Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Пенополистирол экструдированный размер листа: характеристики, размеры листа, экструзия утеплителя, плотность плиты ЭППС, толщина экструзионного

Содержание

Экструдированный пенополистирол — размеры листа

Экструдированный пенополистирол считается одним из самых востребованных строительных материалов на рынке. Это экологически чистый продукт, имеющий уникальные теплоизоляционные свойства. Мало того, малый вес материала позволяет в значительной мере облегчить общую массу строительной конструкции.

Если же говорить про размеры листа экструдированного пенополистирола, то они зависят от наличия кромки:

  • пенополистирол без кромки — 1200х600 мм;
  • пенополистирол с кромкой —1240х640 мм.

Рис.1 Пример использования в жилых домах

Материал способен выдержать 1000 циклов оттаивания и замерзания. Срок эксплуатации составляет 100 лет. Плотность одного листа варьируется в диапазоне от 35 до 45 кг/м3. Материал также имеет высокий коэффициент теплопроводности и хорошую звуко- и гидроизоляцию. Пенополистирол не подвержен влиянию грибка.

История возникновения

Современная строительная отрасль обязана появлением пенополистирола древним египтянам, которые ещё 3000 лет назад открыли для себя удивительные свойства дерева стиракс. Наибольшее применение получила коричная смола, ванилин и стирол.

Именно последний является основным элементом в составе пенополистирола. Тем не менее драгоценную находку египтяне задействовали преимущественно в бальзамировании, парфюмерии и фармацевтике.

Дальнейшая история пенополистирола выглядела следующим образом:

  • Впервые искусственно синтезировать стирол удалось лишь в 1929 году учёными из компании DOW.
  • Технологию создания вспенивающегося пенополистирола создал шведский изобретатель в 1933.
  • В 1950 году технология была улучшена в Германии учёными из компании BASF.

Именно в 50-х годах началась экспансия пенополистирола на строительный рынок. Материал применялся не только в качестве утеплителя, но и как упаковка. Для того чтобы добиться большей огнеупорности в состав стали добавлять антипирены. В СССР производство пенополистирола началось только в 1965 году.

Рис.2 Внешний вид Теплекса


Сферы использования экструдированного пенополистирола

  • Изоляция подкровельного пространства на крышах зданий.
  • Теплозащита фасадов. Экструдированный пенополистирол укладывается как основание.
  • Материал хорошо подходит для выравнивания поверхностей в лоджиях, верандах и балконах. Он отлично поглощает шум, обеспечивает надёжную гидроизоляцию и защищает от тепловых потерь.
  • Возможно использование в качестве отделочного материала для помещений.
  • Ещё один способ применения — декорирование потолков.
  • При создании турецких бань, строители часто используют пенополистирол.
  • Материал может служить отличным подиумом для ванн.

Теплекс

Это один из самых востребованных пенополистиролов на рынке. Существует два типа: Теплекс 35 и Теплекс 45. Главное отличие заключается в плотности структуры материала на один квадратный метр.

Если же речь заходит про размер листа Теплекс, то он такой же, как и у обычного экструдированного пенополистирола. Материал не подвержен гниению. Толщина одной плиты от 5 до 120 миллиметров, модуль упругости равен 12 МПа.

С этой статьей также читают:

Батэплекс экструдированный пенополистирол толщина 100 мм размер листа 1200х600 мм в упаковке 4 листа, цена 970 грн.

ЭППС БАТЭПЛЕКС ― высококачественный экструдированный пенополистирол (ЭППС), который изготавливается на современном оборудовании в соответствии с европейскими стандартами качества и имеет все сертификаты соответствия.

БАТЭПЛЕКС может применяться для утепления в большинстве строительных конструкций, в цокольной и подземной части зданий, в системах утепления фасадов, в многослойных панелях и элементах строительных конструкций, для утепления полов, фундаментов и сооружений, подвальных помещений, утепления фундаментов. Материал имеет хорошую шумоизоляцию и звукоизоляцию.

Материал продаётся только кратно упаковкам по 4 листа. В одном листе 0,072 м3

Технические характеристики:

  • Толщина ― 100 мм.
  • Коэффициент теплопроводности при 25±5 °С ― 0,029 – 0,032 Вт/м ºС.
  • Класс горючести ― Г4, Г3.
  • Размер листа ― 1200×600 мм.
  • Плотность – 35 кг/м³
  • Температурный режим эксплуатации ― От -50 до +75 °С
  • Водопоглащение по объему за 24 часа, не менее ― 0,2 %
  • Прочность на сжатие при 10% линейной деформации, не менее ― 0,25 МПа

Преимущественные характеристики экструдированного пенополистирола БАТЭПЛЕКС по сравнению с другими материалами.

  • не впитывает влагу и не меняет своих теплоизоляционных свойств даже в условиях 100 %  влажности.
  • является одновременно эффективным тепло-звуко-гидро-пароизолятором.
  • обладает высокой химической стойкостью.
  • не поражается грибком и плесенью.
  • имеет срок службы более 100 лет.
  • имеет самый низкий коэффициент теплопроводности среди теплоизоляционных материалов.
  • не поддерживает самостоятельного горения.
  • экологически безопасный.
  •  низким коэффициентом теплопроводности.
  •  невосприимчивостью к действию влаги.
  •  стойкостью к перепадам температур.
  •  высокой прочностью на сжатие и изгиб. 
  • постоянством размеров. 
  • малым весом. 
  • прост в применении, может укладываться почти при всех погодных условиях.

технические характеристики и размеры, цена за лист и упаковку

Экструдированный пенополистирол — это современный утеплитель, который применяют для защиты от холода для оснований, стен и крыши. Его производят из гранул полистирола, но из-за другой технологии изготовления он в разы превосходит обыкновенный пенопласт по плотности. Поэтому даже под весом 100 мм бетона, как в фундаменте типа «шведская плита», листы не сминаются и не прогибаются. О плюсах и минусах ЭПС поговорим дальше.

Оглавление:

  1. Особенности и характеристики пенополистирола
  2. Сфера применения
  3. Плюсы и минусы
  4. Цена XPS

Для обозначения этого материала используют несколько терминов: чаще всего его называют уже упомянутым словосочетанием, но можно услышать и другие наименования: пенопласт, экструзионный пенополистирол, ЭПС или XPS. Сначала в гранулы полистирола вводят добавки для защиты от огня, красители и осветлители. Затем их вспенивают и оставляют на некоторое время. После формируют листы, спекают и вытягивают. Почти готовое полотно охлаждают в естественных условиях, при этом гранулы вспениваются окончательно. В конце материал шлифуют и нарезают.

Характеристики ЭПС

Стандартные размеры листов пенопласта:

  • Длина — 1000, 1200 и 2000 мм.
  • Ширина — 500, 600, 1000.
  • Толщина — 30, 50 и 100.

Существуют и другие вариации, но найти их гораздо сложнее. Впрочем, для утепления дома вполне подойдут эти параметры. Некоторые фирмы выпускают листы на 20 мм меньше. От толщины зависит область применения материала, например, 20‒30 мм не выдержит давления фундамента.

Технические характеристики:

  • Теплопроводность: 0,03‒0,04 вт/мКв.
  • Температура эксплуатации: ‒70‒+75 градусов.
  • Горючесть: Г4.
  • Влагопоглощение: 0,2‒0,4%.
  • Паропроницаемость: 0,010 мг/(м.ч.Па).
  • Прочность на сжатие: 0,2‒0,5 мПа.
  • Плотность: 20‒50 кг/м3.
  • Удельная теплоемкость: 1,45 кДж/(кг. гр.С).

Теплопроводность зависит от плотности пенопласта. Чем легче материал, тем лучше он удерживает тепло. Благодаря своей структуре ЭПС обгоняет другие популярные теплоизоляторы, например, вам потребуется в 4 раза больше минеральной ваты, если вы решите заменить экструдированный пенополистирол на нее.

Группа горючести Г4, означает, что средняя температура возгорания — около 500 градусов, что в 2 раза меньше, чем у древесины. Выделение энергии у ЭПС очень незначительно, поэтому в деревянном доме с мебелью, он мало повлияет на ход огня, если случится пожар.

Существует миф, что пенопласт выделяет в воздух токсичный стирол. Но европейские ученые уже сделали все, чтобы сократить содержание этого вещества в ЭПС до минимума. Кроме того, реакция начинается только при высоких температурах. ЭПС придумали в 1941 году, поэтому пока сложно говорить о его долговечности. По тестам ученых и наблюдением за зданиями с этим утеплителем его срок службы колеблется от 25 до 80 лет.

Область применения экструзионного пенопласта

1. Фундаменты.

Не так давно в России получила распространение «шведская плита», которая представляет собой монолитное основание толщиной 100‒200 мм, окруженное экстудированным пенополистиролом снизу и сбоку. Благодаря этому дом не боится морозного пучения. Также пенопласт применяют для «финской плиты», и утепления стенок других видов фундаментов. Выбирайте материал с высокими характеристиками, чтобы он не смялся.

2. Стены.

Пенополистирол рекомендуют для наружного утепления стен, так как после дождя или снега поверхность дома не будет прогреваться и просыхать. Также его используют для балконов. Кроме того, большинство видов этого пенопласта имеют категорию горючести Г4, поэтому небезопасно помещать его внутри.

3. Крыша.

Пенопласт подходит для утепления плоской и наклонной крыши. Он впитывает мало влаги и служит долго. Использовать его с внутренней стороны не рекомендуют из-за пожароопасности.

4. Баня.

Экструдированный пенополистирол применяют, чтобы сохранить тепло в бане, но только снаружи. При высоких температурах есть вероятность выделения в воздух ядовитого стирола. Обязательно выполнять внешнюю отделку этого материала, так как он портится под воздействием прямых солнечных лучей.

5. Теплый пол.

Если вы не хотите отапливать улицу и землю при использовании этой технологии, нужно предохранить полы от утечек тепла с помощью пенопласта или другого материала. Незащищенный железобетон обладает высокой теплопроводностью, а арматура становится мостиками холода.

Преимущества и недостатки

Плюсы:

  • Низкая теплопроводность пенопласта.
  • Экологичность.
  • Биоустойчивость (он не привлекает микроорганизмов и насекомых).
  • Легкий монтаж листов.
  • Высокая адгезия.
  • Морозостойкость около 1000 циклов.
  • Низкое влагопоглощение.

Минусы:

  • Низкая паропроницаемость.
  • Плохая шумоизоляция.
  • Несовместимость пенопласта с полихлорвинилом (из него делают Натяжные потолки Алматы, моющуюся обои, профили окон и дверей).
  • Разрушение под действием ультрафиолета.
  • Высокая цена.

Стоимость

Расценки на эту разновидность пенопласта зависят от его характеристик: прочности и размеров. В таблице собрана информация, актуальная на февраль 2016 года. Обычно его продают упаковками по 4‒8 шт. В некоторых магазинах этот товар можно купить поштучно, но стоимость за лист будет выше. В последней графе указано, в каком формате продается продукция этой фирмы. В любом случае заказ большой партии обойдется вам дешевле.

НазваниеРазмеры, ммПрочность на сжатие, МПаПлощадь в упаковке, м2Цена, рубли
Дли-наШири-наТолщи-на
Пеноплекс Комфорт24006001000,5011,523600 за уп.
Технониколь Carbon Eco1180580500,255,471400 за уп.
Ursa XPS-N-III-L1250600500,35,251200 за уп.
Техноплекс12006001000,30,72355 за шт.
Техноплекс1180580200,30,6879 за шт.
Техноплекс1180580300,30,68109 за шт.

Экструдированный пенополистирол поможет сохранить тепло в вашем доме. Значит, затраты на отопления будут в разы меньше, а вы сможете наслаждаться комфортным микроклиматом в помещении. Перед тем, как купить товар, проверяйте сертификаты на продукцию. Удачного строительства.

Дата: 30 марта 2016

применение, технические характеристики и особенности

Экструдированный пенополистирол — это высококачественный изоляционный материал, появившийся приблизительно 60 лет назад, разработанный и впервые примененный в США. Внешне он очень напоминает знакомый нам пенопласт, так как представляет собой такую же ячеистую массу, которая в ходе изготовления была вспенена с помощью особого реагента и доведена до необходимой плотности. Давайте подробней разберемся, что это такое.

Экструдированный пенополистирол (ЭПП) получен из гранул полистирола под воздействием специального высокотемпературного режима и экструдера. ЭПП, например, Пеноплекс является теплоизоляционным материалом, применяющимся при изоляции кровли, полов, фундаментов дома, а также в строительстве автомобильных и железных дорог.

Он используется в качестве теплоизолятора при возведении спортивных объектов, например, ледовых дворцов.

Технические характеристики материала

Если сравнивать технические характеристики обычного пенопласта и ЭПП, то преимущества последнего будут весьма существенными:

— прочность, определяемая необычной структурой ЭПП, составляет 100-500 кг/а;
— теплопроводность составляет 0,028-0,033 Вт/мк;
— плотность материала 20-48 кг/м3.

Температурный режим от минус 50 до плюс 75 градусов по Цельсию. Добавим к этому списку высокую морозоустойчивость, сопротивляемость гнилостным процессам, хорошее взаимодействие с химическими веществами (за исключением некоторых растворителей), большой срок эксплуатации и т.д. См. фото.

Утепление крыши экструдированным пенополистиролом

Высокие технические характеристики экструдированного (экструзионного) пенополистирола определяются его ячеистой структурой она же позволяет ему хорошо взаимодействовать с влагой.

Высокая теплопроводимость материала позволяет успешно использовать его при работе в сырых помещениях без укладки добавочного слоя гидроизоляции.

Теплопроводимость ЭПП выше проводимости обычного пенопласта в полтора раза и в два раза выше, чем теплопроводимость минваты. Если же сравнивать те же показатели с показателями проводимости тепла деревом и пенобетоном, то у ЭПП они выше соответственно в пять и семь раз.

Как было сказано ранее, при работе с ЭПП необходимо учитывать тот факт, что некоторые химические вещества очень негативно действуют на структуру материала и способны не только повредить, но и полностью ее уничтожить. Относится это к уайт-спириту, ацетону, олифе и некоторым другим веществам.

Область применения пенополистирола

ЭПП великолепно подходит для теплоизоляции кровли, фундаментов, полов (в том числе под ламинат), а вот для работ по изоляции внутренних стен он не пригоден, так как имеет низкую паропроницаемость. Благодаря этому стены «остаются без воздуха», «перестают дышать» и складываются благоприятные условия для образования плесени внутри помещения.

Но здесь надо заметить, что некоторые потребители, предпочитая ЭПП другим теплоизоляционным материалам, просто усиливают вентиляционную нагрузку, обеспечивая тем самым приток воздуха в помещение. ЭПП — материал прочный, выдерживающий большие нагрузки и довольно большой срок эксплуатации.

Применение его в работе по теплоизоляции наружных стен существенно экономит ваши траты на отопление. Чтобы произвести качественно изоляцию внешних стен, выбирайте для начала работ сухую погоду, так как в процессе будут наноситься несколько слоев различных материалов, то необходимо будет дожидаться просушки каждого слоя. Смотрим видео.

Итак, что бы правильно нанести ЭПП на внутреннюю стену здания, вам нужно:

— выровнять и произвести чистку поверхности стены;
— нанести слой клея на плиту ЭПП, следя за тем ,чтобы клей не попадал в места стыков материала;
— после проклеивания листы ЭПП необходимо закрепить пластиковыми дюбелями;
— для улучшения качества работы на приклеенный и прикрепленный лист ЭПП наложите сетку с мастикой, а уже на нее — грунтовку.

Листы ЭПП продаются упаковками по 4-8 штук в зависимости от толщины плит. Размеры листов бывают, как правило, 60-200 см при толщине от 0,2 до 10 см. Именно толщина при одинаковом размере листов и формирует цену на материал. Так, лист ЭПП толще на 1 см, будет стоить на 10 % своего более тонкого собрата.

Преимущества и недостатки экструдированного пенополистирола

Что касается экологической чистоты материала, то тут необходимо учесть тот факт, что ЭПП является не только строительным материалом, из него делают посуду и детские игрушки, в производстве которых экология стоит (или должна стоять ) на первом месте.

Отмечая высокие технические качества ЭПП, не стоит обходить стороной и его недостатки. Хочу отметить, что многие производители отмечают в рекламе своего товара его противопожарную безопасность. А вот потребители не раз замечали, что ЭПП горит, и не просто горит, а выделяет при этом клубы едкого дыма с неприятным запахом.

Что это, обман производителя? Сокрытие реальности?

Для ответа на этот важный вопрос обратимся к опыту европейцев, которые по сравнению с нами успешно используют этот материал уже на протяжении многих лет. И что же? Если наш потребитель предпочитает лист теплоизоляции потолще, то там, в Европе, все наоборот: 3-4 мм и достаточно. Почему?

Да, потому, что при пожаре тонкий слой изолятора выделит в воздух гораздо меньше отравляющей гадости, и житель дома успеет покинуть помещение, не нанеся существенного вреда своему здоровью. Значит, все-таки горит? Еще как! И вредных веществ выделяет при этом не мало.

Тем не менее, люди, бывавшие в европейских странах, замечали, что большинство зданий там теплоизолируется именно с помощью ЭПП. Неужели эти европейцы так самонадеянны, что выбирают опасный для здоровья материал? Думаю, что положительные качества ЭПП так существенны, что заставляют даже привередливых иностранцев закрывать глаза на некоторые «мелочи».

Кстати,что касается толщины материала, тут мы все безоговорочно убеждены, что чем толще лист теплоизоляции, тем теплее будет в нашем доме.

На деле же получается обратное: толстый слой ЭПП под воздействием перепадов температур склонен к образованию трещин, через которые со временем будет проникать холодный воздух. Что касается пожарной безо- или небезопасности, тут многие еще сомневаются и спорят. Смотрим видео.

Но один недостаток ЭПП ни у кого не вызывает сомнений: его нельзя применять при теплоизоляции таких объектов, в которых предусматриваются высокие температуры — это, прежде всего, бани и сауны. И еще не забывайте, что солнечные лучи с их ультрафиолетовым излучением могут нанести вред ЭПП, сравнимый с вредом от воздействия с некоторыми химическими веществами.

Покрывайте теплоизолятор надежным защитным слоем с цементом, что бы для солнечных лучей была недоступна даже узенькая полоска материала!

Как правильно выбрать пенополистирол

Итак, о положительных и отрицательных сторонах ЭППС мы, хоть и кратко, но поговорили, теперь нужно разобраться, на что обратить внимание при покупке товара, ведь каждый продавец расхваливает свой продукт, желая его продать.

В технической инструкции к товару указана его маркировка: это две цифры. Не приобретайте товар, если цифры маркировки ниже 28: этот материал не годится для строительных и отделочных работ, хотя зачастую продавец об этом умалчивает.

Попробуйте отломить кусочек пенополистирола: если края разлома выглядят ровной линией, это ЭПП, а если в месте разлома появляется неровность в виде мелких шариков, перед вами низкокачественный пенопласт, годящийся разве что для упаковки товара.

Приобретайте материалы, изготовленные компаниями, хорошо зарекомендовавшими себя на российском рынке, это , прежде всего такие известные марки, как «Басф», «Новахимикалс», а из отечественных фирм, кстати сказать , работающим не хуже западных, обратите внимание на продукцию компаний «Penoplex» и «Технониколь». В высоком качестве продукции этих производителей можете не сомневаться, а выбор все-равно остается за Вами.

nomortogelku.xyz

Читайте также:

Размеры и толщина листов пенополистирола (пенопласта) для утепления

Пенополистирол (пенопласт) выпускается в листах, имеющих различную длину, ширину и толщину. Последний параметр является главным в выборе этого материала.

Толщина изделия может быть от 20 до 100 мм.

Этот материал очень популярен у строителей. Его используют для повышения теплоизоляции во время кирпичной кладки полнотелыми кирпичами.

Куски пенопласта кладут под фанеру, которой отделывают пол под паркет или ламинат. Им можно утеплять стены снаружи во время отделки стен гипсокартоном. Чаще всего его используют с наружной стороны.

Содержание статьи

Что нужно знать о размерах? Какие бывают?

Листы пенопласта могут быть стандартного и нестандартного размера.

Длина и ширина стандартного листа составляют 1000, 2000 мм. Производитель может нарезать изделия и других нестандартных размеров.

Часто можно встретить листы 1200х600, которые соответствуют потребностям покупателя и пользуются хорошим спросом. Это может быть лист с размерами в 500х500, 1000х1000, 1000х500 мм.

Под заказ можно получить партию пенополистирола, имеющего стороны 900х500 или 1200х600 и другие размеры, что не противоречит стандартам.

ГОСТ позволяет резать изделия на 10 мм меньше, если его длина свыше 2000, а ширина 1000 мм. По толщине для плит до 50 мм допускается разница ±2 мм, а свыше 50 позволяется сделать разницу ±3.

Если длина покупателю не подходит, то компании по реализации такой продукции предлагают индивидуальную нарезку.

Длина и ширина имеют значение только для транспортировки стройматериала от производителя к заказчику. Главная роль отдана толщине материала.

Длина листов экструдированного пенополистирола (ЭППС) составляет 1200-2400 мм, ширина – 500-600 мм, а толщина 20-150.

Чтобы подобрать конкретное значение рекомендуется отталкиваться от сферы применения, например по толщине советы следующие:

  • для пола на первом этаже – от 50 мм;
  • для второго этажа и выше – 20-30 мм;
  • для дополнительной звукоизоляции на полу – 40 мм;
  • для внутренней обшивки стен – 20-30 мм;
  • для внешней обшивки стен – 50-150 мм.

ГОСТ и его требования к размерам

Условное обозначение плит по ГОСТу состоит из букв и цифр, в который входят:

  1. Тип плиты.
  2. Марка.
  3. Размеры листа.
  4. Обозначение стандарта.

Если лист будет иметь такие характеристики, как плита из вспененного полистирола с добавкой антипирена марки 15, длиной 1200 мм, шириной 600 мм и толщиной 40 мм, то запись будет выглядеть так: ПСБ-С-15-1200х600х40 ГОСТ 15588-86.

Если плита из вспененного полистирола не будет содержать антипирен и относиться к марке 15, а ее размеры будут те же, то запись изменится и будет выглядеть так:

  • ПСБ-15-1200х600х40 ГОСТ 15588-86.

Используя технические требования по Госстандарту, для изготовления плит из пенопласта применяют вспенивающийся полистирол, содержащий порообразователь: изопентан или пентан. В общую массу добавляют остаточный мономер стирол.

На поверхности изготовленных плит, готовых к продаже, не должно быть выпуклостей и впадин шириной более 3 мм и высотой более 5 мм. Притупленность ребер и углов может наблюдаться, но не более 10 мм от вершины прямого угла.

Стороны притупленных углов могут иметь скосы длиной не более 80 мм. Все листы пенополистирола имеют правильную геометрическую форму. Отклонение от плоскости грани допускается не более 3 мм на каждые 500 мм ее длины.

Разность диагоналей для плит длиной до 1000 мм не должна превышать 5 мм, от 1000 до 2000 мм — допускается не более 7 мм, от 2000 мм — не более 13 мм.

При приемке партии всегда проверяются линейные размеры, правильность геометрической формы, внешний вид.

Потребитель может быть уверен, что в купленной им партии все изделия будут иметь одинаковые размеры.

Маркировка плитного пенополистирола согласно ОСТ 15588-86, СТ СЭВ 5068-85 или ГОСТ 15588-70 состоит из букв и цифр:

Размеры в зависимости от марки:

Марки пенопласта и размеры листа

Для утепления используют несколько основных марок пенопласта. Каждая марка отличается своей плотностью, которая выражается в кг/м³.

Чем выше плотность пенополистирола, тем ниже его удельная теплопроводность и выше прочность.

Самая распространенная марка листа пенопласта ПСБ-С. Цифры в маркировке указывают на плотность. Так, ПСБ-С 15, стоящий в самом низу таблицы плотности, имеет всего 15 кг/м³.

Он самый легкий, его применяют для утепления мест временного проживания людей: бытовок, вагонов, а также контейнеров для сохранения тепла.

Эту марку используют для утепления в теплых районах с мягкими зимами. Ею отделывают стены для уменьшения звукоизоляции межкомнатных перегородок.

Большей популярностью пользуется марка пенопласта ПСБ-С 25 с плотностью 25 кг/м³. Листы пенополистирола этой марки, имеющие различные размеры, используют для утепления зданий, сооружений, построек.

Пенопластом прокладывают для улучшения качеств теплоизоляции и звукоизоляции стены, кровли, полы, фасадное утепление.

Пенополистирол применяют для изготовления панелей, железобетонных конструкций, которые используют в каркасных домах.

Сэндвич-панели и железобетонные конструкции, которые создаются методом несъемной опалубки, содержат в своей конструкции пенополистирол марки ПСБ-С 35 с плотностью 35 кг/м³.

Такие изделия дополнительно к своим основным функциям отлично обеспечивают гидроизоляцию стен.

ПСБ-С 50 с плотностью 50 кг/м³ используется для обустройства пола холодильных складов, обогреваемых грунтов, в строительстве дорог.

Где используется в зависимости от размеров?

Этот прочный влагостойкий утеплитель применяется при выполнении наружных работ. Чтобы утеплить стену пенопластом, сначала нужно определить, какой плотности, размеров, вида пенополистирол потребуется для работы.

Выбор зависит от тех предполагаемых нагрузок, которые будет нести этот материал в период эксплуатации.

При утеплении вертикальной стены нагрузки будут минимальны, подойдет лист любой марки.

Даже ПСБ-С 15 даст тот же результат, что и ПСБ-С 25, если речь идет об утеплении стен в районах с мягкими зимами.

Это происходит из-за того, что принцип действия пенопласта основан на склеивании полистироловых шариков, между которыми и внутри имеются множественные воздушные камеры.

Известно, что чем меньше массы и больше воздуха, тем лучше проявляется эффект теплоизоляции.

Работать с листами низкой плотности, которые более хрупкие и ломаются, неудобно. ПСБ-С 25 имеет большую плотность, с ним легче производить отделку.

Пенополистирол 25 часто используют для внешнего утепления стен нежилых помещений. Им производят отделку балконов, лоджий, гаражей, торговых центров, различных учреждений.

Для северных районов с холодными зимами считают, что толщины листа в 5 см достаточно, чтобы в самые морозные ночи внутри помещения сохранялось тепло.

Пенопласт марки 100 используют для термоизоляции промышленных морозильных камер, а также для утепления домов в суровом климате крайнего севера.

Размер листа в 10 см сделает показатель теплозащиты максимальным. Выбирая марку пенополистирола, можно выбрать лист, имеющий различные параметры.

Нестандартный лист 500х500 иногда намного удобнее в работе, чем стандартный длинный с размерами 2000х1000 мм.

Для утепления стен дома подойдут листы размером 1000х1000 и 1000х500 мм. С ними удобно работать, получается меньше стыков, которые придется герметично заделывать.

Для заполнения площадей меньших размеров имеющиеся листы разрезают на подходящие куски. При всех нестандартных ситуациях в отделке лучше использовать лист больших размеров, чтобы легче было выпиливать конфигурации.

В процессе укладки такие листы подгоняют под нужные параметры, разрезая пенополистирол на части. Режется этот материал легко.

Пенополистирол, имеющий размеры 2000х1000 мм, сложнее в монтаже. Работая одному, проще выполнить укладку двух листов по 1000х1000, чем один лист, имеющий размеры 2000х1000 мм.

Как транспортируется?

Нарезанный и готовый к продаже пенополистирол упаковывается производителем в транспортные пакеты и транспортируется. ГОСТ разрешает перевозку в неупакованном виде, если есть гарантия, что листы не повредятся в дороге.

При формировании пакета должны соблюдаться требования ГОСТ 21929-76. Высота сформированного пакета не должна быть более 0,9 м. При толщине плит 500 мм пакет формируют из двух плит.

На боковой грани изделия или пакета должна быть маркировка, содержащая штамп ОТК предприятия, изготовившего эту продукцию, тип и марку плиты.

Маркировка должна производиться по ГОСТ 14192-77 и содержать наименование предприятия или его товарный знак, дату изготовления продукции, ее название и номер партии.

Указывается марка и тип плит, их количество в упаковке.

Должно быть обозначение стандарта, на основе которого изготавливались эти изделия.

ГРАФИТ+

Экструдированные пенополистирол ГРАФИТ+ — современный, экологически безопасный, теплоизоляционный материал, предназначенный для жилищного, коммерческого и промышленного строительства. Его целесообразно применять для утепления конструкций подверженных повышенной влажности и усиленным механическим нагрузкам.

Посмотреть презентацию Экструдированный пенополистирол ГРАФИТ+

Честный размер плиты

Честная площадь покрытия составляет 1180 на 580 мм. В этот размер не входит двухсантиметровая фаска, которую обычно считают полноценной частью плиты.

Удобная упаковка

Экструдированный пенополистирол ГРАФИТ+ нашего завода упакован по специальной технологии, для более удобной транспортировки. Также упаковка защищает наш продукт от механических повреждений.

Экструзионный пенополистирол ГРАФИТ+ широко применяется при утеплении жилых и производственных помещений. Ниже перечисленны наиболее распространенные области применения этого материала.

Низкая теплопроводность делает материал идеальным утеплителем. Высокая жесткость позволяет легко раскраивать и удобно монтировать утеплитель на объекте. Также, экструдированный пенополистирол отличается крайне низким водопоглощением.

Тонкий баланс между ценой и качеством

Утеплителя надо гораздо меньше

Не подвержен воздействию микроорганизмов и перепаду температур

Для утепления 300 мм стены необходим слой материала толщиной 40 мм

Чрезвычайно низкий коэффициент теплопроводности

Не содержит токсичных веществ и экологически безопасен

Впитывает в 9 раз меньше воды, чем пенопластовая плита

Посмотрите как правильно использовать нашу продукцию в разделе «Применение». Данный раздел поможет понять тонкости монтажа, сэкономит ваши деньги и время.

Экструдированный пенополистирол Пеноплекс 1185*585*30мм (кромка с уступом)



Производитель:
Торговые Системы ТехноНИКОЛЬ

Цена:

В упаковке — 12 плит, объем — 0,2496 м3, площадь покрытия  — 8,32 м2

Области применения

Теплоизоляционные плиты марки Пеноплэкс Комфорт® активно применяют для утепления кровель, стен, цоколей, фундаментов и полов частных домов. Плиты плотно стыкуются между собой, повышая устойчивость ограждающих конструкций к нагрузкам и обеспечивая долговечность всего здания. Кроме того, утеплитель Пеноплэкс Комфорт® широко используется для теплоизоляции балконов и лоджий квартир, утепления гаражей и различных хозяйственных построек.

Теплоизоляционные плиты Пеноплэкс Комфорт® не впитывают влагу, поэтому могут успешно применяться для теплоизоляции бани и сауны, бассейна, спортзала, винного погреба и других помещений с повышенным уровнем влажности. Плиты не подвержены биоразложению, никакой опасности при контакте с водой и почвой не возникает.

Утеплитель Пеноплэкс Комфорт® активно применяется для теплоизоляции ограждающих конструкций в любом климатическом регионе России и стран СНГ, в том числе в северных районах. Срок службы теплоизоляционных плит Пеноплэкс – более 50 лет. Утеплитель не проседает в вертикальных конструкциях, не крошится и не трескается, сохраняя свои технические характеристики в неизменном виде в течение всего срока эксплуатации.

Характеристики

Основные
Страна производительРоссия
ТипЭкструдированный
Размер листа1185*585 мм
Толщина30мм
Прочность на сжатие при 10% линейной деформации, не менее150-250 кПа
Теплопроводность при (25±5)°С, не более0,030 Вт/(м*К)
Теплопроводность в условиях эксплуатации «А и «Б», не более0,032 Вт/(м*К)
Группа горючестиГ4
 Водопоглощение, не более 0,4 %
 Модуль упругости 17 МПа
 Коэффициент паропроницаемости 0,010 мг/(м.ч.Па)
 Удельная теплоемкость 1,45 кДж/(кг.°С)
 Предел прочности при изгибе не менее0,30  МПа
 Плотность ,не менее 26-35 кг/м3
 Температура эксплуатации от -70 до +75°С







Изоляция из пенопласта

— значения и типы R

Тодд Фратцель по изоляции

Типы изоляции из пенопласта

Я написал несколько сообщений о том, как утеплить стены подвала, в которых я продвигаю использование изоляции из пенопласта в качестве первой линии защиты от влаги и плесени. Из-за этого я часто получаю вопросы о том, какой тип теплоизоляции из пенопласта использовать и какие значения R обеспечивают эти продукты.

На рынке представлены три основных изоляционных плиты из пенопласта , выпускаемые под разными названиями производителей.К основным типам утеплителя из пенопласта относятся: полистирол, полиуретан или полиизоцианурат.

Они включают пенополистирол, экструдированный полистирол и полиизоцианурат без покрытия или с покрытием из фольги. На сайте DOW products есть много информации о различных продуктах из пенопласта. Я также рекомендую вам прочитать недавнюю статью о продуктах из пеноматериала с открытыми и закрытыми ячейками, чтобы понять различия между этими двумя типами продуктов.

Пенополистирол

Пенополистирол (EPS) является самым дешевым и наименее используемым продуктом из пенополистирола на рынке.Этот продукт обычно имеет значение R от 3,6 до 4,0 на дюйм толщины. Изоляция из пенополистирола похожа на пену, используемую для упаковки «арахиса», и обычно используется для изоляционных бетонных форм, также известных как ICF. Он также иногда используется в коммерческих зданиях для изоляции крыш и стеновых панелей, которые обычно зажаты между легким металлом.

Стоимость = Самая дешевая из изоляционных плит.

Экструдированный пенополистирол

Экструдированный пенополистирол (XPS), также известный как синий или розовый картон, бывает разной толщины и краевого профиля.Эта изоляционная плита, вероятно, является одним из наиболее широко используемых изоляционных материалов из пенопласта в жилищном строительстве. XPS имеет значение R от 4,5 до 5,0 на дюйм толщины.

Это продукт, который я обычно использую для утепления стен подвала. Он недорогой, легкий и простой в использовании. Этот продукт также используется для утепления стен фундамента снаружи и даже под плитами.

Стоимость = Этот продукт является серединой пути для этих типов изоляционных материалов из пенопласта.

Полиизоцианурат и полиуретан

Полиизоцианурат, также известный как полиизо, используется во всех видах коммерческих зданий, а в последнее время и в проектах жилых домов. Полиизо обычно используется с облицовкой из фольги, и его значение R составляет от 7,0 до 8,0 на дюйм толщины. Облицовка из светоотражающей фольги делает ее отличной изоляционной панелью при использовании лучистого тепла. Облицовка фольгой также позволяет очень легко запечатать лентой с фольгой хорошего качества.

Стоимость = Полиизо является самым дорогим из изоляционных материалов из пенопласта, но имеет наивысшее значение R.

Полиуретан и полиизоцианурат являются пенопластами с закрытыми порами. Они содержат в ячейках газы с низкой проводимостью (обычно один из газов HCFC или CFC). Более высокие значения R (R от 7,0 до 8,0) являются результатом термического сопротивления газов в ячейках. Это может привести к нескольким недостаткам, включая выделение газов HCFC или CFC, а также снижение R Value с течением времени по мере выхода газа.

Разница между полистиролом и полиэтиленом

Полистирол и полиэтилен — одни из наиболее широко используемых сегодня полимеров.Оба они ударопрочные, легкие и доступны во многих различных формах, что делает их идеальными для самых разных целей. При таком большом количестве применений обоих видов пластмасс легко запутаться в том, как лучше всего использовать эти продукты, однако у этих пластиков есть ключевые различия, которые необходимо учитывать.

Давайте подробнее рассмотрим свойства полиэтилена и полистирола и определим, что делает эти два термопласта уникальными:

Полиэтилен

Полиэтилен был впервые синтезирован учеными Реджинальдом Гибсоном и Эриком Фосеттом в 1933 году, когда они прореагировали этиленом с бензальдегидом при очень высокой температуре и давлении.Полученный полимер можно формовать в листы и стержни или вытягивать в волокна и пленки. Эта универсальность была одной из определяющих черт полиэтилена. Сегодня полиэтилен обычно производят в нескольких различных формах с совершенно разными свойствами:

  • Полиэтилентерефталат (ПЭТ) — ПЭТ известен своей способностью легко подвергаться термоформованию в производственных и инженерных целях. В волокнистой форме его обычно называют полиэстером. Его также можно производить с использованием гликоля для производства ПЭТ-Г, который очень устойчив к ударам, давлению и высокой температуре.
  • Полиэтилен низкой плотности (LDPE) — LDPE — это гибкий полиэтилен с уникальными свойствами текучести, которые делают его идеальным для формования в пленку. Он обладал высокой пластичностью, но низким пределом прочности на разрыв, что позволяло значительно растянуть его перед разрушением.
  • Полиэтилен высокой плотности (HDPE) — HDPE представляет собой высококристаллический и плотный пластик. Это делает его исключительно прочным, долговечным и ударопрочным. В результате его часто выбирают для применений, где требуется долговечный или эластичный материал.
  • Полиэтилен сверхвысокой молекулярной массы (UHMW) — этот тип полиэтилена лучше всего подходит для высокопроизводительных приложений. Он намного тяжелее и плотнее, чем HDPE. При вплетении в волокно UHMW имеет более высокий предел прочности на разрыв, чем сталь, что делает листы UHMW идеальными для кухонных шкафов и доков.

Свойства полиэтилена

Полиэтилен — самый простой в химическом отношении полимер, состоящий только из углерода и водорода. Благодаря своему молекулярному составу он очень устойчив к химическим веществам, ультрафиолетовому излучению и влаге.Как термопласт, его можно постоянно плавить, реформировать и снова и снова охлаждать, придавая новые формы, что делает его отличным кандидатом для вторичной переработки. Полиэтилен также довольно прочен, что делает некоторые из его форм популярными для упаковки тяжелых предметов, а другие формы идеально подходят для абсолютной ударопрочности.

Преимущества полиэтилена

Полиэтилен известен своей исключительной легкостью и прочностью. Он также выдерживает контакт со многими различными химическими веществами, а это означает, что большинство бытовых чистящих средств можно использовать с полиэтиленом без значительного ущерба.В дополнение к этому, полиэтилену можно легко придать множество различных форм, включая листы, стержни и блоки, а также нестандартные формы. При необходимости можно легко разрезать и изготовить большинство видов полиэтилена с помощью основных деревообрабатывающих инструментов.

Примеры использования полиэтилена

Полиэтилен имеет множество различных вариантов использования из-за его универсальности. Он также исключительно популярен для упаковки продуктов питания и напитков, поскольку большинство типов полиэтилена считаются безопасными для пищевых продуктов FDA.

  • Полиэтилентерефталат (ПЭТ) — Одежда, бутылки, пищевая и фармацевтическая упаковка.ПЭТ-G также используется в качестве нити для 3D-печати
  • Полиэтилен низкой плотности (LDPE) — пакеты для хранения пищевых продуктов, полиэтиленовая пленка, пластиковые пакеты для покупок.
  • Полиэтилен высокой плотности (HDPE) — морская доска, мусорные баки, разделочные доски, молочники.
  • Сверхвысокомолекулярный полиэтилен (UHME) — Медицинские изделия и бронежилеты.

Полистирол

Полистирол, часто называемый «стиролом», представляет собой полимер, созданный из мономера стирола, который представляет собой жидкий углеводород, полученный из нефти.Полистирол имеет исключительно долгую историю, он был обнаружен в 1839 году аптекарем по имени Эдуард Симон. Он перегонял масла из американской сладкой жевательной резинки и назвал полученное соединение оксидом стирола. Однако только в 1938 году ученые изобрели коммерческое производство этого соединения — после открытия оксид стирола был переименован в полистирол.
Полистирол доступен в трех основных формах, включая твердый ударопрочный пластик, легкий пенопласт и тонкую пленку.Это придает полистиролу почти такую ​​же универсальность, что и полиэтилен.

Свойства полистирола

Полистирол — это термопласт, который твердеет при комнатной температуре, но начинает плавиться при 210 C. После расплавления полистирол может быть преобразован в новые формы, а затем охлажден до твердого состояния, что делает его отличным кандидатом для вторичной переработки. Все формы полистирола до некоторой степени устойчивы к кислотам и щелочам, что делает их надежными для повседневного использования.

Разновидность пенополистирола часто называют пенополистиролом.Эта пена жесткая, но способна поглощать и рассеивать значительное давление благодаря своей структурной прочности и низкой плотности. Несмотря на расширение пузырьков воздуха, пенополистирол по-прежнему сохраняет свои влагостойкие и теплоизоляционные свойства, поэтому горячие напитки часто подают в стаканчиках из полистирола.

Преимущества полистирола

Полистирол — один из самых экономичных пластиков, доступных для покупки. Кроме того, его очень просто вырезать по форме, используя резку с компьютерным управлением, двумерное формование или бытовые инструменты, такие как ножи и настольные пилы.Это одна из причин, по которой инженеры обычно используют полистирол, особенно в виде пены, для создания прототипов — все формы стирола можно очень легко купить, склеить, отшлифовать, разрезать и покрасить. Кроме того, полистирол можно переработать, если он правильно утилизирован.

Примеры использования полистирола

У полистирола есть множество вариантов использования, будь то твердый пластик, пенопласт или пленка. Твердый пластик часто используется для изготовления уличной мебели, пробирок, стаканов, игрушек, корпусов компьютеров, посуды и пластиковых стаканчиков для питья.Разновидность вспененного пенопласта до полистирола используется в упаковке, переносных контейнерах, инженерных моделях и стаканах для питья из пенополистирола. Растянутый в пленку полистирол часто используется в вакуумной упаковке как недорогая альтернатива полипропилену.

Основные отличия

Хотя полистирол и полиэтилен имеют несколько общих черт, у них есть несколько определяющих различий. Полиэтилен в формах HDPE и UHME намного более устойчив к ударам и долговечен, что делает его идеальным для использования в строительстве.Он также обладает замечательной устойчивостью к химическим веществам, ультрафиолетовому излучению и влаге. Полиэтилен очень плотный и доступен в виде листов, пленки и волокон.

С другой стороны, полистирол доступен в виде листов, пленки и пенопласта. Однако полистиролу можно очень легко придать форму, особенно когда он находится в форме пены. Это делает его идеальным для инженерных целей. Низкая цена полистирола и его способность выдерживать температуры выше 200 по Цельсию также делают его исключительно популярным в сфере общественного питания.

Если вы хотите поближе познакомиться с доступными формами полистирола, посетите нашу страницу продукта из стирола. Чтобы узнать больше о многих формах полиэтилена, посетите нашу страницу, посвященную ПЭТ, ПЭТ-G, HDPE или UHMW. Или, если у вас есть дополнительные вопросы, свяжитесь с нами сегодня.

Вторичный пенополистирол в качестве легкого заполнителя для экологически безопасных цементных конгломератов

Материалы (Базель). 2020 Фев; 13 (4): 988.

Поступило 20.01.2020 г .; Принята в печать 20 февраля 2020 г.

Лицензиат MDPI, Базель, Швейцария. Эта статья — статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). Эта статья цитировалась другими статьями в PMC. .

Abstract

В данной работе проанализированы реологические, термомеханические, микроструктурные и смачивающие характеристики цементных растворов с вторичным пенополистиролом (EPS). Образцы были приготовлены после частичной / полной замены обычного песчаного заполнителя на пенополистирол с другим размером зерен и гранулометрическим составом.Несмотря на механическую прочность, легкость и теплоизоляция были важными характеристиками всех чистых композитных материалов из пенополистирола. В частности, растворы на основе пенополистирола характеризовались более высокой теплоизоляцией по сравнению с эталонным песком из-за более низкой удельной массы образцов, в основном связанной с низкой плотностью заполнителей, а также с пространствами на границах раздела пенополистирол / цементная паста. Интересные результаты с точки зрения низкой теплопроводности и высокого механического сопротивления были получены в случае смесей песок-EPS, хотя в них содержится всего 50% объема органического заполнителя.Кроме того, растворы на основе песка показали гидрофильность (низкую WCA) и высокую водопроницаемость, тогда как присутствие EPS в цементных композитах привело к снижению водопоглощения, особенно на основной массе композитов. В частности, растворы с пенополистиролом размером 2–4 мм и 4–6 мм показали лучшие результаты с точки зрения гидрофобности (высокая WCA) и отсутствия проникновения воды на внутреннюю поверхность из-за низкой поверхностной энергии органического заполнителя вместе. с хорошим распределением частиц.Это свидетельствовало о когезии между лигандом и полистиролом, наблюдаемой при обнаружении микроструктуры. Такое свойство, вероятно, коррелирует с наблюдаемой хорошей удобоукладываемостью этого типа строительного раствора и с его низкой склонностью к расслоению по сравнению с другими образцами, содержащими пенополистирол. Эти легкие теплоизоляционные композиты можно считать экологически безопасными материалами, поскольку они изготавливаются без предварительно обработанного вторичного сырья и могут использоваться для внутренних работ.

Ключевые слова: вторичный пенополистирол, цементные растворы, безопасное производство, теплоизоляция, механическое сопротивление

1. Введение

В последние годы проблемы, связанные с управлением отходами, стали очень актуальными в рамках более устойчивой модели освоения и потребления новых ресурсов и энергии [1,2,3,4,5,6,7]. Строительная промышленность является одним из видов деятельности с наибольшим потреблением сырья наряду с большим образованием отходов [8,9,10,11,12,13,14].В частности, широкое использование пластиков в строительстве, особенно пенополистирола (EPS), требует новых подходов с низким уровнем воздействия на окружающую среду для оптимизации производственных процессов и сокращения побочных продуктов [15,16,17,18] . По этой причине операции по переработке можно рассматривать как важные задачи по повышению устойчивости материала, который превращается в новый ресурс, так называемое вторичное сырье. Для этой цели пенополистирол является полностью перерабатываемым материалом, широко используемым из-за экономической эффективности, универсальности и эксплуатационных характеристик [18,19,20,21].Он производится из мономера стирола с использованием процесса, в ходе которого к полимеру добавляют газообразный пентан, чтобы вызвать расширение с последующим получением сферических шариков. EPS представляет собой термопластичный полимер, широко используемый во многих областях (здания, упаковка) благодаря таким важным характеристикам, как теплоизоляция, долговечность, легкость, прочность, амортизация и технологичность, которые позволяют получать высокоэффективные и экономичные продукты [22,23, 24,25,26,27]. EPS — это материал с закрытыми порами, с низким водопоглощением и высокой устойчивостью к влаге, который сохраняет форму, размер и структуру после водонасыщения.Смолы EPS — широко распространенные полимеры в строительстве и в гражданском строительстве, обычно доступные в виде листов, форм или крупных блоков и используемые для изоляции полов, стен с закрытыми полостями, крыш и т. Д., Но также используются в дорожных фундаментах, строительстве тротуаров. , звукоизоляция от ударов, водоотвод, элементы модульных конструкций, легкие конгломераты (бетоны, растворы) и др. [28,29,30,31,32,33,34].

В данной работе легкие цементные растворы, содержащие вторичный пенополистирол (EPS) от измельчения промышленных отходов, были приготовлены с частичной или полной заменой стандартного песчаного заполнителя в смеси без добавления добавок.Было проведено исследование реологических, термомеханических, микроструктурных и смачивающих свойств образцов. Было оценено влияние размера заполнителя и гранулометрического состава, и было проведено сравнение с образцами на основе обычного и / или нормализованного песка.

Целью было создание экологически безопасного материала с низкой удельной массой и теплоизоляционными свойствами, который характеризовался высокими техническими характеристиками с точки зрения гидрофобности, низкого водопоглощения [35,36,37,38,39] и с низким влияние производственного процесса.В отличие от обычных цементных композитов, характеризующихся пористостью и гидрофильностью, гидрофобные композиты обычно демонстрируют более длительный срок службы вместе с самоочищающимися свойствами [40,41]. Защита структуры цемента следует стандартным протоколам, основанным на пропитке / покрытии внешних слоев силановыми или силоксановыми фрагментами, в результате чего остается гидрофильный консолидированный бетонный композит [41,42]. Было показано, что добавление полимеров к свежей смеси вместе с нанесением гидрофобных покрытий на затвердевшие изделия приводит к уменьшению проникновения воды, таким образом превращая стандартный строительный материал в гидрофобную или сверхгидрофобную природу [43,44]. .В настоящем исследовании конгломерат не показал никакого покрытия на поверхности, и вся масса была изменена, по этой причине были исследованы боковые стороны и поверхности излома.

Эти легкие термоизоляционные композиты можно считать экологически устойчивыми материалами для внутренних неструктурных артефактов, поскольку они изготавливаются из необработанного вторичного сырья и дешевым способом, поскольку не требуются сложные методы производства. Однако эти обработки и процессы были бы более эффективными в случае производства в более крупных масштабах.

2. Материалы и методы

2.1. Приготовление растворов

Цементные растворы готовили с использованием CEM II A-LL 42,5 R (Buzzi Unicem (Casale Monferrato, Италия)) [45]. Нормализованный песок (~ 1700 г / дм 3 , 0,08–2 мм) был закуплен Societè Nouvelle du Littoral (Leucate, Франция), тогда как просеянный песок использовался в качестве заполнителя в трех фракциях определенного размера (1–2 мм, 2–2 мм). 4 мм и 4–6 мм) [46,47]. Переработанный пенополистирол (EPS), полученный в результате измельчения промышленных отходов, использовался в трех определенных фракциях (1–2 мм, 2–4 мм и 4–6 мм).Образцы были подготовлены с соотношением 0,5 Вт / C, призмы 40 мм × 40 мм × 160 мм были получены для испытаний на изгиб / сжатие, в то время как цилиндры (диаметр = 100 мм; высота = 50 мм) были подготовлены для тепловых испытаний. В случае механических испытаний образцы выдерживались в воде в течение 7, 28, 45 и 60 дней, а в случае термических испытаний образцы выдерживались в воде в течение 28 дней.

Эталон был подготовлен с использованием нормализованного песка [46] и назван Нормальным. EPS был добавлен в конгломерат с частичной или полной заменой стандартного песчаного заполнителя, который производился по объему, а не по весу [48,49,50] из-за низкой удельной массы полистирола.Образцы (за исключением Нормального) были приготовлены с объемом агрегата 500 см 3 . и показать состав заполнителя и соответствующих строительных растворов.

Таблица 1

Состав агрегатов в композитах.

Нормальный Нормализованный песок
Песок песок (1–2 мм) 25% песок (2–4 мм) 25% песок (4–6 мм) 50%
Песок-EPS песок (1-2 мм) 25% песок (2-4 мм) 25% EPS (4-6 мм) 50%
EPS 2 EPS (4–6 мм) 100%
EPS 3 EPS (2–4 мм) 50% EPS (4–6 мм) 50%
EPS 4 EPS (1-2 мм) 25% EPS (2–4 мм) 25% EPS (4–6 мм) 50%

Таблица 2

Состав растворов.

901 901 901

901 901 9016 850

Образец Цемент (г) Вода (см 3 ) Объем песка (см 3 ) Объем EPS (см 3 ) ρ (кг / м 3 ) Пористость
%
Нормальный 450 225 810 0 2020 22
9016 901 901 901 901 9016 901 901 901 901 901 9016 901 901

2090 20
Sand-EPS 450 225 250 250 1320 32
EPS 2 450 450 49
EPS 3 450 225 0 500 940 42
EPS 4 450 225 0 500 855 48

Полная замена песка производилась зернами EPS размером 1–2 мм (30 г / дм 3 ), 2–4 мм (15 г / дм 3 ) и 4–6 мм (10 г / дм 3 ), образцы EPS2, EPS3 и EPS4 были получены, как указано в и.Другой образец, названный Sand, приготовленный с размером песка в диапазоне 1–2 мм (50%), 2–4 мм (25%) и 4–6 мм (25%), сравнивали с образцами EPS. Образец Sand-EPS был приготовлен после замены 50% объема песка зернами EPS размером 4–6 мм (песок / EPS).

2.2. Реологические, термические и механические характеристики

Проточные испытания позволили оценить реологические свойства свежих конгломератов [51]. ISOMET 2104, Applied Precision Ltd (Братислава, Словакия), использовался для определения теплопроводности (λ) и температуропроводности (α) образцов путем создания постоянного теплового потока с помощью нагревательного зонда, нанесенного на поверхность образца.Температура регистрировалась с течением времени, а λ и α были получены после оценки экспериментальной температуры по сравнению с решением уравнения теплопроводности [52]. Испытания на изгиб и сжатие проводились на приборе MATEST (Милан, Италия). Испытания на изгиб были проведены на шести призмах (40 мм × 40 мм × 160 мм) путем приложения нагрузки со скоростью 50 ± 10 Н / с, в то время как прочность на сжатие была получена на полученных полупризмах путем приложения нагрузки с 2400 Скорость ± 200 Н / с [46].

2.3. Измерения краевого угла и водопоглощения

В настоящем исследовании исследование боковой и внутренней поверхности цементных конгломератов проводилось путем измерения краевого угла. После нанесения не менее пятнадцати капель (5 мкл) воды на поверхность каждого образца было показано, что поведение трех репрезентативных точек (точки 1, 2 и 3) суммирует поведение всех капель. Портативный микроскоп dyno-lite серии Premier (Тайвань) и фоновое холодное освещение использовались для изучения временной эволюции капли со скоростью 30 кадров в секунду.В случае нестатической капли, определяемой по водопоглощению, последовательности изображений анализировали с помощью программного обеспечения Image J (версия 1.8.0, Национальный институт здравоохранения, Бетесда, Мэриленд, США), чтобы измерить изменение краевого угла смачивания. и высоты падения.

2.4. СЭМ / EDX и порозиметрические анализы

Электронный микроскоп FESEM-EDX Carl Zeiss Sigma 300 VP (Carl Zeiss Microscopy GmbH (Йена, Германия)) использовался для характеристики морфологии и химического состава образцов, которые были нанесены на алюминиевые стержни и перед испытанием распыляли золото (Sputter Quorum Q150 Quorum Technologies Ltd (Восточный Суссекс, Великобритания)).В этом отношении состав нормализованного песка был: C (4%), O (52%), Si (35%), Ca (2%), состав просеянного песка был: C (10%), O (45%), Ca (45%), состав полистирола: C (30%), O (70%), состав цементного теста: C (4,2%), O (40%), Si ( 7,6%), Ca (44%), Fe (1,5%), Al (2,5%). Автоматический газовый пикнометр Ultrapyc 1200e, Quantachrome Instruments (Boynton Beach, FL, USA) использовался для порометрических измерений, а гелий использовался для проникновения в поры материала.

3. Результаты и обсуждение

Данные о потоке неконсолидированных образцов представлены и были получены после измерения диаметров смеси до и после испытания [51]. Расход образца представлен увеличением диаметра в процентах по сравнению с диаметром основания.

Образец песка показал более высокую текучесть (+ 35%) по сравнению с образцом Normal из-за отсутствия более мелких агрегатов. Образцы из пенополистирола были более текучими, чем оба эталона, особенно по отношению к нормализованному строительному раствору (нормальный).Такое поведение можно объяснить низкой поверхностной энергией, низкой шероховатостью (гладкая поверхность), гидрофобными свойствами (синтетический органический полимер) и низкой плотностью частиц EPS (10–30 г / дм3 по сравнению с 1700 г / дм 3 песка), которые могут вызвать сегрегацию заполнителя в цементном конгломерате. Более низкая текучесть EPS3 (+ 126%) по сравнению с EPS2 (+ 174%) и EPS4 (+ 150%), вероятно, связана с лучшим уплотнением заполнителей в смеси (лучшим распределением гранул), в то время как в В случае образца Sand / EPS присутствие неорганического заполнителя способствовало снижению текучести ().В и прочность на изгиб и сжатие образцов указывается как функция удельной массы. Образец песка показал немного более высокую механическую прочность, чем образец нормального качества, из-за наличия агрегатов большего размера, которые способствуют увеличению удельной массы. Добавление пенополистирола обусловило образование пустот в композите с заметным уменьшением удельной массы строительных растворов (), которая зависит не только от характеристик матрицы и полимера (вспенивающейся структуры пенополистирола), но и от свойств поверхности раздела [53 , 54,55].По этой причине после полной замены объема песка наблюдалось снижение механической прочности конгломератов, этот эффект приписывается низкой плотности / высокой пористости шариков пенополистирола (вставка) и пустотам, создаваемым заполнителем. на границе цемент / EPS во время смешивания [53,54]. На самом деле пористость этих образцов примерно в два раза выше эталонных (). С этой целью сопротивление изгибу и сжатию образцов EPS2, EPS3 и EPS4 было примерно на ~ 80% ниже, чем у эталонов, с пределом прочности при сжатии от почти 50 МПа до менее 10 МПа при снижении удельной массы с 2100 до 900 кг / м 3 .После замены 50% объема песка шариками из пенополистирола (Sand-EPS) наблюдалось увеличение механической прочности по сравнению с образцами из пенополистирола. Фактически, снижение прочности на изгиб составило примерно 25% по сравнению с обоими эталонами, в то время как прочность на сжатие была на 25-30% ниже, чем у эталонов.

Прочность образцов на изгиб и сжатие (отверждение 28 дней). Этикетка EPS (пенополистирол) представляет собой EPS 2, EPS3 и EPS4. Белые квадраты представляют прочность на сжатие, а черные квадраты — прочность на изгиб.На вставке: внутренняя пористость шарика из пенополистирола (СЭМ-изображение).

Таблица 3

Механическая прочность (отверждение 28 дней) образцов.

901

9016

Образец ρ (кг / м 3 ) R F
(МПа)
R C
(МПа)
Нормальный 50
Песок 2090 7,7 52
Sand-EPS 1320 4.9 33
EPS 2850 1,1 8
EPS 3 940 1,1 10

Растворы из пенополистирола не показали хрупкого поведения при изгибе, которое можно наблюдать в образцах песка (нормальный и песчаный), но разрыв был более постепенным, и растворы, содержащие 100% пенополистирола, не показали разделения двух части [56,57].Образец Sand-EPS, содержащий 50% песка и 50% EPS, показал полухрупкое поведение. Как и в первом случае, разрушение строительных смесей из EPS2, EPS3 и EPS4 при сжатии происходило постепенно с высоким поглощением энергии из-за сохранения нагрузки после разрыва без разрушения [56,58,59]. Как и ожидалось, эталонные образцы показали типичное хрупкое разрушение. Было замечено, что большинство агрегатов образцов EPS3 и EPS4 отслоились вдоль плоскости разрушения (A, B), напротив, никаких повреждений не наблюдалось для большинства заполнителей в растворе EPS2, а некоторые из шариков EPS2 были сняты. склеен из матрицы (С).

( A ) СЭМ-изображение границы раздела цементная паста / EPS в образце EPS3. ( B ) СЭМ-изображение границы раздела цементная паста / EPS в образце EPS4. ( C ) СЭМ-изображение границы раздела цементная паста / пенополистирол в образце EPS2, на вставке — изображение разорванного валика EPS.

Из этих результатов можно сделать вывод, что связь между заполнителем EPS2 и цементным тестом была слабее, чем предел прочности заполнителя (плохая адгезия EPS к цементной пасте), в то время как связь между заполнителем EPS2 и цементом паста в образцах EPS3 и EPS4 была прочнее (лучшая адгезия EPS к цементной пасте), чем предел прочности гранул полистирола [33,60].Этот эффект был особенно заметен на образце EPS3 (A). Последний результат свидетельствует о лучшей когезии между заполнителем и цементным тестом. Таким образом, EPS3 продемонстрировал более высокое уплотнение, которое упаковывает частицы заполнителя вместе, чтобы увеличить удельную массу строительного раствора, и это также объясняет более низкий процентный поток по сравнению с другими образцами, что привело к более текучести и с более высокой тенденцией к сегрегации. [20] (см.).

Более низкая удельная масса образца EPS2 может быть продемонстрирована большими пустотами на границе раздела лиганд / агрегат с длиной, сопоставимой с гранулами EPS, и шириной 20-30 микрон, этот эффект был приписан упомянутой плохой адгезии гранул к поверхности. цементная паста (А, Б).Этот результат также наблюдался в образце EPS3, но в последнем случае адгезия отколотых частиц к цементному тесту была лучше, что свидетельствует о более высокой удельной массе этого типа легкого строительного раствора. Кроме того, по букве C очевидна идеальная адгезия песка к цементному тесту. Фактически, из карты относительно элемента Si, который почти не присутствует в известняке, можно наблюдать незначительное разделение между песком и лигандом, которое объясняется благоприятной адгезией.

( A , B ) СЭМ-изображения границы раздела цементная паста / EPS в образце EPS2. ( C ) СЭМ-изображение нормализованного строительного раствора и, на вставке, карта EDX относительно распределения Si в образце.

Изменение во времени прочности на изгиб и сжатие нормального образца, образцов из EPS3 и Sand / EPS приведено там, где увеличение сопротивления может наблюдаться при стабилизации через 45 дней. Через 60 дней значения существенно не изменились, что свидетельствует о стабильности материалов с учетом конкретных условий отверждения / консервации воды конгломератов.

Прочность образцов на изгиб ( A ) и сжатие ( B ) с течением времени.

Растворы на основе пенополистирола

показали более низкую теплопроводность и коэффициент диффузии, чем эталонные пески (). Этот результат можно приписать более низкой удельной массе образцов из-за низкой плотности органических агрегатов [61,62] (см. Вставку) вместе с упомянутыми пустотами на границе раздела EPS / лиганд, которые ограничивают перенос тепла в композите. В частности, теплопроводность образцов без покрытия из пенополистирола была на ~ 80% ниже, чем у эталонов.Наилучшие результаты были получены в случае образца EPS4 (0,29 Вт / мК) из-за наименьшей удельной массы. Промежуточные значения (0,8 Вт / мК) были получены для образцов с 50% EPS (образец песка / EPS). Данные по теплопроводности и коэффициенту диффузии показали экспоненциальное уменьшение с уменьшением удельной массы конгломератов.

( A ) Теплопроводность и ( B ) температуропроводность образцов.

Была проведена характеристика смачивания боковой поверхности () и внутренней поверхности () нормального образца.A, B показывает изменение во времени краевого угла смачивания воды (WCA) и высоты падения для боковой поверхности образца песка. Наблюдался гидрофильный характер (WCA <90 °) [35], хотя было обнаружено различное поведение в разных точках наблюдения. Быстрое уменьшение WCA и полное проникновение произошло за несколько секунд в точке 3, более медленное, но полное водопоглощение произошло в точке 2, тогда как более высокое WCA и незначительное водопоглощение наблюдались в случае точки 1. C показывает изображения, относящиеся к поведению капли.Боковая поверхность эталонного раствора на основе нормализованного песка (нормальный) показала аналогичные характеристики. Стоит подчеркнуть, что возможность обнаружения и количественной оценки пространственно неоднородного поведения такой поверхности / материала, как они, является особым преимуществом пространственно разрешенной оценки смачиваемости и абсорбции, выполненной с помощью этого метода (объем капли составляет 5 мкл), чего нельзя достичь с помощью измерений водопроницаемости или капиллярного поглощения.

( A ) Угол смачивания и ( B ) изменение высоты во времени для капель воды, осевших на характерных точках боковой поверхности нормализованного раствора (песок).( C ) Изображения с оптического микроскопа (внизу: капля точки 1, вверху: капля точки 3).

( A ) Угол контакта и ( B ) высота падения для репрезентативных точек поверхности разрушения нормализованного раствора (песок). ( C ) На изображении оптического микроскопа: точка 2 капля.

A, B — параметры смачивания относительно поверхности излома. Внутренняя поверхность, образовавшаяся в результате механического разрушения, может считаться более репрезентативной для составных элементов, поскольку это часть образца, показывающая каждый компонент смеси.Он показывает открытую пористость, характеризующуюся высокой шероховатостью и видимым распределением агрегатов, в отличие от того, что наблюдается на боковой поверхности. В частности, результаты, полученные в каждой точке наблюдения, были одинаковыми. Быстрое уменьшение краевого угла смачивания водой и высоты падения наблюдалось в каждой точке (C). В отличие от того, что наблюдалось на боковой поверхности, WCA была ниже, поэтому поверхность излома в целом можно считать супергидрофильной (WCA ~ 0–5 [35,63] и быстро впитывающейся.Как и в первом случае, аналогичные результаты наблюдались на внутренней поверхности образца Normal.

Характеристики смачивания строительного раствора EPS3 с зернами EPS в диапазоне размеров шариков 2–4 мм (50%) и 4–6 мм (50%) представлены в и. Как описано выше, EPS полностью заменил объем песка. A, B показывает изменение во времени краевого угла смачивания воды (WCA) и высоты капли на боковой поверхности образца. Наблюдались разные тенденции. Медленное, но полное водопоглощение происходило в точке 1, более высокое и незначительное водопоглощение наблюдались в случае точек 2 и 3, последнее с WCA ≥ 90 °.В данном случае боковая поверхность оказалась более гидрофобной, чем у ссылок.

( A ) Угол контакта и ( B ) высота падения для репрезентативных точек боковой поверхности раствора EPS3. ( C ) На изображении оптического микроскопа: точка 2 капля.

( A ) Угол контакта и высота падения (B ) для репрезентативных точек поверхности излома раствора EPS3. ( C ) На изображении оптического микроскопа: точка 2 капля.

A, B показывает изменение во времени краевого угла смачивания воды (WCA) и высоты капли на поверхности излома образца EPS3. При этом капля была стабильной в течение всего времени наблюдения. также показано изображение капли после осаждения на поверхность образца (точка 2), которая стала гидрофобной с высоким значением WCA (WCA> 90 °) [35]. Последний результат был подтвержден после нанесения капель на плиту из пенополистирола или на голые шарики из пенополистирола, в частности, в первом случае WCA составляла приблизительно 99 °, а во втором (100–102 °) выше, вероятно, из-за кривизны гранул.WCA была выше на голых шариках по сравнению с EPS в смеси из-за отсутствия загрязнения от гидрофильного цементного теста [64,65]. Для этого после нанесения на участки цементного теста образца EPS3 (точки 1 и 3) наблюдались гидрофильные свойства, но незначительное водопоглощение. Этот последний результат приписывается гидрофобному и неабсорбирующему эффекту EPS, участки которого уменьшают среднюю поверхностную энергию образца, делая неэффективным присутствие пористых и гидрофильных областей цемента [64,65].

Характеристики смачивания поверхности излома раствора EPS4 с зернами EPS в диапазоне размеров шариков 1–2 мм (25%), 2–4 мм (25%) и 4–6 мм (50%), приведен в A, в то время как результаты, полученные на боковой поверхности, были аналогичны результатам для образца EPS3. Поверхность излома является гидрофобной в области полистирольных шариков (точка 2) и гидрофильной в области цементного теста (точка 3), поскольку капля была нанесена на гидрофильную и абсорбирующую поверхность. Фактически, последний результат представляет собой разницу между поверхностью разрушения этого образца и поверхностью разрушения первого композита (EPS3).

Угол смачивания для характерных точек поверхности излома растворов ( A ) EPS4 и ( B ) EPS2.

Характеристики смачивания поверхности разрушения строительного раствора EPS2 с зернами EPS в диапазоне размеров шариков 4–6 мм (100%) приведены в B, и в этом случае результаты, полученные на боковой поверхности этого образца, были аналогичны тем, которые наблюдались в случае бывших образцов EPS. В случае поверхности излома гидрофильный характер наблюдался в каждой точке наблюдения с очень низким углом контакта с водой и быстрым водопоглощением.

Таким образом, EPS3 — образец с наименьшим водопоглощением. Это может быть связано с более эффективной организацией агрегатных частиц с открытыми пространствами (сфероидальными микрополостями) между более крупными частицами, заполненными шариками EPS меньшего размера [49,66], что приводит к лучшему поведению композита. Этот образец действительно показывает самую высокую удельную массу и самую низкую пористость среди образцов из пенополистирола, что обоснованно является следствием лучшего уплотнения заполнителя (о чем свидетельствует самый низкий поток).Это свойство, с одной стороны, приводит к небольшому снижению теплоизоляционных характеристик, но, с другой стороны, делает композит определенно менее подверженным проникновению воды. Важность оптимизации уровня уплотнения путем регулирования распределения по размерам заполнителей EPS обусловлена ​​относительно большим размером исходных гранул EPS, что приводит к образованию слишком больших каналов цементной матрицы между заполнителями в затвердевшие артефакты.

Следовательно, при правильном распределении по размеру шарики из пенополистирола могут представлять собой подходящие заполнители в артефактах на основе цемента как для освещения / изоляции, так и для защиты от воды.Такое двойное преимущество проистекает из своеобразной комбинации низкой плотности и низкой поверхностной энергии этого пластичного материала, как уже было показано при использовании других полимерных заполнителей, таких как гранулированный каучук из отслуживших свой срок шин [53].

4. Выводы

В данной работе было проведено исследование реологических, термомеханических, микроструктурных и смачивающих характеристик цементных растворов, содержащих вторичный пенополистирол (EPS). Образцы были приготовлены после частичной / полной замены обычного песчаного заполнителя на пенополистирол с другим размером зерен и гранулометрическим составом.Результаты экспериментов можно резюмировать следующим образом:

  • Образцы EPS дали больше текучести, чем эталоны, в частности, образец, характеризуемый зернами EPS размером 2–4 мм (50%) и 4–6 мм. Диапазон размеров гранул (50%) (EPS3) был наиболее пластичным с хорошим распределением частиц и когезией между лигандом и органическими агрегатами, что также наблюдалось при микроструктурных и порозиметрических детекциях.

  • Механические сопротивления образцов EPS были ниже по сравнению с контролями из-за более низкой удельной массы.Наблюдалось увеличение силы со стабилизацией через 45 дней. Через 60 дней значения существенно не изменились, что свидетельствует о стабильности материалов с учетом конкретных условий отверждения / консервации воды конгломератов.

  • Растворы на основе пенополистирола показали более низкие показатели теплопроводности и диффузии по сравнению с эталонными материалами на основе песка из-за более низкой плотности, приписываемой низкой плотности заполнителей и зазоров на границе раздела пенополистирол / цементная паста.

  • Интересные результаты с точки зрения высоких механических сопротивлений и низкой теплопроводности были получены в случае смесей песок-EPS.

  • Эталонные растворы на основе песка показали гидрофильность (низкую WCA) и высокую водопроницаемость, особенно на поверхности излома композитов, в противоположность тому, что наблюдалось в случае образцов EPS, которые в целом были более гидрофобными и менее водопоглощающий. Наилучшие результаты (высокая WCA и незначительное проникновение воды на поверхность трещины) были получены с образцом EPS3.Это свойство было приписано низкой поверхностной энергии органического заполнителя в сочетании с его лучшим распределением частиц и уплотнением в гидрофильных доменах цементной пасты в композите.

  • Эти легкие термоизоляционные композиты могут использоваться в строительной отрасли в качестве неструктурных компонентов, особенно для внутреннего применения (панели, штукатурки). Более того, конгломераты можно считать экологически устойчивыми, поскольку они изготавливаются из вторичного сырья (переработанный пенополистирол) и являются рентабельными, поскольку использовался дешевый способ подготовки, поскольку возобновляемые агрегаты не подвергались предварительной обработке, а сложная технология производства не применялась. требуется.

Благодарности

Особая благодарность Пьетро Стефаницци и Стефании Лиуцци за термический анализ. Адриано Богетич признателен за анализ SEM-EDX, а также за регион Апулии (проект лаборатории микрорентгенографии — Reti di Laboratori Pubblici di Ricerca, кодовые номера 45 и 56). Выражаем благодарность DICATECh Политехнического института Бари за анализ SEM.

Вклад авторов

Концептуализация, А.П .; методология, А.П .; программное обеспечение, R.D.M .; валидация, А., R.D.M. и M.N .; формальный анализ, А.П .; расследование, A.P., R.D.M .; ресурсы, А.П .; курирование данных, А.П .; письменная — подготовка оригинала черновика А.П .; написание — просмотр и редактирование, A.P., R.D.M., M.N .; визуализация, М.Н .; наблюдение, М. Все авторы прочитали и согласились с опубликованной версией рукописи.

Финансирование

Это исследование не получало внешнего финансирования.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

1.Гарсия Д., Ю Ф. Возможности системной инженерии для управления сельскохозяйственными и органическими отходами во взаимосвязи продовольствия, воды и энергии. Curr. Opin. Chem. Англ. 2017; 18: 23–31. DOI: 10.1016 / j.coche.2017.08.004. [CrossRef] [Google Scholar] 2. Сенгупта А., Гупта Н.К. Сорбенты на основе МУНТ для обращения с ядерными отходами: обзор. J. Environ. Chem. Англ. 2017; 5: 5099–5114. DOI: 10.1016 / j.jece.2017.09.054. [CrossRef] [Google Scholar] 3. Ли М., Лю Дж., Хань В. Переработка и утилизация отработанных свинцово-кислотных аккумуляторов: мини-обзор.Waste Manag. Res. 2016; 34: 298–306. DOI: 10.1177 / 0734242X16633773. [PubMed] [CrossRef] [Google Scholar] 4. Асефи Х., Лим С. Новый подход многомерного моделирования к комплексному управлению твердыми бытовыми отходами. J. Clean. Prod. 2017; 166: 1131–1143. DOI: 10.1016 / j.jclepro.2017.08.061. [CrossRef] [Google Scholar] 5. Лиуцци С., Рубино К., Стефаницци П., Петрелла А., Богетич А., Касавола К., Паппалеттера Г. Гигротермические свойства глинистых штукатурок с оливковыми волокнами. Констр. Строить. Матер. 2018; 158: 24–32.DOI: 10.1016 / j.conbuildmat.2017.10.013. [CrossRef] [Google Scholar] 6. Коппола Л., Беллеззе Т., Белли А., Биньоцци М.К., Больцони Ф., Бренна А., Кабрини М., Кандамано С., Каппаи М., Капуто Д. и др. Альтернативные связующие вещества портландцементу и утилизация отходов для устойчивого строительства — часть 1. J. Appl. Биоматер. Функц. Матер. 2018; 16: 186–202. [PubMed] [Google Scholar] 7. Коппола Л., Беллеззе Т., Белли А., Биньоцци М.К., Больцони Ф., Бренна А., Кабрини М., Кандамано С., Каппай М., Капуто Д. и др.Альтернативные связующие вещества портландцементу и утилизация отходов для устойчивого строительства — часть 2. J. Appl. Биоматер. Функц. Матер. 2018; 16: 207–221. [PubMed] [Google Scholar] 8. Осса А., Гарсиа Х.Л., Ботеро Э. Использование переработанных агрегатов строительного мусора и отходов сноса (CDW): устойчивая альтернатива для индустрии строительства тротуаров. J. Clean. Prod. 2016; 135: 379–386. DOI: 10.1016 / j.jclepro.2016.06.088. [CrossRef] [Google Scholar] 9. Гомес-Мейджиде Б., Перес И., Пасандин А.Р. Переработанные строительные отходы и отходы сноса в холодных асфальтобетонных смесях: эволюционные свойства.J. Clean. Prod. 2016; 112: 588–598. DOI: 10.1016 / j.jclepro.2015.08.038. [CrossRef] [Google Scholar] 10. Петрелла А., Косма П., Рицци В., Де Вьетро Н. Пористый алюмосиликатный агрегат в качестве сорбента ионов свинца при очистке сточных вод. Разделения. 2017; 4:25. DOI: 10.3390 / separations4030025. [CrossRef] [Google Scholar] 11. Xuan D.X., Molenaar A.A.A., Houben L.J.M. Оценка цементной обработки вторичных строительных отходов и отходов сноса в качестве дорожных оснований. J. Clean. Prod. 2015; 100: 77–83. DOI: 10.1016 / j.jclepro.2015.03.033. [CrossRef] [Google Scholar] 12. Петрелла А., Петруцелли В., Раньери Э., Каталуччи В., Петруцелли Д. Сорбция Pb (II), Cd (II) и Ni (II) из одно- и мультиметаллических растворов переработанными отходами пористого стекла. Chem. Англ. Commun. 2016; 203: 940–947. DOI: 10.1080 / 00986445.2015.1012255. [CrossRef] [Google Scholar] 13. Петрелла А., Петрелла М., Богетич Г., Базиль Т., Петруцелли В., Петруцелли Д. Удержание тяжелых металлов в переработанных стеклянных отходах при сортировке твердых отходов: сравнительное исследование различных видов металлов.Ind. Eng. Chem. Res. 2012; 51: 119–125. DOI: 10.1021 / ie202207d. [CrossRef] [Google Scholar] 14. Петрелла А., Петруцелли В., Базиль Т., Петрелла М., Богетич Г., Петруцелли Д. Переработанное пористое стекло, полученное при сортировке твердых бытовых / промышленных отходов, в качестве сорбента ионов свинца из сточных вод. Реагировать. Функц. Polym. 2010; 70: 203–209. DOI: 10.1016 / j.reactfunctpolym.2009.11.013. [CrossRef] [Google Scholar] 15. Сингх Н., Хуэй Д., Сингх Р., Ахуджа И.П.С., Фео Л., Фратернали Ф. Утилизация твердых пластиковых отходов: современный обзор и будущие применения.Compos. Часть B англ. 2017; 115: 409–422. DOI: 10.1016 / j.compositesb.2016.09.013. [CrossRef] [Google Scholar] 16. Лопес Г., Артеткс М., Амутио М., Альварес Дж., Бильбао Дж., Олазар М. Последние достижения в области газификации пластиковых отходов: критический обзор. Renew Sustain. Energy Rev.2018; 82: 576–596. DOI: 10.1016 / j.rser.2017.09.032. [CrossRef] [Google Scholar] 17. Лопес Г., Артеткс М., Амутио М., Бильбао Дж., Олазар М. Термохимические пути повышения ценности отходов полиолефиновых пластиков для производства топлива и химикатов: обзор.Renew Sustain. Energy Rev.2017; 73: 346–368. DOI: 10.1016 / j.rser.2017.01.142. [CrossRef] [Google Scholar] 18. Раджаеифар М.А., Абди Р., Табатабаи М. Применение отходов пенополистирола для улучшения экологических показателей биодизеля с точки зрения оценки жизненного цикла. Renew Sustain. Energy Rev.2017; 74: 278–298. DOI: 10.1016 / j.rser.2017.02.032. [CrossRef] [Google Scholar] 19. Махарана Т., Неги Ю.С., Моханти Б. Обзорная статья: Вторичное использование полистирола. Polym. Пласт. Technol. Англ.2007. 46: 729–736. DOI: 10.1080 / 03602550701273963. [CrossRef] [Google Scholar] 20. Херки Б. Комбинированное воздействие уплотненного полистирола и необработанной золы-уноса на инженерные свойства бетона. Здания. 2017; 7: 77. DOI: 10.3390 / Buildings7030077. [CrossRef] [Google Scholar] 21. Байуми Т.А., Тауфик М.Э. Иммобилизация сульфатных отходов моделирования в полимерцементном композите на основе переработанных отходов пенополистирола: оценка окончательной формы отходов при обработке замораживанием-оттаиванием. Polym. Compos.2017; 38: 637–645. DOI: 10.1002 / pc.23622. [CrossRef] [Google Scholar] 22. Сонг Х.Ю., Ченг X.X., Чу Л. Влияние плотности и температуры окружающей среды на коэффициент теплопроводности теплоизоляционных материалов из пенополистирола и полиуретана для упаковки пищевых продуктов. Прил. Мех. Матер. 2014; 469: 152–155. DOI: 10.4028 / www.scientific.net / AMM.469.152. [CrossRef] [Google Scholar] 23. Лоддо В., Марси Г., Пальмизано Г., Юрдакал С., Браззоли М., Гараваглиа Л., Палмизано Л. Листы из экструдированного пенополистирола с покрытием TiO 2 в качестве новых фотокаталитических материалов для упаковки пищевых продуктов.Прил. Серфинг. Sci. 2012; 261: 783–788. DOI: 10.1016 / j.apsusc.2012.08.100. [CrossRef] [Google Scholar] 24. Цай С., Чжан Б., Кремаски Л. Обзор поведения влаги и тепловых характеристик полистирольной изоляции в строительстве. Строить. Environ. 2017; 123: 50–65. DOI: 10.1016 / j.buildenv.2017.06.034. [CrossRef] [Google Scholar] 25. Хайбо Л. Экспериментальные исследования по приготовлению нового изоляционного строительного материала из зольного полистирола. Chem. Англ. Пер. 2017; 59: 295–300. [Google Scholar] 26. Хухи М., Fezzioui N., Draoui B., Salah L. Влияние изменений теплопроводности полистирольного изоляционного материала при различных рабочих температурах на теплопередачу через ограждающую конструкцию здания. Прил. Therm. Англ. 2016; 105: 669–674. DOI: 10.1016 / j.applthermaleng.2016.03.065. [CrossRef] [Google Scholar] 27. Патиньо-Эррера Р., Катарино-Сентено Р., Гонсалес-Алаторе Г., Гама Гойкочеа А., Перес Э. Повышение гидрофобности переработанных полистирольных пленок с помощью устройства для нанесения покрытия центрифугированием. J. Appl.Polym. Sci. 2017; 134: 45365. DOI: 10.1002 / app.45365. [CrossRef] [Google Scholar] 28. Мохаджерани А., Ашдаун М., Абдихаши Л., Назем М. Пенополистирол геопеном при строительстве тротуаров. Констр. Строить. Матер. 2017; 157: 438–448. DOI: 10.1016 / j.conbuildmat.2017.09.113. [CrossRef] [Google Scholar] 29. Тауфик М.Э., Эскандер С.Б., Наввар Г.А.М. Твердые древесные композиты из рисовой соломы и вторичного пенополистирола. J. Appl. Polym. Sci. 2017; 134: 44770. DOI: 10.1002 / app.44770. [CrossRef] [Google Scholar] 31.Dissanayake D.M.K.W., Jayasinghe C., Jayasinghe M.T.R. Сравнительный энергетический анализ дома со стеновыми панелями из пенобетона на основе переработанного пенополистирола (EPS). Энергетика. 2017; 135: 85–94. DOI: 10.1016 / j.enbuild.2016.11.044. [CrossRef] [Google Scholar] 32. Херки Б.А., Хатиб Дж.М. Повышение ценности использованного пенополистирола в бетоне с использованием новой технологии рециклинга. Евро. J. Environ. Civ. Англ. 2017; 21: 1384–1402. DOI: 10.1080 / 19648189.2016.1170729. [CrossRef] [Google Scholar] 33.Бабу Д.С., Ганеш Бабу К., Тионг-Хуан В. Влияние размера заполнителя полистирола на характеристики прочности и миграции влаги легкого бетона. Джем. Concr. Compos. 2006. 28: 520–527. DOI: 10.1016 / j.cemconcomp.2006.02.018. [CrossRef] [Google Scholar] 34. Фернандо П.Л.Н., Джаясингхе М.Т.Р., Джаясингхе С. Конструктивная осуществимость легких бетонных стеновых сэндвич-панелей на основе пенополистирола (EPS). Констр. Строить. Матер. 2017; 139: 45–51. DOI: 10.1016 / j.conbuildmat.2017.02.027. [CrossRef] [Google Scholar] 35.Сетхи С.К., Маник Г. Последние достижения в области супергидрофобных / гидрофильных самоочищающихся поверхностей для различных промышленных применений: обзор. Polym. Пласт. Technol. 2018; 57: 1932–1952. DOI: 10.1080 / 03602559.2018.1447128. [CrossRef] [Google Scholar] 36. Ди Мундо Р., Боттиглионе Ф., Карбоне Дж. Кэсси заявляют о стойкости плазмы, генерируемой случайно наношероховатыми поверхностями. Прил. Серфинг. Sci. 2014; 16: 324–332. DOI: 10.1016 / j.apsusc.2014.07.184. [CrossRef] [Google Scholar] 37. Ди Мундо Р., Д’Агостино Р., Палумбо Ф.Долговечная противотуманная плазменная модификация прозрачных пластиков. ACS Appl. Матер. Интерфейсы. 2014; 6: 17059–17066. DOI: 10.1021 / am504668s. [PubMed] [CrossRef] [Google Scholar] 38. Ди Мундо Р., Дилонардо Э., Накукки М., Карбоне Г., Нотарникола М. Водопоглощение в резиноцементных композитах: исследование трехмерной структуры с помощью рентгеновской компьютерной томографии. Констр. Строить. Матер. 2019; 228: 116602. DOI: 10.1016 / j.conbuildmat.2019.07.328. [CrossRef] [Google Scholar] 39. Юэ П., Ренарди Ю. Самопроизвольное проникновение несмачивающей капли в открытую пору.Phys. Жидкости. 2013; 25: 052104. DOI: 10,1063 / 1,4804957. [CrossRef] [Google Scholar] 40. Нето Э., Магина С., Камоэс А., Качим Л.П., Бегонья А., Евтугуин Д.В. Характеристика бетонной поверхности по отношению к защитным покрытиям от граффити. Констр. Строить. Матер. 2016; 102: 435–444. DOI: 10.1016 / j.conbuildmat.2015.11.012. [CrossRef] [Google Scholar] 41. Вайшейт С., Унтербергер С.Х., Бадер Т., Лакнер Р. Оценка методов испытаний для определения гидрофобной природы высокоэффективного бетона с обработанной поверхностью.Констр. Строить. Матер. 2016; 110: 145–153. DOI: 10.1016 / j.conbuildmat.2016.02.010. [CrossRef] [Google Scholar] 42. Европейский комитет по стандартизации продуктов и систем для защиты и ремонта бетонных конструкций. Определения, требования, контроль качества и оценка соответствия в части 2: Системы защиты материалов и конструкций поверхностей для бетонов. BS EN 1504-2. [(доступ 21 июля 2019 г.)]; Доступно в Интернете: https://shop.bsigroup.com/ProductDetail/?pid=000000000030036789.43. Рамачандран Р., Соболев К., Носоновский М. Динамика падения капель на гидрофобный / ледофобный бетон с потенциалом супергидрофобности. Ленгмюра. 2015; 31: 1437–1444. DOI: 10.1021 / la504626f. [PubMed] [CrossRef] [Google Scholar] 44. Флорес-Вивиан И., Хиджази В., Хожукова М.И., Носоновский М., Соболев К. Самособирающиеся частицы силоксановых покрытий для супергидрофобных бетонов. ACS Appl. Матер. Интерфейсы. 2013; 5: 13284–13294. DOI: 10.1021 / am404272v. [PubMed] [CrossRef] [Google Scholar] 48.Петрелла А., Спасиано Д., Рицци В., Косма П., Рэйс М., Де Вьетро Н. Сорбция ионов свинца перлитом и повторное использование отработанного материала в строительной сфере. Прил. Sci. 2018; 8: 1882. DOI: 10.3390 / app8101882. [CrossRef] [Google Scholar] 49. Петрелла А., Петрелла М., Богетич Г., Петруцелли Д., Эр У., Стефаницци П., Калабрезе Д., Пейс Л. Термоакустические свойства цементно-стеклянных смесей. Proc. Inst. Civ. Англ. Констр. Матер. 2009. 162: 67–72. DOI: 10.1680 / coma.2009.162.2.67. [CrossRef] [Google Scholar] 50.Petrella A., Spasiano D., Acquafredda P., De Vietro N., Ranieri E., Cosma P., Rizzi V., Petruzzelli V., Petruzzelli D. Удержание тяжелых металлов (Pb (II), Cd (II), Ni (II)) из одно- и мультиметаллических растворов с помощью природных биосорбентов при помоле оливкового масла. Процесс Saf. Environ. Prot. 2018; 114: 79–90. DOI: 10.1016 / j.psep.2017.12.010. [CrossRef] [Google Scholar] 52. Густафссон С.Э. Методы источников переходной плоскости для измерений теплопроводности и температуропроводности твердых материалов.Rev. Sci. Instrum. 1991; 62: 797–804. DOI: 10,1063 / 1,1142087. [CrossRef] [Google Scholar] 53. Ди Мундо Р., Петрелла А., Нотарникола М. Поверхностные и объемные гидрофобные цементные композиты с добавлением резины для шин. Констр. Строить. Матер. 2018; 172: 176–184. DOI: 10.1016 / j.conbuildmat.2018.03.233. [CrossRef] [Google Scholar] 54. Петрелла А., Спасиано Д., Лиуцци С., Эр У., Косма П., Рицци В., Петрелла М., Ди Мундо Р. Использование целлюлозных волокон из пшеничной соломы для устойчивых цементных растворов. J. Sustain. Джем. По материалам Mater.2019; 8: 161–179. DOI: 10.1080 / 21650373.2018.1534148. [CrossRef] [Google Scholar] 55. Спасиано Д., Луонго В., Петрелла А., Альфе М., Пироцци Ф., Фратино У., Пичцинни А. Ф. Предварительное исследование применения темной ферментации в качестве предварительной обработки для устойчивой гидротермальной денатурации цементно-асбестовых композитов. J. Clean. Prod. 2017; 166: 172–180. DOI: 10.1016 / j.jclepro.2017.08.029. [CrossRef] [Google Scholar] 56. Аль-Манасир А.А., Далал Т.Р. Бетон с пластиковыми заполнителями. Concr. Int. 1997; 19: 47–52.[Google Scholar] 57. Ли Г., Стаблфилд М.А., Гаррик Г., Эггерс Дж., Абади К., Хуанг Б. Разработка бетона, модифицированного отработанными шинами. Джем. Concr. Res. 2004. 34: 2283–2289. DOI: 10.1016 / j.cemconres.2004.04.013. [CrossRef] [Google Scholar] 58. Ганеш Бабу К., Саради Бабу Д. Поведение легкого пенополистиролбетона, содержащего микрокремнезем. Джем. Concr. Res. 2003. 33: 755–762. DOI: 10.1016 / S0008-8846 (02) 01055-4. [CrossRef] [Google Scholar] 59. Саради Бабу Д., Ганеш Бабу К., Ви Т.Х. Свойства легких бетонов из пенополистирола, содержащих летучую золу.Джем. Concr. Res. 2005; 35: 1218–1223. DOI: 10.1016 / j.cemconres.2004.11.015. [CrossRef] [Google Scholar] 60. Лаукайтис А., Зураускас Р., Кериене Я. Влияние гранул пенополистирола на свойства цементного композита. Джем. Concr. Compos. 2005. 27: 41–47. DOI: 10.1016 / j.cemconcomp.2003.09.004. [CrossRef] [Google Scholar] 61. Петрелла А., Спасиано Д., Рицци В., Косма П., Рэйс М., Де Вьетро Н. Термодинамическое и кинетическое исследование сорбции тяжелых металлов в колоннах с насадочным слоем переработанными лигноцеллюлозными материалами из производства оливкового масла.Chem. Англ. Commun. 2019; 206: 1715–1730. DOI: 10.1080 / 00986445.2019.1574768. [CrossRef] [Google Scholar] 62. Петрелла А., Спасиано Д., Рэйс М., Рицци В., Косма П., Лиуцци С., Де Вьетро Н. Пористые стеклянные отходы для удаления свинца в колоннах с уплотненным слоем и повторного использования в цементных конгломератах. Материалы. 2019; 12: 94. DOI: 10.3390 / ma12010094. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 63. Giannuzzi G., Gaudioso C., Di Mundo R., Mirenghi L., Fraggelakis F., Kling R., Lugarà PM, Ancona A. Краткосрочные и долгосрочные химические свойства поверхности и смачивание нержавеющей стали с индуцированными периодическими структурами 1D и 2D вспышкой фемтосекундных лазерных импульсов.Прил. Серфинг. Sci. 2019; 494: 1055–1065. DOI: 10.1016 / j.apsusc.2019.07.126. [CrossRef] [Google Scholar] 64. Song Z., Xue X., Li Y., Yang J., He Z., Shen S., Jiang L., Zhang W., Xu L., Zhang H., et al. Экспериментальное исследование гидроизоляционного механизма бетонных герметиков на основе неорганического силиката натрия. Констр. Строить. Матер. 2016; 104: 276–283. DOI: 10.1016 / j.conbuildmat.2015.12.069. [CrossRef] [Google Scholar] 65. Ли Ф., Янг Й., Тао М., Ли X. Граница раздела цементный клей и хвостовой герметик, модифицированная силановым связующим агентом для улучшения гидроизоляционных свойств в системе бетонной облицовки.RSC Adv. 2019; 9: 7165–7175. DOI: 10.1039 / C8RA10457C. [CrossRef] [Google Scholar] 66. Петрелла А., Петрелла М., Богетич Г., Петруцелли Д., Калабрезе Д., Стефаницци П., Де Наполи Д., Гуастамаккья М. Переработанное стекло в качестве заполнителя для легкого бетона. Proc. Inst. Civ. Англ. Констр. Матер. 2007. 160: 165–170. DOI: 10.1680 / coma.2007.160.4.165. [CrossRef] [Google Scholar]

Рецепты листов экструдированного пенополистирола 4×8

Рецепты листов экструдированного пенополистирола 4×8

Люди также искали

Подробнее о «Рецепты листов экструдированного пенополистирола 4х8»

ПОСТАВЩИКИ ПОЛИСТИРОЛОВЫХ ЛИСТОВ 4X8 — НАДЕЖНЫЕ 4X8…

Еще не нашли подходящего поставщика? Концентратор запросов на покупку. 1 запрос, несколько предложений Сравнение цен в один клик OEM, ODM и мультикатегорийные закупки. Получить расценки сейчас >> Хочу p
От alibaba.com
Подробнее »


4X8X1 ПЕНОВЫЕ ЛИСТЫ | MRBOXONLINE

Продается в количестве 25 шт. Описание. Лист пенополистирола EPS 4’x8’x1 «. Минимальный заказ — 25 листов. Размер в дюймах: 48» x96 «x1». Цвет белый. Этот товар не подлежит возврату. Факты о листах пенополистирола EPS. Причина, по которой пенополистирол является таким хорошим изоляционным материалом, — это миллионы воздушных карманов, которые образуются при формовании блоков.
От mrboxonline.com
Подробнее »


ИЗОЛЯЦИОННАЯ ПЕНА DOW BLUE SE, R-20, 4 ДЮЙМА 4X8 …

Изоляционная плита из пенополистирола Dow Blue SE, R-15, 3 дюйма, 4×8 футов (поддон / 32) INSUL-BOARD-1603-32: Пенополистирол № 1603 SE для изоляции квадратных кромок из экструдированного пенополистирола, R-15, 30 фунтов на кв. Дюйм, 3 дюйма X 4 X 8 футов, квадратный край. Многоцелевой утеплитель для фундамента ниже класса. 32 / Поддон. Цена / поддон. (доставка из разных мест, срок поставки 1-2 рабочих дня)
Из лучших материалов.com
Подробнее »


4X8 ЛИСТЫ ПОЛИСТИРОЛОВОЙ Пены — ALIBABA

Приобретайте универсальные листы пенополистирола 4×8 на сайте Alibaba.com, чтобы повысить удобство дома и на рабочем месте. Ознакомьтесь с широкими классами жестких листов пенополистирола 4×8 от известных поставщиков.
Из alibaba.com
Подробнее »


ЦЕНЫ НА ИЗОЛЯЦИОННЫЕ ЛИСТЫ 4X8 — SITE-STATS.ORG

›Листы экструдированного пенополистирола 4×8› Изоляция из пенополистирола 4×8 листов оптом ›Изоляционная плита из пенопласта 4×8› 2-дюймовая вспененная плита 4×8 ›2 вспененных плиты.Связанные сайты. Изоляция из вспененного пенополистирола размером 1 дюйм x 4 фута x 8 футов. Скидка 20% на вашу карту Lowe’s Advantage Card Покупка: счета, открытые в магазине: единовременная скидка 20% не предоставляется автоматически; Вы должны попросить кассира подать заявку …
Из site-stats.org
Подробнее »


НАИЛУЧШИЕ И НАДЕЖНЫЕ ОПТОВЫЕ ПЕНОВЫЕ ЛИСТЫ 4X8 ПЛАСТИКОВЫЕ …

Оптовая листы пенопласта 4×8 — это легкие, прочные термопластические листы, часто используемые в качестве альтернативы стеклу. Эти оптовые листы пенопласта 4×8 доступны покупателям на Alibaba.com по лучшим ценам. Лист из пенопласта Лист из пенопласта ROHS REACH Бессвинцовый нетоксичный стандартный лист из пеноматериала для мебели 10/12/15/16/18 мм Твердопрочный пенопласт из ПВХ …
От m.alibaba.com
Подробнее »


ПЕНОПОЛИУРЕТАНОВЫЕ ЛИСТЫ И БЛОКИ ЖЕСТКИЕ | ОБЩИЕ ПЛАСТИКИ

LAST-A-FOAM ® ЖЕСТКИЕ ПЕНОВЫЕ ЛИСТЫ И БЛОКИ. RF-2200 Диэлектрик. Усовершенствованный вспененный диэлектрический материал для использования в обтекателях, антеннах и других радиочастотных (РЧ) системах связи. RF-2200 удовлетворяет потребность в RF-прозрачном защитном слое с расширенными возможностями термической обработки.Учить больше . Подводный R-3300 | Композитное ядро. Пена, устойчивая к гидростатическому давлению, обеспечивает…
От generalplastics.com
Подробнее »


ИЗОЛЯЦИЯ ПОЛИСТИРОЛОВОЙ ПЕНКИ НА LOWES.COM

Существует несколько различных типов изоляции из жесткого пенопласта, включая изоляцию из вспененного и экструдированного полистирола. Изоляция из пенополистирола или пенополистирола является экономичным вариантом, в то время как экструдированная изоляция обладает высокой водостойкостью и идеально подходит для использования в таких областях, как места для подполья.Полиизоцианурат — еще один вариант, который является наиболее плотным и дорогим вариантом для пенопласта. Обычно …
От lowes.com
Подробнее »


ПЕНОВЫЕ ЛИСТЫ | КИДЖИДЖИ — ПОКУПКА, ПРОДАЖА И УСИЛИТЕЛИ; СОХРАНИТЬ С CANADA …

Менее HalfPrice БОЛЬШИЕ листы STYROFOAM 4×8 толщиной 6 дюймов из изоляционного материала R-24! DuraFoam всего за 32 доллара за 6 дюймов толщиной 4×8! … 7 0 5 — 4 1 6 — 2 1 1 1 … и более толстый кусок пенополистирола! Новая цена всего за 1 лист после уплаты налогов превышает 80 долларов США, ЕСЛИ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ЕГО! НУЛЕВОЕ количество этого сверхтолстого пенополистирола R-24 по специальному заказу доступно в количестве НУЛЕВОГО количества!. . 7 0 …
из kijiji.ca
Подробнее »


ИЗОЛЯЦИОННАЯ ПЛАТА OWENS CORNING FOAMULAR 250 XPS | ЭКСТРУДИРОВАННАЯ …

Изоляция из экструдированного полистирола (XPS) Owens Corning FOAMULAR 250 представляет собой влагостойкую жесткую пенопластовую плиту с закрытыми порами, которая хорошо подходит для широкого спектра применений в строительстве. Изоляционная плита FOAMULAR 250 XPS отлично подходит для многих применений в жилищном и коммерческом строительстве, таких как облицовка стен, периметр / фундамент, полая стена, сборный бетон, под плитой,…
Из изоляционного материала 4us.com
Подробнее »


ИЗОЛЯЦИОННЫЕ ЛИСТЫ 4X8 | КИДЖИДЖИ — ПОКУПКА, ПРОДАЖА И УСИЛИТЕЛИ; СОХРАНИТЬ С …

Желтые листы пенополиизо 4х8 R10 с серебряной фольгой с каждой стороны за 32 доллара. И у меня ТАКЖЕ есть 4-дюймовые синие листы пенополистирола Dow R20 толщиной 2×8 за 32 доллара …. Либо листы толщиной 4×8 2 дюйма, либо синие листы толщиной 2×8 4 дюйма стоили более 74 долларов каждый, когда они новые! .. ♻️. 7. 0 5. — 4 1 6 — 2 1 1. 1. Половина цены Styro на Бивер-Вэлли-роуд! ЛИСТЫ ИЗ ПЕНОПЕННИКА 60% скидка! Желтый 4×8 R-10 с фольгой или…
Из kijiji.ca
Подробнее »


ЖЕСТКАЯ ИЗОЛЯЦИЯ — ИЗОЛЯЦИЯ | RONA

Для изготовления этого продукта используются три основных материала. Первый — это EPS, или пенополистирол. Эта жесткая установка с низкой плотностью размещения является экономичным выбором. Если вам нужно более высокое значение R, которое увеличивает сопротивление тепловому потоку, выберите экструдированный полистирол, также называемый XPS, или полиизоцианурат. Эти двое более производительны …
От рона.ca
Подробнее »


ПЕНА STYROFOAM 2 ДЮЙМА X 4 футов. X 8 футов. R-10 БЛАНОВЫЙ БЛОК XPS …

STYROFOAM Brand Scoreboard Insulation — это изоляционная плита из экструдированного пенополистирола, которую легко разрезать до стандартной ширины. Особенно рекомендуется для наружных полых стен и фундаментов. Обладает отличными изоляционными характеристиками, высокой устойчивостью к воде и водяному пару, исключительной прочностью на сжатие и долговечностью; Утеплитель табло марки STYROFOAM…
От homedepot.com
Подробнее »


МАШИНА ДЛЯ ПРОИЗВОДСТВА ПОЛИСТИРОЛОВОГО ЛИСТА — YOUTUBE

Контактное лицо: IrisWhatsapp: 008613884654626Skype: sunandlu1314Wechat: sunxiaorong163comЭлектронная почта: [электронная почта защищена]: Longkou Fushi Packing Machinery Co., Ltd.
Из youtube.com
Подробнее »


ИЗОЛЯЦИЯ ПЕНОПОЛИНА — ИЗОЛЯЦИЯ — ДОМАШНИЙ ДЕПО

• Экструдированный полистирол. Выбирайте этот вариант для участков, которым требуется хорошая прочность и водонепроницаемость. Он обеспечивает около R-5 на дюйм.• Полиизоцианурат. Этот материал предлагает самые высокие значения R — от R-6 до 6,5. Изделия с фольгированной облицовкой помогают панелям противостоять парам влаги. Работа с теплоизоляционными плитами Изоляционные панели обычно поставляются в виде листов размером 4×8 футов. Меньшие размеры …
От homedepot.com
Подробнее »


AMAZON.COM: ПЕНОИЗОЛЯЦИОННЫЕ ЛИСТЫ 4X8

1-48 из 584 результатов для «Пенопластовые изоляционные листы 4×8» Цена и другие данные могут отличаться в зависимости от размера и цвета продукта. Энергетические продукты США 48 дюймов x 10 футов Двойной пузырчатая отражающая фольга Тепловой барьер R8 4 x 10 футов 4.8 из 5 звезд 179. $ 29,88 $ 29. 88. Получите среда, 20 октября — чт, 21 октября. БЕСПЛАТНАЯ доставка. R-8 Изоляция воздуховодов для систем отопления, вентиляции и кондиционирования воздуха Светоотражающая 2-сторонняя поролоновая сердцевина 4 ‘x 25’ (100 кв. Футов) 4,6 на выходе …
От amazon.com
Подробнее »


ПЕНОВЫЕ ЛИСТЫ 4X8

Найдите изоляционный лист в магазине Lowe’s сегодня. Найдите изоляцию из пенопласта в Lowe’s сегодня. 5 ПРОФИЛЬНЫЙ ПОЛИСТИРОЛОВЫЙ ЛИСТ МАРКА LD 600 X 400 X 25 ММ. Многоцелевой утеплитель для фундамента ниже класса. Цена / поддон. (60) 4х8 листов пенополистирола на аукционе.Поскольку затраты на отопление и охлаждение продолжают расти, спрос на более эффективную изоляцию стен не отстает. 24
От jamilahbraids.com
Подробнее »


КАКУЮ ПЛОТНОСТЬ ПОЛИСТИРОЛОВОГО ПЕНА ИСПОЛЬЗОВАТЬ ДЛЯ ПЛОТКА? : АКВАПОНИКА

Я не знаю плотности, но Lowes продает плиты из экструдированного полистирола размером 4 x 8 футов, 1 дюйм и 2 дюйма. Я использую как гидропонику, так и аквапонику. Они отлично подходят для меня, и когда их разрезают на листы размером 2 x 4 или 4 x 4 дюйма, их можно поднимать, когда они полны растений.Я использую их для плавания прямо на воде. Из вашего изображения видно, что листы поддерживаются каркасом контейнера, который …
От reddit.com
Подробнее »


FOAMULAR® & AMP; FOAMULAR® NGX ™ 250 | OWENS CORNING…

Owens Corning® FOAMULAR® & FOAMULAR® NGX ™ 250 Экструдированный пенополистирол (XPS) Жесткий пенопласт с закрытыми ячейками, обладающий высокой влагостойкостью, жесткий пенопласт, хорошо подходящий для удовлетворения потребностей в изоляции для самых разных применений в жилых и коммерческих зданиях.Скачать лист данных. Предупреждение: Это видео содержит мигающие изображения, которые …
От owenscorning.com
Подробнее »


4X8 ИЗОЛЯЦИОННЫЕ ЛИСТЫ ИЗ ПЕНЫ — BING — ПОКУПКИ

Комбинезоны, комбинезоны и джем… Комплекты одежды. Униформа
From 2.bing.com
Подробнее »


1-ДЮЙМ X 4 ФУТОВ X 8 ФУТОВ РАСШИРЕННАЯ ПОЛИСТИРОЛОВАЯ ПЛИТА …

EPS обеспечивает большую ценность R на доллар, чем другая листовая изоляция. Характеристики. Тип изоляции.Пенополистирол. Фактическая ширина (футы) 3,875. Фактическая длина (фут) 7,875. Фактическая толщина (дюймы) 0,9375. Общая ширина (футы) 4. Общая длина (футы) 8. Общая толщина (дюймы) 1. UNSPSC. 30141500. Показать все. Обзоры. Показать больше. Сообщество, вопросы и ответы. Показать больше. Похожие Запросы. …
От lowes.com
Подробнее »


ПОДЪЕМ МАТЕРИАЛОВ — ALL-SPEC

Сэкономьте 40 долларов на онлайн-заказах свыше 440 долларов. Скидка 40 долларов распространяется только на заказы, размещенные онлайн через All-Spec.com, используя правильный промокод.
из all-spec.com
Подробнее »


DOW BLUE STYROFOAM HIGHLOAD 40, R-10, 2 ДЮЙМА X 4X8 ФУТОВ …

Dow 2770 Blue Styrofoam Highload 40, изоляция из экструдированного пенополистирола, R-10, листы 4 x 8 футов толщиной 2 дюйма, квадратная кромка (стыковая кромка). Прочность на сжатие 40 фунтов на квадратный дюйм. 48 / Поддон. Цена / поддон.
Из bestmaterials.com
Подробнее »


Вы в настоящее время на диете или просто хотите контролировать питание и ингредиенты своей еды? Мы поможем подобрать рецепты по способу приготовления, питанию, ингредиентам…

Проверить это »

Связанный поиск


Пенопласт

| Свойства и использование | Lightweight Rigid Board

Жесткие, но легкие, семейство графических карт, простые в изготовлении и экономичные

Пенопласт

(картон для графики) выпускается в различных сортах и ​​цветах, предлагая варианты для краткосрочного или долгосрочного применения. Пенопласт — отличный выбор для применений, требующих жесткого, но легкого материала.Пенопласт легко изготовить, его можно разрезать ножом, высекать, печатать, красить, монтировать и ламинировать. Хотите создать уникальные трехмерные дисплеи или вывески? На вспененных плитах можно тиснение и тиснение без нагрева для создания трехмерных эффектов. Пенопласты продаются в картонных коробках объемом от 2 до 25 листов.

Магазин пенопластов

СТАНДАРТНЫЕ РАЗМЕРЫ
Fome-Cor® Размеры:
20 дюймов x 30 дюймов — 48 дюймов x 96 дюймов
Толщина:
0.125 дюймов — 0,187 дюйма
КОЛЛЕКЦИЯ Gator® Размеры:
48 дюймов x 96 дюймов — 60 дюймов x 120 дюймов
Толщина:
0,187 дюйма — 3 дюйма
ДОСТУПНЫЕ ОПЦИИ
ЦВЕТ Пенопласт Семейство цветов:
Wht Facers / Wht Foam, белый, черный, Blk Facers / Blk Foam, Wht Facers / Blk Foam, Nat Facers / Wht Core, Wht Facers / Blk Core, Wht Face / Blk Core / Blk Face, Wht Face / Blk Core / Wht Лицо
ТЕКСТУРА, ПОВЕРХНОСТЬ, УЗОР Глиняное покрытие
МАРКИ Самоклеящаяся, термоактивированная, цифровая печать, ярко-белый, для тяжелых условий эксплуатации, гладкая

Допуски по длине, ширине, толщине и диаметру зависят от размера, производителя, марки и марки.Индивидуальные размеры и цвета доступны по запросу. Доступны несколько марок пенопласта.

Варианты материалов для пенопласта

FOME-COR® — Популярные плиты для графики, хорошо известные своими характеристиками, состоят из экструдированного пенополистирола с белой или черной бумажной облицовкой, покрытой глиной. FOME-COR® идеально подходит для высечки и обеспечивает сжатую кромку, которая остается закрытой и сохраняет свою форму.

FOME-COR® с ТЕХНОЛОГИЕЙ ENCORE® — сердцевина из специально разработанного пенополистирола (пены с эффектом памяти) более устойчива к вмятинам по сравнению со стандартным FOME-COR®.Его ярко-белая облицовочная бумага с двойным глиняным покрытием или черная немелованная бумага хорошо подходят для цифровой и трафаретной печати. Кромки остаются открытыми при высечке или перфорации, и он легко и чисто режет вручную. Несмотря на то, что он чрезвычайно легкий, он демонстрирует хорошую стабильность размеров для кратковременных внутренних дисплеев и высечки.

FOME-COR® SINGLESTEP®– исключает использование термоплавких салфеток и может использоваться на нагретом механическом или вакуумном прессе для сухой установки, а также на валковом ламинаторе с подогревом.Клей активируется при низких настройках температуры для быстрого крепления без повреждений.

FOME-COR® QUICKSTIK — доступен в вариантах с изменяемым позиционированием Low-Tack или High-Tack с немедленным склеиванием и исключает использование самоклеящегося клея.

FOME-COR JETMOUNT ®– Состоит из более плотного экструдированного пенополистирола с облицовочной бумагой, покрытой глиной. FOME-COR JETMOUNT® обеспечивает повышенную жесткость и устойчивость к деформации.Отлично подходит для более сложных работ по монтажу дисплеев, вывесок и обрамления.

FOME-COR® CANVAS– Имеет сердцевину из экструдированного пенополистирола с глубокой тисненой текстурой, «подобной холсту», облицовочной бумагой с глиняным покрытием с обеих сторон для художественной цифровой и трафаретной печати. Эта подложка легкая, легко и чисто режется вручную и идеально подходит для краткосрочных внутренних дисплеев и вывесок.

FOME-COR® FOUNDATION– состоит из экструдированного пенополистирола белого или черного цвета премиум-класса с бескислотной облицовочной бумагой без покрытия, обеспечивающей гладкую, жесткую и плоскую основу для архивного и консервационного монтажа и обрамления.Старинные белые лицевые панели соответствуют стандартам Библиотеки Конгресса по консервации ценных документов и фотографий.

GATORFOAM ®– Пенопласт для тяжелых условий эксплуатации, состоящий из экструдированного пенополистирола, склеенного между двумя слоями древесноволокнистого шпона. Проверено временем, имеет отличную репутацию в области цифровой и трафаретной печати. Доступны ярко-белые облицовочные материалы. Он устойчив к вмятинам и царапинам.

GATORFOAM® PRO — Специально разработанная для обеспечения превосходной адгезии чернил, одна поверхность GATORFOAM® PRO обработана запатентованной формулой, разработанной для обеспечения превосходных печатных характеристик и улучшенного статического сопротивления.Шпон из древесного волокна и сердцевина из экструдированного пенополистирола обеспечивают исключительную жесткость во время фрезерования и аккуратной резки, что упрощает изготовление.

GATORPLAST ®– Состоит из экструдированного пенополистирола, склеенного между двумя слоями колпачков из ударопрочного полистирола. GATORPLAST® гладкий, предлагает ударопрочные облицовочные материалы, устойчивые к деформации. Он легкий и водостойкий. На нем можно перемещать виниловую графику.

GATORFOAM® САМОКЛЕЮЩИЙСЯ — Одна сторона черной самоклеящейся плиты GATORFOAM® имеет древесноволокнистый шпон, обработанный клеем для перманентного связывания, активируемым давлением.Снимите защитную облицовочную бумагу с напечатанной инструкцией, чтобы получить клей с высокой липкостью от этого простого монтажного решения. Внутренний слой из экструдированного пенополистирола черного цвета обеспечивает хорошую стабильность размеров и чистый законченный вид.

GATORFOAM® EXTERIOR — Эти специально обработанные древесноволокнистые фанеры, выдерживающие все виды внешних условий, приклеиваются к сердцевине из экструдированного пенополистирола с помощью атмосферостойкого клея. Протестировано в соответствии с ASTM D-1183C, оно работает в диапазоне температур от -70 ° до 160 ° F и 100 ° F при относительной влажности 95%.GATORFOAM® EXTERIOR спроектирован так, чтобы не расслаиваться, имеет уникальный состав клея, который улучшает как прочность сцепления, так и влагостойкость, его легко разводить и резать.

GATORBLANKS® — толстые листы экструдированного пенополистирола белого или черного цвета. Без каких-либо проблем с облицовкой, эти листы могут добавить размера внутренним дисплеям и вывескам.

Изучите физические, механические, термические, электрические и оптические свойства пенопластов.

Отсортируйте, сравните и найдите пластиковый материал, подходящий для вашего применения, с помощью нашей интерактивной таблицы свойств .

Продукция — Depron Foam

Depron 6 мм, первоначально использовавшееся в качестве контейнеров для фаст-фуда и изоляции полов, Depron зарекомендовало себя как идеальный материал для производства моделей, особенно авиамоделей.

В отличие от таких материалов, как бальза, моделирующая пена Depron 6 мм и 3 мм не имеет волокон и, следовательно, не раскалывается.Каждый лист изготавливается одинаково, поэтому вес и плотность одинаковы от листа к листу, когда решающее значение имеют баланс и производительность. Depron легкий, всего 28 кг / м³, сохраняя при этом невероятную прочность и благодаря структуре пенопласта Depron режет очень легко и чисто, что упрощает работу. Существует два основных типа Depron, которые рекомендуются для моделирования: Depron и Depron Aero

.

Depron 6 мм

Классический модельный материал Depron 6 мм в форме листа.

  • Оригинальный продукт Depron
  • Толщина 2 мм, 3 мм и 6 мм
  • Наносит поверхностное покрытие для повышения жесткости
  • Доступен в белом и сером цветах
Для получения подробной информации, пожалуйста, посетите нашу техническую страницу
Размер: 2 мм 3 мм 6 мм 3 мм 6 мм
Цвет: Белый Белый Белый Темно-серый Темно-серый
Ширина листа: 800 мм 700 мм 700 мм 800 мм 800 мм
Длина листа: 1250 мм 1000 мм 1000 мм 1250 мм 625 мм
Материал:

Листы из экструдированного пенополистирола

Плотность: 40 кг / м³ 40 кг / м³ 33 кг / м³ 40 кг / м³ 33 кг / м³
Тип клея:

Без растворителей / пенообразование

листов в полной коробке: 60 40 20 40 20

Специальная структура ячеек означает, что лист не проводит тепло.Укладка Depron 6 мм или 3 мм с подогревом пола означает, что

SAMSUNG TECHWIN DIGIMAX-230

Вместо этого

тепла будет эффективно отражаться обратно к поверхности пола. За счет устранения «отходящего тепла» вы эффективно используете энергию и тем самым снижаете ее потребление.

Для использования в качестве подложки для пола или изоляции пола и стен мы рекомендуем Grey Depron, который является наиболее экономичным продуктом Depron для использования в строительстве. Доступный в толщине 3 мм и 6 мм, с размерами листов 625 мм x 800 мм, Depron 6 мм предлагает отличные стандарты термической защиты. и звукоизоляция, а также физическая поддержка для многих типов полов.

Мы поставляем другие продукты, которые могут вам пригодиться, которые совместимы с обоими типами пенопласта Depron.

UHU Por — Transparent — это специальный эластичный быстросхватывающийся контактный клей, идеально подходящий для приклеивания пенополистирола, такого как Depron, к компонентам Depron или другим материалам, включая: дерево, многие пластмассы, металл, стекло, бумагу и картон. другие продукты, см. техническую страницу.

  • Сильная связь
  • Бесцветный
  • Водонепроницаемый
  • Пенобезопасный
  • Связи Много Материалов
  • Туба 40 г / 50 мл

3M 77 — это многоцелевой спрей-клей, который «не пенится» и идеально подходит для ламинирования бумажных рисунков на листы Depron или ламинирования листов Depron вместе.Форсунка имеет три настройки разбрасывания, так что вы можете контролировать форму распыления. Вы также можете контролировать количество «липкости», которое клей имеет на склеиваемых материалах, например, если оставить на несколько минут до склеивания, бумагу можно будет легко отделить от Depron на более позднем этапе. Клей также можно использовать с картоном, тканями, пенопластом, пластиком, металлом и деревом. Для получения более подробной информации об этом и других наших продуктах, пожалуйста, посетите техническую страницу.

  • Сильная связь
  • Бесцветный
  • Водонепроницаемый
  • Пенобезопасный
  • Связывает много материалов
  • Контролируемая картина спреда
  • 500мл банка

Полистирол (ПС) Производство, цена и рынок

Что такое полистирол (ПС)?

Это синтетический полимер на основе мономера стирола.ПС производится путем полимеризации стирола, который является своего рода строительным материалом, используемым для производства различных пластмассовых изделий. Это также происходит естественным путем (клубника, корица, кофе и пиво).

Этот пластиковый полимер представляет собой натуральный прозрачный термопласт, который доступен как в твердом, так и в твердом вспененном виде. Обычно используемый полистирол является прозрачным, твердым и хрупким по своим свойствам.

Это широко используемый пластик для производства различных продуктов конечного сегмента.Твердая форма пластика широко используется для производства продуктов, требующих прозрачности. Они часто используются с комбинацией красителей, добавок и других форм пластмасс для производства таких товаров, как электронные приборы, автомобильные детали, садовые горшки, оборудование и т. Д.

PS изготовлен из вспененного материала и называется пенополистиролом (EPS) или экструдированным полистиролом (XPS), который известен своими изоляционными и амортизирующими свойствами.

Твердая форма этого материала обычно используется в медицинских устройствах (пробирки, чашки Петри и т. Д.) Или в повседневных изделиях, таких как детекторы дыма, компакт-диски, контейнеры для пищевых продуктов, кофейные чашки и т. Д.Вспененная форма полимера обычно используется в качестве упаковочного материала для различных продуктов.

Тенденция цен на полистирол

Производство полистирола

Он производится, как и другие пластмассовые полимеры, в процессе полимеризации. Этот полимер возникает, когда мономеры стирола соединяются друг с другом во время полимеризации.

В этом процессе углеродная IT-связь винильной группы разрушается и образует новую углеродную связь, которая затем присоединяется к углероду другого мономера стирола в цепи.Новообразованная связь намного прочнее предыдущей, поэтому деполимеризация полимера становится затруднительной.

Производится в основном в двух разных формах:

Атактический полистирол

Это коммерчески важная форма производимого полистирола. Для получения атактического PS фенильные группы случайным образом распределяются по обеим сторонам полимерной цепи. Такое случайное расположение предотвращает выравнивание цепей и обеспечивает достаточную регулярность для достижения желаемой кристалличности.Этот пластичный полимер имеет температуру стеклования 90 ° C, и процесс полимеризации сильно инициируется свободными радикалами.

Синдиотактический полистирол

Для получения синдиотактического ПС используется процесс «полимеризация Циглера-Натта». В этом процессе полимеризации фенильные группы располагаются на разных сторонах углеводородной основной цепи. Это высококристаллическая форма полимера ПС, полученная с температурой перехода 270 ° С. Эти типы ПС в настоящее время производятся под торговой маркой XAREC компанией Idemitsu Corporation с использованием металлоценового катализатора для реакции полимеризации.

В производстве полимеров обычно используются четыре процесса полимеризации и три метода вспенивания. Первоначально использовались три процесса: суспензия в массе, эмульсия и полимеризация в растворе. Последний — вспенивание EPS в закрытых формах, экструзия EPS и экструзия GPPS с прямым впрыском.

Глобальные производственные мощности полистирола

Мощность

Global PS в 2016 году составила 14,7 млн ​​тонн. Китай был ведущей страной с наибольшей производственной мощностью.Азия является ведущим регионом, на который приходится наибольшая доля мировых производственных мощностей по производству полимера. Он занимал 55,1% производственных мощностей.

Азиатский регион является крупнейшим рынком для пластиков PS, на которые приходится более половины мировых производственных мощностей. Второй по величине регион — Северная Америка, на долю которой приходится 17%, за ней следует Европа с 16,3%.

Прогноз мирового рынка полистирола

По прогнозам, к 2020 году рынок полистирола вырастет более чем на 28 млрд долларов США.Согласно отраслевому анализу, в 2016 году объем рынка составлял около 24 миллиардов долларов США, а к 2020 году он превысит 28 миллиардов долларов США. Рынок полистирола быстро растет с последних нескольких лет, и ожидается, что он будет расти и в ближайшие годы.

PS — это универсальный пластик, имеющий множество применений на рынках различных конечных сегментов. PS широко используется для производства потребительских товаров повседневного использования, таких как холодильники, кондиционеры, телевизоры, компьютеры и одноразовая утварь (вспененные чашки, тарелки и миски).

Драйверы рынка

Основными факторами, определяющими рынок полистирола, являются рост населения, рост урбанизации и индустриализации, рост доходов среднего класса.

Сектор упаковки и электроники — два основных сектора, в которых в последние годы наблюдается рост спроса на полистирол, которые, как ожидается, будут способствовать дальнейшему росту мирового рынка полистирола.

Региональный прогноз

Ожидается, что Китай станет крупнейшим рынком для PS в течение года (2016-17), за ним последуют другие страны с развивающейся экономикой в ​​Азиатско-Тихоокеанском регионе. Несмотря на то, что страны Азиатско-Тихоокеанского региона являются крупнейшими потребителями PS в мире, но все же другие страны, такие как поскольку ожидается, что в ближайшие годы спрос в Африке, Европе и Южной Америке будет увеличиваться.

Ограничения

Он также подвергается определенным ограничениям в прогнозируемом периоде, таким как колебания цен на сырье (бензол, мономер стирола и т. Д.). Проблемы утилизации, связанные с этим материалом, и его отрицательная стоимость лома также могут препятствовать росту рынка.

Ведущие игроки

Ведущими игроками PS на мировом рынке являются BASF SE (Германия), Styrosolution Group (Германия), Videolar S / A. (Сан-Паулу), SABIC (Саудовская Аравия) и Formosa Plastic Corporation (Тайвань) среди всех других производителей.

История создания ПС Полимер

Первоначально он был обнаружен берлинским аптекарем Эдуардом Симоном. Из Storax, смолы турецкого дерева сладкой жевательной резинки Liquidambar, является дистиллированное маслянистое вещество, называемое стиролом. После нескольких дней открытий Саймон обнаружил, что стирол, полученный из мономера, загустел из-за окисления в желеобразную форму, которую он назвал «Стиролоксидом».

В 1845 году химик Джон Блит и другой немецкий химик Август Вильгельм фон Хофманн представили такое же превращение стирола в отсутствие кислорода.Это вещество получило название «метастирол». Позже анализ показал, что химические свойства обоих произведенных веществ одинаковы.

Далее, в 1866 году Марселин Бертело правильно проанализировал образование метатирола / обедненного из стирола в процессе полимеризации.

После 80-летнего перерыва во времени на основе диссертации немецкого химика-органика «Германа Штаудингера (1881-1965)» было обнаружено, что нагревание стирола приводит к цепной реакции, в результате которой образуются несколько макромолекул, названных пластиками PS. .

Свойства пластиков PS

Это универсальная форма пластика, используемая для изготовления различных пластмассовых изделий конечных сегментов. Полимер PS — это прозрачный, аморфный, неполярный материал, который можно легко переработать и превратить в большое количество полуфабрикатов, таких как пена, пленки и листы. По объему, это один из наиболее часто используемых пластиков благодаря своим свойствам, таким как:

  • Обладает высокой ударопрочностью и термостойкостью.
  • Эти полимеры являются хорошим электрическим изолятором с превосходной оптической прозрачностью.
  • PS обладает сильной химической стойкостью к разбавленным кислотам и щелочам.
  • Это вязкая жидкость, температура которой выше температуры стекла, что позволяет легко производить большое количество готовой продукции.
  • Они легко расширяются и обеспечивают хороший поток.
  • Эти материалы обладают высокой огнестойкостью.

Физические свойства ПС

  • Химическая формула, используемая для PS: (C8H8) n
  • Плотность — 0.96–1,04 г / см3
  • Температура плавления составляет ~ 240 ° C (464 ° F; 513 K) [4] для Isotactic PS
  • Растворимость в нерастворимом в воде
  • Растворимость — не растворим в ацетоне [1]
  • Теплопроводность полимера 0,033 Вт / (М · К) (пена, ρ 0,05 г / см3) [2]
  • Показатель преломления 1,6; диэлектрическая проницаемость 2,6 (1 кГц — 1 ГГц) [3]

Различные марки пластика PS

PS считается одним из самых важных и широко используемых товарных пластиков на рынке.Объем производства ПС и сополимеров стирола в мире составляет несколько миллионов тонн в год.

Он продается под различными торговыми марками, такими как (пенополистирол, стиропор, стирон, каринекс, стиро-флекс, целлофу, Depron XPS, фостарен, стираклеар, Lustrex1, SABIC PS и INEOS Styrenics) во всем мире.

В целом, эти полимеры доступны в трех важных различных марках, а именно:

GPPS

GPPS также называют кристально чистым PS.Эта форма пластика является полностью прозрачной, жесткой и обычно представляет собой недорогой полистирол, изготовленный из мономера стирола. GPPS — это твердая форма полистирола, выпускаемая в виде гранул из полистирола толщиной 2-5 мм.

БЕДРА

High Impact PS обычно содержит от 5 до 10% каучука (бутадиена) и предназначен для производства продуктов, требующих более высокой ударопрочности. HIPS PS обычно представляет собой привитой сополимер, имеющий PS в качестве боковых сторон. Процесс прививки происходит, когда какой-то радикал реагирует с двойной связью полибутадиена.

EPS

Этот сорт пластмасс состоит из микрогранул или шариков, содержащих вспениватель (обычно пентан). EPS или вспененный PS является теплоизоляционным материалом с высокой ударопрочностью и простотой обработки.

Применение пластмасс PS

Это дешевая и легкодоступная форма полимера. Он используется для многих приложений, таких как электроника, медицина, оптика, автомобильные детали и упаковка расходных материалов.Большое количество товаров, производимых с использованием полистирола, формируется методом литья под давлением, включая столовую посуду, чашки, футляры для компакт-дисков, косметические контейнеры и крышки и т. Д.

Он в основном используется для производства двух видов полуфабрикатов — ПС-листа и ПС-пены. Этот полуфабрикат широко используется для производства готовой продукции для различных конечных сегментов рынка.

Лист полистирольный

PS широко используется для производства ударопрочных стирольных листов, которые в дальнейшем используются для изготовления моделей, прототипов, вывесок, дисплеев, корпусов и многого другого.Эти листы являются недорогим материалом и используются для общего использования. Листы PS предпочтительнее листов другой формы для множества продуктов, так как они:

  • Водонепроницаемость до высокой плотности
  • Легкий вес
  • Температурно-чувствительный
  • прочный
  • Нетоксичен и без запаха
  • Отличные формовочные свойства
  • Стабильность размеров и низкое водопоглощение
  • Тепловая и электронная герметизация
  • Экономичный

PS Листы — Физические свойства

  • Температура формования: от 325 ° F до 350 ° F
  • Максимальная температура: 180 ° F
  • Соответствует стандартам FDA
  • Непрозрачный с матовым покрытием
  • Стандартный размер продаваемых листов — 40 ″ x 72

Пенополистирол

Пена

PS — это еще одна форма полуфабриката из полимера, которая в дальнейшем используется для производства потребительских товаров конечного сегмента.Пены ПС составляют 95-98% воздуха. Они являются хорошими теплоизоляторами, поэтому широко используются в качестве строительного изоляционного материала.

Амортизирующие свойства пенополистирола делают его очень подходящим для упаковочной промышленности. ПС широко используется в упаковочной промышленности.

Подходящие свойства и низкая стоимость пенопласта составляют серьезную конкуренцию другим формам полимеров, используемых в упаковочной промышленности. Пенопласты также используются в строительном секторе для возведения ненесущих архитектурных элементов, таких как декоративные колонны.

Общие свойства ПС

  • Легкий и портативный,
  • Легко перерабатывается,
  • Легко ламинируется эпоксидной смолой,
  • Пены

  • ПС обладают повышенной теплоизоляцией,
  • Идеален для наружных / внутренних работ,
  • Устойчив к влаге и сжатию,
  • Низкая цена и высокая надежность
  • Изготавливается из различных форм, размеров и из компрессионных материалов.

Пенопласт

PS обычно производят в двух различных формах:

А . Пенополистирол (EPS)

EPS — это жесткий, прочный и закрытый пенопласт. Обычно он белого цвета и изготавливается из предварительно расширенных шариков из полистирола. EPS — один из наиболее часто используемых пенополистиролов в повседневной жизни. Белая пена обычно используется для горячих напитков, в холодильниках, изоляционных материалах, упаковке и т. Д.

Материал

EPS недорогой и легкий (15-30 кг на кубический метр). Он не теряет своих основных свойств со временем, полностью перерабатывается и повторно используется для поддержания экологического баланса.

Благодаря своим благоприятным техническим и физическим свойствам, таким как малый вес, жесткость и формуемость, EPS находит широкое применение. Он даже используется для производства формованных листов, которые используются для строительных изоляционных и упаковочных материалов

Б . Экструдированный полистирол (XPS)

XPS — это еще одна форма пены, которая обеспечивает улучшенную шероховатость поверхности и большую жесткость при пониженной теплопроводности. Диапазон плотности около 28-45 кг / м 3 3. Он имеет почти такой же химический состав, что и пенополистирол, но произведен по другой технологии. EPS бывает трех основных цветов: розового, синего, зеленого и т. Д. Он обычно используется для изготовления демонстрационных панелей и в строительстве.

Полистирол общего назначения

Он применим к множеству отраслей конечных пользователей для производства ряда товаров в различных формах. Он стал наиболее часто используемым полимером в различных отраслях промышленности, таких как:

Устройство — Оно используется в ряде устройств, таких как холодильники, кондиционеры, духовки, микроволновые печи, пылесосы, блендеры и т. Д.Он широко используется в твердой или вспененной форме для производства этих приборов, поскольку он инертен (не вступает в реакцию с материалами), экономичен и долговечен.

Automotive — PS (твердый и вспененный) используется в производстве многих автомобильных деталей, включая ручки, приборные панели, отделку, энергопоглощающие дверные панели и даже звукопоглощающую пену.

Электроника — Используется для корпуса, а также в других частях телевизоров, компьютеров и различных типов ИТ-оборудования, где требуется сочетание формы, функций и эстетики.

Food Service — PS занимает большую долю в секторе упаковки по сравнению с конкурентами.Он широко используется в упаковке пищевых продуктов, поскольку он лучше изолирует, сохраняет продукты свежими в течение длительного времени и является экономичным.

Изоляция — Легкая пена PS доказала свою превосходную теплоизоляцию в ряде областей применения, таких как стены зданий, кровля, охлаждение, морозильные камеры и даже в промышленных холодильных хранилищах. Он предпочтителен для изоляции, так как он более инертный, прочный и устойчивый к повреждениям водой.

Медицинский Благодаря своей прозрачности и простоте стерилизации, PS используется для широкого спектра медицинских целей, включая лотки для культур тканей, пробирки, чашки Петри, диагностические компоненты и другие медицинские приборы для тестирования.

Упаковка- Это широко используемый и предпочтительный материал в упаковочном секторе. Он широко используется для защиты потребительских товаров, таких как коробки для компакт-дисков и DVD, упаковки из вспененного арахиса для транспортировки товаров, упаковки расходных материалов, лотков для мяса и птицы, а также картонных коробок для яиц и т. Д. Они являются подходящим материалом для упаковки, так как они защищают товары от повреждений и порчи.

Недостатки пластика PS

Несмотря на то, что это наиболее широко используемый термопласт, а также его предпочтение по сравнению с другими конкурентами для ряда применений, он все еще имеет определенные ограничения в использовании, а именно:

  • Он легковоспламеняющийся, но также доступны замедленные марки.
  • Они плохо устойчивы к растворителям и могут подвергаться воздействию многих химикатов.
  • Гомополимеры по своей природе хрупкие.
  • Подвержен нагрузкам и растрескиванию под воздействием окружающей среды.
  • Обладают плохой термостойкостью.

Переработка пластмасс PS

Обычно он не принимается в пунктах сбора вторсырья. Для переработки полистирола используются различные центры и технологии. В некоторых странах, таких как Германия, существует закон, который требует от производителей полностью брать на себя ответственность за переработку или утилизацию любого продаваемого ими упаковочного материала из полистирола.

Переработка этих пластмассовых изделий требует больших вложений в установку уплотнителей и логистических систем для выполнения этого процесса. Переработанная форма материала используется с новыми производимыми материалами из полистирола для производства листов и пен из полистирола.