того, что перемычки встречаются на протяжении всей истории архитектуры. Они использовались веками как декоративные, так и функциональные элементы. В сокровищнице Атрея в Микенах, Греция, построенной около 1350 г. до н.э., присутствуют перемычки весом более 100 тонн.Строители из Египта, буддизма и майя использовали перемычки с декоративной резьбой во многих своих важных зданиях. В дополнение к их обширному историческому использованию в наши дни бетонные перемычки могут даже помочь в обеспечении радиационной защиты в медицинских учреждениях. Их приложения весьма разнообразны.

Некоторые нагрузки, которые могут нести перемычки, включают:

  • Равномерная нагрузка, при которой вес равномерно распределяется по пролету.
  • Треугольные нагрузки, наибольшая нагрузка приходится на середину пролета.
  • Сосредоточенные нагрузки, при которых более тяжелые секции могут находиться среди легких секций.
  • Равномерные нагрузки, действующие на часть пролета, где вес выдерживает только часть пролета, но равномерно распределяются по этой площади.

При расчете потребности в перемычке могут действовать два типа нагрузок, оба из которых определяются гравитационными напряжениями. Это постоянные и временные нагрузки. Собственные нагрузки — это постоянные нагрузки, составляющие вес конструкции, такой как стены, потолки и крыши.Живые нагрузки более гибкие и могут колебаться. Вес людей, мебели и погодных условий, например, снега или дождя, заполняющего желоба, могут повлиять на временные нагрузки. Оба типа могут влиять на вес, который перемычка помогает перераспределить.

Некоторые конструкции могут распределять нагрузки таким образом, чтобы они не воздействовали на перемычку. Это действие изгиба происходит в зависимости от того, какая кладка окружает перемычку. Для этого необходимо иметь несколько характеристик, в том числе высоту стены не менее 8 дюймов над аркой и достаточную высоту над перемычкой для образования треугольника под углом 45 градусов.Эта конструкция меняет то, как перемычка справляется с весом и как необходимо производить расчеты.

Перемычка с изгибающим действием должна учитывать вес перемычки, вес стены и сосредоточенную нагрузку. Без эффекта арки следует учитывать вес перемычки, вес стены, нагрузки на крышу и пол, а также сосредоточенные нагрузки. По сути, арочная перемычка может помочь снизить вес конструкции, потенциально требуя меньше материалов и создавая более прочную конструкцию.

Перемычки, изготовленные из стали, а не из бетона, могут иметь несколько другую форму. Стальные перемычки, помимо прочего, могут иметь Т-образное сечение или швеллер с опорными плитами. Бетонные перемычки необходимо укрепить опорами до тех пор, пока раствор не затвердеет, но для стальных перемычек этот шаг не нужен. Они действительно должны иметь соответствующую противопожарную защиту и могут мешать стальному откосу в железобетонных конструкциях. Уникальные характеристики связаны с использованием различных строительных материалов как для перемычки, так и для остальной конструкции, поэтому перемычки не подходят для всех.

Контроль потока раствора в связующих балках

При строительстве стены из балок или блоков перемычки обычно используется раствор для заполнения блоков и удержания арматуры на месте. В перемычках нижняя часть закрыта, поэтому раствор остается на месте без дополнительных усилий. С другой стороны, блоки связующей балки открыты, поэтому любой раствор, залитый в блок, будет стекать в ячейки под ним. Во многих проектах заливка раствора неэффективна.

В большинстве зданий используются соединительные балки, которые лишь частично залиты с помощью металлической или пластиковой сетки.Сетка помещается в стык чуть ниже балки и контролирует поток раствора в связующих балках. Мелкозернистая сетка препятствует продвижению большей части раствора через нее. Обычно затирка наносится на любую ячейку без вертикального армирования. Заблокировав раствор, можно заполнить горизонтальную балку, не заполняя все вертикальные ячейки.

На пересечении вертикальных и горизонтальных укреплений ячейка может быть очень загружена. Использование минимального количества стали помогает раствору растекаться и правильно схватываться, а L-образные стержни также помогают сохранить непрерывность углов здания.Между компенсаторами и контрольными стыками, как правило, нет необходимости в соединительной балке. Однако напольные диафрагмы могут выиграть от непрерывного армирования.

Найдите дилера, ответственного за потребности блока CMU

Когда дело доходит до выбора правильных блоков CMU для вашего проекта, вам необходимо знать различия между блоками соединительных балок и блоками перемычек. Блоки из клееной балки обычно используются в стене, в то время как перемычки проходят через проем, например, дверь или окно. Блоки из клееных балок также предлагают иногда важное преимущество как вертикального, так и горизонтального армирования.Если эти два типа опоры необходимы, перемычка не позволяет вертикальным стержням проходить через них. Каждый блок используется по-своему и в определенных местах проекта.

Если вам нужны блоки CMU, Nitterhouse Masonry предлагает множество вариантов, соответствующих стандартам ASTM, и многие из них также участвуют в сертификации LEED.