Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Пускорегулирующий аппарат для люминесцентных ламп: ЭПРА для люминесцентных ламп T8

Содержание

ЭПРА для люминесцентных ламп T8

ЭПРА Navigator 94 425 NB-ETL-118-EA3
Артикул: 94425
Электронный пускорегулирующий аппарат (ЭПРА) для одной люминесцентной лампы T8 с цоколем G13 мощностью 18 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА Navigator 94 426 NB-ETL-218-EA3
Артикул: 94426
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 18 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА Navigator 94 427 NB-ETL-136-EA3
Артикул: 94427
Электронный пускорегулирующий аппарат (ЭПРА) для одной люминесцентной лампы T8 с цоколем G13 мощностью 36 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА Navigator 94 428 NB-ETL-236-EA3
Артикул: 94428
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 36 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА Navigator 94 429 NB-ETL-158-EA3
Артикул: 94429
Электронный пускорегулирующий аппарат (ЭПРА) для одной люминесцентной лампы T8 с цоколем G13 мощностью 58 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА Navigator 94 430 NB-ETL-258-EA3
Артикул: 94430
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 58 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА Navigator 94 449 NB-ETL-418-EA3
Артикул: 94449
Электронный пускорегулирующий аппарат (ЭПРА) для четырех люминесцентных ламп T8 с цоколем G13 мощностью 18 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА FOTON FL1х36W 180х40х30mm
Артикул: 603982
Электронный пускорегулирующий аппарат (ЭПРА) для люминесцентных ламп T8 с цоколем G13 мощностью 36 Ватт.

Foton Lighting (Фотон)

подробнее »

ЭПРА FOTON FL2x36/4х18W 335х35х30mm
Артикул: 606440
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 36 Ватт или четырех мощностью 18 Ватт.

Foton Lighting (Фотон)

подробнее »

ЭПРА FOTON FL2х18W 180х40х30mm
Артикул: 603999
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 18 Ватт.

Foton Lighting (Фотон)

подробнее »

ЭПРА FOTON FL2х36W 180х40х30mm
Артикул: 604002
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 36 Ватт.

Foton Lighting (Фотон)

подробнее »

ЭПРА FOTON FL2х58W 230х40х30mm
Артикул: 604019
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 58 Ватт.

Foton Lighting (Фотон)

подробнее »

ЭПРА FOTON FL4х18W 182х43х30mm
Артикул: 604026
Электронный пускорегулирующий аппарат (ЭПРА) для четырех люминесцентных ламп T8 с цоколем G13 мощностью 18 Ватт.

Foton Lighting (Фотон)

подробнее »

Пускорегулирующая аппаратура — Электросистемы

Принцип действия пускорегулирующей аппаратуры

Для работы газоразрядных ламп всех типов (металлогалогенных, люминесцентных и пр.)  необходимы специальные пускорегулирующие устройства для ламп, представляющие собой специальные электротехнические устройства, которые служат для розжига ламп, поддержания их горения и стабилизации тока в сети питания. Такого вида устройства называются ПРА — пускорегулирующий аппарат, иногда называемый так же дроссель для ламп. Балласт для ламп или дроссель для ламп может иметь определенные различия в конструкции, в зависимости от принадлежности источника света к тому или иному типу.

Существует два вида ПРА – электронный и электромагнитный пускорегулирующий аппарат (ЭПРА и ЭМПРА). Их качественно важным рабочим параметром является мощность потерь, которая вместе с мощностью ламп складывается в системную мощность.

Обычные электромагнитные ПРА (ЭМПРА) – простое индуктивное сопротивление, которое состоит из железного сердечника, обвитого медной проволокой. Использование такого омического сопротивления приводит к высокой потере мощности и к большому выделению тепла. Например, системная мощность работающей с ЭПРА 26-ваттной компактной люминесцентной лампы составляет 32 Вт, т. о. мощность потерь составляет 6 Вт (23%).

Различают следующие способы включения:

  • Со стартером тлеющего разряда.
  • Без стартера.
  • ПРА с ограничением температуры.

Использование ЭМПРА со светильником дает следующие преимущества:

  • Более быстрый и равномерный запуск лампы
  • Отсутствие видимого мерцания лампы.
  • Не сокращается время работы лампы.
  • Высокий КПД.
  • Высокая степень защиты от поражения током
  • Коэффициент мощности – более 0,9 (обычный дроссель не больше 0,6)

Основным преимуществом ЭМПРА является их низкая стоимость. Существенным недостатком ЭМПРА является их существенные габариты и вес, особенно если речь идет о применении их с люминесцентными лампами. Также существуют и другие:

  • Довольно большие потери мощности: в ПРА для маломощных люминесцентных ламп эти потери соизмеримы с мощностью самих ламп.
  • На промышленной частоте тока (50 Гц) световой поток пульсирует с частотой 100 Гц. Глаз не замечает этих пульсаций, но через подсознание они отрицательно влияют на наш организм. Кроме того, пульсации светового потока создают так называемый «стробоскопический эффект», когда предметы, вращающиеся с частотой пульсаций или кратной ей, кажутся неподвижными. Это может приводить к травматизму в цехах, оснащённых станками с такой частотой вращения обрабатываемых деталей или инструмента.
  • Световой поток ламп не поддаётся управлению, что несколько ограничивает возможности создания комфортных осветительных установок.
  • Часто дроссели «гудят», то есть создают неприятные акустические шумы.

Для преодоления этих недостатков применительно к люминесцентным лампам наиболее радикальным средством оказалось питание ламп током повышенной частоты. Для этого в качестве балласта последовательно с лампой включают сложное электронное устройство, преобразующее напряжение сети в другое напряжение с частотой, как правило, несколько десятков кГц и одновременно обеспечивающее зажигание ламп. Такие устройства получили название «электронные пускорегулирующие аппараты» (сокращённо ЭПРА).

Электронные пускорегулирующие аппараты (ЭПРА) выполнены в виде электронного устройства для питания газоразрядных и люминесцентных ламп. Первые ЭПРА появились ещё в 60-х годах прошлого века, однако их триумфальное шествие началось только в конце 80-х – начале 90-х годов. В настоящее время в ряде стран (Швеция, Швейцария, Голландия, Австрия) объём производства ЭПРА соизмерим с объёмом производства электромагнитных аппаратов.

Использование ЭПРА дает следующие преимущества:

  • Защита от повреждения или отсутствия лампы.
  • Автоматическое отключение в случае перегорания лампы.
  • Защита от перегрузки.
  • Отсутствие стробоскопического эффекта.
  • Быстрый запуск без мерцания.
  • Высокий световой КПД — не менее 80%.
  • Увеличенный срок службы ламп до 50%.
  • Не требуется стартёр и компенсирующий конденсатор.
  • Бесшумная работа.
  • Незначительное тепловыделение и низкая мощность рассеивания.
  • Наличие фильтра ЭМС.

Также уменьшается масса аппаратов и расход крайне дефицитных материалов – меди и электротехнической стали.

Кроме того, с внедрением ЭПРА появилась возможность создания систем управления освещением в помещениях, обеспечивающих наибольшую экономию электроэнергии и максимальный комфорт.

Электронные ПРА (ЭПРА) для люминесцентных ламп

Электронные ПРА (ЭПРА) для люминесцентных ламп– купить в интернет-магазине по лучшей цене

Включите в вашем браузере JavaScript!

НАЗНАЧЕНИЕ

  • Электронные аппараты преобразовывают параметры входящего сетевого напряжения для обеспечения режимов запуска и горения газоразрядных ламп.

НАЗНАЧЕНИЕ

  • Электронные аппараты преобразовывают параметры входящего сетевого напряжения для обеспечения режимов запуска и горения газоразрядных ламп.

МАТЕРИАЛЫ:

  • Корпус ЭПРА TDM ELECTRIC изготовлен из ударопрочного негорючего пластика.

ПРЕИМУЩЕСТВА:

  • Класс по энергоэффективности (уровень потерь): EEI = А2 (по европейской классификации CELMA)
  • Высокий коэффициент мощности — 0,97
  • Имеют функцию автоматического отключения при выходе из строя лампы
  • Защита от короткого замыкания
  • Мгновенный старт и бесшумная работа люминесцентных ламп
  • Отсутствие пульсаций светового потока
  • Для светильников класса I и II
  • Широкий диапазон напряжения 176~264 В,~ 50-60 Гц
  • Соответствие европейским стандартам качества

ГАБАРИТНЫЕ РАЗМЕРЫ








Наименование Артикул Размеры LхWхH, мм
EB-T8-118-EA2 TDM SQ0339-0001 150х40х28
EB-T8-218-EA2 TDM SQ0339-0002 212х40х28
EB-T8-136-EA2 TDM SQ0339-0003 150х40х28
EB-T8-236-EA2 TDM SQ0339-0004 212х40х28
EB-PL-218-EA2 TDM SQ0339-0005 145х76х30
EB-PL-226-EA2 TDM SQ0339-0006 145х76х30

Электронный пускорегулирующий аппарат ЭПРА ЛЛ 4х18 встраиваемый (LLV418D-EBFL-4-18)

Код товара
3201091

Артикул
LLV418D-EBFL-4-18

Производитель
IEK

Страна
Китай

Наименование
ЭПРА 418 для линейных ЛЛ Т8 IEK

Упаковки
10 шт, 3200 шт

Сертификат
RU C-CN.ПФ02.B03299-20

Тип изделия Пускорегулирующий аппарат

Тип лампы ЛЛ

Мощность ламп, Вт 18

Мощность, Вт 18

Тип ПРА ЭПРА

Степень защиты IP20

Количество ламп 4

Тип цоколя G13

Цвет Белый

Материал изделия Металл

Заземление Да

Высота, мм 27

Длина, мм 280

Ширина, мм 30

Диапазон рабочих температур от -15 до +50

Способ монтажа Накладной

Входное напряжение, В 180-256

Напряжение, В 220

Масса, кг 0.222

Частота, Гц 50

Все характеристики

Характеристики

Код товара
3201091

Артикул
LLV418D-EBFL-4-18

Производитель
IEK

Страна
Китай

Наименование
ЭПРА 418 для линейных ЛЛ Т8 IEK

Упаковки
10 шт, 3200 шт

Сертификат
RU C-CN.ПФ02.B03299-20

Тип изделия Пускорегулирующий аппарат

Тип лампы ЛЛ

Мощность ламп, Вт 18

Мощность, Вт 18

Тип ПРА ЭПРА

Степень защиты IP20

Количество ламп 4

Тип цоколя G13

Цвет Белый

Материал изделия Металл

Заземление Да

Высота, мм 27

Длина, мм 280

Ширина, мм 30

Диапазон рабочих температур от -15 до +50

Способ монтажа Накладной

Входное напряжение, В 180-256

Напряжение, В 220

Масса, кг 0.222

Частота, Гц 50

Все характеристики

Всегда поможем:
Центр поддержки
и продаж

Скидки до 10% +
баллы до 10%

Доставка по городу
от 150 р.

Получение в 150
пунктах выдачи

как работает + схемы подключения

Вас интересует, зачем нужен электронный модуль ЭПРА для люминесцентных ламп и как его следует подключить? Правильный монтаж энергосберегающих светильников позволит многократно продлить их срок эксплуатации, ведь верно? Но вы не знаете, как подключить ЭПРА и нужно ли это делать?

Мы расскажем вам о назначении электронного модуля и его подключении – в статье рассмотрены конструкционные особенности этого аппарата, благодаря которому формируется так называемое стартерное напряжение, а также поддерживается оптимальный рабочий режим светильников.

Приведены принципиальные схемы подключения люминесцентных лампочек с применением электронного пускорегулятора, а также видеорекомендации по применению подобных аппаратов. Которые являются неотъемлемой частью схемы газоразрядных ламп, несмотря на то что конструктивное исполнение таких источников света может значительно отличаться.

Содержание статьи:

Конструкции пускорегулирующих модулей

Конструкции промышленных и бытовых , как правило, оснащаются модулями ЭПРА. Аббревиатура читается вполне доходчиво – электронный пускорегулирующий аппарат.

Электромагнитное устройство старого образца

Рассматривая конструкцию этого устройства из серии электромагнитной классики, сразу можно отметить явный недостаток – громоздкость модуля.

Правда, конструкторы всегда стремились минимизировать габаритные размеры ЭМПРА. В какой-то степени это удалось, судя по современным модификациям уже в виде ЭПРА.

Набор функциональных элементов электромагнитного пускорегулирующего устройства. Его составными частями, как видно, являются всего два компонента – дроссель (так называемый балласт) и стартер (схема формирования разряда)

Громоздкость электромагнитной конструкции обусловлена внедрением в схему крупногабаритного дросселя – обязательного элемента, предназначенного сглаживать сетевое напряжение и выступать в качестве балласта.

Помимо дросселя, в состав схемы ЭМПРА входят (один или два). Очевидна зависимость качества их работы и долговечности лампы, т. к. дефект стартера вызывает фальшивый старт, что означает перегрузку по току на нитях накала.

Так выглядит один из конструктивных вариантов стартера пускорегулирующего электромагнитного модуля люминесцентных ламп. Существует масса других конструкций, где отмечается разница в размерах, материалах корпуса

Наряду с ненадежностью стартерного пуска, люминесцентные лампы страдают от эффекта стробирования. Проявляется он в виде мерцания с определенной частотой, близкой к 50 Гц.

Наконец, пускорегулирующий аппарат обеспечивает значительные энергетические потери, то есть в целом снижает КПД ламп люминесцентного типа.

Усовершенствование конструкции до ЭПРА

Начиная с 1990 годов, схемы люминесцентных ламп все чаще стали дополнять усовершенствованной конструкцией пускорегулирующего модуля.

Основу модернизированного модуля составили полупроводниковые электронные элементы. Соответственно, уменьшились габариты устройства, а качество работы отмечается на более высоком уровне.

Результат модификации электромагнитных регуляторов – электронные полупроводниковые устройства запуска и регулировки свечения люминесцентных ламп. С технической точки зрения, отличаются более высокими эксплуатационными показателями

Внедрение полупроводниковых ЭПРА привело практически к полному исключению недостатков, какие присутствовали в схемах аппаратов устаревшего формата.

Электронные модули показывают качественную стабильную работу и увеличивают долговечность люминесцентных светильников.

Более высокий КПД, плавное регулирование яркости, повышенный коэффициент мощности – все это преимущественные показатели новых модулей ЭПРА.

Из чего состоит приспособление?

Главными составляющими элементами схемы электронного модуля являются:

  • выпрямительное устройство;
  • фильтр электромагнитного излучения;
  • корректор коэффициента мощности;
  • фильтр сглаживания напряжения;
  • инверторная схема;
  • дроссельный элемент.

Схемное построение предусматривает одну из двух вариаций – мостовая либо полумостовая. Конструкции, где используется мостовая схема, как правило, поддерживают работу с лампами высокой мощности.

Примерно на такие приборы света (мощностью от 100 ватт) рассчитаны пускорегулирующие модули, выполненные по мостовой схеме. Которая, кроме поддержки мощности, оказывает положительное влияние на характеристики питающего напряжения

Между тем, преимущественно в составе люминесцентных светильников эксплуатируются модули, построенные на базе полумостовой схемы.

Такие приборы на рынке встречаются чаще по сравнению с мостовыми, т. к. для традиционного применения достаточно светильников мощностью до 50 Вт.

Особенности работы аппарата

Условно функционирование электроники можно разделить на три рабочих этапа. Первым делом включается функция предварительного прогрева нитей накала, что является важным моментом в плане долговечности газовых приборов света.

Особенно необходимой эта функция видится в условиях низкотемпературной окружающей среды.

Вид рабочей электронной платы одной из моделей пускорегулирующего модуля на полупроводниковых элементах. Эта небольшая легкая плата полностью заменяет функционал массивного дросселя и добавляет ряд улучшенных свойств

Затем схемой модуля запускается функция генерации импульса высоковольтного импеданса – уровень напряжения около 1,5 кВ.

Присутствие напряжения такой величины между электродами неизбежно сопровождается пробоем газовой среды баллона люминесцентной лампы – зажиганием лампы.

Наконец, подключается третий этап работы схемы модуля, основная функция которого заключается в создании стабилизированного напряжения горения газа внутри баллона.

Уровень напряжения в этом случае относительно невысок, чем обеспечивается малое потребление энергии.

Принципиальная схема пускорегулятора

Как уже отмечалось, часто используемой конструкцией является модуль ЭПРА, собранный по двухтактной полумостовой схеме.

Принципиальная схема полумостового устройства запуска и регулировки параметров люминесцентных светильников. Однако это далеко не единственное схемное решение, какие применяются для изготовления ЭПРА

Работает такая схема в следующей последовательности:

  1. Сетевое напряжение в 220В поступает на диодный мост и фильтр.
  2. На выходе фильтра образуется постоянное напряжение в 300-310В.
  3. Инверторным модулем наращивается частота напряжения.
  4. От инвертора напряжение проходит на симметричный трансформатор.
  5. На трансформаторе за счет управляющих ключей формируется необходимый рабочий потенциал для люминесцентной лампы.

Ключи управления, установленные в цепи двух секций первичной и на вторичной обмотке, регулируют требуемую мощность.

Поэтому на вторичной обмотке формируется свой потенциал для каждого этапа работы лампы. Например, при разогреве нитей накала один, в режиме текущей работы другой.

Рассмотрим принципиальную схему полумостового ЭПРА для ламп мощностью до 30 Вт. Здесь сетевое напряжение выпрямляется сборкой из четырех диодов.

Выпрямленное напряжение от диодного моста попадает на конденсатор, где сглаживается по амплитуде, фильтруется от гармоник.

На качество работы схемы оказывает влияние правильный подбор электронных элементов. Нормальная работа характеризуется параметром тока на плюсовом выводе конденсатора С1. Длительность импульса розжига светильника определяется конденсатором С4

Далее посредством инвертирующей части схемы, собранной на двух ключевых транзисторах (полумост), напряжение, поступившее из сети с частотой 50 Гц, преобразуется в потенциал с более высокой частотой – от 20 кГц.

Он подается уже на клеммы люминесцентной лампы для обеспечения рабочего режима.

Примерно по такому же принципу действует мостовая схема. Разница состоит лишь в том, что в ней используются не два инвертора, а четыре ключевых транзистора. Соответственно, схема несколько усложняется, добавляются дополнительные элементы.

Узел схемы инвертора, собранный по мостовой схеме. Здесь в работе узла участвуют не два, а четыре ключевых транзистора. Причем зачастую предпочтение отдается полупроводниковым элементам полевой структуры. На схеме: VT1…VT4 – транзисторы; Tp – трансформатор тока; Uп, Uн – преобразователи

Между тем именно мостовой вариант сборки обеспечивает подключение большого количества ламп (более двух) на одном . Как правило, устройства, собранные по мостовой схеме, рассчитаны на мощность нагрузки от 100 Вт и выше.

Варианты подключения люминесцентных ламп

В зависимости от схемных решений, используемых в конструкции пускорегулирующих аппаратов, варианты подключения могут быть самые разные.

Если одна модель устройства поддерживает, к примеру, подключение одного светильника, другая модель может поддерживать уже одновременную работу четырех ламп.

Простейший вариант питания светильника через электромагнитный пускорегулирующий элемент: 1 – нить накала; 2 – стартер; 3 – стеклянная колба; 4 – дроссель; L – фазная линия питания; N – нулевая линия

Самым простым подключением видится вариант с электромагнитным устройством, где основными элементами схемы являются лишь и стартер.

Здесь от сетевого интерфейса фазная линия соединяется к одной из двух клемм дросселя, а нулевой провод подводится на одну клемму люминесцентной лампы.

Фаза, сглаженная на дросселе, отводится от его второй клеммы и соединяется на вторую (противоположную) клемму.

Остающиеся свободными еще две клеммы лампы подключаются к розетке стартера. Вот, собственно, и вся схема, которая до появления электронных полупроводниковых моделей ЭПРА использовалась повсеместно.

Вариант подключения двух люминесцентных светильников через один дроссель: 1 – фильтрующий конденсатор; 2 – дроссель, по мощности равный мощности двух приборов света; 3, 4 – лампы; 5,6 – стартеры запуска; L – фазная линия питания; N – нулевая линия

На базе этой же схематики реализуется решение с подключением двух люминесцентных ламп, одного дросселя и двух стартеров. Правда в этом случае требуется подбирать дроссель по мощности, исходя из суммарной мощности газовых светильников.

Дроссельный схемный вариант можно доработать с целью устранения дефекта стробирования. Он довольно часто возникает именно на светильниках с электромагнитным ЭПРА.

Доработка сопровождается дополнением схемы диодным мостом, который включается после дросселя.

Подключение к электронным модулям

Варианты подключения люминесцентных ламп на электронных модулях несколько отличаются. Каждый электронный пускорегулирующий аппарат имеет входные клеммы для подачи сетевого напряжения и выходные клеммы под нагрузку.

В зависимости от конфигурации ЭПРА, подключается одна или несколько ламп. Как правило, на корпусе прибора любой мощности, рассчитанного на подключение соответствующего количества светильников, имеется принципиальная схема включения.

Порядок подключения люминесцентных светильников к устройству пуска и регулирования, действующего на полупроводниковых элементах: 1 – интерфейс для сети и заземления; 2 – интерфейс для светильников; 3,4 – светильники; L – фазная линия питания; N – нулевая линия; 1…6 – контакты интерфейса

На схеме выше, к примеру, предусматривается питание максимум двух люминесцентных ламп, так как в схеме используется модель двухлампового балласта.

Два интерфейса прибора рассчитаны так: один для подключения сетевого напряжения и заземляющего провода, второй для подключения ламп. Этот вариант тоже из серии простых решений.

Аналогичный прибор, но рассчитанный уже для работы с четырьмя лампами, отличается наличием увеличенного числа клемм на интерфейсе подключения нагрузки. Сетевой интерфейс и линия подключения заземления остаются без изменений.

Разводка подключения по четырехламповому варианту. В качестве устройства запуска и регулирования также используется электронный полупроводниковый ЭПРА. На схеме 1…10 – контакты интерфейса устройства пуска и регулирования

Однако наряду с простыми устройствами, – одно-, двух-, четырехламповыми – встречаются пускорегулирующие конструкции, схематика которых предусматривает использование функции регулировки свечения люминесцентных ламп с помощью.

Это так называемые управляемые модели регуляторов. Рекомендуем подробнее ознакомиться с принципом работы осветительных приборов.

Чем отличаются подобные приборы от уже рассмотренных устройств? Тем, что в дополнение к сетевому и нагрузочному оснащаются еще интерфейсом для подключения управляющего напряжения, уровень которого обычно составляет 1-10 вольт постоянного тока.

Четырехламповая конфигурация с возможностью плавной регулировки яркости свечения: 1 – переключатель режима; 2 – контакты подвода управляющего напряжения; 3 – заземляющий контакт; 4, 5, 6, 7 – люминесцентные лампы; L – фазная линия питания; N – нулевая линия; 1…20 – контакты интерфейса устройства пуска и регулирования

Таким образом, разнообразие конфигурации электронных пускорегулирующих модулей позволяет организовать системы осветительных приборов разного уровня. Имеется в виду не только уровень мощности и охвата площадей, но также уровень управления.

Выводы и полезное видео по теме

Видеоматериал, сделанный на основе практики электромонтера, рассказывает и показывает — какой прибор из двух должен быть признан конечным пользователем более качественным и практичным.

Этот сюжет лишний раз подтверждает, что простые решения выглядят надёжными и долговечными:

Между тем ЭПРА продолжают совершенствоваться. На рынке периодически появляются новые модели таких приборов. Электронные конструкции тоже не лишены недостатков, но по сравнению с электромагнитными вариантами, явно показывают лучшие технические и эксплуатационные качества.

Вы разбираетесь в вопросах принципа работы и схем подключения ЭПРА и хотите дополнить изложенный выше материал личными наблюдениями? Или хотите поделиться полезными рекомендациями по нюансам ремонта, замены или выбора пускорегулирующего аппарата? Пишите, пожалуйста, свои комментарии к этой записи в блоке ниже.

Пускорегулирующая аппаратура. Виды и устройство. Работа

Аппараты для регулировки пуска начали появляться давно. За последнее время пускорегулирующая аппаратура была сильно изменена и усовершенствована. Не все понимают, насколько выгодна установка таких аппаратов.

Пускорегулирующая аппаратура на основе электронных элементов (ЭПРА) монтируется в приборы освещения. Светильники с таким аппаратом значительно экономят электричество, а также нет необходимости приобретать новые лампы, так как срок службы ламп значительно повышается.

Лампы с ЭПРА светят приятным качественным светом, который благотворно влияет на человека, по крайней мере, не вредит ему. Частота мерцания света таких ламп составляет около 400 Гц. При этом глаза человека меньше устают, нет головной боли.

Свойства и виды

Чаще всего, пускорегулирующая аппаратура делится на два вида:

  1. Единый блок аппаратуры.
  2. Отдельные части аппаратуры.
ЭПРА также можно разделить по видам, учитывая тип лампы:
При рассмотрении свойств функционирования таких аппаратов, их можно разделить на:
  • Электронные.
  • Электромагнитные.
Пускорегулирующая аппаратура по соответствию классов, то ЭПРА делятся на классы:
  • Регулируемые — А 1.
  • Нерегулируемые — А 2.
  • С большими потерями (нерегулируемые) — А 3.

При приобретении светильника с регулирующим пусковым аппаратом необходимо следовать новейшим разработкам и рекомендациям специалистов, так как устройства постоянно обновляются, в них внедряются последние современные новшества, о которых вы можете не знать.

Достоинства

Инновационные модели таких аппаратов дают возможность включиться лампе сразу после разогревания ее электродов. Также, при работе лампы пускорегулирующий аппарат поддерживает оптимальное значение напряжения. Следовательно, расход электроэнергии меньше при применении такого устройства.

Электронные аппараты пуска и регулировки вполне заменяют подобными аналогами. Однако, это тяжелые и шумные дроссели. Они уже практически не используются в таких устройствах. О них будет рассказано ниже.

Пускорегулирующая аппаратура имеет свои

особенности и преимущества:

  • Снижение мерцания лампы.
  • Нет сильной вспышки лампы по время неисправности стартера, поэтому срок службы лампы повышается.
  • Обеспечивается освещение со стабильным потоком света.
  • Пусковые электронные аппараты оснащаются регулировкой по мощности, помогающие настроить яркость света в различных помещениях.
  • Экономия энергии в сравнении с обычными источниками света.
  • Безопасность с экологической точки зрения, нет необходимости в специальной особой утилизации, так как не имеют в составе ртути, других вредных и ядовитых веществ.
  • Повышенная надежность, устойчивость к вибрации, прочность из-за того, что конструкция не имеет горелки, нити накала, стеклянной колбы.
  • Не реагирует на скачки напряжения.
  • Во момент запуска не создает перегрузку электрической сети.
  • Сниженный ток потребления, для обычных наружных светильников ток составляет 0,5 ампера, в сравнении с источником света на газоразрядной лампе – 2,2 ампера, а ток запуска – 4,5 ампера.
  • Экономия денежных ресурсов.
  • Возможность функционирования светильников при низких температурах.

Принцип действия

Работу можно разделить на следующие этапы:
  • Разогрев электродов. Они запускаются очень быстро, в течение нескольких долей секунды, создается плавная подача освещения. Этот фактор дает возможность увеличить срок работы лампы до замены. Также, светильники, оснащенные такой аппаратурой, можно включать при пониженных температурах. Это не снижает их срок службы.
  • Вторым этапом является розжиг. При этом создается импульс высокой разности потенциалов. Это дает возможность наполнения колбы газом.
  • Горение – это заключительный этап, поддерживающий постоянное повышенное напряжение, которое нужно для функционирования лампы.

Схема пускорегулирующей аппаратуры

Чаще всего схема состоит из 2-тактного преобразователя напряжения. Конструкция бывает мостовой и полумостовой. Мостовые варианты очень редко применяются.

Сначала диодный мост выпрямляет напряжение, далее оно сглаживается емкостью до постоянного напряжения. Полумостовой инвертор делает напряжение высокочастотным. В схеме применяется трансформатор с сердечником в виде тора с тремя катушками. Основная обмотка подает изменяющееся напряжение резонанса на лампу. Остальные работают в качестве дополнительных обмоток, которые в противофазе открывают ключи на транзисторах.

В результате, перед запуском лампы, наибольший ток разогревает обе нити лампы, а напряжение на емкости включает лампу. Она светит и не изменяет частоту с самого начала. Время запуска лампы составляет не более одной секунды.

ЭПРА со светодиодами

Многие приборы освещения применяются с пускорегулятором. Рассмотрим, какие достоинства применения ЭПРА в модулях светодиодов.

Основным положительным моментом здесь является тот факт, что осуществляется защита устройства от сильных перепадов напряжения и электромагнитных помех. Другими словами, пускорегулирующая аппаратура защищает светодиодный модуль от капризов поведения питающей сети.

Кроме этого, происходит экономия расхода энергии в пределах 30%, поэтому это играет большую роль в применении ЭПРА. Электричество экономится за счет того, что теперь не нужно часто менять стартеры, которые очень часто выходят из строя, в отличие от ПРА.

Производители

Пускорегулирующая аппаратура выбирается большинством потребителей. Наиболее популярными изготовителями приборов освещения с ЭПРА стали следующие фирмы:
  • Helvar – начало выпуска изделий в 1921 г. С самого начала фирма показала себя наиболее надежной в выпуске радиотехники, наладила выпуск пускорегулирующих устройств, выпуск продолжается до настоящего времени. Страна фирмы изготовителя – Финляндия.
  • Tridonic – является одной из лидирующих фирм в производстве аппаратуры для освещения. Фирма в конце 70-х годов начала производство своей продукции, которая до сих пор прославляет качество австрийских товаров.
  • Osram – гигантская фирма в сфере выпуска приборов освещения и комплектующих элементов к ним.

Эти именитые производители выпускают недешевую продукцию, но это оправдывается качеством. Хотя, подобные товары других фирм можно приобрести намного дешевле.

Порядок выбора

Перед покупкой пускорегулятора нужно сначала правильно выбрать производителя. Наиболее популярными являются сегодня фирмы, которые мы рассмотрели выше. Но, выбрав устройство одной из этих фирм, нет гарантии того, что выбранный аппарат не станет причиной неисправности вашего источника света, так как кроме изготовителя, нужно обращать внимание и на другие моменты.

Особое внимание необходимо обращать на такие параметры и свойства:
  • Тип применяемых ламп.
  • Мощность ламп.
  • Условия окружающей среды (указаны в инструкции к устройству).

Электромагнитная пускорегулирующая аппаратура

Простые электромагнитные пускорегуляторы (ЭМПРА) включают в себя обычное индуктивное сопротивление, состоящее из металлического сердечника, на который намотан медный провод. Применение такого вида сопротивления обуславливает к значительной потере мощности и выделению теплоты. Мощность функционирующей с пускорегулятором лампы на 26 ватт для сети обходится в 32 ватта. Это значит, что потери мощности равны 6 ваттам, это 23%.

Есть несколько методов применения:
  • Со стартером.
  • Без стартера.
  • С ограничением температуры.

Принцип действия ЭМПРА

Схема электромагнитного пускорегулирующего аппарата со стартером считается наиболее дешевой и простой.

При включении питания напряжение по обмотке дросселя и нити накала идет к электродам стартера. Он выполнен в виде небольшой лампы с газовым разрядом. Напряжение образует тлеющий разряд, инертный газ начинает светиться и нагревать его среду. Биметаллический датчик включает контакты и в цепи образуется замкнутый контур, с помощью которого нагревается нить люминесцентной лампы. Создается термоэлектронная эмиссия. Вместе с этим нагреваются пары ртути, расположенные в колбе.

Напряжение на электродах стартера и разряд уменьшаются, температура понижается. Биметаллическая пластина размыкает цепь между электродами и ток прекращается. В дросселе образуется ЭДС самоиндукции, создающая кратковременный разряд между нитями накала.

Величина разряда может достигать нескольких тысяч вольт, которые пробивают инертный газ с парами ртути, возникает дуга, которая и является источником света.

Стартер в дальнейшей работе не принимает участие. После запуска светильника ток нуждается в ограничении, иначе перегорят элементы схемы. Эту задачу выполняет дроссель, индуктивное сопротивление которого ограничивает увеличение тока, не дает лампе выйти из строя.

Достоинства использования ЭМПРА с источником света:
  • Равномерный и быстрый запуск.
  • Нет мерцания.
  • Повышение срока работы лампы.
  • Повышенный КПД.
  • Улучшенная защита от удара током.
  • Коэффициент мощности составляет выше 0,9.
  • Главное достоинство – низкая цена.
 Недостатки ЭМПРА:
  • Большие габариты и масса.
  • Значительные потери мощности, особенно для люминесцентных ламп.
  • Частота потока света составляет 100 герц, это влияет через подсознание на человека. Импульсы света образуют эффект стробоскопа, когда детали и предметы, движущиеся с частотой, совпадающей с пульсацией света, представляются для человека неподвижными. Это может негативно отразиться на повышении травматизма на производстве.
  • Свет не управляется, это создает ограничение в комфортных условиях.
  • Дроссели издают гул, неприятный для человека звук.

Чтобы устранить эти недостатки, для люминесцентных ламп самым действенным способом оказалось подключение ламп к току высокой частоты. Для создания такого подключения последовательно с лампой включают балласт в виде электронного устройства, которое переделывает напряжение одной частоты в другую, и обеспечивает запуск ламп. Эти устройства называются электронная пускорегулирующая аппаратура (ЭПРА).

Похожие темы:

Пускорегулирующие аппараты люминесцентных ламп | Электроснабжение, электрические сети | Архивы

Страница 44 из 52

Дроссель, включенный в цепь люминесцентной лампы, не только вызывает дополнительный расход энергии (порядка 20% от энергии), потребляемой лампой, но и приводит к резкому снижению cosφ установки (до 0,5—0,6). При большом количестве включенных в сеть ламп, если не принять специальных мер для увеличения cosφ, осветительная установка становится неэкономичной.

Для повышения cosφ осветительной установки применяются специальные устройства и схемы включения ламп. Если в схеме включения лампы предусмотрено устройство (конденсатор) для повышения cosφ, то такая схема носит название компенсированной.

В компенсированных схемах cosφ комплекта «лампа — пускорегулирующая аппаратура» повышается до 0,9—0,95. Дроссель и компенсирующий конденсатор, а также разрядные сопротивления, входящие в схему включения лампы, монтируются вместе в общем металлическом кожухе. Схема, представленная на рис. 15.4, является компенсированной с отстающим током.


Рис. 15.11. Двухламповая схема включения люминесцентных ламп

Можно получить схему включения лампы с опережающим током, если последовательно с дросселем будет включен конденсатор, реактивное сопротивление которого в несколько раз превышает сопротивление дросселя.

В этой схеме (рис. 15.11) последовательно включенные дроссель Дб и конденсатор С в момент включения лампы значительно снижают пусковой ток, который может оказаться недостаточным для нагрева электродов. Поэтому для увеличения тока в момент включения лампы вводится компенсирующий дроссель Дк, который включается последовательно со стартером. Такая схема для одной лампы не имеет практического значения, она применяется в двухламповых светильниках, причем одна из ламп включается по схеме отстающего тока, а другая по схеме опережающего тока. При этом cosφ всего комплекта составляет 0,9—0,95 и значительно снижается стробоскопический эффект.

Для включения двух ламп одинаковой мощности по двухламповой схеме применяют пускорегулирующий аппарат типа ПРЛ-2.

Пускорегулирующие аппараты обычно устанавливаются непосредственно в осветительной арматуре. В некоторых случаях они могут быть установлены на потолке или на стенах либо вообще вынесены за пределы освещаемого помещения. В табл. 15.2 даны технические данные пускорегулирующих аппаратов для люминесцентных ламп.

Основные технические данные наиболее распространенных пускорегулирующих аппаратов (ПРА)


Примечание. Марка пускорегулирующего аппарата состоит из ряда цифровых и буквенных индексов. На первом месте стоит цифра, указывающая, какое количество ламп включается с аппаратом; на втором месте — буквенное обозначение; УБ — стартерный аппарат, АБ — бесстартерный аппарат; на третьем месте — буква, характеризующая сдвиг потребляемого аппаратом тока: И — индуктивный, К — компенсированный; на четвертом месте — дробь, числитель которой — мощность лампы, знаменатель — напряжение питающей сети. Буквенный индекс в конце маркировки означает дополнительную характеристику аппарата: А — антистробоскопический, Н — независимый, В — встроенный, П — с пониженным уровнем шума.

§ 15.6. Достоинства и недостатки люминесцентных ламп

Следует отметить следующие достоинства люминесцентных ламп:

  1. Спектр излучения люминесцентных ламп качественно наиболее близок к естественному дневному свету.
  2. Люминесцентные лампы имеют весьма высокую светоотдачу.
  3. Люминесцентная лампа вследствие наличия большой излучающей поверхности обладает небольшой яркостью.
  4. Люминесцентная лампа имеет большую продолжительность горения (до 5000 ч).
  5. Люминесцентная лампа менее чувствительна к изменениям напряжения сети, чем лампа накаливания.

Люминесцентная лампа имеет следующие недостатки:

  1. Люминесцентная лампа не может быть включена непосредственно в электрическую сеть без вспомогательной аппаратуры. Вследствие этого значительно усложняется эксплуатация осветительной установки.
  2. Наличие в схеме лампы дросселя приводит к увеличению потребления энергии из сети на 20—25% по сравнению с потреблением энергии самой лампой, что снижает экономичность осветительной установки.
  3. Световая отдача люминесцентной лампы зависит от температуры внешней среды.
  4. Люминесцентные лампы изготовляются на небольшие мощности 15—125 вт. С увеличением мощности ламп значительно увеличиваются их размеры, что ограничивает их применение. Кроме того, для получения повышенной освещенности, при сравнительно небольшой единичной мощности ламп, требуется установка большого их количества, что делает дороже осветительную установку и усложняет ее эксплуатацию.
  5. Осветительная установка с люминесцентными лампами, если не принять специальных мер, создает стробоскопический эффект.
  6. Частые включения люминесцентных ламп приводят к резкому сокращению срока их службы.

Исследования показали, что можно повысить светоотдачу люминесцентных ламп и удлинить срок службы, если питать их током повышенной частоты. Так, например, при частоте 3—4 кгц светоотдача возрастает на 6—15%, а срок службы — на 12%. Одновременно снижаются вес и габариты пускорегулирующих аппаратов и потери энергии в них. В настоящее время вопрос о применении токов повышенной частоты для люминесцентного освещения разрабатывается.

ПРА для газоразрядных ламп

Принципиальная схема люминесцентной лампы с индуктивным балластом и устройством зажигания (без коррекции коэффициента мощности).

Типичной характеристикой всех газоразрядных ламп является их отрицательная зависимость тока от напряжения, т.е. чем ниже напряжение, тем выше рабочий ток. В отличие от ламп накаливания, в которых нить накаливания действует как устройство ограничения тока, рабочий ток в газоразрядных лампах постоянно увеличивается из-за лавинного ионизационного эффекта инертного газа, который, если его не контролировать, приведет к разрушению. лампы.

Следовательно, для работы газоразрядных ламп необходимо использовать балласт для ограничения тока. В простейшем виде это омические ограничители тока. Однако этот тип устройства ограничения тока используется нечасто, поскольку он имеет тенденцию к нагреванию, что, в свою очередь, приводит к значительному потреблению энергии; они иногда используются для ртутных ламп со встроенным балластом, в которых в качестве омического ограничителя тока используется нить накала.

Ограничение тока с помощью наложенных конденсаторов, то есть посредством емкостного реактивного сопротивления, снижает потери энергии, но сокращает срок службы лампы, поэтому не является популярным решением.На практике ограничение тока в основном осуществляется за счет применения индуктивных устройств ограничения тока, таких как запаздывающие балласты или трансформаторы, особенно потому, что этот тип балласта имеет дополнительное преимущество, заключающееся в том, что его можно использовать для создания напряжения зажигания для зажигания лампы. Наряду с индуктивными балластами все большее значение приобретает высокочастотный электронный механизм управления. Электронные пускорегулирующие аппараты не только выполняют функцию токоограничивающих устройств, но и служат воспламенителями и обеспечивают более эффективную работу лампы.

Напряжение зажигания газоразрядных ламп намного выше их рабочего напряжения, а также обычно выше напряжения сети. Поэтому для зажигания ламп требуется специальное оборудование. Это может быть связано с дополнительными электродами, встроенными в лампу, которые ионизируют газ в лампе с помощью светового разряда. Однако зажигание обычно осуществляется за счет скачка напряжения, который может производиться индуктивно стартером и балластом, но в случае более высоких напряжений зажигания требуется трансформатор утечки или воспламенитель.

В последнее время стали доступны как электронные стартеры, так и электронные устройства зажигания.

2.4.1.1 Люминесцентные лампы

Люминесцентные лампы могут работать от обычного балласта (CB) и стартера. В этом случае балласт действует как индуктивный резистор; он состоит из запаздывающего балласта, который состоит из многослойного железного сердечника и обмотки из медной проволоки.

Обычные балласты — самый дешевый вид балластов, но они вызывают значительные потери энергии из-за выделения тепла.

Балласты с малыми потерями (LLB) сравнимы с обычными балластами, за исключением того, что их сердцевина имеет более высокое качество и они имеют более толстые медные провода для уменьшения потерь энергии в ПРА. Балласты с малыми потерями лишь немного дороже обычных балластов, поэтому их часто используют вместо последних.

Электронные балласты (ЭПРА) отличаются по весу, форме и функциям от обычных индуктивных балластов. Они состоят из фильтра, предотвращающего любую реактивную обратную связь с питанием от сети, выпрямителя и высокочастотного инвертора.

Электронные пускорегулирующие аппараты

имеют встроенное устройство зажигания, что означает отсутствие необходимости в дополнительном зажигающем устройстве. Они обеспечивают запуск без мерцания и автоматически выключаются, если лампа неисправна, что предотвращает повторное включение зажигателя; переключение и эксплуатация так же безупречны, как и с лампами накаливания.

Работа ламп на частоте 25-40 кГц дает ряд преимуществ, прежде всего, повышенную светоотдачу. Это, в свою очередь, означает, что достигается световая мощность, но при меньшем потреблении энергии.В то же время потери мощности значительно меньше. Высокая рабочая частота ламп также предотвращает стробоскопические эффекты и эффекты мерцания, а также магнитные помехи и гудение, которые связаны с обычными балластами.

Электронные балласты в значительной степени нечувствительны к колебаниям напряжения и частоты. Они могут работать как при частоте 50, так и 60 Гц и в диапазоне напряжений от 200 до 250 В. Поскольку они также предназначены для работы от постоянного тока, люминесцентные лампы с электронными лампами могут работать от батарей, если произойдет сбой тока. , тем самым упрощая обеспечение аварийного освещения.Однако электронные балласты дороже индуктивных.

Если люминесцентные лампы работают с индуктивными балластами, необходимо предусмотреть отдельный пускатель. Стартер предварительно нагревает электроды лампы. Как только электроды достаточно нагреются, стартер размыкает цепь. Это вызывает скачок напряжения в балласте, который, в свою очередь, зажигает лампу. Самая простая форма воспламенителей — это стартеры накаливания. Они состоят из биметаллических электродов

.

Читать здесь: Информация

Была ли эта статья полезной?

Балласты / объяснение механизма управления

Балласты используются в лампах дневного света и имеют решающее значение для обеспечения бесперебойной работы осветительной арматуры.Ясно, что эта часть приспособления важна, но знаете ли вы, как и почему? Прочтите, чтобы узнать все, что вам нужно знать о балластах, о различных типах балластов и о том, когда вам может потребоваться их замена.

Что такое балласт?

ПРА, вероятно, самая важная часть любого люминесцентного светильника, поскольку он передает энергию через лампу. Он может обеспечить правильное количество напряжения для запуска лампы, а также регулирует количество тока, который течет к ней после того, как вы ее включили.Без регулирования, которое обеспечивает балласт, источники света перегреются и перегорят в течение нескольких секунд. Балласты предназначены для работы с определенным количеством ламп определенного типа при определенном напряжении, поэтому не все балласты совместимы со всеми люминесцентными лампами.

Фото Джордана Санчеса / Unsplash

Какие бывают типы балластов?

Есть два разных типа люминесцентных балластов: магнитные и электронные.Магнитные балласты — это более старая технология, и они, как правило, дешевле, но характеризуются тем, что они гудят, а также мерцают примерно 120 раз в секунду. С другой стороны, электронные балласты работают относительно тихо, устраняя мерцание, характерное для магнитных балластов, и являются более энергоэффективными, что делает их гораздо лучшим выбором. Этот тип балласта также может быть быстрым, мгновенным или запрограммированным. У нас есть широкий ассортимент электрических балластов, которые можно использовать для пуска и регулирования линейных и компактных люминесцентных ламп.

Фото Антона Белашова / Unsplash

Когда стоит подумать о замене балласта?

В целом маловероятно, что вам нужно будет менять балласт так часто,
, но это нормально, если примерно через три года можно увидеть некоторые признаки ухудшения характеристик.
Обычно балласты неуклонно теряют свои характеристики, поэтому вы заметите, что лампы переходят от небольших проблем с поддержанием полной светоотдачи до полного отказа от освещения.Все балласты в какой-то момент выходят из строя, поэтому важно знать признаки отказа, чтобы вы могли их устранить и не менять вместо этого лампочку. Если ваш свет кажется тусклым, гудящим, быстро мерцающим или меняющим цвет, возможно, пришло время отремонтировать ваш прибор.

Люминесцентный электронный блок управления — Philips

Люминесцентный электронный блок управления — Philips

Теперь вы посещаете веб-сайт Philips, посвященный освещению.Вам доступна локализованная версия.

Продолжать

Сортировать по:

По умолчанию: A-ZZ-AN, Newest

.

{{/ if_checkFilterType}}

{{#if_checkFilterType displayType «checkbox»}}

{{отображаемое имя}}

{{#each filterKeys}}

{{/каждый}}

b2b-li.d77v2-фильтры-развернуть

b2b-li.d77v2-фильтры-коллапс

{{/ if_checkFilterType}}

Закрывать

Показать фильтры

Показать больше фильтров

Показать меньше фильтров

Выбранные критерии фильтрации не дали никаких результатов.Пожалуйста, настройте свои фильтры.

{{/если}}

{{#if valueLadder}}

{{valueLadder.label}}

{{/если}}

{{имя}}

{{totalProducts}}
{{#if_compare 1 totalProducts}}
продукты
{{еще}}
продукт
{{/ if_compare}}

{{#if wow}}

{{Вот это да}}

{{/если}}

Сортировать по:

По умолчанию: A-ZZ-AN, Newest

.

Выбранные критерии фильтрации не дали никаких результатов.Пожалуйста, настройте свои фильтры.

  • Добавить товар

  • Добавить товар

  • Добавить товар

Добавить товар

Не можете найти то, что ищете?

Возможно, одна из этих ссылок поможет

© 2018-2021 Сигнифай Холдинг.Все права защищены.

ПРА

для люминесцентных ламп T5 в PEW Electrical

Код заказа Описание Размеры ВxШxД (мм)
PC1 / 14 1 ​​x 14/21/28/35 Вт T5 ВЧ балласт 28 х 30 х 280
PC2 / 14 2 x 14/21/28/35 Вт T5 ВЧ балласт 28 х 30 х 360
PC1 / 24 1 ​​х 24 Вт T5 ВЧ балласт 28 х 30 х 360
PC2 / 24 2 x 24 Вт T5 ВЧ балласт 28 х 30 х 360
PC1 / 39 1 ​​x 39 Вт T5 ВЧ балласт 28 х 30 х 360
PC2 / 39 ВЧ балласт 2 x 39 Вт T5 28 х 30 х 360
PC1 / 49 1 ​​x 49 Вт T5 ВЧ балласт 28 х 30 х 360
PC2 / 49 2 x 49 Вт T5 ВЧ балласт 28 х 30 х 360
PC1 / 54 1 ​​х 54 Вт T5 ВЧ балласт 28 х 30 х 360
PC2 / 54 2 x 54 Вт T5 ВЧ балласт 28 х 30 х 360
PC1 / 80 1 ​​х 80 Вт T5 ВЧ балласт 28 х 30 х 360

Примечание. Доступны комплекты гибких поводков.Пожалуйста, убедитесь, что вы заказали их для двухбалластных узлов.

Biax 2D 18W лампа со встроенным ПРА

г GE Lighting Biax TM 2D TM 18 Вт с встроенным управлением шестерни Biax 2D 18 Вт Компактные люминесцентные лампы Информация о продукте для производителей оригинального оборудования ОПИСАНИЕ Новое поколение Biax TM 2D TM лампа s с встроенным управлением gear — для простой и эффективной интеграции в дизайн новой фурнитуры.Крышка перевернута, чтобы минимизировать общую глубину. Все лампы Biax TM 2D TM подходят для использования в круглых или квадратных светильниках, устанавливаемых на стену или потолок как внутри, так и снаружи. Круглый световой поток распространяется на большую площадь, что означает отсутствие необходимости в дорогостоящей оптике в приборе. «Круглый» дизайн обеспечивает равномерное распределение света, избегая затенения на концах и темных участков. ОСОБЕННОСТИ • Работает от 220-240 В / 50 Гц • Срок службы 10 000 часов • Доступен в четырех цветовых температурах — 2700, 3000, 3500, 4000 K • Высокий индекс цветопередачи Ra = 82 • Одинаковая светоотдача в любом положении горения ОБЛАСТИ ПРИМЕНЕНИЯ • Жилые • бытовые • гостиницы / мотели • рестораны • подсобные помещения • рабочее освещение СООТВЕТСТВИЕ СТАНДАРТАМ МЭК Компактные люминесцентные лампы компании GE Lighting соответствуют IEC 60901 и IEC 61199.ПАТЕНТНАЯ ИНФОРМАЦИЯ Biax TM 2D TM лампа s с встроенным элементом управления < / strong> gear защищены европейским патентом № 0057974 и с другими заявленными патентами. ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ 18 Вт Длина в м м 140 Ширина в м м 140 Вес, грамм с 90 © General Electric Company, 2001. РАЗМЕРЫ ЛАМПЫ КРЫШКА 60 Макс.137 GRZ 10d Biax TM 2D TM 18W с интегральным управлением < / strong> gear — Информация о продукте для OEM-производителей 26,5 62 Макс. 13,2 Макс. 141 21 2D TM 18 Вт лампа с встроенным управлением механизмом Biax TM 1

40 Вт люминесцентным механизмом управления для кругового Лампы (40 Вт) — Edyco Lighting

Тип патрона лампы: C10Q 40 Вт

Область технологий: флуоресцентный

Цвет: белый

Часто задаваемые вопросы

Гарантия самой низкой цены на все наши осветительные приборы, и ваш люминесцентный блок управления мощностью 40 Вт для круглых ламп (40 Вт) не является исключением

Покупайте уверенно.В Edyco Lighting мы стремимся предлагать всем нашим клиентам лучшее соотношение цены и качества для всех наших качественных осветительных приборов, и люминесцентный блок управления мощностью 40 Вт для круглых ламп (40 Вт) не является исключением. Если вы найдете люминесцентный механизм управления для круглых ламп мощностью 40 Вт (40 Вт) где-нибудь по более низкой цене, мы превзойдем его на 5%.

Узнайте, почему все больше клиентов в Австралии выбирают Edyco Lighting для покупки своего люминесцентного ПРА мощностью 40 Вт для круглых ламп (40 Вт).

В Edyco Lighting мы объединяем нашу истинную страсть к осветительной продукции с непревзойденным отраслевым опытом, чтобы предложить вам лучший ассортимент осветительных приборов и продукции: потолочные светильники, даунлайты, электротехнические изделия, выходы и аварийные ситуации, вентиляторы, глобусы, обогреватели, лампы, осветительные аксессуары , Наружное освещение, Умное освещение, Фонари на солнечных батареях, Ленточное освещение, Трансформаторы и драйверы, Настенные светильники и многое другое.Именно по этой причине в нашем интернет-магазине есть только самые качественные продукты, представленные на рынке, по самым конкурентоспособным ценам.

Итак, зачем покупать следующий люминесцентный ПРА мощностью 40 Вт для круглых ламп (40 Вт) у Edyco Lighting?

Что ж, если вы собираетесь приобрести совершенно новый и подлинный люминесцентный блок управления мощностью 40 Вт для круглых ламп (40 Вт), то вы, безусловно, попали в нужное место. Видите ли, Edyco Lighting — это любимый австралийский интернет-магазин осветительной продукции, который предлагает нашим клиентам самый широкий ассортимент качественных осветительных приборов и продуктов.

Наш интернет-магазин — это семейный австралийский бизнес. Поэтому мы особенно гордимся тем, что заботимся исключительно о наших очень уважаемых клиентах в Австралии. Кроме того, Edyco Lighting управляется людьми, увлеченными миром освещения и активно участвующими в этой отрасли. Мы также сами протестировали люминесцентный механизм управления для круглых ламп мощностью 40 Вт (40 Вт) и полностью подтвердили качество продукта.

Хороший ли люминесцентный механизм управления мощностью 40 Вт для круглых ламп (40 Вт)?

Совершенно верно! как упоминалось ранее, мы поддерживаем все наши продукты и тестируем их лично.Вы можете быть уверены, что ваш новый люминесцентный ПРА для круглых ламп мощностью 40 Вт (40 Вт) будет работать так, как рекламируется, и повысит ценность вашего следующего проекта освещения.

Чтобы гарантировать наилучший опыт для всех наших клиентов, мы поставляем наши люминесцентные управляющие устройства мощностью 40 Вт для круглых ламп (40 Вт) только напрямую от производителя или официального дистрибьютора. Точно так же мы предлагаем только лучшие товары самых уважаемых на рынке брендов.

В том маловероятном случае, если вы недовольны своим новым люминесцентным ПРА мощностью 40 Вт для круглых ламп (40 Вт), пожалуйста, сразу же свяжитесь с нами.

Вам нужна дополнительная информация о флуоресцентном ПРА 40 Вт для круглых ламп (40 Вт)?

Являясь одним из самых популярных и быстрорастущих магазинов осветительной продукции в Австралии, мы стремимся оказывать помощь всем типам клиентов, как жилых, так и коммерческих. Независимо от того, собираетесь ли вы реализовать проект своими руками, являетесь профессионалом в области освещения или торговцем, вы можете быть уверены, что у нас есть что-то идеальное для ваших нужд.

люминесцентная лампа

Люминесцентная лампа или Люминесцентная лампа представляет собой газоразрядную лампу, которая использует электричество для возбуждения паров ртути в аргоне или неоновом газе, в результате чего образуется плазма, излучающая коротковолновый ультрафиолетовый свет.Затем этот свет заставляет люминофор флуоресцировать, производя видимый свет.

В отличие от ламп накаливания, люминесцентные лампы всегда требуют пускорегулирующего устройства для регулирования потока энергии через лампу. В обычных трубных светильниках (обычно длиной 4 фута (120 см) или 8 футов (240 см)) балласт заключен в приспособление. Компактные люминесцентные лампы могут иметь обычный балласт, расположенный в светильнике, или они могут иметь балласты, встроенные в лампы, что позволяет использовать их в патронах, обычно используемых для ламп накаливания.

Рекомендуемые дополнительные знания

История

История люминесцентных ламп начинается с ранних исследований электрических явлений. К началу 18 века экспериментаторы наблюдали лучистое свечение, исходящее от частично вакуумированных стеклянных сосудов, через которые проходил электрический ток. Немногое можно было сделать с этим явлением до 1856 года, когда немецкий стеклодув по имени Генрих Гейсслер (1815-1879) создал ртутный вакуумный насос, который откачивает стеклянную трубку в такой степени, которая ранее была невозможна.Когда электрический ток проходил через трубку Гейсслера, можно было наблюдать сильное зеленое свечение на стенках трубки у катодного конца.

Трубка Гейсслера, производившая красивые световые эффекты, была популярным источником развлечений. Однако более важным был его вклад в научные исследования. Одним из первых ученых, экспериментировавших с трубкой Гейсслера, был Юлиус Плюкер (1801-1868), который в 1858 году систематически описал люминесцентные эффекты, происходящие в трубке Гейсслера.Он также сделал важное наблюдение, что свечение в трубке меняет положение, когда она находится вблизи электромагнитного поля.

Запросы, которые начались с трубки Гейсслера, продолжились, поскольку были созданы еще более совершенные пылесосы. Самой известной была откачиваемая трубка, использовавшаяся для научных исследований Уильямом Круксом (1832-1919), откачиваемая высокоэффективным ртутным вакуумным насосом, созданным Германом Шпренгелем (1834-1906). Исследования, проведенные Круксом и другими, в конечном итоге привели к открытию электрона в 1897 году Дж.Дж. Томсон (1856-1940). Но трубка Крукса, как ее стали называть, давала мало света, потому что в ней был слишком хороший вакуум и, следовательно, не хватало следовых количеств газа, необходимых для электрически стимулированной люминесценции.
Важным этапом на долгом научном пути к созданию люминесцентной лампы стало наблюдение Александра Эдмона Беккереля (1820–1891) в 1859 году люминесценции некоторых веществ, помещенных в трубку Гейсслера. Он продолжил нанесение тонких покрытий из люминесцентных материалов на поверхности этих трубок.Произошла флуоресценция, но трубки были очень неэффективными и имели короткий срок службы. Несколькими годами ранее другой ученый, Джордж Г. Стоукс (1819–1903), заметил, что ультрафиолетовый свет вызывает флуоресценцию плавикового шпата, свойство, которое станет критически важным для разработки люминесцентных ламп много десятилетий спустя.

В то время как Беккерель был в первую очередь заинтересован в проведении научных исследований флуоресценции, Томас Эдисон (1847–1931) вкратце рассмотрел флуоресцентное освещение из-за его коммерческого потенциала.Он изобрел люминесцентную лампу в 1896 году, в которой в качестве флуоресцентного вещества использовалось покрытие из вольфрамата кальция, но, хотя в 1907 году на нее был получен патент, она не была запущена в производство. Как и в случае с некоторыми другими попытками использовать трубки Гейсслера для освещения, у него был короткий срок службы, и, учитывая успех лампы накаливания, у Эдисона не было особых причин для поиска альтернативных средств электрического освещения.

Хотя Эдисон потерял интерес к люминесцентному освещению, одному из его бывших сотрудников удалось создать газовую лампу, которая добилась определенного коммерческого успеха.В 1895 году Дэниел Макфарлан Мур (1869-1933) продемонстрировал электрически активированные трубки длиной от 7 до 9 футов, в которых для излучения белого или розового света использовался углекислый газ или азот соответственно. Как и в случае с будущими люминесцентными лампами, он был значительно сложнее лампы накаливания.

После многих лет работы Мур смог продлить срок службы ламп, изобретя электромагнитный клапан, который поддерживал постоянное давление газа внутри трубки. Хотя лампа Мура была сложной, дорогой в установке и требовала очень высокого напряжения, она была значительно более эффективной, чем лампы накаливания, и давала более естественный свет, чем лампы накаливания.С 1904 года система освещения Мура была установлена ​​во многих магазинах и офисах. Его успех способствовал мотивации General Electric к совершенствованию лампы накаливания, особенно ее нити. Усилия GE увенчались изобретением нити накала на основе вольфрама. Увеличенный срок службы ламп накаливания свел на нет одно из ключевых преимуществ лампы Мура, но GE приобрела соответствующие патенты в 1912 году. Эти патенты и изобретательские усилия, которые поддерживали их, должны были иметь значительную ценность, когда фирма занялась люминесцентным освещением более чем два раза. десятилетия спустя.

Примерно в то же время, когда Мур разрабатывал свою систему освещения, другой американец создавал средство освещения, которое также можно рассматривать как предшественник современной люминесцентной лампы. Это была ртутная лампа, изобретенная Питером Купером Хьюиттом (1861-1921) и запатентованная в 1901 году (патент США № 889 692). Как следует из названия, лампа Купер-Хьюитта загоралась, когда электрический ток пропускался через пары ртути при низком давлении. В отличие от ламп Мура, лампы Cooper-Hewitt могли изготавливаться стандартных размеров и работать при низких напряжениях.Ртутная лампа превосходила лампы накаливания того времени с точки зрения энергоэффективности, но сине-зеленый свет, который она производил, ограничивал ее применение. Однако он использовался для фотографии и некоторых промышленных процессов.

Лампы на ртутных парах продолжали развиваться медленными темпами, особенно в Европе, и к началу 1930-х годов они получили ограниченное применение для крупномасштабного освещения. В некоторых из них использовались флуоресцентные покрытия, но они в основном использовались для цветокоррекции, а не для увеличения светоотдачи.Лампы на парах ртути также предвосхитили люминесцентные лампы с их включением балласта для поддержания постоянного потока тока.

Купер-Хьюитт не был первым, кто использовал пары ртути для освещения, поскольку ранее усилия были предприняты Уэй, Рапифф, Аронс, Бастиан и Солсбери. Особое значение имела ртутная лампа, изобретенная Кюхом в Германии. В этой лампе вместо стекла использовался кварц, чтобы обеспечить более высокие рабочие температуры и, следовательно, большую эффективность.Хотя ее светоотдача по сравнению с потреблением электроэнергии была лучше, чем у других источников света, излучаемый ею свет был похож на свет лампы Купера-Хьюитта в том, что в ней отсутствовала красная часть спектра, что делало ее непригодной для обычного освещения.

Электрический ток, проходящий через трубку, послужил основой для другого вида освещения — неонового света. В то время как Мур использовал углекислый газ, азот или атмосферный воздух для заполнения трубок, а Купер-Хьюитт и другие использовали пары ртути, на следующем этапе газового освещения использовались люминесцентные свойства неона, инертного газа, который был обнаружен в 1898 г.В 1909 году французский химик Жорж Клод (1870–1960) наблюдал красное свечение, возникающее при пропускании электрического тока через трубку, заполненную неоном. Он также обнаружил, что голубое свечение возникло в результате использования другого инертного газа, аргона. Свет можно было использовать для общего освещения, и на самом деле он использовался во Франции для этой цели примерно с 1930 года, но неоновое освещение было не более энергоэффективным, чем обычное освещение лампами накаливания, и его начали использовать в основном для привлекательных вывесок и реклама.Однако неоновое освещение не имело никакого отношения к развитию люминесцентного освещения, поскольку усовершенствованный электрод Клода (запатентованный в 1915 году) преодолел «разбрызгивание», основной источник деградации электродов. Распыление происходит, когда ионизированные частицы ударяются об электрод и отрывают кусочки металла. Хотя изобретение Клода требовало электродов с большой площадью поверхности, оно показало, что можно преодолеть серьезное препятствие для газового освещения.

Развитие неонового света также имело значение для последнего ключевого элемента люминесцентной лампы — ее люминесцентного покрытия.В 1926 году Жак Рислер получил французский патент на применение флуоресцентных покрытий на неоновых лампах. Эти лампы, которые можно считать первыми коммерчески успешными люминесцентными лампами, использовались в основном для рекламы, а не для общего освещения. Однако это было не первое использование флуоресцентных покрытий. Как было отмечено выше, Эдисон использовал вольфрамат кальция для своей неудачной лампы. Были предприняты другие попытки, но все они сопровождались низкой эффективностью и различными техническими проблемами.Особое значение для последующей истории имело изобретение Фридрихом Мейером, Хансом-Иоахимом Шпаннером и Эдмундом Гермером, которые в то время были сотрудниками немецкой фирмы, расположенной в г. Берлин. Немецкий патент был выдан, но в серийное производство лампа так и не пошла.

Все основные функции люминесцентного освещения были реализованы в конце 1920-х годов. Десятилетия изобретений и разработок обеспечили ключевые компоненты люминесцентных ламп: экономичные стеклянные трубки, инертные газы для заполнения трубок, электрические балласты, долговечные электроды, пары ртути как источник люминесценции, эффективные средства создания надежного электрического разряда. , а также флуоресцентные покрытия, которые можно возбуждать ультрафиолетовым светом.На этом этапе интенсивные разработки были важнее фундаментальных исследований.

В 1934 году Артур Комптон, известный физик и консультант GE, отправил отчет W.L. Энфилд, руководитель отдела исследований и разработок в отделе ламп GE, рассказал об успешных экспериментах с флуоресцентным освещением в исследовательской лаборатории General Electric Co., Ltd. в Великобритании (хотя она носила прозвище GE, эта фирма не имела прямого отношения к General Electric. Электрический в США). Вдохновленная этим отчетом и всеми доступными ключевыми элементами, команда под руководством Джорджа Э.Инман построил прототип люминесцентной лампы в 1934 году в инженерной лаборатории General Electric в Нела Парк (Огайо). Это было нетривиальное упражнение; как отметил Артур А. Брайт, «пришлось провести множество экспериментов с размерами и формой ламп, конструкцией катода, давлением газов аргона и паров ртути, цветами флуоресцентных порошков, методами их прикрепления к внутренней части лампы. трубка и другие детали лампы и ее вспомогательного оборудования до того, как новое устройство было готово для публики.”

Помимо талантливых инженеров и техников, а также отличных условий для исследований и разработок флуоресцентных ламп, General Electric контролировала то, что она считала ключевыми патентами, касающимися флуоресцентного освещения, включая патенты, первоначально выданные Cooper-Hewitt, Moore и Küch. Более важным был патент на электрод, который не разрушался при давлении газа, которое в конечном итоге использовалось в люминесцентных лампах. Это изобретение было создано Альбертом В.Hull из исследовательской лаборатории GE в Скенектади и была зарегистрирована как Патент США. № 1,790,153.

Хотя патент Халла дал GE основание для требования юридических прав на люминесцентную лампу, через несколько месяцев после запуска лампы в производство фирма узнала о подаче заявки на патент США в 1927 году на вышеупомянутую изобретенную «лампу на парах металла». в Германии Мейером, Шпаннером и Гермером. В заявке на патент указывалось, что лампа была создана как превосходное средство для получения ультрафиолетового света, но в заявке также содержалось несколько утверждений, относящихся к флуоресцентному освещению.Попытки получить патент в США натолкнулись на многочисленные задержки, но, если бы он был выдан, патент мог бы вызвать серьезные трудности для GE. Сначала GE попыталась заблокировать выдачу патента, заявив, что приоритет должен принадлежать одному из их сотрудников, Лерою Дж. Баттольфу, который, согласно их заявлению, изобрел люминесцентную лампу в 1919 году и чья патентная заявка все еще находилась на рассмотрении. GE также подала заявку на патент в 1936 году на имя Инмана, чтобы охватить «улучшения», внесенные его группой.В 1939 году GE решила, что претензии Мейера, Спаннера и Гермера имеют определенные основания и что в любом случае длительная процедура вмешательства не в их интересах. Поэтому они отказались от иска Buttolph и заплатили 180 000 долларов за приобретение Meyer et al. заявка, которая на тот момент принадлежала фирме, известной как Electrons, Inc. Патент (патент США № 2182732) был должным образом выдан в декабре 1939 года. Этот патент, наряду с патентом Халла, поставил GE на то, что казалось твердое правовое основание, хотя компания Sylvania Electric Products, Inc. в течение многих лет сталкивалась с судебными исками., который заявил о нарушении патентов.

Несмотря на то, что проблема с патентами не была решена полностью в течение многих лет, сильные стороны General Electric в области производства и маркетинга позволили компании занять лидирующую позицию на развивающемся рынке люминесцентных ламп. Продажа «люминесцентных люмилиновых ламп» началась в 1938 году, когда на рынок были выпущены лампы четырех разных размеров. В течение следующего года GE и Westinghouse рекламировали новые светильники на выставках на Всемирной выставке в Нью-Йорке и на выставке Golden Gate Exposition в Сан-Франциско.Флуоресцентные системы освещения быстро распространились во время Второй мировой войны, поскольку промышленное производство, стимулированное военными потребностями, привело к усилению спроса на освещение. Использование люминесцентного освещения продолжало распространяться в годы после войны, и к 1951 году в Соединенных Штатах флуоресцентные лампы производили больше света, чем лампы накаливания.

Принципы работы

Основной принцип работы люминесцентной лампы основан на неупругом рассеянии электронов.Падающий электрон (испускаемый из покрытия на катушках проволоки, образующих катодный электрод) сталкивается с атомом газа (например, ртути, аргона или криптона), используемого в качестве излучателя ультрафиолета. Это заставляет электрон в атоме временно подпрыгивать на более высокий энергетический уровень, чтобы поглотить часть или всю кинетическую энергию, доставленную сталкивающимся электроном. Вот почему столкновение называется «неупругим», так как часть энергии поглощается. Это более высокое энергетическое состояние нестабильно, и атом излучает ультрафиолетовый фотон, когда электрон атома возвращается на более низкий, более стабильный энергетический уровень.Фотоны, которые испускаются из выбранных газовых смесей, обычно имеют длину волны в ультрафиолетовой части спектра. Человеческий глаз не видит его, поэтому его необходимо преобразовать в видимый свет. Это делается с помощью флуоресценции. Это флуоресцентное преобразование происходит в люминофорном покрытии на внутренней поверхности люминесцентной лампы, где ультрафиолетовые фотоны поглощаются электронами в атомах люминофора, вызывая аналогичный скачок энергии, а затем падают с испусканием следующего фотона.Фотон, испускаемый в результате этого второго взаимодействия, имеет меньшую энергию, чем тот, который его вызвал. Химические вещества, входящие в состав люминофора, специально подобраны так, чтобы эти испускаемые фотоны имели длину волны, видимую человеческим глазом. Разница в энергии между поглощенным ультрафиолетовым фотоном и испускаемым фотоном видимого света идет на нагрев покрытия люминофора.

Механизм светового производства

Люминесцентная лампа заполнена газом, содержащим пары ртути низкого давления и аргон (или ксенон), реже аргон-неон, а иногда даже криптон.Внутренняя поверхность колбы покрыта флуоресцентным (и часто слегка фосфоресцирующим) покрытием, состоящим из различных смесей солей фосфора металлов и редкоземельных элементов. Катод колбы обычно изготавливается из спирального вольфрама, покрытого смесью оксидов бария, стронция и кальция (выбранной для того, чтобы иметь относительно низкую температуру термоэлектронной эмиссии).
Когда включается свет, электроэнергия нагревает катод настолько, что он испускает электроны. Эти электроны сталкиваются и ионизируют атомы благородного газа в колбе, окружающей нить, с образованием плазмы в процессе ударной ионизации.В результате лавинной ионизации проводимость ионизированного газа быстро возрастает, позволяя протекать через лампу более высоким токам. Ртуть, которая существует в точке стабильного равновесного давления пара около одной части на тысячу во внутренней части трубки (с давлением благородного газа, обычно составляющим около 0,3% от стандартного атмосферного давления), затем также ионизируется, вызывая ее выделение. свет в ультрафиолетовой (УФ) области спектра преимущественно на длинах волн 253,7 нм и 185 нм.Эффективность флуоресцентного освещения во многом обязана тому факту, что ртутные разряды низкого давления излучают около 65% своего общего света на линии 254 нм (также около 10-20% света, излучаемого в УФ-диапазоне, приходится на линию 185 нм). УФ-свет поглощается флуоресцентным покрытием лампы, которое повторно излучает энергию на более низких частотах (более длинные волны: две интенсивные линии с длиной волны 440 нм и 546 нм появляются на коммерческих люминесцентных трубках) (см. Стоксов сдвиг) для излучения видимого света. Смесь люминофоров контролирует цвет света и вместе со стеклом колбы предотвращает утечку вредного ультрафиолетового света.

Электрические аспекты эксплуатации

Люминесцентные лампы представляют собой устройства с отрицательным сопротивлением, поэтому, когда через них проходит больше тока (больше ионизированного газа), электрическое сопротивление люминесцентной лампы падает, позволяя протекать еще большему току. Люминесцентная лампа, подключенная непосредственно к сети постоянного напряжения, может быстро самоуничтожиться из-за неконтролируемого протекания тока. Чтобы предотвратить это, люминесцентные лампы должны использовать вспомогательное устройство, обычно называемое балластом, для регулирования тока, протекающего через лампу.

В то время как балласт может быть (а иногда и является) таким же простым, как резистор, значительная мощность тратится впустую в резистивном балласте, поэтому балласты обычно используют вместо него реактивное сопротивление (катушка индуктивности или конденсатор). Для работы от сети переменного тока обычно используется простой индуктор (так называемый «магнитный балласт»). В странах, где используется сеть 120 В переменного тока, сетевого напряжения недостаточно для освещения больших люминесцентных ламп, поэтому балласт для этих больших люминесцентных ламп часто представляет собой повышающий автотрансформатор со значительной индуктивностью рассеяния (чтобы ограничить ток).Любая форма индуктивного балласта может также включать конденсатор для коррекции коэффициента мощности.

В прошлом люминесцентные лампы иногда работали напрямую от источника постоянного тока с напряжением, достаточным для зажигания дуги. В этом случае не было сомнений в том, что балласт должен быть резистивным, а не реактивным, что приводит к потерям мощности в балластном резисторе. Кроме того, при непосредственном питании от постоянного тока полярность питания лампы должна быть изменена каждый раз при запуске лампы; в противном случае ртуть скапливается на одном конце трубки.В настоящее время люминесцентные лампы практически никогда не работают напрямую от постоянного тока; вместо этого инвертор преобразует постоянный ток в переменный и обеспечивает функцию ограничения тока, как описано ниже для электронных балластов.

В более сложных балластах могут использоваться транзисторы или другие полупроводниковые компоненты для преобразования сетевого напряжения в высокочастотный переменный ток, а также для регулирования тока в лампе. Их называют «электронными балластами».

Мерцание

Люминесцентные лампы, которые работают непосредственно от сети переменного тока, будут мигать с удвоенной частотой сети, поскольку мощность, подаваемая на лампу, падает до нуля дважды за цикл.Это означает, что свет мигает со скоростью 120 раз в секунду (Гц) в странах, которые используют переменный ток с частотой 60 циклов в секунду (60 Гц), и 100 раз в секунду в странах, которые используют 50 Гц. Этот же принцип может также вызывать гудение от люминесцентных ламп, фактически от их балласта. И раздражающий гул, и мерцание устраняются в лампах, в которых используется высокочастотный электронный балласт, например, во все более популярной компактной люминесцентной лампе.

В некоторых случаях люминесцентные лампы, работающие на частоте сети, могут также вызывать мерцание на самой частоте сети (50 или 60 Гц), что заметно для большего количества людей.Это может произойти в последние несколько часов срока службы лампы, когда катодное эмиссионное покрытие на одном конце почти закончилось, и этот катод начинает испытывать трудности с испусканием достаточного количества электронов в газовый наполнитель, что приводит к небольшому выпрямлению и, следовательно, к неравномерному световому выходу в положительных и отрицательные рабочие циклы сети. Мерцание частоты сети также может иногда излучаться с самых концов трубок в результате того, что каждый трубчатый электрод поочередно работает как анод и катод в течение каждой половины цикла сети и создает немного отличающуюся картину светового потока в анодном или катодном режиме.(Это было более серьезной проблемой с лампами более 40 лет назад, и многие приспособления той эпохи закрывали концы трубок из-за этого.) Мерцание на частоте сети более заметно в периферийном зрении, чем в центре взгляда. .

Эффективность

Эффективность люминесцентных ламп колеблется от примерно 16 люмен / ватт для 4-ваттной лампы с обычным балластом до примерно 95 люмен / ватт для 32-ваттной лампы с современным электронным балластом, обычно в среднем от 50 до 67 лм / Вт в целом. .Большинство компактных люминесцентных ламп мощностью 13 Вт и более со встроенными электронными балластами достигают около 60 люмен / ватт. Из-за деградации люминофора с возрастом средняя яркость за весь срок службы фактически примерно на 10% меньше. [1]

Начиная с

Атомы ртути в люминесцентной лампе должны быть ионизированы, прежде чем дуга сможет «загореться» внутри лампы. Для небольших ламп для зажигания дуги не требуется большого напряжения, и запуск лампы не представляет проблемы, но для больших ламп требуется значительное напряжение (в диапазоне от тысячи вольт).

В некоторых случаях это происходит именно так: мгновенный запуск люминесцентные лампы просто используют достаточно высокое напряжение, чтобы разрушить столб газа и ртути и тем самым запустить дугу. Эти трубки можно идентифицировать по тому факту, что

  1. они имеют по одному штифту на каждом конце трубки и
  2. патроны, в которые они вставляются, имеют «разъединяющую» розетку на низковольтном конце, чтобы гарантировать автоматическое отключение сетевого тока, так что человек, заменяющий лампу, не может получить поражение электрическим током высокого напряжения.

В остальных случаях необходимо предусмотреть отдельное средство помощи при запуске. Некоторые люминесцентные конструкции ( лампы предварительного нагрева ) используют комбинацию нити накала / катода на каждом конце лампы в сочетании с механическим или автоматическим переключателем (см. Фото), которые первоначально соединяют нити накала последовательно с балластом и, таким образом, предварительно нагревают нити перед включением. зажигая дугу.

Эти системы являются стандартным оборудованием в странах с напряжением 240 В и обычно используют пускатель накаливания. До 1960-х годов также использовались четырехконтактные термостартеры и ручные переключатели.Электронные пускатели также иногда используются с этими электромагнитными балластными устройствами.

Во время предварительного нагрева нити испускают электроны в газовый столб за счет термоэлектронной эмиссии, создавая тлеющий разряд вокруг нитей. Затем, когда пусковой переключатель размыкается, индуктивный балласт и небольшой конденсатор на пусковом переключателе создают высокое напряжение, которое зажигает дугу. Удар трубки надежен в этих системах, но стартеры накаливания часто переключаются несколько раз, прежде чем оставить лампу зажженной, что вызывает нежелательное мигание во время запуска.В этом отношении старые термостартеры показали себя лучше.

После удара по трубке падающий основной разряд сохраняет нить накала / катод горячим, позволяя продолжать излучение.

Если трубка не ударяется или ударяется, а затем гаснет, последовательность запуска повторяется. При использовании автоматических пускателей, таких как стартеры накаливания, неисправная лампа будет бесконечно циклически повторяться, мигая снова и снова, поскольку стартер многократно запускает изношенную лампу, а затем лампа быстро гаснет, поскольку излучения недостаточно для поддержания катодов в горячем состоянии, и лампа ток слишком низкий, чтобы держать пускатель тлеющего разомкнутым.Это вызывает визуально неприятное частое яркое мигание и запускает балласт при температуре выше расчетной. При повороте стартера на четверть оборота против часовой стрелки он отключается, размыкая цепь.

У некоторых более продвинутых пускателей в этой ситуации истекает время ожидания, и они не пытаются повторять пуски до тех пор, пока не будет сброшено питание. В некоторых старых системах для обнаружения повторных попыток пуска использовалось тепловое отключение сверхтока. Это требует ручного сброса.

Более новые конструкции балласта с быстрым запуском предусматривают накаливание силовых обмоток внутри балласта; они быстро и непрерывно нагревают нити / катоды, используя низковольтный переменный ток.При запуске не возникает индуктивных всплесков напряжения, поэтому лампы обычно следует устанавливать рядом с заземленным отражателем, чтобы тлеющий разряд мог распространяться по трубке и инициировать дуговый разряд.

Электронные балласты часто возвращаются к стилю между стилями предварительного нагрева и быстрого запуска: конденсатор (или иногда автоматически отключающая цепь) может замкнуть цепь между двумя нитями накала, обеспечивая предварительный нагрев нити. Когда трубка загорается, напряжение и частота на лампе и конденсаторе обычно падают, таким образом, ток конденсатора падает до низкого, но ненулевого значения.Обычно этот конденсатор и катушка индуктивности, которая обеспечивает ограничение тока при нормальной работе, образуют резонансный контур, увеличивая напряжение на лампе, чтобы ее можно было легко запустить.

Некоторые электронные балласты используют запрограммированный пуск. Выходная частота переменного тока начинается выше резонансной частоты выходного контура балласта; и после того, как нити нагреваются, частота быстро уменьшается. Если частота приближается к резонансной частоте балласта, выходное напряжение возрастет настолько, что лампа загорится.Если лампа не загорается, электронная схема прекращает работу балласта.

Начиная с 1990-х годов, в массовое производство вошел новый тип балласта с более дорогой, но значительно более эффективной конструкцией: работа на высоких частотах. Эти высокочастотные балласты новой конструкции использовались либо с лампами с быстрым запуском, либо с лампами катодно-анодного типа с предварительным нагревом (с закороченными контактами на конце лампы), и для возбуждения ртути внутри лампы используется высокая частота. Эти новые электронные балласты преобразуют поступающие в балласт 50 или 60 герц в выходную частоту, превышающую 100 кГц.Это позволяет создать более эффективную систему, которая генерирует меньше отходящего тепла и требует значительно меньше энергии для зажигания лампы и работает с быстрым запуском. Они используются в нескольких приложениях, в том числе в системах ламп для загара нового поколения, при которых лампа мощностью 100 Вт (например, F71T12BP) может быть освещена с использованием фактической мощности от 65 до 70 Вт при достижении тех же люменов, что и традиционные балласты на полной мощности. Они работают с напряжениями, которые могут составлять почти 600 вольт, что требует некоторого внимания при проектировании корпуса, и может вызвать небольшое ограничение длины проводов от балласта к концам лампы.Эти балласты работают всего на несколько градусов выше температуры окружающей среды, отчасти поэтому они более эффективны и позволяют использовать их в приложениях, которые не подходят для более горячей электроники.

Окончание срока службы

Режим отказа по окончании срока службы люминесцентных ламп различается в зависимости от того, как они используются, и типа их ПРА. В настоящее время существует три основных режима отказа и четвертый, который начинает проявляться:

Смесь выбросов

«Эмиссионная смесь» на нитях / катодах трубки необходима для того, чтобы электроны могли проходить в газ посредством термоэлектронной эмиссии при используемых рабочих напряжениях трубки.Смесь медленно распыляется путем бомбардировки электронами и ионами ртути во время работы, но большее количество распыляется каждый раз, когда трубка запускается с холодными катодами. (Метод запуска лампы и, следовательно, тип ПРА оказывает на это существенное влияние.) Лампы, работающие обычно менее 3 часов при каждом включении, обычно исчерпывают эмиссионную смесь до того, как выйдут из строя другие части лампы. Распыленная эмиссионная смесь образует темные пятна на концах трубок, которые можно увидеть в старых трубках.Когда вся эмиссионная смесь исчезнет, ​​катод не может пропустить достаточно электронов в газовую начинку, чтобы поддерживать разряд при расчетном рабочем напряжении трубки. В идеале управляющий механизм должен отключать трубку, когда это происходит. Однако некоторые устройства управления будут обеспечивать достаточно повышенное напряжение для продолжения работы лампы в режиме с холодным катодом, что приведет к перегреву конца трубки и быстрому разрушению электродов и их поддерживающих проводов до тех пор, пока они не исчезнут полностью или стекло не потрескается, разрушив Заполнение газом низкого давления и прекращение выпуска газа.

Электроника балласта

Относится только к компактным люминесцентным лампам со встроенными электрическими балластами. Отказ балластной электроники — это несколько случайный процесс, который следует стандартному профилю отказов для любых электронных устройств. Срок службы встроенных электронных балластов сокращается в условиях высокой влажности. Сначала наблюдается небольшой пик ранних отказов, за которым следует спад и неуклонное увеличение срока службы лампы. Срок службы электроники сильно зависит от рабочей температуры — обычно он сокращается вдвое на каждые 10 ° C повышения температуры.Приведенный средний срок службы лампы обычно составляет при температуре окружающей среды 25 ° C (это может варьироваться в зависимости от страны). Средний срок службы электроники при этой температуре обычно больше указанной, поэтому при такой температуре не многие лампы выйдут из строя из-за отказа электроники. В некоторых фитингах температура окружающей среды может быть намного выше этой, и в этом случае отказ электроники может стать преобладающим механизмом отказа. Аналогичным образом, использование компактного цоколя люминесцентных ламп приведет к более горячей электронике и сокращению среднего срока службы (особенно для ламп с более высокой номинальной мощностью).Электронные балласты должны быть спроектированы так, чтобы отключать лампу, когда заканчивается смесь выбросов, как описано выше. В случае интегральных электронных балластов, поскольку они никогда не должны снова работать, это иногда достигается путем преднамеренного сгорания какого-либо компонента для окончательного прекращения работы.

Люминофор

Эффективность люминофора падает во время использования. Приблизительно к 25000 часов работы это обычно будет вдвое меньше яркости новой лампы (хотя некоторые производители заявляют, что период полураспада у своих ламп намного больше).Лампы, в которых отсутствуют отказы системы эмиссии или встроенной балластной электроники, в конечном итоге разовьются в этом режиме отказа. Они все еще работают, но стали тусклыми и неэффективными. Процесс идет медленно и часто становится очевидным только тогда, когда новая лампа работает рядом со старой.

Потеря ртути

Ртуть теряется из-за газового наполнения в течение всего срока службы лампы, так как она медленно поглощается стеклом, люминофором и трубчатыми электродами, где больше не может работать. Исторически это не было проблемой, потому что в трубках содержится избыток ртути.Тем не менее, экологические проблемы теперь приводят к созданию трубок с низким содержанием ртути, которые гораздо более точно дозируются с достаточным количеством ртути, достаточным для обеспечения ожидаемого срока службы лампы. Это означает, что потеря ртути возьмет верх из-за выхода из строя люминофора в некоторых лампах. Симптомы отказа аналогичны, за исключением того, что потеря ртути сначала вызывает увеличенное время разгона (время для достижения полного светового потока) и, наконец, заставляет лампу светиться тускло-розовым светом, когда ртуть заканчивается, а основной газ аргон вступает во владение. первичный разряд.

Люминофоры и спектр излучаемого света

Некоторые люди находят цветовую гамму некоторых люминесцентных ламп резкой и неприятной. Иногда кажется, что здоровый человек имеет нездоровый оттенок кожи при флуоресцентном освещении. Степень, в которой происходит это явление, связана с индексом цветопередачи света (CRI).

CRI — это показатель того, насколько хорошо сбалансированы различные цветовые компоненты белого света. По определению, лампа накаливания имеет индекс цветопередачи 100.Реальные люминесцентные лампы достигают CRI от 50% до 99%. Люминесцентные лампы с низким индексом цветопередачи имеют люминофор, излучающий слишком мало красного света. Кожа выглядит менее розовой и нездоровой по сравнению с освещением лампами накаливания. Цветные объекты выглядят приглушенными. Например, галофосфатная трубка с низким CRI 6800K, которая выглядит так же неприятно визуально, как и они, заставит красный цвет казаться тускло-красным или коричневым.

CCT Цветовая температура — это мера белизны источника света. Типичное освещение лампами накаливания составляет 2700K, то есть желтовато-белый цвет.Галогенное освещение 3000К. Люминесцентные лампы производятся в соответствии с выбранной цветовой температурой путем изменения смеси люминофоров внутри трубки. Тёпло-белые люминесцентные лампы с цветовой температурой 2700К популярны для освещения жилых помещений. Нейтрально-белые флуоресцентные лампы имеют CCT 3000K или 3500K. Холодно-белые флуоресцентные лампы имеют цветную температуру 4100K и популярны для офисного освещения. Флуоресцентные лампы дневного света имеют цветную температуру от 5000K до 6500K, что означает голубовато-белый цвет.

Для освещения с высокой цветовой температурой обычно требуется более высокий уровень освещенности.При более тусклом освещении человеческий глаз воспринимает более низкие цветовые температуры как более естественные. Таким образом, тусклая лампа накаливания 2700K выглядит естественно, а яркая лампа 5000K также выглядит естественной, но тусклая люминесцентная лампа 5000K выглядит слишком бледной. Люминесцентные лампы дневного света выглядят естественно, только если они очень яркие.

Один из наименее приятных источников света исходит от трубок, содержащих старые люминофоры галофосфатного типа (химическая формула Ca 5 (PO 4 ) 3 (F, Cl): Sb 3+ , Mn 2+ ).Плохая цветопередача связана с тем, что этот люминофор в основном излучает желтый и синий свет и относительно мало зеленого и красного. На вид эта смесь кажется белой, но свет имеет неполный спектр. CRI таких ламп всего 60.

С 1990-х годов в люминесцентных лампах более высокого качества используется галофосфатное покрытие с более высоким индексом цветопередачи (CRI) или смесь трифосфор на основе ионов европия и тербия, полосы излучения которых более равномерно распределены по спектру видимого света.Галофосфатные и трифосфорные трубки с высоким индексом цветопередачи придают человеческому глазу более естественную цветопередачу. CRI таких ламп обычно составляет 82–100.

По крайней мере, в некоторых из первых люминесцентных ламп использовались соединения, содержащие бериллий, токсичный элемент. Однако вряд ли можно встретить такие лампы.

Спектры люминесцентных ламп
Типичная люминесцентная лампа с люминофором «редкоземельный» Типичная люминесцентная лампа «холодного белого цвета», в которой используются два люминофора, легированные редкоземельными элементами, Tb 3+ , Ce 3+ : LaPO 4 для зеленого и синее излучение и Eu: Y 2 O 3 для красного.Для объяснения происхождения отдельных пиков щелкните изображение. Обратите внимание, что некоторые спектральные пики генерируются непосредственно ртутной дугой. Это, вероятно, наиболее распространенный тип люминесцентных ламп, используемых сегодня.
Галофосфатно-люминесцентная лампа более старого образца Галофосфатные люминофоры в этих лампах обычно состоят из трехвалентной сурьмы и галофосфата кальция, легированного двухвалентным марганцем (Ca 5 (PO 4 904 904) : Sb 3+ , Mn 2+ ).Цвет выходящего света можно регулировать, изменяя соотношение излучающей синий легирующий элемент сурьмы и излучающий оранжевый легирующий элемент марганец. Цветопередача этих ламп более старого стиля довольно низкая. Галофосфатные люминофоры были изобретены A.H. McKeag et al. в 1942 г.
Флуоресцентный свет «естественного солнечного света» Пояснение происхождения пиков находится на странице изображения.
Желтые флуоресцентные лампы Спектр почти идентичен спектру нормальной люминесцентной лампы, за исключением почти полного отсутствия света ниже 500 нанометров.Этот эффект может быть достигнут либо за счет использования специального люминофора, либо, чаще, за счет использования простого желтого светофильтра. Эти лампы обычно используются в качестве освещения для фотолитографических работ в чистых помещениях и в качестве «отпугивающего насекомых» наружного освещения (эффективность которого сомнительна).
Спектр лампы «черного света» Обычно в лампе черного света присутствует только один люминофор, обычно состоящий из фторбората стронция, легированного европием, который содержится в оболочке из стекла Вуда.
Спектр «ртутной» люминесцентной лампы Снято с «недорогого» спектрометра (стоимость около 100 долларов). Результаты аналогичны, если не лучше, чем у традиционных, но гораздо более дорогих спектрометров.

Использование

Люминесцентные лампы бывают разных форм и размеров. Компактная люминесцентная лампа (CF) становится все более популярной. Во многих компактных люминесцентных лампах вспомогательная электроника встроена в цоколь лампы, что позволяет им вставляться в обычный патрон для лампочки.

В США использование люминесцентного освещения в жилых помещениях остается низким (обычно ограничивается кухнями, подвалами, коридорами и другими помещениями), но школы и предприятия находят значительную экономию затрат на люминесцентные лампы и редко используют лампы накаливания.

В осветительных приборах используются люминесцентные лампы различных оттенков белого. Иногда это происходит из-за непонимания различий или важности различных типов трубок. Смешивание типов трубок внутри фитингов улучшает цветопередачу трубок более низкого качества.Налоговые льготы и экологическая осведомленность приводят к более широкому использованию в таких местах, как Калифорния.

В других странах использование люминесцентного освещения в жилых помещениях варьируется в зависимости от стоимости энергии, финансовых и экологических проблем местного населения, а также приемлемой светоотдачи. В Восточной и Юго-Восточной Азии очень редко можно увидеть лампы накаливания в зданиях где-либо.

В феврале 2007 года Австралия приняла закон, запрещающий к 2010 году большинство продаж ламп накаливания. [2] Хотя закон не определяет, какую альтернативу использовать австралийцы, компактные флуоресцентные лампы, вероятно, станут основной заменой. В апреле 2007 года Канада объявила о аналогичном плане по поэтапному отказу от продажи ламп накаливания к 2012 году. Финский парламент обсуждает запрет на продажу ламп накаливания к началу 2011 года. [3]

Преимущества

Люминесцентные лампы более эффективны, чем лампы накаливания аналогичной яркости.Это связано с тем, что большая часть используемой мощности преобразуется в полезный свет, а меньшая часть преобразуется в тепло, что позволяет люминесцентным лампам работать холоднее. Типичная лампа накаливания с вольфрамовой нитью мощностью 100 Вт может преобразовывать только 2,6% потребляемой мощности в видимый свет, тогда как обычные люминесцентные лампы преобразуют от 6,6% до 15,2% своей потребляемой мощности в видимый свет — см. Таблицу в статье о световой эффективности. Обычно люминесцентная лампа служит в 10-20 раз дольше, чем эквивалентная лампа накаливания. [ необходима ссылка ]

Более высокая начальная стоимость люминесцентной лампы обычно более чем компенсируется более низким потреблением энергии в течение срока ее службы. Более длительный срок службы может также снизить затраты на замену лампы, обеспечивая дополнительную экономию, особенно там, где труд является дорогостоящим. Поэтому он широко используется предприятиями по всему миру, но не домашними хозяйствами.

Недостатки

Проблемы со здоровьем

Люминесцентные лампы могут вызывать проблемы у людей с патологической чувствительностью к ультрафиолетовому свету.Они могут вызывать активность заболевания у светочувствительных людей с системной красной волчанкой; стандартные акриловые диффузоры поглощают УФ-В излучение и, кажется, защищают от этого. [4] В редких случаях люди с солнечной крапивницей (аллергия на солнечный свет) могут получить сыпь от флуоресцентного освещения. [5]

Устранение люминесцентного освещения подходит для нескольких условий. Помимо головной боли и усталости, [6] и проблем со светочувствительностью, [7] они перечислены как проблемные для людей с эпилепсией, [8] волчанкой, [9] синдромом хронической усталости, и головокружение [10] (связано с сердечно-сосудистыми проблемами, рассеянным склерозом и рядом других заболеваний.) Исследования по этому поводу очень ограничены. Кажется, что существует даже меньше доказательств, оспаривающих эффекты, чем подтверждающих их.

Балласты

Для люминесцентных ламп требуется балласт для стабилизации лампы и обеспечения начального напряжения зажигания, необходимого для начала дугового разряда. Это увеличивает стоимость люминесцентных светильников, хотя часто один балласт используется двумя или более лампами. Электромагнитные балласты при незначительной неисправности могут издавать слышимый гудение или жужжание.

Обычные балласты для ламп не работают от постоянного тока. Если доступен источник постоянного тока с достаточно высоким напряжением для зажигания дуги, можно использовать резистор для балласта лампы, но это приводит к низкой эффективности из-за потери мощности в резисторе. Кроме того, ртуть имеет тенденцию перемещаться к одному концу трубки, приводя только к одному концу лампы, производящему большую часть света. Из-за этого эффекта лампы (или полярность тока) необходимо регулярно менять.

Коэффициент мощности

Балласты люминесцентных ламп имеют коэффициент мощности меньше единицы. Для крупных установок это делает подачу электроэнергии более дорогостоящей, поскольку необходимо принимать специальные меры, чтобы приблизить коэффициент мощности к единице.

Гармоники мощности

Люминесцентные лампы представляют собой нелинейную нагрузку и генерируют гармоники на синусоидальной форме волны 50 Гц или 60 Гц источника питания. В некоторых случаях это может привести к возникновению радиочастотного шума.Подавление генерации гармоник — стандартная, но несовершенная практика. Возможно очень хорошее подавление, но оно увеличивает стоимость люминесцентных светильников.

Оптимальная рабочая температура

Люминесцентные лампы лучше всего работают при комнатной температуре (скажем, 20 ° C или 68 ° F). При значительно более низких или более высоких температурах эффективность снижается, а при низких температурах (ниже нуля) стандартные лампы могут не запускаться. Для надежной работы на открытом воздухе в холодную погоду могут потребоваться специальные лампы.Электрическая схема «холодного пуска» также была разработана в середине 1970-х годов.

Источник света некомпактный

Поскольку дуга довольно длинная по сравнению с газоразрядными лампами более высокого давления, количество света, излучаемого на единицу поверхности ламп, невелико, поэтому ламповые лампы были большими по сравнению с источниками накаливания. Однако во многих случаях использовалась низкая сила света излучающей поверхности, поскольку она уменьшала блики. Объем, создаваемый этой лампой, повлиял на конструкцию светильников, поскольку свет должен направляться из длинных трубок, а не из компактного источника.

Недавно был представлен новый тип люминесцентных ламп, CFL, для решения этой проблемы и позволяющих устанавливать обычные патроны накаливания с этим типом ламп, тем самым устраняя необходимость в установке их на специальные приспособления. Однако некоторые КЛЛ, предназначенные для замены ламп накаливания, не подходят к некоторым настольным лампам, потому что арфа (опорный кронштейн из тяжелой проволоки) имеет форму узкой шейки лампы накаливания. КЛЛ обычно имеют широкий корпус для электронного балласта рядом с цоколем лампы, слишком широкий, чтобы в него поместиться.

Проблемы с мерцанием

Люминесцентные светильники, использующие балласт с магнитной частотой сети, не излучают ровный свет; вместо этого они мерцают (колеблются по интенсивности) на удвоенной частоте питания. Хотя это не так легко различить человеческим глазом, это может вызвать эффект стробоскопа, представляющий угрозу безопасности, например, в мастерской, где что-то, вращающееся с правильной скоростью, может казаться неподвижным, если освещено только люминесцентной лампой. Это также вызывает проблемы при записи видео, так как между периодическими показаниями сенсора камеры и колебаниями интенсивности люминесцентной лампы может быть «эффект биения».

Лампы накаливания из-за тепловой инерции их элемента колеблются в меньшей степени. Это также меньшая проблема с компактными флуоресцентными лампами, поскольку они умножают частоту линии до невидимых уровней. Установки могут уменьшить эффект стробоскопа за счет использования пускорегулирующих балластов, работы ламп на разных фазах многофазного источника питания или использования электронных балластов.

Электронные балласты не производят светового мерцания, поскольку постоянство люминофора превышает полупериод более высокой рабочей частоты.

Невидимое мерцание 100–120 Гц от люминесцентных ламп, питаемых от магнитных балластов, связано с головными болями и зрительным напряжением. На людей с высоким порогом слияния мерцания особенно влияют магнитные балласты: их альфа-волны ЭЭГ заметно ослабляются, и они выполняют офисные задачи с большей скоростью и меньшей точностью. С ЭПРА проблем не наблюдается. [11] Обычные люди лучше читают, используя высокочастотные (20–60 кГц) электронные балласты, чем магнитные балласты. [12]

Мерцание люминесцентных ламп, даже с магнитными балластами, настолько быстрое, что вряд ли представляет опасность для людей, страдающих эпилепсией. [13] Ранние исследования предполагали связь между мерцанием люминесцентных ламп с магнитными балластами и повторяющимися движениями у аутичных детей. [14] Однако эти исследования имели проблемы с интерпретацией [15] и не были воспроизведены.

Цветопередача

Проблемы с точностью цветопередачи некоторых типов трубок обсуждались выше.

Затемнение

Если специально не разработаны и не утверждены для регулирования затемнения, большинство люминесцентных осветительных приборов нельзя подключать к стандартному диммерному переключателю, используемому для ламп накаливания. За это ответственны два эффекта: форма волны напряжения, излучаемого стандартным диммером с фазовым управлением, плохо взаимодействует со многими балластами, и становится трудно поддерживать дугу в люминесцентной лампе при низких уровнях мощности. Многие установки требуют 4-контактных люминесцентных ламп и совместимых контроллеров для успешного затемнения люминесцентных ламп; Эти системы стремятся поддерживать полностью нагретые катоды люминесцентной лампы даже при уменьшении тока дуги, способствуя легкой термоэлектронной эмиссии электронов в поток дуги.

Утилизация и переработка

Утилизация люминофора и особенно ртути в трубках является экологической проблемой. Ртуть представляет наибольшую опасность для беременных женщин, младенцев и детей. Правительственные постановления во многих областях требуют специальной утилизации люминесцентных ламп отдельно от общих и бытовых отходов. Для крупных коммерческих или промышленных пользователей люминесцентных ламп услуги по переработке доступны во многих странах, и это может потребоваться в соответствии с законодательством.В некоторых регионах переработка также доступна для потребителей. Необходимость в инфраструктуре утилизации является проблемой с введением предложенных запретов на лампы накаливания.

Количество ртути в стандартной лампе может сильно различаться — от 3 до 46 мг. [16] Новые лампы содержат меньше ртути, а версии на 3-4 мг продаются как лампы с низким содержанием ртути. Типичная люминесцентная лампа Т-12 4 фута (122 см) эпохи 2006 года (например, F32T12) содержит около 12 миллиграммов ртути [17] . В начале 2007 года Национальная ассоциация производителей электрооборудования США объявила, что «в соответствии с добровольным обязательством с 15 апреля 2007 года участвующие производители ограничат общее содержание ртути в КЛЛ мощностью менее 25 Вт на уровне 5 миллиграммов (мг) на единицу.КЛЛ, которые потребляют от 25 до 40 Вт электроэнергии, будут иметь максимальное содержание ртути на уровне 6 мг на единицу ». [18]

Сломанная люминесцентная лампа более опасна, чем сломанная обычная лампа накаливания, из-за содержания ртути. этим безопасная очистка разбитых люминесцентных ламп отличается от очистки обычных разбитых стекол или ламп накаливания. 99% ртути обычно содержится в люминофоре, особенно в лампах, срок службы которых приближается к концу. [19] Люминесцентные лампы произведенные много десятилетий назад люминофоры содержали ядовитый бериллий.Такие старые лампы вряд ли встретишь.

Обозначение трубки

Примечание: информация в этом разделе может быть неприменима за пределами Северной Америки.

Лампы обычно обозначаются кодом, например F ## T ##, где F означает люминесцентные лампы, первое число указывает мощность в ваттах (или, как ни странно, длину в дюймах в очень длинных лампах), буква T указывает, что форма Луковица трубчатая, а последнее число — диаметр в восьмых дюйма.Типичные диаметры: T12 (1½ дюйма или 38 мм) для бытовых ламп со старыми магнитными балластами, T8 (1 дюйм или 25 мм) для коммерческих энергосберегающих ламп с электронными балластами и T5 ( 5 8 «или 16 мм) для очень маленьких ламп, которые могут работать даже от устройства с батарейным питанием.

Некоторые лампы имеют встроенный отражатель. Для этого сначала наливают непрозрачное покрытие на лампу, вращают лампу для достижения желаемой степени покрытия, а затем дают ей высохнуть перед добавлением традиционных люминофоров.В прямых лампах его обычно заливают таким образом, чтобы покрыть половину лампы, когда она лежит ровно, при этом лампа рассчитывается по величине кривизны, которая покрыта непрозрачным покрытием. Лампа на 180 градусов имеет охват 50%, тогда как лампа на 210 градусов имеет охват на 30 градусов больше. Это наиболее распространенный тип, хотя отражатель может варьироваться от 120 градусов до более 310 градусов. Лампы, которые имеют охват более 210 градусов, часто называют «термостатами», поскольку количество открытого пространства, на которое может выходить свет, значительно меньше площади, которая действует как внутренний отражатель.Часто лампа маркируется как лампа с отражателем, добавляя букву «R» в код модели, поэтому лампа F71T12HO с отражателем будет иметь код «FR71T12HO». Лампы VHO с отражателями могут иметь кодировку VHOR. Не существует обозначения для количества градусов отражателя, которое имеет лампа.

Рефлекторные лампы используются в нескольких приложениях, особенно когда требуется, чтобы свет излучался только в одном направлении, или когда приложение требует максимального количества света. Это может быть так же просто, как в солярии более высокого класса или в какой-либо ситуации с подсветкой для электроники.Внутренний отражатель более эффективен, чем стандартные внешние отражатели, поскольку снижает вероятность потери света из-за подавления волн. Другой пример — подобранный по цвету световой поток (открывание 330 градусов, плюс-минус), используемый в пищевой промышленности для контроля качества, чтобы позволить роботам проверять готовые продукты.

Лампы Slimline работают от пускового балласта с мгновенным запуском и узнаваемы по их однополюсным цоколям.

Лампы с высокой выходной мощностью ярче и потребляют больше электрического тока, имеют разные концы на выводах, поэтому их нельзя использовать в неправильном приспособлении, и они имеют маркировку F ## T12HO или F ## T12VHO для очень высокой мощности.Примерно с начала до середины 1950-х годов и по сегодняшний день компания General Electric разработала и усовершенствовала лампу Power Groove (R) с маркировкой F ## PG17. Эти лампы можно отличить по трубкам большого диаметра с рифлением.

U-образные трубки FB ## T ##, где B означает «изогнутые». Чаще всего они имеют то же обозначение, что и линейные трубы. Круглые лампы — это FC ## T #, с диаметром круга (, а не окружности или ватт), это первое число, а второе число, как правило, 9 (29 мм) для стандартных светильников.

Цвет обычно обозначается WW для теплого белого, EW для усиленного (нейтрального) белого, CW для холодного белого (наиболее распространенного) и DW для голубоватого дневного белого. BL используется для ламп черного света, которые обычно используются в устройствах защиты от насекомых. BLB используется для черно-голубых ламп, обычно используемых в ночных клубах. Другие нестандартные обозначения применяются для огней для растений или огней для выращивания растений.

Philips использует числовые цветовые коды для цветов:

  • Низкая цветопередача
    • 33 вездесущий холодный белый (4000 K)
    • 32 теплый белый (3000 К)
    • 27 гостиная теплый белый (2700 К)
  • Высокая цветопередача
    • 9xy «Graphica Pro» / «De Luxe Pro» (xy00 K; например, «965» = 6500 K)
    • 8xy (xy00 K; например, «865» = 6500 K)
    • 840 холодный белый (4000 К)
    • 830 теплый белый (3000 К)
    • 827 теплый белый (2700 К)
  • Другое
    • 09 Лампы для загара
    • 08 Блэклайт
    • 05 Жесткое УФ-излучение (люминофор вообще не используется, используется оболочка из плавленого кварца)

Нечетные длины обычно добавляются после цвета.Одним из примеров является F25T12 / CW / 33, что означает 25 Вт, диаметр 1,5 дюйма, холодный белый цвет, длина 33 дюйма или 84 см. Без 33-го можно было бы предположить, что F25T12 имеет более распространенную 30-дюймовую длину.

Компактные люминесцентные лампы не имеют такой системы обозначений.

Другие люминесцентные лампы

Подсветка
Blacklight — это подмножество люминесцентных ламп, которые используются для получения длинноволнового ультрафиолетового света (с длиной волны около 360 нм). Они построены так же, как и обычные люминесцентные лампы, но стеклянная трубка покрыта люминофором, который преобразует коротковолновое УФ-излучение внутри трубки в длинноволновое УФ-излучение, а не в видимый свет.Они используются для возбуждения флуоресценции (для создания драматических эффектов при использовании краски для черного света и для обнаружения таких материалов, как моча и некоторые красители, которые были бы невидимы в видимом свете), а также для привлечения насекомых к насекомым.
Так называемые лампы blacklite blue также изготавливаются из более дорогого темно-фиолетового стекла, известного как стекло Вуда, а не из прозрачного стекла. Темно-пурпурное стекло отфильтровывает большинство видимых цветов света, непосредственно испускаемого разрядом паров ртути, производя пропорционально меньше видимого света по сравнению с УФ-светом.Это позволяет легче увидеть УФ-индуцированную флуоресценцию (таким образом, плакатов с черным светом выглядят гораздо более драматично). Лампы черного света, используемые в противоугонных устройствах, не требуют такой доработки, поэтому ее обычно не используют в целях экономии; они называются просто blacklite (а не blacklite blue).
Лампы для загара
Лампы, используемые в соляриях, содержат различные смеси люминофоров (обычно от 3 до 5 или более люминофоров), которые излучают как УФ-А, так и УФ-В диапазоны, вызывая реакцию загара на большей части кожи человека.Как правило, выходная мощность оценивается от 3% до 10% UVB (наиболее типично 5%), а оставшееся УФ — как UVA. В основном это лампы F71, F72 или F73 HO (100 Вт), хотя несколько распространены VHO мощностью 160 Вт.
Лампы для выращивания растений
Лампы для выращивания содержат смесь люминофора, которая способствует фотосинтезу растений; для человеческого глаза они обычно кажутся розоватыми.
Бактерицидные лампы
Бактерицидные лампы вообще не содержат люминофора (технически это газоразрядные лампы, а не люминесцентные), а их трубки изготовлены из плавленого кварца, прозрачного для коротковолнового УФ-излучения, непосредственно испускаемого ртутным разрядом.УФ-излучение, излучаемое этими трубками, убивает микробы, ионизирует кислород до озона и вызывает повреждение глаз и кожи. Помимо того, что они используются для уничтожения микробов и создания озона, они иногда используются геологами для идентификации определенных видов минералов по цвету их флуоресценции. При таком использовании они снабжены фильтрами так же, как и черно-голубые лампы; фильтр пропускает коротковолновое УФ-излучение и блокирует видимый свет, создаваемый ртутным разрядом. Они также используются в стиральных машинах EPROM.
Индукционные безэлектродные лампы
Безэлектродные индукционные лампы — это люминесцентные лампы без внутренних электродов. Они были коммерчески доступны с 1990 года. В столб газа индуцируется ток с помощью электромагнитной индукции. Поскольку электроды обычно являются элементом, ограничивающим срок службы люминесцентных ламп, такие безэлектродные лампы могут иметь очень долгий срок службы, хотя они также имеют более высокую закупочную цену.
Компактные люминесцентные лампы (КЛЛ)
Также известная как компактная люминесцентная лампа — это тип люминесцентной лампы, предназначенный для замены лампы накаливания.Многие КЛЛ подходят для существующих ламп накаливания.
Люминесцентные лампы с холодным катодом (CCFL)
Люминесцентные лампы с холодным катодом используются в качестве подсветки ЖК-дисплеев персональных компьютеров и телевизионных мониторов. В последние годы они также популярны среди мододелов.

Научные демонстрации

Люминесцентные лампы можно зажечь другими способами, кроме надлежащего электрического подключения. Однако эти другие методы приводят к очень тусклому или очень непродолжительному освещению, и поэтому они чаще всего используются в научных демонстрациях.За исключением статического электричества, эти методы могут быть очень опасными при неправильном выполнении:

Использование фильмов и видео

Специальные люминесцентные лампы часто используются в кино / видео. Торговая марка Kino Flos используется для создания более мягкого заполняющего света и менее горяча, чем традиционные галогенные источники света. Эти люминесцентные лампы разработаны со специальными высокочастотными балластами для предотвращения мерцания видео и лампами с высоким индексом цветопередачи для приблизительной цветовой температуры дневного света. http://www.richardbox.com/

.