Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Работа узо в однофазной сети: Принцип работы узо в однофазной сети — советы электрика

Содержание

Подключение УЗО к однофазной сети с заземлением: правила + этапы работ

Электрическая энергия используется в жилищно-хозяйственном секторе повсеместно и активно. Это один из основных энергетических ресурсов, применение которого, однако, совсем небезопасно. С целью обеспечения безопасности используют разные методы защиты.

В частности, подключение УЗО к однофазной сети с заземлением предотвращает поражение человека током, поломку оборудования, возгорание электропроводки. Но чтобы устройство смогло выполнять эти задачи, необходимо правильно подобрать защитный прибор и грамотно внедрить его в электрическую сеть.

Решению этих вопросов и посвящена наша статья. Мы расскажем вам, какие параметры важно учесть при выборе УЗО, обозначим требования по монтажу аппарата, а также опишем порядок работ по подключению устройства к однофазной сети.

Содержание статьи:

Какими мерами защиты обеспечивает УЗО?

Конечно же, внедрение защитных приборов в систему электроснабжения сопровождают определенные правила. Рассмотрим таковые применительно к установке .

Защитный модуль из серии подобных аппаратов спроектирован как универсальный прибор, поэтому большинство моделей призваны уберечь от различных негативных проявлений в процессе пользования электрическими сетями.

УЗО работает в трех направлениях защиты:

  • предотвращение поражения электротоком;
  • пробой цепей с последующей утечкой тока на корпус аппаратуры;
  • короткое замыкание электропроводки.

Следует отметить: все три направления защиты работают наиболее эффективно при условии подключения прибора по схеме с заземлением.

По сути, не исключается (и часто применяется) также схема без участия «земли». Однако при таком варианте эффективность действия прибора снижается существенно.

Монтаж УЗО однофазной сетиМонтаж УЗО однофазной сети

Защитная электротехническая аппаратура – это уже неотъемлемая обыденность для современных условий пользования электроэнергией. Подобные устройства совершенствуются стабильно и на текущий момент способны обеспечивать широкий спектр защитных функций

Приборы УЗО считаются обязательным компонентом распределительных электрических щитов любого назначения — стационарно установленных, временного действия, переносных.

Нередко они или вилок, посредством которых выполняется подключение инструмента и бытовых электроприборов, эксплуатируемых в условиях влажных, пыльных помещений.

Выбор устройства с учетом проектных параметров

Процесс проектирования электроустановок специализированными проектными организациями должен предусматривать довольно сложную задачу  из ассортимента рынка электрооборудования.

Виды УЗОВиды УЗО

Многообразие приборов УЗО на коммерческом рынке заставляет будущего пользователя внимательно подходить к процессу выбора устройства. Имеющийся широкий ассортимент обеспечивает многообразный выбор, но не гарантирует качества и соответствия параметров

Эта задача действительно сложная. Современный рынок электроприборов, включая УЗО, отличается своеобразным ассортиментом. Это результат отсутствия жесткого контроля качества со стороны государственных структур.

На рынке присутствует масса разнообразных устройств, изготовленных большим числом производителей, многие из которых далеко не всегда придерживаются действующих нормативов.

Потенциальному обладателю УЗО не остается ничего иного, как принимать информацию, что предоставляет производитель устройства. Дополнением гарантий является сертификат соответствия и пожарной безопасности.

Отсутствие таких документов на продаваемый товар – это прямой запрет на установку и эксплуатацию, согласно требованиям действующих стандартов.

Сертификат соответствия УЗОСертификат соответствия УЗО

Вот примерно одним из таких документов – сертификатом соответствия, должен комплектоваться любой прибор, который выпущен в продажу. Если устройство УЗО не имеет сертификата соответствия, это уже явный повод для отказа от приобретения (+)

Выбор УЗО всегда сопровождается учетом рабочих эксплуатационных параметров и характеристик, которыми в значительной степени определяется качество и надежность прибора.

Необходимо учесть номинальные показатели:

  • напряжения;
  • тока;
  • дифференциального тока отсечки.

Эти главные характеристики должны соответствовать техническим параметрам проектируемой электроустановки или эксплуатируемой электрической цепи.

Качество и надежность действия УЗО определяется некоторыми показателями, общий физический смысл которых зачастую малопонятен.

Этими параметрами, прежде всего, являются номинальный условный ток короткого замыкания и ток номинальной включающей/отключающей способности.

Основные параметры УЗООсновные параметры УЗО

Главные рабочие параметры таких устройств, как УЗО, традиционно выводятся непосредственно на панель самого прибора. Однако вместе с основными параметрами есть ещё ряд в какой-то степени второстепенных, которые также оказывают значимое влияние на работу приборов (+)

Совсем нечасто производители УЗО отмечают в документах на приборы все отмеченные характеристики. Поэтому необходимо правильно оценить все имеющиеся достоинства и недостатки выбираемых устройств.

С точки зрения технической конструкции, УЗО традиционно характеризуют коммутационным прибором, действие которого определяется режимом ожидания. Устройство не имеет признаков, помогающих визуально определить качество работы.

Но существует единый принцип, на основе которого подобные аппараты функционируют одинаково. Прибор включается в цепь рабочего тока и если появляется ток утечки с определенным значением, превышающим значение уставки, УЗО попросту размыкает силовую цепь.

Принцип действия УЗОПринцип действия УЗО

Несмотря на разнообразие конструктивного исполнения УЗО, фактически принцип действия этих устройств остаётся однообразным. Главный принцип действия устройства – обесточивание электрической цепи в случае нарушения установленного параметра токовой утечки (+)

Насколько корректно выполняется размыкание? Оценить быстродействие схемы устройства, коммутационную способность, срок службы и прочие значимые параметры, возможно только методом специализированных испытаний.

Правила для подключения аппарата

Существуют стандарты, коими определяются нормальные условия для установки и последующей эксплуатации УЗО. Эти стандарты зафиксированы, в частности, документами ГОСТ Р 51326.1-99 и Р 51327.1-99.

Поэтому следующих критериев необходимо придерживаться, применяя на практике УЗО:

  • оптимальный температурный диапазон окружающей среды -5 + 40°C;
  • значение относительной влажности воздуха не выше 50% при +40°C и не выше 90% при +20°C;
  • граничное значение высоты над уровнем моря 2000 м;
  • отсутствие мощных магнитных полей в непосредственной близости с прибором.

Как указывает ГОСТ Р 50571.3-94, для схем подключения в зданиях важным и необходимым условием нормального действия УЗО в составе электроустановки здания видится отсутствие в зоне его действия какой-либо связи нулевого рабочего проводника с заземленными элементами электроустановки и «земляным» защитным проводником РЕ.

Зона действия УЗОЗона действия УЗО

Каждое устройство в моменты эксплуатации осуществляет контроль на утечку в рамках определённых границ. Это называют – зоной чувствительности защитного прибора УЗО. В этой зоне исключается какая-либо связь нулевой шины с заземляющим проводником

Для системы заземления TN-C-S, в распределительных щитах электроустановок, в точках, где разделяется PEN-проводник, следует предусматривать раздельные зажимы либо шины для нулевого рабочего N и нулевого защитного РЕ проводника.

Учитывая, что прибор УЗО реагирует на «земляную» утечку как нулевого, так и фазного проводника, на линиях, как правило, следует ставить .

Заземлённый вариант типа TN-C-SЗаземлённый вариант типа TN-C-S

Классическое исполнение схемы типа TN-C-S, где непременным атрибутом коллекции является земляная шина. По мнению многих специалистов эта схема считается оптимальным вариантом для использования УЗО (+)

Внедрение автоматических выключателей позволяет быстро определить неисправный участок цепи путем поочередного отключения отдельных линий.

Благодаря автоматам исключается демонтаж «ВРУ» при обнаружении неисправного участка, включая участок с утечкой по нулевому проводнику.

ГОСТ Р 50571.9-94 содержит конкретные указания, направленные на выполнение действий по защите нулевого рабочего и нулевого защитного проводников.

Проведение работ профессиональными службами

Теоретически и практически тоже с участием специалистов, установка УЗО предполагает выполнение мероприятий по определению порога срабатывания устройства.

Правила установки приборов УЗОПравила установки приборов УЗО

Инструктаж установки защитных приборов из серии УЗО всегда требует определённой последовательности монтажа. Первым элементом последовательности, как правило, выступает автоматический выключатель. Затем идут – электросчётчик, УЗО и прочие элементы сети (+)

Существуют установленные правила – своеобразный инструктаж, где отмечается вся последовательность действий в таких случаях.

Ход работ:

  1. Прежде всего, от прибора отключается цепь нагрузки по фазе и нулю, для чего используется автоматический выключатель.
  2. Далее используется схема подключения к УЗО измерительной аппаратуры и элементов регулировки (потенциометр).
  3. Путем изменения сопротивления потенциометра добиваются срабатывания устройства и фиксируют показания тока на измерительном приборе.

Отмеченное значение измерительного прибора в момент срабатывания – это дифференциальный ток УЗО. Зафиксированное показание тока должно находиться в установленном диапазоне.

Если условие не выполняется, установка защитного устройства в цепь запрещается. Необходимо подобрать другой экземпляр, подходящий по параметрам.

Установка и настройка приборовУстановка и настройка приборов

Настройка уже установленного прибора – явление классическое для профессиональных служб. Благодаря точной настройке, выставляется оптимальная защита, что существенно отражается на общей безопасности

При подключении защитных устройств типа УЗО с заземлением, правилами предполагается также проведение работ, направленных на измерение тока утечки в границах зоны защиты прибора.

Обычно подобные мероприятия обязательны для случаев монтажа электромеханических приборов:

  1. Через автомат к устройству защиты подключается нагрузка.
  2. Согласно тестовой схеме к прибору подсоединяется измерительная цепь, состоящая из магазина сопротивлений и амперметра.
  3. Изменяя магазин сопротивлений, добиваются срабатывания устройства и фиксируют показания амперметра.
  4. Ток утечки вычисляют по формуле: Iу = I – Iа, где I – отключающий ток цепи, Iа – показания амперметра.

Полученное значение Iу не должно превышать номинальное значение дифференциального тока УЗО более чем на одну треть.

Измерение тока утечкиИзмерение тока утечки

Настройка сопровождается измерениями токов различных режимов. Для измерений используются амперметры с высокой степенью точности показаний. Такую работу выполнить по силам только специалистам

Если такое превышение зафиксировано, это явный признак того, что в границах зоны защиты прибора находится дефектный участок. Для таких случаев правила ПЭУ требуют исполнения необходимых мероприятий, направленных на устранение тока утечки.

Инструктаж на случай бытовой установки

Внедрение УЗО в электрическую сеть бытового назначения, при условии выполненной настройки под параметры электросети осуществляется с соблюдением ряда требований.

Перечень обязательных к выполнению правил:

  1. Монтировать на входной линии и подключать прибор следует только за автоматическим выключателем. Обычно промежуточным звеном между двумя приборами является еще и счетчик электроэнергии.
  2. Монтажные работы выполняются при полностью обесточенной питающей линии.
  3. Номинальный ток автомата выбирается равным, или несколько меньшим относительно значения дифференциального тока прибора.
  4. Соединения следует выполнять в строгом соответствии с обозначениями и прилагаемой схемой производителя.
  5. В первую очередь выполняются соединения на стороне нагрузки с подводкой фазной и нулевой шин на соответствующие клеммы устройства.
  6. Затяжка винтов клемм выполняется с некоторым усилием, достаточным для надежности соединений, но без чрезмерной силы.
  7. В последнюю очередь, после проверки надежности всех соединений и отсутствия дефектов, устройство подключают к выходным клеммам автомата.

Отношение к монтажу, настройке и запуску в эксплуатацию защитного устройства не терпит формальностей. Все действия необходимо производить внимательно, с точным расчетом и дублирующими проверками.

Проверка установки УЗОПроверка установки УЗО

После окончания проведения всех установочных и настроечных работ осуществляется дублирующий анализ в рабочем режиме электрической цепи. Все измеренные параметры фиксируются в технических журналах

В условиях эксплуатации домашних бытовых сетей нередко стараются решать вопрос   собственными силами.

Однако этот вариант не гарантирует безопасности. Всегда следует выбирать установку профессиональную – при участии специалистов.

Выводы и полезное видео по теме

Этим видео доходчиво рассказывается и демонстрируется, каким способом включается устройство защиты в схему электросети. Рассматриваются различные схемы:

Ознакомившись с правилами подключения УЗО и порядком выполнения работ, а также особенностями монтажа в условиях однофазной сети с заземлением, можно попытаться все сделать своими руками.

Однако этот вариант оправдан только при наличии настроенного аппарата защиты и определенных навыков проведения электромонтажных работ. В противном случае лучшем решением станет приглашение электрика.

Есть опыт самостоятельного подключения УЗО? Пожалуйста, расскажите читателям о нюансах выбора подходящего устройства защиты и особенностях его монтажа. Комментируйте публикацию, участвуйте в обсуждениях и добавляйте фотографии своих самоделок. Блок обратной связи расположен ниже.

Принцип работы и схема подключения УЗО к однофазной сети

Отсутствие средств защиты от поражения электрического тока приводит к трагическим последствиям. Средства УЗО способны предотвратить утечку тока, а также отключить электрическую цепь в случае превышения номинального значения тока, воспламенения или задымления. Нормальная работа УЗО возможна только при грамотном подключении. Если такое устройство будет подключено неправильно, то никакой защиты не гарантируется.

Защищенные однофазные цепи с заземлением и без

Цепь, имеющая заземление считается безопасной. Сегодня все электрический цепи оснащаются специальными автоматами, которые срабатывают в результате нарушения нормальной работы сети. УЗО реагирует на изменение силы тока утечки от одного звена к другому.

Если после прохождения через устройство показатель тока будет выше или ниже УЗО срабатывает и отключает подачу тока на последующее звено.

Подключение УЗО к однофазной сети производится после непосредственного отключения сети. Подключение однофазного УЗО предусматривает, что устройство не защищенно от перегрузки. Поэтому к создаваемой схеме нужно обязательно подключить автоматический выключатель.

УЗО может подключаться с заземлением и без него. В случае возникновения пробоев, ток, попадающий на корпус устройства, уменьшается благодаря сопротивлению обмотки.

В этом случае, при возникновении разницы, поступление тока через УЗО прекращается. Поэтому такое устройства целесообразно устанавливать перед автоматами, которые подключаются к приборам.

Преимущества использования УЗО:

  • Высокая безопасность электрической сети;
  • Исключена возможность поражения человека электрическим током;
  • Повышается срок эксплуатации оборудования;
  • Защита от перегрузок;
  • Высокая скорость срабатывания;
  • Большой срок эксплуатации.

В большинстве жилых домов местное заземление отсутствует. Это приводит к увеличению рисков утечки тока. В свою очередь человек может случайным образом дотронутся до поврежденного участка цепи. Переменный ток, проходя через человеческий организм, оказывает поражающее действие на ткани и клетки организма.

Принцип работы

УЗО – устройство защитного отключения, срабатывающее в результате возникновения тока утечки. Защита срабатывает после попадания тока на землю или провод заземлителя.

Устройство мгновенно отключает потребителей от источников питания. Порог срабатывания задается настройками, которые определяют минимальный порог (номинал), после которого устройство будет срабатывать.

УЗО однофазное работает по такому же принципу, как и в случае подключения к трехфазным сетям. В случае с тремя фазами, провод заземления уменьшает время срабатывания УЗО. Схема включения УЗО в однофазной сети исключает наличие обязательного заземляющего провода.

Каждая схема подключения УЗО создается исходя из расчета общего количества потребителей. Чем больше потребителей, тем выше размер значения максимального тока. Работа УЗО в однофазной сети определяется разницей входного и выходного тока.

При возникновении разницы устройство срабатывает, и отключает цепь от источника питания. Если возникающий ток будет выше заданной величины максимального порога УЗО, то он сразу же выйдет из строя.

Поэтому такие устройства подбираются строго под определенный размер максимального тока.

Своевременное отключение электрической сети от источника тока позволяет избежать:

  • летальных исходов;
  • перегревов;
  • возгораний;
  • повреждений нормальной работы оборудования.

Устройство УЗО состоит из контактной группы и пружины, которая при достижении заданного номинального значения размыкает цепь. Часто УЗО путают с дифавтоматом.

Основное отличие этих устройств состоит в том, что перед УЗО обязательно должен быть установлен автоматический выключатель.

Подключение УЗО к однофазным сетям

Принцип работы УЗО в однофазной сети основывается на подключении фазы и ноль, а заземляющий провод присоединяется к корпусу устройства. Схема подключения УЗО в однофазной сети обязательно предусматривает наличие автомата, который подбирается исходя из расчёта максимальной ёмкости.

Устройства защитного подключения могут подключаться к однофазным сетям, в которых не предусмотрено участковое заземление. В этом случае УЗО подключается на фазную и нулевую клемму, а клемма заземлителя отсутствует. Заземляющие проводники используются только в постройках нового типа.

Единственное различие между УЗО с заземлителем, заключается в времени срабатывая. За счет установленного заземлителя сети время срабатывания увеличивается. Соответственно такие цепи считаются более безопасными.

Отсутствие заземления в однофазных сетях приводит к тому, что УЗО будет срабатывать только в случае прикосновения к корпусу устройства. Но и этот факт обеспечивает надежную безопасность для того, чтобы человек не получил смертельный удар током.

Особенности схемы подключения

Рассмотрим основной принцип построения однофазной сети с использованием УЗО. Подключать такое устройство необходимо строго после автоматического выключателя. Так как устройство защитного отключения считывает разницу поступающего и выходящего тока на потребителях, то в случае неполадок сработает автоматический выключатель.

Если произвести установку обратным способом, то поступление тока не будет прекращаться. После включения УЗО, система стает полностью надежной и безопасной.

Отключающее устройство срабатывает практически мгновенно, после чего поступление тока прекращается. УЗО однофазное ABB устанавливать должен специалист.

Чтобы устройство всегда срабатывало, необходимо перед установкой произвести предварительный расчёт максимального номинального тока. Это действие показывает максимально-допустимую нагрузку, которую может выдерживать создаваемая цепь.

Превышение заданного номинального значения приводит к тому, что УЗО не срабатывает или полностью выходит из строя.

Как выбрать?

Выбирая УЗО, необходимо учитывать типы устройств, схему соединения, а также законы по которым работает устройство. Устройства защитного отключения имеют различные модификации. Каждая модификация такого устройства предназначается для цепей определенного типа. Существуют следующие типы УЗО:

  1. АС – Очень чувствительный прибор, реагирующий синусоидальные колебания тока, который имеет очень маленькое значение.
  2. А – этот тип устройства предназначается для цепей, которые работают по синусоидальным законам. Также, в этом случае УЗО улавливает разницу колебаний пульсирующего тока (тока выпрямителя).
  3. В – самый прогрессивный тип устройств защитного отключения, реагирующий на токи синусоидальной, пульсирующей и сглаженной формы.

Практика показывает, что чаще всего покупатели отдают предпочтение компании «Энергомера». Например, устройство Энергомера УЗО ВАД2 однофазное, предназначается для сверхтоков и выдерживает большие токи перегрузки. Также, УЗО вад2 однофазное имеет:

  • Надежные технические характеристики;
  • Компактные габаритные размеры;
  • Дистанционное управление;
  • Срок службы от 10 лет.

Включение УЗО в однофазную сеть даёт возможность обезопасить человека от поражения электрическим током. В этот момент общая безопасность цепи позволяет избежать резких перепадов тока, которые негативно воздействуют на электрические устройства.

Не стоит экономить на безопасности. Если вы хотите обезопасить себя и оборудование, с которым работаете, то устанавливайте УЗО. Не стоит периодически отключать устройство, с целью подключить дополнительный потребитель. Это может привести к возгоранию, пробою изоляции, а также износу элементов электрической сети. Также необходимо обращать внимание на производителя.

Наиболее популярными производителями считаются: Abb, Hager, Legrand, Schneider Electric, Moeller/Eaton, Doepke.

Таким образом, подключение УЗО к однофазным сетям, является необходимым условием для обеспечения безопасности. Используя правильную схему подключения, автоматические выключатели, вы можете обезопасить себя и своих близких.

схемы + порядок выполнения работ

Однофазная электрическая сеть привычна для каждого домашнего хозяйства. Независимо, эксплуатируется ли частный дом или муниципальная квартира, пользователи в любом случае активно потребляют электричество.

Этот вид энергии, между тем нельзя считать полностью безопасным. Поэтому актуальной задачей видится подключение УЗО к однофазной сети без заземления – специального прибора, существенно повышающего степень безопасности при пользовании электричеством.

Давайте вместе разберемся в самых распространенных схемах подключения УЗО к однофазной сети, а также определимся с порядком проведения работ по подключению.

Содержание статьи:

Обобщенный взгляд на защитные модули

Несмотря на построение схем разводки электрических линий, выполненное по утвержденным правилам, риск удара электрическим током остается всегда. Поэтому важно своевременно позаботиться о безопасности.

Устройство защитного отключения – так интерпретируется расклад аббревиатуры «УЗО» на технический язык.

С точки зрения исполнения конструкции, оно выглядит не самым сложным образом среди современной электротехнической аппаратуры. Тем не менее функции защиты выполняет в достаточной степени качественно и надежно.

Простая конструкция УЗОПростая конструкция УЗО

Примерно таким выглядит функционал электротехнической системы, при помощи которой осуществляется эффективная защита пользователей электрическими сетями, а также защита различной бытовой аппаратуры

Следует отметить, что существуют , исходя из которых в каждом конкретном случае организуется определенная защитная схема:

  • гарантирующая безопасность прикосновения;
  • упреждающая технические повреждения;
  • противодействующая пожарной опасности.

Каждый прибор с конкретной функциональностью отличается от других конструкций рабочими параметрами, в частности – номинальным током и током отсечки.

Прибор универсальный 30 мАПрибор универсальный 30 мА

Внешний вид прибора с малым током отсечки. При эксплуатации бытовых сетей подобные устройства применяются с целью защиты людей от непреднамеренного контакта с электрическим потенциалом в условиях аварийной токовой утечки

Самым чувствительным устройством, конечно же, является УЗО, предназначенное для блокирования источника питания на случай непреднамеренного прикосновения людей к токоведущим деталям схем. Диапазон отсечки по току для таких аппаратов находится в пределах 10-30 мА.

Лучшие схемы на подключение УЗО

Для линий электрических сетей бытового назначения является характерным внедрение УЗО без «земли». Основная доля схемных решений бытового сектора – это именно однофазная разводка, где в принципе существуют только две линии: фаза и ноль.

Особенности схем без заземления

Схематика устройства электрической цепи без заземления обязательно выполняется с учетом включения автоматической защиты по «КЗ» (короткому замыканию) и току перегрузки.

Это очевидный фактор, потому как отдельные устройства УЗО не предназначены защищать от подобных явлений. Эти аппараты спасают лишь от токов утечки.

Автоматический выключатель бытовойАвтоматический выключатель бытовой

Автоматический выключатель – примерно такие ставятся, как правило, в схему для организации защитной отсечки по причине перегрузки сети. Конструктивное исполнение УЗО не предполагает такого типа отсечки

Диапазон токов отсечки и теххарактеристики автоматических выключателей несколько отличаются от рабочих параметров защитных УЗО.

Между тем существуют универсальные устройства отсечки, сочетающие в одном приборе функции автоматического выключателя и защиты от непреднамеренных касаний к токоведущим электрическим шинам.

Каждое защитное устройство конструктивно предполагает коммутацию обоих проводников питающего кабеля – фазы и ноля.

При этом, выполняя монтаж электропроводки, следует точно подключать проводники на рабочие клеммы. Неправильный монтаж грозит повреждением прибора защиты, что приведёт к неработоспособности защитной системы в целом.

Классический вариант включения

В зависимости от технической нагрузки (количества бытовых приборов) и числа помещений, в квартире или доме может эксплуатироваться единая полная сеть или сеть, состоящая из нескольких подсетей.

Схемы подключения УЗОСхемы подключения УЗО

Простейшая на первый взгляд схема включения прибора в состав пользовательской сети, имеет свои нюансы. Поэтому неправильное подключение грозит не просто выходом из строя самих защитных приборов, но чревато опасной эксплуатационной ситуацией

Для первого случая обычно достаточно одного прибора УЗО под организацию защитного отключения. Исходя из параметров потребляемого тока или общей потребляемой мощности, в этом случае выбирают защитный аппарат по номинальному току и определяются с током отсечки.

Для второго варианта приборы внедряются на каждую из существующих подсетей. При этом, как правило, все установленные УЗО дополняются автоматическими выключателями, рассчитанными на потребляемую мощность отдельно взятой подсети.

Классическая схема "без земли"Классическая схема "без земли"

Таким, примерно, выглядит схемное решение по внедрению УЗО в классическом варианте подключения. Этот несложный вариант разводки обеспечивает защиту квартирной (домашней) сети в целом – полным обесточиванием

Классическое исполнение схематики включения УЗО «без земли» традиционно выполняется следующим образом:

  1. Главный питающий кабель, состоящий из двух жил (фаза, ноль), подводится к автомату.
  2. От автоматического выключателя обе жилы подводят к электросчетчику.
  3. Далее от электросчетчика два провода питания включают на вводные клеммы УЗО.

После защитного прибора, для варианта без подсетей, дублирующий автоматический выключатель можно не ставить, но в некоторых случаях специалисты рекомендуют это делать.

Если же используется схема с подсетями, то после УЗО на каждую ветку необходимо ставить отдельный автомат.

Сложная схема подключенияСложная схема подключения

Несколько модернизированная разводка с одним УЗО и отдельным автоматом на каждую подсеть. Принцип действия практически аналогичен «классике», но благодаря дополнительным автоматам, проще определять неисправность

Таким образом, фазная жила, отходящая от прибора защиты, питает рабочие сети через дополнительные автоматические выключатели.

Нулевая жила, также проходящая через схему прибора отсечки, выводится на общую нулевую шину, откуда распределяется по отводным линиям нуля для подключения нагрузки.

Какая схема включения УЗО лучше?

Лучшая или худшая схема – эти понятия являются чисто поверхностными. Насколько эффективной может быть та или иная схема – вот в чем вопрос.

И здесь даже неспециалисту понятно, что многоступенчатый вариант, где используются разные уровни защиты, видится более эффективным, чем любой другой упрощенный.

Схема на две подсетиСхема на две подсети

Тоже своего рода классический схемный вариант с дополнением УЗО двумя линейными автоматами. Один из автоматов обычно ставят на линию питания мощной кухонной техники, второй – на освещение и розетки других комнат

Поэтому схема устройства энергообеспечения с подсетями, когда используется одно общее УЗО и дополнительные приборы защиты на каждой из веток электроцепи, явно выглядит предпочтительной.

Построение такой схемы, как правило, предполагает установку основного защитного прибора с током отсечки 100-300 мА. А дополнительные приборы, распределенные по отдельным ответвлениям общей цепи, имеют ток отсечки не выше 30 мА.

Таким способом обеспечивается двойная защита – пожарная и на случай непреднамеренного касания.

Схема включения УЗО на три группыСхема включения УЗО на три группы

Схемное решение, где применяются два прибора УЗО и один дифференциальный автомат. Разводка здесь также осуществляется «без земли» с разделением питающих цепей за счёт дополнительных автоматов

Преимущества построения энергосети подобным способом проявляются еще и в том, что на случай срабатывания обычно отключается только отдельный участок бытовой электропроводки, а не общая зона питания. При таких условиях отключения обнаружить место токовой утечки значительно проще.

С другой стороны, так называемая расширенная схема включения УЗО без заземления, является обременительной для пользователя, с точки зрения увеличения расходов на построение.

Понятно, чтобы выстроить многоступенчатую защиту, в этом случае потребуются более существенные финансовые вливания, нежели под устройство упрощенного варианта.

Схема применения УЗО в частном доме

Муниципальные строения обычно не создают особых проблем с функциями защиты, за исключением откровенно старых построек.

Сети муниципальных домов, как правило, обслуживаются сервисом. А вот в частном доме подобные вопросы хозяевам нередко приходится решать самостоятельно.

Схема установки УЗО в частном домеСхема установки УЗО в частном доме

Распространённая и часто применяемая на практике схема разводки питающей сети в частном доме. Как видно из графики, применяются несколько защитных приборов, отсекающих обслуживаемые подсети при разных токовых утечках

Правда, самодеятельность в таких делах не рекомендуется. И если требуется организовать надежную схему подключения с применением УЗО, следует обращаться к специалистам-энергетикам.

Проектам частных домостроений, особенно современным постройкам, присущи в достаточной степени сложные схемы решения защиты по энергетическому питанию.

Рассмотрим одно из них для устройства в частном доме:

  1. Всего используется 5 защитных приборов с разбросом токов отсечки от 10 до 300 мА.
  2. В качестве основной защиты от «КЗ» и возможного возгорания выступает УЗО 300 мА.
  3. Два универсальных прибора на 30 мА задействованы под освещение и розеточную группу.
  4. На линии питания помещений с агрессивной средой и где требуется повышенная защита, установлены высокочувствительные приборы на 10 мА.
  5. Общая цепь разделена на подсети в зависимости от назначения.

Функциональность такой схемы можно расписать следующим образом. Первый прибор — УЗО 300 мА — исполняет функции противопожарной блокировки.

Вместе с тем для этого устройства характерной является отсечка по факту суммарного тока утечки от всех подсетей, если это значение превысило допустимый параметр.

УЗО на ток 300 мАУЗО на ток 300 мА

Внешний вид защитного устройства, рассчитанного на отсечку, когда существует риск возгорания по причине аварийного состояния сети. Такие УЗО на дифференциальный ток 300 мА относятся к устройствам противопожарной блокировки

Следом за противопожарной системой включается в действие универсальная, которая гарантирует срабатывание и на случай обнаружения «КЗ» и токовых утечек свыше 30 мА.

Обслуживаемой зоной для УЗО этой подсети является линия, питающая приборы освещения и розеточную группу.

Наконец, своего рода третью защитную ступень формируют высокочувствительные приборы на 10 мА, которые по факту обслуживают зоны, где условия требуют неординарного подхода — ванная, детская комната.

Прибор УЗО на 10 мАПрибор УЗО на 10 мА

Прибор с высокочувствительной защитной характеристикой, с током дифференциального изменения 10 мА. Как правило, используется при организации электрических схем в помещениях, где повышенная опасность пробоя или в детских комнатах

Вариант защиты для дачного хозяйства

Современные проекты дачных хозяйств все чаще выступают полноценной строительной инфраструктурой, ничем не уступающей жилому сектору под проживание на постоянной основе. Очевидно, что фактор комплексной защиты становится актуальным и для дачных строений.

Однако применительно к таким хозяйствам, требования электрической безопасности, как правило, несколько занижены по сравнению с реальным жилым сектором.

Поэтому здесь традиционно используются упрощенные схемные решения с применением универсальных УЗО на ток отсечки 30 мА.

Таким типом защитных устройств обеспечивается вполне действенная защита на случай непреднамеренных прикосновений к зонам электричества, где возможна утечка тока.

Кроме того, это же исполнение приборов обеспечивает блокировку на случай технических повреждений оборудования или электропроводки.

Помимо УЗО, дачная разводка оснащается также защитными автоматами – обычно по одному на линии света и линии электрических розеток.

УЗО на ток 30 мАУЗО на ток 30 мА

Наиболее часто применяемый прибор с дифференциальным током 30 мА. Считается своего рода универсальным устройством, так как теоретически способен блокировать питание как при коротких замыканиях, так и в случае непреднамеренных касаний

Если требуется эксплуатация дополнительного оборудования, таковое подключается к уже существующей схеме через дополнительный автоматический выключатель.

Порядок проведения работ по подключению

Прежде всего, следует позаботиться о соблюдении всех требуемых мер безопасности при исполнении этого вида работ.

Отключить электропитание на участке монтажа, обеспечить процесс исправным инструментом.

Затем предстоит соблюдать ряд правил, выполняя электромонтажные работы:

  1. Монтаж проводят строго по ранее подготовленной схеме.
  2. Прибор монтируется внутри электрического щита рядом с автоматами.
  3. Закрепленное в щитке устройство соединяется с другими компонентами через проводники сечением не менее 2,5 мм (медь). Важно использовать с, нанесенные на корпусе защитного аппарата.
  4. После завершения монтажа и разводки проводников, проверить корректность соединений и подать на участок питание.
  5. Проверить срабатывание прибора путем активации кнопки «Тест».

Как правило, верно подобранное устройство успешно проходит тестовый режим.

Если такого не случилось – прибор не сработал, значит, расчеты были выполнены неправильно или имеются какие-либо дефекты в схеме прибора. Тогда УЗО следует заменить.

Выводы и полезное видео по теме

Ролик рассказывает о нюансах и показывает детали подключения защитного прибора в условиях эксплуатации электрической разводки, выполненной по системе TN-C.

Доходчивые разъяснения автора о работе УЗО в таких условиях и практические демонстрации:

Под завершение обзорного материала возможных схемных конфигураций с УЗО необходимо отметить актуальность использования этих приборов. Внедрение устройств отсечки по остаточным токам – это существенное повышение уровня безопасности при пользовании электрическими сетями. Главное – правильно выбирать и корректно подключать приборы.

Если у вас есть опыт подключения УЗО к однофазным сетям без заземления, пожалуйста, поделитесь им с нашими читателями. Расскажите, на какие моменты обязательно нужно обратить внимание, возможно вы знаете какие-то тонкости подключения о которых мы не упомянули в нашем материале? Оставляйте свои комментарии и задавайте вопросы в блоке под статьей.

Как подключить УЗО без заземления

Подключение УЗО без заземления

О том, что в современных домах и квартирах необходимо устанавливать устройства защитного отключения уже говорилось неоднократно. Их основная цель – обезопасить человеческую жизнь от действия электрического тока. Но всегда ли возможно произвести монтаж, учитывая то, что сеть бывает разная – трёхфазная и однофазная, с заземляющим защитным проводником и без него. Поговорим о том, как подключить УЗО без заземления. Схема, по которой подсоединяются эти устройства, не отличается сложностью. Если вы сами делаете всю квартирную проводку, вполне справитесь и с установкой УЗО. Но самым верным решением будет всё-таки доверить эту работу профессионалам.

Прежде чем вести разговор о том, как подключить УЗО без заземления, необходимо иметь чёткое понятие о разновидностях электрических бытовых сетей.

Разновидности электрических сетей

Электропитание в наши квартиры и дома поступает из однофазной сети или трёхфазной.

Однофазное электрическое питание представляет собой одну фазу и ноль. Для питания бытовой техники и осветительных приборов нужно фазное напряжение, которое получается на выходе после понижающего трансформатора. Такое однофазное питание предполагает запитку от одной фазы линии.

Схема подключения УЗО в однофазной сети

По фазному проводнику движется электрический ток, а по нулевому он возвращается в землю. Чаще всего такой тип электропроводки применим в квартире, и имеет он две разновидности:

  • Однофазная сеть двухпроводного исполнения (без земли). Такой тип электросети чаще всего можно встретить в домах старой постройки, в ней не предусмотрено заземление электрических приборов. Цепь включает в себя только нулевой провод, имеющий буквенную маркировку N, и один фазный проводник, он соответственно обозначается буквой L.
  • Однофазная сеть трёхпроводного исполнения. В ней помимо нулевого и фазного имеется ещё защитный заземляющий проводник, обозначаемый РЕ. Корпуса электрических приборов нужно подсоединять к заземляющим проводникам, это обеспечит защиту самой техники от перегорания, а человека от действия электрического тока.

В доме зачастую присутствует техника, которой нужно трёхфазное напряжение (насосы, двигатели, если есть станки в сарае или гараже). В данном случае сеть будет состоять из нулевого и трёх фазных проводов (L1, L2, L3).

Провода в одно и трехфазной сети

Аналогично трёхфазная сеть бывает четырёхпроводного исполнения и пятипроводного (когда присутствует ещё защитный заземляющий проводник).

С разновидностями сетей определились, а теперь будем непосредственно переходить к вопросу, возможно ли подключение УЗО без заземления и как правильно устанавливать это устройство?

Можно ли подключать УЗО без заземления – на видео:

В чём необходимость монтажа УЗО?

Рассмотрим этот вопрос на простом примере. Предположим, в ванной комнате стоит стиральная машина. Электрическая квартирная проводка выполнена только нулевым и фазным проводами, защитного заземления нет, и УЗО не смонтировано.

Представляем ситуацию дальше. Внутри машинки повредился изоляционный слой, в результате чего фаза стала соприкасаться с металлическим корпусом. Появился какой-то потенциал, то есть корпус стиральной машинки теперь под напряжением. Если к ней подойдёт человек и прикоснётся, то будет играть роль проводника, по которому потечёт электрический ток. Действие тока продолжится до тех пор, пока человек не отдёрнет руку от стиральной машинки, потому что повреждённый участок никаким устройством не отключится. К сожалению, под воздействием тока мышцы человека парализуются, и самому отдёрнуть руку не всегда получится.

Прохождение тока через тело человека

Здесь есть два варианта – либо человек теряет сознание и подает, либо кто-то посторонний оказывает ему помощь путём отключения вводного автомата на помещение.

Если бы в рассмотренном примере в распределительном щитке стояло УЗО, оно отреагировало бы на появление тока утечки, отключилось и обезопасило человеческую жизнь. Именно по этой причине в квартире, оснащённой большим количеством мощной бытовой техники, просто необходима установка УЗО.

Как работает УЗО с заземлением и без него?

По какому принципу работает УЗО в двухпроводной сети, если заземление отсутствует? Когда появится изоляционный пробой на корпусе прибора, устройство защитного отключения не сработает, потому что корпус не заземлён и пути для прохождения токовой утечки нет. При этом корпус прибора будет под опасным для человеческой жизни потенциалом.

В момент прикосновения человека к корпусу прибора, токовая утечка будет уходить на землю через его тело. Когда величина этого тока сравняется с порогом срабатывания УЗО, произойдёт отключение, и из питающей сети напряжение не будет подаваться на повреждённый электроприбор.

Сколько по времени будет находиться человек под действием токовой утечки, зависит от уставки срабатывания УЗО.

Уставка указана на маркировке

Хоть оно и отключится быстро, этого времени может быть вполне достаточно, чтобы получить серьёзную электротравму.

А вот если бы корпус был подсоединён к защитному заземлению, УЗО отреагировало и отключилось бы сразу, как только произошёл изоляционный пробой.

Как видите, схема подключения УЗО без заземления реально применима, однако не даёт 100 % гарантии безопасности. Но так как в старых домах в основном выполнена двухпроводная электрическая сеть, а переделать её на трёхпроводную не так-то просто, единственным выходом защиты оборудования и человека является монтаж УЗО.

Наглядный принцип работы УЗО без заземления на видео:

Принцип работы этого устройства основан на измерительных процессах. Регистрируется величина тока на входе и на выходе. Если эти показания одинаковы, то нет повода для срабатывания. Как только в сети появится токовая утечка, величина на выходе станет меньше, и устройство отключит повреждённый участок. УЗО работает за счёт расцепляющего механизма в связке с электромагнитным реле.

Варианты схем

Перед тем, как подключать УЗО без заземления, запомните важный совет! Схема обязательно должна включать в себя помимо устройств защитного отключения и обыкновенные автоматы.

Вариант составления схемы с УЗО и автоматами

Многие наивно полагают, что это одинаковые механизмы и служат для одной и той же цели. Главное, понять разницу в их работе. Автоматический выключатель – это защита для подающей сети напряжения. Он отключает повреждённый участок, если в нём возникли сверхтоки в результате короткого замыкания или перегруза. За счёт этого аварийная ситуация не распространяется на общую сеть, и она остаётся в исправном состоянии.

УЗО защищает только от токовых утечек, их величины очень малы в сравнении с токами КЗ. Поэтому если в сети возникает режим короткого замыкания или перегруза и при этом отсутствует автомат, УЗО не отреагирует. Нужно всегда устанавливать его в схему в паре с автоматическим выключателем.

Подключение УЗО без заземления может быть выполнено двумя способами.

Подключение на вход

При такой схеме устанавливается одно УЗО для обеспечения защиты одновременно всей квартирной проводки.

Из сети по вводному кабелю в распределительный щиток поступает напряжение и приходит на двухполюсный автомат. Затем в схеме устанавливается устройство защитного отключения. Далее монтируются автоматы отходящих присоединений. Все эти отходящие потребители одновременно защищаются одним УЗО, установленным на входе.

Схема с одним УЗО на входе

Плюс этой схемы в том, что используется только одно устройство защитного отключения, соответственно не требуются значительные материальные затраты. К тому же в распределительном щитке можно всё компактно разместить и он не будет больших размеров.

Но имеется и существенный недостаток. Представьте себе, что какой-то бытовой прибор в данный момент подключен к розетке и в нём происходит замыкание фазы на металлический корпус. УЗО на появившуюся токовую утечку реагирует и отключается. Прекращается подача напряжения на всю квартиру. Если в этот момент к розетке был подключен только один электроприбор, искать повреждение несложно. А если одновременно работало много бытовой техники? Мало того, что сразу с прекращением подачи напряжения перестал работать холодильник, завис кондиционер, остановилась программа в стиральной машине или хлебопечи, остались несохранённые документы на компьютере. Так ещё нужно будет отыскать, на какой именно технике замкнуло фазу, а это уже доставляет определённые трудности.

Поэтому прежде чем выбирать данную схему подсоединения УЗО, подумайте об удобстве её дальнейшей эксплуатации.

Полное обесточивание квартиры это и помеха для ремонта

Подключение на входе и на отходящих ветвях

Такой вариант схемы предусматривает подсоединение нескольких УЗО. Одно, как и было рассмотрено выше, монтируется после вводного автомата на входе. Остальные ставят за автоматическими выключателями отходящих присоединений. Сколько их будет, зависит от того, как вы сгруппируете свою домашнюю электрическую сеть. Возможно, по одному автомату и УЗО у вас будет стоять на каждую отдельную комнату. Есть вариант разделения розеточных и осветительных групп потребителей. В некоторых схемах выполняется отдельная защита бойлера, стиральной или посудомоечной машины, кондиционера или электропечи.

Как работает подобная схема? Например, на одной из отходящих линий произошла токовая утечка. Сработает УЗО, защищающее именно эту линию. Напряжение во всей квартире не исчезает, вся остальная техника остаётся в рабочем состоянии. В этом заключается несомненное преимущество данного варианта схемы. Её недостаток в том, что распределительный щиток получится внушительных размеров, не совсем удобно в нём располагать большое количество УЗО и автоматов. Да и недёшево обойдётся это в материальном плане.

Комбинированная схема подключения

Возникает вопрос, зачем в схеме ещё одно УЗО на входе? Бывают ситуации, когда по той или иной причине отходящее устройство не среагировало на токовую утечку. В этом случае входное УЗО будет подстраховкой, через определённый промежуток времени отключится оно. В принципе, его можно опустить и выполнить схему без вводного устройства. Но если финансовые возможности позволяют, лучше подстрахуйтесь, всё-таки речь идёт о безопасности людей.

Наглядно общий принцип подключения УЗО на следующем видео:

Сборка схемы

В практическом выполнении сложностей нет. Весь алгоритм работы будет выглядеть следующим образом:

  • Все работы с электричеством всегда начинаются с обесточения рабочего места. Поэтому отключите квартирный вводной автомат. При помощи индикаторной отвёртки убедитесь, что напряжение на его выходе действительно отсутствует.
  • На дин-рейке закрепите устройство защитного отключения. С тыльной стороны на нём имеются защёлки, которые надо вставить в перфорированные отверстия на рейке.
  • Корпус устройства защитного отключения имеет маркировку входных и выходных контактов для нулевых и фазных проводников. Питание на УЗО подаётся сверху, а снизу выполняется подсоединение нагрузки. С выходной клеммы автоматического выключателя фазный проводник «L» подключайте на соответствующую входную клемму УЗО. Аналогичную коммутацию проделайте с нулевым проводом «N».

Сборка схемы в распределительном щитке

  • Фазный выход с УЗО распределите по всем автоматам отходящих линий.
  • Выход с нулевого контакта подсоедините на нулевую шинку. А уже от неё проводники разойдутся по потребителям. После УЗО нулевые проводники в один узел не объединяются, это вызовет ложные срабатывания устройства.
  • После выполнения всех коммутаций, включите вводной автомат. Проверьте правильность подсоединения и работы устройства защитного отключения. Для этого на корпусе УЗО имеется специальная кнопка «ТЕСТ». Её главная цель – имитация токовой утечки. С фазного проводника ток подаётся на сопротивление, а с него, минуя трансформатор, на нулевой проводник. Из-за сопротивления ток стал меньше на выходе и за счёт полученного небаланса сработает отключающий механизм. Нажмите на проверочную кнопку, УЗО должно отключиться. Если этого не произошло, значит, имеются неточности в подсоединении либо устройство не исправное.

Распространенные ошибки при подключении УЗО на видео:

Если будете подключать УЗО с заземлением, помните, что использовать для этой цели водопроводные трубы или другие коммуникационные сооружения недопустимо.

Заземление через трубы отопления делать запрещено

Заземление должно быть правильно выполненным, а не сделанным самостоятельно, только в этом случае можно быть полностью уверенным в безопасности. Если заземление нерабочее, то обязательно отсоедините и заизолируйте проводники, приходящие в щиток от электроприборов.

принцип работы и схема подключения в однофазной сети

Принцип работы УЗО и схема подключения в однофазной сети 1УЗО в любой электрической цепи является очень важным элементом. Основное предназначение УЗО состоит в обеспечении защиты человека от поражения током при контакте с токоведущими частями. Помимо этого, УЗО, принцип работы которого будет рассмотрен в данной статье, предотвращает вероятность возникновения пожаров, которые могут быть спровоцированы возгоранием электропроводки.

В определенных ситуациях УЗО, принцип работы которого достаточно прост, прекращает подачу на защищаемую линию напряжения. Происходит это в случае, если человек прикасается к токоведущим частям электроустановок, и к элементам нетоковедущим, которые в результате пробоя изоляции оказались под напряжением. Еще одной причиной размыкания контактов является возникновение утечки тока на корпус электроустановки или землю.

Принцип работы УЗО и схема подключения в однофазной сети 2

Рассмотрение принципа работы УЗО в общем и на конкретном примере

Когда сдаются недорогие квартиры от застройщика, то вся электрика, в том числе УЗО и диффавтоматы, а также разводка и автоматы отключения, уже установлены. Если же вы строите свой дом или хотите установить УЗО в квартире своими руками, то вам стоит знать принцип действия этого устройства и правила его установки.

УЗО (принцип работы основан на определении входящих и исходящих токов на входе в систему) может реагировать на минимальные утечки и выполнять свою защитную функцию. Для измерения утечки, в прибор установлен такой чувствительный элемент, как дифференциальный трансформатор, обладающий тремя обмотками.

Принцип действия УЗО легко можно понять на конкретном примере. Если человек прикасается к токоведущим частям установки, или же возникает пробой изоляции на ее корпусе, величина тока, текущего по фазному проводу, превысит величину тока в нулевом проводе.

Суммарный (итоговый) поток магнитной индукции, при этом, обязательно изменится, будет отличаться от нуля и будет являться причиной наведения в управляющей обмотке тока. Реле, к которому обмотка подключена, сработает, и в движение будет приведен расцепитель контактов силовых защитного устройства.

Подобный принцип действия УЗО, в результате которого за доли секунды обесточивается опасная электроустановка, обеспечивает сохранность человеческого здоровья.

Принцип работы УЗО и схема подключения в однофазной сети 3

Подключение УЗО к сети однофазной: основные правила

Схема УЗО указана на корпусе прибора и позволяет понять принцип его действия, правильно подключить устройство в схему защиты электрической цепи, избегая некорректной работы устройства или выхода его из строя.

Схема УЗО, по которой оно подключается в систему электроснабжения, зависит от различных параметров и факторов. В жилых помещениях, как правило, используется однофазный вариант электропроводки с номинальным напряжением 220 В.

Перед установкой нужно не только понять принцип работы УЗО в однофазной сети, но и ознакомиться с правилами безопасности.

Принцип работы УЗО и схема подключения в однофазной сети 4

Принцип работы УЗО и схема подключения подразумевают использование двух проводов проводки, подключаемых к входным клеммам, и двух проводов на выход прибора, подсоединяемых к соответствующим выходным клеммам. Устанавливать прибор нужно только при отключенном напряжении. Перед осуществлением установки, нужно убедиться, что в щитке для выбранного прибора достаточно места.

Принцип работы УЗО и схема подключения его достаточно просты. Существует несколько вариантов установки этого устройства, но принцип, в целом, остается неизменным.

Наиболее распространенным и доступным является вариант, при котором устройство стоит на входе в дом/квартиру. Недостаток этого варианта заключается в том, что при срабатывании прибора обесточивается все жилое помещение, а определять причину происходящего сложно.

Принцип работы УЗО и схема подключения в однофазной сети 5

Более дорогостоящим, однако, очень удобным является вариант подключения с установкой нескольких УЗО — в этом случае, каждое устройство будет отвечать за отдельную группу розеток или освещения.

Принцип работы УЗО в однофазной или трехфазной сети. Принцип работы УЗО и схема подключения :: SYL.ru

УЗО представляет собой отдельный тип защитных электроаппаратов наряду с автоматическими выключателями (АВ). Хотя их назначением является именно электрозащита, как и у АВ, но принципы работы у них отличаются.

Зачем нужны УЗО, если есть АВ?

С течением времени электроизоляция токоведущих частей электроприборов, включая ТЭНы, провода, шнуры питания и кабели, неизбежно стареет. И тогда с них через токопроводящие корпуса различных электроприборов в землю начинают протекать так называемые токи утечки, величиной от нескольких десятков микроампер до единиц миллиампер.

Обычные АВ на появление токов утечки никак не реагируют – ведь они составляют ничтожные доли от номинальных токов электропотребителей. Однако их появление (точнее, превышение токами некоторого допустимого предела) является сигналом тревоги. Это предупреждение о приближении аварийной ситуации, и для ее предотвращения нужен специальный защитный электроаппарат – УЗО.

Кроме того, как известно, неотпускающий (судорожный) ток, представляющий для человека (при определенном времени воздействия) смертельную опасность, равен всего 10 мА. Поэтому необходимость создания защитных устройств, реагирующих на токи утечки в этом диапазоне величин, ощущалась с самого начала широкого проникновения электричества в быт.

Пояснение работы устройства

Попробуем объяснить принцип работы УЗО при помощи гидравлической аналогии. Будем считать, что вода протекает по замкнутому контуру водяного отопления так же, как и электроток по проводам. Если где-то в отопительной трубе возникает дыра, то через нее идет утечка воды. Поэтому ее расход (аналог электротока) через два сечения труб, одно из которых на входе контура, а другое – на его выходе, будет разным. Точно так же и с токами утечки в электроприборе. Можно сравнить, сколько тока входит в электроприбор, и сколько выходит. В однофазный электроприбор ток входит по фазному проводу, а выходит по нулевому, поэтому достаточно сравнить токи в этих двух проводах. В этом и состоит принцип работы УЗО в однофазной сети. Если величины тока на входе и на выходе электроприбора не одинаковы, то оно за время порядка нескольких миллисекунд отключает его от сети. Такое малое время срабатывания необходимо потому, что превышение токами утечки величины тока срабатывания УЗО могло быть вызвано именно прикосновением человека к токопроводящему корпусу прибора.

Ток срабатывания

Но чтобы работа УЗО стала эффективной в бытовых условиях, понадобилось немало времени. Прежде всего, нужно было точно определиться с величиной тока утечки, который был бы безопасен для человека на время срабатывания устройства. Попытки проектировать УЗО на токи утечки менее 10 мА приводили к созданию больших, сложных и дорогих устройств, причем склонных к ложным срабатываниям от различных электромагнитных наводок.

К началу 80-х годов ХХ в. ток их срабатывания, на основании опытов с добровольцами, был выбран величиной в 30 мА, а также были созданы малогабаритные трансформаторы с ферритовыми кольцевыми сердечниками (их называют дифференциальными), ставшие датчиками токов утечки. В продажу поступили электромеханические дифференциальные УЗО-ДМ с током срабатывания от 20 до 30 мА, являющимися сегодня самыми популярными в быту. Обычно литеры ДМ опускают, и прибор называют просто УЗО.

Принцип работы УЗО и схема подключения

Токи, протекающие по фазному и нулевому проводникам в разных направлениях, возбуждают в кольцевом сердечнике трансформатора устройства два одинаковых по величине магнитных потока Ф1 и Ф2, однако векторы магнитной индукции, соответствующие этим потокам, направлены в сердечнике встречно и взаимно компенсируют друг друга. Поэтому суммарный магнитный поток в сердечнике равен нулю, как и ЭДС во вторичной обмотке трансформатора.

Если вследствие дефекта изоляции появляется ток утечки, близкий к току срабатывания, то Ф1 ≠ Ф2, в сердечнике возникает магнитный поток, наводящий в выходной обмотке ЭДС, способный создать ток, достаточный для срабатывания порогового элемента УЗО. Далее оттягивается защелка силовой контактной группы, и ее контакты размыкаются. Таков принцип работы УЗО всех типов.

Во всех типах таких устройств предусмотрена кнопка «Тест», при нажатии на которую искусственно создается ситуация утечки тока для проверки срабатывания устройства. Флажок или кнопка с самофиксацией служат для повторного включения УЗО после тестового срабатывания.

Разновидности УЗО

Известны электромеханические и электронные типы таких защитных аппаратов. Принцип работы УЗО и схема подключения обоих типов одинаковы, однако приборы первого типа не нуждаются в электропитании и обладают простой и надежной конструкцией. Для их срабатывания хватает тока утечки в защищаемом электроприборе.

Электронное УЗО нуждается в подаче на него напряжения питания, так как в нем пороговый элемент выполнен в виде электронной схемы, усиливающей малый ток в выходной обмотке его трансформатора и создающей импульс для исполнительного реле.

В связи с этим и сам трансформатор электронного УЗО меньших размеров, габаритов и мощности. Модуль порогового элемента с усилителем питается от контролируемой цепи, и если в цепи его питания произойдет обрыв проводника, то такое устройство потеряет работоспособность. Имеются и другие риски при работе электронных УЗО. Например, выход из строя его электронных компонентов при импульсных перенапряжениях в питающей сети.

Поскольку надежность электронных УЗО ниже, чем у электромеханических, то и стоимость их меньше.

Трехфазное УЗО

У трехфазного аппарата, в отличие от однофазного, четыре полюса вместо двух, поскольку нулевой проводник проходит через оба типа устройств. Принцип работы трехфазного УЗО такой же, как и у однофазного.

Сердечник его трансформатора охватывает четыре проводника – три фазных и один нулевой. Суммарный ток в трех фазных проводах (т. н. ток нулевой последовательности) всегда равен по величине току в нулевом проводе и противоположен ему по направлению (внутри УЗО). В этом случае сердечник трансформатора не намагничен, в его выходной обмотке тока нет. Если в защищаемом приборе появился ток утечки, то в сердечнике появляется переменный магнитный поток, наводящий ЭДС в выходной обмотке трансформатора. По ней начинает протекать ток, пропорциональный току утечки, и если ток утечки превышает ток срабатывания, то УЗО отключает электроприбор. Баланс токов в контрольном органе УЗО нарушается, и оно срабатывает.

Трехфазное УЗО без нулевого проводника

Для защиты от токов утечки асинхронных электродвигателей, обмотки которых соединены в треугольник или в звезду с невыведенной нейтралью, применяется подключение 4-полюсного УЗО с незанятой нулевой клеммой. При отсутствии токов утечки в фазах электродвигателя, сумма токов в фазных проводах очень мала и неспособна вызвать срабатывание защиты. Появление тока утечки из фазных проводов через корпус двигателя в землю вызывает циркуляцию через трансформатор УЗО тока нулевой последовательности, на который и реагирует электроаппарат. Общий принцип работы УЗО и в этом случае не изменяется.

Особенности применения одно- и трехфазных УЗО

Трехфазные 4-полюсные аппараты имеют довольно большие токи срабатывания, что позволяет применять их только для противопожарной защиты, как и АВ с тепловыми расцепителями. Защиту же групповых линий на розетки в комнатах, кухне и ванной, либо защиту отдельных линий питания мощных электроприборов (стиральных и посудомоечных машин, электроплит, электроводонагревателей) следует выполнять на 2-полюсных однофазных УЗО с установкой номиналов по токам утечки от 20 мА до 30 мА.

Для того чтобы работа УЗО в однофазной сети была безопасной, оно само должно быть защищено от перегрузки по току (при длительной непрерывной работе исправного электроприбора), установленным перед ним АВ с тепловым расцепителем.

Работа УЗО без заземления

Как известно, в старых домах советской постройки квартирные электропроводки не имели отдельного нулевого защитного проводника, подключаемого к контуру заземления. Предполагалось, что его функцию исполняет нулевой рабочий проводник (т. н. система электроснабжения TN-C с общими нулевыми рабочим и защитным проводниками). А поскольку во всех изданиях ПУЭ есть запрет на установку в защитных проводниках аппаратов защиты, то 2-полюсные УЗО, разрывающие одновременно и фазу и нуль, также попадают под запрет. Даже последняя 7-я актуальная редакция ПУЭ в п. 7.1.80 подтвердила недопустимость установки УЗО в сетях по системе TN-C. Дело в том, что были зафиксированы случаи поражения электротоком во время их срабатывания.

Причиной этого стала разновременность срабатывания контактов устройств, составляющая единицы милисекунд. Но если первым отключался контакт в нулевом проводе, то при пробое изоляции на корпус бытового электроприбора потребитель оказывался под полным фазным напряжением, так что этих нескольких милисекунд вполне хватало для смертельного поражения.

Для квартир без нулевых защитных проводников устанавливать общеквартирное УЗО недопустимо, но отдельные такие аппараты можно устанавливать в групповые розеточные линии с общим защитным проводником или в линии питания отдельных электроприборов, если защитные проводники розеточных групп или розеток по кратчайшему пути заведены на их входные нулевые клеммы.

В этом случае разрыв внутри УЗО нулевого рабочего провода раньше фазного не приводит к разрыву защитного проводника электроприбора, так как участок защитного проводника от входной нулевой клеммы через розетку и шнур питания электроприбора останутся неповрежденными.

Узо. Принцип работы, назначение устройства защитного отключения

Можно услышать мнение, в котором оспаривается необходимость установки устройств защитного отключения (далее УЗО). Чтобы опровергнуть или подтвердить его необходимо понимать функциональное назначение этих устройств, их принцип работы, конструктивные особенности и схему подключения. Также немаловажным фактором является правильное подключение, в зависимости от определенной задачи. Мы постараемся максимально широко ответить на все вопросы касательно данной темы.

Функциональное назначение

Согласно официальному определению данный тип устройств играет роль быстродействующего защитного выключателя, реагирующего на утечку тока. То есть он срабатывает в том случае, когда образуется цепь между фазой и «землей» (проводником РЕ).

Приведем классический пример, в ванной установлен электрический водонагреватель. Он работает беспроблемно гарантийный срок и даже более, потом наступает момент, когда корпус одного из нагревающих элементов дает трещину и происходит пробой фазы на воду.

Яркий пример пробояЯркий пример пробоя

Если в данном случае образуется цепь: фаза – человек – земля, тока нагрузки будет недостаточно для срабатывания электромагнитной защиты, она рассчитана на КЗ. Что касается тепловой защиты, то время ее срабатывания значительно дольше сопротивляемости человеческого организма деструктивному воздействию электротока. Результат можно не описывать, самое страшное то, что в многоквартирном доме такой бойлер может нести угрозу соседям.

В таких случаях представленный  аппарат — единственно действенный способ обеспечить надежную защиту. Самое время рассмотреть его принципиальную схему, конструкцию и принцип действия.

Схема устройства

В первую очередь, представим принципиальную схему устройства, с указанием его основных элементов.

Схема УЗОСхема УЗО

Обозначение:

  • А – Реле, управляющее контактной группой.
  • В – Дифференциальный ТТ (трансформатор тока).
  • С – Обмотка фазы на ДТТ.
  • D – Обмотка нуля на ДТТ.
  • Е – Контактная группа.
  • F – Нагрузочное сопротивление.
  • G – Кнопка, запускающая тестирование устройства.
  • 1 – Вход фазы.
  • 2 – Выход фазы.
  • N – Контакты нулевого провода.

Теперь объясним, как это работает.

Принцип работы

Допустим, от нашего защитного устройства запитан некий прибор с внутренним сопротивлением Rn, при этом корпус подключенного устройства заземлен. В данном случае при штатном режиме работы, через обмотки I и II ДТТ будут протекать равные по значению, но разные по направлению токи.

Штатная работа УЗОШтатная работа УЗО

Таким образом, суммарная величина i0 и i1 будет нулевой. Соответственно, вызываемые токами магнитные потоки в ДТТ, также будут встречными, поэтому их суммарная величина, также будет нулевой. С учетом перечисленных условий, во вторичной обмотке ДДТ ток образовываться не будет, поэтому реле, управляющее контактной группой, не инициируется. То есть, защитное устройство будет оставаться во включенном состоянии.

Теперь рассмотрим ситуацию, в которой произошел пробой на корпус подключенного оборудования.

Пробой создал условия для срабатывания УЗОПробой создал условия для срабатывания УЗО

В результате появления тока утечки (iу) на «землю» будет нарушен баланс токов, протекающих по первичным обмоткам I и II. Это приведет к тому, что величина магнитного потока также станет отличной от нуля, что вызовет образования тока (i2) на вторичной обмотке ДТТ (III), к которой подключено реле, управляющее контактной группой. Оно сработает, и подключенное оборудование будет обесточено.

Кнопка тестирования на приборе имитирует утечку тока через резистор Rt , что дает возможность убедиться в работоспособности прибора. Такую проверку необходимо проводить не реже одного раза в месяц.
https://www.youtube.com/watch?v=wz55OW0cvIY

Конструктивное исполнение

Ниже на рисунке представлено типовое защитное устройство со снятой верхней крышкой, что позволяет рассмотреть основные узлы конструкции.

УЗО со снятой крышкойУЗО со снятой крышкой

Обозначения:

  • А – Механизм кнопки, запускающей тестирование устройства.
  • В — Контактные площадки для подключения входа фазы и нулевого провода.
  • С — Дифференциальный ТТ.
  • D – Электронная плата усилителя тока, поступающего со вторичной обмотки, до уровня, необходимого для срабатывания реле.
  • Е – Нижняя часть пластикового корпуса со стандартным креплением под DIN-рейку.
  • F – Дугогасительнаые камеры на размыкающейся группе контактов.
  • G — Контактные площадки для подключения выхода фазы и нулевого провода.
  • H – Механизм расцепителя (приводится в действие реле или вручную).

Перечень основных характеристик

Разобравшись с конструкцией приборов и их принципом работы, перейдем к основным параметрам. К числу таковых относятся:

  • Тип защищаемой электропроводки, она может быть однофазной или трехфазной. Данный параметр влияет на количество полюсов (2 или 4).
  • Величина номинального напряжения, для двухполюсных аппаратов это 220-240 Вольт, четырехполюсных – 380-400 Вольт.
  • Величина номинальной токовой нагрузки, этот параметр соответствует аналогичному у автоматических выключателей (далее АВ), но имеет несколько другое назначение (подробно будет рассказано ниже), измеряется в Амперах.
  • Номинальная величина дифференциального (отключающего) тока, типовые значения: 10, 30, 100 и 300 мА.
  • Вид отключающего тока, принятые обозначения:
  1. AC – Соответствует переменному току синусоидальной формы. Допускается как его медленное нарастание, так и внезапное проявление.
  2. А – К предыдущим характеристикам (AC) добавляется возможность отслеживать утечку выпрямленного пульсирующего тока.
  3. S – Обозначение селективных устройств, они отличаются относительно высокой задержкой срабатывания.
  4. G – Соответствует предыдущему типу (S), но с меньшей задержкой.

Теперь необходимо объяснить значение параметра номинального тока, поскольку с ним возникают некоторые вопросы. Это значение указывает на максимально допустимый ток для данного защитного электромеханического аппарата.

Подбирая этот параметр необходимо учесть, что он должен быть на одну ступень выше, чем у АВ на данной линии. Например, если АВ рассчитан на 25 А, то необходимо устанавливать защитные устройства с номинальным током – 32 А.

Обратим, внимание, на то, что данный тип  устройств не предназначен для срабатывания от КЗ и перегрузки. Если произойдет подобная авария, то выгорит вся проводка и возникнет пожар, но аппарат так и останется включенным. Именно поэтому такие защитные устройства необходимо использовать совместно с АВ. Как вариант, можно устанавливать диффавтомат, по сути это тоже устройство защитного отключения, но снабженное механизмом защиты от КЗ и перегрузки.

Маркировка

Маркировка наносится на лицевую панель прибора, расскажем, что она обозначает на примере двухполюсного устройства.

Маркировка УЗОМаркировка УЗО

Обозначения:

  • А – Аббревиатура или логотип производителя.
  • В – обозначение серии.
  • С – Величина номинального напряжения.
  • D – Параметр номинального тока.
  • Е – Значение отключающего тока.
  • F – Графическое обозначение типа отключающего тока, может быть продублировано литерами (в нашем случае изображена синусоида, что указывает на тип АС).
  • G – Графическое обозначение устройства на принципиальных схемах.
  • Н – Значение условного тока КЗ.
  • I – Схема устройства.
  • J – Минимальное значение рабочей температуры (в нашем случае: – 25°С).

Мы привели типовую маркировку, которая применяется в большинстве устройств данного класса.

Варианты подключения

Прежде, чем перейти к типовым схемам подключения, необходимо рассказать о нескольких общих правилах:

  1. Устройства данного типа должны быть в паре с АВ, как мы уже упоминали выше, это связано с тем, что защитных устройств не оборудовано защитой от КЗ.
  2. Величина номинального тока защитного устройства, она должна быть на ступень выше, чем у стоящего с ним в паре АВ.
  3. Нельзя путать входные и выходные контакты. То есть, на вход, помеченный, как правило, «1» должна подаваться фаза, на «N» — ноль. Соответственно, «2» — это выход фазы, а «N» — нуля.
  4. Ноль после аппарат не должен соединяться с нулем до него.

Теперь рассмотрим самую простую схему, в которой на каждую линию установлена защита от КЗ и тока утечки.

УЗО на каждую линиюУЗО на каждую линию

В данном случае все просто, на вход устанавливается АВ (А на рис. 7) с номинальным током 40 А. После него стоит общее устройство (В), его еще называют противопожарным. У данного устройства ток утечки должен быть не менее 100 мА, номинальный ток, как минимум – 50 А (см. пункт 2 общих правил, указанных выше). Далее идут две связки УЗО-АВ (С-Е и D-F). Параметр номинального тока у «С» и «D» — 16 A. Для «E» и «F» это параметр должен быть на ступень выше, в нашем случае – это 20 А. Что касается величины отключающего тока, то для влажных помещений этот показатель должен быть 10 мА, для остальных групп потребителей – 30 мА.

https://www.youtube.com/watch?v=EQs-iqz-kAE

Такой вариант подключения самый простой и надежны, но при этом и более затратный. Для двух внутренних линий его еще можно использовать, но когда их число от 4-х и больше имеет смысл ставить одно устройство защиты на группу АВ. Пример такой схемы приведен нижне.

Пример качественной селективной схемыПример качественной селективной схемы

Как видите в данной схеме у нас установлено одно общее (противопожарное) защитное устройство и четыре групповых на освещение, кухню, розетки и ванную комнату. Такой вариант подключения позволяет существенно сократить затраты, по сравнению со схемой, где на каждую линию подключается связка УЗО-АВ. Помимо этого обеспечивается необходимый уровень защиты.

В заключение несколько слов о необходимости защитного заземления. Для нормального функционирования УЗО оно необходимо. В интернете можно найти схему включения без PE (собственно она ничем не отличается от обычной), но следует заметить, что сработка будет только в том случае, когда произойдет контакт с батарей, трубами холодной или горячей воды и т.д.

Список использованной литературы

  •  В.К. Монаков «УЗО. Теория и практика» 2007
  • Родштейн Л.П. «Электрические аппараты» 1989
  • Ф. Штепан «Устройства защитного отключения, управляемые дифференциальным током» 2004

VFD для однофазных приложений

ЧРП и однофазные двигатели переменного тока

Моя первая работа вне школы была с производителем двигателей, оказывающим техническую поддержку. Находясь на Среднем Западе, у нас было много фермерских и сельскохозяйственных клиентов.

Их области применения варьировались от вентиляторов, насосов, элеваторов, мешалок, шнеков, конвейеров и т. Д. Фермерские установки часто не имели доступа к трехфазному питанию и приходилось довольствоваться однофазным напряжением 230 В.Мы продали много однофазных двигателей для этих установок.

Многие однофазные двигатели были относительно большими — от 5 до 15 л.с.

single phase farm duty motor Однофазный двигатель Farm Duty

При эксплуатации больших однофазных двигателей существует ряд проблем. Эти клиенты часто задавали вопрос: «Могу ли я добавить частотно-регулируемый привод к моему однофазному двигателю?».

В этом сообщении описывается использование частотно-регулируемых приводов в однофазных приложениях — почему человек может захотеть добавить частотно-регулируемый привод, размеры, приблизительное сравнение стоимости и преимущества, предлагаемые частотно-регулируемым приводом.

Проблема с сетевым питанием однофазных двигателей

Одной из проблем при управлении крупными однофазными двигателями переменного тока от сети является пусковой ток. Однофазный двигатель мощностью 10 л.с. потребляет номинальное напряжение 38 А (при 230 В).

Но этот двигатель (конструкция NEMA B) при запуске будет потреблять в 6-8 раз больший номинальный ток — или 234 А!

10HP single phase motor data Однофазный двигатель мощностью 10 л.с. потребляет пусковой ток 234 А при 230 В.

Этого достаточно, чтобы энергетические компании обратили внимание, особенно если одновременно запускается несколько двигателей или если электрическая сеть удаленной фермы близка к мощности.

Честно говоря, проблемы, связанные с высокими пусковыми токами, также будут влиять на трехфазный двигатель с сетевым питанием. Но в случае трехфазного двигателя человек может легко добавить частотно-регулируемый привод. Одним из преимуществ работы с частотно-регулируемым приводом является то, что при увеличении скорости двигателя он ограничивает ток двигателя.

Проблема в том, что частотно-регулируемый привод не может работать с большинством однофазных двигателей — по крайней мере, на пониженных скоростях.

Центробежный выключатель в конденсаторном пуске Однофазные двигатели

Есть несколько различных конструкций однофазных двигателей.Я выделю тот, который я видел больше всего в промышленных приложениях — с конденсаторным пуском и центробежным переключателем. В конструкции используется конденсаторная сеть, которая находится в цепи двигателя на низких скоростях. Конденсаторы помогают развивать крутящий момент при нулевой скорости и запускать двигатель в правильном направлении.

single phase motor wiring diagram Общая электрическая схема однофазного двигателя — с конденсаторами и центробежным выключателем

Когда двигатель вращается и становится инерционным, центробежный переключатель размыкается, и конденсаторная сеть отключается от первичных обмоток двигателя.Скорость, с которой размыкается переключатель, происходит до достижения номинальной скорости скольжения.

По этой причине не рекомендуется использовать двигатель, рассчитанный на 60 Гц в сети 50 Гц. По крайней мере, без замены или регулировки центробежного переключателя. Возможно, что переключатель никогда не размыкается при работе на частоте 50 Гц. Это может привести к повреждению конденсаторов или перегреву обмоток двигателя.

Аналогичная проблема связана с использованием частотно-регулируемого привода для управления скоростью однофазного двигателя.Снижение скорости эффективно удерживает конденсаторы в цепи и потенциально может повредить двигатель.

Однофазный вход на частотно-регулируемый привод

Итак, если вы не можете использовать частотно-регулируемый привод с однофазным двигателем такой конструкции, какое решение? Ответ заключается в том, чтобы ввести одну фазу в ЧРП. VFD может действовать как преобразователь фаз и выводить три фазы на трехфазный двигатель.

Есть некоторые соображения, особенно с калибровкой.Некоторые VFD разработаны и рассчитаны на ввод как однофазных, так и трехфазных. Обратитесь к производителю частотно-регулируемого привода, но в руководстве вы увидите что-то подобное, которое обозначает обе фазы.

Для приводов большего размера номинальные значения обычно указывают только на трехфазный вход. Однофазный вход возможен, но, вероятно, потребуется снижение номинальных характеристик.

Давайте посмотрим на приложение VFD с трехфазным входом, работающим от двигателя мощностью 10 л.с. Допустим, потерь нет и PowerIN = PowerOUT.Входной ток и выход будут одинаковыми.

Three phase vfd input Входная мощность распределяется по трем фазам

Теперь возьмем то же приложение с двигателем мощностью 10 л.с., но с однофазным входом. PowerIN = PowerOUT. Вот только вся мощность на входе теперь проходит через один провод вместо трех. Фактически, к входному однофазному току применяется коэффициент √ (3) по сравнению с трехфазным током.

single phase VFD input power Вся входная мощность (ток) проходит по одному проводнику

Опять же, некоторые размеры приводов уже имеют входные выпрямители с завышенными размерами и по своей природе могут выдерживать повышенный однофазный входной ток — это должно отражаться в номинальных характеристиках силового каскада.Для более крупных приложений HP в конечном итоге может потребоваться увеличение размера привода для работы с большим входным током.

Как правило, мы предлагаем округлить в большую сторону и предположить, что однофазный входной ток будет вдвое больше, чем трехфазный входной ток.

Наконец, также неплохо использовать сетевой дроссель 5% при подаче однофазной входной мощности на привод. Во время включения на привод будет подача зарядного тока на устройство.5% -ный реактор поможет снизить пиковый зарядный ток и защитит входной выпрямительный каскад частотно-регулируемого привода.

А как насчет стоимости

Однофазные двигатели, особенно более мощные, имеют надбавку к цене. Быстрый расчет того же двигателя мощностью 10 л.с. сверху и однофазного варианта — это + 60% надбавка к стоимости. Я предполагаю, что часть дополнительных затрат связана с добавленными частями конденсаторной сети и переключателя.

Другая часть стоимости связана с тем, что более крупные однофазные асинхронные двигатели являются более специализированными по сравнению с трехфазными типами.

Добавьте дополнительную стоимость частотно-регулируемого привода / реактора, но также вычтите надбавку за однофазный двигатель. Я думаю, вы обнаружите, что стоимость добавления ЧРП намного меньше, чем вы думаете.

Почему бы просто не использовать вращающийся фазовый преобразователь вместо однофазного частотно-регулируемого привода?

Фазовый преобразователь, безусловно, является вариантом. Он преобразует однофазную мощность в трехфазную. Но это все, что он делает. Он не предлагает многих преимуществ, которые предлагает ЧРП.

Аналогичный аргумент можно привести и в отношении стоимости преобразователя фазы. Фазовый преобразователь, скорее всего, не сэкономит много денег, если вообще сэкономит, по сравнению с приводом.

Преимущества использования частотно-регулируемых приводов в однофазных приложениях

Пользователю будет выгодно перейти от двигателя с сетевым питанием к двигателю с ЧРП. Они смогут оптимизировать скорость двигателя для процесса. Возможно, это означает замедление конвейера во время загрузки вместо полного отключения двигателя.Слегка нагруженные двигатели также могут быть увеличены с превышением скорости для ускорения процессов.

Пользователь также получит выгоду от экономии энергии благодаря ЧРП. Особенно квадратичные нагрузки, такие как вентиляторы и насосы. Чем выше пошлина приложение, тем больше будет экономия. Добавьте в приложение некоторую базовую обратную связь, такую ​​как датчик температуры или влажности, и к ЧРП можно будет подключить проводку для регулирования процесса. KEB F5 даже имеет встроенный ПИД-регулятор, поэтому весь процесс можно регулировать внутри привода, что устраняет необходимость во внешнем ПЛК или управлении

Одно из преимуществ частотно-регулируемых приводов, которое часто упускается из виду, — это все их защитные функции, позволяющие обнаруживать нештатные ситуации.

  • Повышенное / пониженное напряжение — Автоматическое отключение при падении напряжения или скачке напряжения.
  • Motor Overheat — Для этой опции требуется термистор или датчик температуры двигателя. Он защищает вложения в двигатель и является хорошей идеей для дорогих двигателей, двигателей, трудных в обслуживании, а также для приложений с высокими температурами окружающей среды.
  • Защита от перегрузки по току — это может обнаружить ненормальную неисправность, такую ​​как короткое замыкание обмотки двигателя и отключение.

Конечно, есть еще много защитных функций, но вы поняли.

Если вы хотите обсудить, как эту технологию можно использовать в вашей установке, или хотите узнать больше о любых продуктах KEB, вы можете связаться с нами, используя форму ниже.

.Сверточная сеть

для классификации и обнаружения

VGG16 — это модель сверточной нейронной сети, предложенная К. Симоняном и А. Зиссерманом из Оксфордского университета в статье «Очень глубокие сверточные сети для распознавания крупномасштабных изображений». Модель достигает 92,7% точности тестов из топ-5 в ImageNet, который представляет собой набор данных из более чем 14 миллионов изображений, принадлежащих к 1000 классам. Это была одна из самых известных моделей, представленных на ILSVRC-2014. Он обеспечивает улучшение по сравнению с AlexNet за счет замены фильтров большого размера ядра (11 и 5 в первом и втором сверточном слое соответственно) несколькими фильтрами размера ядра 3 × 3 один за другим.VGG16 обучалась неделями и использовала графические процессоры NVIDIA Titan Black.

vgg16 architecture

DataSet

ImageNet — это набор данных из более чем 15 миллионов помеченных изображений с высоким разрешением, принадлежащих примерно к 22 000 категориям. Изображения были собраны из Интернета и маркированы людьми, использующими краудсорсинговый инструмент Amazon Mechanical Turk. Начиная с 2010 года, в рамках Pascal Visual Object Challenge проводится ежегодный конкурс ImageNet Large-Scale Visual Recognition Challenge (ILSVRC).ILSVRC использует подмножество ImageNet с примерно 1000 изображений в каждой из 1000 категорий. Всего существует примерно 1,2 миллиона обучающих изображений, 50 000 изображений для проверки и 150 000 изображений для тестирования. ImageNet состоит из изображений с переменным разрешением. Поэтому изображения были уменьшены до фиксированного разрешения 256 × 256. Для прямоугольного изображения изображение масштабируется и вырезается центральный фрагмент 256 × 256 из полученного изображения.

Архитектура

Архитектура, изображенная ниже, — VGG16.

VGG16 Artitecture Архитектура VGG16

Вход на слой cov1 — это изображение RGB фиксированного размера 224 x 224. Изображение проходит через стопку сверточных (сверточных) слоев, в которых использовались фильтры с очень маленьким принимающим полем: 3 × 3 (что является наименьшим размером, чтобы уловить понятие левого / правого, верхнего / нижнего, центрального ). В одной из конфигураций он также использует фильтры свертки 1 × 1, которые можно рассматривать как линейное преобразование входных каналов (с последующей нелинейностью). Шаг свертки равен 1 пикселю; пространственный отступ конв.входной слой таков, что пространственное разрешение сохраняется после свертки, то есть заполнение составляет 1 пиксель для свертки 3 × 3. слои. Пространственное объединение выполняется пятью слоями максимального объединения, которые следуют за некоторыми конвенциями. слои (не для всех конв. слоев следует max-pooling). Максимальное объединение выполняется в окне 2 × 2 пикселя с шагом 2.

Три полностью соединенных (FC) уровня следуют за стеком сверточных слоев (который имеет разную глубину в разных архитектурах): первые два имеют 4096 каналов каждый, третий выполняет 1000-позиционную классификацию ILSVRC и, таким образом, содержит 1000 каналов (один для каждый класс).Последний слой — это слой soft-max. Конфигурация полносвязных слоев одинакова во всех сетях.

Все скрытые слои снабжены функцией выпрямления (ReLU) нелинейности. Также следует отметить, что ни одна из сетей (кроме одной) не содержит Local Response Normalization (LRN), такая нормализация не улучшает производительность набора данных ILSVRC, но приводит к увеличению потребления памяти и времени вычислений.

Конфигурации

Конфигурации ConvNet показаны на рисунке 02.Сети называются своими именами (A-E). Все конфигурации соответствуют общему дизайну, присутствующему в архитектуре, и различаются только глубиной: от 11 весовых уровней в сети A (8 конвенционных и 3 FC уровня) до 19 весовых уровней в сети E (16 конвенционных и 3 уровня FC) . Ширина конв. слоев (количество каналов) довольно мало, начиная с 64 в первом слое и затем увеличиваясь в 2 раза после каждого уровня максимального объединения, пока не достигнет 512.

Рисунок: 2

Примеры использования и реализация

К сожалению, у VGGNet есть два основных недостатка:

  1. Это мучительно медленно, тренироваться.
  2. Сами веса сетевой архитектуры довольно велики (относительно диска / пропускной способности).

Из-за своей глубины и количества полностью подключенных узлов размер VGG16 превышает 533 МБ. Это делает развертывание VGG утомительной задачей. VGG16 используется во многих задачах классификации изображений с глубоким обучением; однако часто более предпочтительны меньшие сетевые архитектуры (такие как SqueezeNet, GoogLeNet и т. д.). Но это отличный строительный блок для целей обучения, поскольку его легко реализовать.

[Pytorch]

[Tensorflow]

[Керас]

Результат

VGG16 значительно превосходит модели предыдущего поколения в соревнованиях ILSVRC-2012 и ILSVRC-2013.Результат VGG16 также конкурирует за победителя задачи классификации (GoogLeNet с ошибкой 6,7%) и существенно превосходит победившую заявку ILSVRC-2013 Clarifai, которая достигла 11,2% с данными внешнего обучения и 11,7% без них. Что касается производительности одной сети, архитектура VGG16 дает лучший результат (ошибка теста 7,0%), превосходя одну сеть GoogLeNet на 0,9%.

Было продемонстрировано, что глубина представления благоприятна для точности классификации, и что современная производительность набора данных задачи ImageNet может быть достигнута с использованием традиционной архитектуры ConvNet с существенно увеличенной глубиной.

.

В фазе / вне фазы — Вопросы и ответы в МРТ

синфазный — противофазный

Что подразумевается под синфазным и не синфазным изображением?

Поскольку протоны воды и жира имеют немного разные резонансные частоты, их спины смещаются по фазе и не совпадают друг с другом в зависимости от времени.Период этого цикла , , , составляет 1 / Δf, где Δf — частотный сдвиг между спинами. Таким образом, при 1,5Т период смены фаз составляет 1/220 Гц или около 4,5 мс. (Чтобы упростить обсуждение ниже, я округлил это число до четных 4,4 мс).

Синфазные и противофазные условия возникают дважды за цикл или примерно каждые 2,2 мс при 1,5Т. (При 3.0T цикл фаз в два раза быстрее, происходит каждые 1.1 мс). GRE-изображения, полученные при 1,5T на TE с 2,2, 6,6, 11,0 мсек, называются в противофазе (OOP) ; полученные в 4.4, 8.8 и т. д. называются синфазными (IP) .

Чередование фаз между жиром и водой при 1,5T

К концу 1980-х годов несколько исследователей начали понимать, что эффект отмены фазы может быть использован клинически для идентификации и даже количественного определения содержания жира в тканях, таких как печень.Сегодня этот принцип особенно часто используется для того, чтобы помочь отличить аденомы надпочечников (которые обычно содержат жир) от карцином и метастазов (которые не содержат). Диагностика множества других поражений брюшной полости, включая ангиомиолипомы, почечную светлоклеточную карциному и очаговую жировую инфильтрацию печени, может быть подтверждена визуализацией IP-OOP. Методика, проиллюстрированная ниже, включает получение пары изображений GRE с одним и тем же TR, но с двумя разными значениями TE, одним IP и вторым OOP.Поражения, интенсивность сигнала которых значительно падает на изображениях ООП, вероятно, содержат микроскопический жир. Соответственно, сканирование IP / OOP теперь является стандартной частью большинства протоколов визуализации брюшной полости во всем мире.

Аденома надпочечника с высоким содержанием липидов (стрелка). Синфазное изображение GRE при TE = 4,4 мсек показывает опухоль с промежуточной интенсивностью сигнала.

Стеатоз печени. Синфазный GRE с TE = 4,4 мс.

Смещенное по фазе изображение GRE при TE = 2.2 мсек. Аденома (стрелка) попадает в сигнал, артефакт отмены фазы.

Уменьшение печеночного сигнала на несинфазном изображении GRE с TE = 2,2 мс.

Липидные капли (стрелка) при аденоме надпочечника.

Образец показывает липидные капли

Эффект противофазного подавления между жиром и водой приводит к возникновению определенного типа артефакта магнитно-резонансной томографии, называемого «артефактом индийских чернил» или «артефактом химического сдвига второго рода».»Это обсуждается в более поздних вопросах и ответах.

.Однофазная сеть

▷ Французский перевод

Ризо (32971)

réseaux (1305)

.