Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Расчет мощности вытяжного вентилятора: Расчет производительности вытяжного вентилятора — минимально необходимая мощность, формула подсчета

Содержание

Расчет производительности вытяжного вентилятора — минимально необходимая мощность, формула подсчета

Вентиляционные системы — неотъемлемая часть любого помещения. И, конечно, в них используется такой прибор, как вытяжной вентилятор. Без него просто не обойтись. Чтобы приобрести систему нужной мощности, обязательно надо сделать расчет производительности вытяжного вентилятора.

Содержание статьи

Нормы и требования к вентиляции помещений

По нормам, установленным СНиП, при расчете производительности вентиляторов, кратность воздухообмена должна быть не менее 0,5 м3 в час для бытовых помещений.

Также есть определенные нормы для каждого типа жилых помещений.

  • Ванная комната, совмещенная с туалетом — 50 м3/час.
  • Ванная комната без туалета — 25 м3/час.
  • Туалет — 25 м3/час.
  • Кухня — от 60 до 90 м3/час (в зависимости от типа и мощности плиты).
  • Другие помещения — 3 м3/час на 1 м3.

Учитывая указанную кратность воздухообмена и объем помещения, рассчитывается общий расход и производительность вытяжного вентилятора.

Расчет производительности вытяжного вентилятора в жилых помещениях

Чтобы узнать, какой должна быть производительность вашей вытяжной системы, необходимо предпринять следующее:

  1. Узнать объем помещения.
  2. Умножаем объем на необходимую норму воздухообмена.
  3. Получившаяся цифра и есть необходимая нам производительность.
  4. Еще необходимо учесть сечение воздуховодов, изгибы, сопротивление фильтров, если они есть в системе вентиляции.

Формула для расчетов будет выглядеть так:

L = n*V,

где

  • L — требующаяся производительность, м3/час,
  • n — необходимая норма воздухообмена, м3/час,
  • V — объем помещения.

Например, рассчитаем производительность вытяжного вентилятора для трехкомнатной квартиры общей площадью 59 м2, с ванной, туалетом, кухней и мебелью. 59 м2 умножим на 3м (это высота), найдем объем. Он будет равен 177 м3.

Необходимая норма смены воздуха в час по СНиП — 10-12 раз в час. Умножим 177 на 12, получим 354 м3. Это и есть необходимая производительность. Но сюда нужно еще прибавить такие же расчеты по кухне, ванной и туалету. Это будет соответственно 108 м3, 144 м3 и 72 м3. Сложив все цифры, получим мощность нашей вытяжной системы — 678 м3/час.

Нужно будет учитывать, что каждый изгиб воздуховода снижает мощность, также и сопротивление фильтров.

Диаметр воздуховода влияет на его пропускную способность. Существует три наиболее распространенных размера:

  • 100 мм — для вентилятора небольшой мощности, который постоянно работает;
  • 125 мм — для эпизодического проветривания помещения вентиляцией малой и средней мощности;
  • 150 мм — быстрое нерегулярное проветривание помещений с малым количеством людей.
Определение объема помещения

Объем помещения найти несложно. Для этого нужно перемножить длину комнаты на ширину и высоту.

V = a*b*c

Пример расчета производительности для ванной с площадью 9 кв.м

Рассчитаем мощность и осуществим подбор вентилятора по производительности для ванной комнаты. Площадь 9 м2 умножим на высоту потолка 2,5, получим 22,5 м3. Это объем помещения.

Полностью воздух должен меняться каждые 5 минут, это 1/12 часа. Пропускная способность вентилятора будет равна — 22,5*12 = 270 м3.

Подбор вентилятора по минимально необходимой производительности

Нормы, которые требуются по расчетам, обычно завышены, и на практике не реализуются. На кухне или в ванной комнате во время приготовления пищи или принятия душа есть функция усиленной вытяжки. А для обеспечения минимальной установленной нормы достаточно хорошего притока воздуха и тяги в вентиляционном канале.

Чтобы рассчитать мощность вытяжного вентилятора, необходимо знать объем комнаты и необходимую норму воздухообмена.

Производительность равна произведению объема на кратность воздухообмена. Узнав, чему она равна, сравниваем ее с нормой по требованиям СНиП, и берем максимальное значение.

Если же нужно подобрать вентилятор по минимальной производительности, то берем минимальное требуемое значение.

Снизить расходы и подобрать вентилятор меньшей производительности можно, используя современные VAV-системы. Это вентиляционные системы, в которых возможна экономия энергии и воздухообмена путем полного или частичного отключения вентиляции некоторых помещений. Например, ночью в гостиной никого нет, поэтому можно временно отключить там вентиляцию.

Что влияет на производительность устройства?

Если смотреть на формулу расчета производительности, то она выглядит довольно простой. Но только расчеты по формуле не дают полного представления о том, какой именно вытяжной вентилятор подойдет в каком-то конкретном случае.

Есть еще некоторые факторы, влияющие на производительность устройства.

  1. Принцип работы. Вентиляция может работать в режиме отвода воздуха и в режиме рециркуляции. Рециркуляционные вытяжки имеют меньшую производительность, им требуется больше мощности.
  2. Расположение. От места, где находится вентилятор, также зависит его производительность. Например, на кухне вытяжка должна располагаться прямо над плитой на определенном расстоянии, иначе ее производительность будет снижена.
  3. Потребляемая мощность. Чем меньше вентилятор потребляет мощности, тем меньше расход электроэнергии.

    Самыми выгодными с этой точки зрения являются осевые вентиляторы.

Расчет производительности вентилятора для особых промышленных условий

Чтобы рассчитать необходимую производительность вентилятора для промышленных условий, нужно разработать техническое задание и определиться с некоторыми важными моментами.

  1. Место расположения объекта.
  2. Назначение помещения.
  3. Планировка и расположение внутри здания.
  4. Материал, из которого построено помещение.
  5. Количество людей, работающих на производстве.
  6. Режим работы и технология процессов.

После этого производятся необходимые расчеты. Причем необходимо учесть еще такие факторы, как скорость потока воздуха, уровень шума, длину и диаметр воздуховодов и их изгибы, давление системы. Скорость потока воздуха считается стандартной, когда она равна 2,5 — 4 м/с.

Учет количества людей, находящихся в помещении

Рассчитать необходимую мощность вентилятора можно и по другой формуле:

L = N*LH.

Этот расчет производится, учитывая количество людей в помещении.

  • L — необходимая мощность,
  • N — количество людей в помещении,
  • LH — норма воздуха на одного человека.

Норма воздуха в состоянии покоя составляет 30 м3/час, при физической активности — 60 м3/час.

Для жилых помещений используется показатель 60 м3/час, там, где человек отдыхает, например, спальня, допускается принять за норму 30 м3/час, так как во сне необходимо меньше кислорода.

За количество людей принимаются те люди, которые находятся в помещении постоянно. Если к вам пришли гости, не нужно из-за этого увеличивать мощность вентилятора.

Повышенное количество влаги

Оборудование ванной комнаты может отличаться от других видов вентиляции, так как там всегда повышенная влажность. Чтобы избежать короткого замыкания, необходимо использовать специальный брызгозащищенный вариант вентилятора. Он не позволит влаге попадать в воздуховод.

Современный рынок предлагает множество вариантов вытяжных вентиляторов. Они отличаются по производительности, потребляемой мощности, уровню шума, размерам и назначению. Выбрав необходимую вам модель, вы сможете обеспечить себя и близких вам людей свежим воздухом.

ventsyst

объем помещения и кратность обмена

В наше время нельзя представить свою жизнь без вентиляционных систем. Они установлены в производственных зданиях, в офисах, в учебных заведениях, в магазинах, в квартирах. Работа этих систем немыслима без применения вытяжных вентиляторов различной мощности. Широко распространенным элементом квартирной вентиляции является кухонная вытяжка. Она может иметь различные формы, размеры, дизайн.

От расчета мощности вентилятора кухонной вытяжки будет зависеть количество очищенного воздуха в помещении.

Вытяжная вентиляция на кухне

Но внешняя красота – это не самое главное. Основная задача этого прибора – избавить помещение кухни от запахов, гари, копоти и жира, которые появляются во время приготовления пищи. Вытяжная вентиляция удаляет испарения, исходящие от разного рода нагревательных приборов. Она предотвращает появление грязного налета на потолке и на поверхности стен. Это позволяет выполнять косметический ремонт гораздо реже, что сэкономит значительную сумму денег. Меньше времени понадобится и на проведение генеральной уборки.

Справиться с задачей очистки атмосферы в помещении может устройство, способное пропустить через свои фильтры определенное количество воздуха. А для этого надо подобрать прибор с вентилятором нужной мощности. Как рассчитать мощность устройства?

Вернуться к оглавлению

Расчет мощности вентилятора

Чтобы рассчитать мощность вентилятора, нужно выполнить следующие действия:

Пример расчета производительности вентилятора вытяжки для кухни.

  1. С помощью рулетки измерить размеры кухни и определить ее объем в метрах. Для этого длину нужно умножить на ширину и высоту. В документах БТИ указана площадь помещений. Пример: площадь кухонного помещения равна 10 м². Высота от пола до потолка – 3 м. Умножаем площадь на высоту и получаем 30 м³. Таков объем кухни.
  2. Далее рассчитывается величина, характеризующая воздухообмен. Для этого нужно умножить объем кухни на количество полных обновлений воздуха за час. Строительные нормы и правила (СНиП) предусматривают кратность воздухообмена, равную 10-12. Таким образом, чтобы рассчитать мощность вытяжной системы нужно 30 м³ умножить на 12. В итоге получается цифра 360 м³/час. Столько воздуха должно обновляться каждый час.
  3. Для осуществления обмена в таком объеме нужен вентилятор с мощностью 400-800 м³/час. Но стандартные вентиляционные каналы способны пропустить только около 180 м³. Поэтому вентилятор тут не очень поможет.
  4. В этом случае поможет рециркуляционная система вытяжки, которая пропускает воздух через фильтры и отправляет его обратно в помещение. На преодоление сопротивления фильтров тоже требуется мощность. Поэтому к расчетной цифре следует добавить 40%. Получится 560-1120 м³. Такова должна быть мощность вентилятора вытяжки на кухне размером 30 м³.
  5. В некоторых случаях можно обойтись и без вентиляционного канала. Для этого вытяжной вентилятор устанавливается в специально оборудованном проеме в стене, в потолке или на стыке потолка и стены. Такой монтаж допускает применение менее мощного вентилятора.

Мощность вытяжки для разных помещений.

Это лишь простейший расчет необходимой мощности вытяжного вентилятора. Если кухня не имеет дверей, то нужно учитывать еще и объем смежного помещения. Итак, формула расчета мощности вентилятора для общих случаев: ширина помещения х длина х высота х кратность обмена = искомая величина. Высчитать объем помещения можно без особых проблем. Достаточно измерить длину, ширину и высоту и перемножить их.

Вернуться к оглавлению

Кратность смены воздуха

Кратность для помещений разного типа определяется так:

Тип помещенияКратность
Пекарня20-30
Оранжерея25-50
Офис6-8
Ванная комната, душевая3-8
Парикмахерская10-15
Ресторан, бар6-10
Спальня2-4
Вестибюль3-5
Классная комната в школе2-3
Кафетерий10-12
Палата в больнице4-6
Магазин8-10
Подвальное помещение8-12
Кухня в доме или в квартире10-15
Спортивный зал6-8
Чердачное помещение3-10
Кухня в общепите15-20
Кладовка3-6
Раздевалка с душем15-20
Прачечная10-15
Туалет в доме, в квартире3-10
Конференц-зал8-12
Жилая комната3-6
Бильярдная6-8
Общественный туалет10-15
Гараж6-8
Комната переговоров4-8
Подсобное помещение15-20
Библиотека3-4
Столовая8-12

Таблица для расчета минимальной производительности вытяжки относительно объема кухни.

Наибольший показатель кратности выбирают для использования в помещениях со множеством людей, с высокой влажностью и температурой, с большим количеством пыли и сильными запахами. На кухне с электрической варочной поверхностью можно выбирать меньший показатель, с газовой плитой – больший. Связано это с тем, что газ при включенной плите выделяет продукты горения. Вентилятор, выбранный с учетом вышеперечисленных данных, можно смонтировать в стене, окне, потолке помещения.

Вернуться к оглавлению

Другой способ определения мощности устройства

Рассчитать мощность вентилятора можно по другому принципу. Показатель кратности остается без изменений, а вместо объема берется количество людей, находящихся в помещении. Формула расчета очень проста: L = N x Lн. Значения в этой формуле:

  • L – искомая мощность вентилятора;
  • N – количество народа в помещении;
  • Lн – нормативный расход воздуха на человека.

Нормативный расход воздуха зависит от вида деятельности человека и измеряется в м³. Средние значения его таковы:

  • состояние покоя – 20;
  • работа в условиях офиса – 40;
  • физическая нагрузка – 60.

Не стоит брать вытяжку с намного большей мощностью вентилятора, чем была рассчитана, так как она будет создавать больше шума.

Выбор вентилятора нужно осуществлять не только по его мощности, но и по типу исполнения этого агрегата. Для работы в условиях чистого воздуха при температуре ниже 80°С принято устанавливать вытяжные вентиляторы в обычном исполнении. Для удаления из помещения воздуха с температурой выше этого значения следует устанавливать вентилятор в термостойком исполнении. В условиях агрессивной и взрывоопасной среды лучше использовать устройство в специальном антикоррозийном варианте. Его узлы и детали не вступают ни в какие реакции с окружающей средой.

Для удаления загрязненного воздуха из ванной комнаты рекомендуется использование брызгозащищенного вытяжного вентилятора. Он не позволяет влаге попадать в воздуховод и защищает устройство и электрическую сеть от короткого замыкания.

Оборудование жилых и производственных помещений вытяжной вентиляцией – обязательное условие для обеспечения комфортных условий пребывания людей. Вентиляторов для этой цели существует много видов. Они имеют различные размеры, мощность, возможности. Правильный их выбор – залог здоровья и длительного срока службы предметов обстановки в помещении.

Теперь вам известно, как рассчитать мощность.

Осталось выбрать нужный агрегат, приобрести его и установить. Монтаж вентилятора легко выполнить самостоятельно, но можно обратиться и к специалистам.

Расчет вытяжной вентиляции: пример, расчет, пошаговая инструкция

Главным назначением вытяжной вентиляции является устранение отработанного воздуха из обслуживаемого помещения. Вытяжная вентиляция, как правило, работает в комплексе с приточной, которая, в свою очередь, отвечает за подачу чистого воздуха.

Приточно-вытяжная установка с рекуператором тепла.

Для того чтобы в помещении был благоприятный и здоровый микроклимат, нужно составить грамотный проект системы воздухообмена, выполнить соответствующий расчет и сделать монтаж необходимых агрегатов по всем правилам. Планируя расчет вентиляции, нужно помнить о том, что от нее зависит состояние всего здания и здоровье людей, которые в нем находятся.

Малейшие ошибки приводят к тому, что вентиляция перестает справляться со своей функцией так, как нужно, в комнатах появляется грибок, отделка и стройматериалы разрушаются, а люди начинают болеть. Поэтому важность правильного расчета вентиляции нельзя недооценивать ни в коем случае.

Главные параметры вытяжной вентиляции

Расчет приточно-вытяжной вентиляции.

В зависимости от того, какие функции выполняет вентиляционная система, существующие установки принято делить на:

  1. Вытяжные. Необходимы для забора отработанного воздуха и его отведения из помещения.
  2. Приточные. Обеспечивают подачу свежего чистого воздуха с улицы.
  3. Приточно-вытяжные. Одновременно удаляют старый затхлый воздух и подают новый в комнату.

Вытяжные установки преимущественно используются на производстве, в офисах, складских и прочих подобных помещениях. Недостатком вытяжной вентиляции является то, что без одновременного устройства приточной системы она будет работать очень плохо.

В случае если из помещения будет вытягиваться больше воздуха, чем поступает, образуются сквозняки. Поэтому приточно-вытяжная система является наиболее эффективной. Она обеспечивает максимально комфортные условия и в жилых помещениях, и в помещениях промышленного и рабочего типа.

Схема вытяжной вентиляции в загородном доме.

Современные системы комплектуются различными дополнительными устройствами, которые очищают воздух, нагревают или охлаждают его, увлажняют и равномерно распространяют по помещениям. Старый же воздух безо всяких затруднений выводится через вытяжку.

Прежде чем приступать к обустройству вентиляционной системы, нужно со всей серьезностью подойти к процессу ее расчета. Непосредственно расчет вентиляции направлен на определение главных параметров основных узлов системы. Лишь определив наиболее подходящие характеристики, вы можете сделать такую вентиляцию, которая будет в полной мере выполнять все поставленные перед ней задачи.

По ходу расчета вентиляции определяются такие параметры, как:

  1. Расход.
  2. Рабочее давление.
  3. Мощность калорифера.
  4. Площадь сечения воздуховодов.

При желании можно дополнительно выполнить расчет расхода электроэнергии на работу и обслуживание системы.

Вернуться к оглавлению

Пошаговая инструкция по определению производительности системы

Схема движения воздуха.

Расчет вентиляции начинается с определения ее главного параметра – производительности. Размерная единица производительности вентиляции – м³/ч. Для того чтобы расчет расхода воздуха был выполнен правильно, вам нужно знать следующую информацию:

  1. Высоту помещений и их площадь.
  2. Главное назначение каждой комнаты.
  3. Среднее количество человек, которые будут одновременно пребывать в комнате.

Чтобы произвести расчет, понадобятся следующие приспособления:

  1. Рулетка для измерений.
  2. Бумага и карандаш для записей.
  3. Калькулятор для вычислений.

Чтобы выполнить расчет, нужно узнать такой параметр, как кратность обмена воздуха за единицу времени. Данное значение устанавливается СНиПом в соответствии с типом помещения. Для жилых, промышленных и административных помещений параметр будет различаться. Также нужно учитывать такие моменты, как количество отопительных приборов и их мощность, среднее число людей.

Для помещений бытового назначения кратность воздухообмена, использующаяся в процессе расчета, составляет 1. При выполнении расчета вентиляции для административных помещений используйте значение воздухообмена, равное 2-3 – в зависимости от конкретных условий. Непосредственно кратность обмена воздуха указывает на то, что, к примеру, в бытовом помещении воздух будет полностью обновляться 1 раз за 1 час, чего более чем достаточно в большинстве случаев.

Расчет производительности требует наличия таких данных, как величина обмена воздуха по кратности и количеству людей. Необходимо будет взять самое большое значение и, уже отталкиваясь от него, подобрать подходящую мощность вытяжной вентиляции. Расчет кратности воздухообмена выполняется по простой формуле. Достаточно умножить площадь помещения на высоту потолка и значение кратности (1 для бытовых, 2 для административных и т.д.).

Схемы вытяжной вентиляции.

Чтобы выполнить расчет обмена воздуха по числу людей, проводится умножение количества воздуха, которое потребляет 1 человек, на число людей в помещении. Что касается объема потребляемого воздуха, то в среднем при минимальной физической активности 1 человек потребляет 20 м³/ч, при средней активности этот показатель поднимается до 40 м³/ч, а при высокой составляет уже 60 м³/ч.

Чтобы было понятнее, можно привести пример расчета для обыкновенной спальни, имеющей площадь, равную 14 м². В спальне находится 2 человека. Потолок имеет высоту 2,5 м. Вполне стандартные условия для простой городской квартиры. В первом случае расчет покажет, что обмен воздуха равняется 14х2,5х1=35 м³/ч. При выполнении расчета по второй схеме вы увидите, что он равен уже 2х20=40 м³/ч. Нужно, как уже отмечалось, брать большее значение. Поэтому конкретно в данном примере расчет будет выполняться по числу людей.

По этим же формулам рассчитывается расход кислорода для всех остальных помещений. В завершение останется сложить все значения, получить общую производительность и выбрать вентиляционное оборудование на основании этих данных.

Стандартные значения производительности систем вентиляции составляют:

  1. От 100 до 500 м³/ч для обычных жилых квартир.
  2. От 1000 до 2000 м³/ч для частных домов.
  3. От 1000 до 10000 м³/ч для помещений промышленного назначения.

Вернуться к оглавлению

Определение мощности воздухонагревателя

Схема правильной циркуляции воздуха в помещении.

Чтобы расчет вентиляционной системы был выполнен в соответствии со всеми правилами, необходимо обязательно учитывать мощность воздухонагревателя. Это делается в том случае, если в комплексе с вытяжной вентиляцией будет организована приточная. Устанавливается калорифер для того, чтобы поступающий с улицы воздух подогревался и поступал в комнату уже теплым. Актуально в холодную погоду.

Расчет мощности воздухонагревателя определяется с учетом такого значения, как расход воздуха, необходимая температура на выходе и минимальная температура поступающего воздуха. Последние 2 значения утверждены в СНиП. В соответствии с этим нормативным документом, температура воздуха на выходе калорифера должна составлять не меньше 18°. Минимальную температуру внешнего воздуха следует уточнять в соответствии с регионом проживания.

В состав современных вентиляционных систем включаются регуляторы производительности. Такие приспособления созданы специально для того, чтобы можно было снижать скорость циркуляции воздуха. В холодное время это позволит уменьшить количество энергии, потребляемой воздухонагревателем.

Для определения температуры, на которую устройство сможет нагреть воздух, используется несложная формула. Согласно ей, нужно взять значение мощности агрегата, разделить его на расход воздуха, а затем умножить полученное значение на 2,98.

К примеру, если расход воздуха на объекте составляет 200 м³/ч, а калорифер имеет мощность, равную 3 кВт, то, подставив эти значения в приведенную формулу, вы получите, что прибор нагреет воздух максимум на 44°. То есть если в зимнее время на улице будет -20°, то выбранный воздухонагреватель сможет подогреть кислород до 44-20=24°.

Вернуться к оглавлению

Рабочее давление и сечение воздуховода

Принципиальная схема работы воздухонагревателя .

Расчет вентиляции предполагает обязательное определение таких параметров, как рабочее давление и сечение воздуховодов. Эффективная и полноценная система включает в свой состав распределители воздуха, воздуховоды и фасонные изделия. При определении рабочего давления нужно учитывать такие показатели:

  1. Форма вентиляционных труб и их сечение.
  2. Параметры вентилятора.
  3. Число переходов.

Расчет подходящего диаметра можно выполнять с использованием следующих соотношений:

  1. Для здания жилого типа на 1 м пространства будет достаточно трубы с площадью сечения, равной 5,4 см².
  2. Для частных гаражей – труба сечением 17,6 см² на 1 м² площади.

С сечением трубы напрямую связан такой параметр, как скорость воздушного потока: в большинстве случаев подбирают скорость в пределах 2,4-4,2 м/с.

Таким образом, выполняя расчет вентиляции, будь то вытяжная, приточная или приточно-вытяжная система, нужно учитывать ряд важнейших параметров. От правильности этого этапа зависит эффективность всей системы, поэтому будьте внимательны и терпеливы. При желании можно дополнительно определить расход электроэнергии на работу устраиваемой системы.

Вернуться к оглавлению

Расход электроэнергии на вентиляцию

Принципиальная схема расположения матов по периметру воздуховода круглого сечения.

Предварительный расчет потребляемого электричества позволит создать экономную систему с рациональным расходом ресурсов. Обращать внимание на этот параметр нужно в том случае, когда система комплектуется калорифером, обеспечивающим подогрев входящих воздушных масс до нужной температуры. Чтобы вычислить расход электроэнергии, надо знать не только мощность установки, но и условия ее работы, продолжительность нагрева и ряд прочих параметров.

К примеру, воздухонагреватель работает только в холодную погоду. Работает он не всегда, а лишь при необходимости подогрева воздушных масс. Периодическая работа калорифера вносит определенные коррективы в расчет. Для правильной оценки энергозатрат нужно учитывать и то, меняется ли тариф на электричество в вашей местности в дневное и ночное время. В случае с двухтарифным счетчиком расчет будет немного более сложным.

Непосредственно для расчета используется следующая формула:

M=(T1xLxCxDx16+T2xLxCxNx8)xAD/1000.

Таблица расчета вентиляции.

В данном случае обозначения следующие:

  1. M – это общая стоимость затраченной электроэнергии.
  2. T1, T2 – температурные перепады в дневное и ночное время. Вам придется отдельно рассчитать данные значения для каждого месяца.
  3. D, N – цена энергии в дневное и ночное время. Стоимость нужно умножить на значение длительности. Уточняйте отдельно для своего региона.
  4. AD – общее количество дней в каждом календарном месяце.

Узнать показатели для температур вы можете из любого источника по прогнозу погоды, какие-либо специальные справочники покупать не придется. Тарифные ставки берите из значений для своего региона. В результате такого расчета вы получите довольно точный показатель, который будет отражать расход электричества для калорифера.

Вернуться к оглавлению

Как сделать вентиляцию более экономной

Уменьшить расходы на электроэнергию можно путем установки специальных VAV-систем. Такие устройства позволяют экономить до 30-50% даже при использовании калорифера очень большой мощности.

Установка подобного агрегата увеличит стоимость системы в среднем на 20%, но это довольно быстро окупится, т.к. затраты энергии будут максимально рационализованы.

Вытяжная вентиляция, как и приточные и приточно-вытяжные установки, имеет очень большое значение. Без грамотно организованного воздухообмена в помещении нельзя рассчитывать на благоприятный микроклимат.

Монтаж системы выполняется в соответствии с использующимися устройствами, однако вне зависимости от того, из каких именно агрегатов будет состоять система, предварительно обязательно должен быть выполнен расчет. Благодаря ему вы узнаете важнейшие параметры и условия, соблюдение которых будет гарантировать эффективную и рациональную работу вентиляции. Следуйте технологии, ведите расчет по инструкции, и все обязательно получится. Удачной работы!

Расчет вытяжной вентиляции все формулы и примеры

Правильное устройство вентиляции в доме значительно улучшает качество жизни человека. При неправильном расчете приточно – вытяжной вентиляции возникает куча проблем – у человека со здоровьем, у постройки с разрушением.

Перед началом строительства обязательно и необходимо произвести расчёты и, соответственно, применить их в проекте.

ФИЗИЧЕСКИЕ СОСТАВЛЯЮЩИЕ РАСЧЁТОВ

По способу работы, в настоящее время, вентиляционные схемы делятся на:

  1. Вытяжные. Для удаления использованного воздуха.
  2. Приточные. Для впуска чистого воздуха.
  3. Рекуперационные. Приточно-вытяжные. Удаляют использованный и впускают чистый.


В современном мире схемы вентиляции включают в себя различное дополнительное оборудование:

  1. Устройства для подогрева или охлаждения подаваемого воздуха.
  2. Фильтры для очистки запахов и примесей.
  3. Приборы для увлажнения и распределения воздуха по помещениям.


При расчёте вентиляции учитывают следующие величины:

  1. Расход воздуха в куб.м./час.
  2. Давление в воздушных каналах в атмосферах.
  3. Мощность подогревателя в квт-ах.
  4. Площадь сечения воздушных каналов в кв.см.

Расчет вытяжной вентиляции пример

Перед началом расчёта вытяжной вентиляции необходимо изучить СН и П (Система Норм и Правил) устройства вентиляционных систем. По СН и П количество воздуха необходимого для одного человека зависит от его активности.

Маленькая активность – 20 куб.м./час. Средняя – 40 кб.м./ч. Высокая – 60 кб.м./ч. Далее учитываем количество человек и объём помещения.

Кроме этого необходимо знать кратность – полный обмен воздуха в течение часа. Для спальни она равна единице, для бытовых комнат – 2, для кухонь, санузлов и подсобных помещений – 3.

Для примера – расчёт вытяжной вентиляции комнаты 20 кв.м.

Допустим, в доме живут два человека, тогда:

V(объём) комнаты равен: SхН, где Н – высота комнаты (стандартная 2,5 метра).

V = S х Н = 20 х 2,5 = 50 куб.м.

Далее V х 2 (кратность) = 100 кб.м./ч. По другому – 40 кб.м./ч. (средняя активность) х 2 (человека) = 80 куб.м./час. Выбираем большее значение – 100 кб.м./ч.

В таком же порядке рассчитываем производительность вытяжной вентиляции всего дома.

Расчет вытяжной вентиляции производственных помещений

При расчёте вытяжной вентиляции производственного помещения кратность равна 3.

Пример: гараж 6 х 4 х 2,5 = 60 куб.м. Работают 2 человека.

Высокая активность – 60 куб.м./час х 2 = 120 кб.м./ч.

V – 60 куб.м. х 3 (кратность) = 180 кб.м./ч.

Выбираем большее – 180 куб.м./час.

Как правило, унифицированные вентиляционные системы, для простоты установки разделяются на:

  • 100 – 500 куб.м./час. – квартирные.
  • 1000 – 2000 куб.м./час. – для домов и усадеб.
  • 1000 – 10000 куб.м./час. – для заводских и промышленных объектов.

Расчет приточно вытяжной вентиляции

ВОЗДУХОНАГРЕВАТЕЛЬ

В условиях климата средней полосы, воздух, поступающий в помещение необходимо подогревать. Для этого устанавливают приточную вентиляцию с обогревом входящего воздуха.

Нагрев теплоносителя осуществляется различными путями – электро калорифером, впуск воздушных масс около батарейного или печного отопления. Согласно СН и П температура входящего воздуха должна быть не менее 18 гр. цельсия.

Соответственно мощность воздухонагревателя рассчитывается в зависимости от самой низкой ( в данном регионе) уличной температуры. Формула для расчета максимальной температуры нагрева помещения воздухонагревателем:

N /V х 2,98 где 2,98 – константа.

Пример: расход воздуха – 180 куб.м./час. (гараж). N = 2 КВт.

Далее 2000 вт./ 180 кб.м./ч. х 2,98 = 33 град.ц.

Таким образом, гараж можно нагреть до 18 град. При уличной температуре минус 15 град.

ДАВЛЕНИЕ И СЕЧЕНИЕ

На давление и, соответственно, скорость передвижения воздушных масс влияет площадь сечения каналов, а также их конфигурация, мощность электро вентилятора и количество переходов.

При расчёте диаметра каналов эмпирически принимают следующие величины:

  • Для помещений жилого типа – 5,5 кв.см. на 1 кв.м. площади.
  • Для гаража и других производственных помещений – 17,5 кв.см. на 1 кв.м.

При этом добиваются скорости потока 2,4 – 4,2 м/сек.

О РАСХОДЕ ЭЛЕКТРОЭНЕРГИИ

Расход электроэнергии напрямую зависит от длительности времени работы электронагревателя, а время – функция от температуры окружающего воздуха. Обыкновенно, воздух необходимо подогревать в холодное время года, иногда летом в прохладные ночи. Для расчёта используется формула:

S = (T1 х L х d х c х 16 + Т2 х L х c х n х 8) х N/1000

В этой формуле:

S – количество электроэнергии.

Т1 – максимальная дневная температура.

Т2 – минимальная ночная температура.

L – производительность куб.м./час.

с – объёмная теплоёмкость воздуха – 0, 336 вт х час/ кб.м./ град.ц. Параметр зависит от давления, влажности и температуры воздуха.

d – цена электроэнергии днём.

n – цена электроэнергии ночью.

N – количество дней в месяце.

Таким образом, если придерживаться санитарных норм, стоимость вентиляции существенно повышается, зато комфортность проживающих улучшается. Поэтому при устройстве вентиляционной системы целесообразно найти компромисс между ценой и качеством.

 

Как рассчитать производительность вентилятора для вытяжки

Система принудительной вентиляции — обязательный элемент оснащения бытовых и технических помещений. Она необходима для устранения посторонних запахов, пищевых испарений, избыточной влаги и сырости. Вентилятор для вентиляции должен иметь оптимальную производительность, которая рассчитывается с учетом размера помещения и прочих важных параметров, регламентируемых действующими нормативами СНиП.

Нормы и требования к вентиляции помещений

Согласно требованиям СНиП, для жилых объектов нужная производительность вентилятора вычисляется на основе кратности показателя воздушного обмена. Для каждого бытового помещения предусмотрены собственные нормативы:

  • совмещенный санузел — не менее 50 м³/ч;
  • ванная и туалет — от 25 м³/ч;
  • кухня — 60-90 м³/ч;
  • прочие помещения 3 м³/ч.

С учетом расчетной кратности обновления воздушной смеси и кубатуры помещения определяют необходимую общую производительность вентиляционной системы.

Как рассчитать производительность вентилятора

Алгоритм подсчета следующий:

  1. Измерить точные размеры помещения.
  2. Умножить объем на установленную норму воздухообмена.
  3. Полученный результат и является требуемой продуктивностью вентиляционного агрегата.

Дополнительно учитывают сечение воздуховодов, их геометрическую конфигурацию, сопротивление фильтрующих элементов. Формула расчета мощности следующая: L = n*V, где:

  • L — нужная продуктивность системы;
  • n — предусмотренные СНиП нормативы воздухообмена;
  • V — общая кубатура помещения.

Пропускная способность установки определяется и диаметром воздушных каналов. Постоянно работающие вентиляторы для вентиляции должны быть не менее 100 мм.

Расчет производительности вытяжного вентилятора в жилых помещениях

Правильное вычисление требуемой производительности вентиляционного агрегата позволит обеспечить надлежащий КПД. Для этого требуется верно рассчитать объем воздуха, который следует постоянно обновлять. Важное требование к вытяжке — обеспечение полного обмена атмосферной смеси каждые 15 минут. Согласно действующим нормативам, на кухне этот показатель должен составлять не менее 9 раз в час.

В ванной достаточно 5-8 раз. Чтобы точно вычислить требуемую продуктивность климатического устройства, следует знать размер обслуживаемого помещения, который умножается на установленный показатель воздухообмена. Для кухни объемом 20 м³ расчет мощности осуществляется следующим образом: 20х9=180 м³/ч. Это минимально допустимое значение.

Определение объема помещения

Вычисление кубатуры помещения производится путем перемножения длины, ширины и высоты. Математическая формула следующая: V=a*b*c. Расчетная мощность вентилятора для ванной комнаты объемом 22,5 м³ должна составлять не менее 270 м³, что обеспечит полное обновление атмосферной смеси каждые 5 минут. Дополнительно в этом помещении требуется учитывать необходимость удаления водяного пара и загрязненного воздуха. Если выполнять вычисления без учета повышенной плотности отработанной атмосферной смеси, то вытяжная система может не справляться с нагрузкой.

Для ванной и кухни желательно выбрать вентилятор с запасом производительности, чтобы обеспечить надлежащее качество воздушной смеси в любых условиях. Конструкция вентиляционной системы тоже оказывает существенное влияние на производительность. Гофрированные стенки канала воздуховода забирают примерно 7-9% мощности устройства. Потери фильтров и шумопоглощающих элементов указываются в сопроводительной технической документации. Каждый прямой угол канала воздуховода забирает еще 2-3% мощности.

Подбор вентилятора по минимально необходимой производительности

В расчетную мощность вентиляционной системы закладывается определенный запас. На практике достаточно менее производительной установки. Вытяжной вентилятор на кухню или ванную должен справляться с экстремальными нагрузками, к которым относятся:

  • приготовление пищи;
  • работа духового шкафа;
  • принятие душа, связанное с интенсивным парообразованием.

Поэтому расчет производительности вентилятора осуществляется с некоторым запасом. В современных моделях вентиляционных систем обязательно имеется усиленный режим работы. Для обеспечения минимальной нормы в стандартных условиях достаточно хорошего притока воздуха и тяги в канале.

Снизить расходы и обеспечить надлежащий санитарный эффект позволяют интеллектуальные VAV-системы. Они имеют достаточный объем вентиляции и возможность ручной регулировки путем отключения или ограничения воздухообмена в отдельных помещениях. Необходимую производительность вентиляторов не следует определять на основе одной лишь простой формулы, в которой не учитываются дополнительные факторы. К ним причисляются:

  1. Принцип работы агрегата. Современные вентиляционные системы могут функционировать в режиме стандартного воздухообмена или рециркуляции, в котором производительность установки меньше, но ей требуется больше питающей мощности.
  2. Способ размещения. Расположение устройства в помещении тоже влияет на способность к обновлению атмосферной смеси. Кухонная вытяжка размещается непосредственно над плитой для повышения эффективности всасывания загрязненного воздуха.
  3. Энергопотребление. Самый экономичный вариант — осевой вентилятор для вытяжки.

В жилых помещениях часто устанавливают рыночную новинку — устройство центробежного типа.

Расчет производительности вентилятора для особых промышленных условий

При расчете требуемой производительности вентиляционной установки для сложных промышленных объектов предварительно составляют техническое задание, в которое закладывают предполагаемые условия функционирования климатической системы. Среди них:

  • положение объекта на местности;
  • предназначение каждого помещения;
  • компоновка и планировка сооружения;
  • свойства строительных материалов;
  • ориентировочное число людей, постоянно находящихся внутри здания;
  • специфика производства и особенности технологических процессов.

На основе этих данных выполняются вычисления требуемой мощности. Дополнительно в расчет принимают:

  1. Скорость движения воздушных потоков.
  2. Уровень шумности системы.
  3. Длину, геометрическую конфигурацию и диаметр вентиляционных каналов.
  4. Показатели давления.

Для каждого промышленного объекта эти факторы индивидуальны. Стандартная скорость движения воздушного потока — 2,5-4 м/с.

Учет количества людей, находящихся в помещении

На производительность вентиляционной установки влияет и число постоянно присутствующих в помещении людей. Существует специальная формула, учитывающая этот фактор. Выглядит она следующим образом: L=N*LH.

  • L — минимально требуемая мощность устройства;
  • N — число постоянно присутствующих на объекте людей;
  • LH — расчетный объем потребления атмосферного воздуха 1 человеком.

Норма воздушной смеси в спокойном состоянии составляет 30 м³/ч, при физической нагрузке организма — вдвое больше. Для объектов жилого типа за основу для расчета нужной мощности вытяжной системы принимают значение 60 м³/ч. В местах отдыха, например, в спальне, стандартным показателем считается 30 м³/ч, поскольку во время сна и при отсутствии двигательной активности потребление человеческим организмом кислорода существенно снижается.

Вентилятор для вытяжки, которая используется на кухне, должен иметь некоторый запас мощности, поскольку условия здесь постоянно меняются. Иногда требуется более высокая производительность, например, во время жарки пищи. На кухне или в пекарне объемом 30 м³ рекомендуется устанавливать вентилятор расчетной мощностью 400-800 м³/ч. Стандартные воздуховоды пропускают не больше 180 м³ в течение 1 часа.

Поэтому в помещениях технического предназначения используют специальные мощные рециркуляционные системы, прогоняющие атмосферную смесь через фильтрующие элементы. Они снижают показатель производительности. Поэтому к расчетной мощности добавляют примерно 40%. Таким образом, следует выбирать рециркуляционную систему паспортной продуктивностью в пределах 560-1120 м³/ч.

Повышенное количество влаги

Оснащение помещений повышенной влажности вытяжной системой имеет особенности. Для исключения возможности короткого замыкания в случае нарушения целостности изоляции электропроводки используют специальные вентиляторы в брызгозащищенном конструктивном исполнении. Такая модель препятствует проникновению капель и испарений в канал воздуховода.

Регулярное обновление воздуха в помещениях с плохо налаженной естественной вентиляцией не позволит оседать конденсату на кафельные и полированные поверхности, снизит вероятность образования плесени. Современные модели вытяжных систем, предназначенные для помещений такого типа, оснащаются датчиком влажности. В ванной комнате площадью свыше 5 м² следует позаботиться об эффективном удалении отработанной воздушной смеси. Рекомендуется вытяжной вентилятор заявленной производительностью не менее 320 м³/ч.

Читайте также:

Автор: tat.trofimova

Расчет вентиляции помещений: принципы и примеры расчёта

Мечтаете, чтобы в доме был здоровый микроклимат и ни в одной комнате не пахло затхлостью и сыростью? Чтобы дом был по-настоящему комфортным, еще на стадии проектирования необходимо провести грамотный расчет вентиляции.

Если во время строительства дома упустить этот важный момент, в дальнейшем придется решать целый ряд проблем: от удаления плесени в ванной комнате до нового ремонта и установки системы воздуховодов. Согласитесь, не слишком приятно видеть на кухне на подоконнике или в углах детской комнаты рассадники черной плесени, да и заново погружаться в ремонтные работы.

В представленной нами статье собраны полезные материалы по расчету систем вентилирования, справочные таблицы. Приведены формулы, наглядные иллюстрации и реальный пример для помещений различного назначения и определенной площади, продемонстрированный в видеосюжете.

Содержание статьи:

Причины проблем с вентиляцией

При правильных расчетах и грамотном монтаже вентилирование дома осуществляется в подходящем режиме. Это означает, что воздух в жилых помещениях будет свежий, с нормальной влажностью и без неприятных запахов.

Если же наблюдается обратная картина, например, постоянная духота, в ванной комнате или другие негативные явления, то нужно проверить состояние вентиляционной системы.

Галерея изображений

Фото из

Вентиляция частного дома в стиле лофт

Вентканал в перекрытии каркасного дома

Компоненты приточной и вытяжной системы

Вентиляция в паре с кондиционированием

Вентиляционная решетка и вывод вытяжки

Вытяжной вентилятор в ванной комнате

Вентиляция подкровельного пространства

Приточная труба для подвала

Немало проблем доставляет отсутствие характерных для окон и дверей тончайших зазоров, спровоцированное установкой герметичных пластиковых конструкций. В таком случае в дом поступает слишком мало свежего воздуха, нужно позаботиться о его притоке.

Засоры и разгерметизация воздуховодов могут стать причиной серьезных проблем с удалением отработанного воздуха, который насыщен неприятными запахами, а также избыточными водяными парами.

В результате в служебных помещениях могут появиться колонии грибка, что плохо отражается на здоровье людей и может спровоцировать ряд серьезных заболеваний.

Запотевшие окна, плесень и грибок в ванной комнате, духота – все это явные признаки того, что жилые помещения вентилируются неправильно

Но бывает и так, что элементы работают прекрасно, однако описанные выше проблемы остаются нерешенными. Возможно, расчеты вентиляционной системы для конкретного дома или квартиры были проведены неправильно.

Негативно может отразиться на вентилировании помещений их переделка, перепланировка, появление пристроек, установка уже упомянутых ранее пластиковых окон и т.п. При таких существенных изменениях не помещает повторно произвести расчеты и модернизировать имеющуюся вентиляционную систему в соответствии с новыми данными.

Один из простых способов обнаружить проблемы с вентилированием – . К решетке вытяжного отверстия нужно поднести зажженную спичку или лист тонкой бумаги. Не стоит использовать для такой проверки открытый огонь, если в помещении используется газовое нагревательное оборудование.

Слишком герметичные внутренние двери могут препятствовать нормальной циркуляции воздуха по дому, рещить проблему помогут специальные решетки или отверстия

Если пламя или бумага уверенно отклоняется в сторону вытяжки, тяга имеется, если же этого не происходит или отклонение слабое, нерегулярное, проблема с отведением отработанного воздуха становится очевидной. Причиной могут быть засоры или повреждение воздуховода в результате неумелого ремонта.

Не всегда есть возможность устранить поломку, решением проблемы часто становится монтаж дополнительных средств вытяжного вентилирования. Перед их установкой также не помешает провести необходимые расчеты.

Определить наличие или отсутствие нормальной тяги в вытяжной вентиляционной системе дома можно с помощью пламени или листа тонкой бумаги

Как рассчитать воздухообмен?

Все расчеты по системам вентилирования сводятся к тому, чтобы определить объемы воздуха в помещении. В качестве такого помещения может рассматриваться как отдельная комната, так и совокупность комнат в конкретном доме или квартире.

На основании этих данных, а также сведений из нормативных документов рассчитывают основные параметры вентиляционной системы, такие как количество и сечение воздуховодов, мощность вентиляторов и т.п.

Существуют специализированные расчетные методики, позволяющие просчитать не только обновление воздушных масс в помещении, но и удаление тепловой энергии, изменение влажности, выведение загрязнений и т.п. Подобные расчеты выполняются обычно для зданий промышленного, социального или какого-либо специализированного назначения.

Если есть необходимость или желание выполнить настолько подробные расчеты, лучше всего обратиться к инженеру, изучившему подобные методики.

Для самостоятельных расчетов по жилым помещениям используют следующие варианты:

  • по кратностям;
  • по санитарно-гигиеническим нормам;
  • по площади.

Все эти методики относительно просты, уяснив их суть, даже неспециалист может просчитать основные параметры своей вентиляционной системы. Проще всего воспользоваться расчетами по площади. За основу принимается следующая норма: каждый час в дом должно поступать по три кубических метра свежего воздуха на каждый квадратный метр площади.

Количество людей, которые постоянно проживают в доме, при этом не учитывается.

Вентиляционная система в жилых зданиях устраивается таким образом, чтобы воздух поступал через спальню и гостиную, а удалялся из кухни и санузла

Расчет по санитарно-гигиеническим нормативам тоже относительно несложен. В этом случае для вычислений используют не площадь, а данные о количестве постоянных и временных жильцов.

Для каждого постоянно проживающего необходимо обеспечить приток свежего воздуха в количестве 60 кубических метров в час. Если в помещении регулярно присутствуют временные посетители, то на каждого такого человека нужно прибавить еще по 20 кубических метров в час.

Несколько сложнее производится расчет по кратности воздухообмена. При его выполнении учитывается назначение каждой отдельной комнаты и нормативы по кратности воздухообмена для каждой из них.

Кратностью воздухообмена называют коэффициент, отражающий количество полной замены отработанного воздуха в помещении в течение одного часа. Соответствующие сведения содержатся в специальной нормативной таблице (СНиП 2.08.01-89* Жилые здания, прил. 4).

С помощью этой таблицы выполняют расчет вентиляции дома по кратностям. Соответствующие коэффициенты отражают кратность воздухообмена за единицу времени в зависимости от назначения помещения

Рассчитать количество воздуха, которое должно быть обновлено в течение часа, можно по формуле:

L=N*V,

Где:

  • N – кратность воздухообмена за час, взятая из таблицы;
  • V – объём помещения, куб.м.

Объем каждого помещения вычислить очень просто, для этого нужно умножить площадь комнаты на ее высоту. Затем для каждого помещения рассчитывают объем воздухообмена в час по приведенной выше формуле.

Показатель L для каждой комнаты суммируется, итоговое значение позволяет составить представление о том, сколько именно свежего воздуха должно поступать в помещение за единицу времени.

Разумеется, через должно удаляться точно такое же количество отработанного воздуха. В одной и той же комнате не устанавливают и приточную, и вытяжную вентиляцию. Обычно приток воздуха осуществляется через “чистые” помещения: спальню, детскую, гостиную, кабинет и т.п.

Вытяжную вентиляцию в ванной комнате или санузле устанавливают в верхней части стены, встроенный вентилятор работает в автоматическом режиме

Удаляют же воздух из комнат служебного назначения: санузла, ванной, кухни и т.п. Это разумно, поскольку неприятные запахи, характерные для этих помещений, не распространяются по жилищу, а сразу же выводятся наружу, что делает проживание в доме более комфортным.

Поэтому при расчетах берут норматив только для приточной или только для вытяжной вентиляции, как это отражено в нормативной таблице.

Если воздух не нужно подавать в конкретное помещение или удалять из него, в соответствующей графе стоит прочерк. Для некоторых помещений указано минимальное значение кратности воздухообмена. Если расчетная величина оказалась ниже минимальной, следует использовать для расчетов табличную величину.

Если проблемы с вентиляцией обнаружились уже после того, как ремонт в доме был проведен, можно установить приточные и вытяжные клапаны в стене

Разумеется, в доме могут найтись помещения, назначение которых в таблице не отображено. В таких случаях используют нормативы, принятые для жилых помещений, т.е. 3 куб.м на каждый квадратный метр комнаты. Нужно просто умножить площадь комнаты на 3, полученное значение принять за нормативную кратность воздухообмена.

Все значения кратности воздухообмена L следует округлить в сторону увеличения, чтобы они были кратными пяти. Теперь нужно посчитать сумму кратности воздухообмена L для помещений, через которые осуществляется приток воздуха. Отдельно суммируют кратность воздухообмена L тех комнат, из которых производится отведение отработанного воздуха.

Если результат вычислений не отвечает санитарным требованиям, производится установка ,бризера или , модернизируется существующая система или выполняется ее чистка.

Холодный наружный воздух может отрицательно сказаться на качестве отопления в доме, для таких ситуаций используют вентиляционные устройства с рекуператором

Затем следует сравнить эти два показателя. Если L по притоку оказался выше, чем L по вытяжке, то нужно увеличить показатели для тех комнат, по которым при расчетах использовались минимальные значения.

Примеры расчетов объема воздухообмена

Чтобы провести расчет для по кратностям, для начала нужно составить список всех помещений в доме, записать их площадь и высоту потолков.

Например, в гипотетическом доме имеются следующие помещения:

  • Спальня – 27 кв.м.;
  • Гостиная – 38 кв.м.;
  • Кабинет – 18 кв.м.;
  • Детская – 12 кв.м.;
  • Кухня – 20 кв.м.;
  • Санузел – 3 кв.м.;
  • Ванная – 4 кв.м.;
  • Коридор – 8 кв.м.

Учитывая, что высота потолка во всех помещениях составляет три метра, вычисляем соответствующие объемы воздуха:

  • Спальня – 81 куб.м.;
  • Гостиная – 114 куб.м.;
  • Кабинет – 54 куб.м.;
  • Детская – 36 куб.м.;
  • Кухня – 60 куб.м.;
  • Санузел – 9 куб.м.;
  • Ванная – 12 куб.м.;
  • Коридор – 24 куб.м.

Теперь, используя приведенную выше таблицу, нужно произвести расчёты вентиляции помещения с учетом кратности воздухообмена, увеличив каждый показатель до значения, кратного пяти:

  • Спальня – 81 куб.м.*1 = 85 куб.м.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м.;
  • Кабинет – 54 куб.м.*1 = 55 куб.м.;
  • Детская – 36 куб.м.*1 = 40 куб.м.;
  • Кухня – 60 куб.м. – не менее 90 куб.м.;
  • Санузел – 9 куб.м. не менее 50 куб.м;
  • Ванная – 12 куб.м. не менее 25 куб.м.

Сведения о нормативах для коридора в таблице отсутствуют, поэтому в расчете данные по этому небольшому помещению не учтены. Для гостиной выполнен расчет по площади с учетом норматива три куб. метра на каждый метр площади.

Правильно организованная система вентиляции обеспечит достаточный воздухообмен в гостиной. При проектировании обязательно следует учитывать требования и нормы СНиПов

Теперь нужно отдельно суммировать сведения по помещениям, в которых осуществляется приток воздуха, и отдельно — комнаты, где установлены вытяжные вентиляционные устройства.

Объем воздухообмена по притоку:

  • Спальня – 81 куб.м.*1 = 85 куб.м/ч.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м/ч;
  • Кабинет – 54 куб.м.*1 = 55 куб.м/ч;
  • Детская – 36 куб.м.*1 = 40 куб.м/ч;

Всего: 295 куб.м\ч.

Объем воздухообмена по вытяжке:

  • Кухня – 60 куб.м. — не менее 90 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 25 куб.м/ч.

Всего: 165 куб.м/ч.

Теперь следует сравнить полученные суммы. Очевидно, что необходимый приток превышает вытяжку на 130 куб.м/ч (295 куб.м/ч-165 куб.м/ч).

Чтобы устранить эту разницу, нужно увеличить объемы воздухообмена по вытяжке, например, увеличив показатели по кухне. На практике это проводится, например, заменой воздуховодов на каналы бóльшего сечения.

Правила расчета площади воздушных каналов для замены или модернизации системы вентилирования . Советуем ознакомиться с полезным материалом.

После правок результаты расчета будут выглядеть следующим образом:

Объем воздухообмена по притоку:

  • Спальня – 81 куб.м.*1 = 85 куб.м/ч.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м/ч;
  • Кабинет – 54 куб.м.*1 = 55 куб.м/ч;
  • Детская – 36 куб.м.*1 = 40 куб.м/ч;

Всего: 295 куб.м\ч.

Объем воздухообмена по вытяжке:

  • Кухня – 60 куб.м. — 220 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 25 куб.м/ч.

Всего: 295 куб.м/ч.

Объемы по притоку и вытяжке равны, что соответствует требованиям при расчетах воздухообмена по кратностям.

Расчет вентиляционной системы для кухни также чрезвычайно важен. Особенно, если там используется газовое оборудование для приготовления пищи

Расчет воздухообмена в соответствии с санитарными нормами выполнить значительно проще. Допустим, что в доме, рассмотренном выше, постоянно проживают два человека и еще двое пребывают в помещении нерегулярно.

Расчет выполняется отдельно для каждого помещения в соответствии с нормой 60 куб.м\чел для постоянных жильцов и 20 куб.м\час для временных посетителей:

  • Спальня – 2 чел*60 = 120 куб.м\час;
  • Кабинет – 1 чел.*60 = 60 куб.м\час;
  • Гостиная 2 чел*60 + 2 чел*20 = 160 куб.м\час;
  • Детская 1 чел.*60 = 60 куб.м\час.

Всего по притоку — 400 куб.м\час.

Для количества постоянных и временных обитателей дома не существует каких-то строгих правил, эти цифры определяются исходя из реальной ситуации и здравого смысла.

Достаточный объем воздуха, своевременно поступающий в ванную комнату, и также своевременная эвакуация отработанного позволяет предотвратить образование затхлого воздуха и появление плесневелых грибов

Вытяжку рассчитывают по нормам, изложенным в таблице, приведенной выше, и увеличивают до суммарного показателя по притоку:

  • Кухня – 60 куб.м. — 300 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 50 куб.м/ч.

Всего по вытяжке: 400 куб.м/ч.

Увеличен воздухообмен для кухни и ванной комнаты. Недостаточный объем по вытяжке можно разделить между всеми помещениями, в которых установлена . Или увеличить этот показатель только для одного помещения, как это было сделано при расчете по кратностям.

В соответствии с санитарными нормами воздухообмен рассчитывают подобным образом. Допустим, площадь дома составляет 130 кв.м. Тогда воздухообмен по притоку должен составлять 130 кв.м*3 куб.м\час = 390 куб.м\час.

Остается распределить этот объем на помещения по вытяжке, например, таким образом:

  • Кухня – 60 куб.м. — 290 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 50 куб.м/ч.

Всего по вытяжке: 390 куб.м/ч.

Баланс воздухообмена — один из основных показателей при проектировании вентиляционных систем. Дальнейшие расчеты выполняются на основе этих сведений.

Как подобрать сечение воздуховода?

Система вентилирования, как известно, может быть канальной или бесканальной. В первом случае нужно правильно подобрать сечение каналов. Если принято решение устанавливать конструкции с прямоугольным сечением, то соотношение его длины и ширины должно приближаться к 3:1.

Длина и ширина сечения канальных воздуховодов с прямоугольной конфигурацией должны соотноситься как три к одному, чтобы уменьшить количество шума

Стандартная по основному вентканалу должна составлять около пяти метров в секунду, а на ответвлениях — до трех метров в секунду. Это обеспечит работу системы с минимальным количеством шума. Скорость движения воздуха во многом зависит от площади сечения воздуховода.

Чтобы подобрать размеры конструкции, можно использовать специальные расчетные таблицы. В такой таблице нужно выбрать слева объем воздухообмена, например, 400 куб.м\ч, а сверху выбрать значение скорости — пять метров в секунду.

Затем нужно найти пересечение горизонтальной линии по воздухообмену с вертикальной линией по скорости.

С помощью этой диаграммы вычисляют сечение воздуховодов для канальной вентиляционной системы. Скорость движения в магистральном канале не должна превышать 5 м/сек

От этого места пересечения проводят линию вниз до кривой, по которой можно определить подходящее сечение. Для прямоугольного воздуховода это будет значение площади, а для круглого – диаметр в миллиметрах. Сначала делают расчеты для магистрального воздуховода, а затем – для ответвлений.

Таким образом расчеты делают, если в доме планируется только один вытяжной канал. Если же предполагается установить несколько вытяжных каналов, то общий объем воздуховода по вытяжке нужно разделить на количество каналов, а затем провести расчеты по изложенному принципу.

Эта таблица позволяет подобрать сечение воздуховода для канальной вентиляции с учетом объемов и скорости перемещения воздушных масс

Кроме того, существуют специализированные калькуляционные программы, с помощью которых можно выполнить подобные расчеты. Для квартир и жилых домов такие программы могут быть даже удобнее, поскольку дают более точный результат.

На нормальный воздухообмен оказывает влияние такое явление как обратная тяга, со спецификой которой и способами борьбы с ней ознакомит .

Выводы и полезное видео по теме

Ролик #1. Полезные сведения по принципам работы системы вентилирования:

Ролик #2. Вместе с отработанным воздухом жилище покидает и тепло. Здесь наглядно продемонстрированы расчеты тепловых потерь, связанных с работой системы вентиляции:

Правильный расчет вентиляции — основа ее благополучного функционирования и залог благоприятного микроклимата в доме или квартире. Знание основных параметров, на которых базируются такие вычисления, позволит не только правильно спроектировать систему вентилирования во время строительства, но и откорректировать ее состояние, если обстоятельства изменятся.

Хотите поделиться собственным опытом в расчете и сооружении вентиляции? Возникли вопросы в ходе ознакомления с информацией? Нашли недоработки в тексте? Пишите, пожалуйста, комментарии в блоке, находящимся под текстом статьи.

Общие сведения о вентиляции | Поставка HTG

Икс

×

×
Расти Огни
Полные системы +

Балласты +

Отражатели и капоты +

Запчасти и аксессуары +

Луковицы +

×
Палатки для выращивания
Материалы для палаток и комнат для выращивания своими руками +

Полные пакеты +

Палатки для выращивания в помещении +

×
Гидропоника
Контейнеры +

Гидропоника своими руками +

Гидропонные системы +

Качество воды +

×
Питательные вещества
Все-органическое +

Базовые питательные вещества +

Кондиционеры +

Усилители +

Купить по бренду +

Добавки +

×
ВОЗДУХ | ВОДА | СО2
Воздушный фильтр и контроль запаха +

Очистка воды +

CO2 + в помещении для выращивания

Вентиляторы и воздуховоды +

×
КОНТРОЛЬ ЗАПАХА
Контроль ароматического запаха +

Угольные фильтры и вентиляторы +

Угольные фильтры +

Хранение с защитой от запаха +

Генераторы озона

×
КОРПУСЫ И КОНТЕЙНЕРЫ
Горшки для обрезки веток +

Пакеты для выращивания +

Гидропонные контейнеры +

Детские горшки +

Высокие кровати +

Блюдце и подносы +

×
ПОЧВЫ И СРЕДЫ РОСТА
Коко Койр +

Гранулы из вспученной глины и камни для выращивания +

Перлит и вермикулит +

Почвенные и беспочвенные смеси +

Rockwool +

Почвенные поправки +

×
КОНТРОЛЛЕРЫ И СЧЕТЧИКИ
Контроллеры для помещений для выращивания +

Счетчики | Тестеры | Мониторы +

Таймеры +

×
КЛОНИРОВАНИЕ И ЗАПУСК ПОСЕВА
Клонирование +

Огни распространения +

Начальные припасы для семян +

Инструменты и аксессуары для распространения +

×
КОНТРОЛЬ ВРЕДНЫХ
Фунгициды +

Инсектициды +

Органическая борьба с вредителями +

Паутинный клещ +

×
ИНСТРУМЕНТЫ И АКСЕССУАРЫ
Одежда +

Книги +

Освещение +

Сбор урожая и упаковка +

Уход за растениями и уход +

Светоотражающие пленки и лайнеры +

Безопасность и санитария +

Опоры и стяжки +

РАСТИТЬ СВЕТ
ВЫРАЩИВАТЬ ТЕНТЫ
ГИДРОПОНИКА
НУТРИЕНТЫ
ВОЗДУХ | ВОДА | СО2
КОНТРОЛЬ ЗАПАХА
КОРПУСЫ И КОНТЕЙНЕРЫ
ПОЧВЫ И СРЕДЫ РОСТА
КОНТРОЛЛЕРЫ И СЧЕТЧИКИ
КЛОНИРОВАНИЕ И ЗАПУСК ПОСЕВА
БОРЬБА С ВРЕДИТЕЛЯМИ
ИНСТРУМЕНТЫ И АКСЕССУАРЫ

Часто задаваемые вопросы фанатов

Отправить отзыв и предложения

послать

близко

Спасибо за отзыв!

В нашу команду было отправлено письмо с вашим отзывом.

Произошла ошибка при обработке вашей информации.

Приносим извинения за неудобства и уведомили члена команды.

близко

Rep Наши продукты

Вы заинтересованы в представлении CaptiveAire и продаже нашей продукции?
Заполните следующую форму, и мы свяжемся с вами в ближайшее время.

0/500

Какое у вас образование?

0/500

Какие территории продаж вас интересуют?

0/500

Какие продуктовые линейки вас интересуют?

0/1000

Есть ли у вас другие комментарии?

послать

близко

Часто задаваемые вопросы фанатов
На моторе есть регулируемый шкив.На шкиве есть два установочных винта с шестигранной головкой. Один крепит шкив к валу. Другой позволяет расположить две половины шкива ближе друг к другу или дальше друг от друга. Убедитесь, что при регулировке повторно затяните установочные винты на плоской стороне основания шкива. Если расположить половинки ближе друг к другу, скорость вращения вентилятора увеличивается, а при увеличении расстояния — замедляется. Шкивы с двойной канавкой должны быть повернуты на одинаковое количество оборотов, иначе ремни не будут правильно сидеть в канавках. Всегда проверяйте силу тока двигателя после регулировки шкивов.
Да, так можно заказать большинство моделей вентиляторов. Это называется оболочкой вентилятора. Это полный вентилятор без привода. Приводной агрегат — это двигатель, шкив и ремни.
Шкивы с одной канавкой обычно легко снимаются после ослабления установочного винта. Для снятия шкивов большего размера с конической прижимной втулкой нужно вынуть два болта с шестигранной головкой и вставить их в два других отверстия.При затяжке втулка выскочит, и шкив можно будет снять. При замене убедитесь, что конус шкива и втулки совпадают.
Несколько вещей могут вызвать вибрацию. Прежде чем предположить, что колесо разбалансировано, сначала проверьте другие возможные причины. Обратите внимание на очевидные признаки застревания тряпки или постороннего предмета в колесе. Другая распространенная проблема заключается в том, что вентилятор был недавно очищен, и не вся смазка была удалена с колеса, что привело к его дисбалансу.Механические проблемы могут быть связаны с двигателем, ремнем, подшипниками или колесом. Снимите ремень и запускайте только двигатель, если он вибрирует, замените двигатель. Проверить ремень. Если он в плохом состоянии, замените. Убедитесь, что шкив нагнетателя и шкив двигателя совмещены. Проверить подшипники на наличие износа или повреждений. Им также может потребоваться смазка. Наконец, убедитесь, что вентилятор прикреплен к бордюру. Простое добавление дополнительного винта иногда может привести к довольно шумному вентилятору. Если вентилятор работает за пределами допустимого диапазона, он также будет вибрировать.
Для начала нужно проверить, течет ли вода внутри или снаружи воздуховода. Если вода находится внутри выпускного коллектора, область за фильтрами, сливом смазки на вентиляторе может быть забита, и вода переливается через трубку Вентури на нижнем блоке перегородки. Подробную информацию о деталях см. В разделе «Детали разнесенных деталей». Силиконовое уплотнение между блоком перегородки и основанием вентилятора также могло быть причиной утечки.Если вода протекает за пределы воздуховода и капает на внешнюю часть камеры статического давления или собирается в осветительной арматуре, проблема, вероятно, в том, что бордюр не был прикреплен к крыше должным образом.
Вероятно, двигатель отключается при тепловой перегрузке. Двигатель перегревается и перезапускается после охлаждения и сброса тепловой перегрузки. Это происходит только с однофазными двигателями, которые имеют термическую защиту.На заводской табличке будет указано, есть ли у него внутренняя защита. Сначала измерьте потребление тока при работающем двигателе и сравните его с паспортной табличкой. Если он не намного выше, вам может потребоваться только замедлить вентилятор, пока он не станет равным или ниже рабочего тока, указанного на паспортной табличке. Если замедление вентилятора невозможно, вам необходимо заменить двигатель на двигатель большей мощности. Наконец, это может быть неисправный мотор.
Перегрузка обеспечивает защиту двигателей без внутренней тепловой защиты.Это на всех трехфазных и больших однофазных двигателях. Если мощность двигателя превышает допустимый ток или ток на подводящих проводах не сбалансирован, произойдет перегрузка. Превышение может быть результатом использования недостаточно мощного двигателя или работы вентилятора на более высоких оборотах, чем необходимо. Если вы можете замедлить вентилятор, это должно быть вашим первым выбором. Если это не вариант, замените двигатель на более мощный. Несбалансированная нагрузка может быть результатом неисправного двигателя или несбалансированного питания. Если одна из линий 3-фазного источника питания потеряла напряжение, двигатель будет работать только на двух линиях и с повышенным напряжением.Другой частой причиной отключения при перегрузке является гроза или отключение электроэнергии. Когда электричество снова включается, напряжение обычно низкое из-за большого спроса в электросети. По мере того, как напряжение падает, сила тока возрастает и срабатывает перегрузка.
Это может быть результатом ослабления или износа ремня. Другие возможные причины — грязные или забитые фильтры или крыльчатка вентилятора заполнена смазкой.
Это может быть результатом ослабления или износа ремня. Другие возможные причины — грязные или забитые фильтры, расположенные в блоке на крыше.
Если система вытяжки была снабжена нашей панелью управления, вероятно, система находится в состоянии возгорания. В этом режиме вытяжной вентилятор не выключается и приточный вентилятор не включается.Другие возможные причины: неисправно реле R1 на панели управления, неисправен переключатель вентилятора или контактор застрял в замкнутом положении.
Если система вытяжки была снабжена нашей панелью управления, вероятно, система находится в состоянии возгорания. В этом режиме вытяжной вентилятор не выключается и приточный вентилятор не включается. Другие возможные причины: неисправное реле R1 на панели управления или обрыв катушки контактора.
Super Filter Coat — это водорастворимый клей, наносимый на сетчатый фильтр после каждой промывки. Клей характерен для муховой бумаги, поскольку он задерживает частицы пыли и грязи из воздушного потока. Это доступно на нашем сайте. Это номер детали 412.
Да, обе являются национально признанными испытательными лабораториями, которые тестируют, сертифицируют и проверяют продукты на безопасность и производительность для производителей.Стандарт, по которому тестируются вытяжки CAS, — UL 710. Вытяжные вентиляторы протестированы на соответствие стандартам UL 762 и UL 705. Вы можете посетить эту ссылку для сравнения.
Для двигателей с прямым приводом FLA, указанное на паспортной табличке, соответствует силе тока при максимальной скорости. Регулировка скорости снижает скорость двигателя за счет снижения подаваемого напряжения. Основные законы электричества гласят, что при уменьшении напряжения увеличивается сила тока.Это нормально для двигателей такого типа. Регуляторы скорости, используемые на вентиляторах с прямым приводом, рассчитаны на более высокие номиналы, чем у двигателя, чтобы приспособиться к этому увеличению.
Да. Посмотреть сравнение.
Все двигатели подходят для работы с высоким и низким напряжением. Однофазные двигатели имеют номинал 115 / 208-230.Это означает, что низкое напряжение составляет 115 вольт, а высокое — 208-230 вольт. Точно так же трехфазные двигатели имеют рейтинг 208-230 / 460. Это означает, что низкое напряжение составляет 208-230, а высокое — 460.

Чтобы изменить напряжение питания, обратитесь к схеме на этикетке двигателя для получения инструкций по подключению.

Если предварительная проводка включена в работу, вам потребуется заменить контакторы и / или перегрузки из-за изменения FLA (см. Этикетку двигателя).

Если приточный вентилятор представляет собой нагреватель, необходимо повторно подключить трансформатор кВА на новое напряжение.

ПРИМЕЧАНИЕ. Однофазный двигатель нельзя преобразовать в трехфазный, а трехфазный нельзя преобразовать в однофазный. Мотор подлежит замене.

Простое добавление взрывозащищенного двигателя к вентилятору не делает его взрывозащищенным. Взрывозащищенные вентиляторы необходимо модифицировать, чтобы они соответствовали требованиям AMCA, перечисленным ниже. В некоторых юрисдикциях требуются взрывозащищенные переключатели и заполненные трубопроводы.

Термин « Взрывозащищенные вытяжные вентиляторы » должен быть количественно определен в соответствии с его истинным определением.
Нет такого
как «Взрывозащищенный» в вытяжных вентиляторах, воздуходувках или двигателях. Вентиляторы могут быть изготовлены
«Искробезопасность и / или взрывобезопасность».
Ассоциация движения и кондиционирования воздуха (AMCA) имеет три классификации «искробезопасность».
вентиляторы и воздуходувки.Они определены как типы AMCA A, B или C.
искробезопасная конструкция. Конструкция типа A требует, чтобы
все материалы вентилятора или воздуходувки, которые
«в контакте с воздушным потоком» должны быть изготовлены из искроустойчивого цветного материала, такого как алюминий или латунь.
Для конструкции типа B требуется колесо из цветных металлов и трущееся кольцо вокруг отверстия, в котором
вал вентилятора или двигателя входит в вентилятор или корпус нагнетателя. Для конструкции типа C требуется цветной металл.
пластины с обеих сторон внутренней части вентилятора или корпуса нагнетателя.Требуемый тип конструкции зависит от окружающей среды и / или степени применения, которой будет подвергаться вентилятор.
к. Вы должны быть очень осторожны при выборе типа искробезопасной конструкции, которую вы хотите и указать. Если вы не
знающие в этой области, вам следует нанять консультанта, который есть.

Взрывозащищенность двигателей

также не гарантируется. Они созданы так
«если произойдет взрыв
внутри двигателя конструкция двигателя будет содержать
взрыв внутри двигателя и не дать ему уйти в атмосферу ».Взрывозащищенные двигатели проектируются или оцениваются по классам, группам и
«T» коды для атмосферы, в которой они будут работать. Если взрывозащищенный двигатель
неправильно выбран для реальной окружающей атмосферы, в которой он работает,
может вызвать взрыв. Опять же, если вы не знаете, что именно
Тип взрывозащищенного двигателя, который вам нужен для вашего применения, положитесь на кого-то, кто обучен в этой области.

Простая английская Википедия, бесплатная энциклопедия

Кривая тяги ракетного двигателя Estes A10-PT.Кривая тяги показывает, сколько тяги (в ньютонах) двигатель производит с течением времени (в секундах). Здесь также есть информация об импульсе, количестве топлива и удельном импульсе.

Тяга — сила или толчок. Когда система толкает или ускоряет массу в одном направлении, возникает такая же большая тяга (сила) в противоположном направлении. В математике и физике это описывается вторым и третьим законами Исаака Ньютона. Тяга используется для описания того, насколько сильно двигатель толкает. Его можно использовать для многих видов транспортных средств и двигателей, таких как ракеты, моторные лодки, гребные винты и реактивные двигатели.

Тяга измеряется в «фунтах тяги» в США и в ньютонах в метрической системе. 4,45 ньютона тяги равны 1 фунту тяги. Фунт тяги — это то, сколько тяги потребуется, чтобы удержать объект весом в один фунт неподвижным против силы тяжести на Земле.

Очень распространенный вопрос — как сравнить тяговое усилие авиационного двигателя с механической мощностью поршневого двигателя (типа двигателя в автомобилях и во многих самолетах с пропеллерами). Эти два трудно сравнивать.Это потому, что они не измеряют одно и то же. Поршневой двигатель не двигает самолет. Он просто крутит пропеллер, который двигает самолет. Из-за этого поршневые двигатели оцениваются по мощности, которую они передают гребному винту.

Однако у реактивного двигателя нет пропеллера — он толкает самолет, перемещая за собой горячий воздух. Полезный способ измерения мощности реактивного двигателя — это то, сколько мощности реактивный двигатель передает самолету через силу тяги. Это называется «тяговая мощность реактивного двигателя».»Сила — это сила, необходимая для перемещения чего-либо на расстояние, деленная на время, необходимое для перемещения на это расстояние: [1]

P = Fdt {\ displaystyle \ mathbf {P} = \ mathbf {F} {\ frac {d} {t}}},

Где P — мощность, F — сила, d — расстояние, а t — время. Для ракетного или реактивного двигателя сила равна тяге, создаваемой двигателем. Расстояние, разделенное на время, также называется скоростью. Таким образом, мощность такая же, как тяга, умноженная на скорость [2]

P = Tv {\ displaystyle \ mathbf {P} = \ mathbf {T} {v}},

Где T — тяга, а v — скорость.Это мощность, передаваемая двигателем с определенной тягой или скоростью. [3] Тяговая сила реактивного двигателя увеличивается с увеличением его скорости.

Когда тяга ракеты или двигателя сравнивается с массой, это называется отношением тяги к массе . Число, полученное в результате этого сравнения, не имеет единиц измерения, потому что это соотношение. Соотношение в данном случае означает, что тяга двигателя (в Ньютонах) делится на вес (в Ньютонах). Цель этого сравнения — показать, насколько хорошо работает двигатель или транспортное средство, например, насколько сильно ускоряется.Это число, которое можно использовать для сравнения различных типов двигателей, таких как авиадвигатели, реактивные двигатели, ракетные двигатели или автомобильные двигатели.

Этот сравнительный номер может изменяться при работающем двигателе. Это связано с тем, что по мере использования топлива вес двигателя уменьшается. Отношение тяги к массе, используемое для фактического сравнения двигателей, — это число, которое определяется при первом запуске двигателя.

Тяга измеряется в «фунтах тяги» в США и в ньютонах в метрической системе.4,45 Ньютона тяги равны 1 фунту тяги. Фунт тяги — это то, сколько тяги потребуется, чтобы удержать объект весом в один фунт неподвижным против силы тяжести на Земле.

Самолет делает тягу вперед, когда воздух выталкивается в направлении, противоположном полету. Тяга создается вращающимися лопастями пропеллера. Тяга также может создаваться вращающимся вентилятором, выталкивающим воздух из задней части реактивного двигателя. Другой способ — выбросить горячие газы из ракетного двигателя.

Реверсная тяга противоположна прямой.Таким образом, воздух выталкивается так же, как и движение тела. Для облегчения торможения после приземления можно использовать обратную тягу. Это можно сделать, перенаправив тягу в турбореактивном или реактивном двигателе или изменив угол лопастей винтового самолета.

Птицы обычно достигают тяги во время полета, взмахивая крыльями.

Лодка с двигателем создает тягу или обратную тягу, когда гребные винты поворачиваются, чтобы толкать воду назад (или вперед). Возникающий при этом толчок толкает лодку в направлении, противоположном движению воды.

Ракета толкается вперед силой тяги, равной силе выхлопных газов при выходе из сопла ракеты. Сила, создаваемая выхлопным газом, называется скоростью выхлопа. Скорость измеряется по сравнению с ракетой. Чтобы вертикальный пуск ракеты заработал, стартовая тяга должна быть больше, чем вес ракеты.

Соотношение тяги и тяги к массе для нескольких двигателей
Двигатель Усилие (Н) Отношение тяги к массе
F-15C Eagle [4] 155 240 1.12
F-16 Fighting Falcon [5] 76 300 1,095
J-58 (реактивный двигатель SR-71 Blackbird) [6] 150 000 5,2
Boeing 747-400 (Двигатели) [7] 1 008 000 6,3
F-1 (РД 1-й ступени Сатурн V) [8] 7 740 500 94,1

Почему не работают и как получить крутой чердак!

С приближением летнего сезона самое время обсудить неудобную тему.Горячие чердаки и почему традиционные вытяжные вентиляторы не работают, чтобы их охладить!

Очень горячая проблема

На прошлой неделе у нас впервые в этом году была теплая погода. Клиент позвонил, чтобы сказать, что у них на втором этаже очень жарко, и попросил нас установить больший и мощный вентилятор на чердаке. Клиент решил, что нужен новый вентилятор для замены солнечной батареи, которую они установили несколько лет назад. Солнечный вентилятор «похоже, не работает должным образом». По сравнению с остальной частью дома в комнатах второго этажа было очень жарко, и жить в них днем ​​и вечером было невозможно.

Типовая конструкция мансарды

При осмотре я обнаружил негодяя на чердаке именно так, как описал заказчик. Одиночный вытяжной вентилятор на чердаке на солнечной энергии. Это сработало.

На чердаке не было другого воздуховода или оборудования HVAC. Изоляция представляла собой слой изоляции толщиной 6–8 дюймов на верхней части потолка, плюс случайные куски стекловолокна R-19, наброшенные наискось поверх выдутого материала, но не полностью покрывающие пространство.

Стропила 2 × 6 с 4-дюймовой обшивкой и фанерными ножницами ½ дюйма были полностью открыты для обозрения.6 дюймов на 24 дюйма, вентиляционные отверстия были установлены по периметру через каждые 8 ​​футов, и вентиляционные отверстия были чистыми и не закрывались изоляцией. Температура обшивки крыши внутри чердака составила 147 градусов. На чердаке размером 45 на 24 дюйма (примерно 4500 кубических футов) было очень жарко.

Лучистое тепло: причина, по которой вентиляторы не работают для охлаждения вашего чердака

Я объяснил нашему клиенту, что идея чердачных вентиляторов для отвода горячего воздуха из чердака может показаться логичной. Но они выбрасывают свои деньги, потому что это не работает.

Представьте, что вы лежите на солнце на пляже в Канкуне. Все действует около 5 минут, после чего вам становится жарко. Вы идете, берете большой вентилятор и настраиваете его, чтобы обдувать вас воздухом. Ах, чувствует себя лучше еще минут на 5. Вскоре даже дующий воздух становится горячим, поэтому вы меняете вентилятор на кондиционер и позволяете ему обдувать вас холодным воздухом. Теперь вы чувствуете себя прекрасно, поэтому оставайтесь на солнце, пока не заметите, что ваша кожа покраснела, покрылась волдырями и обгорела до корки.

Что случилось? Сияющее тепло! Вот почему даже в холодный день можно получить ужасный солнечный ожог.Лучистое тепло проникает сквозь холодный воздух без какого-либо эффекта. Итак, какое это имеет отношение к вашему дому?

Конструкция крыши вашего дома подобна вашей коже. Солнечное излучение попадает на поверхность крыши и прогревает всю массу кровли (кровля, рубероид, гвозди, обшивка, стропила). Вскоре масса крыши станет настолько горячей, что сама будет излучать тепло (как солнце). Это лучистое тепло проходит через чердак и попадает на материал поверхности потолочной конструкции (изоляция, деревянные балки, гипсокартон, воздуховоды и т. Д.).). Очень быстро вся масса потолочной конструкции превращается в гигантский радиатор тепла, и если ваш потолок не герметичен и не очень хорошо изолирован, все это тепло будет излучаться в ваш дом.

Оборудование и воздуховоды сильно страдают на горячем чердаке

Горячий чердак — это уже плохо. Но если у вас есть оборудование, воздуховоды или трубопроводы, работающие при повышенных температурах, вы можете ожидать стресса и, вероятно, сокращения срока службы этих предметов.

Если у вас есть воздуховоды, печи, кондиционеры, водонагреватели, водопровод и т. Д.на чердаке, неплохо было бы:

  1. Переместите воздуховоды и оборудование в ползунок или внутрь вашего дома.
  2. Тщательно запечатайте швы и добавьте светоотражающую изоляцию вокруг воздуховодов
  3. Превратите чердак в кондиционированное пространство. Сделайте это, переместив излучающий барьер и изоляцию на скатную крышу. Изоляция из распыляемой пены делает это возможным, но вам нужно будет создать и соблюдать протоколы, чтобы избежать попадания влаги и проблем с вентиляцией в существующем каркасе крыши.

Дело в том, что если у вас есть горячее чердак, это сократит срок службы любого оборудования, находящегося там.

Пример работающей модернизации

  1. Закройте все утечки воздуха на потолке. Это предотвращает попадание воздуха из жилого помещения на чердак. Это также предотвратит попадание излишней влаги на чердак и обратно.
  2. Установите дополнительную изоляцию, чтобы довести общее количество R-30 повсюду, даже над люком.Закройте верхние части деревянных потолочных балок минимум на 3 дюйма.
  3. Убедитесь, что вентиляционные отверстия карниза открыты и ничем не загорожены.
  4. Установите лучистую барьерную фольгу поверх изоляции. Вы можете получить лучистую барьерную фольгу во многих местах в Интернете.

Проблемы с вентилятором

Удаление или циркуляция воздуха чердака не препятствует передаче тепла излучением. В течение дня любой поступающий воздух будет немедленно нагреваться окружающей конструкцией. Ночью, когда источник солнечного излучения прекращается, любой воздух, поступающий извне, в конечном итоге охлаждает чердак, но это происходит очень медленно.Как только солнце встает утром, процесс лучистого обогрева запускается снова.

Вентиляторы для чердаков могут создать больше проблем, чем решить.

  • Если на потолке, фронтоне или коньке недостаточно вентиляционных отверстий, мощный вытяжной вентилятор на чердаке может вытягивать воздух из вашего дома через потолок, если он не полностью закрыт.
  • Мощные чердачные вентиляторы могут фактически поддерживать тягу печей или водонагревателей, вытягивая дымовые газы из их горелок в дом.
  • Хорошая вентиляция чердака отлично защищает от влаги и конденсата, но этого недостаточно для охлаждения летом.

Сводка

Если в вашем доме летом есть горячий чердак и потолок, то решение — не использовать вентилятор на чердаке. Чтобы избавиться от горячего чердака, необходимо иметь лучистую преграду между чердачным пространством и горячей конструкцией крыши. Лучше всего это делать, когда дом находится в стадии строительства. После постройки его может быть трудно или невозможно модернизировать без серьезных работ в конструкции.Хорошая новость заключается в том, что если у вас на чердаке нет воздуховодов или оборудования, одно лишь тепло не очень опасно. Это просто неудобно.

Что вы должны сделать, так это не допустить, чтобы это тепло, в свою очередь, излучалось в дом. Для этого требуется полностью герметичный потолок, очень толстый слой изоляции и излучающие барьеры (слои отражающей фольги) над изоляцией, чтобы блокировать излучение и изолировать горячий чердак от вашего прохладного дома.

В конечном итоге наш клиент решил создать кондиционированное пространство на своем чердаке, используя пенопласт, нанесенный на скатную крышу, в сочетании с лучистым барьером.Это позволило создать полностью прохладный чердак, значительно сократить счета за электроэнергию и легко поддерживать температуру в комнатах второго этажа. В итоге это решение позволило создать полностью комфортный второй этаж. Я опубликую более подробную информацию об этой опции позже по запросу.

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: Мнения, выраженные выше, принадлежат автору.

Рекуперация отработанного тепла выхлопных газов для ДВС с использованием двигателя Стирлинга бета-типа

В этой статье исследуется потенциал использования отработанного тепла отработавших газов с использованием интегрированного механического устройства с двигателем внутреннего сгорания для автомобилей с целью увеличения экономии топлива, полезной мощности и экологическая безопасность.Один из способов утилизации отработанного тепла — использование двигателя Стирлинга. Двигатель Стирлинга требует только внешнего источника тепла в качестве потери тепла для его работы. Поскольку температура выхлопных газов может достигать 200-700 ° C, двигатель Стирлинга будет работать эффективно. Рассчитаны индикаторная работа, реальная мощность на валу и удельный расход топлива для двигателя Стирлинга, а также потери мощности на выхлопе для двигателя внутреннего сгорания. Исследование показывает наличие и возможность рекуперации отработанного тепла от двигателя внутреннего сгорания с использованием двигателя Стирлинга.

1. Введение

Сегодня энергетические исследования занимают широкое место в мире; автомобиль настолько важен, что потребляет более половины всей энергии, потребляемой всеми видами транспорта вместе взятыми. В количественном выражении потребление энергии автомобилями составляет 52% всей энергии, используемой всем транспортом; менее 35% энергии в галлоне бензина достигает колес обычного автомобиля; оставшееся тепло отводится в окружающую среду через выхлопные газы и системы охлаждения двигателя [1].На рисунке 1 показаны потери энергии двигателя внутреннего сгорания (ДВС). На рисунке показано, что тепловые потери составляют примерно 60%, а 33% мощности выводится с выхлопными газами; в другом значении две трети наших топливных денег были потрачены на охрану окружающей среды. Поскольку большая часть энергии, потребляемой двигателем внутреннего сгорания, тратится впустую, улавливание большей части этой потерянной энергии может обеспечить большую мощность и эффективность. Многие исследователи изучают, как использовать эту потерянную энергию, и были использованы многие методы, такие как термоэлектрическая генерация, пьезоэлектрическая генерация, термоэлектронная генерация, термофотоэлектрическая и механическая турбо [2].Но все эти компоненты считались электрическими или электронными, и они не могут дать большую мощность при высокой температуре. Другой метод, который сейчас используется для рекуперации тепла из выхлопных газов, называется органическим циклом Рэнкина (ORC). Рисунок 2 основан на генерации пара во вторичном контуре с использованием тепловой энергии выхлопных газов для производства дополнительной мощности с помощью парорасширителя. Принцип работы органического цикла Ренкина такой же, как и у цикла Ренкина: рабочая жидкость перекачивается в котел, где она испаряется, проходит через расширительное устройство (турбину или другой детандер), а затем проходит через конденсаторный теплообменник. который окончательно переконденсирован [3, 4].Другой метод рекуперации тепла выхлопных газов — использование двигателя Стирлинга. Этот метод более активен и считается двигателем внешнего сгорания, выполняющим механическую работу. Рекуперация и использование отработанного тепла не только позволяет экономить топливо, обычно ископаемое топливо, но также сокращают количество отработанного тепла и парниковых газов, попадающих в окружающую среду [2]. Использование двигателя Стирлинга имеет множество преимуществ, которые можно резюмировать следующим образом [5–7]: высокий потенциальный КПД до 45%, реверсивный режим работы, более чистые выбросы, тихая работа, низкий уровень вибрации, низкие эксплуатационные расходы, плавная передача крутящего момента и способность работать на разных видах топлива; наконец, двигатель Стирлинга не имеет клапанов, карбюратора, системы зажигания или котлов.С другой стороны, можно сделать вывод об основных недостатках и ограничениях: длительное время запуска при холодном запуске, обычно без самозапуска и, наконец, довольно большое и тяжелое.


Основные цели этой статьи можно резюмировать в двух пунктах: использование двигателя Стирлинга для рекуперации отработанной энергии через выпускной коллектор для выработки электроэнергии, а также демонстрация эффекта повышения всего рабочего давления для двигателя Стирлинга, чтобы получить больше мощности в практичном размере для автомобиля и двигателя внутреннего сгорания.

Структура этого документа начинается с выделения целей, преимуществ, ограничений и связанных исследований в Разделе 1. Основные факторы, влияющие на производительность двигателя Стирлинга, были показаны во втором разделе. Анализ термодинамической модели с точки зрения цикла Шмидта, регенерации отработанных выхлопных газов, мощности двигателя Стирлинга и профиля температуры выхлопных газов был рассмотрен в третьем разделе. Предлагаемая нами в четвертом разделе система рекуперации тепла выхлопных газов. В пятом разделе представлены экспериментальная методология и установка.Расчет и результаты представлены в шестом разделе. Наконец, в седьмом разделе резюмируется весь документ и приводится главный вывод.

2. Факторы эффективности двигателя Стирлинга

Обычно расчетная точка двигателя Стирлинга находится где-то между двумя пределами: (1) точка максимальной эффективности и (2) точка максимальной мощности. Существует множество факторов, которые могут повлиять на выходную мощность и механический КПД для КПД Стирлинга, которые можно кратко изложить следующим образом. (i) Объемный объем: область под диаграммой P-V указывает сети, что при расширении объема мощность будет увеличиваться; (ii) эффективность регенератора: регенератор имеет сетку для хранения тепла, в то время как рабочий газ переходит между горячей и холодной сторонами; теоретически, если двигатель не имеет полной регенерации, основная проблема будет в потерях потока через регенератор; (iii) среднее давление: это среднее давление внутри двигателя при максимальной и более низкой температуре; проблема возникала, когда внутреннее давление больше атмосферного; произойдет разбалансировка поршня; (iv) рабочий газ: тип газа в двигателе Стирлинга имеет решающее значение; для получения большей мощности заполненный газ должен иметь высокую удельную теплоемкость, чтобы газ быстро набирал и терял тепло; затем поршень быстро движется с положительной скоростью [5].Водород имеет самый низкий молекулярный вес, поэтому он обладает высокой эффективностью, но низкой безопасностью. Гелий (He), и воздух считались рабочим газом для двигателя Стирлинга; и, наконец, (v) разница температур: как и у любого теплового двигателя, механический КПД зависит от температуры нагрева и холода, поэтому большая разница дает большую эффективность.

3. Термодинамический анализ
3.1. Анализ цикла Шмидта

Цикл Шмидта определяется как цикл Стирлинга, в котором вытеснитель и силовой поршень или два силовых поршня движутся синусоидально и обнаруживаются мертвые объемы.Предположения, на которых был основан анализ Шмидта, следующие [8]: (i) синусоидальное движение деталей; (ii) известные и постоянные температуры газа во всех частях двигателя; (iii) отсутствие утечки газа; (iv) рабочая жидкость, подчиняющаяся закону идеального газа; и наконец (v) в каждый момент цикла давление газа во всем рабочем газе одинаково.

В этой статье цикл Шмидта будет оценен численно. Производительность двигателя можно рассчитать по диаграмме P-V .Объем двигателя рассчитывается с использованием внутренней геометрии. Когда объем, масса рабочего газа и температура определены, давление рассчитывается с использованием метода идеального газа в уравнении PV = mRT.

Во-первых, будут определены объемы цилиндра расширения и сжатия при заданном угле поворота коленвала. Мгновенный объем расширения составляет

где — рабочий объем расширительного поршня, а — мертвый объем расширения при условии.

Мгновенный объем сжатия определяется

где — рабочий объем поршня сжатия, — мертвый объем сжатия, — фазовый угол.

Общий мгновенный объем рассчитывается в

В двигателе Стирлинга типа Beta поршень буйка и силовой поршень расположены в одном цилиндре. Когда оба поршня перекрывают друг друга, создается эффективное рабочее пространство. Объем перекрытия составляет

Давление в двигателе на основе среднего, минимального и максимального давления описано в [8]:

.