Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Расчет тока 3 фазной сети: Онлайн калькулятор расчета тока трехфазной сети

Содержание

Калькулятор мощности трехфазного переменного тока • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Однофазный и трехфазный ток

Однофазную сеть можно сравнить с проселочной дорогой — оно не позволяет получить большую мощность. Трехфазную сеть можно сравнить с автомагистралью — она обычно имеется в промышленных зданиях для питания оборудования большой мощности

Установленный на столбе однофазный трансформатор, предназначенный для подачи электроэнергии в индивидуальные жилые дома (Канада)

Термин «фаза» относится к распределению электрической энергии. Для далеких от физики людей однофазную и трехфазную сеть можно сравнить с иллюстрациями выше. Однофазная сеть — как проселочная дорога, ее возможности по мощности невысоки и используется она в основном в жилых домах и квартирах. Однофазная сеть проста и экономична. Однако однофазную сеть нельзя использовать для питания эффективных трехфазных электродвигателей. С другой стороны, трехфазная сеть — как автомагистраль, она позволяет использовать мощные нагрузки и обычно применяется в промышленных зданиях и намного реже в индивидуальных жилых домах и квартирах. Все мощные потребители энергии, такие как водонагреватели, большие электродвигатели и системы кондиционирования воздуха обычно подключаются к трехфазной сети.

В однофазной сети используются два или три провода. Всегда имеется один фазный провод и один провод, называемый нейтралью или нулевым проводом. Ток течет между этими двумя проводами. Если однофазная сеть содержит заземляющий провод, то используется трехпроводная сеть. Однофазная сеть хороша в тех случаях, когда типичными нагрузками являются чисто активные потребители, например, традиционные лампы накаливания и электрические обогреватели. Однофазная система не годится для питания мощных электродвигателей.

Установленная на столбе группа из трех трансформаторов, обеспечивающая трехфазное питание небольшой промышленной установки

В трехфазной сети используются три провода, называемые фазными или просто фазами. По этим проводам текут синусоидальные токи со сдвигом фаз относительно друг друга на 120°. В трехфазной системе может быть три или четыре провода. Если имеется четвертый провод, то трехфазную сеть можно использовать для подачи однофазного питания (три линии), например, в индивидуальные жилые дома. При этом от каждой фазы в нагрузку (дом) подается примерно одинаковая мощность. Нейтральный провод часто имеет меньшее сечение, потому что фазные токи взаимно гасятся и по нейтральному проводу обычно течет совсем небольшой ток. Трехфазная система обеспечивает постоянную передачу мощности в нагрузку, что позволяет подключить более высокую нагрузку.

Определения и формулы

Генерация трехфазного тока

В простейшем трехфазном генераторе имеется три идентичных обмотки, расположенных под углом 120° по отношению друг к другу. В результате с обмоток снимаются напряжения (фазы) со сдвигом по фазе 120°. Эти три напряжения не зависят друг от друга и их мгновенные значения определяются формулами:

Здесь Up — пиковое значение (амплитуда) напряжения в вольтах, ω — угловая частота в радианах в секунду и t — время в секундах. Напряжение, наведенное в обмотке 2, отстает от напряжения в обмотке 1 на 120°, а напряжение, наведенное в обмотке 3, отстает от напряжения в обмотке 1 на 240°. Ниже на рисунке приведены векторные диаграммы и формы колебаний напряжений генератора:

Если коэффициент мощности равен единице, то в каждой фазе трехфазной системы напряжение, ток и мощность сдвинуты относительно друг друга на 120°; последовательность фаз на этом рисунке U₁, U₂, U₃, потому что U₁ опережает U₂, U₂ опережает U₃, и U₃ опережает U₁.

Преимущества трехфазных систем

  • По сравнению с однофазными двигателями, трехфазные двигатели имеют более простую конструкцию, высокий пусковой момент, высокие коэффициент мощности и эффективность, более компактны.
  • Передача и распределение трехфазной электроэнергии дешевле в сравнении с однофазной, так как для этого можно использовать провода меньшего сечения при существенном уменьшении стоимости материалов и трудозатрат.
  • В отличие от пульсирующей мощности однофазной системы, мгновенная мощность трехфазной системы постоянна, что обеспечивает плавность вращения и отсутствие вибрации двигателей и другого оборудования.
  • Размеры трехфазных трансформаторов меньше однофазных трансформаторов аналогичной мощности.
  • Трехфазную сеть можно использовать для питания однофазных нагрузок.
  • Выпрямление трехфазного тока происходит с меньшей амплитудой пульсаций, по сравнению с выпрямлением однофазного тока.

Последовательность фаз

Последовательность фаз определяется временем, при котором напряжения трех фаз достигают положительного максимума. Последовательность фаз называют также порядком фаз. На рисунке выше последовательность фаз 1-2-3, так как фаза 1 достигает положительного максимума раньше, чем фаза 2, а фаза 3 достигает положительного максимума позже фазы 2. Отметим, что нам безразлично направление вращения ротора генератора, потому вращающийся по часовой стрелке ротор можно обойти и мы будем наблюдать вращение против часовой стрелки. Нам интересен только порядок чередования фаз напряжений, вырабатываемых генератором.

Для определения порядка фаз на векторной диаграмме нужно знать, что векторы всегда вращаются против часовой стрелки. Например, на этих трех чертежах последовательность чередования фаз снова U₁, U₂, U₃:

Фазное напряжение и фазный ток

Фазным называется напряжение между каждым из трех фазных проводов и нейтралью. Его также называют напряжением между фазой и нейтралью. Ток, которые течет в нагрузке между фазным проводом и нейтралью, называется фазным током.

Линейное напряжение и ток

Линейным называется напряжение между любыми двумя фазами (линиями). Ток, протекающий в каждой из линий, называется линейным.

Симметричные и несимметричные системы и нагрузки

В сбалансированной (симметричной) трехфазной системе токи во всех трех фазах равны, а сумма всех токов равна нулю, поэтому ток по нейтрали не течет. Амплитуды и частоты напряжений и токов одинаковые. Отличаются они только сдвигом фаз: напряжение в каждой фазе отстает от предыдущей на 2π/3, или на 1/3 цикла, или на 120°. Векторная сумма трех напряжений равна нулю:

То же можно сказать и о токах в симметричной системе:

Если три нагрузки, присоединенные к трем линиям, имеют одинаковую величину и коэффициент мощности, она также называются сбалансированными или симметричными.

Линейные и нелинейные нагрузки

В линейных нагрузках в цепях переменного тока напряжения и токи имеют синусоидальную форму и в любое время ток в нагрузке прямо пропорционален напряжению на ней. Примерами линейных нагрузок являются нагреватели, лампы накаливания. конденсаторы и катушки индуктивности. Все линейные нагрузки подчиняются закону Ома. В линейных нагрузка коэффициент мощности равен cos φ. Подробнее о нелинейных нагрузках — в нашем Калькуляторе активной и реактивной мощности.

В нелинейных нагрузках ток не пропорционален напряжению и содержит гармоники основной частоты 50 или 60 Гц. Примерами нелинейных нагрузок являются блоки питания компьютеров, лазерные принтеры, светодиодные и компактные люминесцентные лампы, электронные регуляторы оборотов электродвигателей и многие другие потребители электроэнергии. Искажение формы гармонических колебаний тока приводит к искажению формы напряжения. К нелинейным нагрузкам неприменим закон Ома. В таких нагрузках коэффициент мощности не равен cos φ.

Соединение треугольником и звездой

Три обмотки трехфазного генератора можно присоединить к нагрузке шестью проводами, по два на обмотку. Для уменьшения количества проводов обмотки присоединяются к нагрузке тремя или четырьмя проводами. Эти два способа подключения называются треугольником (Δ) и звездой (Y).

В соединении треугольником начало каждой обмотки соединяется с концом следующей обмотки. Таким образом энергию можно передавать только по трем проводам.

Соединение звездой (слева) и треугольником (справа)

В симметричной соединении треугольником напряжения равны по амплитуде, отличаются по фазе на 120° и их сумма равна нулю:

В симметричной четырехпроводной системе соединения звездой с тремя одинаковыми подключенными к каждой фазе нагрузками мгновенное значение тока, текущего по нейтрали, равно сумме трех фазных токов i₁, i₂, и i₃, которые имеют одинаковые амплитуды Ip и сдвинуты по фазе на 120°:

Напряжение и мощность в симметричной трехфазной нагрузке при соединении звездой

Соединение звездой; I₁, I₂, и I₃ — фазные токи, которые равны линейным токам

Полная мощность в трехфазной системе является суммой мощностей, потребляемых нагрузками в каждой из трех фаз. В связи с тем, что нагрузки симметричные, в каждой фазе потребляется одинаковая мощность и полная активная мощность во всех трех фазах равна

Здесь φ — разность фаз между током и напряжением. Поскольку в трехфазном соединении звездой фазное Uph и линейное среднеквадратичное напряжение UL связаны как

а среднеквадратичное значения линейного и фазного токов равны

полная активная мощность определяется следующим уравнением:

Полная реактивная мощность равна

Комплексная мощность:

И, наконец, полная мощность в трех фазах определяется формулой:

Напряжение и мощность в симметричной трехфазной нагрузке при соединении треугольником

Соединение треугольником; I13, I23, и I32 — фазные токи, а I1, I2, и I3 — линейные токи; при этом IL = √3∙Iph

При соединении треугольником нейтральный проводник отсутствует и конец одной обмотки генератора соединяется с началом следующей обмотки. Фазное напряжение — это напряжение на каждой обмотке. Линейное напряжение — это напряжение между двумя фазами, то есть также на каждой из обмоток. Таким образом, среднеквадратичные напряжения на обмотках и между фазами одинаковые, то есть для соединения треугольником можно написать

При соединении треугольником фазные токи — это токи, текущие через фазные нагрузки. Мы рассматриваем симметричную систему, поэтому фазные среднеквадратичные значения токов Ip1, Ip2 и Ip3 по амплитуде равны (Ip) и отличаются по фазе на 120°:

Как мы уже упоминали, общая мощность в трехфазной системе — это сумма мощностей, потребляемых в нагрузках трех фаз:

где φ — сдвиг фаз между током и напряжением. Поскольку при соединении треугольником среднеквадратичные значения фазного Uph и линейного напряжений UL равны,

а среднеквадратичные значения линейного и фазного токов связаны формулой

активная мощность определяется следующим уравнением:

Полная реактивная мощность равна

Комплексная мощность:

И полная мощность в трех фазах:

Отметим, что приведенные выше уравнения для мощности при соединении звездой и треугольником одинаковые. Мы используем их в этом калькуляторе.

То, что эти формулы мощности для звезды и треугольника одинаковые, иногда приводит к ошибочным выводам о том, что можно соединить обмотки одного и того же электродвигателя звездой или треугольником и потребляемая мощность (и ток!) не изменятся. Конечно, это неправильно. И если мы в калькуляторе соединение звездой изменим на треугольник, не изменяя нагрузку, мы увидим, что мощность и потребляемый ток изменятся.

Рассмотрим пример. Трехфазный электродвигатель подключен по схеме треугольника и работает на полной номинальной мощности при линейном напряжении UL и линейном токе IL. Полная мощность в вольт-амперах (ВА) равна

Затем обмотки того же двигателя соединили звездой. Линейное напряжение, приложенное к каждой обмотке, уменьшилось в 1/1,73 раза, при этом сетевое напряжение осталось прежним. Ток в каждой обмотке уменьшился в 1/1,73 раза по сравнению с током, потребляемым при соединении треугольником. Полная мощность также уменьшилась:

Таким образом, полная мощность при соединении звездой равна одной трети мощности при соединении треугольником для нагрузки с тем же импедансом. Очевидно, что полный момент двигателя, обмотки которого соединены звездой, будет в три раза меньше момента того же двигателя при соединении обмоток треугольником.

Иными словами, хотя новая мощность для соединения звездой рассчитывается по той же формуле, что и для треугольника, в расчет нужно вставить другие величины, а именно, напряжение и ток. уменьшенные в 1,73 раза (то есть в квадратный корень из 3).

Расчет симметричной нагрузки по известным напряжению, току и коэффициенту мощности

Для расчета симметричной нагрузки (одинаковой в каждой фазе) по известным напряжению, току и коэффициенту мощности (опережающему или отстающему) используются следующие формулы:

Импеданс нагрузки

Z

В полярной форме:

В комплексной форме:

Расчет тока и мощности по известным напряжению и нагрузке

Фазный ток

По закону Ома, имеем:

Преобразование из прямоугольных координат в полярные и наоборот

Для преобразования из прямоугольных координат R, X в полярные координаты |Z|, φ, используйте следующие формулы:

Треугольник импеданса

В этих формулах R всегда положительно, а X положительно для индуктивной нагрузки (ток отстает от напряжения) и отрицательно для емкостной нагрузки (ток опережает напряжение).

Активное

Rph и реактивное Xph сопротивление нагрузки

Импеданс конденсатора и катушки индуктивности

Параллельная нагрузка RLC

Параллельное соединение RLC

Для расчета используйте наш Калькулятор импеданса параллельной RLC-цепи.

Последовательная нагрузка RLC

Последовательное соединение RLC

Для расчета используйте наш Калькулятор импеданса последовательной RLC-цепи

Более подробную информацию о нагрузки в форме RLC-цепи вы найдете в наших калькуляторах для расчета импеданса:

Примеры расчетов

Пример 1. Расчет мощности и тока по заданным напряжению и нагрузке

Индуктивная нагрузка из трех цепей с равными импедансами Zph = 5+j3 Ом подключена звездой к трехфазной сети с линейным напряжением 400 В 50 Гц. Рассчитать фазное напряжение Uph, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности.

Пример 2. Расчет мощности и тока по заданным напряжению и нагрузке

Индуктивная нагрузка из трех цепей с равными импедансами Zph = 15 ∠60° Ом подключена звездой к трехфазной сети с фазным напряжением (между фазой и нейтралью) 110 В 50 Гц. Определить тип нагрузки (емкостная или индуктивная) фазное напряжение Uph, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности.

Пример 3. Расчет мощности и тока по заданным напряжению и нагрузке

Индуктивная нагрузка из трех обмоток с равными импедансами и эквивалентной схемой в виде включенных последовательно сопротивления Rph = 20 Ом и индуктивности Lph = 440 мГн подключена звездой к трехфазной сети с фазным напряжением (между фазой и нейтралью) 230 В 50 Гц. Рассчитайте фазное напряжение Uph, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности. Найти линейный ток и потребляемую мощность для той же нагрузки, но соединенной треугольником. Совет: Для определения импеданса каждой обмотки воспользуйтесь Калькулятором последовательной RL-цепи.

Пример 4. Расчет мощности и нагрузки по заданным напряжению и току

Симметричный трехфазный генератор подает фазное напряжение 230 В на включенную звездой нагрузку с отстающим (активно-индуктивным) коэффициентом мощности 0,75. Ток в каждой фазе равен 28,5 А. Рассчитать импеданс нагрузки, активное и реактивное сопротивление в каждой фазе. Также рассчитать полную, активную и реактивную мощности. Описать что произойдет, если для той же нагрузки изменить соединение со звезды на треугольник. Совет: используйте режим определения мощности и нагрузки по заданным току и напряжению, а затем для ответа на последний вопрос воспользуйтесь этим же калькулятором в режиме определения мощности и тока по заданным напряжению и нагрузке.

Пример 5. Расчет мощности и тока по заданным напряжению и нагрузке

Нагрузка, состоящая из трех одинаковых обмоток, имеющих сопротивление Rph = 10 Ом и индуктивность Lph = 310 мГн, подключена треугольником к трехфазной сети с напряжением между фазой и нейтралью 120 В, 60 Гц. Рассчитайте линейное напряжение UL, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности. Как изменятся ток и мощность, если эту же нагрузку подключить звездой? Совет: воспользуйтесь нашим Калькулятором импеданса последовательной RL-цепи для определения импеданса каждой катушки, а затем введите данные в этот калькулятор.

Пример 6. Расчет мощности и тока по заданным напряжению и нагрузке

Нагрузка из трех цепей с равными импедансами Zph = 7 – j5 Ом подключена треугольником к трехфазной сети с линейным напряжением (между двумя фазами) 208 В 60 Гц. Определить тип нагрузки (резистивно-емкостная или резистивно-индуктивная) фазное напряжение Uph, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности.

Пример 7. Расчет мощности и нагрузки по заданным напряжению и току

Симметричная нагрузка подключена звездой к симметричному трехфазному генератору с линейным (между двумя фазами) напряжением 208 В 60 Гц. В каждом фазном проводе протекает ток Iph = 20 А с запаздыванием относительно напряжения на 15°. Определите фазное напряжение, импеданс нагрузки в каждой фазе в полярной и комплексной форме, активную и реактивную мощности.

Автор статьи: Анатолий Золотков

формулы расчета на 220в и 380в

Включение потребителей в бытовые или промышленные электрические сети с использованием кабеля меньшей мощности, чем это необходимо, может вызвать серьезные негативные последствия. В первую очередь это приведет к постоянному срабатыванию автоматических выключателей или перегоранию плавких предохранителей. При отсутствии защиты питающий провод или кабель может перегореть. В результате перегрева изоляция оплавляется, а между проводами возникает короткое замыкание. Чтобы избежать подобных ситуаций, необходимо заранее выполнить расчет тока по мощности и напряжению, в зависимости от имеющейся однофазной или трехфазной электрической сети.

Для чего нужен расчет тока

Расчет величины тока по мощности и напряжению выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы тока используется значение напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы тока выбирается сечение жил кабелей и проводов.

Если все потребители в доме или квартире известны заранее, то выполнение расчетов не представляет особой сложности. В дальнейшем проведение электромонтажных работ значительно упрощается. Таким же образом проводятся расчеты для кабелей, питающих промышленное оборудование, преимущественно электрические двигатели и другие механизмы.

Расчет тока для однофазной сети

Измерение силы тока производится в амперах. Для расчета мощности и напряжения используется формула I = P/U, в которой P является мощностью или полной электрической нагрузкой, измеряемой в ваттах. Данный параметр обязательно заносится в технический паспорт устройства. U – представляет собой напряжение рассчитываемой сети, измеряемое в вольтах.

Взаимосвязь силы тока и напряжения хорошо просматривается в таблице:

Электрические приборы и оборудование

Потребляемая мощность (кВт)

Сила тока (А)

Стиральные машины

2,0 – 2,5

9,0 – 11,4

Электрические плиты стационарные

4,5 – 8,5

20,5 – 38,6

Микроволновые печи

0,9 – 1,3

4,1 – 5,9

Посудомоечные машины

2,0 – 2,5

9,0 – 11,4

Холодильники, морозильные камеры

0,14 – 0,3

0,6 – 1,4

Электрический подогрев полов

0,8 – 1,4

3,6 – 6,4

Мясорубка электрическая

1,1 – 1,2

5,0 – 5,5

Чайник электрический

1,8 – 2,0

8,4 – 9,0

Таким образом, взаимосвязь мощности и силы тока дает возможность выполнить предварительные расчеты нагрузок в однофазной сети. Таблица расчета поможет подобрать необходимое сечение провода, в зависимости от параметров.

Диаметры жил проводников (мм)

Сечение жил проводников (мм2)

Медные жилы

Алюминиевые жилы

Сила тока (А)

Мощность (кВт)

Сила (А)

Мощность (кВт)

0,8

0,5

6

1,3

0,98

0,75

10

2,2

1,13

1,0

14

3,1

1,38

1,5

15

3,3

10

2,2

1,6

2,0

19

4,2

14

3,1

1,78

2,5

21

4.6

16

3,5

2,26

4,0

27

5,9

21

4,6

2,76

6,0

34

7,5

26

5,7

3,57

10,0

50

11,0

38

8,4

4,51

16,0

80

17,6

55

12,1

5,64

25,0

100

22,0

65

14,3

Расчет тока для трехфазной сети

В случае использования трехфазного электроснабжения вычисление силы тока производится по формуле: I = P/1,73U, в которой P означает потребляемую мощность, а U – напряжение в трехфазной сети. 1,73 является специальным коэффициентом, применяемым для трехфазных сетей.

Так как напряжение в этом случае составляет 380 вольт, то вся формула будет иметь вид: I = P/657,4.

Точно так же, как и в однофазной сети, диаметр и сечение проводников можно определить с помощью таблицы, отражающей зависимости этих параметров от различных нагрузок.

Диаметры жил проводников (мм)

Сечение жил проводников (мм2)

Медные жилы

Алюминиевые жилы

Сила тока (А)

Мощность (кВт)

Сила (А)

Мощность (кВт)

0,8

0,5

6

2,25

0,98

0,75

10

3,8

1,13

1,0

14

5,3

1,38

1,5

15

5,7

10

3,8

1,6

2,0

19

7,2

14

5,3

1,78

2,5

21

7,9

16

6,0

2,26

4,0

27

10,0

21

7,9

2,76

6,0

34

12,0

26

9,8

3,57

10,0

50

19,0

38

14,0

4,51

16,0

80

30,0

55

20,0

5,64

25,0

100

38,0

65

24,0

В некоторых случаях расчет тока по напряжению и мощности следует проводить с учетом полной реактивной мощности, присутствующей в электродвигателях, сварочном и другом оборудовании. Для таких устройств коэффициент мощности будет равен 0,8.

Как рассчитать мощность тока

Способ расчета показателя силы тока при выборе нужного сечения проводов

Наша компания предоставляет услуги по разработке электропроекта в квартирах. Мы подготовили для Вас эту статью с полезной информацией. Надеемся, что Вам она пригодится.

В течение реализации электропроекта, чтобы вычислить возможную потерю напряжения, необходимо обязательно знать такие величины, как нагрузка и длина всех отдельных участков в сети. Только после этого можно будет непосредственно начинать проектирование расположения электрической сети. С имеющимися показателями составляется расчетная схема. Она различна для 3-фазных сетей и 1-фазных.

В первом случае вычисленная нагрузка сети делится на три части, которые распределяются одинаково по 3-м фазам. Однако на практике не всегда получается распределить нагрузку равномерно. Точнее всего это можно сделать с сетями, в которых работают 3-фазные двигатели. Если же в них применяются 1-фазные потребители, то сделать это намного сложнее. Такие сети с 3-фазными двигателями устанавливаются в городских системах снабжения электричеством потребителей. В них обычно действуют 1-фазные приемники электричества, поэтому в расчете нагрузки, поделенной на три равные части, всегда есть небольшие отклонения. Но во время проектирования устанавливаются равные части показателя нагрузки. Такой подход позволяет упростить процесс проектирования. Обычно делается расчетная схема только на одну линейную часть сети, т.е. на одну фазу. Показатели к остальным фазам берутся, как равносильные. В схеме обозначаются дополнительно места монтирования плавких предохранителей и аппаратов защиты сети от возможных сбоев и аварийных ситуаций.

Кроме всего этого во время проектирования электрической сети нужно обязательно учитывать особенность плана здания и разреза его помещений. Это необходимо потому, что в некоторых помещениях ранее уже была установлена электропроводка. На ней обычно указываются электротоки и мощность подключаемых приборов, в число которых входят розетки, осветительные приборы и т.п.

Способ расчета силы тока во время составления проекта базируется на уже существующем плане жилого населенного пункта или производственного предприятия. На нем обозначаются все точки включения разных групп электроприемников. Это могут быть отдельные дома, или просто знания производственного предприятия. При отсутствии такого плана невозможно сделать точный проект проектирования электросети. От этого в последующем зависит качество проведения электромонтажных работ.

На схеме длина отдельного участка электросети помечается согласно выбранному масштабу плана в целом. Если же чертежа нет, то тогда длины отдельных участков сети помечаются в реальном размере. Только в таком случае можно составить проект электросети без погрешностей.

Когда записывается расчетная схема электросети, соблюдать масштабирование, при нанесении на нее участков сети, не обязательно. Главное, чтобы верно были нанесены участки соединения отрезков электросети.

Рисунок A

На рисунке А показан пример схемы электрической линии наружного монтажа. По ней доставляется ток в населенный пункт силой в 380/220В. На ней начерчены участки сети, которые измеряются в метрах. Они располагаются, как слева, так и сверху. Показана и нагрузка с помощью стрелок вправо и вниз. На них указаны расчетные мощности. Их измеряют в киловаттах. На приведенном примере схемы главной, магистральной линией является отрезок АБВ. От него идут ответвления. Это отрезки ВЕ, БД, ВГ.

Вычисление расчетных мощностей электросети

Вычисление расчетных мощностей электросети (нагрузок) достаточно сложная работа. Она выполняется, как при создании проекта «с нуля», так и во время реконструкции объекта и его сетей. Каждый из подключенных приборов (люстра, телевизор, холодильник и т.д.) берут от сети определенное номинальное число мощности при заданном номинальном значении напряжения на зажимах. Данная мощность берется за расчетную величину для конкретного приемника электричества. Потом осуществляется определение значения расчетной мощности для электродвигателя сети. Данная работа намного сложнее, чем предыдущая. Полученный верный результат зависит от крутящегося момента. Он связан с двигателем подключаемых механизмов, в число которых входят вентилятор, станок и транспортер. Вычисленная номинальная мощность помечается на корпусе двигателя. Данный показатель отличается от фактически существующей мощности. Получается, что, например, нагрузка токарного станка число не константное. Оно меняется от толщины стружки, которая снимается с детали, а также от размера объекта обработки.

Вычисление расчетной мощности двигателя является трудной задачей еще и потому, что в ходе работы следует принимать во внимание количество возможно подсоединенных приемников электричества. А это играет важную роль в ходе проведения электромонтажных работ.

Примером тому выступает высчитывание нагрузки для электросети, которая предназначена для обеспечения энергией мастерской. Там функционируют тридцать электрических двигателей. Часть из них всегда работают без остановки. К ним относят двигатели вентиляторов. А вот двигатели станков работают в режиме с определенными перерывами. Часть из них вообще функционируют с неполной нагрузкой. Поэтому расчетная мощность сети в этой ситуации признается за переменную величину. Всегда берется данное значение с запасом, т.е. максимальный показатель. После определяется максимальный средний показатель за промежуток времени, равный тридцати минутам.

Формула расчета мощности электрических приемников, определяемой в кВт.

Р = Кс х Ру

Кc – коэффициент, показывающий величину спроса при максимально возможной нагрузке. Данный показатель рассчитывается при максимальном числе приемников. Если определяется коэффициент двигателя, то необходимо обязательно рассчитывать нагрузку приемников каждого в отдельности.

Py – мощность определенной группы электрических приемников, которая узнается путем сложения номинальной мощности всех приемников. Рассчитывается в кВт.

Вычисление показателя расчетного тока электрической линии, как для одного приемника, так и для группы.

Когда предстоит задача отобрать диаметр сечения электрического прибора, тогда нужно обязательно выяснить и размер расчетного тока. Определяется два показателя. Один базируется на показателе плотности, а другой на условиях нагревания.

Формула вычисления расчетного тока 3-х фазного электрического приемника.

Где Р – нагрузка приемника, рассчитываемая в кВт.

Un- величина номинального напряжения приемника в комплекте с зажимами. Определяется, как величина линейного, межфазного напряжения в сети
Cos ? — константная величина мощности приемника.

Выше представленная формула используется для расчета мощности тока из группы однофазных или 3-х фазных приемников. Ко всему этому прилагается условие того, все имеющиеся приемники подсоединяются в одинаковых размерах к каждой отдельной фазе из трех возможных. Есть же специальная формула расчета мощности для 1-фазного приемника или нескольких, образующих группу, подсоединенных только к одной фазе 3-фазной сети.

Uнф – значение номинального напряжения каждого отдельного приемника, которое равно показателю фазного напряжения сети. В этом месте и осуществляется подсоединение приемников. Вычисляется значение в ваттах.

Cos ? — константная величина мощности приемника. Для лампочек света и нагревательных приборов данное значение равно единице. Это делает процесс расчета быстрее и проще. 
Вычисление тока по существующей расчетной схеме электросети

Для примера берем электросеть небольшого жилого поселка. Она изображена на рисунке А. На нем расчетная нагрузка каждого отдельного дома, которая присоединяется к общей линии электросети, изображается с помощью стрелок. В конце стрелки написано значение, высчитанное в киловаттах. Чтобы создать проект проведения электричества в жилой поселок и отобрать необходимый диаметр сечения проводов, нужно вычислить нагрузку на все имеющиеся участки.

Расчет производится на базе первого закона Кирхгофа. Он говорит, что для любой точки электросети общая сумма поступающих токов может быть равна суммарному значению всех выходящих токов. Этот закон используется только для расчета нагрузок, выраженных в киловаттах.

Пример

Требуется найти наилучший, с точки зрения оптимальности, вариант распределения нагрузки по разным участкам электрической линии. Так на участке, длина которого равна восьмидесяти метров, в самой завершающей точке Г, где происходит вход его в общую сеть, нагрузка равна девяти киловаттам. На ответвлении в сорок метров нагрузка уже рассчитывается путем сложения нагрузок от домов, примыкающих к конечной точке ответвления ВГ. Т.е. 9+6=15 кВт. Чуть далее, на расстоянии в пятьдесят метров, нагрузка в точке В уже равна сумме трех показателей, а именно 15+4+5=24 кВт.

Таким же способом происходит расчет и всех оставшихся участков электросети. Чтобы сделать работу проще и быстрее, все вышеперечисленные значения указываются в строго определенном порядке. На рисунке А величины длины участков электролинии отмечаются в порядке слева и сверху, а нагрузка – справа и снизу. И наконец, любое проектирование электросети обязательно должно учитывать токи в электроустановочных зданиях, где происходит утечка.

Задание

Например, в ситуации с мастерской, 4-хпроводная электролиния, характеризуемая напряжением в 380/220В, осуществляет питание 30 электрических двигателей. Получается, что сумма мощностей равна сорока восьми киловаттам. Т.е. Py1 = 48 кВт. Сумма мощностей лампочек для света равна двум киловаттам. Ру2 = 2 кВт. Константное значение на спрос для осветительной и силовой нагрузки равно соответственно Кс2=0,9 и Кс1=0,35. Среднее константное значение мощности для всей в целом установки равно cos ф=0,75. Вопрос: вычислить расчетный ток электролинии.

Решение

Сначала производим расчет нагрузки электрических двигателей.

P1 = 0,35 х 48 =16,8 кВт

Далее рассчитываем расчетную нагрузку для осветительных приборов.

Р2=0,9 х 2=1,8 кВт.

Теперь считаем конечную сумму мощностей.

Р= 16,8 + 1,8= 18,6 кВт.

Итого, расчетный ток вычисляем по формуле

Вычислив приблизительное значение расчетного тока, можно проверить правильность создания проекта прокладывания электросети и проведения монтажных работ.

Распределение нагрузки по фазам. Расчет трехфазной сети

Вам необходимо сделать трехфазное питание для дома? О том, как это сделать, читайте описание ниже.

Прежде всего, нужно провести расчет трехфазной цепи.

Порядок распределения нагрузки по фазам

1. Симметрично распределить нагрузку на три фазы. Мощность на каждой фазе будет равна мощности трехфазной нагрузки, кратная трем.
2. Рассчитать нагрузку на каждую фазу.
3. В результате, нужно добиться того, чтобы на каждой фазе, в момент полной загрузки сети, была примерно одинаковая мощность.
4. Определить ток на самой загруженной фазе. После этого необходимо проверить, чтобы при максимальной мощности ток был меньше тока срабатывания входного трехфазного автомата.

Расчет нагрузки по фазам

Допустим, у вас имеется трехфазный двигатель мощностью 1500 Вт. Соответственно, на каждую фазу приходится по 500 Вт активной мощности. Предположим, что cos фи=0,8. Полная мощность равна: 500/0,8. Получается, что 625 Вт нужно распределить на каждую фазу.

Кроме двигателя к фазам, вероятно, подключены и другие потребители. Например, кроме 500 Вт подключается освещение на 200 Вт и конвектор на 300 Вт. Все мощности суммируются по горизонтали. Реактивная мощность остается без изменений (если не используются нагрузки с реактивной составляющей).

По теореме Пифагора можно определить реактивную мощность.

Но на практике это довольно сложные расчеты. Поэтому, это рассчитывается приближенно: 625 Вт + 500 Вт = 1150 Вт. Эта сумма получается больше точных расчетов по формуле, но страшного ничего нет. Расчет произведен с небольшим запасом.

На практике для приблизительных расчетов достаточно сложить все полные мощности и по ним определить мощность автомата для требуемой нагрузки.

Разводка однофазного щитка

Например, к щиту подключаются — плита (варочная панель) 7,2 кВт; духовой шкаф 4,3 кВт; кухня 5,5 кВт; комната 3,5 кВт; ванная 3,5 кВт; двигатель 3-фазный 1,5 кВт; розетка 3-фазная.

Рассмотрим такую ситуацию: у вас была однофазная сеть и теперь дали разрешение на проведение трехфазной. В этом случае нужно все потребители распределить по фазам.

Самый мощный прибор это варочная панель (плита) 7,2 кВт, которую нужно посадить на первую фазу. На вторую подключить духовой шкаф и комнату. В итоге получается 7,8 кВт. А на третью фазу подключить кухню и ванную комнату. Общая мощность получится 9 кВт. Прибавим еще мощность двигателя, разделив ее на каждую фазу одинаково. В итоге получилось: на первой фазе 7,8 кВт; на второй фазе 9,4 кВт; на третьей — 9,6 кВт. Приблизительно распределили нагрузку по фазам по возможности равномерно. Посмотрим, какой в результате получился щиток.

  • Итак, трехфазный щиток состоит из входного автомата и трехфазного счетчика. Далее, на первую фазу подключен автомат 40 Ампер, через который питается плита мощностью 7,2 кВт. Если просуммировать с двигателем, будет 7,8 кВт.
  • Ко второй фазе через автомат 25 Ампер подключен духовой шкаф и микроволновая печь. Через второй автомат 16 Ампер подсоединена комната проектной мощностью 3,5 кВт. Общая мощность получилась 8,4 кВт.
  • К третьей фазе подключен ДИФ автомат и обычный автомат. Через обычный автомат на 25 Ампер подключена кухня проектной мощностью 5,5 кВт. Через ДИФ автомат подключена ванная комната проектной мощностью 3,5 кВт. Общая мощность на третью фазу получается 9,6 кВт.
Распределение полной мощности двигателя на три фазы по 0,6 кВт:
  • первая фаза: 7,2+0,6=7,8 кВт;
  • вторая фаза: 4,3+3,5+0,6=8,4 кВт;
  • третья фаза: 5,5+3,5+0,6=9,6 кВт.

По всем трем фазам максимальная мощность составляет 9,6 кВт. Если проектная мощность 8,8 кВт и входной автомат на 40 Ампер, а у нас проектная мощность на одной из трех фаз 9,6 кВт, то такой автомат не выдержит нагрузку. Если третью фазу загрузить на полную мощность, то этот автомат отключится. Поэтому, входной автомат нужно ставить на 50 Ампер.

Из этого примера видно, что при небольшом количестве потребителей можно полноценно загрузить трехфазную цепь. Иногда возникает необходимость подключить кондиционеры, электрический теплый пол и другие потребители высокой мощности.

Прежде чем покупать электрическое оборудование, надо рассчитать потребляемую мощность. Потянет ли входной автомат и разрешенный лимит по току на электроснабжение дома?

После подсчета всех нагрузок по фазам можно определить, какой мощности нужен входной автомат. Узнать в энергосбыте, какой резерв по току вам дадут. Возможно, разрешение дадут только на 25 Ампер. Придется покупать приборы из расчета на эти 25 Ампер. На фазу дается только 5,5 кВт.

В этом случае, что делать с электроплитой на 7,2 кВт? Современные электроплиты и варочные панели имеют подключение к двухфазной цепи, а иногда и к трехфазной. Кроме земляного и нулевого вывода имеется L1 и L2 (иногда L1, L2, L3). В первом случае для подключения двухфазной цепи, а во втором – подключение трехфазной цепи. Такие мощные нагрузки предусмотрены специально, чтобы можно было их распределить.

Когда делаете проект и запрашиваете проектную мощность, пытайтесь получить разрешение на мощность с запасом.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

расчет мощности, схема правильного подключения

Не всякому обывателю понятно, что такое электрические цепи. В квартирах они на 99 % однофазные, где ток поступает к потребителю по одному проводу, а возвращается по другому (нулевому). Трехфазная сеть представляет собой систему передачи электрического тока, который течет по трем проводам с возвратом по одному. Здесь обратный провод не перегружен благодаря сдвигу тока по фазе. Электроэнергия вырабатывается генератором, приводимым во вращение внешним приводом.

Увеличение нагрузки в цепи приводит к росту силы тока, проходящего по обмоткам генератора. В результате магнитное поле в большей степени сопротивляется вращению вала привода. Количество оборотов начинает снижаться, и регулятор скорости вращения подает команду на увеличение мощности привода, например путем подачи большего количества топлива к двигателю внутреннего сгорания. Число оборотов восстанавливается, и генерируется больше электроэнергии.

Трехфазная система представляет собой 3 цепи с ЭДС одинаковой частоты и сдвигом по фазе 120°.

Особенности подключения питания к частному дому

Многие считают, что трехфазная сеть в доме повышает потребляемую мощность. На самом деле лимит устанавливается электроснабжающей организацией и определяется факторами:

  • возможностями поставщика;
  • количеством потребителей;
  • состоянием линии и оборудования.

Для предупреждения скачков напряжения и перекоса фаз их следует нагружать равномерно. Расчет трехфазной системы получается примерным, поскольку невозможно точно определить, какие приборы в данный момент будут подключены. Наличие импульсных приборов в настоящее время приводит к повышенному энергопотреблению при их пуске.

Распределительный электрощит при трехфазном подключении берется больших размеров, чем при однофазном питании. Возможны варианты с установкой небольшого вводного щитка, а остальных — из пластика на каждую фазу и на надворные постройки.

Подключение к магистрали реализуется по подземному способу и по воздушной линии. Предпочтение отдают последней благодаря небольшому объему работ, низкой стоимости подключения и удобству ремонта.

Сейчас воздушное подключение удобно делать с помощью самонесущего изолированного провода (СИП). Минимальное сечение алюминиевой жилы составляет 16 мм2, чего с большим запасом хватит для частного дома.

СИП крепится на опорах и стене дома с помощью анкерных кронштейнов с зажимами. Соединение с главной воздушной линией и кабелем ввода в электрощит дома производится ответвительными прокалывающими зажимами. Кабель берется с негорючей изоляцией (ВВГнг) и проводится через металлическую трубу, вставленную в стену.

Воздушное подключение трехфазного питания дома

При расстоянии от ближайшей опоры более 15 м необходима установка еще одного столба. Это необходимо для снижения нагрузок, приводящих к провисанию или обрыву проводов.

Высота места присоединения составляет 2,75 м и выше.

Электрораспределительный шкаф

Подключение к трехфазной сети производится по проекту, где внутри дома производится разделение потребителей на группы:

  • освещение;
  • розетки;
  • отдельные мощные приборы.

Одни нагрузки можно отключать для ремонта при работающих других.

Мощность потребителей рассчитывается для каждой группы, где выбирается провод необходимого сечения: 1,5 мм2 — к освещению, 2,5 мм2 — к розеткам и до 4 мм2 — к мощным приборам.

Проводка защищается от короткого замыкания и перегрузки автоматическими выключателями.

Электрический счетчик

При любой схеме подключения необходим прибор учета расхода электроэнергии. 3-фазный счетчик может подключаться непосредственно к сети (прямое включение) или через трансформатор напряжения (полукосвенное), где показания прибора умножаются на коэффициент.

Важно соблюдать порядок подключения, где нечетные номера – это питание, а четные – нагрузка. Цвет проводов указывается в описании, а схема размещается на задней крышке прибора. Вход и соответствующий выход 3-фазного счетчика обозначаются одним цветом. Наиболее распространен порядок присоединения, когда сначала идут фазы, а последний провод – ноль.

3-фазный счетчик прямого включения для дома обычно рассчитан на мощность до 60 кВт.

Перед выбором многотарифной модели следует согласовать вопрос с энергоснабжающей компанией. Современные устройства с тарификаторами дают возможность подсчитывать плату за электроэнергию в зависимости от времени суток, регистрировать и записывать значения мощности во времени.

Температурные показатели приборов выбираются как можно шире. В среднем они составляют от -20 до +50 °С. Срок эксплуатации приборов достигает 40 лет с межповерочным интервалом 5-10 лет.

Счетчик подключается после вводного трех- или четырехполюсного автоматического выключателя.

Трехфазная нагрузка

К потребителям относятся электрокотлы, асинхронные электродвигатели и другие электроприборы. Преимуществом их использования является равномерное распределение нагрузки на каждой фазе. Если трехфазная сеть содержит неравномерно подключенные однофазные мощные нагрузки, это может привести к перекосу фаз. При этом электронные устройства начинают работать со сбоями, а лампы освещения тускло светятся.

Схема подключения трехфазного двигателя к трехфазной сети

Работа трехфазных электродвигателей отличается высокой производительностью и эффективностью. Здесь не требуется наличие дополнительных пусковых устройств. Для нормальной эксплуатации важно правильно подключить устройство и выполнять все рекомендации.

Схема подключения трехфазного двигателя к трехфазной сети создает вращающее магнитное поле тремя обмотками, соединенными звездой или треугольником.

У каждого способа есть свои достоинства и недостатки. Схема звезды позволяет плавно запускать двигатель, но его мощность снижается до 30 %. Эта потеря отсутствует в схеме треугольника, но при пуске токовая нагрузка значительно больше.

У двигателей есть коробка подключения, где находятся выводы обмоток. Если их три, то схема соединяется только звездой. При наличии шести выводов двигатель можно подключить любым способом.

Потребляемая мощность

Для хозяина дома важно знать, сколько потребляется энергии. Это легко подсчитать по всем электроприборам. Сложив все мощности и поделив результат на 1000, получим суммарное потребление, например 10 кВт. Для бытовых электроприборов достаточно одной фазы. Однако потребление тока значительно возрастает в частном доме, где есть мощная техника. На один прибор может приходиться 4-5 кВт.

Важно спланировать потребляемую мощность трехфазной сети на этапе ее проектирования, чтобы обеспечить симметрию по напряжениям и токам.

В дом заходит четырехжильный провод на три фазы и нейтраль. Напряжение электрической сети составляет 380/220 В. Между фазами и нулевым проводом подключаются электроприборы на 220 В. Кроме того, может быть еще трехфазная нагрузка.

Расчет мощности трехфазной сети производится по частям. Сначала целесообразно рассчитать чисто трехфазные нагрузки, например электрический котел на 15 кВт и асинхронный электродвигатель на 3 кВт. Суммарная мощность составит P = 15 + 3 = 18 кВт. В фазном проводе при этом протекает ток I = Px1000/(√3xUxcosϕ). Для бытовых электросетей cosϕ = 0,95. Подставив в формулу числовые значения, получим величину тока I = 28,79 А.

Теперь следует определить однофазные нагрузки. Пусть для фаз они составят PA = 1,9 кВт, PB = 1,8 кВт, PC = 2,2 кВт. Смешанная нагрузка определяется суммированием и составляет 23,9 кВт. Максимальный ток будет I = 10,53 А (фаза С). Сложив его с током от трехфазной нагрузки, получим IC = 39,32 А. Токи на остальных фазах составят IB = 37,4 кВт, IA = 37,88 А.

В расчетах мощности трехфазной сети удобно пользоваться таблицами мощности с учетом типа подключения.

По ним удобно подбирать защитные автоматы и определять сечения проводки.

Заключение

При правильном проектировании и обслуживании трехфазная сеть идеально подходит для частного дома. Она позволяет равномерно распределить нагрузку по фазам и подключить дополнительные мощности электропотребителей, если позволяет сечение проводки.

Как определить ток в трехфазной сети : Радиосхема.ру

Бесплатный калькулятор расчета силы тока по мощности и напряжению/сопротивлению – рассчитайте силу тока в однофазной или трехфазной сети в ОДИН КЛИК!

Если вы хотите узнать как рассчитать силу тока в цепи по мощности, напряжению или сопротивлению, то предлагаем воспользоваться данным онлайн-калькулятором. Программа выполняет расчет для сетей постоянного и переменного тока (однофазные 220 В, трехфазные 380 В) по закону Ома. Рекомендуем без необходимости не изменять значение коэффициента мощности (cos ?) и оставлять равным 0.95. Знание величины силы тока позволяет подобрать оптимальный материал и диаметр кабеля, установить надежные предохранители и автоматические выключатели, которые способны защитить квартиру от возможных перегрузок. Нажмите на кнопку, чтобы получить результат.

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета силы тока

Электрический ток — это направленное упорядоченное движение заряженных частиц.
Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).

— Сила тока через мощность и напряжение (постоянный ток): I = P / U
— Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U ? cos?)
— Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U ? cos? ? v3)
— Сила тока через мощность и сопротивление: I = v(P / R)
— Сила тока через напряжение и сопротивление: I = U / R

  • P – мощность, Вт;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos ? – коэффициент мощности.

Коэффициент мощности cos ? – относительная скалярная величина, которая характеризует насколько эффективно расходуется электрическая энергия. У бытовых приборов данный коэффициент практически всегда находится в диапазоне от 0.90 до 1.00.

В цепи постоянного тока мощность определяется довольно просто – это произведение тока и напряжения. Они не изменяются во времени и есть постоянной величиной, соответственно и мощность является постоянной, то есть система уравновешена.

С сетями переменного напряжения все гораздо сложнее. Они бывают однофазные, двухфазные, трехфазные и т.д. Наибольшее распространение получили однофазные и трехфазные сети в силу своего удобства и наименьших затрат.

Рассмотрим трехфазную систему питания

Такие цепи, могут соединяться в звезду или в треугольник. Для удобства чтение схем и во избежание ошибок фазы принято обозначать U, V, W или А, В, С.

Схема соединения звезда:

Схема соединения фаз в звезду

Для соединения звездой суммарное напряжение в точке N равно нулю. Мощность трехфазного тока в данном случае тоже будет постоянной величиной, в отличии от однофазного. Это значит что трехфазная система уравновешена, в отличии от однофазной, то есть мощность трехфазной сети постоянна. Мгновенно значение полной трехфазной мощности будет равно:

В данном типе соединения присутствуют два вида напряжения – фазное и линейное. Фазное – это напряжение между фазой и нулевой точкой N:

Фазное напряжение в цепи

Линейное – между фазами:

Поэтому полная мощность трехфазной сети для такого типа соединения будет равна:

Но поскольку линейное и фазное напряжение отличаются между собой в , но считается сумма фазовых мощностей. При расчете трехфазных цепей такого типа принято пользоваться формулой:

Соответственно для активной:

Схема соединения в треугольник

Как видим при таком виде соединения, фазное и линейное напряжение равны, из чего следует, что мощность для соединения в треугольник равна:

Измерение мощности

Измерение активной мощности в сетях производится с помощью ваттметра

Цифровой ваттметр Аналоговый ваттметр

В зависимости от схемы соединения нагрузки и его характера (симметричная или несимметричная) схемы подключения приборов могут разниться. Рассмотрим случай с симметричной нагрузкой:

Здесь измерение проводится всего лишь в одной фазе и далее согласно формуле умножается на три. Этот способ позволяет сэкономить на приборах и уменьшить габариты измерительной установки. Применяется, когда не нужна большая точность измерения в каждой фазе.

Измерение при несимметричной нагрузке:

Схема включения ваттметра при несимметричной нагрузке

Этот способ более точный, так как позволяет измерить мощность каждой фазы, но это требует трех приборов, больших габаритных размеров установки и обработки показаний с трех приборов.

Измерении в цепи без нулевого проводника:

Схема включения ваттметра при отсутствии нулевого провода

Эта схема требует двух приборов. Этот способ основывается на первом законе Кирхгофа

IA+I B+IC=0. Из этого следует, что сумма показаний двух ваттметров равна трехфазной мощности этой цепи. Ниже показана векторная диаграмма для данного случая:

Векторная диаграмма включения двух ваттметров при различных видах нагрузки

Мы можем сделать вывод, что показания приборов зависят не только от величины, но еще и от характера нагрузки.

Из диаграммы следует, что мы можем определить показание приборов аналитически:

Проанализировав полученный результат можем сделать вывод что, при преобладании активной нагрузки (?=0) результаты измерения ваттметров тождественны (W1=W2). При активной и индуктивной (R-L) показания W1 меньше чем W2 (W1 60 0 показания W1 вообще отрицательные (W1 W2, а при ? 0 показания W2

Расчёт мощности трёхфазной сети | Сайт электрика

Привет читатели моего сайта. Сегодня мы с вами на реальном примере рассмотрим формулу, с помощью которой, можно рассчитать мощность (нагрузку) трёхфазной сети.

Но для начала нужно определиться какая у вас мощность, так как она бывает двух видов:

1. равномерная (симметричная)

2. неравномерная (несимметричной)

Пример равномерной нагрузки – это когда у вас работает электродвигатель. То есть ток по всем фазам протекает одинаковый. Не большими разбежностями, тут можно пренебречь. А в нулевом проводе ток равняется нулю. В таком случае формула имеет вот такой вид:

P = v3*Uф*I* cos (?) = 1,73Uл*I* cos (?)

Где Uф – это фазное напряжение

Uл – это линейное напряжение

I – ток, который протекает в проводнике. Его можно измерять токоизмерительными клещами.

cos (?) – коэффициент мощности. Обычно берут 0.76

Неравномерная нагрузка – это когда ток во всех фазах разный. К примеру, от трёхфазной сети питается освещение какого-то помещения. Один ряд светильников включили, и там горят все светильники. Во втором ряду не горит 7 светильник, а в третьем 12. В таком случае нужно взять клещи, и измерить ток во всех фазах. А формула будет выглядеть вот так:

Pобщ = Ua*Ia* cos (?1) + Ub*Ib* cos (?2) + Uc*Ic* cos (?3)

Давайте решим задачу.

Нужно найти мощность, которую потребляет загородный домик с трёхфазной сетью. Ток по фазам – A — 5.4, B – 7, C – 3 Ампер. cos (?3) – для упрощения возьмём 1.

Если cos (?3) у нас равняется 1, то это число можно сократить, а все токовые показатели сложить и умножить на напряжение 220 В.

Робщ = (5,4 + 7+3)*220 = 15,4*220 = 3388 Вт ? 3,4 кВт

На этом у меня все. В статье я привел реальный пример, как можно рассчитать мощность трёхфазной сети. Конечно, если углубится в эту тему, то можно ещё найти активную и реактивную мощность. Но об этом я напишу в следующих статьях, так что подписывайтесь на обновления. Если статья была вам полезна, то поделитесь нею со своими друзьями в социальных сетях. Пока.

Кстати, советую вам посмотреть статью Расчет тока электродвигателя.

С уважением Александр!

Читайте также статьи:

Расчет мощности трехфазной сети — КиберПедия

Расчет мощности трехфазной сети

Трёхфазнаянагрузка называется равномерной, когда по всем фазным проводникам протекает одинаковый ток. При этом сила тока в нулевом проводнике равна нулю. Примером равномерной (симметричной) нагрузки являютсятрёхфазныеэлектродвигатели. В этом случае мощность потребителя рассчитывается по формуле

P = 3*Uф*I* cos(?) = 1,73Uл*I* cos(?) (1)

Когда по фазным проводникам протекают различные по величине токи, нагрузка называется неравномерной или несимметричной. В случае несимметричной нагрузки по нулевому (нейтральному) проводу протекает ток. В данном случае мощность определяется по формуле:

Pобщ = Ua*Ia* cos(?1) + Ub*Ib* cos(?2) + Uc*Ic* cos(?3) (2)

Пример 1

Какой ток протекает в цепи трехфазного электродвигателя мощностью 1,45 КВт и cos(?)=0,76? Напряжение сети Uф/Uлин = 220/380 В

Решение: 3-х фазные электродвигатели являются симметричной нагрузкой. Используя формулу (1), после преобразований, получаем:

I = P/3*Uф* cos(?) = 1450/3*220*0,76 = 2,9 А

Пример 2

Какую мощность потребляет коттедж с трёхфазным вводом, если по фазным проводам протекают токи величиной 4,2; 5,1 и 12 А? Принять cos(?) = 1

Решение: Используя формулу (2), имеем:

Робщ = (4,2 + 5,1+12)*220 = 21,3*220 = 4,7 КВт

Расчет величины переменного электрического тока при однофазной нагрузке.

Предположим, что нас обычный дом или квартира в которой имеется электрическая сеть переменного тока напряжением 220 вольт.

В доме имеются электроприборы:

Для освещения дома установлены 5 электролампочек по 100 ватт каждая и 8 электролампочек мощностью 60 ватт каждая. 2. Электродуховка, мощностью 2 киловатта или 2000 ватт. 3. Телевизор, мощностью 0,1 киловатт или 100 ватт. 4. Холодильник, мощностью 0,3 киловатта или 300 ватт. 5. Стиральная машина мощностью 0,6 киловатт или 600 ватт. Нас интересует, какой ток будет протекать на вводе в наш дом или квартиру при одновременной работе всех вышеперечисленных электроприборов и не повредится ли наш электросчетчик, рассчитанный на ток 20 ампер?

Расчет: 1, Определяем суммарную мощность всех приборов: 500 + 480 + 2000 + 100 + 300 + 600 = 3980 ватт 2. Ток, протекающий в проводе при такой мощности определяется по формуле:

где: I — ток в амперах (А) Р — мощность в ваттах (Вт) U — напряжение в вольтах (В) cos ? — коэффициент мощности (для бытовых электросетей можно принять 0,95) Подставим числа в формулу: І = 3980 /220 * 0,95 = 19,04 А Вывод: Счетчик выдержит, так как ток в цепи меньше 20 А. Для удобства пользователей ниже приведена форма расчета тока.

Вам следует ввести в соответствующие поля формы суммарное значения мощности в ваттах всех ваших электроприборов, напряжение в вольтах, обычно 220 и коэффициента мощности, 0,95 для бытовой нагрузки, нажать кнопку «Вычислить» и в поле «Ток» появится величина тока в амперах. Если у вас нагрузка в киловаттах, следует перевести ее в ватты, для чего умножить на 1000. Для очистки введенного значения мощности следует нажать кнопку «Очистить». Очистку введенных по умолчанию значений напряжения и косинуса следует произвести клавишей delete переместив курсор в соответствующую ячейку (при необходимости).

Форма расчета для определения тока при однофазной нагрузке.

Расчет величины переменного электрического тока при трехфазной нагрузке.

Теперь предположим, что нас обычный дом или квартира в которой имеется электрическая сеть переменного тока напряжением 380/220 вольт. Почему указываются два напряжения — 380 В и 220 В? Дело в том, что при подключении к трехфазной сети в ваш дом заходят 4 провода — 3 фазы и нейтраль (по старому — ноль).

Так вот, напряжение между фазными проводами или иначе — линейное напряжение будет 380 В, а между любой из фаз и нейтралью или иначе фазное напряжение будет 220 В. Каждая из трех фаз имеет свое обозначение латинскими литерами А, В, С. Нейтраль обозначается латинской N.

Таким образом, между фазами А и В, А и С, В и С — будет напряжение 380 В. Между А и N, В и N, С и N будет 220 В и к этим проводам можно подключать электроприборы напряжением 220 В, а значит в доме может быть как трехфазная, так и однофазная нагрузка.

Вообще-то трехфазные нагрузки принято считать в киловаттах, поэтому, если они записаны в ваттах, их следует разделить на 1000. Нас интересует, какой ток будет протекать на вводе в наш дом или квартиру при одновременной работе всех вышеперечисленных электроприборов и не повредится ли наш электросчетчик, рассчитанный на ток 20 ампер?

Расчет: Определяем суммарную мощность всех приборов: 3 кВт + 15 кВт = 18 кВт 2. Ток, протекающий в фазном проводе при такой мощности определяется по формуле:

где: I — ток в амперах (А) Р — мощность в киловаттах (кВт) U — линейное напряжение, В cos ? — коэффициент мощности (для бытовых электросетей можно принять 0,95) Подставим числа в формулу: = 28,79 А

Определить

Линейные и фазные токи

Пример расчета:.

К источнику трехфазной сети с линейным напряжением Uл=380В и частотой f=50 Гц подключена равномерная нагрузка, соединенная по схеме «звезда», с полным сопротивлением в фазе Z=90 Ом и индуктивностью L= 180 мГн, Определить актив­ную, реактивную и полную мощности, коэффициент мощности,

Решение.

1 Фазное напряжение:

U ф = U л / v 3=380 / v 3 = 220 В.

Фазный ток

Линейный ток

4 Реактивное сопротивление в фазе:

5 Активное сопротивление в фазе:

6 Коэффициент мощности катушки:

sin?=XL/z= 56,5/90=0,628

7 Мощности, потребляемые нагрузкой:

а) активная:

Или

б) реактивная:


в) Полная:

Расчет мощности трехфазной сети

Трёхфазнаянагрузка называется равномерной, когда по всем фазным проводникам протекает одинаковый ток. При этом сила тока в нулевом проводнике равна нулю. Примером равномерной (симметричной) нагрузки являютсятрёхфазныеэлектродвигатели. В этом случае мощность потребителя рассчитывается по формуле

P = 3*Uф*I* cos(?) = 1,73Uл*I* cos(?) (1)

Когда по фазным проводникам протекают различные по величине токи, нагрузка называется неравномерной или несимметричной. В случае несимметричной нагрузки по нулевому (нейтральному) проводу протекает ток. В данном случае мощность определяется по формуле:

Pобщ = Ua*Ia* cos(?1) + Ub*Ib* cos(?2) + Uc*Ic* cos(?3) (2)

Пример 1

Какой ток протекает в цепи трехфазного электродвигателя мощностью 1,45 КВт и cos(?)=0,76? Напряжение сети Uф/Uлин = 220/380 В

Решение: 3-х фазные электродвигатели являются симметричной нагрузкой. Используя формулу (1), после преобразований, получаем:

I = P/3*Uф* cos(?) = 1450/3*220*0,76 = 2,9 А

Пример 2

Какую мощность потребляет коттедж с трёхфазным вводом, если по фазным проводам протекают токи величиной 4,2; 5,1 и 12 А? Принять cos(?) = 1

Решение: Используя формулу (2), имеем:

Робщ = (4,2 + 5,1+12)*220 = 21,3*220 = 4,7 КВт

Как высчитать ток в трехфазной цепи. Определения мощности сети по напряжению и току, расчет по формулам

§ 64. МОЩНОСТЬ ТРЕХФАЗНОГО ТОКА

Мощность, потребляемая нагрузкой от сети трехфазного тока, равна сумме мощностей, потребляемых отдельными фазами, т. е.

При равномерной нагрузке мощность, потребляемая каждой фазой,

где Uф — фазное напряжение,

cos j — коэффициент мощности нагрузки.

Мощность, потребляемая всеми тремя фазами,

При соединении приемников энергии звездой соотношение меж­ду линейными и фазными значениями напряжений и токов:

Следовательно, мощность, потребляемая нагрузкой от трехфазной

При соединении приемников энергии треугольником соотношение между линейными и фазными значениями напряжений и токов:

Следовательно, мощность, потребляемая нагрузкой,

Таким образом, при равномерной нагрузке мощность, потребляе­мая от трехфазной сети, независимо от схемы включения нагрузки, выражается следующей формулой:

Пример. Линейное напряжение трехфазной осветительной установки равно 220 в, а линейный ток 9,9 а. Определить, сколько ламп включено параллельно в каждую фазу нагрузки при соединении этих фаз треугольником и какова мощность всей установки, если каждая лампа потребляет ток 0,52 a .

Решение. Фазное напряжение равно линейному, т. е

Число ламп, включенных параллельно в каждой фазе,

т. е. всего включено ламп

Мощность всей установки, имея в виду, что при осветительной нагрузке cos j=1, находим по следующей формуле:

При неравномерной нагрузке мощности в фазах различный (P A P B P C) и суммарная мощность, потребляемая нагрузкой, равна:

Для измерения мощности применяют специальные измерительные приборы, называемые ваттметрами. При симметричной нагрузке мощность, потребляемая от трехфазной системы, может быть определена одним однофазным ваттметром. В четырехпроводной системе (с нулевым проводом) токовая обмотка ваттметра включается последовательно в один из линейных проводов, а обмотка напряжения — между тем же линейным и нулевым проводами. При таком включении показание ваттметра определит мощность в одной фазе Рф, а так как при равномерной нагрузке мощности всех фаз одинаковы, то суммарная мощность трехфазной системы Р = 3 Рф.

В трехпроводной системе обмотка напряжения ваттметра включена на линейное напряжение сети, а по токовой его обмотке протекает линейный ток. Поэтому мощность трехфазной системы в раз больше показания ваттметра P ? , т. е. Р= Р?.

При несимметричной нагрузке одного ваттметра для определений мощности трехфазной системы недостаточно.

В четырехпроводной системе при несимметричной нагрузке необходимо включение трех ваттметров, обмотки напряжений которых включаются между нулевым и соответствующим линейным проводом. Каждый ваттметр измеряет мощность одной фазы и с

Как рассчитать мощность трехфазного тока

Мощность постоянного тока в электрической цепи определяется простым способом, путем умножения силы тока и напряжения. Эти величины являются постоянными и не подвержены изменениям во времени, поэтому и значение мощности будет постоянным, поскольку вся система находится в уравновешенном состоянии.

Переменный ток по всем параметрам отличается от постоянного, особенно наличием количества фаз. Очень часто возникают ситуации, когда нужно выполнить расчет мощности трехфазного тока, для того чтобы правильно определить характеристики подключаемой нагрузки. Проведение таких расчетов требует специальных знаний о работе трехфазной системы питания. Трехфазные сети, наряду с однофазными, получили широкое распространение в связи с низкими материальными затратами и удобством эксплуатации.

Характеристики трехфазной системы

Трехфазные цепи как правило соединяются двумя основными способами – звездой (рис. 1) и треугольником, который будет рассмотрен ниже. На всех схемах для более удобного пользования фазы обозначаются символами А, В, С или U, V, W.

При использовании схемы «звезда» (рис. 1), значение суммарного напряжения в точке пересечения фаз N является равным нулю. В этом случае трехфазный ток, по сравнению с однофазным, будет обладать постоянной мощностью. Данное положение указывает на уравновешенность трехфазной системы, а мгновенная полная мощность будет выражена в виде формулы:

Соединение звездой характеризуется двумя видами напряжения – фазным (рис. 2) и линейным (рис. 3). В первом случае напряжение определяется между одной из фаз и нулевой точной пересечения N. Линейное напряжение соответствует напряжению, существующему между самими фазами.

Таким образом, значение полной мощности для соединения звездой отображается следующей формулой:

Однако следует учитывать разницу между линейным и фазным напряжением, составляющую v3. Поэтому считать необходимо сумму мощностей всех фаз. Для расчетов активной мощности применяется формула Р = 3 х Uф х Iф х cos?, а для реактивной – Р = v3 х Uл х Iф х cos?.

Другим распространенным способом фазного соединения считается «треугольник».

Данный вид соединения предполагает одинаковое значение фазного (Uф) и линейного (Uл) напряжения. Соотношение между фазными и линейными токами определяется в виде формулы I = v3 х Iф, в соответствии с которой значение фазного тока составит Iф = I х v3.

Таким образом, мощности линейных величин при данном способе соединения будут выражаться с помощью следующих формул:

  • Полная мощность: S = 3 х Sф = v3 х U х I;
  • Активная мощность: Р = v3 х U х I х cos?;
  • Реактивная мощность: Q = v3 х U х I х sin?.

На первый взгляд формулы мощности для каждого вида соединений кажутся одинаковыми. При отсутствии достаточных знаний и опыта, это может привести к неправильным выводам. Чтобы избежать подобных ошибок, следует рассмотреть пример типового расчета.

  • Соединение электродвигателя выполнено в виде треугольника, напряжение в сети составляет 380 В, сила тока – 10 А. Поэтому значение полной мощности будет следующим: S = 1,73 х 380 х 10= 6574 В х А.
  • Далее этот же электродвигатель был соединен звездой. В этом случае на каждую обмотку фазы стало поступать напряжение в 1,73 раза ниже, чем при подключении треугольником, хотя сетевое напряжение осталось прежним. Соответственно сила тока в обмотках также уменьшилась в 1,73 раза. Существует еще один важный момент: если при соединении треугольником линейный ток в 1,73 раза превышал фазный, то в дальнейшем, когда схема изменилась на звезду, их значение стало равным. В результате, уменьшение линейного тока составило: 1,73 х 1,73 = 3 раза.
  • Таким образом, в одной и той же формуле используются разные значения: S = 1,73 х 380 х 10/3= 2191 В х А, следовательно при переподключении электродвигателя со схемы треугольника на звезду, происходит снижение мощности в 3 раза.

Измерение мощности ваттметром

В электрических сетях измерение мощности осуществляется специальным прибором – ваттметром. Схемы подключения могут быть разными, в зависимости от подключения нагрузки и ее характеристик. В случае симметричной нагрузки (рис. 1), для проведения измерений используется только одна фаза, а полученные результаты, затем, умножаются на три. Данный способ является наиболее экономичным, позволяя существенно снизить размеры измерительного прибора. Он используется в тех случаях, когда нет необходимости в получении точных данный по каждой фазе.

В случае несимметричной нагрузки (рис. 2) измерения будут более точными. Однако для замеров мощности каждой фазы потребуется три прибора с большими габаритными размерами. Обрабатывать показания также придется со всех трех приборов.

Расчет мощности трехфазного тока и ее измерение можно выполнить в электрической цепи при отсутствии нулевого проводника (рис. 3). В такой схеме применяется два прибора, а для расчетов используется первый закон Кирхгофа: IA+IB+IC=0. Таким образом, показания двух ваттметров в сумме дают значение трехфазной мощности для данной цепи.

Как найти мощность трехфазной сети по току и напряжению, расчет по формулам

Трехфазные и однофазные сети распространены примерно одинаково в частных и многоквартирных домах. Но стоит заметить, что промышленная сеть является трехфазной по умолчанию и в большинстве случаев к улице, где расположены частные дома или к многоквартирному дому подходит как раз-таки трехфазная сеть. А уже потом ее разветвляют на три однофазные, и заводят к конечному потребителю тока.

Расчет сделан не просто так, а с целью обеспечить максимально эффективную передачу электричества от электростанции к вам, а также преследуется цель наибольшего снижения потерь электричества в транспортировочном процессе, ведь на ток оказывает сопротивление проводник, по которому этот самый ток течет.

Если вам интересно, какая сеть у вас в доме или квартире, то определить это достаточно просто. Если вы откроете электрический щиток и посмотрите, сколько проводов используется для вашей квартиры, то если вы увидите 2 или 3 провода, это однофазная сеть, 1 и 2 провод — это фаза и ноль, 3 провод, если он присутствует — это заземление. В трехфазной же сети проводов будет или 4, или 5. Три фазы А, В,С, ноль и если присутствует — заземляющий проводник.

Так же определяется и количество фаз по так называемому пакетнику, вводному автоматическому выключателю. Для однофазной сети выделяется 2 или 1 сдвоенный кабель, а в трехфазной будет 1 строенный кабель и одинарный. Но не следует забывать о напряжении, с которым нужно быть очень осторожным.

Для того чтобы произвести расчет по току, и расчет по напряжению чтобы узнать мощность несложно, как правило, в трехфазных сетях нуждаются большие энергопотребители. С помощью формулы, приведенной в статье, произвести расчет мощности, используя значения тока и напряжения, вы сможете с легкостью.

Узнаем потребляемую мощность электричества

Итак, перейдем к существу, нам нужно узнать мощность электричества по току и напряжению. Прежде всего нужно знать, сколько потреблять энергии вы будете. Это легко узнать, сопоставив все энергопотребители в вашем доме. Давайте выберем самую распространенную технику, без которой не обойтись современному человеку. Кстати, узнать сколько потребляет тот или иной прибор, можно в паспортных данных вашего электроприбора, или на бирке, которая может быть на корпусе. Начнем с самого высокого потребления напряжения:

  • Стиральная машина — 2700 Ватт
  • Водонагреватель (бойлер) — 2000 Ватт
  • Утюг — 1875 Ватт
  • Кофеварка — 1200 Ватт
  • Пылесос — 1000 Ватт
  • Микроволновая печь — 800 Ватт
  • Компьютер — 500 Ватт
  • Освещение — 500 Ватт
  • Холодильник — 300 Ватт
  • Телевизор — 100 Ватт

По формуле нам нужно все добавить и поделить на 1000, для перевода из ватт в киловатты.

Суммарно у нас получилось 10975 Ватт, переведем в киловатты, поделив на 1000.

Итого у нас потребление 10.9 кВт.

Для обычного обывателя вполне достаточно и одной фазы. Особенно если вы не собираетесь включать все одновременно, что, конечно же, маловероятно.

Но нужно помнить что потребление тока может быть значительно выше, особенно если вы живете в частном доме и/или у вас есть гараж, тогда потребление одного прибора может составлять 4-5 кВт. Тогда вам будет предпочтительнее трехфазная сеть, как более мощная и позволяющая подключать значительно более мощных потребителей тока.

Трехфазная сеть

Давайте более подробно рассмотрим именно трехфазную сеть, как более предпочтительную для нас. Для начала приведем сравнительную характеристику однофазной и трехфазной сети. Выделим некоторые плюсы и минусы.

Когда используется трехфазная сеть есть вероятность что нагрузка распределиться неравномерно на каждую фазу. Если, к примеру, от первой фазы будет запитан электрический котел и мощный нагреватель, а от второй — телевизор и холодильник, то будет иметь место такое явления, как «перекос фаз» — несимметрия напряжений и токов, что может быть следствием выхода из строя некоторых потребителей тока. Для избежания подобной ситуации следует тщательнее планировать распределение нагрузки еще на начальном этапе проектирования сети.

Также трехфазной сети потребуется большее число проводов, кабелей и автоматических выключателей, пропускающих ток, так как мощность будет значительно выше, соответственно монтаж такой сети будет дороже.

Однофазная сеть по возможной потенциальной мощности уступает трехфазной. Так что если вы предполагаете использовать много мощных потребителей тока, то второй вариант будет соответственно лучше. Для примера, если в дом заходит двужильный (трехжильный если он с заземлением), с линии электропередач, кабель сечением 16 мм2, тогда общая мощность всех электропотребителей в доме не должна превышать 14кВт, как в примере, наведенном выше.

Но если же вы будете использовать то же сечение провода для трехфазной сети, но соответственно кабель будет 4-5 жильным, то уже тогда максимальная суммарная мощность будет равняться уже 42 кВт.

Рассчитываем мощность трехфазной сети

Для расчета примем некий производственный цех, в котором установлены тридцать электродвигателей. В цех заходит четырехпроводная линия, помним что это 3 фазы: A, B, C, и нейтраль(ноль). Номинальное напряжение 380/220 вольт. Суммарная мощность всех двигателей составляет Ру1 — 48кВт, еще у нас есть осветительные лампы в мастерской, суммарная мощность которых составляет Ру2- 2кВт.

  • Ру — установленная суммарная мощность группы потребителей, по величине равная сумме их заявленных мощностей, измеряется в кВт.
  • Кс — коэффициент спроса при режиме наивысшей нагрузки. Коэффициент спроса учитывает самое большое возможное число включений приемников группы. Для электродвигателей коэффициент спроса должен брать в расчет величину их загрузки.

Коэффициент спроса для осветительной (освещения) нагрузки, то есть освещения, Кс2-0,9, и для силовой нагрузки, то есть электродвигателей Кс1=0,35. Усредненный коэффициент мощности для всех потребителей cos( ? ) = 0,75. Необходимо найти расчетный ток линии.

Расчет

Подсчитаем расчетную силовую нагрузку P1 = 0,35*48 = 16,8 кВт

и расчетную осветительную нагрузку Р2 = 0,9 *2 = 1.8 кВт.

Полная расчетная нагрузка P = 16,8+1,8=18,6 кВт;

Расчетный ток считаем с помощью формулы:

Р — расчетная мощность потребителя (электродвигатели и освещение), кВт;

Uн — напряжение номинальное на клеммах приемника, которое равняется междуфазному (линейному, когда подключается фаза и фаза, тоесть 380 В) то есть напряжению в сети, от которой он запитан, В;

cos ( ? ) — коэффициент мощности приемника.

Таким образом, мы произвели расчет мощности по току, который позволит вам разобраться с трехфазными сетями. Но перейдя непосредственно к монтажу системы не забывайте технику безопасности, ведь ток и напряжение опасное для вашей жизни явление.

Расчет мощности трехфазной сети: формулы для расчета

  1. Специфика и особенности трехфазных сетей
  2. Расчет мощности потребителей
  3. Как рассчитать трехфазную сеть
  4. Использование калькулятора для расчета мощности

Электрическая энергия на все объекты изначально поступает через трехфазную сеть. В частные дома она может заводиться напрямую, а в многоквартирном доме доходит лишь до вводного распределительного устройства. Далее по квартирам расходятся уже однофазные линии. В любом случае потребуется выполнить расчет мощности трехфазной сети, чтобы заранее определить ее способность выдерживать запланированные нагрузки по току.

Для того чтобы сделать правильные вычисления, нужно знать особенности таких сетей, принципы их работы и технические характеристики. Все необходимые расчеты выполняются вручную при помощи формул или с использованием онлайн-калькулятора.

Специфика и особенности трехфазных сетей

Трехфазные электрические сети наиболее эффективно передают ток через промежуточные звенья, вплоть до потребителя. В процессе доставки потери энергии минимальны.

Наличие трехфазной сети в квартире или частном доме очень легко определить. Для этого нужно просто заглянуть в щиток и посчитать количество проводов. Если в наличии 2 или 3 проводника, значит сеть однофазная. В ней два провода являются фазой и нулем. При наличии заземления может быть третий провод. В трехфазных сетях проводов больше на два из-за двух дополнительных фаз. При отсутствии заземления – их всего четыре, а при наличии заземляющего контура – пять.

Эту же задачу можно решить и с помощью вводного автоматического выключателя. К нему также подводится определенное количество проводов, подключаемых в соответствующие клеммы.

В процессе эксплуатации трехфазной сети велика вероятность неравномерного распределения нагрузки по отдельным фазам. Если к одной из них будет подключено только мощное оборудование, а к другим – обычные бытовые приборы, в этом случае может возникнуть ситуация, называемая перекосом фаз. В результате асимметрии тока и напряжения, отдельные потребители могут выйти из строя. Во избежание негативных последствий, нагрузка должна быть равномерно спланирована еще на стадии проектирования и выполнен расчет мощности трехфазной сети.

Трехфазная сеть, по сравнению с однофазной, отличается большим количеством кабельно-проводниковой продукции, автоматов и других устройств. К ней подключается специфическое трёхфазное оборудование Суммарная мощность будет выше ровно в три раза. Значение мощности рассчитывается по току и напряжению с использованием формул.

Расчет мощности потребителей

В первую очередь нужно заранее установить объемы потребляемой электроэнергии. Для этого суммируется мощность всех потребителей, находящихся в доме. Сюда входит мощное оборудование, обычная бытовая техника и осветительные приборы. У некоторых хозяев этот список может быть дополнен теплыми электрическими полами.

Все необходимы сведения можно посмотреть в техническом паспорте, который прилагается к каждому устройству. На некоторые приборы наносится соответствующая маркировка. Вначале идут самые мощные агрегаты и далее – все остальное оборудование, по мере уменьшения мощности.

Для вычислений берется стиральная машина-автомат, мощностью 2600 Вт, электрический водонагреватель – 1900 Вт, утюг – 1500 Вт, пылесос – 1000 Вт, микроволновка – 800 Вт, компьютер и оргтехника – 600 Вт, осветительные приборы (с лампами эконом) – 400 Вт, холодильник – 300 Вт, телевизор – 100 Вт. Итоговый результат получился 9200 Вт и его необходимо перевести в киловатты. Для этого 9200 Вт делится на 1000, получается 9,2 кВт, что и будет расчетным потреблением электроэнергии.

С данной мощностью может справиться и одна фаза, однако в частных домах устанавливается более мощное оборудование, для работы которого лучше пользоваться сетями 380в. В этом случае гарантируется бесперебойное функционирование отопительных и водонагревательных котлов, насосов, электродвигателей и других агрегатов.

Как рассчитать трехфазную сеть

В качестве примера можно взять некие производственные площади с установленным оборудованием и по этим исходным данным делать расчет мощности трехфазного тока.

В каждом станке используется электродвигатель. Их общая мощность Ру1 составляет 50 кВт, с учетом активной мощности. Кроме того, в помещении установлены осветительные приборы общей мощностью (Ру2) – 3 кВт. Символ Ру обозначает величину установленной суммарной мощности для конкретных групп потребителей. Работа оборудования осуществляется от трехфазной сети с 4 проводами и номинальным напряжением 380 В.

Кроме того, при расчетах учитывается коэффициент спроса Кс, действующий в режиме максимальной нагрузки. Он учитывает наивысшее количество включений потребителей данной группы. Для электродвигателей Кс1 берется с учетом величины их загруженности и составляет 0,35. Для приборов освещения Кс2 составляет 0,9. Все потребители выравниваются усредненным коэффициентом мощности cos ? = 0,75.

Расчеты начинаются с определения силовой нагрузки Р1 = 0,35 х 50 = 17,5 кВт. Далее рассчитывается осветительная нагрузка Р2 = 0,9 х 3 = 2,7 кВт. Таким образом, величина полной расчетной нагрузки составит Р = Р1 + Р2 = 17,5 + 2,7 = 20,2 кВт.

Для определения и расчета тока используется формула I = (1000 x P)/(1,73 x Uн x cos ?), в которой Р является расчетной мощностью потребителей, Uн – номинальным напряжением 380 вольт, cos ? – коэффициентом мощности.

Подставив нужные значения, находим значение силы и мощности по току: I = (1000 x 20,2)/(1,73 x 380 x 0,75) = 41 А. Полученный результат дает возможность узнать, сможет ли сеть обеспечить нормальную работу потребителей.

Использование калькулятора для расчета мощности

Онлайн-калькулятор существенно ускоряет проведение расчетов мощности в трехфазной сети. Для этого должны быть заранее известны мощность и характер нагрузки – активной и реактивной, сетевое напряжение, а также тип сети – одно- или трехфазный. Все параметры рассчитываются по формулам и методикам, приведенным выше. Достаточно всего лишь вставить в окна необходимые данные и нажать кнопку «Рассчитать ток». В окне с обозначением тока в А появится искомый результат, показывающий величину тока по мощности.

  • Формула расчета мощности электрического тока
  • Подбираем номинал автоматического выключателя
  • Онлайн расчет мощности тока для однофазной и трехфазной сети

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока. Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети. Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя. Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

а для трехфазной сети: I = P/(1,73*U*cos ?),

где U для трехфазной сети принимается 380 В, cos ? – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos ? можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление. В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos ?, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое. Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos ?).

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) — 60 А;
  • электроплита (10 кВт) — 50 А;
  • варочная панель (8 кВт) — 40 А;
  • электроводонагреватель проточный (6 кВт) — 30 А;
  • посудомоечная машина (2,5 кВт) — 12,5 А;
  • стиральная машина (2,5 кВт) — 12,5 А;
  • джакузи (2,5 кВт) — 12,5 А;
  • кондиционер (2,4 кВт) — 12 А;
  • СВЧ-печь (2,2 кВт) — 11 А;
  • электроводонагреватель накопительный (2 кВт) — 10 А;
  • электрочайник (1,8 кВт) — 9 А;
  • утюг (1,6 кВт) — 8 А;
  • солярий (1,5 кВт) — 7,5 А;
  • пылесос (1,4 кВт) — 7 А;
  • мясорубка (1,1 кВт) — 5,5 А;
  • тостер (1 кВт) — 5 А;
  • кофеварка (1 кВт) — 5 А;
  • фен (1 кВт) — 5 А;
  • настольный компьютер (0,5 кВт) — 2,5 А;
  • холодильник (0,4 кВт) — 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом. Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Формула расчета мощности электрического тока

При проектировании любых электрических цепей выполняется расчет мощности. На его основе производится выбор основных элементов и вычисляется допустимая нагрузка. Если расчет для цепи постоянного тока не представляет сложности (в соответствии с законом Ома, необходимо умножить силу тока на напряжение – Р=U*I), то с вычислением мощности переменного тока – не все так просто. Для объяснения потребуется обратиться к основам электротехники, не вдаваясь в подробности, приведем краткое изложение основных тезисов.

Полная мощность и ее составляющие

В цепях переменного тока расчет мощности ведется с учетом законов синусоидальных изменений напряжения и тока. В связи с этим введено понятие полной мощности (S), которая включает в себя две составляющие: реактивную (Q) и активную (P). Графическое описание этих величин можно сделать через треугольник мощностей (см. рис.1).

Под активной составляющей (Р) подразумевается мощность полезной нагрузки (безвозвратное преобразование электроэнергии в тепло, свет и т.д.). Измеряется данная величина в ваттах (Вт), на бытовом уровне принято вести расчет в киловаттах (кВт), в производственной сфере – мегаваттах (мВт).

Реактивная составляющая (Q) описывает емкостную и индуктивную электронагрузку в цепи переменного тока, единица измерения этой величины Вар.

Рис. 1. Треугольник мощностей (А) и напряжений (В)

В соответствии с графическим представлением, соотношения в треугольнике мощностей можно описать с применением элементарных тригонометрических тождеств, что дает возможность использовать следующие формулы:

  • S = √ P 2 +Q 2 , – для полной мощности;
  • и Q = U*I*cos⁡ φ , и P = U*I*sin φ – для реактивной и активной составляющих.

Эти расчеты применимы для однофазной сети (например, бытовой 220 В), для вычисления мощности трехфазной сети (380 В) в формулы необходимо добавить множитель – √ 3 (при симметричной нагрузке) или суммировать мощности всех фаз (если нагрузка несимметрична).

Для лучшего понимания процесса воздействия составляющих полной мощности давайте рассмотрим «чистое» проявление нагрузки в активном, индуктивном и емкостном виде.

Активная нагрузка

Возьмем гипотетическую схему, в которой используется «чистое» активное сопротивление и соответствующий источник переменного напряжения. Графическое описание работы такой цепи продемонстрировано на рисунке 2, где отображаются основные параметры для определенного временного диапазона (t).

Емкостная нагрузка

Как видно на рисунке 3, график характеристик емкостной нагрузки несколько отличается от активной.

Индуктивная нагрузка

Представленный ниже график демонстрирует характер «чистой» индуктивной нагрузки. Как видим, изменилось только направление мощности, что касается наращения, оно равно нулю.

Негативное воздействие реактивной нагрузки

В приведенных выше примерах рассматривались варианты, где присутствует «чистая» реактивная нагрузка. Фактор воздействия активного сопротивления в расчет не принимался. В таких условиях реактивное воздействие равно нулю, а значит, можно не принимать его во внимание. Как вы понимаете, в реальных условиях такое невозможно. Даже, если гипотетически такая нагрузка бы существовала, нельзя исключать сопротивление медных или алюминиевых жил кабеля, необходимого для ее подключения к источнику питания.

Реактивная составляющая может проявляться в виде нагрева активных компонентов цепи, например, двигателя, трансформатора, соединительных проводов, питающего кабеля и т.д. На это тратится определенное количество энергии, что приводит к снижению основных характеристик.

Реактивная мощность воздействует на цепь следующим образом:

  • не производит ни какой полезной работы;
  • вызывает серьезные потери и нештатные нагрузки на электроприборы;
  • может спровоцировать возникновение серьезной аварии.

Именно по этому, производя соответствующие вычисления для электроцепи, нельзя исключать фактор влияния индуктивной и емкостной нагрузки и, если необходимо, предусматривать использование технических систем для ее компенсации.

Расчет потребляемой мощности

В быту часто приходится сталкиваться с вычислением потребляемой мощности, например, для проверки допустимой нагрузки на проводку перед подключением ресурсоемкого электропотребителя (кондиционера, бойлера, электрической плиты и т.д.). Также в таком расчете есть необходимость при выборе защитных автоматов для распределительного щита, через который выполняется подключение квартиры к электроснабжению.

В таких случаях расчет мощности по току и напряжению делать не обязательно, достаточно просуммировать потребляемую энергию всех приборов, которые могут быть включены одновременно. Не связываясь с расчетами, узнать эту величину для каждого устройства можно тремя способами:

  1. обратившись к технической документации устройства;
  2. посмотрев это значение на наклейке задней панели; Потребляемая мощность прибора часто указывается на тыльной стороне
  3. воспользовавшись таблицей, где указано среднее значение потребляемой мощности для бытовых приборов.

Таблица значений средней потребляемой мощности

При расчетах следует учитывать, что пусковая мощность некоторых электроприборов может существенно отличаться от номинальной. Для бытовых устройств этот параметр практически никогда не указывается в технической документации, поэтому необходимо обратиться к соответствующей таблице, где содержатся средние значения параметров стартовой мощности для различных приборов (желательно выбирать максимальную величину).

Пожаловалась бабушка соседка снизу: подарили мне дети моющий пылесос. Он прекрасно работает, но откуда-то идет запах гари.

Пошел смотреть. Проводка у нас старая: лапша из алюминия 2,5 квадрата. А пылесос потребляет 2,5 kW. Прикинул, как работает формула расчета мощности по току и напряжению для этого случая.

Разделил 2500 ватт на 220 вольт. Получил чуть больше 11 ампер. Наши провода держат нагрузку 22 А. Имеем практически двойной резерв потоку. Другие потребители при уборке отключены.

Стали проверять и нюхать: запах около квартирного щитка. Открыл, осмотрел: шина сборки ноля в саже, на одной перемычке горелая изоляция. Винт крепления ослаблен. Вот и причина начала возгорания. Исправил.

На этом примере я показываю, что всегда надо оценивать мощность потребления электроприборов и возможности проводки с защитными устройствами. Об этом рассказываю ниже.

Что такое мощность в электричестве: просто о сложном

Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.

Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.

Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.

Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:

  1. включенными в сеть приборами;
  2. конструкцией проводов и кабелей;
  3. настройкой защитных устройств.

Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.

Как рассчитать электрическую мощность в быту

Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.

Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.

Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.

Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.

При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:

Как измерить электрическую мощность дома

Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.

Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.

В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.

Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.

Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.

Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:

  • действующее напряжение;
  • силу тока;
  • угол сдвига фаз между векторами тока и напряжения.

Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.

Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.

Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.

Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.

Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.

Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.

Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго.Отвлекся. Не судите за это строго.

Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?

Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.

Формулы расчета мощности для однофазной и трехфазной схемы питания

В идеальном теоретическом случае трехфазная схема состоит из трех одинаковых однофазных цепей. На практике всегда есть какие-то отклонения. Но, в большинстве случаев при анализах ими пренебрегают.

Поэтому рассматриваем вначале наиболее простой вопрос.

Графики и формулы под однофазное напряжение

Как работает резистор

На чисто резистивном сопротивлении синусоиды тока и напряжения совпадают по углу, направлены на каждом полупериоде одинаково.Поэтому их произведение, выражающее мощность, всегда положительно.

Его значение в произвольный момент времени t называют мгновенным, обозначая строчной буквой p.

Среднее значение мощности в течение одного периода называют активной составляющей. Ее график для переменного тока имеет фигуру симметричного всплеска с максимальным значением Pm в середине каждого полупериода Т/2.

Если взять половину его величины Pm/2 и провести прямую линию в течении одного периода Т, то получим прямоугольник с ординатой P.

Его площадь равна двум площадям графиков активной составляющих одного любого полупериода. Если посмотреть на картинку внимательнее, то можно представить, что верхняя часть всплеска отрезана,перевернута и заполнила свободное пространство внизу.

Представление этого графика помогает запомнить, что на активном сопротивлении мощность постоянного и переменного тока вычисляется по одной формуле, не меняет своего знака.

На резисторе не создается реактивных потерь.

Как работает индуктивность

Катушка с обмоткой своими витками запасает энергию магнитного поля. Благодаря процессу ее накопления индуктивное сопротивление отодвигает вперед на 90 градусов вектор тока относительно приложенного напряжения на комплексной плоскости.

Перемножая их мгновенные величины получаем значения мощности, которое за один период меняет знаки (направление) в каждом полупериоде.

Частота изменения мощности на индуктивности в два раза выше,чем у ее составляющих: синусоид тока и напряжения. Она состоит из двух частей:

  1. активной, обозначаемой индексом PL;
  2. реактивной QL.

Реактивная часть на индуктивности создается за счет постоянного обмена энергией между катушкой и приложенным источником. На ее величину влияет значение индуктивного сопротивления XL.

Как работает конденсатор

Емкость конденсатора постоянно накапливает заряд между своими обкладками. За счет этого происходит сдвиг вектора тока вперед на 90 градусов относительно приложенного напряжения.

График мгновенной мощности напоминает вид предыдущего, но начинается с отрицательной полуволны.

Реактивная составляющая, выделяемая на конденсаторе, зависит от величины емкостного сопротивления XC.

Как работает реальная схема со всеми видами сопротивлений

В чистом виде приведенные выше графики и выражения встречаются не так часто. На самом деле передача электроэнергии и ее работа на переменном токе связаны с комплексным преодолением сил электрического сопротивления резисторов, конденсаторов и индуктивностей.

Причем, какая-то из этих составляющих будет преобладать. Для таких случаев преобразования электрической энергии в мгновенную мощность могут иметь один из следующих видов.

На верхней картинке показан случай, когда вектор тока отстает от приложенного напряжения, а на нижней — опережает.

В обоих случаях величина активной составляющей уменьшается от значения полной на значение, выражаемое как cosφ. Поэтому его принято называть коэффициентом мощности.

Как работает схема трехфазного электроснабжения

На ввод распределительного щита многоэтажного здания поступает трехфазное напряжение от электроснабжающей организации, вырабатываемое промышленными генераторами.

Его же, за отдельную плату, при желании может подключить владелец частного дома, что многие и делают. При этом рабочая схема и диаграмма напряжений выглядит следующим образом.

В старой системе заземления TN-C она выполняется четырехпроводным подключением, а у новой TN-S — пятипроводным с добавлением защитного РЕ проводника. Его на этой схеме я не показываю для упрощения.

Каждую из фаз при работе необходимо стараться нагружать одинаково равными по величине токами. Тогда в домашней проводке будет создаваться наиболее благоприятный оптимальный режим без опасных перекосов энергии.

В этом случае формула расчета мощности по току и напряжению для трехфазной схемы может быть представлена простой суммой аналогичных формул для составляющих однофазных цепей.

А поскольку они все идентичные, то их просто утраивают.

Например, когда активная мощность фазы В имеет выражением Рв=Uв×Iв×cosφ, то для всей трехфазной схемы она будет выражена следующей формулой:

Если пометить фазное выражение буквой ф. например Pф, томожно записать:

Аналогично будет вычисляться реактивная составляющая

Поскольку P и Q представляют величины катетов прямоугольного треугольника, то гипотенузу или полную составляющую можно вычислить как квадратный корень из суммы их квадратов.

Как учитывается трехфазная полная мощность

В энергосистеме, да и в частном доме, требуется анализировать подключенные нагрузки, равномерно распределять их по источникам напряжений.

С этой целью работают многочисленные конструкции измерительных приборов. На щитах управления подстанций расположены щитовые ваттметры и варметры, предназначенные для работы в разных долях кратности.

Старые аналоговые приборы показаны на этой картинке.

Для того, чтобы не путаться в записях вычислений введены разные наименования единиц. Они обозначаются:

  • ВА — (русское), VA (международное) вольтампер для полной величины мощности;
  • Вт —(русское), var (международное) ватт —активной;
  • вар (русское), var (международное) — реактивной.

Аналоговые приборы измеряют только активную или реактивную составляющую, а полную величину необходимо вычислять по формулам.

Многие современные цифровые приборы способны осуществлять эту функцию автоматически.

Видеоурок Павла Виктор дополняет мой материал. Рекомендую посмотреть.

Калькулятор мощности для своих

Здесь вы можете выполнить вычисления онлайн без использования формул и арифметических действий. Просто введите ваши исходные данные в таблицу и жмите кнопку “Рассчитать ток”.

А в заключение напоминаю, что для ваших вопросов создан раздел комментариев. Задавайте их, я отвечу.

Иногда можно услышать такой простой вопрос: «какая мощность в розетке?». Ответ, как ни странно, чаще всего такой: 10 ампер. Или – 220 вольт. Понятно, что вопрос – дурацкий. Но и объяснение не лучше – «А на розетке так написано».

Мощность и ток

Если правильно отвечать на поставленный вопрос, то для читателей, прогуливающих в детстве уроки физики, можно сказать, что мощность электричества зависит от двух величин:

  • величины напряжения;
  • силы тока.

В общем, эти две величины определяют величину мощности как переменного, так и постоянного тока. Память может подсказать что-то типа: для участка цепи, для полной цепи. Это отголоски того же школьного учебника физики, где говорится о законе Ома.

Да, этот знаменитый закон и позволяет рассчитать мощность электрического тока. Конечно, школьная программа представляла этот закон для цепей постоянного тока, но суть от этого не меняется. Формула вечная и неизменная: P = U х I.

Перефразируя закон ома в простой язык, получаем простой ответ на вопрос о мощности в розетке: сила тока зависит от нагрузки.

Сила тока и приложенная нагрузка

Тривиальное понятие этого тезиса позволит не производить элементарных действий, постоянно совершаемых нами, или окружающими нас людьми:

  • включать один электрический удлинитель в другой, втыкая в оба все доступные вилки от разных, иногда достаточно мощных, потребителей электроэнергии;
  • подключать к севшему аккумулятору автомобиля другой, соединяя их проводами от старой электропроводки;
  • наращивать провода от электрического чайника кабелем с витой парой;
  • устанавливать в гараже нагреватель, мощностью 5 квт, подключая его к обыкновенной розетке.

Аналогичные примеры неграмотных действий можно приводить до бесконечности. Человеческая беспечность не знает границ. Чтобы больше не допускать подобных ошибок, давайте разберем как правильно производить расчет электрической мощности.

Чайник и электрическая мощность

Не забивая головы простейшими формулами (есть дела и поважнее этого), запомним простое соотношение, достаточное для применения его в быту. Точность его не соответствует формуле расчета, но позволяет помнить, что: 1 квт электроэнергии – это приблизительно 5 ампер тока в сети 220 вольт.

Таким образом, становится понятно, что электрический чайник, включенный в кухонную розетку, потребляет около 5 ампер тока. А лампа накаливания, мощностью 100 Вт – в десять раз меньше: 0,5 ампера. Конечно, такие примитивные знания нужны для домохозяек, расчет мощности электрического тока производится по формулам.

Необходимость расчетов мощности

Человек мало сталкивается с необходимостью проведения расчетов (мощностей постоянного электрического тока) в быту. Чаще всего такая необходимость возникает при ремонте автомобиля, где источником тока служит аккумулятор. Или какой-то продвинутый пользователь начинает подбирать новый кулер для своего процессора в компьютере.

Чаще возникает необходимость провести элементарные расчеты при ремонтных работах в квартире, при подборе сгоревшего блока питания и пр.

Расчет мощности электрического тока по формулам

Существует формула расчета электрического тока для однофазной и трехфазной сети. Вряд ли кто-то захочет и сможет ими воспользоваться – разбираться что такое cosφ при замене электрической проводки в доме или квартире нецелесообразно.

Реально можно произвести все необходимые расчеты в режиме онлайн. Интернет набит разными таблицами, соответствующими графиками и калькуляторами. Для очень нуждающихся читателей можно добавить, что сечение кабеля для осветительной сети — 1,5 кв. мм. А для электропитания розеток применяется кабель сечением 2,5 кв. мм.

Остальные расчеты, требующиеся при производстве электромонтажных работ в различных областях деятельности – лучше доверить специалистам, которые в своей работе используют различные приборы: амперметры, вольтметры, индикаторы фазы, измерители сопротивления изоляции, измерители сопротивления заземления и пр.

Ремонт и строительство домов и квартир, особенности расчетов

Чтобы произвести расчет электропроводки в квартире недостаточно произвести подбор сечения электрических проводов. В электрическом щите устанавливаются и электрические автоматы, и защитные устройства и электрический счетчик. Эти установочные изделия также подбираются и рассчитываются при разработке проекта электропитания, в котором производится также расчет количества и параметров устройств защитного заземления.

Для расчетов и подбора видов электропроводки, использующейся при изготовлении удлинителей, организации временных схем электропитания, необходимо понимать, что силовые кабели для однофазной и трехфазной цепи различны по количеству жил, условиям прокладки, токовым нагрузкам и прочим параметрам.

При использовании кабелей и проводов необходимо учитывать и материал изготовления токопроводящих жил.

Наличие в загородном доме, даче трехфазных потребителей электроэнергии, таких как скважинный насос, электродвигатели, сварочное оборудование, требует при подборе кабелей электропроводки учитывать их пусковые токи. А при выборе электрического счетчика электроэнергии – активную и реактивную составляющую в потребляемой мощности, если предполагается постоянная работа трехфазного оборудования.

“>

Как рассчитать трехфазную мощность

Обновлено 12 ноября 2018 г.

Ли Джонсон

Трехфазная мощность — широко используемый метод производства и передачи электроэнергии, но вычисления, которые вам нужно выполнить, немного сложнее чем для однофазных систем. Тем не менее, при работе с уравнениями трехфазной мощности вам не нужно ничего делать, поэтому вы сможете легко решить любую поставленную вам задачу трехфазного питания.Главное, что вам нужно сделать, это найти ток с учетом мощности в цепи или наоборот.

TL; DR (слишком долго; не читал)

Выполните расчет трехфазной мощности по формуле:

P = √3 × pf × I × V

Где pf — коэффициент мощности, I — ток, В, — напряжение, а P — мощность.

Однофазное и трехфазное питание

Однофазное и трехфазное питание — это термины, описывающие электричество переменного тока (AC).Ток в системах переменного тока постоянно изменяется по амплитуде (т. Е. По размеру) и направлению, и это изменение обычно принимает форму синусоидальной волны. Это означает, что он плавно изменяется с серией пиков и спадов, описываемых синусоидальной функцией. В однофазных системах такая волна всего одна.

Двухфазные системы разделяют его на две части. Каждая секция тока сдвинута по фазе с другой на половину цикла. Таким образом, когда одна из волн, описывающих первую часть переменного тока, находится на пике, другая — на минимальном значении.

Однако двухфазное питание встречается нечасто. Трехфазные системы используют тот же принцип разделения тока на противофазные составляющие, но с тремя вместо двух. Три части тока сдвинуты по фазе на треть цикла каждая. Это создает более сложную схему, чем двухфазное питание, но они одинаково компенсируют друг друга. Каждая часть тока равна по размеру, но противоположна направлению двух других частей, вместе взятых.

Формула трехфазной мощности

Наиболее важные уравнения трехфазной мощности связывают мощность ( P в ваттах) с током ( I в амперах) и зависят от напряжения ( В ).В уравнении также присутствует «коэффициент мощности» ( pf ), который учитывает разницу между реальной мощностью (которая выполняет полезную работу) и полной мощностью (которая подается в схему). Большинство типов расчетов трехфазной мощности выполняется с использованием этого уравнения:

P = √3 × pf × I × V

Здесь просто указано, что мощность является квадратным корнем из трех (около 1,732), умноженным на коэффициент мощности (обычно от 0,85 до 1, см. Ресурсы), ток и напряжение.Не позволяйте символам пугать вас, используя это уравнение; Как только вы включите все необходимые составляющие в уравнение, им будет легко пользоваться.

Преобразование кВт в амперы

Допустим, у вас есть напряжение, общая мощность в киловаттах (кВт) и коэффициент мощности, и вы хотите знать ток (в амперах) в цепи. Изменив приведенную выше формулу расчета мощности, получим:

I = P / (√3 × pf × V)

Если ваша мощность выражена в киловаттах (т.е.е., тысячи ватт) лучше всего либо преобразовать его в ватты (умножив на 1000), либо сохранить в киловаттах, убедитесь, что ваше напряжение указано в киловольтах (кВ = вольт ÷ 1000). Например, если у вас коэффициент мощности 0,85, мощность 1,5 кВт и напряжение 230 В, просто укажите мощность как 1500 Вт и вычислите:

I = P / (√3 × pf × V)

= 1500 Вт / √3 × 0,85 × 230 В

Эквивалентно, мы могли бы работать с кВ (учитывая, что 230 В = 0,23 кВ), и найти то же самое:

I = P / (√3 × pf × V)

= 1.5 кВт / √3 × 0,85 × 0,23 кВ

Преобразование ампер в кВт

Для обратного процесса используйте форму приведенного выше уравнения:

P = √3 × pf × I × V

Просто умножьте свои известные значения, чтобы найти ответ. Например, для I = 50 A, V = 250 V и pf = 0,9 это дает:

P = √3 × pf × I × V

= √3 × 0,9 × 50 A × 250 В

Поскольку это большое число, преобразуйте его в кВт, используя (значение в ваттах) / 1000 = (значение в киловаттах).

19 486 Вт / 1000 = 19 486 кВт

Трехфазные конфигурации Y и треугольника | Многофазные цепи переменного тока

Трехфазное соединение звездой (Y)

Первоначально мы исследовали идею трехфазных систем питания, соединив три источника напряжения вместе в так называемой конфигурации «Y» (или «звезда»).

Эта конфигурация источников напряжения характеризуется общей точкой подключения, соединяющей одну сторону каждого источника. (Рисунок ниже)

Трехфазное соединение «Y» имеет три источника напряжения, подключенных к общей точке.

Если мы нарисуем схему, показывающую, что каждый источник напряжения представляет собой катушку с проводом (генератор переменного тока или обмотку трансформатора), и произведем небольшую перестановку, конфигурация «Y» станет более очевидной на рисунке ниже.

Трехфазное четырехпроводное соединение «Y» использует «общий» четвертый провод.

Три проводника, идущие от источников напряжения (обмоток) к нагрузке, обычно называются линиями , а сами обмотки обычно называются фазами .

В системе с Y-соединением нейтральный провод может быть или не быть (рисунок ниже) в точке соединения посередине, хотя это, безусловно, помогает облегчить потенциальные проблемы, если один из элементов трехфазной нагрузки выйдет из строя, поскольку обсуждалось ранее.

Трехфазное трехпроводное соединение «Y» не использует нейтральный провод.

Значения напряжения и тока в трехфазных системах

Когда мы измеряем напряжение и ток в трехфазных системах, мы должны уточнить , где мы измеряем.

Напряжение сети означает величину напряжения, измеренного между любыми двумя проводниками линии в сбалансированной трехфазной системе. В приведенной выше схеме линейное напряжение составляет примерно 208 вольт.

Фазное напряжение относится к напряжению, измеренному на любом одном компоненте (обмотка источника или сопротивление нагрузки) в сбалансированном трехфазном источнике или нагрузке.

Для схемы, показанной выше, фазное напряжение составляет 120 вольт. Термины линейный ток и фазный ток следуют той же логике: первый относится к току через любой один линейный проводник, а второй — к току через любой один компонент.

Источники и нагрузки, подключенные по схеме Y, всегда имеют линейные напряжения выше фазных, а линейные токи равны фазным токам. Если источник или нагрузка, подключенные по схеме Y, сбалансированы, линейное напряжение будет равно фазному напряжению, умноженному на квадратный корень из 3:

.

Однако конфигурация «Y» не единственная допустимая для соединения трехфазного источника напряжения или элементов нагрузки.

Трехфазная конфигурация треугольником (Δ)

Другая конфигурация известна как «Дельта» из-за ее геометрического сходства с одноименной греческой буквой (Δ).Обратите внимание на полярность каждой обмотки на рисунке ниже.

Трехфазное, трехпроводное соединение Δ не имеет общего.

На первый взгляд кажется, что три таких источника напряжения могут создать короткое замыкание, электроны текут по треугольнику, и ничто иное, как внутренний импеданс обмоток, сдерживает их.

Однако из-за фазовых углов этих трех источников напряжения это не так.

Закон Кирхгофа о напряжении при соединении треугольником

Одной из быстрых проверок этого является использование закона Кирхгофа по напряжению, чтобы увидеть, равны ли три напряжения вокруг контура нулю. Если они это сделают, тогда не будет доступного напряжения для проталкивания тока вокруг этого контура и, следовательно, не будет циркулирующего тока.

Начиная с верхней обмотки и двигаясь против часовой стрелки, наше выражение KVL выглядит примерно так:

Действительно, если мы сложим эти три векторные величины вместе, они в сумме дадут ноль.Другой способ проверить тот факт, что эти три источника напряжения могут быть соединены вместе в петлю без возникновения циркулирующих токов, — это разомкнуть петлю в одной точке соединения и рассчитать напряжение на разрыве: (рисунок ниже)

Напряжение на открытии Δ должно быть нулевым.

Начиная с правой обмотки (120 В ∠ 120 °) и продвигаясь против часовой стрелки, наше уравнение KVL выглядит следующим образом:

Конечно, на разрыве будет нулевое напряжение, что говорит нам о том, что ток не будет циркулировать в треугольной петле обмоток, когда это соединение будет выполнено.

Установив, что трехфазный источник напряжения, подключенный по схеме Δ, не сгорит до корки из-за циркулирующих токов, переходим к его практическому использованию в качестве источника питания в трехфазных цепях.

Поскольку каждая пара линейных проводов подключается непосредственно к одной обмотке в цепи Δ, линейное напряжение будет равно фазному напряжению.

И наоборот, поскольку каждый линейный проводник присоединяется к узлу между двумя обмотками, линейный ток будет векторной суммой двух соединяющихся фазных токов.

Неудивительно, что результирующие уравнения для Δ-конфигурации выглядят следующим образом:

Анализ схемы примера соединения треугольником

Давайте посмотрим, как это работает на примере схемы: (Рисунок ниже)

Нагрузка на источнике Δ подключена по схеме Δ.

Когда каждое сопротивление нагрузки получает 120 В от соответствующей фазной обмотки источника, ток в каждой фазе этой цепи будет 83.33 ампера:

Преимущества трехфазной системы Delta

Таким образом, ток каждой линии в этой трехфазной системе питания равен 144,34 А, что существенно больше, чем токи в линии в системе с Y-соединением, которую мы рассматривали ранее.

Можно задаться вопросом, не потеряли ли мы все преимущества трехфазного питания здесь, учитывая тот факт, что у нас такие большие токи в проводниках, что требует более толстого и более дорогостоящего провода.

Ответ — нет. Хотя для этой схемы потребуется три медных проводника калибра 1 (на расстоянии 1000 футов между источником и нагрузкой это составляет чуть более 750 фунтов меди для всей системы), это все же меньше, чем 1000+ фунтов меди, необходимых для Однофазная система, обеспечивающая одинаковую мощность (30 кВт) при одинаковом напряжении (120 В между проводниками).

Одним из явных преимуществ системы с Δ-соединением является отсутствие нейтрального провода. В системе с Y-соединением нейтральный провод был необходим на случай, если одна из фазных нагрузок выйдет из строя (или отключится), чтобы не допустить изменения фазных напряжений на нагрузке.

Это не обязательно (или даже возможно!) В схеме с Δ-соединением.

Когда каждый элемент фазы нагрузки напрямую подключен к соответствующей обмотке фазы источника, фазное напряжение будет постоянным независимо от обрыва в элементах нагрузки.

Пожалуй, самым большим преимуществом источника с подключением по схеме Δ является его отказоустойчивость.

Возможен отказ одной из обмоток трехфазного источника, подключенного по схеме Δ (рисунок ниже), без влияния на напряжение или ток нагрузки!

Даже при выходе из строя обмотки источника напряжение в сети по-прежнему равно 120 В, а напряжение фазы нагрузки по-прежнему составляет 120 В.Единственное отличие состоит в дополнительном токе в остальных функциональных обмотках источника.

Единственным последствием разрыва обмотки источника для источника, подключенного по схеме Δ, является увеличение фазного тока в остальных обмотках. Сравните эту отказоустойчивость с системой с Y-соединением, имеющей обмотку с открытым источником, на рисунке ниже.

Разомкнутая обмотка источника «Y» снижает вдвое напряжение на двух нагрузках по Δ, подключенных к нагрузке.

При подключении нагрузки по схеме Δ два сопротивления испытывают пониженное напряжение, в то время как одно остается при исходном линейном напряжении 208.Нагрузка, подключенная по схеме Y, постигает еще худшую судьбу (рисунок ниже) из-за того же отказа обмотки в источнике, подключенном по схеме Y.

Обмотка с открытым истоком системы «Y-Y» снижает вдвое напряжение на двух нагрузках и полностью теряет одну нагрузку.

В этом случае два сопротивления нагрузки испытывают пониженное напряжение, а третье полностью теряет напряжение питания! По этой причине источники с Δ-соединением предпочтительнее для надежности.

Однако, если требуется двойное напряжение (например,грамм. 120/208) или предпочтительнее для более низких линейных токов, предпочтительной конфигурацией являются системы с Y-соединением.

ОБЗОР:

  • Проводники, подключенные к трем точкам трехфазного источника или нагрузки, называются линиями .
  • Три компонента, составляющие трехфазный источник или нагрузку, называются фазами .
  • Линейное напряжение — это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.
  • Фазное напряжение — это напряжение, измеренное на отдельном компоненте трехфазного источника или нагрузки.
  • Линейный ток — это ток через любую линию между трехфазным источником и нагрузкой.
  • Фазный ток — это ток через любой компонент, содержащий трехфазный источник или нагрузку.
  • В симметричных Y-цепях линейное напряжение равно фазному напряжению, умноженному на квадратный корень из 3, а линейный ток равен фазному току.
  • В симметричных схемах Δ линейное напряжение равно фазному напряжению, а линейный ток равен фазному току, умноженному на квадратный корень из 3.
  • Трехфазные источники напряжения, подключенные по схеме Δ, обеспечивают большую надежность в случае отказа обмотки, чем источники, подключенные по схеме Y. Однако источники, подключенные по схеме Y, могут выдавать такое же количество энергии при меньшем линейном токе, чем источники, подключенные по схеме Δ.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Еще раз о расчетах трехфазного переменного тока — Dataforth

Преамбула

Это примечание по применению является продолжением
Указания по применению AN109, которые содержат систему переменного тока
определения и основные правила расчетов с примерами.Читателю предлагается ознакомиться с AN109, Ссылки 3,
4 и 5 в качестве фона для данной инструкции по применению.

Трехфазная система напряжения

Системы трехфазного напряжения состоят из трех
синусоидальные напряжения равной величины, равной частоты
и разделены на 120 градусов.

На рисунке 1 показаны функции косинуса в реальном времени и
соответствующее обозначение вектора для трехфазного межфазного
система напряжения с линейным напряжением V12 в качестве эталона.

Обзор свойств системы трехфазного напряжения

Трехфазные питающие напряжения и системы нагрузки имеют два
базовые комплектации; 4-проводная звезда и 3-проводная
«Дельта». На рисунке 2 показан базовый трехфазный четырехпроводной звездой.
сконфигурированная система напряжения с V1N в качестве эталона и
На рисунке 3 показана трехпроводная система напряжения, настроенная по схеме треугольника.
с V12 в качестве ссылки соответственно.

Важные определения, соглашения и правила расчета
как для 3-фазной 4-проводной схемы «звезда», так и для 3-проводной схемы «треугольник»
сконфигурированные системы напряжения описаны в следующих
список без «беспорядочной» векторной математики.

Ориентация фазора:

По определению, все синусоидальные векторы вращаются в
против часовой стрелки с {1-2-3} или {3-2-1}
последовательность и углы измеряются как положительные в
против часовой стрелки. 4-проводная 3-фазная система звезды
показан на рисунке 2 с V1N, выбранным в качестве эталона. В
линейные напряжения составляют V12, V23 и V32 с линейно-
нейтральные напряжения показаны как V1N, V2N и V3N.Фигура
3 показаны правильные линейные векторные напряжения для 3-х фазного преобразователя.
фаза 3-проводная конфигурация треугольника с выбранным вектором V12
в качестве ссылки. Примечание: любой вектор может быть выбран как
ссылка, выбор совершенно произвольный.

Чередование фаз:

Последовательность фаз определяет последовательную синхронизацию, по которой
каждый вектор линейного напряжения отстает друг от друга линейное напряжение
вектор против часовой стрелки.Рисунки 1, 2 и
3 показана последовательность фаз {1-2-3}. Последовательность {1-2-3}
означает, что V12 опережает V23 на 120 градусов, а V23 опережает
V31 на 120 градусов. Кроме того, V1N опережает V2N на 120
градусов, а V2N опережает V3N на 120 градусов. это
необходимо установить последовательность фаз перед выполнением
любые вычисления для того, чтобы вычисленный вектор вектора
углы могут быть правильно расположены друг относительно друга.

Есть только две допустимые последовательности фаз; {1-2-3}
последовательность и последовательность {3-2-1}. Обе эти фазы
последовательность определяется тем, как 3-фазный трансформатор
линии питания (L1, L2, L3) подключены и промаркированы.
На рисунке 4 показана последовательность {3-2-1} относительно
{1-2-3} последовательность. Примечание: последовательность фаз может быть
можно изменить, просто поменяв местами соединения любых двух
из трех (L1, L2, L3) линий питания; однако это
следует делать только в соответствии со всеми надлежащими
нормы и правила, а также одобрение заводского инжиниринга
сотрудники.

Индексы:

Соблюдение правильного порядка нижних индексов для всех векторов
количество — один из важнейших ключей к успеху
3-х фазные расчеты. На рисунке 4 показан правильный нижний индекс
порядок для каждой из двух различных последовательностей фаз. Для
последовательность {1-2-3}, правильный порядок индексов [12],
[23] и [31]; тогда как правильный порядок нижнего индекса для
последовательность {3-2-1} — это [32], [21] и [13].

Нижний индекс:

После определения последовательности фаз и правильного
индексы обозначены, расчеты по этим
индексы вместе с условными обозначениями, принятыми для
Версия закона Ома для переменного тока предотвратит угловые ошибки.

По соглашению, V12 — это падение напряжения вектора плюс (1) к
минус (2) в направлении тока, протекающего из точки
(1) к точке (2) и равен этому току, умноженному
импедансом переменного тока между точками (1) и (2).Для
пример в векторной записи;

Сложение / вычитание фазора:

Правильная запись в нижнем индексе устанавливает правильный метод
для векторного сложения / вычитания векторов. На рисунке 2
фазоры линейного напряжения в этой трехфазной {1-2-3}
Последовательная 4-проводная система «звезда» состоит из линейно-нейтральной
векторные напряжения следующим образом;

Если среднеквадратичные напряжения между фазой и нейтралью равны (стандартное
сбалансированной системы), то приведенные выше уравнения показывают, что все
линейное напряжение питания фазора — фаза-нейтраль.
напряжения, умноженные на 3, и подводят фазу к нейтрали
векторы напряжения на 30 градусов
.Например, стандартный
4-проводная трехфазная система звездой с фазным напряжением
120 вольт и V1N, выбранный в качестве опорного вектора на
ноль градусов имеет линейное напряжение;

V12 = 208∠ 30 °; V23 = 208∠ -90 °; V31 = 208∠ 150 °.

Важная концепция: Конфигурация трехфазного трехпроводного треугольника
система уравновешивания напряжений фактически не имеет линейно-
нейтральные напряжения, такие как звездочка.Однако
дельта-фазное напряжение, как показано на Рисунке 3, все еще может быть
построенный из теоретического набора сбалансированных 3-фазных
линейные напряжения, как показано выше. В
отношения с этими теоретическими напряжениями чрезвычайно
полезно для определения углов дельта-фазора.

Расчетные процедуры, инструкции и формулы

Следующий список процедур, рекомендаций и формул
проиллюстрировать схему расчета трехфазного фазора
количества с использованием типовых данных на паспортной табличке, взятых из
отдельные единицы нагрузки.

Расчеты производятся следующим образом;

  1. Обозначение чередования фаз; {1-2-3} или {3-2-1}
  2. Определить индексы; [12], [23], [31] или [32], [21], [13]
  3. Предположим, что линейные токи L1, L2, L3 текут к нагрузкам.
    и нейтральный (обратный) ток течет к источнику питания.
  4. Ток нагрузки и падение напряжения должны соответствовать
    обозначения подстрочных индексов, как определено ранее.
  5. Используйте «Закон Ома для переменного тока» для расчета величин
    и углы каждой отдельной однофазной нагрузки
    Текущий. Просмотрите AN109 Dataforth, Ссылка 1.
  6. Важные понятия: линейные токи как для звезды, так и для
    3-фазные нагрузки, сбалансированные по схеме треугольника, рассчитываются с использованием
    следующие отношения;

    1. Входная мощность переменного тока = 3 x (Vline) x (Iline) x PF
    2. PF — косинус угла, на который прямая
      токи опережают или отстают от линейного напряжения.Фактическое трехфазное напряжение фаза-нейтраль
      существуют в конфигурациях звезды; тогда как они
      теоретически в дельта-конфигурациях. Например,
      принять любую сбалансированную 3-фазную нагрузку на 10 ампер
      линейного тока и коэффициент мощности запаздывания 0,866 (30 °). Если
      системная последовательность {1-2-3} и V12 является справочным,
      тогда I1 = 10∠ -60 °; I2 = 10∠ 180 °; I3 = 10∠ 60 °.
  7. Определите количество треугольников мощности; Вт «P»
    и VAR «Q» для каждой нагрузки. Ссылка на обзор 1.
  8. Суммировать ранее рассчитанную индивидуальную нагрузку
    токи с использованием правильной записи индекса для определения
    каждая отдельная строка ток
  9. Наконец, просуммируйте все отдельные треугольники мощности нагрузки.
    количества (Вт «P» и VAR «Q») для определения
    количество треугольников мощности системы; P, Q и PF.Это
    этот последний шаг, который определяет, как загружается система
    население ведет себя.

Примеры расчетов

В следующих примерах предполагается типичное напряжение 208–120 вольт.
трехфазная конфигурация 4 звезды с чередованием фаз
из {1 2 3}, и V12 выбран в качестве ссылки. Это звёздочка
система; однако нагрузки, подключенные между каждым из
три отдельные линии питания (L1, L2, L3) составляют
208-вольтная 3-проводная конфигурация, треугольник.Три категории
однофазные нагрузки предполагаются для следующих
расчеты. Эти категории идентичны тем
определено в Руководстве по применению AN109 (Ссылка 1) и
перечисленные ниже с необходимыми данными паспортной таблички.

  • Выходные киловатты; КВт, КПД (опция), PF = 1
  • Выходная мощность в лошадиных силах; HP, КПД, P
  • Входная кВА; КВА, ПФ, КПД 100%.

В таблице 1 приведены расчетные значения для предполагаемого
население этих нагрузок. Читатели должны проверить эти
расчеты. Dataforth предлагает интерактивный Excel
рабочая тетрадь, аналогичная таблице 1, которая автоматически
рассчитывает все параметры трехфазной системы. Видеть
Ссылка 2 для загрузки загрузите этот файл Excel.

Пример расчета нагрузок между фазой и нейтралью

Трехфазные звездообразные системы с нейтралью могут иметь одинаковые или
неравные отдельные однофазные нагрузки, подключенные между
любой из линий питания (L1, L2, L3) и нейтраль.Системы
сбалансированы, если все нагрузки между фазой и нейтралью идентичны.

На рисунке 5 показаны три группы однофазных линейно-нейтральных
нагрузки, подключенные по трехфазной системе «звезда».
Эта конфигурация однофазных нагрузок может быть
рассматривается как составная несбалансированная звездообразная нагрузка

На рисунке 6 показаны три группы однофазных межфазных
нагрузки, подключенные по трехфазной системе «звезда».Этот
конфигурацию однофазных нагрузок можно рассматривать как
композитная несбалансированная дельта-нагрузка

На рисунке 7 показаны группа сбалансированных нагрузок звездой и группа
сбалансированных дельта-нагрузок, обе из которых (могут быть)
подключен по трехфазной системе звездой.

Таблица 1 представляет собой сводный набор расчетных результатов для
конфигурации, показанные на рисунках 5, 6 и 7.Эти
расчеты предполагают произвольную популяцию типа
загружает ранее определенные и использует все правила, процедуры и определения, как показано выше. В
Результаты системы из расчетов Таблицы 1 показаны ниже.
в таблицах 2 и 3.

Напряжение сети V12 (208 при нулевом градусе) является опорным для
указанные выше текущие углы.

Читателям предлагается проверить эти расчеты.

Как упоминалось выше, Dataforth предоставляет интерактивный
Файл Excel, предназначенный для энтузиастов-исследователей.
при расчете системных токов и сопутствующей мощности
уровни. Этот файл позволяет исследователю ввести паспортную табличку.
данные по всем системным нагрузкам; после этого все линии тока
векторов и мощности рассчитываются автоматически.
«Интерактивная рабочая тетрадь Excel для трех-
Расчет фаз переменного тока »можно загрузить с
Веб-сайт Dataforth, см. Ссылку 2.

Рисунок 8 — иллюстрация изолированного истинного значения Dataforth.
Модуль ввода RMS, SCM5B33. Эта функция также
доступен в корпусе на DIN-рейку; DSCA33. Dataforth
имеет набор модулей преобразования сигналов, спроектированных
специально для измерения высоковольтных среднеквадратичных значений переменного тока
параметры с использованием встроенного затухания. Читатель
рекомендуется посетить ссылки 1, 6, 7 и 8.Ссылки на Dataforth

Читателю предлагается посетить веб-сайт Dataforth и
изучить их полную линейку изолированного преобразования сигнала
модули и соответствующие примечания по применению, см. ссылки
показано ниже.

  1. Dataforth Corp., http://www.dataforth.com
  2. Dataforth Corp., AN110 Excel
    Интерактивная работа
    Книга для расчетов трехфазного переменного тока
  3. Dataforth Corp., Примечание по применению AN109,
    Измерения однофазного переменного тока
  4. Dataforth Corp., AN109 Excel
    Интерактивная работа
    Книга для расчетов однофазного переменного тока
  5. Национальный электротехнический кодекс контролируется National Fire
    Агентство по охране, NFPA
  6. Dataforth Corp., Система аттенюатора напряжения SCMVAS,
  7. Dataforth Corp., серия модульных формирователей сигналов с истинным среднеквадратичным значением SCM5B33
  8. Dataforth Corp., серия DSCA33 формирователей сигналов True RMS для монтажа на DIN

Трехфазный источник

— обзор

7.2.3 Метод модуляции прямого матричного преобразователя

В этом разделе представлена ​​матрица рабочего цикла для управления каждым переключателем трехфазного прямого матричного преобразователя и метод модуляции трехфазного преобразователя. Будет описан фазовый преобразователь с прямой матрицей, использующий матрицу рабочего цикла.Напряжение на входе и ток на выходе прямого матричного преобразователя даны как независимые переменные в формуле. (7.12).

(7.12) vi = vsavsbvsc = Vimcosωitcosωit − 2π / 3cosωit + 2π / 3, io = ioAioBioC = Iomcosωot − ϕocosωot − ϕo − 2π / 3cosωot − ϕo + 2π / 3.

В этом случае предположим, что операция генерирует выходное фазное напряжение и входной фазный ток в формуле. (7.13) контролем.

(7,13) vo = voAvoBvoC = Vomcosωotcosωot − 2π / 3cosωot + 2π / 3, ii = isaisbisc = Iimcosωit − ϕicosωit − ϕi − 2π / 3cosωit − ϕi + 2π / 3,

где cos (

23 ϕ ) и cos ( ϕ i ) — коэффициенты мощности нагрузки и входного каскада соответственно, а ω i и ω o — входная и выходная угловые частоты соответственно.Опорный потенциал выходного фазного напряжения v oA , v oB и v oC является нейтральной точкой трехфазного источника напряжения входного каскада, как показано на рис. 7.3 .

Входная мощность прямого матричного преобразователя должна быть равна выходной мощности. Следовательно, уравнение. (7.14) определяется из v i T i i = v o T i o .

(7.14) VimIimcosϕi = VomIomcosϕo.

Когда коэффициент усиления по напряжению прямого матричного преобразователя определяется как q = V om / V im , Eq. (7.15) определяется как

(7.15) Vom = qVim, Iim = qIomcosϕocosϕi.

Когда уравнения. (7.12), (7.13) подставляются в уравнение. (7.10) матрица заполнения T , которая удовлетворяет ограниченному условию продолжительности включения, как в формуле. (7.11) рассчитывается по формуле. (7.16).

(7.16) T = dAadAbdAcdBadBbdBcdCadCbdCc = p13d1d2d3d3d1d2d2d3d1 + p23d1’d2’d3’d2’d3’d1’d3’d1’d2 ‘,

где d1’d3’d1’d2′,

, где 9055 9055 d 9055 9055 9055 9055 9055 9055 9055 9055 9055 9055 9055 9055 9055 9055 9055 9055 , d 1 ‘, d 2 ‘ и d 3 ‘выражены в уравнении. (7.17).

(7.17) d1 = 1 + 2qcosω1t, d2 = 1 + 2qcosω1t + 2π3, d3 = 1 + 2qcosω1t − 2π3, d1 ′ = 1 + 2qcosω2t, d2 ′ = 1 + 2qcosω2t − 2π3, d3 ′ = 1 + 2qcosω2t + 2π3,

, где ω 1 и ω 2 составляют ω o ω i и ω o + ω i, соответственно p 1 и p 2 — это переменные управления коэффициентом мощности в положительном и отрицательном направлении, соответственно, которые выражены в формуле.(7.18).

(7.18) p1 = 121 + p, p2 = 121 − p, p = tanϕitanϕo.

Из уравнения. (7.18), p 1 + p 2 = 1 и p 1 p 2 = p . Кроме того, p — это коэффициент передачи фазы между входом и выходом прямого матричного преобразователя. Среди переменных, которые определяют p , ϕ o определяется характеристиками нагрузки, а ϕ i определяется желаемым значением команды.

Если входной каскад матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), уравнение. (7.16) можно просто переписать, как это дает Ур. (7.19).

(7,19) djk = 131 + 2vojvskVim2j = ABCk = abc.

На рис. 7.10 показан диапазон значений трехфазного входного напряжения источника и выходного фазного напряжения прямого матричного преобразователя. Трехфазное выходное фазное напряжение не может выходить за пределы диапазона входного фазного напряжения, поскольку выходное фазное напряжение прямого матричного преобразователя синтезируется из входного напряжения.Следовательно, максимальная величина выходного фазного напряжения ограничена 50% от входного фазного напряжения. Другими словами, максимальное значение управляющего параметра q составляет 0,5 в матрице заполнения уравнения. (7.16).

Рис. 7.10. Входное напряжение и выходное фазное напряжение ( q макс. = 0,5).

На рис. 7.11 показан способ получения большего выходного фазного напряжения, чем выходное фазное напряжение на рис. 7.10, путем добавления синфазного напряжения к выходному фазному напряжению по формуле.(7.13). Как упоминалось ранее, синфазное напряжение, приложенное к выходному фазному напряжению, не влияет на линейное напряжение выходного каскада прямого матричного преобразователя, поскольку опорные потенциалы выходного фазного напряжения v oA , v oB и v oC являются нейтральными точками трехфазного источника напряжения входного каскада.

Рис. 7.11. Входное напряжение и выходное фазное напряжение ( q макс. = 0.866) с использованием синфазного напряжения в модуляции.

Следовательно, фазные напряжения на выходе выражаются в формуле. (7.20) как

(7.20) vo = voAvoBvoC = Vomcosωot + vcmtcosωot − 2π / 3 + vcmtcosωot + 2π / 3 + vcmt,

, где v cm — синфазное напряжение и выражается в уравнении . (7.21) как

(7.21) vcmt = −16cos3ωot + 36cos3ωit.

В результате максимальное значение q увеличивается до √ 3/2 (= 0,866). Кроме того, q max = 0.866 — это уникальная характеристика прямого матричного преобразователя, которая определяется независимо от метода модуляции управления прямого матричного преобразователя.

Если выходное фазное напряжение уравнения. (7.20) вместо уравнения. (7.13) окончательное решение обычно выражается комплексным уравнением, полученным с помощью оптимального метода Вентурини. Кроме того, этот метод необходим для многих расчетов в реальном приложении. Однако, если входной каскад прямого матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), окончательное решение может быть легко реализовано, как показано в уравнении.(7.22).

(7.22) djk = 131 + 2vojvskVim2 + 4q33sinωit + βksin3ωit, j = A, B, C, k = a, b, c, βa = 0, βb = −2π / 3, βc = 2π / 3.

В зависимости от оптимального метода анализа Вентурини, соотношение между передаточным отношением фазы на входе и выходе p прямого матричного преобразователя и коэффициентом усиления по напряжению q выбирается из уравнения. (7.23).

(7,23) 2qp⋅1 − signλ3 + sgnλ3≤1,

, где λ и sgn ( λ ) выражаются следующим образом в уравнении. (7.24).

(7.24) λ = 2q31 − p, signλ = 1, λ≥0−1, λ <0.

На рис. 7.12 показано изменение максимального усиления по напряжению q max в зависимости от значения p . Если p управляется для управления коэффициентом мощности входного каскада прямого матричного преобразователя, необходимо соблюдать осторожность, поскольку максимальное усиление напряжения q max изменяется, как показано на рис. 7.12.

Рис. 7.12. Максимальное усиление напряжения q max в зависимости от значения p .

Если требуется, чтобы q max было> 0,5, диапазон p должен быть ограничен в диапазоне — 1 < p <1. Кроме того, в диапазоне - 1 < p <1, диапазон регулировки угла коэффициента мощности входного каскада ограничен как - | ϕ o | < ϕ i <| ϕ o | из уравнения. (7.18).

На рис. 7.13 показан пример метода, который генерирует стробирующие сигналы, которые являются функцией присутствия переключателя ( S jk ), с использованием каждого матричного элемента ( d jk ) матрицы заполнения . Т преобразователя матриц.Стробирующие сигналы переключателей S Aa , S Ab и S Ac , подключенных к выходному каскаду фазы A, определяются путем сравнения несущего сигнала v tri треугольной формы. форма с d Aa и ( d Aa + d Ab ) мгновенно. Кроме того, они выражаются следующим образом в формуле. (7.25):

Рис. 7.13. Формирование стробирующих сигналов из дежурного сигнала (переключение фазы А).

(7.25) sAasAbsAc = 100,0≤vtri

, где s ij = 0 представляет выключенное состояние переключателя и s ij = 1 представляет состояние включения. Методы, которые генерируют стробирующие сигналы переключателей ( S Ba , S Bb и S Bc ), подключенных к выходному каскаду фазы B и переключателям ( S Ca , S Cb и S Cc ), подключенные к выходному каскаду C-фазы, аналогичны методу для переключателей, подключенных к выходному каскаду A-фазы.

Токи короткого замыкания | 3-фазный VS 1-фазный — PAC Basics

Введение

Расчеты короткого замыкания выполняются по нескольким причинам. В исследованиях короткого замыкания обычно используются разные характеристические значения тока короткого замыкания, например рассчитываются пиковый ток короткого замыкания ( i p ), эквивалентный тепловой ток короткого замыкания ( I th ) и т. д. Также часто возникает необходимость в расчете различных типов токов короткого замыкания e.грамм. симметричный или несимметричный. Каждое приложение использует разные значения тока короткого замыкания в качестве входных. Например, при расчетах заземления ясно, что входное значение представляет собой ток короткого замыкания между одной линией и землей. Напротив, для выбора автоматического выключателя генератора и анализа распространения гармоник требуются значения трехфазного короткого замыкания в качестве входных данных.

Исходя из этих соображений, может быть довольно сложно определить размеры электрических устройств с учетом теплового и динамического воздействия токов короткого замыкания.Для этих целей проектировщику-электрику необходимо использовать максимальные значения токов короткого замыкания. Как правило, значение трехфазного тока короткого замыкания является наивысшим значением. Но так бывает не всегда. Очень важно, чтобы проектировщик электротехники понимал, какое значение тока короткого замыкания следует принять для определения размеров электрических устройств. Основная цель этой статьи — указать на тонкую дилемму выбора правильного значения тока короткого замыкания для определения размеров электрического оборудования.Теоретический вывод сделан на очень простом примере схемы.

Трехфазный ток короткого замыкания

Предположим простую сеть в соответствии с рисунком 1. Полное сопротивление трансформатора на единицу было рассчитано по следующим базовым значениям: S база = 100 МВА и В база = 110 кВ.

Рисунок 1. Однолинейная схема электрической сети.

Трансформатор T1 питает распределительную нагрузку. Предположим далее, что сеть 110 кВ эксплуатируется как глухозаземленная.На рисунке 2 показана эквивалентная схема для случая трехфазного короткого замыкания в точке F:

.

Рисунок 2. Схема эквивалентной последовательности для трехфазного короткого замыкания.

Трехфазное короткое замыкание симметрично, поэтому компоненты обратной и нулевой последовательности отсутствуют. Сеть эквивалентной последовательности состоит только из сети прямой последовательности. Решетка для тока короткого замыкания,

, где индекс 1 используется для обозначения прямой последовательности

Расчет тока короткого замыкания даст,

Однофазный ток короткого замыкания

Теперь предположим возникновение однофазного (однолинейного) короткого замыкания в точке F.Величина тока короткого замыкания зависит от включения нулевой последовательности трансформатора T1 (что определяется типом трансформатора и подключением его обмотки).

Рассмотрим трансформатор оболочечного типа. Согласно [2], [3] трансформаторы кожухового типа имеют отношение нулевой последовательности к прямой последовательности в диапазоне X 0 / X 1 = 1:10 в зависимости от соединения обмоток трансформатора. Давайте рассмотрим, например, отношение нулевой последовательности к прямой последовательности, X 0 / X 1 = 1.Это означает, что полное сопротивление нулевой последовательности трансформатора равно его импедансу прямой последовательности, Z T0 = Z T1 . Эквивалентная диаграмма показана на следующем рисунке.

Рисунок 3. Схема эквивалентной последовательности для однофазного короткого замыкания.

Поскольку все три импеданса последовательности равны, Z T1 = Z T2 = Z T0 , мы можем рассчитать ток короткого замыкания, как показано ниже.

Величина однофазного тока короткого замыкания в этом случае равна трехфазному току короткого замыкания.

Во втором случае рассмотрим трансформатор с сердечником (T1) с импедансом нулевой последовательности, Z T0 = 0,85 Z T1 . Решетка для тока короткого замыкания,

В этом случае величина однофазного короткого замыкания больше, чем трехфазный ток короткого замыкания.Такая ситуация может возникнуть в случае «близких» неисправностей на глухозаземленных трансформаторах или заземляющих трансформаторах. Это особенно актуально для трансформаторов со следующими подключениями обмоток:

, где y или z заземлены со стороны низкого напряжения.

В технической литературе можно найти, что токи однофазного короткого замыкания могут в 1,5 раза превышать токи трехфазного короткого замыкания.

В сетях с глухим заземлением электрические устройства должны быть рассчитаны на большее значение тока короткого замыкания.

В незаземленных сетях (изолированных) или в резонансных сетях с заземлением через сопротивление / реактивное сопротивление однофазное короткое замыкание не может произойти (вместо этого в этих сетях происходит замыкание на землю). Следовательно, в этом типе сети значение трехфазного тока короткого замыкания всегда самое высокое.

Список литературы

[1] IEC 60909 — 0: Токи короткого замыкания в трехфазном переменном токе. системы. Часть 0: Расчет токов. Действительно с 1.10.2016.

[2] IEC 60909 — 2: Электрооборудование.Данные для расчета тока короткого замыкания в соответствии с IEC 60909. Действительно с 1.8.2000.

[3] Шлаббах Дж .: Токи короткого замыкания. Институт электротехники и технологий. Лондон, Великобритания, 2005 г.

Как это:

Нравится Загрузка …

Что такое несимметрия напряжения и несимметрия тока?

Проблемы с электропитанием, которые наиболее часто затрагивают промышленные предприятия, включают провалы и выбросы напряжения, гармоники, переходные процессы, а также несимметрию напряжения и тока.

В сбалансированной трехфазной системе фазные напряжения должны быть равными или очень близкими к равным. Несимметрия или дисбаланс — это измерение неравенства фазных напряжений. Неуравновешенность напряжений — это мера разницы напряжений между фазами трехфазной системы. Это снижает производительность и сокращает срок службы трехфазных двигателей.

Воздействие переходных процессов на двигатели может быть серьезным. Изоляция обмотки двигателя может выйти из строя, что может привести к дорогостоящему преждевременному отказу двигателя и незапланированным простоям.

Испытание переходных напряжений в двигателях

Переходные напряжения — временные нежелательные всплески или скачки напряжения в электрической цепи — могут поступать из любого количества источников внутри или за пределами промышленного предприятия.

Включение и выключение смежных нагрузок, конденсаторные батареи для коррекции коэффициента мощности или даже отдаленная погода могут создавать переходные напряжения в распределительных системах. Эти переходные процессы, которые различаются по амплитуде и частоте, могут разрушать или вызывать пробой изоляции в обмотках двигателя.

Поиск источника этих переходных процессов может быть затруднен из-за частоты возникновения и того факта, что их симптомы могут проявляться по-разному.Например, на управляющих кабелях может появиться переходный процесс, который не обязательно напрямую вызывает повреждение оборудования, но может нарушить работу.

Хорошим способом выявления и измерения переходных процессов является использование трехфазного анализатора качества электроэнергии с функцией переходных процессов, такого как анализатор качества электроэнергии и двигателя Fluke 438-II. Функция переходного процесса на измерителе установлена ​​на значение более чем на 50 В выше нормального напряжения. Затем дисплей измерителя покажет потенциально проблемное напряжение выше 50 В — переходные процессы.

Если при первоначальном измерении переходных процессов не обнаружено, рекомендуется измерять и регистрировать качество электроэнергии с течением времени с помощью усовершенствованного промышленного регистратора качества электроэнергии, такого как трехфазный регистратор качества электроэнергии Fluke 1750.

Что вызывает несимметричное напряжение?

Несбалансированная трехфазная система может привести к снижению производительности или преждевременному выходу из строя трехфазных двигателей и других трехфазных нагрузок по следующим причинам:

  • Механические напряжения в двигателях из-за более низкого выходного крутящего момента
  • нормальный ток в двигателях и трехфазных выпрямителях
  • В нейтральных проводниках в трехфазных системах со звездой будет протекать ток дисбаланса

Дисбаланс напряжения на клеммах двигателя вызывает большой дисбаланс тока, который может быть в 6-10 раз больше, чем напряжение дисбаланс.Несбалансированные токи приводят к пульсации крутящего момента, повышенной вибрации и механической нагрузке, повышенным потерям и перегреву двигателя. Несбалансированность напряжения и тока также может указывать на проблемы с обслуживанием, такие как ослабленные соединения и изношенные контакты.

Дисбаланс может возникнуть в любой точке распределительной системы. Нагрузки должны быть равномерно распределены по каждой фазе щитка. Если одна фаза становится слишком нагруженной по сравнению с другими, напряжение на этой фазе будет ниже. Трансформаторы и трехфазные двигатели, питаемые от этой панели, могут нагреваться сильнее, быть необычно шумными, чрезмерно вибрировать и даже преждевременно выходить из строя.

Как рассчитать дисбаланс напряжений

Расчет для определения дисбаланса напряжений прост. Результатом является процентный дисбаланс, который может использоваться для определения следующих шагов при поиске и устранении неисправностей двигателя. Расчет состоит из трех этапов:

  1. Определение среднего напряжения или тока
  2. Расчет наибольшего отклонения напряжения или тока
  3. Разделите максимальное отклонение на среднее напряжение или ток и умножьте на 100% дисбаланс = (Максимальное отклонение от среднего В или I / среднее значение В или I) x 100

Расчет дисбаланса вручную — это определение несимметрии напряжения или тока на определенный момент времени.Анализатор электропривода, такой как Fluke 438-II, покажет дисбаланс напряжения или тока в реальном времени, включая любые отклонения дисбаланса.

Связанные ресурсы

Связанные ресурсы

Трехфазное напряжение + расчеты

Трехфазное электричество. В этом уроке мы узнаем больше о трехфазном электричестве. Мы расскажем, как генерируются 3 фазы, что означают цикл и герц, изобразим форму волны напряжения по мере ее генерации, вычислим однофазное и трехфазное напряжения.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube по трехфазному напряжению + расчеты

Итак, в нашем последнем трехфазном руководстве по мы рассмотрели основы того, что происходит внутри трехфазных систем электроснабжения, и в этом руководстве мы сделаем шаг вперед и немного глубже рассмотрим, как эти системы работают, и основные математика позади них.

Мы используем вилки в наших домах для питания наших электрических устройств. Напряжение от этих вилок варьируется в зависимости от того, где мы находимся.Например: в Северной Америке используется ~ 120 В, в Европе ~ 230 В, в Австралии и Индии ~ 230 В, а в Великобритании ~ 230 В.
Это стандартные напряжения, установленные правительственными постановлениями каждой страны. Вы можете найти их в Интернете, или мы можем просто измерить их дома, если у вас есть подходящие инструменты.

Находясь в Великобритании, я измерил напряжение в стандартной домашней розетке. Вы можете видеть, что я получаю около 235 В на этой вилке, используя простой счетчик энергии. В качестве альтернативы я могу использовать мультиметр, чтобы прочитать это.Значение немного меняется в течение дня, иногда выше, а иногда ниже, но остается в определенных пределах.

Если у вас нет счетчика энергии или мультиметра, они очень дешевые и очень полезные, поэтому я рекомендую вам их приобрести.

Теперь эти напряжения в розетках в наших домах однофазные от соединения звездой. Они возникают в результате соединения одной фазы с нейтралью или, другими словами, только одной катушкой от генератора.
Но мы также можем подключиться к двум или трем фазам одновременно, то есть к двум или трем катушкам генератора, и если мы это сделаем, мы получим более высокое напряжение.

В США мы получаем 120 В от одной фазы или 208 В от двух или трех фаз.
Европа мы получаем однофазный 230 В или 400 В
Австралия и Индия получаем однофазный 230 В или 400 В

Если я подключу осциоскоп к однофазной сети, я получу синусоидальную волну. Когда я подключаюсь ко всем трем фазам, я получаю три синусоиды подряд.

Итак, что здесь происходит, почему у нас разные напряжения?
и почему мы получаем эти синусоидальные волны?

Итак, напомним. Получаем полезную электроэнергию, когда много
электроны движутся по кабелю в том же направлении.Мы используем медные провода, потому что
каждый из миллиардов атомов внутри медного материала имеет слабосвязанные
электрон в самой внешней оболочке. Этот слабо связанный электрон может свободно перемещаться.
между другими атомами меди, и они действительно движутся все время, но случайным образом
направления, которые нам не нужны.

Чтобы заставить их двигаться в одном направлении, мы перемещаем магнит вдоль медной проволоки. Магнитное поле заставляет свободные электроны двигаться в одном направлении. Если мы намотаем медную проволоку в катушку, мы сможем поместить больше атомов меди в магнитное поле и сможем переместить больше электронов.Если магнит движется вперед только в одном направлении, тогда электроны текут только в одном направлении, и мы получаем постоянный или постоянный ток, это очень похоже на воду, текущую в реке прямо из одного конца в другой. Если мы перемещаем магнит вперед, а затем назад, мы получаем переменный или переменный ток, при котором электроны движутся вперед, а затем назад. Это очень похоже на морской прилив, вода постоянно течет назад и вперед снова и снова.

Вместо того, чтобы целый день двигать магнитом вперед и назад,
инженеры вместо этого просто вращают его, а затем помещают катушку медной проволоки вокруг
улица.Мы разделяем катушку на две, но держим их соединенными, а затем размещаем
один сверху и один снизу, чтобы закрыть магнитное поле.

Когда генератор запускается, северный и южный полюсы магнита находятся непосредственно между катушками, поэтому катушка не испытывает никакого эффекта и электроны не движутся. Когда мы вращаем магнит, северная сторона проходит через верхнюю катушку, и это толкает электроны вперед. По мере того, как магнитное поле достигает своего максимума, все больше и больше электронов начинают течь, но затем оно проходит максимум и снова направляется к нулю.Затем южный магнитный полюс встречает и тянет электроны назад, и снова количество движущихся электронов меняется, так как сила магнитного поля изменяется во время вращения.

Если мы построим график изменения напряжения во время вращения, то мы получим синусоидальную волну, в которой напряжение начинается с нуля, увеличивается до максимума, а затем уменьшается до нуля. Затем входит южный полюс и тянет электроны назад, поэтому мы получаем отрицательные значения, снова увеличиваясь до максимального значения, а затем снова опускаясь до нуля.

Эта схема дает нам однофазное питание. Если мы добавим
вторая катушка вращается на 120 градусов относительно первой, тогда мы получаем вторую фазу.
Эта катушка испытывает изменение магнитного поля в разное время по сравнению с
к первой фазе, поэтому форма волны будет такой же, но с задержкой.
Форма волны фазы 2 и не начинается, пока магнит не вращается в
Вращение на 120 градусов. Если мы затем добавим третью катушку, вращающуюся на 240 градусов от
сначала мы получаем третью фазу.Снова эта катушка испытает изменение
магнитное поле в другое время по сравнению с двумя другими, поэтому его волна будет равна
к остальным, за исключением того, что он будет отложен и начнется при 240 градусах
вращение. Когда магнит вращается несколько раз, он в конечном итоге просто образует
непрерывное трехфазное питание с этими тремя формами волны.

Когда магнит совершает 1 полный оборот, мы называем это циклом. Мы измеряем циклы в герцах или Гц. Если вы посмотрите на свои электрические устройства, вы увидите 50 Гц или 60 Гц, это производитель говорит вам, к какому типу источника питания необходимо подключить оборудование.Некоторые устройства могут быть подключены к любому из них.

Каждая страна использует 50 Гц или 60 Гц. Северная Америка, некоторые из
Южная Америка и несколько других стран используют 60 Гц в остальном мире
использует 50 Гц. 50 Гц означает, что магнит совершает 50 оборотов в секунду, 60 Гц означает
магнит совершает 60 оборотов в секунду.

Если магнит совершает полный оборот 50 раз в секунду, что составляет 50 Гц, то катушка в генераторе испытывает изменение полярности магнитного поля 100 раз в секунду (север, затем юг или положительный, затем отрицательный), поэтому напряжение изменяется между положительное значение и отрицательное значение 100 раз в секунду.Если это 60 Гц, то напряжение будет изменяться 120 раз в секунду. Поскольку напряжение подталкивает электроны к созданию электрического тока, электроны меняют направление 100 или 120 раз в секунду.

Мы можем рассчитать, сколько времени требуется для завершения одного поворота, используя формулу Time T = 1 / f.
f = частота. Таким образом, источник питания с частотой 50 Гц занимает 0,02 секунды или 20 миллисекунд, а источник питания 60 Гц — 0,0167 секунды или 16,7 миллисекунды.

Раньше мы видели, что напряжение в розетках
разные во всем мире.

Эти напряжения известны как среднеквадратичное значение или среднеквадратичное значение. Мы рассчитаем это немного позже в видео. Напряжение, выходящее из розеток, не может быть постоянно 120, 220, 230 или 240 В. Мы видели по синусоиде, что она постоянно меняется между положительными и отрицательными пиками.

Например, пики на самом деле намного выше.
В США напряжение на розетке достигает 170 В
Европа достигает 325 В
Индия и Австралия достигает 325 В

Мы можем рассчитать это пиковое или максимальное напряжение по формуле:

Поскольку три фазы испытывают магнитное поле в разное время, если мы сложим их мгновенные напряжения вместе, мы просто получим ноль, потому что они компенсируют друг друга, мы рассмотрим это позже.

К счастью, одному умному человеку пришла в голову идея использовать среднеквадратичное значение напряжения, которое равно средней мощности, рассеиваемой чисто резистивной нагрузкой, которая питается током постоянного тока.

Другими словами, они рассчитали напряжение, необходимое для питания ограничительной нагрузки, такой как нагреватель, питаемый от источника постоянного тока. Затем они выяснили, каким должно быть переменное напряжение, чтобы выделять такое же количество тепла.

Давайте очень медленно повернем магнит в генераторе, а затем вычислим напряжения для каждого сегмента и посмотрим, как это формирует синусоидальную волну для каждой фазы.

ЭКОНОМИЯ ВРЕМЕНИ: Загрузите нашу трехфазную таблицу Excel здесь
USA 👉 http://engmind.info/3-Phase-Excel-Sheet
EU 👉 http://engmind.info/3-Phase-Excel-EU
ИНДИЯ 👉 http://engmind.info/3-Phase-Excel-IN
UK 👉 http://engmind.info/3-Phase-Excel-UK
АВСТРАЛИЯ 👉 http://engmind.info/3-Phase- Excel-AU

Если разделить окружность генератора на
сегментов, разнесенных на 30 градусов, что дает нам 12 сегментов, мы можем видеть, как каждая волна
сделал. Я также нарисую график с каждым из сегментов, чтобы мы могли вычислить
напряжение и построить это.Кстати, вы можете разделить это на столько сегментов, сколько
хотите, чем меньше отрезок, тем точнее расчет.

Сначала нам нужно преобразовать каждый сегмент из градусов в радианы. Мы делаем это по формуле:

Для первой фазы мы вычисляем мгновенное напряжение в каждом сегменте по формуле.
(мгновенное напряжение просто означает напряжение в данный момент времени)

Так, например, при повороте на 30 градусов или 0,524 радиана мы должны получить значение
84.85 для источника питания 120 В
155,56 для источника питания 220 В
162,63 для источника питания 230 В
169,71 для источника питания 240 В

Просто выполните этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Синусоидальные напряжения фазы 1 на 30-градусных сегментах

Теперь, если мы построим график, то мы получим синусоидальную волну, показывающую
напряжение в каждой точке во время вращения. Вы видите, что значения увеличиваются по мере того, как
магнитное поле становится сильнее и заставляет течь больше электронов, затем оно
уменьшается, пока не достигнет нуля, где магнитное поле находится точно между
север и юг через катушку, поэтому это не имеет никакого эффекта.Затем наступает южный полюс
и начинает тянуть электроны назад, поэтому мы получаем отрицательное значение, и оно
увеличивается по мере изменения напряженности магнитного поля южных полюсов.

Для фазы 2 нам нужно использовать формулу

«(120 * pi / 180))» эта конечная часть просто учитывает задержку, потому что катушка находится на 120 градусов от первой.

Пример при 30 градусах для фазы 2 мы должны получить значение
-169,71 для источника питания 120 В
-311,13 для источника питания 220 В
-325.27 для питания 230 В
339,41 для питания 240 В

Так что просто завершите этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Для фазы 3 нам нужно использовать формулу

Пример: при 30 градусах для фазы 3 мы должны получить значение
84,85 для источника питания 120 В
155,56 для источника питания 220 В
162,63 для источника питания 230 В
169,71 для источника питания 240 В

Так что просто завершите этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Теперь мы можем изобразить это, чтобы увидеть форму волны фаз 1.2 и 3 и то, как меняются напряжения. Это наш трехфазный источник питания, показывающий напряжение на каждой фазе при каждом повороте генератора на 30 градусов.

Если мы затем попытаемся суммировать мгновенное напряжение для всех
фазы на каждом сегменте, мы видим, что они компенсируют друг друга. Так что вместо
мы собираемся использовать эквивалентное среднеквадратичное напряжение постоянного тока.

Чтобы сделать это для фазы 1, мы возводим в квадрат мгновенное значение напряжения для каждого сегмента.Сделайте это для всех сегментов для полного цикла.

Затем сложите все эти значения вместе и затем разделите это число на количество сегментов, которое у нас есть, в данном случае у нас есть 12 сегментов. Затем извлекаем квадратный корень из этого числа. Это дает нам среднеквадратичное значение напряжения 120, 220, 230 В или 240 В в зависимости от того, для какого источника питания вы рассчитываете.

Это фазное напряжение. Это означает, что если мы подключим устройство
между любой фазой и нейтралью, тогда мы получаем среднеквадратическое напряжение 120, 220, 230 или
240 В, как если бы у вас дома была розетка.

Сделаем то же самое для двух других фаз. Возведите в квадрат значение каждого мгновенного напряжения.

Если нам нужно больше мощности, мы подключаем между двумя или тремя
фазы. Мы рассчитываем подаваемое напряжение, возводя в квадрат каждый из мгновенных значений.
напряжения на фазу, затем сложите все три значения на сегмент и затем возьмите
квадратный корень из этого числа.

Вы увидите, что трехфазное напряжение выходит на

.

208 В для источника питания 120 В
380 В для источника питания 220 В
398 В для источника питания 230 В
415 В для источника питания 240 В

Мы можем получить два напряжения от трехфазного источника питания.
Мы называем меньшее напряжение нашим фазным напряжением и получаем его, подключая любую фазу к нейтрали. Вот как мы получаем напряжение от розеток в наших домах, потому что они подключены только к одной фазе и нейтрали.

Мы называем большее напряжение линейным напряжением и получаем его, соединяя любые две фазы. Так мы получаем больше энергии от источника питания.

В США, например, многим устройствам требуется 208 В, потому что 120 В просто недостаточно мощно, поэтому нам приходится подключаться к двум фазам.В Северной Америке мы также можем найти системы на 120/240 В, которые работают по-другому.