Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Подбор насоса для системы отопления: Как подобрать циркуляционный насос. Быстро, просто, правильно.

Содержание

Выбор и расчет насоса для системы отопления частного дома.

Выбор насоса для системы отопления частного дома.

Отопительные системы, в которых вода движется по трубам за счет ее температуры и плотности – (самотеком) уходят в прошлое. Причин здесь много, но самая главная это появление современных композиционных материалов и труб на их основе. И вторая немаловажная деталь низкий КПД системы отопления с естественной циркуляцией.

Насос для системы отопления UPS во фланцевом исполнении

Увеличиваются в размерах наши частные домовладения, дачи и загородные дома. Системы отопления иначе  как многоконтурными построить просто невозможно. Естественно хорошо сбалансированную отопительную систему, работающую за счет естественной циркуляции рассчитать и построить тяжело. Но и стоит ли строить этакого монстра с довольно большими диаметрами труб, если достаточно установить в системе отопления циркуляционный насос.

При этом трубы подводящие тепло к отопительным приборам становятся небольшого диаметра и их легко спрятать в стене или за гипсокартоновой перегородкой. Чугунные радиаторы отопления всю жизнь портившие внешний вид наших квартир заменяются на элегантные биметаллические или алюминиевые. Объем воды в системе отопления уменьшается, значит такая система отопление быстрее прогревается, а при наличии в системе отопления циркуляционного насоса возрастает скорость движения воды, уменьшается разница температур между отопительными приборами и как следствие температура во всех комнатах будет одинаковой, что не вызывает дискомфорта.

И, наверное, самое главное за счет циркуляционного насоса повышается КПД системы отопления в целом, а значит, сокращается расход топлива дорожающего год от года. А о таких устройствах, как полотенцесушители, термостаты, регуляторы температура в каждой из комнат, увлажнители и осушители воздуха при отсутствии в системе циркуляционного насоса даже нельзя мечтать.

Подбор насоса  для системы отопления дома.

К подбору циркуляционного насоса для котельной частного дома, котетжа или дачи необходимо отнестись очень ответственно. Лучше конечно поручит это профессионалам, хотя при наличии небольших базовых знаний и не слишком серьезных требованиях к системе отопления расчет можно сделать самому, основываясь на наших рекомендациях.

Циркуляционный насос подбирается по расходу воды в системе отопления в м3 в час и развиваемому напору в М, исходя из размеров дома и материалов использованных при строительстве дома. Опытный проектировщик подберет насос именно для системы отопления в вашем доме. Если же вы готовы взять ответственность при выборе на себя, то рекомендуем выбрать насос с автоматической регулировкой или хотя бы несколькими скоростями работы. Он конечно дороже, но зато позволит скорректировать ошибки монтажа системы отопления или выбора циркуляционного насоса. У насосов с так называемым мокрым ротором имеется регулировка скорости вращения, и поэтому можно в определенных пределах подрегулировать циркуляцию теплоносителя и исправить  ошибку с подбором насоса.

И так для подбора циркуляционного насоса для частного дома вам необходимо:

Насос UPS с резьбовым или муфтовым подключением

1. Знать высоту от точки установки насоса до верхней точки самого верхнего отопительного прибора.

2. Отапливаемую площадь помещения.

3. Определить ориентировочно  сопротивление вашей системы отопления. Для примера с нее и начнем.

Трубу так называемые в народе пластмассовые (Pilsa или PPR PN10, 20,25) специально не заостряю внимание на материале – свойства примерно одни и те же. Диаметр Ду40 с чугунными батареями сопротивление системы отопления 1м. Ду 32 с алюминиевыми радиаторами отопления — 1,2 – 1,5м. Ду25 с биметаллическими отопительными приборами – 2м.

Выбираем напор, развиваемый насосом. Например, высота от насоса до верхней точки самого верхнего отопительного прибора у нас 4 метра (в доме два этажа, трубы тонкие, отопительные приборы биметаллические) насос должен развивать напор 4+2 = 6 метров.

Теперь чтобы найти м3/час, отапливаемую мощность переводим в необходимое тепло 10 м отапливаемой площади это 1 кВт, если стены теплые и толстые берем 0,8 кВт тонкие и холодные 1,2 кВт.

Дом теплый площадью 200 м2, стены толстые. 200/10х0,8=16 кВт или 16х0,86=13,76 ккал

Теперь определитесь, какая разница по температуре в системе отопления вам нужна, мы рекомендуем 8-10 градусов, не более и не менее. Больше плохо для котла и комфорта, меньше вам придется приобрести более мощный и дорогой насос, к тому же потребляющий больше электроэнергии. Выбираем 10 градусов.

13,76/10=1,37 м3/час

Следовательно для теплого двухэтажного дома площадью 200 м2, с пластиковыми трубами спрятанными в стенах и биметаллическими радиаторами вам необходим циркуляционный насос с производительностью 1,4 м3/час при напоре 6 метров. Во избежание ошибки эти характеристики у циркуляционного насоса должны быть на второй скорости, а сам насос следует выбирать трехскоростным.

Данным условиям соответствует циркуляционный насос с мокрым ротором UPS 25-70 фирмы GRUNDFOS. Цена фирменного насоса 140 Евро, китайского 70-80 Евро. Электроэнергии он потребляет 150 Вт в час.

Если бы мы использовали более толстые трубы и алюминиевые радиаторы, то подошел бы циркуляционный насос UPS 25-60 180, а он уже стоит 110 Евро. Этот насос потребляет электроэнергии меньше – 110 Вт в час.

Как видите проектирование системы отопления, и подбор циркуляционного насоса лучше делать до начала работ, так вы еще сможете сэкономить на материалах и эксплуатационных затратах.

О том, как правильно смонтировать циркуляционный насос для системы отопления читайте в следующей статье.

Парамонов Ю.О. ООО предприятие Энергостром, 2013 год.

Расчет и подбор насоса для отопления: формулы, примеры, инструкции

Современную автономную систему отопления невозможно представить без хорошего циркуляционного насоса. С помощью этого полезного устройства можно в несколько раз повысить качество обогрева жилища и эффективность работы отопительного оборудования. Чтобы выбрать из многочисленных предложений производителей модель, которая подходит конкретной системе, следует выполнить правильный расчет насоса для отопления, а также учесть ряд важных практических нюансов.

Для чего нужен насос в системе отопления?

Большинству жителей верхних этажей в многоквартирных домах хорошо знакомо такое явление как холодные батареи. Это результат отсутствия в системе давления, необходимого для ее нормальной работы. Теплоноситель перемещается по трубам медленно и остывает уже на нижних этажах. С такой же ситуацией могут столкнуться и владельцы частного дома: в самой дальней точке отопительной системы трубы и радиаторы слишком холодные. Эффективно решить проблему поможет циркуляционный насос. Обратите внимание, что системы отопления с естественной циркуляцией теплоносителя могут быть вполне эффективны в небольших частных домах, но даже в этом случае имеет смысл подумать о принудительной циркуляции, поскольку при правильной настройке системы это позволит снизить общие расходы на отопление.

Упрощенно такой насос представляет собой мотор с ротором, который погружен в теплоноситель. Ротор вращается, заставляя воду или другую нагретую жидкость перемещаться по системе с заданной скоростью, создавая необходимое давление. Насос может работать в различных режимах. Например, установив устройство на максимум, можно быстро прогреть остывший в отсутствие хозяев дом. Затем восстанавливают настройки, которые позволяют получить наибольшее количество тепла при минимальных расходах. Различают модели циркуляционных насосов с «сухим» и «мокрым» ротором. В первом случае ротор насоса погружен в жидкость только частично, а во втором случае — полностью. Насосы с «мокрым» ротором издают при работе меньше шума.

Как рассчитать параметры насоса?

Правильно подобранный водяной насос для отопления должен решать две задачи:

  • создавать в системе напор, способный преодолеть гидравлическое сопротивление отдельных ее элементов;
  • обеспечивать перемещение по системе достаточного для обогрева здания количества тепла.

Исходя из этого, при выборе циркуляционного насоса следует рассчитать потребность здания в тепловой энергии, а также общее гидравлическое сопротивление всей отопительной системы. Без этих двух показателей подобрать подходящий насос просто невозможно.

Полезная информация о выборе циркуляционного насоса содержится в следующем видеоматериале:

Расчеты производительности насоса

Производительность насоса, которую в расчетных формулах обычно обозначают как Q, отражает количество тепла, которое может быть перемещено за единицу времени. Формула для расчетов выглядит так:

Q=0,86R/TF-TR, где:

  • Q — объемный расход, куб. м./ч;
  • R — необходимая тепловая мощность для помещения, кВт;
  • TF — температура на подаче в систему, градусов Цельсия;
  • TR — температура на выходе из системы, градусов Цельсия.

Потребность помещения в тепле (R) рассчитывается в зависимости от условий. В Европе принято рассчитывать этот показатель, исходя из норматива:

  • 100 Вт/кв. м площади небольшого частного дома, в котором не более двух квартир;
  • 70 Вт/кв. м площади многоквартирного дома.

Если же расчеты проводятся для зданий с низкой теплоизоляцией, значение показателя следует увеличить. Для расчетов по помещениям на производстве, а также по зданиям с очень высокой степенью теплоизоляции рекомендуется использовать показатель в пределах 30-50 кВт/ кв. м.

С помощью этой таблицы можно более точно рассчитать потребность в тепловой энергии для помещений различного назначения и с различным уровнем теплоизоляции

Расчет гидравлического сопротивления системы

Следующий важный показатель — гидравлическое сопротивление, которое необходимо будет преодолеть циркуляционному насосу. Для этого следует рассчитать высоту всасывания насоса. Обычно этот показатель обозначают как «H». Можно использовать следующую формулу:

H=1,3*(R1L1+R2L2+Z1+Z2+….+ZN)/10000, где

  • R1, R2 – потеря давления на подаче и обратке, Па/м;
  • L1,L2 – длина линии подающего и обратного трубопровода, м;
  • Z1,Z2…..ZN – сопротивление отдельных элементов отопительной системы, Па.

Для определения R1 и R2 следует воспользоваться приведенной ниже таблицей:

В этой таблице представлены дополнительные данные для более точного расчета гидравлического сопротивления, возникающего в отопительной системе частного дома

Гидравлическое сопротивление отдельных элементов и узлов отопительной системы обычно указано в сопровождающей их технической документации. Если по какой-то причине такая документация отсутствует, можно воспользоваться примерными данными:

  • котел — 1000-2000 Па;
  • смеситель — 2000-4000 Па;
  • термостатический вентиль — 5000-10000 Па;
  • тепломер — 1000-15000 Па.

Для других частей отопительной системы смотрите данные в этой таблице:

Если техническая документация по каким-то причинам утрачена, можно рассчитать гидравлическое сопротивление отдельных элементов отопительной системы с помощью данных, приведенных в этой таблице

Количество скоростей циркуляционного насоса

Большинство современных моделей циркуляционных насосов снабжены возможностью регулировать скорость работы устройства. Чаще всего это трехскоростные модели, с помощью которых можно корректировать количества тепла, поступающего в помещение. Так, при резком похолодании скорость работы насоса увеличивают, а в случае потепления — уменьшают, чтобы температура воздуха в комнатах оставалась комфортной для проживания.

Для переключения скоростей существует специальный рычаг, размещенный на корпусе устройства. Большой популярностью пользуются модели циркуляционных насосов, снабженные системой автоматического регулирования скорости работы устройства в зависимости от изменения температуры наружного воздуха.

Следует отметить, что это лишь один из вариантов такого рода расчетов. Некоторые производители используют при подборе насоса несколько иную методику вычислений. Можно попросить выполнить все расчеты квалифицированного специалиста, сообщив ему подробности устройства конкретной отопительной системы и описав условия ее работы. Обычно рассчитываются показатели максимальной нагрузки, при которой будет работать система. В реальных условиях нагрузка на оборудование будет ниже, поэтому можно смело приобретать циркуляционный насос, характеристики которого несколько ниже расчетных показателей. Приобретение более мощного насоса не целесообразно, поскольку это приведет к ненужным расходам, но работу системы не улучшит.

После того, как все необходимые данные получены, следует изучить напорно-расходные характеристики каждой модели с учетом разных скоростей работы. Эти характеристики могут быть представлены в виде графика. Ниже приведен пример такого графика, на котором отмечены и расчетные характеристики устройства.

С помощью этого графика можно подобрать подходящую модель циркуляционного насоса для отопления по показателям, рассчитанным для системы конкретного частного дома

Точка А соответствует необходимым показателям, а точкой В обозначены реальные данные конкретной модели насоса, максимально приближенные к теоретическим расчетам. Чем меньше расстояние между точками А и В, тем лучше подходит модель насоса для конкретных условий эксплуатации.

Несколько важных замечаний

Как уже отмечалось выше, различают циркуляционные насосы с «сухим» и «мокрым» ротором, а также с автоматической или ручной системой регулировки скоростей. Специалисты рекомендуют использовать насосы, ротор которых полностью погружен в воду, не только из-за пониженного уровня шума, но и потому, что такие модели справляются с нагрузкой более успешно. Установку насоса осуществляют таким образом, чтобы вал ротора располагался горизонтально. Подробнее про установку читайте здесь.

При производстве высококачественных моделей используется прочная сталь, а также керамический вал и подшипники. Срок эксплуатации такого устройства составляет не менее 20 лет. Не стоит выбирать для системы горячего водоснабжения насос с чугунным корпусом, поскольку в таких условиях он быстро разрушится. Предпочтение стоит отдать нержавейке, латуни или бронзе.

Если при работе насоса в системе появляется шум, это не всегда говорит о поломке. Нередко причина этого явления — воздух, оставшийся в системе после запуска. Перед пуском системы следует спустить воздух через специальные клапаны. После того, как система проработает несколько минут, нужно повторить эту процедуру, а затем отрегулировать работу насоса.

Если запуск производится с использованием насоса с ручной регулировкой, необходимо сначала установить прибор на максимальную скорость работы, в регулируемых моделях при пуске отопительной системы следует просто отключить блокировку.

Оцените статью:

Поделитесь с друзьями!

подбор по напору и расходу, формулы, примеры

Большинство автономных систем отопления, которые используются для обогрева загородных домов и дач, сегодня оснащаются циркуляционными насосами. Чтобы при установке такой гидравлической машины добиться требуемых результатов, необходимо выполнить предварительный расчет циркуляционного насоса для системы отопления и, основываясь на полученных значениях, выбрать насосное оборудование с соответствующими характеристиками.

Грамотный подбор циркуляционного насоса обеспечит эффективную работу отопительной системы и позволит избежать лишних затрат

Сферы использования циркуляционных насосов

Главная задача циркуляционного насоса состоит в том, чтобы улучшить циркуляцию теплоносителя по элементам отопительной системы. Проблема поступления в радиаторы отопления уже остывшей воды хорошо знакома жильцам верхних этажей многоквартирных домов. Связаны подобные ситуации с тем, что теплоноситель в таких системах перемещается очень медленно и успевает остыть, пока достигнет участков отопительного контура, находящихся на значительном отдалении.

При эксплуатации в загородных домах автономных систем отопления, циркуляция воды в которых осуществляется естественным путем, тоже можно столкнуться с проблемой, когда радиаторы, установленные в самых дальних точках контура, еле нагреваются. Это также является следствием недостаточного давления теплоносителя и его медленного движения по трубопроводу. Избежать подобных ситуаций как в многоквартирных, так и в частных домах позволяет установка циркуляционного насосного оборудования. Принудительно создавая в трубопроводе требуемое давление, такие насосы обеспечивают высокую скорость движения нагретой воды даже к самым отдаленным элементам системы отопления.

Насос повышает эффективность действующего отопления и позволяет совершенствовать систему, добавляя дополнительные радиаторы или элементы автоматики

Свою эффективность системы отопления с естественной циркуляцией жидкости, переносящей тепловую энергию, проявляют в тех случаях, когда их используют для обогрева домов небольшой площади. Однако, если оснастить такие системы циркуляционным насосом, можно не только повысить эффективность их использования, но и сэкономить на отоплении, снизив количество потребляемого котлом энергоносителя.

По своему конструктивному исполнению циркуляционный насос представляет собой мотор, вал которого передает вращение ротору. На роторе устанавливается колесо с лопатками – крыльчатка. Вращаясь внутри рабочей камеры насоса, крыльчатка выталкивает поступающую в нее нагретую жидкость в нагнетательную магистраль, формируя поток теплоносителя с требуемым давлением. Современные модели циркуляционных насосов могут работать в нескольких режимах, создавая в системах отопления различное давление перемещающегося по ним теплоносителя. Такая опция позволяет быстро прогреть дом при наступлении холодов, запустив насос на максимальную мощность, а затем, когда во всем здании сформируется комфортная температура воздуха, переключить устройство на экономичный режим работы.

Устройство циркуляционного насоса для отопления

Все циркуляционные насосы, используемые для оснащения систем отопления, делятся на две большие категории: устройства с «мокрым» и «сухим» ротором. В насосах первого типа все элементы ротора постоянно находятся в среде теплоносителя, а в устройствах с «сухим» ротором только часть таких элементов контактирует с перекачиваемой средой. Большей мощностью и более высоким КПД отличаются насосы с «сухим» ротором, но они сильно шумят в процессе работы, чего не скажешь об устройствах с «мокрым» ротором, которые издают минимальное количество шума.

Для чего необходимо выполнять расчет

Циркуляционный насос, установленный в системе отопления, должен эффективно решать две основные задачи:

  1. создавать в трубопроводе такой напор жидкости, который будет в состоянии преодолеть гидравлическое сопротивление в элементах отопительной системы;
  2. обеспечивать постоянное движение требуемого количества теплоносителя через все элементы отопительной системы.

Чтобы циркуляционный насос был в состоянии справляться с решением вышеперечисленных задач, выбирать такое устройство следует только после того, как будет сделан расчет отопления.

При выполнении такого расчета учитывают два основных параметра:

  • общую потребность здания в тепловой энергии;
  • суммарное гидравлическое сопротивление всех элементов создаваемой отопительной системы.

Таблица 1. Тепловая мощность для различных помещений

После определения данных параметров уже можно выполнить расчет центробежного насоса и, основываясь на полученных значениях, выбрать циркуляционный насос с соответствующими техническими характеристиками. Подобранный таким образом насос будет не только обеспечивать требуемое давление теплоносителя и его постоянную циркуляцию, но и работать без чрезмерных нагрузок, которые могут стать причиной быстрого выхода устройства из строя.

Как правильно рассчитать производительность насоса

Такой важный параметр циркуляционного насоса, как его производительность, указывает на то, какое количество теплоносителя он может переместить за единицу времени. Расчет производительности циркуляционного насоса, которая обозначается буквой Q, выполняется по следующей формуле:

Q = 0,86R/TF–TR.

Параметры, которые используются в данной формуле, указаны в таблице.

Таблица 2. Параметры теплоносителя для расчета производительности насоса

Потребность помещений дома в количестве тепла для их обогрева, которая обозначается буквой R, определяется в зависимости от климатических условий местности, в которой такой дом расположен. Так, для домов, которые эксплуатируются в условиях европейского климата, выбирают следующие значения данного параметра:

  • частные дома небольшой и средней площади – 100 кВт на 1 м2;
  • многоквартирные дома – 70 кВт на 1 м2 площади их помещения.

В том случае, если расчет производительности насоса для отопления выполняется для зданий с низкими теплоизоляционными характеристиками, значение тепловой мощности, подставляемое в формулу, следует увеличить. Для производственных помещений, а также помещений, расположенных в зданиях с хорошей теплоизоляцией, значение параметра R принимают равным 30–50 кВт/м2.

Как рассчитать гидравлические потери отопительной системы

На выбор циркуляционного насоса по его мощности и создаваемому им напору, как уже говорилось выше, оказывает влияние и такой важный параметр отопительной системы, как гидравлическое сопротивление, которое создают все элементы ее оснащения. Зная гидравлическое сопротивление, создаваемое отдельными элементами отопительной системы, можно рассчитать высоту всасывания насоса и, руководствуясь таким параметром, подобрать модель оборудования по мощности и создаваемому напору. Для расчета высоты всасывания насоса, которая обозначается буквой H, нужна следующая формула:

H = 1,3x(R1L1+R2L2+Z1……..Zn)/10000.

Параметры, используемые в данной формуле, указаны в таблице.

Таблица 3. Параметры для расчета высоты всасывания

Значения R1 и R2, используемые в данной формуле, следует выбирать по специальной информационной таблице.

Значения гидравлического сопротивления, создаваемого различными устройствами, которые применяются для оснащения систем отопления, обычно указываются в технической документации на них. Если таких данных в паспорте на устройство нет, то можно воспользоваться приблизительными значениями гидравлического сопротивления:

  • отопительный котел – 1000–2000 Па;
  • сантехнический смеситель – 2000–4000 Па;
  • термоклапан – 5000–10000 Па;
  • прибор для определения количества тепла – 1000–1500 Па.

Существуют специальные информационные таблицы, по которым можно определить гидравлическое сопротивление практически для любого элемента оснащения отопительных систем.

Зная высоту всасывания, для расчета которой используется вышеуказанная формула, можно оптимально выбрать насосное оборудование по его мощности, а также определить, каким должен быть напор насоса.

Как выбрать циркуляционный насос по количеству скоростей

Обычно современные модели циркуляционных насосов оснащаются регулирующим механизмом, позволяющим изменять скорость их работы. Используя такой механизм, имеющий, как правило, три ступени регулировки, можно настраивать насос по расходу жидкости, подаваемой в систему отопления. Так, при резком похолодании на улице и, соответственно, в доме, насос можно включать на максимальную скорость работы, а при потеплении выбирать другой режим.

Элементом управления, при помощи которого изменяют скорость работы циркуляционного насоса, выступает рычаг на корпусе устройства. Отдельные модели циркуляционных насосов оснащаются системой авторегулирования скорости их работы, которая изменяется в зависимости от температурного режима в помещении.

Насос Wilo-Stratos с автоматической регулировкой мощности

Приведенная выше методика – это только один пример выполнения расчетов, которые необходимы для того, чтобы выбрать циркуляционный насос для теплого пола или системы отопления. Специалисты, занимающиеся системами отопления, используют различные методики расчета напора насоса (а также производительности и других параметров таких устройств), позволяющие подбирать такое оборудование по его мощности и создаваемому давлению. Во многих случаях собственнику дома, в котором необходимо смонтировать отопительную систему, можно даже не задаваться вопросами о том, как рассчитать мощность насоса и как подобрать насосное оборудование. Многие производители предоставляют услуги квалифицированных специалистов или предлагают воспользоваться онлайн-сервисами по расчету параметров циркуляционного насоса и его выбору для систем отопления или теплого пола.

Выбирая мощность циркуляционного насоса, следует принимать во внимание, что все предварительные расчеты выполняют, исходя из значений максимальных нагрузок, которые такое оборудование может испытывать в процессе эксплуатации.

В реальных условиях эксплуатации такие нагрузки будут ниже, что даст вам возможность сделать выбор насоса, технические характеристики которого несколько ниже рассчитанных. Выбор менее мощного насоса при таком подходе не отразится на эффективности его использования в системе отопления. В том случае, если мощность насоса, который вы выбрали, значительно выше значений, полученных при расчете, это не улучшит работу отопительной системы, но при этом увеличит ваши расходы на оплату электроэнергии.

Помочь сделать выбор циркуляционного насоса из нескольких моделей по их напорно-расходным характеристикам и скорости работы помогает специальный график. При построении такого графика используются реальные значения напора и расхода, необходимые для нормального функционирования системы отопления, а также значения, которые соответствуют конкретным моделям насосного оборудования, работающего на различных скоростях. Чем ближе точки, расположенные на двух графиках, тем больше подходит насос для его использования в системе отопления.

Подбор насоса. Советы экспертов компании Климат Технологии

Как выбрать циркуляционный насос

Циркуляционный насос обеспечивает принудительную циркуляцию, как следует из названия,  теплоносителя, чаще всего воды. Отопительные системы с естественной циркуляцией применяются все меньше и меньше. Ведь они имеют ряд недостатков. Применение же циркуляционого насоса позволяет уменьшить диаметр трубопроводов, не привязываться к размещению отопительного котла только в нижней точке, да и просто быстрее прогреть помещение и создать комфортную температуру.

Простота конструкции, надежность и долгий срок службы циркуляционных насосов послужили их широкому применению в нашей жизни. Циркуляционные насосы есть в системах отопления, могут применяться в бытовом горячем водоснабжении, использоваться для движения жидкостей охлаждения в системах кондиционирования воздуха. Имея примерно одинаковую конструкцию, для каждого случая применения циркуляционные насосы все таки разнятся, особенно в части материалов для их изготовления.

Из всего вышесказанного следует отметить подбор насоса включает следующие основные критерии:

  • условия эксплуатации, которые включают температуру теплоносителя и вещество, используемое в качестве теплоносителя, а также диаметры трубопроводов
  • необходимую производительность
  • напор

Для того, чтобы подобрать циркуляционный насос необходимо учитывать основные параметры (напор и производительность), которые находятся в непрерывной зависимости друг от друга. Напор, который создается циркуляционным насосом должен преодолевать гидравлические сопротивления элементов системы отопления запорно-регулирующей арматуры, трубы, различных колен и тройников, отопительных приборов.

Для систем отопления частных домов, в основном, применяют насосы с так называемым «мокрым ротором». Рекомендуем обратить Ваше внимание на насосы GRUNDFOS UPS. Конструктивным отличием насосов GRUNDFOS типа UPS является охлаждение и смазка подвижных элементов самой протекающей жидкостью. Современные циркуляционные насосы, особенно ведущих мировых лидеров, таких как Grundfos Дания экономичны, надежны, долговечны и малошумны. Хотя относительные новички, например, циркуляционный насос Спрут завоевывает покупателя своей ценой и неприхотливостью и уже твердо и уверенно зарекомендовал себя на рынке Украины. Чтобы насос работал надежно и не доставлял хлопот, его необходимо правильно подобрать.  Без некоторых расчетов здесь никак не обойтись.

В системах отопления. При подборе насос прежде всего нужно определиться с количеством тепла, необходимого, чтобы не мерзнуть в доме или квартире зимой. Его примерно можно вычислить в зависимости от площади обогреваемого помещения. Исходя из расчетов по европейским стандартам, количество тепла, необходимое на отопление 1 кв.м в доме с 1–2 квартирами составляет 100 Вт, а для многоквартирных домов 70 Вт.

Однако, если теплоизоляция здания не отвечает нормативам, то в расчет берут более высокое удельное потребление тепла. Для производственных помещений и жилых домов с улучшенной теплоизоляцией требуется 30–50 Вт/кв.м.

Далее рассчитывают необходимую производительность насоса:

Расход (объемная подача) рассчитывается по следующей формуле:

 – объемный расход, м3/ч
 – потребная тепловая мощность, кВт
 – температура в подающем трубопроводе, °С
– температура в обратном трубопроводе,°С.

Потребную тепловую мощность определяем по табл.1 (при максимальных тепловых потерях = 100 Вт/м2):

Таблица 1 – Потребная тепловая мощность, кВт




Sот, м2

60

70

80

90

100

120

140

160

180

200

220

240

260

280

300

320

340

360

Ф, кВт

6,0

7,0

8,0

9,0

10,0

12,0

14,0

16,0

18,0

20,0

22,0

24,0

26,0

28,0

30,0

32,0

34,0

36,0

Следующим шагом при подборе насоса будет определение необходимого напора (давления) в трубопроводе — сопротивление, которое насос должен преодолеть при нагревании воды в трубах.
Высота всасывания насоса Н определяется следующей формулой:

где: , — потери давления в подающем и обратном трубопроводах (Па/м), определяются по табл. 2

Таблица 2 — Потери давления

Данная таблица используется для определения вероятных потерь давления в трубопроводе, измеряемых в Па/м (при температуре воды 60°С).
Рекомендуемые потери в трубах – не более 105 Па/м.

,  -длина подающей и обратной линии, м;
,,- отдельные сопротивления, Па.
Значения отдельных сопротивлений можно найти в технических требованиях изготовителей на используемые изделия. При отсутствии данной информации, в качестве приблизительной оценки можно использовать следующие значения:
Котел: от 1000 до 2000 Па
Смеситель: от 2000 до 4000 Па
Термостатический вентиль: от 5000 до 10000 Па
Тепломер: от 1000 до 15000 Па.

На следующем этапе также необходимо определиться еще с одним параметром — количеством скоростей, на которых может работать Ваш насос. Многоскоростные насосы (обычно три скорости – GRUNDFOS UPS) позволяют с легкостью корректировать температуру радиаторов отопления в доме или квартире — скорость работы насоса можно снижать, при увеличении температуры на улице. Регулировка скоростей осуществляется переключателем на корпусе насоса. Если желания возиться с насосом нет, можно приобрести полный автомат, который сам «приспособится» под систему и будет функционировать в оптимальном режиме (GRUNDFOS ALPHA 2).

Исходя из вышеперечисленных критериев, теперь мы можем подобрать необходимый насос. Однако следует учесть, что параметры, которые мы получили в результате приведенных выше расчетов, необходимы для работы при максимальной нагрузке. Но, как правило, такие условия встречаются крайне редко, и большую часть отопительного сезона потребность в тепле не столь велика.

Для приблизительной ориентации можно воспользоваться таблицей:

Таблица 1. Рекомендуемый регулируемый насос








Дом, м2

Объемная подача
в радиаторной системе отопления,
м3

Тип насоса

80-120

0,4

GRUNDFOS ALPHA2 25-40
UPS 25-40

120-160

0,6

GRUNDFOS ALPHA2 25-40
UPS 25-40

169-200

0,7

GRUNDFOS ALPHA2 25-40
UPS 25-40

200-240

0,8

GRUNDFOS ALPHA2 25-40
UPS 25-40

240-280

0,9

GRUNDFOS ALPHA2 25-60
UPS 25-60

Есть один нюанс при использовании циркуляционных насосов для системы горячего водоснабжения. Для циркуляции горячей воды бытового назначения рекомендовано использовать насосы с корпусом из нержавеющей стали, бронзы или латуни. Это связано с быстрым разрушением чугунных корпусов в воде, богатой кислородом. Выбрать нужную модель можно в каталоге, это насосы Comfort UP.

В последнее время потребители все больше задаются вопросом, как много электроэнергии будет потреблять насос. Не смотря на то, что циркуляционные насосы отличаются своей экономичностью и потребление энергии у них не больше, чем, скажем, у небольшой электрической лампочки, однако ведущие производители продолжают работать над их экономичностью.

В заключении хотелось сказать об одном очень важном соглашении, к которому пришли ведущие производители циркуляционных насосов. В соответствии с единой классификацией по энергопотреблению, всем циркуляционным насосам присвоили ярлыки соответствующей категории, имеется ввиду аналогия с бытовой техникой. К примеру, потребление энергии насосов «А» класса (таких как, GRUNDFOS ALPHA 2) составляет в среднем 6 Вт, что соответствует 90 кВтч в год. Безусловно, надо отметить тот факт, что на сегодняшний день наиболее экономичными являются регулируемые циркуляционные насосы.

расчет параметров и выбор оборудования

Начиная с древних времен человек стремился обеспечить комфортные условия в своем жилище. В каменный век — это просто костер, горевший в пещере, затем с развитием технологий строительства появились дома и печи в них. Развивалась наука, появлялись новые технологии, росли возможности техники. Достижения теплоэнергетики и ряда смежных наук позволили создать современные отопительные системы — тепловые насосы и котлы, использующие энергию газа, нефти и электричества. Отопительные системы частных домов являются автономными.

Автономные системы обогрева

Известно несколько разновидностей автономных систем обогрева. Это системы с котлами, использующими газ, твердое или жидкое топливо, и входящие в моду тепловые насосы. Самая простая из них — система с открытым расширительным баком, она энергонезависима и монтируется с учетом обеспечения естественной циркуляции воды. Труба горячей воды от котла поднимается вверх для создания напора внутри системы, а затем горячая вода распределяется по приборам отопления.

Реальная эксплуатация «открытых» систем показала, если применить нагнетательный насос для отопления, то ускоряется нагрев помещения, увеличивается эффективность и снижаются расходы. Насос устанавливается в «обратку» вблизи котла. Подходящий насос для отопления для дома купить можно в магазине или заказать в сети.

Антифриз в таких системах не используется из-за значительного испарения в открытом баке (расширительном). Теплоноситель — вода. Для уменьшения отложений на внутренних стенках трубопроводов лучше использовать смягченную воду с небольшим количеством растворенных минеральных веществ.

Если же система отопления предназначена для двух или трехэтажного дома, то в таком случае возникают дополнительные проблемы, которые требуют решения. В такие системы отопления входят значительное число батарей отопления, разветвлений, задвижек и других элементов, которые будут создавать значительное гидравлическое сопротивление.

Расчет параметров насоса

Для создания необходимого напора и преодоления гидродинамического сопротивления системы применяют насосы для отопления частных домов, которые обеспечат активную циркуляцию теплоносителя. Чтобы система отопления работала эффективно нужно выполнить расчет циркуляционного насоса. Он позволит осуществить оптимальный подбор насоса для отопления частного дома и обеспечить в нем комфортные условия.

Основные задачи нагнетательного насоса:

  1. создание такой величины давления в системе, которая преодолеет гидравлическое сопротивление;
  2. обеспечить достаточное количество теплоносителя.

Исходя из этих предпосылок, насосы на отопление в частном доме подбираются только после расчета необходимого количества тепла для дома и гидравлического сопротивления контура. На основании расчетов приобретаются циркуляционные насосы для отопления частных домов цена, и качество обычно соответствуют наилучшему соотношению.

Для расчета производительности применяется формула вида — Q=0,86R/TF-TR, где:

  • Q — необходимый расход куб. м/час;
  • R — выбранная тепловая потребность, кВт;
  • TF — TR = 20.

Величина (R) может иметь следующие величины:

  1. нормативы для частных домов — 100 Вт/м2;
  2. для многоэтажных домов — 70 Вт/м2;
  3. заводские помещения — 30-50 Вт/м2;
  4. помещения с очень хорошей теплоизоляцией — 30 Вт/м2.

Гидравлическое сопротивление системы

Расчет производительности и гидравлического сопротивления дают ответ на такой вопрос — как правильно подобрать насос для системы отопления и обеспечить ее эффективную работу в отопительный сезон.

Для расчета применяется формула такого вида — H=1,3*(R1L1+R2L2+Z1+….+ZN)/10000, в которой:

  • L1,L2 — общая длина линий трубопровода — м;
  • R1, R2 — падение давления на подаче и «обратке» — Па/метр;
  • Z1,…..ZN — сопротивление элементов системы — Па.

В технических паспортах узлов и элементов системы указывается гидравлическое сопротивление комплектующих. Для основных элементов оно составляет:

  1. котел — 1-2 кПа;
  2. тепломер — 1-15 кПа;
  3. вентиль — 5-10 кПа;
  4. смеситель — 1-15 кПа;
  5. фильтр (новый) — 15-20 кПа;
  6. водонагреватель — 2-10 кПа;
  7. обратный клапан — 5-10 кПа.

Выбор насоса

Нагнетательные насосы для отопления частных домов как выбрать подходящий? Ошибиться трудно, ведь современные насосы для отопления для дома цена, которых в высшей степени соответствует наилучшему соотношению цена/качество — трехскоростные.

Возможность изменения скорости вращения двигателя изменяет производительность насоса в широких пределах.

Скорости переключаются рычагом, но некоторые типы насосов можно подключить к датчикам температуры и обеспечить автоматическую регулировку производительности прибора.

Вышеописанный расчет только один из вариантов. Известны и другие методы расчета. Все методики рассчитывают работу контура при максимальной нагрузке, значит, в реальности нагрузка будет несколько ниже, поэтому можно приобретать насосы для отопления частных домов цена которых меньше, а характеристики несколько хуже расчетных. Более мощный насос тоже не следует покупать, ведь расходы увеличатся, а работа системы не станет лучше.

Полезные советы специалистов

Приобрести циркуляционный насос можно в магазинах или заказать в интернете. Перед покупкой желательно получить консультацию специалиста по системам отопления. Обычно менеджеры, которые реализуют насосы различных фирм, знают о них все. От вас они могут потребовать некоторые исходные данные, которые помогут сделать оптимальный выбор. Обычно спрашивают о том, какой котел будет установлен, величину общей площади жилища, наличие утепления дома, этажность и т. п.

Советы специалистов, которые помогут сделать выбор:

  • лучше справляются с нагрузкой насосы с «мокрым» ротором;
  • дольше работают модели с корпусами из бронзы, латуни или нержавеющей стали;
  • в случае появления шума в системе нужно проверить отсутствие воздуха в системе;
  • при запуске включить максимальные обороты двигателя насоса.

Альтернативное отопление

В постоянной борьбе с ростом цен был изобретен так называемый тепловой насос. Он энергию из воздуха, из грунта и из воды. Его принцип действия довольно прост. Тепловой насос работает как холодильник наоборот. Поэтому альтернативное отопление частного дома тепловой насос обеспечит полностью, если сделаны правильные расчеты на основании термодинамики. Расчеты сложные и их лучше поручить специалисту. При этом следует знать, что тепловой насос, извлекая тепло из внешней среды, передает его через компрессор в отопительную систему.

Отопительная система имеет все элементы обычной — батареи, краны, смесители, насос для отопления в частном доме и другие, а роль котла отопления взял на себя компрессор, который является источником тепла. Таким образом, и для альтернативной системы отопления, в виде теплового насоса, все атрибуты и элементы сохраняются, за исключением котла. Но отопительный котел можно легко присоединить к системе для резерва, на случай поломки теплового насоса. Но, подбор насоса для отопления дома нужно произвести для обеспечения циркуляции воды.

Виды тепловых насосов

Сама идея об извлечении и использовании тепла окружающей возникла давно, но ее активное претворение в жизнь тепловых насосов началось недавно. Их активному внедрению способствовали появившиеся надежные и производительные циркуляционные насосы для отопления частных домов, с успехом используются в тепловых насосах. Для хорошей работы теплового насоса нужно перекачивать большие объемы теплоносителя для извлечения тепла из грунта или водоема в тепловой насос.

Следовательно, насос для системы отопления частного дома цена и производительность которого выбраны оптимально, хорошо работают не только в газовых системах отопления, но успешно применяются в тепловых насосах.

Существующие тепловые насосы классифицируются по методу извлечения тепла.

Окончательный подбор насоса для системы отопления частного дома делается на основании довольно сложных расчетов. Различают три основных вида:

  1. воздушный — абсорбирует тепло из воздуха;
  2. геотермальный — отбирает тепло из грунта, наземных и подземных вод;
  3. вторичного тепла — отбор тепла с канализации или центрального отопления, применяется в промышленности.

Исходя из технических возможностей подбирается насос для отопления в частном доме, и его установка. Для создания автономной системы наиболее предпочтителен второй вариант — геотермальный тепловой насос. Тип насосов может быть замкнутым или открытым. Второй способ применяется при наличии больших объемов чистой воды, т. к. после отъема тепла вода выливается назад в водоем.

В настоящее время можно купить тепловой насос для отопления дома, геотермальный, один из трех типов:

  • насос геотермальный водный;
  • насос геотермальный с глубинным расположением коллектора;
  • насос геотермальный горизонтальный.

Прежде чем купить геотермальный насос для системы отопления частного дома нужно проконсультироваться у специалистов и сделать предварительные расчеты. Многие интернет-магазины предлагают выезд специалиста, бесплатный расчет за 24 часа и доставку. А если будет заказана установка насоса в систему отопления частного дома, фирма обеспечит гарантийное обслуживание и бонусы при покупке теплового насоса.

Окупить тепловой насос для отопления в частном доме цена которого значительно выше цены систем стандартного отопления, потребуется несколько лет. Но если учесть большой срок работы подобного оборудования и отсутствие платы за тепло, то экономическая выгода очевидна. Спрос на тепловые насосы для отопления дома увеличится, и они станут конкурировать с газовым отоплением при уменьшении цены покупки и установки. Благодаря неоспоримым преимуществам геотермального отопления — тепловой насос для системы отопления частного дома оправдан экономически.

Правильный подбор циркуляционного насоса для отопления котлом: устройство, типы и характеристики

Для функционирования современной системы отопления, оснащенной принудительным движением теплоносителя по контурам, используется циркуляционный насос. Именно благодаря этому устройству теплоноситель движется по магистралям системы отопления, а также насос используется в системе теплый пол и системе рециркуляции ГВС. Сложные многоконтурные системы больших домов могут оснащаться несколькими циркуляционными агрегатами.

Чтобы добиться эффективной теплоотдачи системы отопления необходимо, чтобы параметры циркуляционного насоса соответствовали параметрам системы. Для ориентирования в теме, как выбрать циркуляционный насос для системы отопления с учетом источника тепла (котла), следует ознакомиться с устройством и параметрами насоса.

Устройство и технические параметры насоса

Конструкция оборудования включает корпус, к которому присоединяется улитка, а к улитке – трубы контура. Корпус оснащен электродвигателем с платой управления и клеммами, чтобы подсоединять провода электросети. Для движения воды по магистралям системы применяется ротор с крыльчаткой: с его помощью вода засасывается с одной стороны, а с другой стороны нагнетается в трубы контура.

Выбирать циркуляционный насос следует, исходя из следующих технических параметров:

  1. Производительность устройства (расход) – представляет объемную величину, численно равную максимальному объему воды, прокачиваемого за один час времени через прибор.
  2. Напор – представлен максимальным значением гидравлического сопротивления, оказываемого всеми элементами отопительных контуров по отношению к движению теплоносителя, и способного для преодоления насосом. Измеряется в метрах.
  3. Характеристика прибора – представляет производственную величину, которая определяет взаимосвязь напора устройства и его производительность.

Классификация

Все насосы делятся на два типа:

Насос с сухим ротором

Рабочая часть ротора не имеет прямого контакта с водой благодаря защите нескольких уплотнительных колес. Изготавливаются эти детали из угольного агломерата, высококачественной стали или керамики, окиси алюминия – все зависит от типа применяемого теплоносителя.

Запуск устройства осуществляется за счет движения колец по отношению друг к другу. Поверхности деталей идеально отполированы, соприкасаясь друг с другом, они создают тонкий слой водяной пленки. В результате чего создается герметизирующее соединение. С помощью пружин кольца прижимаются навстречу друг другу, благодаря чему по мере изнашивания детали самостоятельно подгоняются друг к другу.

Период эксплуатации колец приблизительно три года, что намного дольше эксплуатации сальниковой набивки, нуждающейся в периодической смазке и охлаждении. Показатель коэффициента полезного действия равен 80 процентов. Главная отличительная особенность работы агрегата – высокий уровень шума, в результате чего для его установки необходима отдельная комната.

Насос с мокрым ротором

Рабочая часть ротора – крыльчатка – погружается в теплоноситель, который одновременно выступает и как смазка, и как охладитель двигателя. С помощью герметичного стакана из нержавеющей стали, установленного между статором и ротором, электрическая часть двигателя защищается от попадания влаги.

Как правило, для производства ротора применяется керамика, для подшипников – графит или керамика, для корпуса – чугун, латунь или бронза. Главная особенность работы агрегата – низкий уровень шума, продолжительный период использования без техобслуживания, легкие и простые настройки и ремонт.

Показатель коэффициента полезного действия составляет 50 процентов. Это объясняется тем, что герметизация металлической гильзы, которая отделяет носитель тепла и статор, если диаметр ротора большой, невозможна. Однако, для бытовых нужд, где обеспечивается циркуляция теплоносителя в трубопроводах небольшой протяженности, такие циркуляционные насосы применять целесообразно.

В состав модульной конструкции современного устройства «мокрого» типа входят:

  • Корпус;
  • Электрический двигатель со статором;
  • Короб с клеммниками;
  • Рабочее колесо;
  • Картуш, состоящий из вала с подшипниками и ротора.

Модульная сборка удобна тем, что в любое время есть возможность замены вышедшей из строя части циркуляционного насоса на новую деталь, а из картуша легко устраняется скопившийся воздух.

Как подобрать циркуляционный насос для отопления?

Для подбора оборудования с учетом наиболее подходящих параметров необходимо воспользоваться определенными формулами. Однако, только специалисты знают, какие именно формулы необходимо использовать в каждом конкретном случае. А если устройство подбирает незнающий человек, то следует воспользоваться следующими рекомендациями:

  • Маркировка циркуляционного насоса. Например, оборудование Grundfos UPS 25-50, где первые две цифры указывают диаметр резьбы гаек – 25 миллиметров (1 дюйм), которые поставляются в комплекте с устройством. Еще существуют насосы с диаметром гаек 32 миллиметра (1,25 дюйма). Вторые две цифры – это максимальная высота подъема теплоносителя в системе отопления – 5 метров, то есть при помощи циркуляционного насоса может создаваться избыточное давление не более 0,5 атмосфер. Также существуют насосы, в которых высота подъема равна 3, 4, 6 и 8 метров.
  • Производительность агрегата. Является главным параметром, определяющим работу агрегата. Представлен объемом теплоносителя, перекачиваемого с помощью насоса. Для расчета применяется формула:
    • Q=N:(t2-t1),
    • где N – мощность источника тепла. Это может быть котел либо газовая колонка;
    • t 1 – показывает температуру воды, которая находится в обратном трубопроводе. Как правило, она равняется +65-700С;
    • t 2 – показывает температуру воды, которая находится в подающем трубопроводе (выходит из котла или газовой колонки). Зачастую котел поддерживает +90-950С.
    • Расчет системы отопления и ее потерь осуществляется для того, чтобы правильно выбрать расчетные параметры того агрегата, который способен справиться с сопротивлением в системе отопления.
  • Уровень подъема системы отопления. Показывает максимальный напор, на который способна отопительная система. Это суммарная величина гидравлического сопротивления в системе отопления. При расчетах гидравлического сопротивления не учитывается этажность обогреваемого здания с замкнутой отопительной системой. В таком случае берется среднее значение – 2-4 метра водяного столба. В малоэтажных домах с традиционной системой отопления этот показатель идентичен.
  • Потребность здания в энергии. Это еще один параметр, который стоит учитывать при выборе циркуляционного насоса, хоть и косвенно. Этот показатель указывается в паспорте здания во время его проектирования. Если эти значения отсутствуют, их можно рассчитать. Каждая страна имеет свои стандарты тепла на один квадратный метр. По европейским стандартам для отопления 1 квадратного метра одно- или двухквартирного здания требуется 100 Вт, для многоквартирного здания – 70 Вт. Российский стандарт представлен в СНиПе 2.04.05-91.
  • Расход электроэнергии. Любой циркуляционный насос отопления обладает тремя положениями подключения в электрическую сеть. Все сведенья по поводу потребления насосом электрического тока содержатся в табличке на корпусе агрегата (параметры нагрузки). Каждому положению переключателя соответствует новая производительность насоса, то есть количество теплоносителя в час, перекачиваемого устройством по системе отопления. Третье положение переключателя показывает максимальную производительность данного агрегата, а показатель максимального потребления тока насосом указывается в табличке на корпусе насоса.

Оборудование, выпускаемое серийно, имеют усредненные характеристики. Поэтому необходимо учитывать индивидуальность каждой системы отопления.

Обратите внимание! Выбирать подходящий насос следует с учетом возможности работы агрегата в нескольких режимах, при этом его мощность должна превышать расчетную мощность на 5-10 процентов.

Заключение

Подбирать насос следует с учетом трех его основных параметров – расход, присоединительный диаметр и высота напора. Стоит отметить, что полученные при расчете характеристики – это максимальные показатели работы насоса. И поскольку такой режим в период всего отопления котлом будет длиться непродолжительное время, то выбирать насос необходимо с несколько заниженными показателями. Такой подход существенно сэкономить средства и сократит расходы электроэнергии.

Оцените статью: Поделитесь с друзьями!

Как выбрать насос для отопления (циркуляционный) частного дома?

Содержание   

Для эффективного отопления частных домов в системе отопления требуется циркуляционный насос. Благодаря этому устройству осуществляется непрерывная циркуляция теплоносителя по трубам. Помещение прогревается равномерно и быстро. При высокой или низкой скорости перемещения теплоносителя  обогрев дома производится неравномерно. Поэтому следует внимательно подходить к такому вопросу, как подбор циркуляционного насоса для системы отопления.

Подбор циркуляционного насоса для отопления не зависит от того, какое топливо необходимо для отопительного котла.

Зачем нужен насос в контуре отопления?

Естественная циркуляция жидкости в контуре отопления малоэффективна, так как жидкость постоянно преодолевает сопротивление, и это замедляет ее продвижение. Это приводит к тому, что в котел жидкость возвращается охлажденной, а это  требует дополнительных затрат для ее дополнительного подогрева.

Принципиальная схема ГВС в ЦТП

Использование более узких труб лишь частично решает проблему, но расходы на реконструкцию значительно выше, чем на циркуляционный насос.

Принудительная циркуляция вынуждает жидкость быстрее перемещаться по контуру системы и возвращаться в котел не сильно охлажденной. Затраты на потребление топлива, следовательно, уменьшаются.

В системах без помпы теплоноситель необходим в большом объеме, чтобы сохранялась необходимая его температура. Для этого понадобятся и трубы большого диаметра, и  с широкими лопастями радиаторы.

В принудительной циркуляции большой объем жидкости не нужен. Поэтому подойдут трубы с меньшим диаметром. А это экономия на материалах.

Недостатком такого вида отопления является энергозависимость. Устройство работает от электрического тока.
к меню ↑

Конструкция

Большинство устройств такой конструкции:

  • корпус, к которому присоединена улитка;
  • к улитке подсоединяют трубы системы;
  • в корпусе имеется электродвигатель с клеммами и платой управления;
  • ротор с крыльчаткой, благодаря которому происходит движение воды.

При работе помпы получается разряжение на входе устройства и нужное давление на выходе.
к меню ↑

Типы аппаратов

На рынке существует достаточно большой выбор циркуляционных помп. Как выбрать насос для отопления? Самые распространенные циркуляционные насосы – устройства с мокрым и сухим ротором.
к меню ↑

Механизм с мокрым ротором

В устройстве с мокрым ротором рабочее колесо и ротор находятся в теплоносителе. Это способствует охлаждению мотора помпы, и аппарат защищен таким образом от перегрева. Эти детали изготовлены из материалов, не поддающихся коррозии.

Характеристики некоторых моделей циркуляционных насосов

Недостаток устройств такого типа в том, что у них низкий КПД. Достоинства этого вида:

  • низкий уровень шума;
  • доступность;
  • не нуждается в регулярном техобслуживании.

Аппараты с мокрым ротором используются в отоплении в небольших домах. Небольшая мощность насоса позволяет выбрать циркуляционный насос для отопления  данного типа в случаях, когда объем жидкости в системе невелик.
к меню ↑

Аппарат с сухим ротором

Крыльчатка в устройстве этого вида расположена в теплоносителе, а ротор защищен от жидкости герметичными прокладками.

Подбор насоса для системы отопления данного вида покажет преимущество в высокой мощности насоса. Благодаря этому его используют в помещениях с большой площадью. Аппарат имеет довольно высокий КПД.

Однако помпа с сухим ротором также имеет недостатки:

  • вибрация и уровень шума достаточно высоки;
  • в результате быстрого использования смазки нуждается в регулярном сервисном обслуживании.

к меню ↑

На что обратить внимание?

Прежде чем приступить к выбору насоса для системы отопления, следует определиться, какие характеристики он должен иметь. Какой нужен аппарат для отопления частного дома и на что обратить внимание, чтобы сделать оптимальный выбор циркуляционного насоса для системы отопления:

  • общая отапливаемая площадь помещения;
  • необходимый уровень температуры в здании;
  • тип топлива;
  • число этажей в помещении;
  • какую функциональность и тип имеет отопительный котел;
  • давление жидкости в контуре и температура на выходе и входе котла.

    Циркуляционный насос с сухим ротором

Циркуляционный насос может устанавливаться двумя способами.  Это также влияет на подбор насоса для отопления.

  1. Встраивается непосредственно в котел – наблюдается во многих современных моделях.
  2. Вваривается помпа как отдельная часть отопительного контура. Применяется чаще в старых моделях отопительных котлов. Циркуляция воды в системах происходила за счет разницы в плотности и массе холодного и горячего теплоносителя. Трубы в таких системах располагали под уклоном. Внедрение циркуляционной помпы в такую систему увеличивает скорость передвижения теплоносителя и, следовательно, быстрее осуществляется обогрев помещения.

В вопросе, как подобрать насос, учитывают также характерные особенности системы отопления.

  1. Тип системы отопления. Для сетей с естественной циркуляцией рекомендуют устанавливать устройство с мокрым ротором мощностью до 50-60 Вт. Если циркуляция принудительная, необходим более мощный агрегат до 80 Вт, если есть уклон, и до 90 Вт без уклона.
  2. Отапливаемая площадь и объем теплоносителя. Чем выше эти параметры, тем более мощный необходим механизм. Для расчета точной мощности аппарата рекомендуется обратиться к телотехнику.
  3. Ограничение на предельный уровень шума. Для отопления частного дома, где не предусмотрено отдельное помещение для насоса на достаточном расстоянии от жилых комнат, не рекомендуют выбирать аппараты с сухим ротором.
  4. Техническое состояние системы отопления. К новой системе отопления подойдет любая помпа. Для систем, возраст которых 15-20 лет и больше, необходимо учесть наличие примесей в жидкости. К расчетной мощности прибавляют 25-35%, особенно при выборе аппарата с мокрым двигателем. Однако для старых сетей лучше подойдет аппарат с сухим ротором, потому как он менее чувствителен к качеству жидкости.

к меню ↑

Как правильно подобрать насос?

Чтобы правильно подобрать циркуляционный насос для системы отопления, нужно учесть, что устройство должно отвечать определенным критериям:

  • продуктивность работы помпы;
  • давление помпы, напор;
  • условия работы;
  • внешние аспекты – уровень шума, размеры, обслуживание.

    Составляющие циркуляционного насоса с мокрым ротором

В последнем пункте выигрывает, несомненно, насос мокрого типа, он меньше и бесшумнее. Но с другими критериями следует разобраться.
к меню ↑

Расчет производительности помпы

Производительность помпы подразумевает количество перегоняемого теплоносителя, его расход при  наименьшей загрузке устройства. Чем выше производительность, тем лучше.

Расчет насоса по критерию производительности можно по формуле: Q = N / (t 2 – t 1), где Q – искомая величина производительности,N – соответствует мощности отопительного котла,t1 – величина температурыжидкости в «обратке» контура, t2 – показатель температуры в подающем отсеке, после отопительного котла.

По этой формуле можно приблизительно выбирать параметры требуемого насоса. Считают, что на 10 м кольца контура необходимо примерно 0,6 м напора помпы.
к меню ↑

Давление устройства

Давление аппарата – уровень, на который устройство сможет поднять воду в контуре отопления. Обычно этот параметр указывают в документах к механизму и на самой помпе.

Например, насосы для отопления моделиGRUNDFOSUPS25-40. Цифры в этой марке означают:

  • 40 – высота подъема жидкости – 4 м или 0,4 атм. давления. Эту величину берут во внимание в первую очередь, выбирая насос.
  • 25 – диаметр присоединяемых труб – 25 мм. Обычно используют трубы диаметром 32 и 25 мм.

Поэтому, задаваясь вопросом, как правильно выбрать циркуляционный насос, следует брать во внимание полное название насоса. Он должен подходить по диаметру к трубам системы. На помпе указывают также потребляемую мощность, направление движения ротора, количество оборотов.
к меню ↑

Внешние аспекты

Работа устройства и необходимое количество тепла зависят также от температуры окружающей среды. Неправильно подобранный насос может начать перегреваться, потому как может не справиться с чрезмерной нагрузкой.А значит,перед тем, как рассчитать необходимые параметры устройства, следует хорошо знать характеристики котла и отопительной системы.

Схема установки циркуляционного насоса

Для труб с большим диаметром циркулирующий теплоноситель будет большего объема и, следовательно, понадобится более мощный насос. Для теплоносителя из незамерзающей жидкости, как правило, помпа должна подбираться более производительная и надежная.
к меню ↑

Расчет мощности

Мощность циркуляционного насоса для отопления зависит от площади помещения, которая отапливается. К примеру, площадь равна 200 м2. Чтобы в здании было тепло, придерживаются примерного соотношения: 1 кВт тепловой энергии на 10 м2. Следовательно, на данную площадь потребуется 20 кВт.

Далее следует рассчитать разницу температур на подающем и обратном контуре. Специалисты советуют в пределах 10ᵒС. Производят расчет мощности: 20:10=2.  Рассчитанный таким образом параметр и есть мощность помпы, измеряемая в м3/ч.

Расчет циркуляционного насоса производят также по параметрам количества необходимого тепла, сопротивления труб, расхода электроэнергии, предельного уровня температуры.

Как подобрать циркуляционный насос для отопления, чтобы сделать работу системы наиболее эффективной? Для правильного подбора следует учесть немало факторов, параметров и характеристик насосов и отопительной системы, а также внешних условий и ожидаемого результата. Можно также учесть отзывы о той или иной марке аппарата. К выбору подходят ответственно, ведь от него во многом зависит комфорт в доме.
к меню ↑

Как подобрать циркуляционный насос? (видео)


 Главная страница » Насосы

16 шагов для правильного выбора питательного насоса котла

Паровой котел — это резервуар под давлением; чтобы избежать катастрофического отказа и гибели людей, в нем всегда должно быть правильное количество воды. По этой и другим причинам насос питательной воды должен быть рассчитан на расход, который на определенный процент выше, чем требуется котлу для нормальной работы.

Также важно помнить о температуре воды в вентилируемом ресивере или деаэраторе и о наличии химикатов для обработки, которые могут повлиять на материалы насоса и механического уплотнения.

Паровые котельные установки доступны в широком диапазоне размеров. Следующие шаги относятся к выбору насоса для промышленного парового котла с диапазоном мощности от 100 до 1200 лошадиных сил и расчетным давлением от 150 до 500 фунтов на квадратный дюйм.

В крупных приложениях обычно устанавливают несколько котлов параллельно друг другу. Для этого существуют две распространенные конструкции насосной системы питательной воды:

  • Прямая подача. Этот тип системы является обычным, потому что его легко обслуживать, а полностью отключить котел или питательный насос просто.
  • Бустерные комплекты. Вместо отдельных питающих насосов, питающих котлы, есть установка повышения давления, питающая общий коллектор, из которого вода поступает в отдельные котлы через регулирующий клапан питательной воды.

Ниже приведены 16 шагов для определения подходящего насоса питательной воды котла для системы:

1. Определите используемый метод контроля. Проверить спецификацию.

2. Рассчитайте базовый расход. Базовый расход определяется по формуле:

котла максимальной мощности × 0 л.с.069 × C

Используйте котел максимальной мощности, указанной в спецификации производителя котла. Число 0,069 — постоянная величина. Значение «C» варьируется в зависимости от того, будет ли насос циклически включаться и выключаться в прерывистом режиме работы (C = 1,50) или в режиме непрерывной подачи (C = 1,15).

3. Добавка для непрерывной продувки котла. Этот шаг не всегда требуется и не всегда указывается. При необходимости он часто составляет около 10 процентов от максимальной точки расхода насоса, но может варьироваться и устанавливается водоочистной компанией.Эта непрерывная продувка предназначена для удаления всех растворенных твердых частиц из котловой воды, и ее не следует путать с нижней продувкой котловой воды.

4. При необходимости добавьте для байпасного потока. В некоторых методах управления используется линия рециркуляции байпаса потока и подающий клапан. Обводной поток обеспечивает прохождение минимального количества потока через насос, чтобы избежать работы при близком к запорному напору. Расход рециркуляции байпаса должен быть рассчитан на основе требований производителя к минимальному потоку для каждого насоса.Величина потока может быть разной, но часто основывается на 10-20% номинальной скорости потока насоса в точке наилучшего КПД.

5. Определите необходимый общий расход. Рассчитайте сумму основного расхода, байпасного потока и непрерывного потока продувки, если необходимо.

6. Рассчитайте базовый напор подающего насоса. При расчете общего динамического напора для всех центробежных насосов учитывайте все влияющие факторы как на стороне всасывания, так и на стороне нагнетания насоса.Используйте следующую формулу:

базовый напор в футах = максимальное рабочее давление котла × 2,31 × 1,03 ÷ удельный вес жидкости

7. Добавьте все компоненты головки всасывающего трубопровода. Рассчитайте манометрическое давление в баке деаэратора, высоту подъема от ватерлинии бака на стороне всасывания до самого нижнего рабочего колеса насоса, а также все потери на трение в линии всасывания.

8. Добавьте все компоненты головки нагнетательного трубопровода (включая питающий клапан, если требуется). Определите все потери на трение на нагнетательной стороне насоса, а также высоту входа питательной воды в котел по отношению к нагнетанию насоса.

9. Определите общий напор насоса. Рассчитайте сумму всех компонентов напора, включая опорную головку с запасом прочности, головку системы трубопроводов на стороне всасывания и головку системы трубопроводов на стороне нагнетания.

10. Рассчитайте напор при настройке предохранительного клапана котла плюс 3 процента. В дополнение к достижению правильного напора при требуемом расходе насос должен быть способен достигать запорного напора (напора при нулевом расходе) на 3 процента выше уставки предохранительного клапана котла.Например, если рабочее давление котла составляет 130 фунтов на квадратный дюйм, преобразуйте его в футы напора, умножив на 2,31, затем умножив на 1,03 для получения превышения, а затем разделите на удельный вес жидкости.

11. Определить температуру воды в питательной емкости котла.

12. Рассчитайте имеющуюся чистую положительную высоту всасывания (NPSHa). Формула:

абсолютное давление в резервуаре питательной воды ± превышение минимального уровня воды в резервуаре над питательным насосом — давление паров воды в резервуаре питательной воды — потери на трение в линии всасывания

13.Сделайте предварительный выбор насоса. Просмотрите имеющиеся кривые, чтобы убедиться, что насос соответствует этим условиям.

14. Убедитесь, что запорный напор на 3 процента или более превышает настройку предохранительного клапана.

15. Проверьте требуемую чистую положительную высоту всасывания (NPSHr) по сравнению с NPSHa. Этот расчет необходимо выполнять для каждой установки, потому что нет двух абсолютно одинаковых.

16. Убедитесь в совместимости материалов. Проверить химическую и температурную совместимость.

После выполнения этих шагов можно будет сделать окончательный выбор насоса.

Чтобы просмотреть серию учебных материалов по насосным системам для котельных, состоящую из трех частей, посетите сайт www.cleaverbrooks.com/webinars.

Стив Коннор — эксперт в области производства пара и горячей воды. С ним можно связаться по адресу [email protected] . Джим Свети — старший технический тренер компании Grundfos Pumps. С ним можно связаться по телефону [email protected] .

Вы нашли эту статью полезной? Присылайте комментарии и предложения исполнительному редактору Скотту Арнольду по телефону [email protected] .

Консультации — Специалист по спецификациям | Выбор насоса HVAC

L Заработок Цели:

  • Ознакомьтесь с различными насосами, доступными для систем HVAC.
  • Узнайте о конфигурациях насосной системы.
  • Знайте, как рассчитать нагрузки HVAC, чтобы выбрать правильный насос.

Существует несколько типов насосов, используемых для перекачки жидкости, но наиболее распространенным в современных системах отопления, вентиляции и кондиционирования воздуха является центробежный насос.Типы центробежных насосов включают насосы со спиральным или осевым потоком. Улитка забирает воду из рабочего колеса и выпускает воду перпендикулярно валу. Центробежный насос с диффузорным корпусом (осевой насос) нагнетает воду параллельно валу насоса.

Центробежные насосы доступны во многих типах, включая циркуляционные, одноступенчатые и многоступенчатые с односторонним всасыванием, одноступенчатые и многоступенчатые насосы с раздельным корпусом и вертикальные рядные насосы.

Циркуляционные насосы обычно используются в системах низкого давления и малой производительности.Размер этой системы обычно составляет менее 150 галлонов в минуту и ​​не рассчитан на рабочее давление более 125 фунтов на квадратный дюйм. Насосы этого типа обычно устанавливаются непосредственно в систему трубопроводов и поддерживаются ими, а также доступны с двигателем в вертикальном или горизонтальном положении. См. Рисунок 1 для стандартного циркуляционного насоса.

Насосы с односторонним всасыванием являются односторонними и могут быть моноблочными или гибкими. В моноблочном насосе рабочее колесо установлено непосредственно на валу двигателя. В насосе с односторонним всасыванием с гибкой муфтой рабочее колесо и вал двигателя разделены гибкой муфтой.Преимущество использования моноблочного насоса заключается в том, что вал двигателя фиксируется относительно рабочего колеса. Насос с гибкой муфтой может быть смещен во время обслуживания. Это может создать проблемы, если не будет правильно собран обученным персоналом. Насосы с односторонним всасыванием сконструированы таким образом, что поступающая вода через конец попадает в насос горизонтально. Затем вода меняет направление и выходит вертикально, перпендикулярно всасывающему патрубку. Эти насосы обычно устанавливаются на прочном основании на полу.Насос с односторонним всасыванием может использоваться в системах отопления, вентиляции и кондиционирования воздуха с производительностью до 4000 галлонов в минуту и ​​напором 150 футов.

Преимущество использования моноблочного насоса заключается в том, что для его установки требуется меньше места в производственном помещении. Одним из недостатков использования моноблочного насоса в системе отопления, вентиляции и кондиционирования воздуха является тип двигателя. Двигатель обычно специально подбирается для типа вала и уплотнений насоса. В насосах с гибкой муфтой обычно используются стандартные двигатели. См. Рисунок 2 для типичного насоса с односторонним всасыванием с гибкой муфтой.

Насосы с разъемным корпусом похожи на насосы с односторонним всасыванием в том, что они имеют гибкое соединение между двигателем и насосом. Узел, включающий двигатель и насос, жестко закреплен на общей опорной плите. Всасывание и нагнетание насоса расположены в горизонтальном направлении и перпендикулярны валу.

Насосы с разъемным корпусом доступны с одинарным или двойным всасыванием. В насосе с односторонним всасыванием вода поступает в рабочее колесо только с одной стороны. При двойном всасывании жидкость поступает в рабочее колесо с обеих сторон.Использование двойного всасывания снижает риск гидравлического дисбаланса. Уменьшение гидравлического дисбаланса является одной из причин, по которой насосы с раздельным всасыванием с двойным всасыванием предпочтительнее одностороннего.

Раздельный корпус также может иметь несколько рабочих колес для многоступенчатой ​​работы. Несколько рабочих колес обеспечивают увеличенный напор в одном насосе.

Насосы с разъемным корпусом доступны в горизонтальном или вертикальном исполнении с разъемным корпусом. У горизонтальных насосов с разъемным корпусом корпус рабочего колеса разделен в горизонтальной плоскости.У вертикальных насосов с разъемным корпусом корпус рабочего колеса разделен в вертикальной плоскости. Разделение корпуса обеспечивает полный доступ к рабочему колесу для обслуживания.

Насосы

с разъемным корпусом используются в основном в системах противопожарной защиты, но также используются в системах отопления, вентиляции и кондиционирования воздуха для систем большой мощности. Их диапазон производительности составляет до 6500 галлонов в минуту и ​​600 футов напора. Эти насосы также доступны с повышенным рабочим давлением до 400 фунтов на квадратный дюйм. См. Рисунок 3 для типичного горизонтального насоса с разъемным корпусом.

Эти насосы обычно занимают меньше места в производственном пространстве и не требуют инерционных оснований. Инерционные основания обычно устанавливаются для уменьшения вибрации от вращающихся частей внутри насоса. нагнетательные трубопроводы расположены в горизонтальной плоскости. Вертикальные линейные насосы доступны с одинарным или двойным всасыванием. Вертикальные линейные насосы имеют моноблочную муфту. Насос и двигатель устанавливаются непосредственно на корпусе насоса. Насос обычно устанавливается и поддерживается системой трубопроводов, в которой он установлен.Для вертикальных рядных насосов большей производительности насосный агрегат может быть снабжен основанием для напольного монтажа. Насос всасывающий и

Вертикальные линейные насосы имеют производительность до 25 000 галлонов в минуту и ​​300 футов напора. См. Рисунок 4 для типичного вертикального линейного насоса.

Типы насосных систем

Есть два типа систем, в которых могут быть установлены насосы: системы с обратной связью и системы с открытой обратной связью. В индустрии HVAC замкнутые контуры — это системы, в которых статическая высота не учитывается при расчетах давления напора.Системы охлажденной воды и нагрева горячей воды, как правило, являются системами с замкнутым контуром. Система с открытым контуром определяется системой, имеющей трубу, открытую для атмосферы. Насосные системы, связанные с градирнями, считаются системами с открытым контуром, поскольку распылительные форсунки в верхней части градирни открыты для атмосферы. См. Рисунок 5 для общих конфигураций с замкнутым и разомкнутым контуром.

При выборе насоса для систем с замкнутым контуром необходимо учитывать несколько факторов, таких как потери давления, связанные с общей горизонтальной и вертикальной длиной трубопровода, колена и тройники (фитинги) трубопровода, клапаны в системе, разные трубопроводы. аксессуары, змеевики оборудования, минимальное поддерживаемое давление в системе и требуемый чистый положительный напор на всасывании (если применимо).

Каждый размер трубы имеет соответствующий перепад давления в зависимости от скорости, с которой циркулирует жидкость. Фитинги также имеют определенный перепад давления. Каждый клапан в системе, такой как запорные клапаны, обратные клапаны, балансировочные клапаны, сетчатые фильтры и т. Д., Имеет опубликованную производителем литературу по падению давления для указанного размера и скорости потока. Каждая часть оборудования в системе, включая охлаждающие змеевики, нагревательные змеевики и охладители, также имеет документацию производителя по падению давления при заданной скорости потока.Таблица 1 представляет собой пример того, как суммировать потери давления в замкнутой системе.

Как показано в Таблице 1, падение давления в системе составляет приблизительно 81 фут. Требуемый насос для системы, указанной в Таблице 1, должен обеспечивать как минимум 81 фут напора для правильного распределения жидкости в системе.

Для систем с разомкнутым контуром, помимо потери давления, связанной с системой с замкнутым контуром, необходимо также учитывать статическое превышение.

В таблице 2 мы заменили оборудование для обработки воздуха (змеевики) и давление в системе на градирню и статическую высоту, соответственно.Статическая высота системы — это разница в высоте от входа градирни до выхода из градирни.

При выборе насоса для открытой системы необходимо также учитывать необходимый положительный напор на всасывании (NPSHr) и имеющийся положительный напор на всасывании (NPSHa). NPSH определяется как давление на входе в насос. Если давление на входе насоса меньше давления пара жидкости при местной температуре, жидкость закипит у крыльчатки, создавая пузырьки пара.Создание пузырьков пара определяется как кавитация. Кавитация в насосе может привести к преждевременному выходу из строя из-за эрозии рабочего колеса и усталости подшипников вала и уплотнений.

Расчет для определения NPSHa:

NPSHa = Patm + Ps — Pvp — Pf

Patm: Атмосферное давление (футы)

Ps: Статическая высота воды над крыльчаткой насоса (футы)

Pvp: Давление водяного пара (футы)

Pf: Потери на трение в трубопроводе (футы)

Как показано на рисунке 6, значение NPSHa равно 45.9 футов (34,2 футов + 15 футов — 1,3 футов — 2 футов = 45,9 футов).

NPSHr обычно предоставляется производителем насоса, используемого в системе. NPSHa должен быть больше, чем NPSHr, чтобы предотвратить кавитацию. Рекомендуется применять запас прочности к NSPH, чтобы гарантировать отсутствие кавитации в системе. Типичный запас прочности составляет 3 фута при определении NPSH системы. Если NPSHa составляет 45,9 футов, следует использовать насос с максимальным NPSHr 40 футов.

Конфигурации насосной системы

В насосных системах можно использовать несколько конфигураций.Насосы могут быть расположены параллельно, последовательно, а также в конфигурации первичной / вторичной перекачки. Насосы, которые устанавливаются в параллельной конфигурации, используются, когда требуется дополнительный поток при том же давлении в системе, и один насос не может удовлетворить системные требования (см. Рисунок 7). Насосы, которые устанавливаются в последовательной конфигурации, используются, когда требуется дополнительное давление при заданном максимальном расходе, и один насос не может удовлетворить системные требования (см. Рисунок 8).

Первичная / вторичная перекачка используется, когда объемный расход варьируется между оборудованием и системой. По мере развития технологий в оборудовании, используемом в жидкостных системах, было замечено сокращение использования первичных / вторичных систем.

Системы охлажденной воды и отопительной воды обычно проектировались как первичные / вторичные. Причина использования первичной / вторичной насосной конфигурации заключалась в том, что чиллеры и бойлеры требовали постоянной скорости потока в любое время. Первичный контур имеет постоянный расход 100% рабочего времени.Во вторичном контуре используется переменный расход. Насос нарастает и опускается на частотно-регулируемом приводе (VFD), чтобы подобрать расход в соответствии с требованиями системы.

Использование двухходовых клапанов в системе позволило снизить расход в оборудовании для соответствия нагрузкам змеевика. Повышение давления в системе за счет закрытия клапанов отправляет сигнал обратно в насос, чтобы уменьшить поток. Это достигается путем установки датчиков перепада давления в систему трубопроводов. Перепад давления поддерживается постоянным.Когда клапаны закрываются, давление в системе увеличивается. Это заставляет насос замедлиться и уменьшить поток, чтобы поддерживать постоянное давление.

До появления технологических достижений в области частотно-регулируемых приводов системы охлаждения и нагрева воды работали с насосами постоянного расхода и трехходовыми клапанами. Трехходовой клапан позволял воде проходить через змеевик или отводить через байпас обратно в систему. Эта система была постоянным объемом 100% времени. Это означает, что независимо от требований к нагрузке системы насос работал на 100% своей проектной мощности.Такое управление системой — огромная трата энергии. С появлением частотно-регулируемых приводов петля здания могла работать в точке, соответствующей нагрузке. Поскольку нагрузка в здании уменьшилась, насос смог уменьшить свою насосную мощность. Пример первичной / вторичной откачки показан на Рисунке 9.

Выбор насоса

При выборе насоса необходимо учитывать несколько факторов. После определения нагрузки HVAC в здании можно определить расход.Затем необходимо рассчитать потери давления в системе. Рассмотрим следующий пример:

Для здания проектируется система охлажденной воды. Система будет включать чиллер с воздушным охлаждением, вентиляционные установки и распределительные трубопроводы. Пиковая тепловая потеря здания составляет 2400 мегабайт в час с минимальной потерей тепла 840 мегабайт в час. Это было определено нагрузками HVAC, действующими на здание. При использовании дельты 12 F для температуры воды на входе и выходе из чиллера требуется максимальная скорость потока 400 галлонов в минуту и ​​минимальная скорость потока 140 галлонов в минуту.Распределительная система имеет общую развернутую длину (TDL) 350 футов трубопроводов, включая фитинги. Как указывалось ранее, необходимо рассчитать потери давления. См. Таблицу 3, где приведены сводные данные о потерях давления в системе.

Для расчета потерь давления, связанных с трубопроводом, практическое правило состоит в том, чтобы использовать от 2 до 3 футов на 100 футов трубопровода в качестве потери давления, а также поддерживать максимальную скорость от 8 до 10 футов в секунду (фут / с). При слишком высокой скорости может произойти эрозия трубопровода.В приведенном выше расчете для потерь давления использовалось 2,5 фута на 100 футов трубопровода.

На основе приведенных выше расчетов насос будет выбран при расчетных условиях 400 галлонов в минуту и ​​85 футов общего динамического напора (TDH).

Теперь, когда для системы известны расход и потеря давления, можно приступить к выбору насосов. На этом этапе процесса выбора потребуется кривая насоса. Прежде чем вытащить каталоги производителей или исследовать их в Интернете, сначала мы должны определить лучший тип насоса для этого применения.Это определяется путем изучения литературы производителя, чтобы определить рабочий диапазон каждого типа насоса. Циркуляционные насосы обычно используются для приложений с низким расходом, поэтому этот тип насоса будет слишком маленьким. Насосы с односторонним всасыванием обычно используются в системах малого и среднего размера.

Поскольку эта система представляет собой систему среднего размера, возможна установка насоса с односторонним всасыванием. Вертикальные линейные насосы обычно используются в малых и крупных проектах, поэтому эти насосы являются еще одним вариантом.Насосы с разъемным корпусом обычно используются в больших гидравлических системах. Этот тип насоса был бы слишком большим для соответствия требованиям системы, описанной выше.

В зависимости от использования насоса и требований к системе, насосы с односторонним всасыванием и вертикальные линейные насосы могут работать в пределах проектных параметров.

Существуют онлайн-калькуляторы, предоставляемые производителями, которые могут помочь с выбором насоса, или можно использовать каталог производителя. Для системы в приведенном выше примере нам необходимо проверить, может ли один насос обеспечить как максимальную, так и минимальную скорость потока.Это определяется путем нанесения точек на кривые потенциального насоса. Если один насос не может обеспечить максимальную и минимальную скорость потока, потребуется второй насос, подключенный к параллельной конфигурации (см. Рисунок 7).

Как показано на кривых насоса на Рисунке 5, один насос может использоваться для обеспечения максимального и минимального расхода в системе.

Как показано на рисунках 5 и 6, вертикальный линейный насос не является хорошим выбором, поскольку рабочая точка находится справа от точки максимальной эффективности (BEP).Кроме того, эффективность работы составляет примерно 70%. Насос с односторонним всасыванием кажется лучшим выбором из двух. Насос с односторонним всасыванием не только имеет более высокий КПД (76%), но и рабочая точка расположена слева от BEP.

При выборе подходящего насоса необходимо оценить другие факторы, помимо характеристики насоса и эффективности. Стоимость эксплуатации в течение всего срока службы системы также является решающим элементом. Представленный выше вертикальный линейный насос работает в позиции 11.39 тормозных лошадиных сил (л.с.) / 8,50 кВт при полной нагрузке. Для простоты можно предположить, что вертикальный рядный насос работает 24 часа в сутки, 7 дней в неделю, при этом потребляется 74 400 кВтч. Если стоимость электроэнергии составляет 0,10 доллара США / кВтч, годовые эксплуатационные расходы в размере 7440 долларов США несет владелец. Представленный выше насос с односторонним всасыванием работает с мощностью 10,71 л.с. / 7,99 кВт при полной нагрузке. При тех же часах работы, что и у вертикального линейного насоса, эксплуатационные расходы, понесенные владельцем насоса с односторонним всасыванием, составляют 7000 долларов в год. Ежегодная экономия эксплуатационных расходов в размере 440 долларов США ежегодно рассчитывается для насоса с односторонним всасыванием.

По эксплуатационным расходам видно, что насос с односторонним всасыванием не только работает в более подходящей точке на кривой насоса, но также имеет меньшие эксплуатационные расходы по сравнению с вертикальным встроенным насосом. Для реалистичного анализа эксплуатационных расходов часы работы насоса должны определяться на основе профиля нагрузки объекта, для которого выбирается насос. Вместо расчета эксплуатационных расходов на основе круглосуточной работы с полной нагрузкой, в расчеты следует включить эквивалентные часы работы при полной нагрузке.

Несколько факторов могут повлиять на выбор наилучшего насоса для использования в проекте. Скорость потока, потери давления, точка максимальной эффективности по сравнению с рабочей точкой и эксплуатационные расходы — все это важные факторы при выборе насоса. Начните с требуемой скорости потока, чтобы определить, какой тип насоса лучше всего подходит для применения, затем используйте кривую насоса и анализ эксплуатационных затрат, чтобы завершить выбор.


Эми Лассень — заместитель директора по механике в JBA Consulting Engineers.Ее опыт — проектирование нескольких центральных заводов от 150 до 20 000 тонн. Эти центральные предприятия обслуживают казино-курорты в больших масштабах, а также учебные заведения и офисные здания в небольших масштабах.

Консультации — Инженер по подбору | Расчет, подбор насосов и циркуляционных насосов

Рэнди Шреценгост, ЧП, CEM, Stanley Consultants, Остин, Техас

15 октября 2014 г.

Цели обучения:

  • Ознакомьтесь с правилами и стандартами, регулирующими проектирование и спецификацию насосов и трубопроводных систем.
  • Ознакомьтесь с различными типами насосов и их функциями в зависимости от области применения.
  • Изучите основную информацию для выбора насосов в соответствии с требованиями распределительного контура.
  • Понимание ключевого оборудования и его интеграции для повышения энергоэффективности в системах отопления, вентиляции и кондиционирования воздуха.

Сегодня производится ряд насосов, которые можно использовать для различных целей. Наиболее типичное применение — циркуляция и распределение охлажденной или горячей воды для различных требований к нагрузке в зданиях или сооружениях.Процесс выбора и определения размеров насосов и циркуляционных насосов включает в себя несколько шагов, которые проектировщик должен предпринять, чтобы выполнить свою задачу для любой конкретной установки. Концепции, которые следует учитывать для конкретной задачи проектирования, и уровень опыта дизайнера будут определять сложность всего процесса. Определить размер и выбрать насосы не так сложно, если накопить опыт. Как минимум, дизайнер должен:

  • Определить и понять приложение системы, а также выполнить анализ гидравлической или гидравлической системы
  • Определите основной насос (или циркуляционный насос) и тип привода для приложения
  • Определить размер насоса и его расчетную рабочую точку
  • Определитесь с особенностями конструкции насоса, чтобы максимально повысить энергоэффективность системы.

Конструкторы должны понимать многие основные концепции, касающиеся насосов и гидравлических систем, но в этой статье обсуждаемыми жидкостными системами будет только вода.

Нормы, стандарты и руководства

Конструкция гидронной системы включает в себя несколько компонентов, связанных с приложением, которые требуют пересмотра кодексов, стандартов и / или правил, необходимых для завершения проектирования и предотвращения конфликтов, разрешение которых потребует времени и денег. Местные, государственные и федеральные кодексы и / или нормативные акты диктуют требования, которые могут повлиять на конструкцию, но есть несколько связанных кодов, нацеленных на насосы, которые относятся к конкретному применению.

ASHRAE — хороший технический ресурс для большинства инженеров. ASHRAE располагает многочисленными источниками технической информации, включая серию из четырех справочников, которые обновляются каждые 4 года. В каждом справочнике есть целая глава, посвященная перечислению «Избранных кодексов и стандартов, опубликованных различными обществами и ассоциациями», относящихся к темам, затронутым в справочниках. Кроме того, стандарт ASHRAE 90.1-2013: Энергетический стандарт для зданий, за исключением малоэтажных жилых домов, является эталонным стандартом энергоэффективности.Этот стандарт иллюстрирует минимальные требования к эффективности для ограждающих конструкций здания, систем отопления, вентиляции и кондиционирования воздуха, источника питания, освещения и другого оборудования. В главе 6, HVAC, проектировщики найдут минимальные требования к энергоэффективности для строительства системы HVAC с перечнем компонентов, таких как чиллеры с водяным и / или воздушным охлаждением, расчетные скорости потока системы трубопроводов, насосы, изоляция и средства управления.

Определите и поймите системное приложение

Насос требуется в системе, состоящей из трубопроводов, фитингов, теплообменников и другого оборудования, через которое необходимо подавать или перекачивать жидкость.Эта доставка может осуществляться на большие расстояния, на более высокие возвышения или циркулировать в герметичном контуре для облегчения процесса и выполнения работы. Требования к перекачке немедленно зависят от природы жидкости и ее свойств вязкости, плотности и удельного веса. Обсуждение этих тем, хотя и важно для дизайнера, выходит за рамки данной статьи; однако эти термины, наряду с давлением пара и влиянием температуры на жидкость, следует учитывать во многих приложениях.Дополнительные термины «прокачка» будут введены по мере нашего продвижения, и будут даны некоторые основные определения.

Насосы

, обсуждаемые в этой статье, обычно считаются более крупными с более крупными драйверами (например, двигателями), обычно устанавливаются на площадках или иным образом устанавливаются на сборку пола, и могут использоваться как в системах с замкнутым, так и с разомкнутым контуром, таких как конденсаторный водяной контур с градирнями. «Циркуляционный насос» — это насос, но обычно он используется в замкнутом контуре и обычно меньше с двигателем с дробной мощностью, хотя это не всегда так.Циркулятору необходимо только преодолеть потери на трение в системе трубопроводов без необходимости изменения высот. Эти небольшие насосы часто представляют собой герметичные узлы, в которых ротор двигателя, рабочее колесо насоса и такие компоненты, как подшипники, все герметично закрыты внутри контура жидкости. Поскольку они обычно меньше по размеру, они могут полностью поддерживаться системой трубопроводов (фланцами). При выборе размеров и выбора циркуляционных насосов проектировщик будет выполнять те же шаги, что и насосы.

Наряду с жидкостью, другие элементы, которые влияют на общую конструкцию системы и, следовательно, на выбор насоса, включают: компоновку оборудования, пути потока, размер и длину, а также тип и возраст трубопровода, фитингов, клапанов, особенностей трубопровода или вспомогательного оборудования. , шум и любые перепады высот.Эти параметры определяют соответствующие потери на трение в системе или перепады давления. Определение этого «сопротивления потоку» в новой или существующей гидравлической системе, вероятно, является наиболее важной задачей проектирования, которую необходимо выполнить. Все единицы здесь будут выражены в английских единицах. Это падение давления на трение называется потерей «напора на трение» (Hf) и обычно выражается в высоте столба жидкости в футах.

Одним из методов расчета потери напора на трение является формула Дарси-Вайсбаха:

с

Длина (L в футах), внутренний диаметр (D в футах) и безразмерный коэффициент трения (f) трубы используются вместе с «скоростным напором» (Hv) в футах с использованием скорости потока жидкости (V в фут / сек) и ускорение свободного падения (g или 32.2 фут / сек 2 ) для расчета потери давления. Коэффициент трения трубопровода (f) учитывает относительную шероховатость трубопровода и «число Рейнольдса» на основе диаметра трубы и свойств жидкости (вязкость, плотность, удельный вес) и скорости. В некоторых случаях можно использовать формулу Вильямса-Хазена. Дизайнер должен просмотреть эти формулы, термины и концепции, чтобы полностью понять их важность.

Расчет потерь давления в системе трубопроводов для требуемого напора насоса может быть выполнен достаточно легко с помощью автоматизированной электронной таблицы, использующей концепцию эквивалентной длины трубы и определения потери давления на 100 футов трубопровода.Этот метод аналогичен выполнению расчетов потерь на трение в воздуховодах ОВК. Системная информация или элементы, перечисленные выше, необходимы проектировщику для выполнения расчетов, плюс он или она должны определить коэффициент безопасности для использования. Согласно данным Cameron Hydraulic Data, коэффициент запаса прочности для промышленных трубопроводных систем составляет от 15% до 20%. Потери напора на 100 футов трубы из-за трения также можно найти в таблицах потерь на трение Cameron Hydraulic Data для чистой воды при 60 F и чистой новой трубы.

Для других температур и условий требуются дополнительные регулировки или корректировки, а трение может изменяться в зависимости от температуры и шероховатости трубы.В электронной таблице можно рассчитать общий динамический напор, умножив общую эквивалентную длину сегмента трубы на потерю напора на 100 футов трубы. Дизайнер должен будет найти эквивалентную длину для всех фитингов в зависимости от выбранного типа. Суммируются потери на каждом участке трубы, а затем применяется коэффициент запаса прочности. Общий динамический напор также можно округлить до следующих 5 (регулируемых) футов напора.

Большинство проектировщиков сегодня используют компьютерную программу для выполнения определенного типа гидравлического моделирования распределительной системы для расчета потерь давления.Эти расчеты потерь напора, какими бы они ни были выполнены, должны быть выполнены для любого проекта, поскольку они будут определять выбор всего составного оборудования (чиллеры, насосы и т. Д.), А также класс давления распределительных трубопроводов, фитингов и клапанов в системе. . Эти давления, в свою очередь, будут связаны с выбранной схемой откачки. Цель состоит в том, чтобы попытаться сбалансировать расчетные потоки системы, включая любые параллельные пути потока, и определить необходимый напор насоса для преодоления потерь. Общий процесс расчета является итеративным, особенно для недавно разработанной системы.Модифицируемая существующая система также может потребовать нескольких прогонов моделирования, но может потребоваться всего несколько изменений для полной интеграции системы для модифицированного использования. Главное помнить, что каждый компонент в системе будет влиять на давление и скорость потока жидкости и будет либо фиксировать давление на определенном уровне, либо повышать давление, либо понижать давление.

После того, как система определена, которая может также включать простую схему технологического процесса (Рисунок 1) или более подробную схему трубопроводов и КИП (PID), и определены потери напора, проектировщик должен разработать «кривые напора системы» (обсуждаемые далее в статье).Эти кривые будут соотносить объемные скорости потока через различные пути потока с соответствующими давлениями или гидравлическими потерями, которые будут возникать в системе трубопроводов.

Дополнительные элементы, которые следует учитывать для полного понимания системы:

  • Будет ли система работать в непрерывном или в прерывистом режиме
  • Тип потока системы (например, постоянный или переменный объем)
  • Необходимость обеспечения непрерывности обслуживания или резервирования для любого оборудования (N + 1)
  • Потребность в увеличении мощности или расширении системы в будущем

Возможный износ системы, определяющий общий выбор материалов.

Определить тип насоса, привод

Насосы

обычно делятся на две основные категории и называются динамическими или поршневыми (см. Таблицу 1). Эти типы разделены тем, как энергия добавляется к жидкости, чтобы заставить ее течь по системе. В динамическом насосе энергия непрерывно добавляется для увеличения скорости жидкости, в то время как поршневой насос получает энергию периодическими скачками, которые непосредственно увеличивают давление. Насосы можно дополнительно разделить на категории по физическим свойствам (конструкционные материалы, геометрия, ориентация) или по жидкостям, с которыми они работают.

Наряду с добавлением энергии или давления важна производительность или доступный расход, который насосы могут создавать в системе. Основное назначение насоса — перемещение жидкости с желаемой скоростью или производительностью (обычно в галлонах в минуту, галлонов в минуту) при одновременном преодолении сопротивления этому движению в системе трубопроводов. В частности, насос обеспечивает объемный поток за счет увеличения давления или увеличения напора (Hd, в футах) жидкости. Этот общий напор системы, также называемый общим динамическим напором, увеличивает давление всасывания в насосе на общий напор, необходимый для системы.Другими словами, насос будет добавлять дополнительное давление сверх величины давления всасывания, тем самым создавая необходимое давление нагнетания для преодоления необходимых системных потерь для желаемой скорости потока.

Общий динамический напор системы определяется как «равный общему напору на выходе за вычетом общего напора на всасывании насоса, выраженного в футах водяного столба». Напор считается эквивалентным заданной высоте столба жидкости по вертикали. Давление, оказываемое столбом жидкости на базовую поверхность, зависит от удельного веса этой жидкости.Удельный вес (SG) воды составляет 1,0 при 68 F (будьте осторожны с системами горячего водоснабжения) и является основой для сравнения всех других жидкостей. Формула, используемая для преобразования между напором и давлением (фунты на квадратный дюйм, фунт / кв. Дюйм):

Все оборудование в системе (чиллеры, теплообменники), а также все трубопроводы, фитинги, изоляционные и / или регулирующие клапаны и любые другие приспособления будут снижать давление в системе (потерю напора в футах) за счет трения, когда вода проходит через система. Насос увеличивает давление (напор) в системе для обеспечения необходимой производительности.При всех возможных влияниях, описанных выше, требования к гидравлической системе и различия в характеристиках насосов обычно показывают, что один тип насоса лучше подходит для применения, чем другой.

Пункты, которые следует учитывать при выборе насоса, включают: общую компоновку системы и площадь здания или высоту помещения, требования схемы откачки, такие как пропускная способность при расчетных и частичных нагрузках, а также изменение напора в зависимости от производительности, проблемы с кодами, предполагаемый срок службы системы, первоначальные затраты на насос по сравнению с затратами на техническое обслуживание и общее потребление энергии (постоянная или регулируемая скорость).Например, насос может потребоваться для применения с постоянной скоростью и постоянной производительностью, но не имеет широкого диапазона доступных расчетных давлений. Если приложение для насоса требует, чтобы он был самовсасывающим, будут рассматриваться только определенные типы насосов. Трубопроводная распределительная система может иметь более одного насоса (определяемого как первичный, вторичный или даже третичный), и / или насосы могут работать последовательно или параллельно, и все это влияет на работу других насосов в системе.

Параллельное расположение чаще встречается с несколькими насосами, и насосы обычно одного типа и размера, но не обязательно. Насосы не нужно подбирать индивидуально для соответствия пропускной способности контура, но для этого их можно использовать вместе. В этом случае потоки насоса будут проходить параллельными путями, обычно на короткое расстояние, и будут добавляться для удовлетворения общего потока с одинаковым требованием напора. При последовательном соединении насосов поток через оба насоса одинаков, а давление напора является аддитивным.

Центробежные насосы

обычно имеют очень стабильную и предсказуемую производительность в различных рабочих условиях с переменной производительностью и переменным напором. Некоторые факторы могут повлиять на их работу, например, изменение размера рабочего колеса, геометрии корпуса насоса, переменных свойств жидкости, таких как удельный вес и / или вязкость и воздухововлечение, а также увеличение насосных потерь из-за механического износа.

Приводом для большинства насосов обычно является электродвигатель, который может работать с постоянной или переменной скоростью с частотно-регулируемым приводом (VFD).Двухскоростные и многоскоростные двигатели все еще используются, но, как правило, были заменены более экономичными частотно-регулируемыми приводами. ЧРП позволяют насосам работать в соответствии с кривой напора системы и экономить электроэнергию при работе с частичной нагрузкой. Хотя использование частотно-регулируемого привода на двигателе, который будет работать при полной нагрузке или 100% скорости все время, не является рентабельным, частотно-регулируемые приводы полезны при переключении с одного насоса на другой, чтобы уравнять время работы и обеспечить профилактическое обслуживание. в объектах, которые работают круглосуточно и без выходных.

В зависимости от доступных альтернативных видов энергии насосы могут приводиться в действие паром (турбины, двигатели), а также газом или дизельным топливом (турбины, двигатели). Таким образом, тип привода, используемый для насоса, может стоить больше, чем сам насос. Здесь подразумеваются только центробежные насосы с приводом от двигателя, потому что в наши дни они почти исключительно используются в гидравлических системах. Некоторые распространенные центробежные насосы: корпус с горизонтальным разъемом, корпус с вертикальным разъемом, вертикальная турбина (рис. 5), с торцевым всасыванием и вертикальный рядный насос.

Кавитация

Давление пара — ключевое свойство жидкости, о котором должен знать проектировщик. Давление пара определяется как «давление, оказываемое паром в термодинамическом равновесии с его конденсированными фазами (твердой или жидкой) при заданной температуре в замкнутой системе». Равновесное давление пара является показателем скорости испарения жидкости. Другой способ взглянуть на это — чтобы жидкость продолжала существовать в жидком состоянии, ее поверхностное давление должно быть больше или равно давлению пара при существующей температуре.Например, более высокое поверхностное давление требуется для поддержания такой же температуры летучей жидкости, как спирт, чем для воды, потому что давление паров спирта выше.

Когда вода течет от входа насоса к крыльчатке, давление падает (высота всасывания изменяется), и если это падение снижает абсолютное давление до значения, меньшего или равного давлению водяного пара, часть жидкой воды изменится. образуются пузырьки газа и пара. Как только эта смешанная текучая среда достигает областей с более высоким давлением на входе в рабочие колеса, пузырьки пара схлопываются.Это вызовет концентрацию энергии, создавая большие локальные силы, которые могут вызвать механическое повреждение (точечную коррозию) металлических поверхностей внутри насоса. Это явление, кавитация, вызовет шум и вибрацию, снизит эффективность насоса, вызовет потерю общего напора и, в конечном итоге, может привести к отказу оборудования.

Для предотвращения кавитации насос должен иметь доступное абсолютное давление воды выше, чем давление водяного пара и потери на трение в этой точке вместе взятые.Имеющийся чистый положительный напор на всасывании (NPSHA) — это абсолютное давление воды на входе в насос. Этот NPSHA выражается в фунтах на квадратный дюйм (фунты / кв. Дюйм, абсолютные) и зависит от давления воды, температуры воды и высоты воды, поступающей во всасывающий патрубок насоса. На это значение влияет конфигурация системы и расположение насоса.

Другой термин, который увидит проектировщик, — это требуемый чистый положительный напор на всасывании (NPSHR). Это значение определяется производителем насоса, поскольку это функция расхода и зависит от выбранного насоса.Это значение не меняется в зависимости от требований насоса к скорости, расходу и напору; однако он меняется в зависимости от типа используемой жидкости и любого износа насоса с течением времени. Разница между двумя значениями должна быть положительной, и Гидравлический институт имеет соответствующие руководящие принципы коэффициента запаса по NPSH (NPSHA / NPSHR), которые можно применять по мере необходимости. Разработчику предлагается изучить кавитацию и NPSH, чтобы лучше понять их важность при выборе насоса.

Кавитация может быть особенно серьезной проблемой в открытых системах, если проектировщик не учитывает взаимосвязь NPSHA и NPSHR.Кроме того, обратите внимание, что кавитация также может возникать в замкнутой системе, если давление подпиточной воды слишком низкое, что приводит к слишком низкому всасыванию насоса. Это редкая ситуация, которая может указывать на проблемы с подпиточной водой или даже на утечки в системе трубопроводов.

Законы сродства к насосу

Центробежные насосы сообщают скорость и преобразуют ее в давление. Расход и напор можно изменить, изменив размер диаметра рабочего колеса или изменив скорость насоса (скорость конца рабочего колеса) с помощью частотно-регулируемого привода.Это общее соотношение называется законом сродства насоса и ограничивается только центробежными насосами.

Законы сродства к насосу, как определено Cameron Hydraulic Data, раздел 1:

Для небольших изменений диаметра рабочего колеса (постоянная скорость)

Расход зависит от соотношения диаметров

Напор меняется в зависимости от соотношения квадратов диаметров.

Тормозная мощность зависит от соотношения куба диаметров.

Для изменения скорости (постоянный диаметр рабочего колеса)

Расход зависит от соотношения скоростей

Напор изменяется пропорционально квадрату скоростей.

Тормозная мощность зависит от соотношения куба скоростей.

Путем подстановки могут быть определены другие отношения, например:

Определить размер насоса, расчетную рабочую точку

После завершения предварительных шагов по настройке компоновки системы трубопроводов и расчета общего напора насоса проектировщику необходимо выбрать насос.Чтобы указать производительность насоса, разработчик должен указать расход в галлонах в минуту и ​​общий развитый напор в футах. Чтобы полностью понять, как выбрать насос, проектировщику необходимо знать и разработать «кривые напора системы». Как вкратце обсуждалось ранее, эти кривые коррелируют объемные скорости потока с соответствующими гидравлическими потерями в системе трубопроводов. Дизайнер также должен понимать еще несколько основ.

Для получения информации о системе рассмотрим следующий пример.

Обратите внимание, что кривая системы насоса будет определять характеристики системы, но не способность насоса обеспечивать определенную производительность при заданном напоре.Эти данные должны быть предоставлены производителями относительно производительности их насоса.

Разработчик должен отметить, что выбор насоса на основе его кривой производительности напрямую связан с размером его рабочего колеса. Диаметр рабочего колеса выбирается таким образом, чтобы давление (напор) достигалось, но не было чрезмерным, и чтобы мощность, необходимая для работы насоса, была достаточной для обеспечения требуемого расхода, но не приводила к перегрузке двигателя. На Рисунке 2 кривая системы насоса (красная линия) и кривая производительности (синяя линия) показаны вместе.Объединение этих кривых на одном графике дает гораздо лучшее представление о производительности насоса по отношению к кривой системы. Кривая производительности насоса относится к конкретному размеру рабочего колеса. Соответствующая кривая (другой размер рабочего колеса) может быть выше или ниже этой кривой и перемещаться таким же образом (от верхнего левого угла к нижнему правому) в зависимости от того, больше или меньше диаметр рабочего колеса. Крайняя левая часть кривой насоса в точке нулевого расхода называется «запорным напором» насоса.Крайняя правая часть кривой (в самом конце) называется «выбегом насоса» или максимальным расходом. В пределах каждого размера насоса производителя всегда есть несколько разных размеров рабочего колеса, которые создают различные доступные кривые насоса. Чтобы получить требуемый расход в системе, разработчик выбирает правильный диаметр рабочего колеса, или производителю необходимо «подрезать» рабочее колесо до нестандартного размера для конкретного применения. Подрезку рабочего колеса можно выполнить в полевых условиях после установки, если первоначальный выбор насоса был неправильным для условий установки.

Как правило, конструкция системы должна включать насос для работы на уровне от 80% до 115% от точки наилучшего КПД (BEP). Большинство производителей предоставляют более подробные кривые производительности, которые обычно включают такую ​​информацию, как максимальные и минимальные размеры рабочего колеса, требуемая мощность, NPSHR и эффективность насоса.

Для схемы откачки с постоянной скоростью изменения в системе трубопроводов, которые вызывают увеличение сопротивления системы (например, закрытие клапана) или уменьшение сопротивления системы, повлияют на кривую системы и смещают расчетную точку влево или вправо вдоль насоса. кривой по мере того, как происходят эти системные изменения.Насос может работать от некоторого минимального непрерывного потока до положения выбега насоса.

Схемы параллельной и последовательной откачки также влияют на соотношение характеристик системы и насоса. Насосы, работающие параллельно, работают при одном и том же давлении, но их расход является аддитивным, тогда как насосы, включенные последовательно, работают с одинаковым расходом, а их давление (напор) является аддитивным. Один из способов увеличить скорость потока без определения размера системы с помощью насоса большего размера — это подключить два или три насоса параллельно. Это также может быть полезно для непрерывности обслуживания или резервирования (N + 1).

Если мы вернемся к насосу 7500 галлонов в минуту на 364 футах напора и будем использовать несколько других насосов параллельно, общая кривая насоса сгладится и станет более чувствительной к изменениям напора (Рисунок 3).

При последовательной работе насоса напор является добавочным. Это происходит при использовании подкачивающих насосов, которые могут потребоваться на дальнем конце контура охлажденной воды или для преодоления конечного давления в здании (рис. 4).

Наконец, на кривые системы влияет использование частотно-регулируемых приводов.Приводы с регулируемой скоростью изменяют скорость насоса за счет регулировки скорости двигателя, и можно показать, что эти изменения перемещаются по кривой системы, а не по кривой насоса, что приводит к изменениям расхода насоса.

На многих предприятиях используются частотно-регулируемые приводы для обеспечения более мягкого пуска насосов, для более плавных переходов при переводе насосов из режима включения / выключения для резервирования и, конечно, для экономии энергии, связанной с их использованием в условиях частичной нагрузки. Необходимо учитывать стоимость частотно-регулируемых приводов, но обычно они окупаются.

Как считывать кривые насоса

После усвоения основной информации, приведенной выше, как вы читаете и интерпретируете кривые насоса?

  1. Найдите известное значение напора, полученное в результате ваших расчетов, на левой вертикальной оси графика. Следуйте за линией головы до того места, где она пересекается с кривой насоса с желаемой скоростью потока или производительностью, считанной на горизонтальной оси графика, когда вы падаете прямо. Эта кривая будет размером рабочего колеса, необходимого для развития требуемого напора и производительности, и должна быть обозначена в дюймах
  2. .

  3. Теперь выберите размер двигателя.Двигатель должен приводить в движение крыльчатку без перегрузки. Для этого наблюдайте за линиями мощности (л.с.) и помните, что слева от линии л.с. нет перегрузки, а справа от линии л.с. — перегрузка. Вы должны выбрать размер двигателя насоса достаточно большим, чтобы даже при выбеге насоса выбранный размер рабочего колеса не пересекал линию мощности выбранного двигателя.
  4. Последнее, что нужно сделать, это определить, какой будет КПД насоса при работе в расчетной точке. Вы можете наблюдать U-образные линии и оценивать их с помощью интерполяции.

Что касается шага 2 выше, выбор размера двигателя «без перегрузки» обычно является лучшим методом; однако могут быть случаи, когда разработчик может выбрать двигатель, который может перегрузиться в условиях выбега.

Предположим, что в следующем примере системные требования.

Системные требования для насоса с постоянной скоростью были определены как 2475 галлонов в минуту и ​​110 футов напора для недавнего проекта с использованием вертикального встроенного насоса. После консультации с представителем производителя был предоставлен следующий набор кривых с точкой выбора, обозначенной красным треугольником.

В представленных требованиях к насосу указано, что рабочее колесо будет иметь размер 11,87 дюйма в этом примере с NPSHR 19,7 футов, мощностью около 85 л.с. и КПД около 80%. Этот выбор требует, чтобы двигатель мощностью 100 л.с. оставался без перегрузки.

Есть несколько причин, по которым следует считать «хорошую точку выбора» для применения насоса. В этом примере рабочая точка для кривой системы пересекает кривую насоса в немного «наклонной» или «более крутой» области кривой. Крутизна кривой даст дизайнеру немедленную обратную связь.Более крутая кривая допускает относительно большие изменения падения давления с меньшим влиянием на желаемые изменения потока (т.е. необходимость периодической очистки фильтра в системе при падении потока). Более пологая кривая позволит небольшому изменению падения давления произвести относительно большее изменение расхода. Это может быть применимо в системах с регулирующими клапанами, где вам может потребоваться большое изменение расхода при закрытии регулирующих клапанов. Бывают и другие случаи, когда выбор в плоской области не рекомендуется.

Максимизация энергоэффективности

Первым шагом в проектировании любой эффективной, действенной системы отопления, вентиляции и кондиционирования воздуха для здания или кампуса является выполнение точных расчетов нагрузки на здание и моделирования энергопотребления. Как упоминалось ранее, стандарт ASHRAE Standard 90.1 предоставляет методы и рекомендации для этих задач. Тип спроектированной и установленной системы HVAC, а также ее конфигурация, безусловно, потребуют одного или нескольких типов насосных схем. Постоянное взаимодействие и изменения нагрузок HVAC внутри здания или между несколькими зданиями в контуре должны быть частью системных соображений, поэтому все оборудование (т.например, насосы) можно подбирать по размеру и управлять должным образом, чтобы учесть все энергетические воздействия.

Проектировщик должен ознакомиться с ASHRAE 90.1, раздел 6, который включает различные требования и исключения, влияющие на конструкцию насоса. Например:

  • В разделе 6.4.2.2 дифференциальное давление насоса (напор) для определения размеров насосов должно включать падение давления через каждое устройство и сегмент трубы в критическом контуре при расчетных условиях.
  • В разделе 6.5.1.2.2, существует максимально допустимый перепад давления для змеевиков предварительного охлаждения и теплообменников, используемых в водяных экономайзерах с напором менее 15 футов, или проектировщик должен создать вторичный контур, чтобы эти перепады давления не были замечены основными насосами системы, когда система находится в обычном режиме охлаждения (без экономайзера).
  • В разделе 6.5.4.2 содержится требование к проектным усилиям по включению оптимизации давления насоса в системах, в которых общая мощность насосной системы превышает 10 л.с. Уставки управления насосом меняются из-за положений регулирующего клапана в системе для обеспечения переменного расхода жидкости и позволяют снизить расход насоса до 50% или менее от расчетного.Есть и другие моменты, требующие рассмотрения, и есть исключения.
  • В разделе 6.5.4.3, если гидронная система включает более одного чиллера, градирни или бойлера, они должны быть изолированы, чтобы все потоки жидкости через соответствующее оборудование автоматически перекрывались при отключении оборудования. Кроме того, если для обслуживания нескольких единиц этого оборудования (чиллеры, градирни, котлы) используются насосы охлажденной воды, конденсаторной воды или питательной воды котла с постоянной скоростью, количество насосов должно быть не меньше количества единиц и включаются и выключаются с отдельными частями оборудования.
  • Раздел 6.5.5.4 требует регулирования диапазона регулирования расхода в градирне с открытым контуром, если она сконфигурирована с многоскоростными или регулируемыми водяными насосами конденсатора.
  • Раздел 6.7.2.3.3 требует, чтобы гидравлические системы были пропорционально сбалансированы для минимизации потерь на дросселирование перед регулировкой рабочих колес насоса или регулировкой скорости насоса для соответствия расчетным условиям потока.
  • Раздел 7.4.4.4 требует управления циркуляционными насосами для ограничения их работы в резервуарах для хранения воды.
  • Раздел 7.4.5.3 требует установки простых таймеров на нагревателях и насосах плавательных бассейнов.

Рэнди Шреценгост (Randy Schrecengost) — руководитель проекта / старший инженер-механик в Stanley Consultants. Он имеет обширный опыт в проектировании и управлении проектами и программами на всех уровнях инжиниринга, консалтинга в области энергетики и проектирования объектов. Он является членом редакционно-консультативного совета «Инженер-консультант».

Пошаговый подход к выбору насоса

Если не проектируется совершенно новый завод, пользователи решают заменить насос из-за его возраста и износа или постоянных проблем с надежностью.

Инженеры завода обычно проводят свое время с процессом, чтобы убедиться, что оборудование работает, течет вода, вырабатывается энергия, горит свет и не возникает никаких экологических проблем. Как правило, они не являются экспертами по какому-либо конкретному типу машин.

Они в основном универсалы, научившись полагаться на квалифицированных поставщиков, которые являются экспертами в своей конкретной нише (насосы, центрифуги, котлы, генераторы и т. Д.). Когда насос выходит из строя, его обычно заменяют новым без особого анализа или обсуждения.Если он продолжает часто выходить из строя, к новому поставщику обращаются за лучшим и более надежным насосом.

Иногда требуется относительно небольшая модификация процесса, например, добавление охлаждающего (или нагревающего) контура трубопровода. Это может быть не особо сложная система, и наем крупных дизайнерских подрядчиков может оказаться неэкономичным для такого небольшого проекта. Тем не менее, это все еще может быть вне компетенции инженеров завода, обслуживающего и эксплуатационного персонала.

Итак, как на самом деле спроектирована насосная система, простая или сложная? Подробные сведения о характеристиках насосов, типах, давлении, мощности или эффективности обычно не появляются на этом начальном этапе.

Завод знает только их требования. Может быть, они захотят перекачивать 1000 галлонов в минуту (галлонов в минуту) из резервуара с холодной водой в 2 милях от теплообменника и возвращать воду в резервуар. Таким образом, детали насоса начнут всплывать.

1.Прежде чем говорить о насосе, рассмотрим трубу.

Скорость жидкости в трубах составляет от 3 до 10 футов в секунду (фут / сек). Если скорость слишком низкая, грязь, ил или другие загрязнения могут осесть. Если поток слишком быстрый, абразивный износ сокращает срок службы трубы. Проектировщики предприятий знакомы с конкретными проблемами для каждого приложения. У потока ила будет труба большего размера, чем у системы подачи чистой воды. Но для «неспециалиста» хорошей отправной точкой может быть, скажем, 5 футов в секунду.Решив для диаметра трубы (1000 галлонов в минуту, 5 футов / сек), мы получаем d = 9,1 дюйма, поэтому мы округляем его до 10 дюймов, чтобы соответствовать доступным размерам трубы. Пока мы не будем рассматривать спецификацию труб, толщину стенок и т. Д.

2. Теперь, когда у нас есть труба, следующим шагом будет давление.

Давление возникает из-за трения и подъема. Мы предполагаем отсутствие изменений отметки вдоль участка трубопровода. Потери на трение определяются по хорошо известной диаграмме Муди, по которой определяется коэффициент трения, а затем вычисляются потери на трение (h) (см. Рисунок 1).

Рисунок 1. Диаграмма Муди для определения потерь на трение ( Изображения любезно предоставлены автором )

Это потери на трение, с которыми должно работать давление насоса.

Диаграмма Муди содержит много полезной информации: число Рейнольдса (Re), тип / возраст трубы, шероховатость и, следовательно, коэффициент трения, как показано на Рисунке 1, может варьироваться от 0,01 до 0,1, что потенциально является ошибкой. К счастью, кое-что из этого можно упростить.

Re = 5 футов / сек x (10/12) (футов) / 10-6 = 4 x 106 — i.е. турбулентная область и, как показано на рисунке 1, мы уже сократили коэффициент трения, чтобы начать как минимум с 0,2. Если мы уменьшим эту область от шероховатой трубы до сверхгладкой трубы, мы обнаружим, что среднее значение будет около f = 0,03 для железной трубы диаметром 10 дюймов.

3. Теперь мы можем оценить мощность.

См. Уравнение 4. Для этого, вероятно, потребуется двигатель мощностью 40 лошадиных сил. Обратите внимание на наше «смелое» предположение о 70-процентной эффективности — приблизительное предположение, которое нам нужно уточнить сейчас.

Изображение 2. Результаты калькулятора КПД насоса.

4. Перейдите в программу «Калькулятор КПД насоса».

Вставьте числа в pump-magazine.com/pump_magazine/pump_magazine.htm (см. Изображение 2). Фактический КПД, прогнозируемый программой, составляет 81,2 процента, что выше наших предполагаемых 70 процентов, а двигатель может быть меньше. Однако также учтите, что насос может несколько раз «выбежать» на кривой при увеличении расхода. Таким образом, было бы разумно установить чуть более высокое значение мощности двигателя.

5. Уточните выбор.

Теперь нам нужно уточнить наш выбор по типу насоса, количеству ступеней, скорости двигателя (которая может изменить общий размер и эффективность) требованиям к чистому положительному напору на всасывании (NPSH) и т. Д. Но это в следующий раз.

Чтобы прочитать больше столбцов «Рецепты насосов», щелкните здесь.

Выбор и определение размеров насосов — Промышленный пар

Целью выбора питательных насосов котла является определение насоса, который будет работать в требуемых условиях.При выборе насоса следует учитывать первую стоимость, надежность и потребление электроэнергии.

Выбор насоса состоит из семи этапов.

1. Определите количество необходимых насосов
2. Определите, будет ли использоваться плавное регулирование питательной воды или двухпозиционное регулирование питательной воды
3. Рассчитать напор, необходимый для каждого питательного насоса котла
4. Рассчитать расход каждого питающего насоса котла
5. Определите, требуется ли рециркуляция для защиты насосов, и
, если да, то какой тип подходит
6.Выберите насос, который соответствует требуемым условиям.
7. Будет ли насос удовлетворять требованиям ASME к размеру питательного насоса котла?

1. Выберите количество насосов

Количество насосов зависит от условий нагрузки. Если паровая установка имеет «базовую нагрузку» при очень небольшом колебании нагрузки, один насос может использоваться для обслуживания нескольких котлов. Обычно это наиболее экономичный подход, если нагрузки относительно постоянны. Первые затраты обычно ниже, поскольку во многих случаях один большой насос дешевле, чем несколько меньших.Если нагрузки сильно различаются, можно использовать несколько насосов. Рекомендуется устанавливать по одному насосу на бойлер. Обычно это обеспечивает приемлемую производительность. В сводке
;
• если основная нагрузка котла (ов) — 1 насос для переноса нагрузки,
• если 2 или более котла с переменной нагрузкой — выберите по крайней мере один насос для каждого котла
Несколько насосов могут быть лучшими инвестициями для проекта, потому что:
1. 3 или 4 насоса меньшего размера могут изначально стоить меньше, чем 2 насоса большего размера.
2. Меньшие насосы обычно имеют меньшие двигатели, что приводит к меньшему потреблению мощности
в случаях, когда средняя нагрузка намного ниже, чем пиковая.
3. Несколько насосов обеспечивают большую гибкость и резервирование

2. Следует ли использовать плавное или двухпозиционное регулирование питательной воды котла?

Второй шаг — определить, следует ли использовать плавное регулирование питательной воды или в проекте следует использовать двухпозиционное регулирование питательных насосов котла.

Мы рекомендуем плавное регулирование питательной воды для всех паровых котлов.

Это устранит одну из основных причин неполадок насоса и плохой работы деаэратора.Если вы используете двухпозиционное управление насосом для контроля уровня воды в котле, котел подвергается скачкам питательной воды, которые в два-три раза превышают пиковую мощность котла. Результат управления двухпозиционным насосом:

1) Нарушение естественной циркуляции и мощности котла.
2) Перегрузите деаэратор на короткие периоды времени, забирая в два-три раза больше нормальной производительности деаэратора, когда насосы циклически повторяются.
3) Требуются питательные насосы, размер которых превышает нагрузку котла.
4) Подающие насосы увеличенного размера потребляют больше электроэнергии, что требует больших затрат на эксплуатацию.
5) Насос может работать с правой стороны кривой, если насос работает при более низком давлении, чем был рассчитан, или он работает с неограниченным нагнетанием, когда возникает потребность в большой нагрузке. Это может привести к кавитации и повреждению насоса.
Обычно двухпозиционное управление насосом используется для снижения первоначальной стоимости системы. Он также используется, если заказчик выбирает насосы турбинного типа. Помимо первой причины затрат на управление двухпозиционным насосом, нет причин его использовать.

3.Рассчитать напор питательного насоса котла.

Третий шаг — рассчитать напор на выходе каждого питательного насоса котла. Питающий насос котла должен преодолевать рабочее давление котла, а также любые потери давления в трубопроводе к котлу. Ниже приводится предлагаемый список падений давления, которые следует учитывать при выборе питающих насосов котла.

Общее давление нагнетания насоса должно превышать следующее:

Давление в системе — Давление, необходимое для парораспределительной системы.
Потеря обратного клапана — сколько перепадов возникает на обратном клапане, котел должен работать при достаточно высоком давлении, чтобы его преодолеть и удовлетворить требованиям к давлению в системе.
Экономайзер — Падение давления на водяной стороне экономайзера.
Super Heater — Падение давления на водяной стороне перегревателя.
Клапан регулирования уровня — Падение давления на клапане регулирования уровня. (не требуется при двухпозиционном управлении насосом)
Остановка подачи и контрольные потери — Падение через ограничитель питающей воды и обратные клапаны (если используются).
Потери в трубопроводе к котлу
Высота до уровня котловой воды — Барабан может быть значительно выше, чем насосы питательной воды котла. Насосы должны иметь возможность поднимать воду до уровня бочки.
Общее давление нагнетания Сумма всех перепадов давления, которым должен удовлетворять питательный насос.
После расчета общего падения давления его необходимо преобразовать в футы напора нагнетания, чтобы выбрать насос. Поправочный коэффициент 2,31 преобразует фунты на кв. Дюйм в футы головы.Мы вносим поправку на плотность кипящей воды (227 0 F), разделив напор на 0,96, что соответствует удельному весу воды при 227 0

.

TDH = полное давление нагнетания (фунт / кв. Дюйм) x 2,31,96

Пример: расчет напора насоса

ШАГ №1 — Общее давление нагнетания насоса;
Давление в системе: 150 фунтов на кв. Дюйм (требуется системой)
Потери в обратном клапане: 5 фунтов на кв. Дюйм (котел работает при давлении 155 фунтов на кв. Дюйм)
Экономайзер: 0 фунтов на кв. Дюйм Контрольные потери: 7 фунтов на квадратный дюйм
Потери в трубопроводе до котла: 5 фунтов на квадратный дюйм
Высота до уровня котловой воды: 0 фунтов на квадратный дюйм
Потери в напорном трубопроводе насоса: 5 фунтов на квадратный дюйм
Общее давление на выходе = 192 фунта на квадратный дюйм

ШАГ № 2 — Общий напор на выходе насоса (TDH) составляет;
TDH = давление (фунт / кв. Дюйм) x 2.31
,96
TDH = 192 psig x 2,31
,96
TDH = 462 (фут) TDH

4. Рассчитайте чистый расход каждого питающего насоса котла.

Третий шаг — рассчитать расход, необходимый для каждого питательного насоса котла.

Чистый расход насоса = интенсивность испарения котла + догоняющая способность

1. Скорость испарения котла
a. Мощность котла = нагрузка системы + продувка + пар до DA
b. Скорость испарения котла = Производительность котла (pph) / 500
2.Емкость для «догоняющего»
a. Двухпозиционное управление насосом — добавьте 100% к скорости испарения (турбинные насосы), (75% для центробежных насосов)
b. Плавное регулирование питательной воды — добавьте 25% к скорости испарения
3. Расход, необходимый для обеспечения защиты от минимального потока (не требуется для двухпозиционного насоса)
a. Отключение насоса при выключении котла, котел имеет максимальный диапазон изменения 4: 1. Мгновенная скорость рециркуляции = рекомендация производителя
b. Насос всегда работает или котел имеет динамический диапазон более 4: 1. Скорость непрерывной рециркуляции = 20% от оптимального расхода

Пример: расчет чистого расхода насоса

Размер одного насоса будет рассчитан на обслуживание одного котла при следующих условиях:
• Нагрузка 34 000 частей в час
• Скорость продувки с поверхности 3%
• Плавное регулирование питательной воды (требуется 25% догоняющая способность)
• Деаэратор рассчитан на 34 000 pph и требует 8% его производительности в паре.
1.Производительность котла = нагрузка системы + продувка + пар до DA
Производительность котла = 34 000 частей в час + (3% x 34 000 частей в час) + (8% x 34 000 частей в час)
= 34 000 частей в час + 1020 частей в час + 2720 частей в час
= 37 740 частей в час

2. Скорость испарения котла = Производительность котла (частей в час) / 500
= 37 740 частей в час / 500
= 75,5 галлонов в минуту

3. Емкость «догнать»
a. Двухпозиционное управление насосом — добавьте 100% к скорости испарения
b. Плавное регулирование питательной воды — добавьте 25% к скорости испарения.
Впитывающая способность = 25% x скорость испарения
= 25% x 75.5 галлонов в минуту
= 18,8 галлонов в минуту

Чистая производительность насоса = скорость испарения котла + мощность догонки
= 75,5 галлонов в минуту + 18,8 галлонов в минуту
= 94,3 галлона в минуту

Мы знаем, что нам нужен насос, производящий не менее 94 галлонов в минуту. Чтобы компенсировать требования к минимальному потоку, мы, вероятно, будем искать насос с производительностью на 10-20 галлонов выше, чем чистая производительность насоса. Мы также должны учитывать требования к минимальному расходу насоса, если используется плавное регулирование питательной воды.

Минимальный расход — Минимальный расход — это наименьший расход, при котором достаточный поток через насос позволяет ему работать без повреждений, вызванных перегревом.Обычно упоминаются два минимальных расхода.

Мгновенный минимальный расход — применяется, когда насос не может работать при закрытом регулирующем клапане питательной воды.
1. Опубликовано поставщиками насосов.
2. Требует, чтобы насосы были выключены, когда котел выключается, (блокировка для остановки насоса, если горелка останавливается). байпас »при прекращении подачи в котел.Расчет непрерывного минимального расхода:
1. Определите расход при максимальной эффективности насоса
2. Непрерывный минимальный расход равен 20% от расхода при максимальной эффективности насоса.

«Общая производительность насоса должна соответствовать скорости испарения котла, необходимой мощности для наверстывания и минимальным требованиям к потоку питательных насосов котла.

5. Обеспечьте защиту питательных насосов котла от минимального расхода.
Полная производительность насоса = Производительность насоса нетто + Защита насоса при минимальном расходе: если в котлах используется плавное регулирование питательной воды, защита насосов обеспечивается за счет рециркуляции минимального количества потока обратно в деаэратор, чтобы насос всегда имел достаточный поток для предотвращения перегрев в периоды низкого расхода.Предположим, эта система никогда не будет работать с выключенной горелкой или закрытым краном питательной воды. В результате мы будем использовать мгновенный минимальный расход для этих насосов.

Условия для насоса, использованного в двух предыдущих примерах: 94 галлона в минуту при 462 ’TDH. Обзор кривых промышленных паровых насосов показывает, что VC90 может работать со скоростью 94 галлона в минуту, но NPSH является чрезмерным, поэтому мы рассмотрим следующий более крупный насос. VC100 легко удовлетворит требования к потоку при разумном NPSH.Мгновенный минимальный расход для VC100 составляет 13,5 галлонов в минуту.

Полная производительность насоса составляет:
Полная производительность насоса = 94,3 галлона в минуту + 13,5 галлона в минуту = 107,8 галлона в минуту

6. Выберите насос.
Насос должен быть рассчитан на 108 галлонов в минуту и ​​462 ‘TDH. Выбран насос: VC100-7 (7-ступенчатый) с двигателем мощностью 20 л.с. Для насоса требуется 4 дюйма NPSH

.

7. Удовлетворяет ли насос требованиям по производительности питательного насоса котла ASME?
Этот расчет также применим при выборе насосов для твердотопливных котлов.Кодекс ASME требует, чтобы питающий насос котла мог подавать воду в котел со скоростью испарения при давлении, которое на 3% превышает максимальное значение уставки предохранительных клапанов. Если котел в этом примере рассчитан на рабочее давление 150 фунтов на квадратный дюйм, предохранительные клапаны могут быть установлены на 175 фунтов на квадратный дюйм. Чтобы определить, соответствует ли выбранный насос этому требованию, пересчитайте необходимое давление нагнетания и используйте фактическую скорость испарения для номинального расхода.

Общее давление нагнетания насоса;
Уставка предохранительного клапана: 175 фунтов на кв. Дюйм (требуется для системы)
Избыточное давление 3%: 6 фунтов на кв. Дюйм
Потери обратного клапана: 5 фунтов на кв. Дюйм (котел работает при давлении 155 фунтов на кв. Дюйм)
Экономайзер: 0 фунтов на кв. Клапан контроля уровня: 20 фунтов на кв. Дюйм
Потери при остановке и проверке подачи: 7 фунтов на кв. Дюйм
Потери в трубопроводе до котла: 5 фунтов на кв. Дюйм
Высота до уровня котловой воды: 0 фунтов на кв. Дюйм
Потери в напорном трубопроводе насоса: 5 фунтов на кв. Дюйм
Общее давление на выходе = 223 фунтов на кв. Общий напор нагнетания насоса (TDH) составляет;
TDH = 223 фунта / кв. Дюйм изб. X 2.31
,96
TDH = 537 (фут) TDH, расход 76 галлонов в минуту. Удовлетворяет ли выбранный насос этим условиям? Эта точка выбора находится выше кривой для VC100-7. В результате мы должны перейти к следующему более крупному насосу в этом приложении

7 основных переменных для выбора насоса

Вы, наверное, слышали поговорку, что меньше значит больше. Что ж, это не всегда так. Когда дело доходит до выбора насоса, лучше получить дополнительную информацию. Несколько переменных играют прямую роль в том, как долго насос прослужит и как он будет работать.Если вы не знаете, как выбрать правильный насос или какую информацию следует знать, прежде чем обращаться к поставщику, вы не одиноки! Мы составили список из 7 вещей, которые вы должны знать при выборе помпы, чтобы помочь вам в этом процессе.

1. Свойства технологической жидкости

Для какой жидкости предназначен насос? Ниже приведены свойства технологической жидкости, которые необходимо учитывать перед выбором насоса.

  • Вязкость жидкости
  • Температура
  • Удельный вес
  • Давление паров
  • Наличие и концентрация твердых веществ
  • Чувствительность к сдвигу
  • Абразивный или неабразивный

2.Конструкционные материалы

Какие материалы конструкции совместимы с технологической жидкостью или любыми другими жидкостями, с которыми насос может контактировать? Таблицы химической совместимости помогут вам определить наиболее подходящие конструкционные материалы для насоса.

3. Важен ли насос для работы установки?

Для критических применений, где простои НЕ являются вариантом, можно выбрать более дорогие, мощные насосы со специальными характеристиками. Если насосы можно вывести из эксплуатации для технического обслуживания, можно будет рассмотреть менее дорогие варианты.

4. Условия на входе насоса

Вы же не хотите морить насос голодом. Доступный чистый положительный напор на всасывании (NPSH) рассчитывается исходя из давления на входе насоса и давления пара жидкости. Всегда следите за тем, чтобы NPSHA превышала требуемый чистый положительный напор на всасывании насоса.

5. Насосная среда

Если ваш насос будет находиться на улице, возможно, потребуется принять во внимание особые конструктивные или монтажные соображения в отношении отрицательных температур. Если окружающая среда опасна, содержит взрывоопасные пары или пыль, потребуются специальные функции двигателя.Это всего лишь несколько примеров условий окружающей среды, которые следует учитывать.

6. Доступность источника питания

Самый распространенный источник питания в США — 115–230 В / 60 Гц / 1 фаза или 230–460 Вольт, 60 Гц / 3 фазы. Могут быть указаны специальные двигатели для работы за пределами США или с использованием батарей постоянного тока. Сжатый воздух или гидравлическое масло под давлением также можно использовать для питания.

7. Расход и давление

Ваш общий объем и знание того, сколько времени у вас есть на перемещение жидкости, будут определять скорость потока.Перепад давления в насосе можно рассчитать, зная размер трубы (длину и фитинги), статические подъемные силы и потери на трение в оборудовании системы (фильтры, клапаны и т. Д.).

Понимая вышеуказанные факторы, вы вооружаетесь знаниями, необходимыми для выбора правильного насоса. Независимо от области применения, вы можете быть уверены, что выберете следующую помпу!

Свяжитесь с нами сегодня, чтобы получить помощь в выборе насоса или общие вопросы, касающиеся насосов и другого оборудования для работы с жидкостями.Наши дипломированные инженеры будут рады предоставить техническую помощь предприятиям в Висконсине и Верхнем Мичигане.

Руководство по тепловому насосу — Инженерное мышление

Тепловой насос сравнить

Справочник по тепловым насосам. В этой статье мы рассмотрим, как выбрать и сравнить различные тепловые насосы и как решить, какой тепловой насос лучше всего подходит для вас. Мы рассматриваем воздушные тепловые насосы, наземные тепловые насосы и водяные тепловые насосы. Рассмотрение некоторых плюсов и минусов, а также затрат на установку и сравнение показателей эффективности.
Прокрутите вниз, чтобы просмотреть БЕСПЛАТНЫЙ учебник YouTube

🏆 Бесплатные ресурсы теплового насоса от Данфосс — http://bit.ly/heatpumpresourcepage

Получите доступ ко всем ресурсам, необходимым для улучшения тепловых насосов. Посетите веб-страницу Danfoss, чтобы получить бесплатные бизнес-кейсы, истории успеха, электронные уроки, схемы и широкий ассортимент продукции для тепловых насосов для жилых и коммерческих помещений.

🎁 Начните бесплатный eLesson с тепловым насосом здесь — http://bit.ly/HeatPumpeLessons

В последней статье о тепловых насосах мы рассмотрели различные типы тепловых насосов и принцип их работы.В этом видео мы рассмотрим, как выбрать один и как сравнить разные тепловые насосы. Вы можете просмотреть предыдущую статью о тепловом насосе, нажав здесь.

Почему тепловые насосы эффективны

Если мы посмотрим на обычные методы обогрева.

Энергоэффективность печи

Газовый котел или печь имеет КПД, скажем, 0,85%, поэтому для обеспечения 10000 кВтч отопления в течение отопительного сезона нам необходимо ввести 11765 кВтч энергии из газа, потому что нам нужно сжигать топливо, а затем пытаться уловить его тепло, которое он производит, прежде чем выйдет из дымохода, мы неизбежно не сможем уловить его все, поэтому большая его часть будет потрачена зря.

Энергоэффективность электрического нагревателя

Электрический нагреватель на 100% эффективен, поэтому для обеспечения 10 000 кВтч отопления нам необходимо 10 000 кВтч электроэнергии. Для этого мы превращаем электричество непосредственно в тепло через сопротивление. Мы не можем получить больше тепла, чем потребляемая энергия, поэтому мы получаем только 10 000 кВтч.

Энергоэффективность теплового насоса

Воздушный тепловой насос для сравнения может иметь КПД 400% (то есть у него КПД 4, мы увидим, что это значит позже), поэтому для обеспечения 10 000 кВтч отопления нам необходимо ввести 2500 кВтч электроэнергии.Звучит волшебно, правда? Что ж, волшебства не бывает.

Это означает, что мы будем использовать 1 кВтч электроэнергии для улавливания 3 кВтч тепла из внешнего окружающего воздуха и производства 4 кВт тепла. Электроэнергия используется компрессором для передачи хладагента по системе и улавливания тепла извне, а затем его подачи внутрь. Это возможно, потому что хладагент имеет чрезвычайно низкую температуру кипения.

Температура кипения R134a и R410A

Например, вода закипает при температуре 100 ° C (212 ° F) и при кипении уносит тепло в виде пара.Хладагенты имеют гораздо более низкую температуру кипения, например, R134a кипит при -26,3 ° C (-15,34 ° F), а R410A кипит при -48,5 ° C (-55,3 ° F), поэтому даже когда воздух снаружи очень холодный, мы все равно можем улавливать достаточно энергии, чтобы вызвать кипение хладагента, и по мере того, как он закипает, он уносит тепловую энергию прочь и в здание. Очевидно, что чем теплее воздух снаружи, тем больше тепловой энергии необходимо улавливать, и в определенный момент улавливание энергии становится неэкономичным для затрат на потребление электроэнергии.

Какой тепловой насос выбрать?

Сначала нам нужно решить, хотим ли мы обеспечить дом горячей водой или горячим воздухом. Если воздух, то хотим ли мы, чтобы он также обеспечивал охлаждение летом?
Есть ли у нас доступ к озеру или реке? В противном случае мы не сможем использовать источник воды.
Будет ли тепловой насос установлен в новом или существующем доме. Если есть, то нам, вероятно, потребуется установить радиаторы большего размера или полы с подогревом, чтобы максимизировать тепло, поскольку это более низкая температура, чем у обычного бойлера.
Нам также необходимо учитывать наш бюджет, поскольку затраты зависят от типа.

Затем мы можем решить, какой тепловой насос нам подходит: воздушный, наземный или водяной.

Источник воздуха

Сравнение тепловых насосов с воздушным источником и стоимость установки

Источник воздуха — самый быстрый и простой в установке, он выглядит как обычный кондиционер. Вы можете использовать эти агрегаты для выработки горячей воды или горячего воздуха, некоторые агрегаты могут также включать реверсивный клапан для работы в режиме охлаждения.Мы рассмотрели, как работают реверсивные клапаны в нашем предыдущем руководстве, нажмите здесь, чтобы просмотреть.

Тепловой насос с воздушным источником воздуха устанавливается снаружи, и имейте в виду, что он будет создавать некоторый шум от вентиляторов и компрессоров. Им нужен доступ к окружающему воздуху, поэтому не закрывайте их, иначе это вызовет рециркуляцию, и вы будете пытаться извлекать энергию из воздуха, который вы только что извлекли, энергия из которого неэффективна и приведет к потере электроэнергии.
Эти агрегаты являются самыми дешевыми в установке, но, как правило, наименее эффективными, поскольку воздух имеет меньшую плотность и теплоемкость по сравнению с почвой или водой.

Приблизительные затраты на установку системы теплового насоса с воздушным источником, что-то в диапазоне от 7000 до 11000 долларов США: от 6000 до 8000 фунтов стерлингов: от 7000 до 9000 евро, эта сумма может резко варьироваться в зависимости от местоположения, сложности, размера и т. Д.

Наземный источник

Наземный источник — второй по популярности вариант, он чаще используется для производства горячей воды, но вы также можете получить блоки и системы, которые могут реверсировать для обеспечения охлаждения. Он использует встроенную в землю тепловую энергию, исходящую от солнца.Этот вариант обычно более эффективен, чем воздушный источник, потому что земля имеет более высокую плотность и теплоемкость по сравнению с воздухом. Однако этот вариант требует обширных земляных работ, поэтому он лучше всего подходит для новых построек, поскольку может быть встроен в строительство для снижения затрат.

Сравнение наземных тепловых насосов и стоимость установки

Для горизонтального типа используются трубы, заглубленные в землю на глубине 1-2 м (3,3 — 6,6 футов), и вы обычно можете извлекать 10-30 Вт на метр трубы, в зависимости от типа грунта.Стоимость установки, как правило, составляет 13–24 тыс. Долларов США: 10–18 тыс. Фунтов стерлингов: 12–20 тыс. Евро, но эта сумма существенно зависит от местоположения, сложности и размера.

Сравнение наземных тепловых насосов и стоимость установки

Если у вас нет доступа к большому участку земли, у нас есть вертикальный тип, который использует петлю трубы, помещенную в глубокие вертикальные отверстия. Ямы обычно имеют глубину от 15 до 150 м (50 — 492 фута), и вы можете обычно извлекать 10 — 50 Вт на метр, в зависимости от типа грунта и содержания воды.Стоимость установки, как правило, составляет 18–32 тыс. Долларов США: 14–24 тыс. Фунтов стерлингов: 16–27 тыс. Евро, что существенно зависит от местоположения, сложности и размера.

Водяные тепловые насосы

Стоимость установки теплового насоса источника воды

Третий вариант — источник воды. Это наименее распространенный тип просто потому, что собственности нужен выход к озеру или реке. Для этого типа есть два варианта: открытый или закрытый контур. В замкнутом контуре используется смесь вода + незамерзающая смесь для плавного цикла и улавливания тепла. В качестве альтернативы у нас есть открытый тип, который втягивает воду из источника, извлекает энергию, а затем выпускает эту воду обратно в источник на некотором расстоянии.

Этот тип обычно имеет более строгие разрешения, требуемые от местных властей, учтите также, что если система протекает и хладагент или антифриз попадет в источник воды, он будет токсичным для дикой природы, и вы даже можете получить штраф от Агентство по охране окружающей среды. Хотя утечка происходит довольно редко, но это случилось.

Однако этот вариант более эффективен, чем воздушный или наземный источник. Трубы постоянно окружены водой, а течение и поток воды означает, что источник энергии постоянно пополняется.Он также довольно прост в установке и намного дешевле, чем наземный источник питания.

Обычно источник воды может обеспечивать около 20-60 Вт на квадратный метр водной поверхности.

Стоимость установки обычно составляет 10–15 тыс. Долл. США: 8–12 тыс. Фунтов стерлингов: 9–14 тыс. Евро, что существенно зависит от местоположения, сложности и размера.

Сравнение различных агрегатов и КПД

В мире существует множество стандартов для оценки эффективности тепловых насосов. Я просто расскажу о некоторых из наиболее распространенных, посвященных устройствам, произведенным в США и ЕС.

COP — нагрев или охлаждение

Значение COP или коэффициент полезного действия

используется во всем мире как для отопления, так и для охлаждения, это просто мощность нагрева или охлаждения, деленная на потребляемую электроэнергию. Однако это не очень хороший показатель эффективности, потому что он дает только представление о том, как устройство должно работать в очень точных условиях. Например, агрегат имеет коэффициент теплопередачи 2,9, и это достигается, когда температура наружного воздуха составляет -3 ° C DB / -4 ° C WB (26,6 ° F DB / 24,8 ° F WB), обеспечивая при этом 35 ° C (95 ° F). ) вода за 8.3 кВт отопления и 2,86 кВт потребления электроэнергии. Поскольку температура наружного воздуха меняется ежечасно и ежедневно, это не является хорошим показателем эффективности. Мы изучили литературу производителей многих источников воздуха и обнаружили, что они варьируются от 2,75 до 6,13.

SCOP — сезонный коэффициент полезного действия

Вы увидите это на европейских единицах измерения средней эффективности отопления, это гораздо лучший показатель, чем COP. Производитель должен проверить работоспособность своих агрегатов при различных температурах наружного воздуха.Ожидается, что установка будет работать определенное количество часов при каждой температуре в год в зависимости от того, где в Европе она расположена. Есть три зоны. Теплый, средний и холодный. Поставляемое тепло и электричество, потребленное в указанные часы работы при каждой температуре, накапливаются и делятся, чтобы получить средний COP за год. SCOP также учитывает потребление энергии для таких вещей, как режим ожидания, нагрев картера и т. Д.

Вы увидите наклейки на тепловых насосах, произведенных в ЕС, которые позволяют покупателю быстро и легко увидеть, как агрегат будет работать в зависимости от того, в каком климате он находится.
Мы проверили ряд источников воздуха для бытовых нужд и обнаружили, что типичные значения SCOP составляют от 3,9 до 5,2, чем выше число, тем эффективнее он.

EER — Коэффициент энергоэффективности

Это измерение эффективности охлаждения агрегатов, которое в основном используется в США, но также используется в ЕС. Это отношение холодопроизводительности агрегата в БТЕ, деленное на количество ватт, потребляемых для ее производства. Это проверяется только при одном условии, обычно при температуре наружного воздуха 95 ° F (35 ° C) и температуре внутреннего возвратного воздуха 80 ° F (26 ° C) при относительной влажности 50%, поэтому не рекомендуется использовать это для оценки. ваше годовое потребление энергии или оценка того, как устройство будет работать в вашем регионе, если вы не живете в жарком климате.Однако это хороший способ сравнить агрегаты разных производителей при пиковой летней нагрузке. Чем выше число, тем оно эффективнее.

ЕС — Из проверенных нами единиц мы обнаружили единицы с рейтингом от 2,61 до 6,5.

США — из проверенных нами единиц мы нашли единицы с рейтингом от 11 до 16

SEER — Сезонный коэффициент энергоэффективности

SEER или сезонный коэффициент энергоэффективности используется как в США, так и в ЕС на агрегатах, которые работают в режиме охлаждения.Производители рассчитают значение SEER для своих блоков, проверив его при различных температурах наружного воздуха, представляющих сезон охлаждения. Единицы измерения различаются в моделях ЕС, рассчитанных на ватт охлаждения на ватт используемой электроэнергии, и в моделях США, рассчитанных на БТЕ охлаждения на ватт потребляемой электроэнергии.

В обоих случаях это подходит для блоков, установленных в очень среднем климате. Если устройство установлено в более жаркой или прохладной части США или ЕС, оно не будет точно отображать, как устройство будет работать.Так что это хороший способ сравнить разные устройства, но не лучший способ рассчитать потребление энергии, если вы не живете в районе с довольно средними погодными условиями.
Как правило, вы можете найти значения SEER для единиц США от 14 до 24 и единиц ЕС от 5,25 до 7,2, чем выше число, тем более эффективна установка.

HSPF — Сезонный коэффициент производительности отопления

Используется в США для режима нагрева тепловых насосов с воздушным источником. Это отношение тепловой мощности в БТЕ за отопительный сезон к тому, сколько ватт-часов электроэнергии было использовано для ее производства, с учетом дополнительного электрического обогрева.Производители рассчитывают свои блоки HSPF на основе испытаний его при определенных различных температурах, соответствующих отопительному сезону. Это оценка того, как устройство будет работать, и на самом деле оно может не работать так, особенно если оно слишком большое. Это хороший способ сравнить разные единицы измерения.