Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Реле времени на одном транзисторе: Схема простого реле времени для начинающих радиолюбителей

Содержание

Схема простого реле времени для начинающих радиолюбителей

В этом выпуске канала Паяльник TV рассмотрим простую схему. Она представляет из себя несложный таймер, или реле времени. Выполнена всего на одном активном компоненте в виде биполярного транзистора обратной проводимости.  Доступна схема начинающим и опытным радиолюбителям для самостоятельной сборки. Радиодетали дешево в этом китайском магазине.

Элементы таймера.

Несколько слов про элементную базу. Диод D1 можно даже не использовать. Заменить перемычкой. Если решите использовать, то любой маломощный диод, например 1N4007, или любой другой выпрямительный диод. Конденсатор C2 подбирается, если устройство будет питаться от блока питания. Если от аккумулятора, то отпадает нужда в конденсаторе C2, так как он предназначен для фильтрации питания. Резисторы R2 и R1 с мощностью 0,25 Вт. Однако можно и не столь мощные 0,125 Вт. Конденсатор C1 в схеме имеет ёмкость 100 мкФ, но нужно его подобрать. Из него зависит время срабатывания схемы. Напряжение этого конденсатора 16-25 В, поскольку питание у нас само 12 В. Транзистор T1 – любой маломощный транзистор биполярный, обратной проводимости. Можно использовать даже КТ315. В представленной сборке задействован транзистор средней мощности КТ815А. Можно также транзисторы большой мощности, к примеру КТ805, КТ803 даже, КТ819, и так далее.

В эмиттерную цепочку транзистора подключена обмотка электромагнитного реле, для управления мощными сетевыми нагрузками. В случае, если схему будете применять для запитки низковольтных маломощных нагрузок, например, светодиодов, то реле можно убрать и в эмиттерную цепь подключить напрямую сам светодиод.

Как работает схема?

При подключении источника питания, 12 В, к примеру, поступает питание на схему, через ограничительный резистор R2 заряжается конденсатор C1. И как только заряд на конденсаторе достиг определённого уровня, питание через резистор R1 поступает на базу транзистора. Вследствие чего последний открывается, и плюс через переход транзистора подаётся на обмотку электромагнитного реле. Вследствие чего последнее замыкается, включая или выключая сетевую нагрузку.

В представленном варианте в качестве сетевой нагрузки использована обычная лампа накаливания на 220 В. Если хотите управлять сетевыми нагрузками, то обратите внимание именно на параметры реле. Во-первых, катушка реле должна быть рассчитана на напряжение 12 В. Сами контакты должны быть довольно мощными, в зависимости, конечно же, от подключённой нагрузки. То есть, обратите внимание на ток допустимый через контакты.

Время срабатывания реле, то есть, время зарядки конденсатора, в большей степени зависит от резистора R2. Чем выше его номинал, тем медленнее будет заряжаться конденсатор. И, разумеется, от ёмкости самого конденсатора C. Чем выше его номинал, тем дольше он будет заряжаться, значит, тем большее время потребуется на зарядку и срабатывание схемы.

Рассмотрим схему в железе.

Реле имеет катушку на 12 В, об этом говорит маркировка. Также допустимый ток через контакты составляет 10 А при напряжении 250 В, переменном. Транзистор абсолютно не нагревается в схеме. Но поскольку схема имеет довольно большую задержку, с таким раскладом использованных компонентов, было решено изменить сопротивление R2. В схеме 47 кОм было заменено на 4,4 кОм, и этим получена задержку 2-3 с.

Давайте подключим к источнику питания 12 В. Будет использован такой аккумулятор, точное напряжение где-то 10, 8 В. Это три литиевые банки, подключённые последовательным образом. Обратите внимание на светодиод. У нас синий светодиод подключён через ограничительный резистор на 1 кОм. Как только контакты реле замкнутся, подаётся питание на сам светодиод. Обратите внимание на задержку. Где-то 2 с. Разумеется, схема может находиться в включённом состоянии бесконечно долгое время.

Данную схему можно использовать не только в качестве таймера, но и в качестве системы плавного пуска Soft Start. Применяется система импульсных мощных блоков питания. Почему именно советуется в мощных источниках питания импульсных использовать плавный пуск? Потому что при включении схемы в сеть на очень короткое время схема потребляет запредельный ток. Это происходит потому, что в момент включения заряжаются конденсаторы большим током. И вследствие этого другие компоненты схемы, например, диодный мост и так далее, могут не выдерживать такие токи и выйти из строя. Поэтому применяется эта система.

Как работает система плавного пуска в схемах импульсных источников?

При подключении в сеть 220 В через резистор, который имеет некоторое сопротивление и является токогасительным, то есть, ограничивает ток, заряжается через этот резистор мощный электролитический конденсатор, малым током. И как только конденсаторы полностью заряжены, тут уже срабатывает реле и подаётся основное питание по контактам реле на схему импульсного источника питания. Таким образом, к примеру, можно подобрать время заряда конденсатора, настроить тут время срабатывания, и получить довольно хорошую систему для мощных импульсных блоков питания. На этом всё. Такова простая и доступная схема для начинающих радиолюбителей. Еще простая схема реле времени.

обсуждение

radmir tagirov
это пример как не надо делать реле времени. Индуктивная нагрузка должна обязательно шунтироваться диодом. Иначе в одно прекрасное время у вас погорит транзистор. И почему реле подключено к эммитеру?

Serghei
Это не реле времени, а реле задержки! Да и диод ты не туда вставил!

Taras tsaryuk
а диод параллельно реле типа ставить не нужно да!?если не жалко транзистора – когда закроется транзистор и реле обесточится, есть такая фигня как обратный ток, вот в этот момент и транзистору придет полный. Ну в общем как угодно. Если деталей не жалко.

An _
собрал такую схему, только без диода и кондера на входе, и реле заменил на светодиод с последовательно соединенным резистором в 300 ком, транс кт 3102, при подключении к аккуму на приблизительно 12в светодиод плавно начинает светиться и светит, светит, светит.! При меньшем напряжении на источнике питания картина та же. Пробовал менять кондер и резисторы – разница в скорости засвечивания светодиода. Я думал, что он должен засветиться и потухнуть. Где ошибка?

Zahar shoihit
действительно это не урок математики но мне кажется так как статья для начинающих то все-таки стоит объяснить людям, как посчитать время задержки.

Zahar shoihit
как ты получил задержку в две секунды?
Ведь τ=rc 4. 4k*100µf=0. 44сек.
12 вольтовое реле срабатывает где то при 9в.
То есть 3/4 от полного заряда конденсатора.
3/4 от 5τ =(5*0. 44)/4*3=1. 65сек
это в идеале, а по идее и того меньше.

кардан youtube
доброго времени суток. Возможно ли собрать на основе данной схемы реле на 4 контакта с последовательным включением с задержкой в 5 секунд? Хотелось бы использовать нечто подобное в разгоне козлового крана.

дарья новгородова
ребята, оставьте человека в покое со своими вопросами по поводу устройства этого реле. У меня на компрессоре оно уже год отключает пусковые кондёры. А пользуюсь компрессором я довольно часто. А ещё в сигнализации я его применил. Пока проблем не было.

Андрей ф
я не волшебник, а только учусь. Товарищи электронщики поясните пожалуйста, разве базовый ток транзистора у этой схемы через r2, r1 и катушку появляется не с разу. Есть такое предположение, как говорит автор, что транзистор открывается с задержкой в 2 сек, когда на верхней обкладке по мере заряда появляется напряжение, допустим 0, 7 в, достаточное для открытия транзистора и ёмкость конденсатора особой роли не играет. Вот если бы тут стояла кнопка с откидным контактом между r2 и узлом соединения с1 и r1 тогда бы размер ёмкости играл бы свою роль на длительный разряд. Короче говоря, кто может поясните.

Sako grig
напряжение для открывания транзистора 0. 7 в как раз появляется через несколько секунд, время зависит от величины r2 и с1. При увеличении емкости конденсатора 0. 7 в появиться позже, то же самое при увеличении r2, так как уменшится ток зарядки конденсатора. I*t=c*u

андрей ф
спасибо за разъяснение. Собрал схему в мультисим, транзистор поставил 2n6488. Реле подключал и к коллектору и к эммитору. С реле в коллекторной цепи схема ведёт себя приблизительно так как вы написали на базе u= 0, 5в ток открытия 0, 01ма. А когда реле в эммиторной цепи картина другая, напряжение на базе u= 4b ток 0, 01ма и реле вроде бы как срабатывало при 4в. Сопротивление и конденсатор ставил разные, время заряда менялось в обоих случаях.

Sako grig
вообше то я рекомендовал реле подключить в цепь колектора, эмитер заземлять, вместо r1 поставить стабилитрон на 3-4 вольта( что- бы увеличивать время задержки), желательно транзистер взять с большим коэф усиления по току-h31э.

Sako grig
не думаю, что мултисим может разбираться в тонкостях работы разных модификации реле, например у одних, хотя они на 12вольт, напряжение срабатывания 8-9вольт, а напряжение отпускания может быть где то в районе 3-4вольта.

Андрей ф
интересно было лет 20 назад когда цветные телевизоры весили 20 кг и что бы отремонтировать надо было его в ателье везти или на дом мастера вызывать, поэтому самому пришлось прикупить книги и самостоятельно изучать это дело, но моя база всё равно маловата так как подсказать особо было не кому. Собирать и посмотреть как работает схема в мультисим, да почему нет. В интернете очень много роликов но таких, чтобы досконально объяснили работу схемы очень мало. Вот и тут автор мог бы показать на схеме направления токов, напряжения на конденсаторе, на базе транзистора. Тогда бы не было вопросов, а почему реле поставил в цепь эммитера, а не коллктора.

Stas stasovih
подскажи самую простую схему реле задержки отключения? Питание 24в, задержка после отключения питания 60-120 секунд, у меня есть всякое барахло типа пб от компа, и маленькие бп, возможно от туда выдернуть комплектующие?

Sako grig
это зависит от того что подразумевать говоря, отключение,. Если отключение это отключить питающий 24вольт, то спасет только аккумлятор в схеме, если, отключение, надо сделать командной кнопкой, будет другая схема.

Олег мальцев
оно работает? А как? При достижении на базе 0. 7в транзистор откроется и на его эмиттере появится напряжение питания минус напряжение падения на переходе к-э, и по идее он должен закрыться до того момента пока на базе не появится напряжение больше напряжения на эмиттере на 0. 7в. По идее реле нужно включить в коллектор и добавить блокировочный диод. Не?

алекс lamin
а не проще всем одинаково обозначать коненсаторы электролитические плюсом и минусом что такое черное и белое нужно искать людям отдельно тратить время.

Алекс lamin
сотни роликов с названием реле времени чтобы узнать реле включения или выключения нужно досмотреть ролики до конца. А не проще написать в названии. Люди недели тратят на поиски. Не говоря уж об ииотском обозначении изначально любой схемы реле. Где катушка не указывают ни на схеме ни на реле. Вместо привычных знаков скажем нуля и фазы какое то черчение с абстрактным мышлением.

Схемы простых реле времени

Одним из важныхэлементов автоматических устройств являются различные электронные реле времени, предназначенные для получения заданной выдержки времени при включении и выключении различных электрических устройств и, в частности, для автоматического прекращения времени экспонирования фотобумаги через заданный промежуток времени.

Реле времени на транзисторе

На рис. 1 приведена схема электронного реле времени, собранного на транзисторе Т1. Работает реле следующим образом. В коллекторную цепь транзистора включено поляризованное реле РІ, а в цепь базы — конденсатор большой емкости С1, постоянный резистор R1 и переменный резистор R2.

В исходном состоянии контакты 1— 2 секции ВІа переключателя В1 разомкнуты и токи в цепях базы и коллектора отсутствуют В этом положении контактами 3— 4 указанного переключателя конденсатор С1 закорочен.

Рис. 1. Принципиальная схема реле времени на транзисторе.

При включении реле времени контакты 3—4 переключателя В1 будут разомкнуты, а 1— 2 замкнуты, и в цепи базы начнет протекать ток, который зарядит конденсатор СІ до напряжения источника питания Б. После того, как конденсатор С1 зарядится, ток в цепи базы прекращается.

В момент замыкания контактов 1—2 в цепи коллектора будет проходить ток, который больше тока базы в Р раз (b — коэффициент усиления по току транзистора, включенного по схеме с общим эмиттером).

Если этот ток больше тока срабатывания реле Р1, то оно сработает, замкнет свои контакты 1— 2 и включит исполнительную цепь (например, лампу Л фотоувеличителя для фотопечати).

Так как по мере заряда конденсатора С1 ток в цепи базы будет уменьшаться, это вызовет соответствующее уменьшение тока в цепи коллектора. При токе коллектора, равном току отпускания реле Р1, последнее отпустит свой якорь, разомкнет контакты 1— 2 и выключит лампу Л фотоувеличителя.

Для повторного включения реле следует выключить и снова включить переключатель В1, в качестве которого используют обычный сдвоенный перекидной тумблер.

Время заряда конденсатора С1 зависит от его емкости и сопротивлений резисторов R1, R2. Поэтому регулируя величину переменного резистора R2, можно изменять интервал выдержки времени.

При указанных на схеме данных и использовании поляризованного реле типа РП-4, отрегулированного на ток срабатывания 0,8 ма и ток отпускания 0,4 ма, такое электронное реле обеспечивает выдержку времени до 15 сек.

Несколько рекомендаций по налаживанию описанного выше устройства. Прежде чем поляризованное реле РП-4 (паспорт У. 172.22.37) включить в коллекторную цепь транзистора, его необходимо установить в режим однопозиционной работы (с преобладанием).

Затем нужно определить полярность включения обмотки (в схеме используется только высокоомная секция). При правильном включении обмотки реле, коллекторный ток, превышающий ток срабатывания реле, должен вызывать переброску якоря (подвижного контакта) из одного крайнего положения в другое.

В процессе регулировки реле РП-4 необходимо добиться, чтобы ток отпускания был минимальным. Это позволит увеличить время выдержки.

В схеме можно использовать конденсаторы только с малой утечкой. Для более точной установки времени выдержки, которое наносится на шкалу переменного резистора R2, рекомендуется разбить его на несколько поддиапазонов (шкал).

С этой целью в схеме следует предусмотреть дополнительный переключатель для скачкообразного изменения емкости конденсатора С1.

Реле времени на составном транзисторе

Реле времени, собранное по схеме рис. 2, отличается применением составного транзистора (T1, Т2), благодаря чему оно обладает более высокой чувствительностью.

Составной транзистор имеет коэффициент усиления по току, равный произведению коэффициентов усиления по току отдельных транзисторов, и поэтому при одном и том же управляющем токе коллекторный ток получается гораздо большим, чем в предыдущей схеме.

Это позволило отказаться от применения дорогостоящего реле и заменить его обычным электромагнитным.

Рис. 2. Реле времени на составном транзисторе.

Изменение выдержки времени осуществляется плавно — резистором R2 и скачками — переключателем В2. При испытании данной схемы с использованием реле типа РСМ-2 (паспорт 10.171.81.21), у которого из-за разгрузки якоря удалось получить токи срабатывания н отпускания 10 и 4 ма, время выдержки оказалось равным: на первом пределе 1— 6 сек, на втором— 6— 24 и на третьем пределе 24—125 сек.

Каждый из конденсаторов С2, С3 набран из нескольких конденсаторов с минимальным током утечки и рабочим напряжением не менее 10 в. Следует отметить, что пределы выдержки времени зависят от фактической емкости конденсаторов С1— С3 и величины утечки, поэтому они уточняются в процессе налаживания.

Реле времени на транзисторе (вариант 2)

Еще один вариант схемы реле времени на одном транзисторе приведен на рис. 3. В этом реле время выдержки определяется временем разряда конденсатора С1 через резисторы R1. R4 и входную цепь транзистора Т1. Изменяя величину переменного резистора R4, можно плавно изменять время выдержки.

Рис. 3. Второй вариант реле времени на транзисторе, схема.

В исходном состоянии напряжение на конденсаторе С1 равно нулю, а следовательно, на базе транзистора 77 напряжение отсутствует. Ток в цепи коллектора настолько мал, что реле Р1 не срабатывает.

При нажатии на кнопку Кн конденсатор С1 почти мгновенно заряжается до напряжения на выходе выпрямителя. Стоит только отпустить кнопку, как напряжение на конденсаторе С1 будет приложено минусом на базу транзистора, и коллекторный ток резко увеличится.

При этом реле Р1 сработает, замкнет свои нормально разомкнутые контакты 1— 2, и в исполнительную цепь будет подано питание. Якорь реле будет притянут до тех пор, пока конденсатор С1 не разрядится.

По мере разряда конденсатора ток коллектора будет уменьшаться, Когда он станет меньше тока отпускания реле, последнее разомкнет контакты 1— 2 и подача напряжения на исполнительную цепь прекратится.

Время разряда конденсатора С1 в основном определяется переменным резистором R4, шкала которого проградуирована в секундах. Электромагнитное реле Р1 имеет те же параметры, что и в предыдущей схеме.

Трансформатор Тр1 выполнен на сердечнике Ш16, толщина набора 20 мм. Обмотка 1а содержит 1900 витков, а обмотка 16—1400 витков провода ПЭВ-1 0,12. Обмотка II содержит 925 витков провода ПЭВ-0,15. Для получения различных выпрямленных напряжений от 700, 775 и 850-го витка делаются отводы.

Электронное реле времени на лампе

На рис. 4 приведена схема лампового электронного реле времени, предназначенного для получения выдержки времени длительностью 0,5— 60 сек с точностью ±2%. Управление работой реле осуществляется ручкой установки выдержки времени (R1) и кнопкой Кн.

Работает реле времени следующим образом: в исходном положении бумажный конденсатор С2 заряжен до напряжения на выходе выпрямителя и анодный ток имеет величину, достаточную для срабатывания поляризованного реле Р1.

При срабатывании реле РІ замыкаются его контакты 1— 2 и размыкаются контакты 2— 3, тем самым разрывая цепь питания промежуточного реле Р2 и индикаторной лампочки Л2.

Рис. 4. Электронное реле времени на лампе, принципиальная схема.

Для того чтобы начался отсчет времени выдержки, необходимо нажать кнопку Кн. При этом конденсатор С2 практически мгновенно разряжается и на управляющей сетке левого триода лампы Л1 окажется большое отрицательное смещение, лампа запрется, ее анодный ток станет равным нулю, и реле Р1 отключится.

Отключение реле Р1 вызовет размыкание контактов 1—2 (Р1) и начало заряда конденсатора С2. Одновременно при замыкании контактов 2— 3 (реле Р1) включается индикаторная лампочка Л2 и реле Р2. Реле Р2 сработает и контактами 1— 2 (Р2) включит питание на исполнительную цепь — гнезда «Выход». Таким образом, отсчет выдержки времени начинается с момента отключения реле Р1.

По мере заряда конденсатора С2 напряжение на нем возрастает, а следовательно, отрицательное напряжение на управляющей сетке уменьшается. Уменьшение отрицательного напряжения на сетке лампы вызывает увеличение анодного тока. При значении анодного тока, равным току срабатывания реле Р1, последнее срабатывает и выключает питание промежуточного реле Р2 и сигнальной лампочки Л2.

Для повторного включения реле времени необходимо снова нажать на кнопку Кн. Для того, чтобы реле работало в импульсном режиме, необходимо замкнуть «на постоянно» контакты кнопки Кн. В этом случае будет иметь место беспрерывное повторение циклов через промежутки времени порядка 125 мсек.

Указанную величину пауз между циклами можно изменять в достаточно широких пределах, изменяя емкость конденсатора С3. Длительность цикла в широких пределах регулируется переменным резистором R1.

Поляризованное реле Р1 типа РП-4 (паспорт У. 172.20.48). Можно применить реле РП-5 с сопротивлением обмоток 3000— 5000 ом. Реле Р2 электромагнитного тип г. с сопротивлением обмоток 5 ом для работы от напряжения переменного тока 6,3 в.

Трансформатор Тр1 имеет сердечник из пластин Ш16, толщина набора 20 мм. Обмотка 1 содержит 2400 витков провода ПЭЛ 0,15, обмотка II —  4800 витков провода ПЭЛ 0,07, обмотка III— 125 витков провода ПЭЛ 0,62. Практически в конструкции можно использовать любой трансформатор питания от приемников третьего класса, выпускаемых нашей промышленностью.

Приведенные здесь схемы простых реле времени не сложны, их можно собрать из деталей в наличии.

Источник: С. Л. Матлин — Радиосхемы (пособие для радиокружков), 1974г.

3 варианта сборки реле времени своими руками. | МЕГАВОЛЬТ

С помощью электронных реле можно неплохо экономить деньги, к примеру, возьмем свет в коридоре, кладовке или подъезде. Нажимая кнопку, мы включаем свет и через определенное время он автоматически отключается. Этого времени должно хватить на поиски предмета в коридоре, кладовке или попадание в квартиру. К тому же освещение без надобности не горит, если вы забыли его выключить. Это устройство не только полезно, но и очень удобно. В этой статье расскажем, как сделать реле времени своими руками, предоставив все необходимые схемы и инструкции.

Простейший вариант

Пример конструктора для самодельной сборки таймера задержки отключения:

При желании возможно самостоятельно собрать реле времени по следующей схеме:

Времязадающим элементом является конденсатор С1, в стандартной комплектации КИТ-набора он имеет следующие характеристики: 1000 мкФ/16 В, время задержки в этом случае составляет приблизительно 10 минут. Регулировка времени осуществляется переменным резистором R1. Питание платы 12 Вольт. Управление нагрузкой производится через контакты реле. Плату можно не делать, а собрать на макетной плате или навесным монтажом.

Для того, чтобы сделать реле времени, нам понадобятся следующие детали:

Правильно собранное устройство не нуждается в настройке и готово к работе. Данное самодельное реле задержки времени было описано в журнале «Радиодело» 2005.07.

Самоделка на базе таймера NE 555

Другая схема электронного таймера для сборки своими руками также легка и доступна для повторения. Сердцем данной схемы является микросхема интегрального таймера «NE 555». Данный прибор предназначен как для отключения, так и включения устройств, ниже представлена схема устройства:

NE555 – это специализированная микросхема, используемая в построении всевозможных электронных устройств, таймеров, генераторов сигнала и т.д. Она достаточно распространена, поэтому ее можно найти в любом радиомагазине. Данная микросхема управляет нагрузкой через электромеханическое реле, которое можно задействовать как на включение, так и на выключение полезной нагрузки.

Управление таймером осуществляется двумя кнопками: «старт» и «стоп». Для начала отсчета времени необходимо нажать на кнопку «старт». Отключение и возврат устройства в первоначальное состояние осуществляется кнопкой «стоп». Узлом, задающем интервал времени, является цепочка из переменного резистора R1 и электролитического конденсатора C1. От их номинала зависит величина задержки включения реле времени.

При данных номиналах элементов R1 и C1, диапазон времени может быть от 2 секунд до 3 минут. В качестве индикатора состояния работоспособности конструкции используется включенный параллельно катушке реле светодиод. Как и в предыдущей схеме, для ее функционирования требуется дополнительный источник внешнего питания на 12 Вольт.

Для того чтобы реле само включалось сразу при подаче на плату питания, необходимо немного изменить схему: вывод 4 микросхемы соединить с плюсовым проводом, вывод 7 отключить, а выводы 2 и 6 соединить вместе.

Реле на одном транзисторе

Самый простой вариант — использовать схему реле времени всего на одном транзисторе, КТ 973 А, его импортный аналог BD 876. Данное решение также основано на заряде конденсатора до напряжения питания, через потенциометр (переменный резистор). Изюминка схемы заключается в принудительном переключении и разряде емкости через резистор R2 и возвращении исходного начального положения тумблером S1.

При подаче питания на устройство емкость С1 начинается заряжаться через резистор R1 и через R3, открывая тем самым транзистор VT1. Когда емкость зарядится до состояния отключения VT1, обесточивается реле, тем самым отключая или включая нагрузку, в зависимости от назначения схемы и используемого типа реле.

Выбранные вами элементы могут иметь незначительный разброс в номиналах, это не повлияет на работоспособность схемы. Задержка может немного отличаться и зависеть от температуры окружающей среды, а также от величины сетевого напряжения. На фото ниже предоставлен пример готовой самоделки:

Теперь вы знаете, как сделать реле времени своими руками. Надеемся, предоставленные инструкции пригодились вам и вы смогли собрать данную самоделку в домашних условиях!

СХЕМА ПРОСТОГО ТАЙМЕРА

   Вот и наступил выходной. Так как планов никаких не было решил собрать какую нибудь конструкцию. Порывшись на просторах интернета, ничего интересного для себя не нашел. Решил придумать свою. Недолго думая придумал простой таймер. Состоит он из 2 частей. Первая часть это времязадающая цепь, а вторая — транзисторный ключ с подключаемой к нему нагрузкой. 

Схема таймера

   Схема работает следующим образом: при нажатии на кнопку через резистор R3 идет заряд конденсатора С1. Когда конденсатор заряжается, открывается транзистор VT1. Он усиливает транзистор VT2, через который потечет ток нагрузки. Но конденсатор С1 разряжается через резисторы R1 и R2. Чем меньше значение резистора R1 тем быстрее будет разряжаться конденсатор. Резистор R2 стоит для того, чтобы после заряда конденсатора, конденсатор не разряжался моментально. Тем самым мы увеличиваем срок жизни конденсатора.

   Схему решил собирать на одностороннем текстолите длинной 25мм и шириной 20 мм. Дорожки на плате рисовал перманентным маркером, а сверху закрасил краской. Травил в хлорном железе где-то сорок минут. Краску смывал растворителем, после залудил плату. 

   Теперь приступим к пайке. Первым делом паяем транзисторы, так как у них короткие ноги, и поэтому паять сложнее. Потом паяем конденсатор. Затем все резисторы, за ними светодиод, после провода и клеемник. Если все правильно спаять, то схема заработает сразу.

   Транзисторы могут быть заменены на любые n-p-n структуры. Если подключать нагрузку, ток которой выше 50мА, то советую заменить транзистор кт315 на более мощный. Резистор R3 можно заменить на любой другой с сопротивлением 200-1000 Ом.

   Резистор R2 можно заменить на любой другой с сопротивлением 50-1000 Ом. Резистор R1 может быть заменен на постоянный, если не требуется регулировка времени. Резистор R5 может быть заменен на другой с сопротивлением, 7.5-12.5 кОм. Резисторы R6 и R7 лучше оставить без изменения. Конденсатор может быть заменен и на другую емкость. Но его напряжение снижать нельзя.

   Для наглядности работы таймера решил собрать простую пищалку. Плату травить не стал, собрал все на картонке. К этой схеме подключается динамик сопротивлением 50 Ом, который можно достать из телефонных трубок советских телефонов. К конденсатору можно в параллель поставить кнопку с таким же конденсатором, и при нажатии на кнопку звук из динамика будет звучать на несколько тонов ниже. 

   Хотел бы напомнить, что параллельно диоду можно включить электромагнитное реле с током обмотки не более 50 мА (если стоит кт315). А теперь небольшое видео о работе прибора:

   С указанными по схеме номиналами время задержки не большое, но его легко можно увеличить установив ёмкость большего номинала. Схему собрал bkmz268.

   Форум по таймерам

   Форум по обсуждению материала СХЕМА ПРОСТОГО ТАЙМЕРА

3 схемы разной сложности, простой таймер 12В, таймеры на микросхемах

Основной составляющей технического оснащения современного дома может стать сделанное реле времени своими руками. Суть такого контроллера состоит в размыкании и замыкании электрической цепи по заданным параметрам с целью контроля наличия напряжения, например, в осветительной сети.

Предназначение и конструктивные особенности

Самое совершенное такое устройство — это таймер, состоящий с электронных элементов. Его момент срабатывания управляется электронной схемой по заданным параметрам, а само время отпускания реле исчисляется в секундах, минутах, часах или сутках.

По общему классификатору таймеры выключения или включения электрической схемы подразделяются на следующие виды:

  • Устройство механического исполнения.
  • Таймер с электронным выключателем нагрузки, например, построенный на тиристоре.
  • Прибор принцип работы, которого построен на пневматическом приводе выключения и включения.

Конструктивно таймер срабатывания может изготавливаться для установки на ровной плоскости, с фиксатором на DIN рейку и для монтажа на передней панели щита автоматики и индикации.

Также такое устройство по способу подключения бывает переднее, заднее, боковое и втыкаемое через специальный разъемный элемент.  Программирование времени может выполняться с помощью переключателя, потенциометра или кнопок.

Как уже отмечалось, из всех перечисленных видов приборов срабатывания на заданное время, наибольшим спросом пользуется схема реле времени с электронным элементом выключения.

Это объясняется тем, что такой таймер, работающий от напряжения, к примеру, 12v, имеет следующие технические особенности:

  • компактные габариты;
  • минимальные энергетические затраты;
  • отсутствие подвижных механизмов за исключением контактов выключения и включения;
  • широко программируемое задание;
  • большой срок эксплуатации, независимый от циклов срабатывания.

Самое интересное, что таймер просто сделать своими руками в домашних условиях. На практике существуют многие виды схем, дающих исчерпывающий ответ на вопрос как сделать реле времени.

Самый простой таймер 12В в домашних условиях

Наиболее простое решение — это реле времени 12 вольт. Такое реле может быть запитано от стандартного блока питания на 12v, каких очень много продается в различных магазинах.

На рисунке ниже приведена схема устройства включения и автоматического выключения осветительной сети, собранная на одном счетчике интегрального типа К561ИЕ16.

Рисунок. Вариант схемы 12v реле, при подаче питания включающего нагрузку на 3 минуты.

Данная схема интересная тем, что в качестве генератора тактирующих импульсов выступает мигающий светодиод VD1. Частота его мерцаний составляет 1,4 Гц. Если светодиод конкретно такой марки найти не удастся, то можно использовать подобный.

Рассмотрим исходное состояние срабатывания, в момент подачи питания 12v. В начальный момент времени конденсатор С1 полностью заряжается через резистор R2. На выводе под №11 появляется лог.1, делающий данный элемент обнуленным.

Транзистор, подсоединенный к выходу интегрального счетчика, открывается и подает напряжение 12В на катушку реле, через силовые контакты которого замыкается цепь включения нагрузки.

Дальнейший принцип действия схемы, работающей на напряжении 12В, состоит в считывании импульсов, поступающих с индикатора VD1 с частотой 1,4 Гц на контакт №10 счетчика DD1. С каждым снижением уровня поступающего сигнала происходит, так сказать, приращение значения счетного элемента.

При поступлении 256 импульса (это равняется 183 секундам или 3 минутам) на контакте №12 появляется лог. 1. Такой сигнал является командой для закрывания транзистора VT1 и прерывания цепи подключения нагрузки, через контактную систему реле.

Одновременно с этим, лог.1 с вывода под №12 поступает через диод VD2 на тактовую ногу C элемента DD1. Этот сигнал блокирует в дальнейшем возможность поступления тактовых импульсов, таймер срабатывать больше не будет, вплоть до пересброса питания 12В.

Исходные параметры для таймера срабатывания задаются разными способами подсоединения транзистора VT1 и диода VD3, указанных на схеме.

Немного преобразив такое устройство можно сделать схему, имеющую обратный принцип действия. Транзистор КТ814А следует поменять на другой тип — КТ815А, эмиттер подключить к общему проводу, коллектор к первому контакту реле. Второй контакт реле следует подключить к напряжению питания 12В.

Рисунок. Вариант схемы 12v реле, включающего нагрузку через 3 минуты после подачи питания.

Теперь после подачи питания реле будет отключено, а открывающий реле управляющий импульс в виде лог.1 выхода 12 элемента DD1 будет открывать транзистор и подавать на катушку напряжение 12В. После чего, через силовые контакты будет происходить подключение нагрузки к электрической сети.

Данный вариант таймера, функционирующий от напряжения 12В, на отрезке времени 3 минуты будет держать нагрузку в отключенном состоянии, а затем подключит её.

При изготовлении схемы, не забудьте расположить конденсатор ёмкостью 0.1 мкФ, на схеме имеющий обзначение C3 и напряжением 50В как можно ближе к питающим выводам микросхемы, иначе счетчик будет часто сбоить и время выдержки реле будет иногда меньше, чем должно быть.

Интересной особенностью принципа работы данной схемы является наличие дополнительных возможностей, которые легко реализовать.

В частности, это программирование времени выдержки. Применив, к примеру, такой DIP-переключатель как показано на рисунке, вы можете соединить одни контакты переключателей с выходами счетчика DD1, а вторые контакты объединить вместе и подключить к точке соединения элементов VD2 и R3.

Таким образом, с помощью микропереключателей вы сможете программировать время выдержки реле.

Подключение точки соединения элементов VD2 и R3 к различным выходам DD1 изменит время выдержки следующим образом:

Номер ноги счётчика Номер разряда счётчика Время выдержки
7 3 6 сек
5 4 11 сек
4 5 23 сек
6 6 45 сек
13 7 1.5 мин
12 8 3 мин
14 9 6 мин 6 сек
15 10 12 мин 11 сек
1 11 24 мин 22 сек
2 12 48 мин 46 сек
3 13 1 час 37 мин 32 сек

Комплектация схемы элементами

Чтобы изготовить такой таймер, работающий на напряжении 12v требуется правильно подготовить детали схемы.

Элементами схемы являются:

  • диоды VD1 – VD2, имеющие маркировку 1N4128, КД103, КД102, КД522.
  • Транзистор, подающий напряжение 12v на реле — с обозначением КТ814А или КТ814.
  • Интегральный счетчик, основа принципа работы схемы, с маркировкой К561ИЕ16 или CD4060.
  • Светодиодное устройство серии ARL5013URCB или L816BRSCB.

Здесь важно помнить, что при изготовлении самодельного устройства необходимо применять элементы, указанные в схеме и соблюдать правила техники безопасности.

Простая схема для новичков

Начинающим радиолюбителям можно попробовать сделать таймер, принцип действия которого максимально прост.

Тем не менее, таким простым устройством можно включать нагрузку на конкретное время. Правда, время на которое подключается нагрузка всегда одно и то же.

Алгоритм работы схемы заключается в следующем. При замыкании кнопки, имеющей обозначение SF1, конденсатор C1 полностью заряжается. Когда она отпускается, указанный элемент C1 начинает разряжаться через сопротивление R1 и базу транзистора, имеющего обозначение в схеме — VT1.

На время действия тока разрядки конденсатора C1, пока его достаточно для поддержания транзистора VT1 в открытом состоянии, реле K1 будет во включенном состоянии, а затем отключится.

Указанные номиналы на элементах схемы обеспечивают длительность работы нагрузки на протяжении 5 минут. Принцип действия устройства такой, что время выдержки зависит от ёмкости конденсатора C1, сопротивления R1, коэффициента передачи тока транзистора VT1 и тока срабатывания реле K1.

При желании вы можете изменить время срабатывания изменив ёмкость C1.

Где купить

Приобрести таймер или реле времени можно как в специализированном магазине, так и онлайн в Интернет-магазине. Во втором случае, особого внимания заслуживает бюджетный вариант приобретения изделий на сайте Алиэкспресс. Для некоторых приборов есть вариант отгрузки со склада в РФ, их можно получить максимально быстро, для этого при заказе выберите «Доставка из Российской Федерации»:

Видео по теме

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Pinterest

Простая схема реле времени, задержки выключения нагрузки на одном полевом транзисторе, как ее сделать.

Порой возникает необходимость в выключении тех или иных электронных устройств через определенный промежуток времени в автоматическом режиме. К примеру, всем известный электронный мультиметр типа DT830 (самая простая модель тестера) не имеет внутри себя автоматического выключения. И когда забываешь после измерений его выключать, то к следующему измерению его батарейка уже успевает полностью разрядится. Естественно, это нуждается в доработке. В более дорогостоящих мультиметрах такая функция имеется, и если тестером не пользуешься несколько минут, то он автоматически выключается. Вот эту схему, что я предлагаю на Ваше рассмотрение, как раз и можно использовать для подобных случаев. И как видно сама схема автоматического выключения электрической нагрузки через заданное время очень проста.

Ну, а для новичков поясню сам принцип действия этой схемы. Итак, по сути эта схема является схемой самого обычного реле времени, только роль реле тут выполняет полевой транзистор n-типа, с индуцируемым каналом. Как известно, полевые транзисторы подобного типа имеют три вывода – затвор, исток и сток. Канал сток-исток является силовым, через который протекает основной ток относительно большой величины.

И в изначальном состоянии, когда между управляющим каналом затвор-исток нет нужного напряжения, этот полевой транзистор закрыт. В таком состоянии его силовой переход имеет бесконечно большое сопротивление. Но как только мы подадим на управляющий канал затвор-исток нужное напряжение, то силовой канал откроется. Именно у этого транзистора (BS170), что стоит в схеме, сопротивление канала сток-исток в полностью открытом состоянии равно 5 Ом. Что для небольших нагрузок является крайне незначительным сопротивлением.

Основные характеристики полевого транзистора BS170:

» тип проводимости – n-канальный;
» максимальный ток сток-исток – до 0,5 А;
» максимальная рассеиваемая мощность – 0,83 Вт;
» пороговое напряжение открытия транзистора – 3 В;
» максимальное напряжение между сток-исток – до 60 В;
» максимальное напряжение между затвор-исток – до 20 В;
» сопротивление канало сток-исток в открытом состоянии – 5 Ом;
» максимальная температура канала – 150 °C;

Итак, на вход схемы автоматического отключения нагрузки подается постоянное напряжение от источника питания (к примеру 9 вольтовой батарейки). Плюс с входа сразу идет на выход схемы. А вот минус входа проходит через силовой переход сток-исток полевого транзистора, который в изначально состоянии полностью закрыт и не проводит через себя ток. То есть, изначально на выходе схемы отсутствует напряжение для питания нагрузки. Чтобы транзистор открылся, мы должны на его затвор подать положительный потенциал, а на исток отрицательный. Минус сразу подается на исток от источника питания, а вот плюс проходит через нормально разомкнутый выключатель B1. Параллельно управляющему переходу транзистора стоят электролитический конденсатор и подстроечный (или можно взять переменный) резистор.

Когда мы кратковременно нажимаем  переключатель B1, то полюс от источника питания поступает на затвор полевика и открывает его. При этом также происходит быстрая зарядка емкости конденсатора C1. И когда уже кнопка B1 отпущена, и через нее плюс не подается на затвор, то транзистор остается открытым из-за наличия электрического заряда на конденсаторе. Ну, а чтобы был эффект реле времени в данной схеме, то есть произошло закрытие полевого транзистора через определенное время, параллельно конденсатору стоит сопротивление, которое с некоторой скоростью разряжает его. И чем меньше будет сопротивление R1, тем быстрее разрядится конденсатор и закроется полевой транзистор.

В итоге работа схемы такова. Изначально на выходе схемы напряжения питания нагрузки отсутствует. Мы кратковременно нажимает переключатель B1. Конденсатор заряжается, а транзистор открывается, на выходе схемы появляется напряжение питания нагрузки. Поскольку резистор разряжает конденсатор, то спустя определенное время, когда величина напряжения на конденсаторе достигнет порогового уровня закрытия полевого транзистора VT1 (а это 3 вольта), то транзистор закроется и на выходе схемы пропадет напряжение питания нагрузки. Вот такая простая работа у данной схемы. Причем стоит заметить, что время ожидания схемы перед закрытием полевика зависит как от резистора, так и от емкости конденсатора. Чем больше будет емкость у конденсатора C1, и чем меньше сопротивление резистора R1, тем это время будет больше. Само же время может быть от нуля до очень много (часы, а то и больше).

Эта схема реле времени на полевом транзисторе может работать с нагрузками, у которых ток потребления до пол ампера (0,5 А). Поскольку такой максимальный ток имеет силовой переход полевого транзистора. Если этого тока Вам будет мало, то просто стоит в схему поставить другой полевой транзистор подобного типа с нужной величиной максимального тока силового перехода полевика. Естественно, при выборе обращайте внимание на сопротивление перехода сток-исток в открытом состоянии. По возможности его сопротивление должно быть как можно меньше. Это положительно повлияет на экономию электроэнергии и уменьшит нагрев транзистора при его работе.

Помимо этого учтите, что обычно у полевых транзисторов подобного типа максимальное напряжение перехода затвор-исток около 20 вольт. Это значит, что напряжение питания на входе схемы не должно превышать этого значения, поскольку в противном случае полевик попросту выйдет из строя. Если все же имеется такая необходимость в напряжении более 20 вольт, то параллельно переходу затвор-исток нужно поставить стабилитрон, который будет ограничивать напряжение на данном переходе полевика, что защитит его от выхода из строя. Ну, и конденсатор C1 должен быть рассчитан на напряжение чуть более, чем напряжение на входе схемы. Иначе, он также может испортится.

Видео по этой теме:

P.S. Естественно, данную схему автоматического выключения электронной нагрузки через заданное время можно использовать не только для мультиметров. Как я сказал вначале, это аналого схемы обычного реле времени, только вместо реле тут стоит полевой транзистор. Так что схема может работать с любыми электрическими, электронными нагрузками постоянного тока, которые нуждаются в автоматическом отключении через нужный интервал времени.

Как сделать реле времени своими руками — схема, инструкция

Реле времени в механическом исполнении используются уже давно, простейшим примером можно считать песочные часы, когда определенный объем песка с верхней части пересыпается в нижнюю через отмеренные промежутки времени. После этого под весом песка в движение приводится механическое устройство. Часы с кукушкой — тоже простое механическое реле времени, где груз на цепочке приводит шестереночный механизм в движение, а через определенные промежутки времени выдвигается кукушка.

Пример механического таймера с кукушкой

В старых стиральных машинах заводился механический таймер, через установленное время он замыкал контакты, включая электродвигатель. С появлением электричества механические устройства вытеснило электронное реле времени, современные часы с режимом таймера полностью изготавливаются на электронных элементах. Но задачи остаются прежними: включение и выключение определенных электронных приборов, электродвигателей, которые приводят в движение механические устройства. Иногда на сложных конвеерных технологических процессах это устройство называют реле задержки. Сегодня при доступности электронных деталей вопрос «Как сделать реле времени?» трудностей не вызывает.

Классификация таймеров и конструктивные особенности

Все таймеры можно разделить по конструктивному исполнению:

  • простой таймер механического устройства, примером может служить таймер стиральной машины старого образца РВЦ-6-50;

Механический таймер для стиральной машины

  • таймеры с электронными элементами включения нагрузки в сеть — таким элементом может быть тиристор, само реле времени на транзисторах или микросхемах. Роль элемента задержки включения выполняет электролитический конденсатор;

Пример электронного таймера для подключения розеток

  • с пневматическими приводами включения и отключения устройств.

По способу установки:

  • производители бытовой техники и специальной аппаратуры устанавливают таймеры в корпус, кнопки управления выводятся на переднюю панель;
  • самодельное реле времени можно поставить где угодно в зависимости от потребностей и фантазий производителя. Раньше автолюбители устанавливали реле времени 12 В питания на включение подогрева масла в поддоне. 12 В в данном случае — очень удобное бортовое питание автомобиля от аккумулятора: не требуется дополнительного источника питания, низкое потребление энергии, аккумулятор не разрядится.

Часто таймеры ставят в распределительных шкафах на DIN-рейках вместе с защитными автоматами

Поэтому размеры и крепления соответствуют этим стандартам.

По способу подключения:

  • расположение элементов подключения может быть спереди, сзади или боковое;
  • провода питания и управления выведены из корпуса и подключаются пайкой или болтовыми соединениями в распределительных устройствах;
  • на корпусе установлены разъемы для подключения.

По элементам управления и программирования:

  • пакетным переключателем;
  • потенциометром;
  • кнопками.

Все эти конструктивные особенности реле времени производителями используются с учетом условий расположения таймеров и их функционального назначения, самоделки могут сочетать в одном изделии совокупность всех вариантов.

Достоинства и недостатки различных видов таймеров

Статистика показывает, что наиболее востребованы реле времени с электронными элементами включения и отключения нагрузки. Это объясняется целым рядом преимуществ:

  • компактные габариты;
  • незначительные затраты электроэнергии;
  • широкий диапазон выбора источников питания, есть модели 12 В постоянного тока или 220 В переменного;
  • отсутствие механических приводов;
  • большой выбор опций программирования;
  • длительный срок эксплуатации, электронный таймер не ограничивает количества срабатываний, как механические устройства;
  • легко демонтируется и подключается к другому оборудованию.

Схемы этих устройств не сложные, кто владеет начальными знаниями в области электроники и практическими навыками монтажной пайки, может сделать реле времени своими руками.

Реле времени своими руками

Рассмотрим один из простых способов, как сделать реле времени дома своими руками, модели транзисторного исполнения самые доступные. Для этого не понадобится много деталей:

                              
Схема реле времени на одном транзисторе

При включении тумблера S1 конденсатор С1 заряжается до уровня питающего напряжения 9–12 В через переменный резистор R1 и R3, ключ транзистора VT1 открывается. После зарядки конденсатора транзистор закрывается и обесточивает реле, в зависимости от конструкции группы контактов нагрузка выключается или подключается.

Регулировка времени зарядки осуществляется резистором R1, опытным путем, на корпусе таймера, сделанного своими руками, можно нанести градуировку по минутам до момента срабатывания. Выключение тумблера S1 приводит к полной разрядке конденсатора через резистор R2, процесс работы циклический, после разрядки таймер приводится в исходное состояние.

Самодельный таймер имеет простую схему, очень неприхотливую, номиналы элементов не критичны, после правильной сборки не требует отладки, работает сразу, поэтому для собрать его своими руками несложно. В качестве источника питания можно использовать батарейки на 9 В, аккумуляторы на 12 В или сетевое питание на 220 В, через преобразователь напряжения в 12 В постоянного тока.

Реле для подключения нагрузки

Часто реле времени делают на реле с питанием электромагнита 12 В, как у производителя FUJITSU-TAKAMISAWA (Япония). Это очень удобно, контакты на нагрузку выдерживают 220 В / 2 А.

Похожие статьи:

Транзисторная цепь задержки | Блог инженера-цыгана

Схема задержки транзистора может быть полезна при изучении некоторых основ электроники. Схема довольно простая. Он содержит только транзистор, конденсатор, несколько резисторов, переключатель и светодиод. В схеме используется RC-фильтр для включения светодиода с небольшой задержкой. Давайте посмотрим, как мы можем выбрать элементы для схемы и как задержка зависит от параметров элементов.

Ниже вы можете увидеть схему.Светодиод подключен к коллектору транзистора. Резистор R1 ограничивает ток, чтобы не повредить светодиод. Транзистор Q1 и резистор R2 образуют переключатель. Транзистор управляется RC-фильтром, который состоит из переменного резистора R3 и конденсатора C1. RC-фильтр определяет задержку.

Как работает схема задержки транзистора

Сначала конденсатор не заряжается, и переключатель S1 выключен. Это означает, что на базу транзистора не поступает ток, и светодиод не горит.Если зажать кнопку S1, конденсатор начинает заряжаться. Резистор R3 определяет, насколько быстро заряжается конденсатор. Чем больше сопротивление R3, тем медленнее заряжается конденсатор. В RC-фильтре реализован делитель напряжения. Во время зарядки конденсатора напряжение на конденсаторе растет. Это означает, что чем больше заряжен конденсатор, тем большее напряжение подается на базу транзистора. Через некоторое время напряжение, приложенное к базе транзистора, становится достаточно высоким, чтобы открыть транзистор.Ток начинает течь через транзистор, и светодиод загорается.

Задержку можно регулировать изменением сопротивления переменного резистора R3.

Выбор комплектующих для схемы транзисторной задержки

Давайте посмотрим, как мы можем выбрать элементы для схемы задержки транзистора.

Мы используем стандартный светодиод со следующими параметрами

  • \ (V_ {led} = 2V \) — падение напряжения
  • \ (I_ {led (max)} = 20mA \) — максимальный прямой ток

Далее мы используем транзистор 2N3904.Это NPN-транзистор, который имеет следующие параметры в соответствии с его таблицей данных

.

  • \ (V_ {CA (sat)} = 0.2V \) — падение напряжения между коллектором и эмиттером
  • \ (V_ {BE (sat)} = \ frac {V_ {BE (Sat) max} + V_ {BE (sat) min}} {2} = \ frac {0.85V + 0.65V} {2} = 0.75V \) — среднее падение напряжения между базой и эмиттером
  • \ (H_ {fe} = \ frac {I_ {c }} {I_ {b}} = 30 \) — наименьшее усиление по току транзистора

Выбор токоограничивающего резистора для светодиода

Рассчитаем номинал резистора R1, ограничивающего ток светодиода.

Напряжение питания \ (V_ {s} = 3V \). Давайте установим ток светодиода равным \ (I_ {led} = 10 мА = 0,01 А \), что меньше максимально допустимого тока для светодиода. Этого тока должно хватить для включения светодиода. \ (I_ {led} \) также ток коллектора \ (I_ {c} \):

\ (I_ {c} = I_ {led} \)

Теперь мы можем применить закон Ома для вычисления R1:

\ (R1 = \ frac {V_ {s} — V_ {led} — V_ {CA (sat)}} {Ic} = \ frac {3V — 2V — 0.2V} {0.01A} = 80 Ом \)

Можно подобрать стандартный резистор на 100 Ом.

Выбор базового резистора под транзистор

Во-первых, давайте вычислим базовый ток, при котором транзистор остается открытым.

\ (Ib = \ frac {I_ {c}} {H_ {fe}} = \ frac {10 мА} {30} = 0,33 мА \)

Чтобы убедиться, что транзистор включается полностью, давайте добавим коэффициент два для безопасности и используем базовый ток \ (I_ {b} = 0,7 мА = 0,0007 А \)

Теперь мы можем применить закон Ома и вычислить R2

.

\ (R2 = \ frac {V_ {s} — V_ {BE (sat)}} {I_ {b}} = \ frac {3V — 0.75V} {0.0007A} = 3214Ом = 3.2КОм \)

Можем подобрать резистор стандартный на 3,3 кОм.

Как RC-фильтр определяет задержку

Задержка связана со временем зарядки конденсатора C1. Время зарядки конденсатора связано с произведением \ (R3 * C1 \)

\ (\ тау = R3 * C1 \)

Это время, необходимое для зарядки конденсатора через резистор от начального напряжения заряда, равного нулю, до примерно 63,2% от значения приложенного напряжения.

Время нарастания от 20% до 80% можно рассчитать следующим образом:

\ (t_ {r} = 1.4 \ тау \)

Если у нас конденсатор C1 470 мкФ, а резистор R3 200 кОм, то приблизительная максимальная задержка будет

.

\ (t_ {r} = 1,4 * 200кОм * 470мкФ = 1,4 * 200000Ом * 0,00047F = 131с \)

Обратите внимание, что на самом деле светодиод включается намного быстрее. Это происходит потому, что транзистор начинает открываться еще до того, как конденсатор заряжается до 80%. Через некоторое время, когда напряжение на базе станет достаточно высоким, ток коллектора начнет немного расти. В результате загорится светодиод.

Список литературы

  1. Ohm’s_law
  2. Резистор
  3. Конденсатор
  4. Light-emitting_diode
  5. Транзистор
  6. Основы транзисторов
  7. RC-схема
  8. RC-постоянная времени
  9. LED datasheet
  10. 2N3904 datasheet

Если вы нашли орфографическую ошибку , пожалуйста, сообщите нам, выделив этот текст и нажав Ctrl + Enter .

Принципиальная схема таймера задержки включения

с реле, принципиальная схема таймера задержки включения питания

Таймер задержки включения питания любого устройства для защиты

Контур 1

Схема таймера задержки включения

Таймер задержки — это устройство, которое используется в течение некоторого времени перед включением основного входного источника питания любого оборудования.Это схема защиты для защиты любого электрического или электронного оборудования и приборов от внезапно повышенного или нестабильного напряжения.

Таймер задержки на какое-то время задерживает подачу, а затем начинает течь. Это делается с помощью схемы таймера реле задержки. Здесь я представляю очень простую и простую схему таймера задержки включения, которая сделана с использованием 2 транзисторов, нескольких резисторов и конденсатора. В этой схеме не используется никакой таймер, поэтому конструкция этого проекта проста.

Используйте конденсатор не менее 2200 мкФ 25 В и подключите резистор 5 кОм параллельно этому конденсатору для быстрой разрядки. При включении схемы конденсатор начинает заряжаться, и количество энергии идет на конденсатор до заряда, через несколько секунд он полностью заряжается. После того, как конденсатор полностью заряжен, ток начинает идти на PNP-транзистор BC558 и через резистор 100 кОм на базе этого транзистора, он включается, а затем питание проходит через этот транзистор и поступает на NPN BC548 через резистор 5 кОм. .И этот транзистор тоже включен, и теперь активировано подключенное реле. Временная задержка, обусловленная продолжительностью заряда конденсатора. При отключении этой цепи конденсатор разряжается, и он готов к следующему разу, чтобы обеспечить время задержки.

Я предлагаю использовать реле PCB небольшого размера на 12 В, 20 А. Если вам нужно больше времени, подключите конденсатор емкостью более 2200 мкФ или подключите больше параллельно.

Компоненты

Конденсатор 2200 мкФ 25В-1

Резистор

5 тыс. -2

1к-1

100 тыс.-2

Транзистор

BC558-1

BC548-1

Контур 2

Эта схема определяет продолжительность заряда и разряда конденсаторов.В цепи используется резистор 56 кОм для разряда конденсатора С1. Транзистор Q1 получит небольшое напряжение на своем базовом выводе для включения, и этот единственный транзистор дает очень меньший ток, который не может активировать реле, поэтому другой транзистор соединен с эмиттером первого транзистора для создания высокого выходного тока. эта комбинация двух транзисторов называется парой Дарлингтона. В паре транзисторов Дарлингтона база 2-го транзистора получит небольшое напряжение с эмиттера 1-го транзистора.в этой паре выход станет выше.

Детали

Резисторы

220К-1, 56К-1, 2.2К- 1

Предустановка 220K-1

Конденсатор 220 мкФ 25В -1

Транзистор 2N2222-2

Реле 12В

Диод 1N4007-1

Светодиод-1

Также прочтите

Как конденсаторный блок постоянного тока, но проходит переменный ток

Короткое замыкание Autocut для DC

Твердотельное реле с использованием симистора TRIAC и оптопары

Цепь релейного переключателя

и цепь переключения реле

Преимущество реле в том, что для управления катушкой реле требуется относительно небольшое количество энергии, но само реле может использоваться для управления двигателями, нагревателями, лампами или цепями переменного тока, которые сами могут потреблять намного больше электроэнергии.

Электромеханическое реле — это выходное устройство (исполнительный механизм), которое бывает самых разных форм, размеров и конструкций и имеет множество применений и применений в электронных схемах. Но в то время как электрические реле могут использоваться, чтобы позволить схемам электронного или компьютерного типа малой мощности переключать относительно высокие токи или напряжения, как «ВКЛ», так и «ВЫКЛ», для управления им требуется некоторая форма схемы релейного переключателя .

Конструкция и типы схем переключения реле огромны, но многие небольшие электронные проекты используют транзисторы и полевые МОП-транзисторы в качестве основного переключающего устройства, поскольку транзистор может обеспечивать быстрое переключение постоянного тока (ВКЛ-ВЫКЛ) для управления катушкой реле от различных источников входного сигнала. Итак, вот небольшая коллекция некоторых наиболее распространенных способов переключения реле.

Цепь релейного переключателя NPN

Типичная схема релейного переключателя имеет катушку, управляемую транзисторным переключателем NPN, TR1, как показано, в зависимости от уровня входного напряжения. Когда базовое напряжение транзистора равно нулю (или отрицательно), транзистор отключен и действует как разомкнутый переключатель. В этом состоянии ток коллектора не течет, и катушка реле обесточена, потому что, будучи устройствами тока, если ток не течет в базу, то ток не будет проходить через катушку реле.

Если теперь в базу подается достаточно большой положительный ток для насыщения NPN-транзистора, ток, протекающий от базы к эмиттеру (от B к E), управляет большим током катушки реле, протекающим через транзистор от коллектора к эмиттеру.

Для большинства биполярных переключающих транзисторов величина тока катушки реле, протекающего в коллектор, будет где-то в 50-800 раз больше, чем ток базы, необходимый для приведения транзистора в состояние насыщения. Текущее усиление или бета-значение (β) показанного BC109 общего назначения обычно составляет около 290 при 2 мА (техническое описание).

Цепь релейного переключателя NPN

Обратите внимание, что катушка реле является не только электромагнитом, но и индуктором.Когда питание подается на катушку из-за переключающего действия транзистора, максимальный ток будет протекать в результате сопротивления катушки постоянному току, как определено законом Ома (I = V / R). Часть этой электроэнергии хранится в магнитном поле катушки реле.

Когда транзистор переключается в положение «ВЫКЛ», ток, протекающий через катушку реле, уменьшается, и магнитное поле исчезает. Однако накопленная энергия в магнитном поле должна куда-то уйти, и на катушке возникает обратное напряжение, которое пытается поддерживать ток в катушке реле.Это действие вызывает всплеск высокого напряжения на катушке реле, который может повредить переключающий NPN-транзистор, если ему позволено накапливаться.

Итак, чтобы предотвратить повреждение полупроводникового транзистора, к катушке реле подключен «диод маховика», также известный как диод свободного хода. Этот диод маховика ограничивает обратное напряжение на катушке примерно до 0,7 В, рассеивая накопленную энергию и защищая переключающий транзистор. Диоды маховика применимы только при питании поляризованным постоянным напряжением.Катушка переменного тока требует другого метода защиты, и для этого используется демпферная RC-цепь.

Цепь переключателя реле Дарлингтона NPN

Предыдущая схема транзисторного реле-переключателя NPN идеально подходит для переключения небольших нагрузок, таких как светодиоды и миниатюрные реле. Но иногда требуется переключить катушки реле большего размера или токи, выходящие за пределы диапазона транзистора общего назначения BC109, и это может быть достигнуто с помощью транзисторов Дарлингтона.

Чувствительность и коэффициент усиления по току схемы релейного переключателя можно значительно увеличить, используя пару транзисторов Дарлингтона вместо одного переключающего транзистора.Пары транзисторов Дарлингтона могут состоять из двух отдельно подключенных биполярных транзисторов, как показано, или поставляться как одно устройство со стандартными соединительными выводами базы, эмиттера и коллектора.

Два NPN-транзистора соединены, как показано, так что ток коллектора первого транзистора TR1 становится током базы второго транзистора TR2. Приложение положительного базового тока к TR1 автоматически включает переключающий транзистор TR2.

Цепь переключателя реле Дарлингтона NPN

Если два отдельных транзистора сконфигурированы как переключающая пара Дарлингтона, то между базой и эмиттером главного переключающего транзистора TR2 обычно помещается небольшой резистор (от 100 до 1000 Ом), чтобы гарантировать его полное выключение.Опять же, диод маховика используется для защиты TR2 от обратной ЭДС, генерируемой, когда катушка реле обесточена.

Цепь переключателя реле повторителя эмиттера

Помимо стандартной конфигурации общего эмиттера для схемы релейного переключателя, катушка реле также может быть подключена к выводу эмиттера транзистора для формирования цепи эмиттерного повторителя. Входной сигнал подключается непосредственно к базе, а выходной сигнал берется из нагрузки эмиттера, как показано.

Цепь переключателя реле повторителя эмиттера

Конфигурация с общим коллектором или эмиттерным повторителем очень полезна для приложений согласования импеданса из-за очень высокого входного импеданса, порядка сотен тысяч Ом, при относительно низком выходном сопротивлении для переключения катушки реле.Как и в предыдущей схеме релейного переключателя NPN, переключение происходит путем подачи положительного тока на базу транзистора.

Цепь переключателя реле Дарлингтона эмиттера

Это версия транзистора Дарлингтона предыдущей схемы эмиттерного повторителя. Очень небольшой положительный базовый ток, приложенный к TR1, вызывает гораздо больший ток коллектора, протекающий через TR2 из-за умножения двух значений Beta.

Цепь переключателя реле Дарлингтона эмиттера

Схема релейного переключателя Дарлингтона с общим эмиттером полезна для обеспечения усиления по току и мощности с коэффициентом усиления по напряжению, приблизительно равным единице.Другой важной характеристикой схемы эмиттерного повторителя этого типа является то, что она имеет высокий входной импеданс и низкий выходной импеданс, что делает ее идеальной для согласования импеданса с большими катушками реле.

Цепь реле реле PNP

Помимо переключения катушек реле и других подобных нагрузок с помощью биполярных транзисторов NPN, мы также можем переключать их с помощью биполярных транзисторов PNP. Схема переключателя реле PNP не отличается от схемы переключения реле NPN с точки зрения ее способности управлять катушкой реле.Однако для этого требуются разные полярности рабочих напряжений. Например, напряжение коллектор-эмиттер Vce должно быть отрицательным для типа PNP, чтобы ток протекал от эмиттера к коллектору.

Цепь переключателя реле PNP

Схема транзистора PNP работает противоположно схеме переключения реле NPN. Ток нагрузки течет от эмиттера к коллектору, когда база смещена в прямом направлении с напряжением, которое более отрицательно, чем на эмиттере.Чтобы ток нагрузки реле протекал через эмиттер к коллектору, и база, и коллектор должны быть отрицательными по отношению к эмиттеру.

Другими словами, когда Vin имеет высокий уровень, PNP-транзистор выключается, как и катушка реле. Когда Vin имеет значение LOW, базовое напряжение меньше напряжения эмиттера (более отрицательное), и транзистор PNP включается. Значение базового резистора устанавливает базовый ток, который устанавливает ток коллектора, который управляет катушкой реле.

Транзисторные переключатели

PNP могут использоваться, когда сигнал переключения является обратным для транзистора NPN, например, на выходе затвора CMOS NAND или другого такого логического устройства.Логический выход CMOS имеет мощность возбуждения, равную логическому 0, чтобы потреблять ток, достаточный для включения транзистора PNP. Тогда приемники тока можно превратить в источники тока с помощью транзисторов PNP и источника питания противоположной полярности.

Цепь переключателя реле коллектора PNP

Работа этой схемы такая же, как и у предыдущей схемы переключения реле. В этой схеме релейного переключателя нагрузка реле была подключена к коллектору транзисторов PNP. Переключение транзистора и катушки в положение ВКЛ-ВЫКЛ происходит, когда Vin имеет низкий уровень, транзистор «включен», а когда Vin имеет высокий уровень, транзистор «выключен».

Цепь переключателя реле коллектора PNP

Мы видели, что либо биполярный транзистор NPN, либо биполярный транзистор PNP могут работать как переключатель для переключения реле или любой другой нагрузки в этом отношении. Но есть два разных состояния, которые нужно понимать, поскольку ток течет в двух разных направлениях.

Итак, в транзисторе NPN к базе подается ВЫСОКОЕ напряжение относительно эмиттера, ток течет от коллектора к эмиттеру, и транзистор NPN переключается в положение «включено».Для транзистора PNP низкое напряжение по отношению к эмиттеру прикладывается к базе, ток течет от эмиттера к коллектору, и транзистор PNP переключается в положение «включено».

Цепь переключателя реле N-канального МОП-транзистора

Операция переключения реле

MOSFET очень похожа на операцию переключения биполярного переходного транзистора (BJT), показанную выше, и любая из предыдущих схем может быть реализована с использованием MOSFET. Однако есть некоторые существенные различия в работе схем полевого МОП-транзистора, основные из которых заключаются в том, что полевые МОП-транзисторы являются устройствами, работающими от напряжения, а поскольку затвор электрически изолирован от канала сток-исток, они имеют очень высокие входные импедансы, поэтому ток затвора для полевого МОП-транзистора равен нулю, поэтому в базовом резисторе нет необходимости.

Полевые МОП-транзисторы

проходят через проводящий канал, при этом канал изначально закрыт, а транзистор выключен. Этот канал постепенно увеличивается в проводящей ширине по мере того, как напряжение, подаваемое на вывод затвора, медленно увеличивается. Другими словами, транзистор работает путем расширения канала при увеличении напряжения затвора, и по этой причине этот тип полевого МОП-транзистора называется улучшенным полевым МОП-транзистором или E-MOSFET.

N-канальные полевые МОП-транзисторы (NMOS) являются наиболее часто используемым типом полевых МОП-транзисторов, поскольку положительное напряжение на клемме затвора включает полевой МОП-транзистор, а нулевое или отрицательное напряжение на затворе переключает его в положение «ВЫКЛ», что делает его идеальным в качестве полевого МОП-транзистора. релейный переключатель.Также доступны дополнительные полевые МОП-транзисторы с P-каналом, которые, как и PNP BJT, работают с противоположными напряжениями.

Цепь переключателя реле N-канального полевого МОП-транзистора

Вышеупомянутая схема релейного переключателя MOSFET подключена по схеме с общим источником. При нулевом входном напряжении, состоянии LOW, значении V GS , привода затвора недостаточно для открытия канала, и транзистор находится в состоянии «ВЫКЛ». Но когда V GS увеличивается выше нижнего порогового напряжения MOSFET V T , канал открывается, ток течет и катушка реле срабатывает.

Тогда полевой МОП-транзистор в расширенном режиме работает как нормально разомкнутый переключатель, что делает его идеальным для переключения небольших нагрузок, таких как реле. MOSFET-транзисторы E-типа имеют высокое сопротивление при выключении, но умеренное сопротивление при включении (подходит для большинства приложений), поэтому при выборе одного из них для конкретного приложения переключения необходимо учитывать его значение R DS .

Цепь переключателя реле P-канального МОП-транзистора

Расширенный МОП-транзистор с P-каналом (PMOS) сконструирован так же, как и расширенный МОП-транзистор с N-каналом, за исключением того, что он работает только с отрицательными напряжениями затвора.Другими словами, полевой МОП-транзистор с P-каналом работает таким же образом, но с противоположной полярностью, поскольку затвор должен быть более отрицательным, чем источник, чтобы включить транзистор с помощью прямого смещения, как показано.

Цепь переключателя реле P-канального MOSFET

В этой конфигурации клемма источника P-каналов подключена к + Vdd, а клемма стока подключена к земле через катушку реле. Когда на затвор подается ВЫСОКИЙ уровень напряжения, P-канальный MOSFET будет выключен.Выключенный E-MOSFET будет иметь очень высокое сопротивление канала и будет действовать почти как разомкнутая цепь.

Когда на затвор подается НИЗКИЙ уровень напряжения, P-канальный полевой МОП-транзистор будет включен. Это вызовет протекание тока через канал с низким сопротивлением канала e-MOSFET, управляющего катушкой реле. Электронные МОП-транзисторы с каналом N и P образуют превосходные схемы переключения реле низкого напряжения и могут быть легко подключены к широкому спектру цифровых логических вентилей и микропроцессорных приложений.

Цепь релейного переключателя с логическим управлением

N-канальный полевой МОП-транзистор улучшенного типа чрезвычайно полезен в качестве транзисторного переключателя, поскольку в состоянии «ВЫКЛ» (с нулевым смещением затвора) его канал имеет очень высокое сопротивление, блокирующее прохождение тока. Однако относительно небольшое положительное напряжение, превышающее пороговое напряжение V T , на его высокоимпедансном затворе заставляет его начать проводить ток от его вывода стока к выводу истока.

В отличие от биполярного переходного транзистора, для включения которого требуется ток базы, для электронного МОП-транзистора требуется только напряжение на затворе, поскольку из-за его изолированной конструкции затвор нулевой ток течет в затвор.Тогда это делает e-MOSFET, N-канальный или P-канальный, идеальным для непосредственного управления типичными логическими вентилями TTL или CMOS, как показано.

Цепь релейного переключателя с логическим управлением

Здесь N-канальный E-MOSFET управляется цифровым логическим вентилем. Выходные контакты большинства логических вентилей могут подавать только ограниченный ток, обычно не более 20 мА. Поскольку электронные МОП-транзисторы представляют собой устройства, работающие от напряжения и не потребляющие тока затвора, мы можем использовать схему релейного переключателя МОП-транзистора для управления мощными нагрузками.

Цепь переключателя реле микроконтроллера

Помимо цифровых логических вентилей, мы также можем использовать выходные контакты и каналы микроконтроллеров, PIC и процессоров для управления внешним миром. Схема ниже показывает, как взаимодействовать с реле с помощью переключателя MOSFET.

Цепь переключателя реле микроконтроллера

Обзор цепи переключения реле

В этом руководстве мы увидели, как мы можем использовать оба биполярных переходных транзистора, NPN или PNP, и полевые МОП-транзисторы расширения, N-канальный или P-канальный, в качестве схемы переключения транзисторов.

Иногда при создании электронных схем или схем микроконтроллера мы хотим использовать транзисторный переключатель для управления мощным устройством, например двигателями, лампами, нагревательными элементами или цепями переменного тока. Обычно эти устройства требуют больших токов или более высоких напряжений, чем может выдержать один силовой транзистор, тогда мы можем использовать для этого схему переключения реле.

Биполярные транзисторы (BJT) составляют очень хорошие и дешевые схемы переключения реле, но BJT — это устройства, работающие по току, поскольку они преобразуют небольшой базовый ток в больший ток нагрузки, чтобы запитать катушку реле.

Однако переключатель MOSFET идеален в качестве электрического переключателя, поскольку для его включения практически не требуется ток затвора, преобразуя напряжение затвора в ток нагрузки. Следовательно, полевой МОП-транзистор может работать как переключатель, управляемый напряжением.

Во многих приложениях биполярные транзисторы могут быть заменены полевыми МОП-транзисторами улучшенного типа, обеспечивающими более быстрое переключение, гораздо более высокий входной импеданс и, возможно, меньшее рассеивание мощности. Комбинация очень высокого импеданса затвора, очень низкого энергопотребления в выключенном состоянии и очень быстрой коммутации делает полевой МОП-транзистор подходящим для многих приложений цифровой коммутации.Также при нулевом токе затвора его переключающее действие не может перегрузить выходную цепь цифрового затвора или микроконтроллера.

Однако, поскольку затвор E-MOSFET изолирован от остальной части компонента, он особенно чувствителен к статическому электричеству, которое может разрушить тонкий оксидный слой на затворе. Затем следует проявлять особую осторожность либо при обращении с компонентом, либо во время его использования, и чтобы любая схема, использующая полевые МОП-транзисторы, имела соответствующую защиту от статического электричества и скачков напряжения.

Также для дополнительной защиты BJT или MOSFET всегда используйте диод маховика поперек и катушку реле, чтобы безопасно рассеивать обратную ЭДС, генерируемую действием переключения транзисторов.

Схема с выдержкой времени

с конденсаторами, транзисторами и резисторами | Arrow.com

Опубликовано

Джереми С.Кук имеет степень бакалавра медицинских наук в Университете Клемсона и 10 лет проработал в сфере автоматизации производства. Теперь он пишет для сорта … Подробнее

Непреднамеренные задержки в цепи могут быть настоящей неприятностью. Однако контролируемые задержки могут оказаться весьма полезными в некоторых ситуациях, поскольку они позволяют действиям начинаться в заранее определенное время. Микроконтроллер может пригодиться в определенных приложениях, но более простой вариант — использовать резисторы, конденсаторы и транзисторы, чтобы добиться нужного времени отклика.

Какой бы маршрут вы ни выбрали, зависит от множества факторов, специфичных для вашего приложения и потребностей. Схема синхронизации — это вариант, который следует учитывать при выборе дизайна в будущем. Посмотрите на схему ниже, чтобы увидеть пример одной из этих схем.

Резисторы слева направо: 470R, 20K, 1K; Конденсатор 100мкФ; 2N2222 NPN транзистор

Вот краткое руководство по работе конденсаторной схемы синхронизации:

  1. Основным отличием нашей схемы является то, что при открытой кнопке таймера нет разницы потенциалов между крайним левым (Rl) и средним (Rm) резисторами.Электричество может течь в базу транзистора, позволяя току также течь через коллектор и эмиттер транзистора, запитывая светодиод последовательно с крайним правым резистором (Rr).
  2. Когда переключатель замыкается, одна сторона R1 подключается непосредственно к земле, создавая внезапную разницу между ножками конденсатора.
  3. Ток затем течет через Rl на землю, в то время как меньшее количество тока проходит через Rm из-за его большего сопротивления.
  4. Вместо того, чтобы подавать питание на базу транзистора, конденсатор перехватывает этот ток и поглощает заряд из-за разности потенциалов на двух его полюсах.
  5. После достаточной зарядки ток снова течет к базе транзистора и выходит из эмиттера на землю, позволяя току течь от коллектора к эмиттеру транзистора и подавать питание на светодиод.

Время, необходимое для полной зарядки конденсатора, является «постоянной времени», называемой «тау».

Тау = сопротивление цепи (измеренное в омах), умноженное на емкость (измеренную в фарадах)

Это значение обозначает количество времени, которое требуется конденсатору, чтобы достичь 63 процентов от его значения заряда.Время переходного процесса или время, необходимое конденсатору для полной зарядки, в 5 раз больше этого значения.

Поскольку мы используем конденсатор емкостью 100 мкФ и сопротивление в цепи составляет 20 кОм, постоянная времени составляет 0,0001F x 20,000R = 2 секунды. Умножьте это значение на 5, и вы получите время заряда конденсатора 10 секунд.

Однако здесь не все так просто. Поэкспериментировав, вы обнаружите, что время, необходимое для того, чтобы загорелся светодиод, было ближе к 1,5 секундам, чем 10, которые вы могли ожидать изначально.Это связано с тем, что базе транзистора требуется только относительно небольшое количество тока для достижения насыщения, а поглощение заряда конденсатора резко падает после достижения единственной постоянной времени. Таким образом, отведенный заряд приводит в действие свет менее чем за 2 секунды.

Вариант схемы двойного конденсатора

Конечно, это далеко не единственная доступная схема синхронизации конденсаторов. Вы также можете использовать конденсатор другого размера, чтобы поэкспериментировать с временем задержки этой схемы.В крайнем случае, вы можете даже подключить несколько параллельно.

Реле

против транзисторов: выбор лучшего компонента для работы

Чтобы хорошо выполнять любую работу, вам нужны инструменты для ее выполнения. Но в жизни этот правильный инструмент или компонент не всегда очевиден. Например, если вам нужно забить гвоздь, достаточно хорошо подойдет молоток. Но чтобы вырезать кусок дерева, вы можете использовать настольную пилу, торцовочную пилу, лобзик, пилу, маршрутизатор, нож, лазерный резак или любое количество других устройств.Все они рубят дерево, но некоторые из них могут работать лучше, чем другие для конкретных задач.

Мир инженерии хорошо знает эту борьбу, и транзисторы и реле являются прекрасным примером. Номинально оба устройства выполняют одну и ту же работу — они включают и выключают ток, но они используют очень разные методы. В зависимости от вашего опыта и отрасли, вы можете по умолчанию выбрать одно или другое, но у каждого устройства есть свои преимущества и недостатки. Чтобы оценить, какое из них лучше всего подойдет для вашего приложения, важно понимать детали характеристик каждого устройства.

Надежные реле

Реле

— это проверенная временем технология, и они физически переключают контакты, как если бы вы сами включали выключатель. Как правило, они используют герконовый переключатель электромагнита, чтобы позволить небольшому электрическому сигналу переключать гораздо более высокие напряжения.

Реле

отличаются от транзисторов несколькими ключевыми особенностями. Вот пять их самых больших отличий:

— Реле выдерживают гораздо более высокие нагрузки по току и напряжению.

— Реле могут переключать нагрузки независимо от внутренней схемы устройства.

— Реле могут работать с нагрузками переменного (AC) или постоянного (DC) тока.

— Реле не пропускают ток. Реле полностью включено или выключено.

— Реле имеют очень низкое сопротивление. С электрической точки зрения замкнутое реле практически идентично неразрывному проводу.

Большинство реле имеют контакты NO (нормально разомкнутые) и NC (нормально замкнутые), что позволяет либо замкнуть цепь при подаче питания (NO), либо разомкнуть цепь (NC). При необходимости вы можете использовать одновременно NO и NC.

Реле издают слышимый щелкающий звук при включении или выключении. Это имеет свои преимущества, но может представлять собой недостаток, когда шум является проблемой. Некоторые реле позволяют визуально наблюдать за их состоянием. Другие оснащены кнопкой байпаса / тестирования или переключателем для включения реле вручную.

Переключение происходит намного медленнее, чем с транзисторами, и контакты могут «дергаться», что приводит к сигналу, который на мгновение включается и выключается, когда вы нажимаете переключатель.

Реле

также потребляют относительно большой ток во включенном состоянии.Доступны фиксирующие реле, которым требуется питание только для включения и выключения.

Наконец, реле обычно намного больше транзисторов, и они являются электромагнитными устройствами, поэтому они могут вызывать помехи из-за электромагнитного потока (ЭМП).

Транзисторы: скорость и простота

Транзисторы позволяют току течь между коллектором и эмиттером, в отличие от переключателя включения / выключения. В них нет движущихся частей. Вместо этого, когда присутствует положительное напряжение, транзистор изменяет проводимость материала транзистора.Вот восемь конкретных характеристик транзисторов в отличие от реле:

— Они намного быстрее реле. Диапазоны переключения обычно находятся в наносекундном диапазоне (10 -9 секунд), что на много порядков быстрее, чем у эквивалентного реле.

— Транзисторы могут вести себя как аналоговые устройства, что позволяет усиливать сигнал.

— Они намного меньше аналогичного реле.

— Транзисторы молчат и не показывают, активированы ли они.

— Вы можете использовать транзистор, чтобы позволить одному сигналу переключать большую нагрузку, но это не совсем независимо. Разработчикам необходимо знать о коммутируемом устройстве больше, чем при использовании реле.

— Вам необходимо правильно указать свой транзистор, тогда как реле могут выдерживать широкий диапазон типов мощности.

— Они недорогие.

— Вы не можете использовать транзистор с переменным током.

Подобные электронные компоненты

Типичные транзисторы и реле имеют практически безграничное применение, но эти специализированные решения выполняют схожие задачи.

— Твердотельное реле: Это своего рода гибрид между обычным реле и транзистором, эти реле переключают нагрузку с помощью светодиода, активируемого схемой управления. Светодиод активирует активированный светом МОП-транзистор, который управляет нагрузкой. Эти устройства бесшумны, переключаются за миллисекунду или меньше и более надежны, чем обычные реле.

— Контактор: Контакторные реле оптимизированы для коммутации больших токов, например, для запуска электродвигателей.Эти устройства обычно имеют только замыкающие контакты.

— TRIAC: Сокращение от «триод для переменного тока». TRIAC — это твердотельное устройство, которое позволяет току течь в любом направлении через две основные клеммы. Штифт ворот активирует эти устройства.

— Компьютерный чип: Возможно, вы не захотите разрабатывать собственное вычислительное устройство с нуля, но стоит отметить, что эти чипы содержат миллиарды транзисторов в корпусе, который легко поместится у вас на ладони.Это чудо миниатюризации.

Когда использовать реле и транзисторы

Для очень высоких или неизвестных нагрузок реле — лучший и наиболее практичный вариант. Выберите транзистор для небольших нагрузок, когда важна потребляемая мощность или если вам нужно что-то переключать миллионы или миллиарды раз. Для специализированного решения указанные дополнительные устройства представляют дополнительные возможности.

Вдумчивый инженер время от времени пересматривает выбранные ими компоненты и методы.Возможно, SSR для вашего приложения недоступен или слишком дорог. Или, может быть, покупатель пытается сбросить неправильную нагрузку с вашего транзисторного выхода. Какой бы ни была ваша задача, помните, что ваше идеальное решение может быть не тем стандартным инструментом, на который вы всегда полагались.

Транзисторные схемы | Electronics Club

Транзисторные схемы | Клуб электроники

Типы | Токи | Функциональная модель |
Использовать как переключатель | Выход IC | Датчики |
Инвертор | Дарлингтон пара

Следующая страница: Емкость

См. Также: Транзисторы

На этой странице объясняется работа транзисторов в простых схемах, в основном их использование в качестве переключателей.Практические вопросы, такие как тестирование, меры предосторожности при пайке и идентификация выводов, рассматриваются в
страница транзисторов.

Типы транзисторов

Есть два типа стандартных (биполярных) транзисторов, NPN и PNP ,
с разными обозначениями схем. Буквы относятся к слоям полупроводникового материала, из которых изготовлен транзистор.
Большинство используемых сегодня транзисторов являются NPN-транзисторами, потому что их проще всего сделать из кремния.
Эта страница в основном посвящена транзисторам NPN, и новичкам следует сначала сосредоточиться на этом типе.

Выводы имеют маркировку база (B), коллектор (C) и эмиттер (E).
Эти термины относятся к внутренней работе транзистора, но их не так много.
Помогите понять, как используется транзистор, поэтому относитесь к ним как к ярлыкам.

Обозначения схем транзисторов

Пара Дарлингтона — это два транзистора, соединенных вместе.
чтобы дать очень высокий коэффициент усиления по току.

Помимо стандартных (биполярный переход) транзисторов, есть
полевые транзисторы , которые обычно обозначаются как FET s.У них разные символы схем и свойства, и они не рассматриваются на этой странице.

Rapid Electronics: транзисторы


Токи транзисторов

На схеме показаны два пути тока через транзистор.

Малый базовый ток управляет большим током коллектора .

Когда переключатель замкнут , небольшой ток течет в основание (B)
транзистор. Этого достаточно, чтобы светодиод B тускло светился.Транзистор усиливает
этот небольшой ток, чтобы позволить большему току течь через его коллектор (C)
к его эмиттеру (E). Этот ток коллектора достаточно велик, чтобы светодиод C светился ярко.

При разомкнутом переключателе базовый ток не течет, поэтому транзистор отключается
коллекторный ток. Оба светодиода выключены.

Вы можете построить эту схему с двумя стандартными 5-миллиметровыми красными светодиодами и любыми маломощными светодиодами общего назначения.
Транзистор NPN (например, BC108, BC182 или BC548).Это хороший способ проверить транзистор и убедиться, что он работает.

Транзистор усиливает ток и может использоваться как переключатель, как описано на этой странице.

С подходящими резисторами (и конденсаторами для переменного тока) транзистор может усиливать напряжение, такое как аудиосигнал.
но это еще не рассматривается на этом веб-сайте.

Режим общего эмиттера

Это устройство, в котором эмиттер (E) находится в цепи управления (базовый ток)
а в управляемой цепи (коллекторный ток) называется общим эмиттерным режимом .Это наиболее широко используемая схема транзисторов, поэтому ее нужно изучить в первую очередь.



Функциональная модель NPN-транзистора

Функционирование транзистора сложно объяснить и понять с точки зрения его внутренней структуры.
Более полезно использовать эту функциональную модель.

  • Переход база-эмиттер ведет себя как диод.
  • А базовый ток I B протекает только при напряжении V BE
    через переход база-эмиттер равен 0.7В или больше.
  • Малый базовый ток I B управляет большим током коллектора Ic
    варьируя сопротивление R CE .
  • Ic = h FE × I B
    (если транзистор не открыт и не насыщен).
    h FE — коэффициент усиления по току (строго по постоянному току),
    Типичное значение для h FE равно 100 (это отношение, поэтому у него нет единиц измерения).
  • Сопротивление коллектор-эмиттер R CE регулируется током базы I B :

    I B = 0 , R CE = бесконечность, транзистор выключен

    I B малый , R CE уменьшенный, транзистор частично включен

    I B увеличено , R CE = 0, транзистор полностью открыт («насыщен»)
Дополнительные примечания:
  • Базовый ток I B должен быть ограничен, чтобы предотвратить повреждение транзистора.
    и резистор может быть подключен последовательно с базой.
  • Транзисторы

  • имеют максимальный ток коллектора Ic.
  • Коэффициент усиления по току h FE может широко варьироваться ,
    даже для однотипных транзисторов!
  • Транзистор, заполненный на на (с R CE = 0), называется
    « насыщенный ».
  • При насыщении транзистора напряжение коллектор-эмиттер В CE
    снижается почти до 0В.
  • При насыщении транзистора определяется ток коллектора Ic.
    питающим напряжением и внешним сопротивлением в цепи коллектора, а не
    коэффициент усиления транзистора по току.В результате соотношение Ic / I B
    для насыщенного транзистора коэффициент усиления по току меньше h FE .
  • Ток эмиттера I E = Ic + I B , но Ic
    намного больше, чем I B , поэтому примерно I E = Ic.

Использование транзистора в качестве переключателя

Когда транзистор используется в качестве переключателя, он должен быть либо ВЫКЛ. , либо полностью ВКЛЮЧЕННЫМ .
Он никогда не должен быть включен частично (со значительным сопротивлением между C и E), потому что в
В этом состоянии транзистор может перегреться и выйти из строя.

В полностью открытом состоянии напряжение V CE на транзисторе почти равно нулю, и транзистор находится в
называется насыщенным , потому что он больше не может пропускать ток коллектора Ic.

Устройство, переключаемое транзистором, называется нагрузкой .

При выборе транзистора для использования в качестве переключателя необходимо учитывать его максимальный ток коллектора.
Ic (макс.) и минимальное усиление по току ч FE (мин.) .
Номинальное напряжение транзистора может быть проигнорировано при напряжении питания менее 15 В.

Технические данные транзистора

Большинство поставщиков предоставляют данные о транзисторах, которые они продают, например
Быстрая электроника.

Мощность, развиваемая переключающим транзистором, должна быть очень маленькой

Мощность, развиваемая в транзисторе, отображается как тепла , и транзистор будет разрушен, если станет слишком горячим.
Это не должно быть проблемой для транзистора, используемого в качестве переключателя, если он был выбран и настроен правильно, потому что
мощность, развиваемая внутри него, будет очень маленькой.

Мощность (тепло), развиваемая в транзисторе:

Мощность = Ic × V CE

  • Когда ВЫКЛ. : Ic равен нулю, поэтому мощность равна нулю .
  • Когда полный ВКЛ : V CE почти равен нулю, поэтому мощность очень мала .
Было бы реле лучше транзисторного переключателя?

Транзисторы не могут переключать переменный ток или высокое напряжение (например, электросеть), и они
обычно не лучший выбор для коммутации больших токов (> 5A).Реле подходят для всех этих ситуаций, но учтите, что
для переключения тока катушки реле может все же потребоваться маломощный транзистор.
Для получения дополнительной информации, включая преимущества и недостатки,
см. страницу реле.

Защитный диод для нагрузок с катушкой, таких как реле и двигатели

Если транзистор переключает нагрузку с помощью катушки, такой как двигатель или реле,
диод должен быть подключен к нагрузке, чтобы защитить транзистор от
кратковременное высокое напряжение, возникающее при отключении нагрузки.

На схеме показано, как защитный диод подключен к нагрузке «в обратном направлении», в данном случае катушка реле.

Для этого подходит сигнальный диод типа 1N4148.

Зачем нужен защитный диод?

Ток, протекающий через катушку, создает магнитное поле, которое внезапно схлопывается.
при отключении тока. Внезапный коллапс магнитного поля вызывает
кратковременное высокое напряжение на катушке, которое может повредить транзисторы и микросхемы.Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку.
(и диод), поэтому магнитное поле исчезает быстро, а не мгновенно. Это предотвращает
индуцированное напряжение становится достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.


Подключение транзистора к выходу включения / выключения цифровой ИС

Большинство ИС не могут обеспечивать большие выходные токи, поэтому может потребоваться использование транзистора.
для переключения большего тока, необходимого для таких устройств, как лампы, двигатели и реле.Микросхема таймера 555 необычна тем, что может обеспечивать относительно большой ток до 200 мА,
Достаточно для многих реле и других нагрузок без транзистора.

Базовый резистор ограничивает ток, протекающий в базу транзистора, чтобы предотвратить его повреждение.
но он также должен пропускать достаточный базовый ток, чтобы транзистор был полностью насыщен.
при включении.

Транзистор, который не полностью насыщен при включении, может перегреться и выйти из строя.
особенно если транзистор переключает большой ток (> 100 мА).

В следующем разделе объясняется, как выбрать транзистор и базовый резистор для обеспечения полного насыщения.

Переключение нагрузки с другим напряжением питания

Транзистор может использоваться для включения ИС, подключенной к источнику низкого напряжения (например, 5 В)
для переключения тока нагрузки с отдельным источником постоянного тока (например, 12 В).

Два источника питания должны быть связаны. Обычно их соединения 0 В связаны и транзистор NPN
используется на выходе IC. Однако, если на выходе ИС используется транзистор PNP, положительные (+) соединения
вместо этого должны быть связаны поставки.

Выбор транзистора и базового резистора для цифрового выхода ИМС

Следуйте этому пошаговому руководству, чтобы выбрать подходящий транзистор для подключения к выходу включения / выключения.
цифровой ИС (логический вентиль, счетчик, PIC, микроконтроллер и т. д.) для переключения нагрузки, такой как лампа, двигатель или реле.
Данные о транзисторах можно получить у большинства поставщиков, например см.
Быстрая электроника.

1. Выберите правильный тип транзистора, NPN или PNP

Вы хотите, чтобы нагрузка включалась, когда выход IC высокий? Или когда он или низкий?

  • Для включения, когда на выходе IC высокий используйте NPN-транзистор .
  • Для включения, когда на выходе IC низкий уровень , используйте транзистор PNP .

Транзисторы NPN и PNP подключаются по-разному, как показано на схемах ниже, но
Расчеты и требуемые свойства одинаковы для обоих типов транзисторов.

Транзисторный переключатель NPN
нагрузка включена, когда выход IC имеет высокий уровень

Транзисторный переключатель PNP
нагрузка включена, когда выход IC низкий

2.Узнайте напряжение питания и характеристики нагрузки.

Для определения требуемых свойств транзистора вам необходимо знать следующие значения:

  • Вс = напряжение питания нагрузки.
  • R L = сопротивление нагрузки (например, сопротивление катушки реле).
  • Ic = ток нагрузки (= Vs / R L ).
  • Максимальный выходной ток микросхемы — см. Техническое описание микросхемы.
    Если вы не можете найти эту информацию, примите низкое значение, например 5 мА.
  • Vc = напряжение питания IC (обычно это Vs, но оно будет другим, если IC и нагрузка имеют отдельные источники питания).

Примечание: не путайте IC (интегральная схема) с Ic (ток коллектора).

3. Определить требуемые свойства транзистора

Выберите транзистор правильного типа (NPN или PNP из шага 1), чтобы удовлетворить следующие требования:

  • Максимальный ток коллектора Ic (макс.) транзистора должен быть больше тока нагрузки:
    Ic (max)> напряжение питания Vs
    сопротивление нагрузки R L
  • Минимальное усиление тока транзистора h FE (мин) должно быть не менее 5
    умноженный на ток нагрузки Ic, деленный на максимальный выходной ток IC.

    ч FE (мин)> 5 × ток нагрузки Ic
    макс. IC current
4. Определите значение для базового резистора R

B

Базовый резистор (R B ) должен пропускать ток, достаточный для обеспечения работы транзистора.
полностью насыщен при включении, и хорошо бы увеличить ток базы (I B ) примерно в пять раз
значение, которое просто насыщает транзистор.Воспользуйтесь приведенной ниже формулой, чтобы найти подходящее сопротивление для R B и выбрать ближайшее стандартное значение.

R B = 0,2 × R L × h FE (см. Примечание)

Примечание: Если ИС и нагрузка имеют разные напряжения питания, например 5 В для ИС
но 12 В для нагрузки используйте формулу ниже для R B :

R B = Vc × h FE , где Vc — напряжение питания
IC
5 × Ic
5.Проверьте, нужен ли вам защитный диод

Если включаемой и выключаемой нагрузкой является двигатель, реле или соленоид (или любое другое устройство с катушкой):
диод должен быть подключен к нагрузке, чтобы защитить транзистор от короткого замыкания.
высокое напряжение, возникающее при отключении нагрузки. Обратите внимание, что диод подключен «в обратном направлении», как показано на рисунке.
на диаграммах выше.

Пример

Выход из КМОП-микросхемы серии 4000 необходим для работы реле с
100, включая ее, когда выход IC высокий.Напряжение питания составляет 6 В как для ИС, так и для нагрузки. ИС может обеспечивать максимальный ток 5 мА.

  • Требуется транзистор NPN , потому что катушка реле должна быть включена, когда выход IC высокий.
  • Ток нагрузки = Vs / R L = 6/100 = 0,06 A = 60 мА, поэтому транзистор должен иметь Ic (макс.)> 60 мА .
  • Максимальный ток от ИС составляет 5 мА, поэтому транзистор должен иметь ч FE (мин)> 60
    (5 × 60 мА / 5 мА).
  • Выберите транзистор малой мощности общего назначения BC182 с Ic (макс.) = 100 мА
    и ч FE (мин) = 100 .
  • R B = 0,2 × R L × h FE
    = 0,2 × 100 × 100 = 2000,
    поэтому выберите R B = 1k8 или 2k2 .
  • Для катушки реле требуется защитный диод .

Rapid Electronics: транзисторы


Использование транзистора в качестве переключателя с датчиками

На схемах ниже показано, как подключить LDR (датчик освещенности) к транзистору, чтобы
светочувствительный переключатель цепи на светодиоде. Есть две версии: одна включается в темноте, другая при ярком свете.Переменный резистор регулирует чувствительность. Для переключения светодиода можно использовать любой транзистор малой мощности общего назначения.

Если транзистор переключает нагрузку с помощью катушки (например, двигателя или реле) вместо светодиода, вы должны включить
защитный диод поперек нагрузки.

Если переменный резистор находится между + Vs и базой, вы должны добавить резистор с фиксированным номиналом не менее
1к (10к
в примере ниже), чтобы защитить транзистор, когда переменный резистор уменьшен до нуля, в противном случае чрезмерная база
ток разрушит транзистор.

Светодиод загорается, когда LDR не горит темно

Светодиод загорается при яркости LDR

Обратите внимание, что переключающее действие этих простых схем не очень хорошее, потому что
будет промежуточная яркость, когда транзистор будет частично на (не насыщенный).
В этом состоянии транзистор может перегреться, если он не коммутирует небольшой ток.
Нет проблем с малым током светодиода, но больший ток лампы, двигателя или реле может вызвать перегрев.

Другие датчики, например термистор,
могут использоваться с этими схемами, но для них может потребоваться другой переменный резистор.
Вы можете рассчитать приблизительное значение переменного резистора (Rv), используя
мультиметр для определения минимального и максимального значений
сопротивления датчика (Rmin и Rmax), а затем по этой формуле:

Значение переменного резистора:
Rv = квадратный корень из (Rmin × Rmax)

Например, LDR: Rmin = 100,
Rmax = 1M,
поэтому Rv = квадратный корень из (100 × 1M)
= 10к.

Вы можете сделать гораздо лучшую схему переключения, подключив датчики к подходящему
IC (чип). Действие переключения будет намного более резким без частичного включения.



Транзисторный инвертор (НЕ затвор)


Дарлингтон пара

Пара Дарлингтона — это два транзистора, соединенных вместе, так что ток, усиливаемый первым, усиливается.
далее вторым транзистором.

Пара ведет себя как одиночный транзистор с очень высоким коэффициентом усиления по току, так что
для включения пары требуется лишь крошечный базовый ток.

Коэффициент усиления по току пары Дарлингтона (h FE ) равен двум индивидуальным коэффициентам усиления
(h FE1 и h FE2 ), умноженные вместе — это дает паре очень высокий коэффициент усиления по току, например 10000.

Коэффициент усиления по току пары Дарлингтона:
ч FE = h FE1
× h FE2

Обратите внимание, что для включения пары Дарлингтона должно быть 0,7 В на обоих переходах база-эмиттер, которые являются
соединены последовательно так 1.Для включения требуется 4В.

Rapid Electronics: транзисторы Дарлингтона

Транзисторы Дарлингтона

пары Дарлингтона доступны в виде корпуса «транзистор Дарлингтона» с тремя выводами.
(B, C и E)
эквивалентно стандартному транзистору.

Вы также можете сделать свою собственную пару Дарлингтона из двух обычных транзисторов.
TR1 может быть маломощным, но TR2 может потребоваться высокая мощность.
Максимальный ток коллектора Ic (max) для пары такой же, как Ic (max) для TR2.

Цепь сенсорного переключателя

Пара Дарлингтона достаточно чувствительна, чтобы реагировать на небольшой ток, проходящий через
ваша кожа, и его можно использовать для изготовления сенсорного переключателя , как показано на схеме.

Для этой схемы, которая просто зажигает светодиод, два транзистора могут быть любого общего назначения.
транзисторы малой мощности назначения.

100к
резистор защищает транзисторы, если контакты соединены куском провода.

Схема сенсорного переключателя


Rapid Electronics
любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку.У них есть широкий ассортимент компонентов, инструментов и материалов для электроники, и я рад
рекомендую их как поставщика.


Следующая страница: Емкость | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.
Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет
используется только для ответа на ваше сообщение, оно не будет передано никому.
На этом веб-сайте отображается реклама, если вы нажмете на
рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.Рекламодателям не передается никакая личная информация.
Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.
Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов.
(включая этот), как объяснил Google.
Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста,
посетите AboutCookies.org.

клуб электроники.инфо © Джон Хьюс 2021

Как разрабатывать и создавать простые таймеры Cmos

Как разрабатывать и создавать простые таймеры Cmos

Все, что вам нужно знать — построить простой таймер Cmos.

Вы можете создать полезные и надежные схемы таймера — с помощью одного инвертора Cmos. Мы начнем с рассмотрения некоторых доступных методов. И мы изготовим ряд простых и полезных дизайнов. Затем мы соединим четыре из этих простых таймеров вместе — чтобы создать практичную двухзонную охранную сигнализацию.

Хотя я разделил материал на пять отдельных разделов — большая часть того, что вам нужно знать, находится в первой части первого раздела. Как только вы поймете, как работает Схема №1 — остальное легко. Остальные цепи, включая цепь аварийной сигнализации, представляют собой простые вариации схемы № 1.

В схеме №1 мы используем только один вентиль Cmos 4093.

Обратите внимание, что два входных контакта соединены вместе.

В этой конфигурации вентиль 1 используется как простой инвертор.Когда на контактах 1 и 2 низкий уровень — на контакте 3 будет высокий уровень.

А когда на контактах 1 и 2 высокий уровень, на контакте 3 будет низкий уровень.

=============

Если мы возьмем контакты 1 и 2 с низким уровнем — на контакте 3 будет высокий уровень.

Пока на контакте 3 высокий уровень — он внутренне подключен к положительной линии.

И он подает базовый ток на Q1 — через R3.

Ток базы включает транзистор.

Транзистор соединяет отрицательный вывод катушки реле с землей.

И реле срабатывает.

=============

Если мы возьмем контакты 1 и 2 на высокий уровень — на контакте 3 будет низкий уровень.Пока на контакте 3 низкий уровень — он внутренне подключен к отрицательной линии.

И он больше не может подавать базовый ток на Q1.

Таким образом, транзистор выключается — и реле обесточивается.

=============

Другими словами, мы можем включать и выключать реле, изменяя состояние контакта 3.

И мы можем изменить состояние контакта 3, взяв контакты 1 и 2 на высокий или низкий уровень.

=============

КОМПОНЕНТЫ СИНХРОНИЗАЦИИ

=============

Контакты 1 и 2 подключены к разъему C1 и R1.При первом включении питания — C1 находится в разряженном состоянии.

В этом состоянии — он действует как проводное соединение — контакты 1 и 2 соединяются с землей.

Другими словами, контакты 1 и 2 начинаются с низкого уровня.

Таким образом, на контакте 3 будет высокий уровень — Q1 включится — и реле сработает.

=============

При этом — С1 начнет заряжаться через R1.

При этом напряжение на конденсаторе повысится.

Это означает, что напряжение на контактах 1 и 2 будет расти.

=============

В конце концов — входные контакты поменяются с низкого на высокий.Затем контакт 3 резко переключится с высокого на низкий.

Транзистор выключится.

И реле обесточится.

=============

Уровень напряжения, при котором низкие входные контакты становятся высокими входными контактами, является неопределенным.

Это где-то половина значения вашего напряжения питания.

Вы не можете это контролировать.

Это фиксируется во время изготовления.

И это варьируется от одной партии ИС к другой.

=============

Грубо говоря, при 12-вольтовом питании все, что ниже 5-вольт, — это низкий уровень.И все, что выше 7 вольт, считается высоким.

Где-то между 5в и 7в — переход произойдет.

Низкий вход станет высоким.

Контакт 3 выключит транзистор — и реле обесточится.

=============

ПРОДОЛЖИТЕЛЬНОСТЬ ЗАДЕРЖКИ

=============

Продолжительность задержки определяется тремя основными факторами.

Первый — это номинал резистора.

Чем выше номинал резистора, тем медленнее он будет заряжать конденсатор.=============

На схеме я использовал переменный резистор.

Это позволит вам контролировать скорость зарядки конденсатора.

Другими словами — это позволит вам установить длину задержки.

=============

Продолжительность задержки также определяется значением C1.

Чем выше емкость конденсатора — тем дольше потребуется зарядка.

Продолжительность задержки прямо пропорциональна емкости конденсатора.

Если удвоить номинал конденсатора — задержка продлится вдвое дольше.Если уменьшить емкость конденсатора вдвое — задержка продлится вдвое меньше.

=============

Третий фактор, определяющий длительность задержки — это коммутируемое напряжение затвора.

То есть — точное напряжение, при котором низкий вход становится высоким.

=============

Мы видели, что при питании 12 В точка переключения затвора находится где-то между 5 и 7 В.

Когда конденсатор заряжается — он достигнет 5 В, прежде чем достигнет 7 В.

Если коммутируемое напряжение составляет всего 5 В — задержка будет меньше.Если коммутируемое напряжение достигает 7 В — задержка будет больше.

=============

Точно так же, как напряжение переключения вашего затвора — значения вашего конденсатора и резистора зависят от производственных допусков.

Маловероятно, что они точно соответствуют указанным значениям.

Это тоже повлияет на продолжительность задержки.

Другими словами — не удивляйтесь, если ваша задержка будет короче или дольше моей.

=============

С резистором на 1 Мп и конденсатором 100 мкФ мое реле обесточилось через 70 секунд.С горшком на 5 мегабайт — раз в пять больше.

Это задержка примерно до 6 минут.

Увеличьте C1 до 1000uF — и задержка снова продлится в десять раз дольше.

Это общая задержка примерно до одного часа.

=============

КНОПКА СБРОСА

=============

Как только конденсатор заряжен, он остается заряженным.

Таким образом, он продолжит удерживать контакты 1 и 2 на высоком уровне.

И реле останется обесточенным.

Если вы хотите снова запустить таймер — сначала необходимо разрядить С1.=============

Вот что делает кнопка сброса.

Разряжает С1 — через R2.

R2 ограничивает пиковый ток разряда через переключатель.

Таким образом предотвращается повреждение контактов переключателя.

=============

Значение R2 не критично.

Но он должен быть достаточно низким, чтобы полностью разрядить конденсатор — относительно кратковременным нажатием кнопки сброса.

Если значение R2 слишком велико — конденсатор может не разрядиться полностью.

Следовательно — подзарядка не займет много времени.Другими словами — установленный период времени будет сокращен.

=============

Я нарисовал выключатель мгновенного действия.

Но вы можете использовать любой тип переключателя, который подходит для вашего приложения.

=============

Когда вы нажимаете кнопку сброса, C1 разряжается, а контакты 1 и 2 становятся низкими.

Таким образом, на контакте 3 будет высокий уровень — транзистор включится — и реле сработает.

Когда вы отпустите кнопку сброса — С1 снова начнет заряжаться.

То есть — таймер перезапустится.Вы можете нажать кнопку и перезапустить таймер в любой момент.

Даже если он уже запущен.

=============

ТРАНЗИСТОР

=============

В BC547 нет ничего особенного.

Вы можете использовать любой маленький NPN-транзистор с коэффициентом усиления (hfe) не менее 100 и Ic (max) не менее 100 мА.

Я думаю, что практически каждый маленький NPN-транзистор удовлетворяет этим требованиям.

Но всегда проверяйте конфигурацию контактов вашего транзистора.

Он может отличаться от BC547.=============

НЕИСПОЛЬЗУЕМЫЕ ВОРОТА

=============

Входы неиспользуемых ворот всегда должны быть подключены к одной из линий питания.

Если их оставить неподключенными — ворота будут бесконтрольно переключаться вперед и назад.

А это приводит к значительному и ненужному потреблению тока.

=============

Я подключил входы ворот 2 и 3 к земле, а входы ворот 4 к положительной линии.

К какой линии вы подключаете свои входы — это просто вопрос удобства.Подключите их к той линии, которая удобнее всего.

Обратите внимание, что неиспользуемые выходные контакты Cmos всегда следует оставлять неподключенными.

=============

ДИОД

=============

Катушки всех видов испускают высокие выбросы обратного напряжения, которые разрушают микросхемы Cmos.

Всегда подключайте диод к катушкам реле — и к любому другому устройству, которое может содержать катушку.

Обратите внимание, что катод D1 — сторона с перемычкой — подключен к положительному выводу катушки.Маленькая стрелка указывает направление, в котором будет проводить диод.

Любые всплески обратного напряжения, исходящие от катушки, будут закорочены в источнике, прежде чем они смогут нанести какой-либо ущерб.

=============

CMOS 4093

=============

Вы можете создавать таймеры с широким спектром вентилей, инверторов и буферов Cmos.

Но вы получите максимальную производительность от устройств Schmidt-Trigger.

Это 4093 и 4106.

=============

Эти микросхемы имеют ряд желательных характеристик, одна из которых — выходной контакт, который не хочет менять свое состояние.Будь то высокий или низкий — держится до последнего момента.

И когда он наконец отпускает — он быстро меняет состояние.

=============

Это означает, что при любых значениях резистора и конденсатора задержка будет больше.

А когда придет время выпадать реле — оно сделает это быстро и чисто.

=============

У других микросхем Cmos — выходной контакт меняет состояние медленнее.

Он переживает период, когда он не бывает ни высоким, ни низким.И это может вызвать дребезжание реле в течение нескольких секунд, прежде чем они наконец отпустят.

=============

МЕРЫ ПРЕДОСТОРОЖНОСТИ

=============

Хотя статическое электричество может разрушить микросхемы Cmos, они чрезвычайно надежны в работе.

Большинство современных версий переживут изрядную степень злоупотреблений.

Но стоит принять пару основных мер предосторожности.

Не прикасайтесь к контактам и не перегревайте их паяльником.

=============

Сокет снизит вероятность повреждения ИС — и упростит замену в случае необходимости.Если вы используете розетку — всегда отключайте питание перед тем, как вставлять или извлекать микросхему.

Также — проверьте правильность установки ИС и правильность вставки всех контактов в гнездо.

Иногда — вместо того, чтобы войти в гнездо — под микросхемой скручивается булавка.

=============

Маленькие стрелки — вверху и внизу — показывают, что контакт 14 подключен к положительной линии, а контакт 7 подключен к отрицательной линии.На схеме я использовал реле SPCO / SPDT. Но вы можете использовать многополюсное реле — если оно подходит для вашего применения.

Предполагается, что вы прочитали — и поняли — описание Цепи №1.

Дальнейшее — концентрируется только на тех областях, где Контур №2 отличается.

============

Эта схема практически идентична схеме №1.

Просто все работает наоборот.

Схема включается при обесточенном реле.И — он срабатывает только по истечении времени задержки.

============

Обратите внимание, что R1 и C1 поменялись местами.

Здесь — разряженный конденсатор начинается с того, что контакты 1 и 2 становятся высокими.

Итак — контакт 3 будет низким — Q1 будет выключен — и реле будет обесточено.

============

C1 по-прежнему заряжается R1.

Но на этот раз R1 снимает положительный заряд с отрицательной пластины конденсатора.

При этом напряжение на контактах 1 и 2 упадет.

============

Как быстро он падает, как и раньше, зависит от номинала конденсатора и резистора.В конце концов — входные контакты высокого уровня станут входными контактами низкого уровня.

Затем на контакте 3 будет высокий уровень — Q1 включится — и реле сработает.

============

Я получил немного меньшую задержку с этой конфигурацией.

Резистор на 1 мегабайт и конденсатор емкостью 100 мкФ дали мне около 60 секунд.

Это было вызвано относительно высоким коммутационным напряжением моего конкретного затвора.

============

Конечно, задержка может быть и больше.

Продолжительность задержки зависит от того, насколько должно упасть входное напряжение — прежде чем оно станет низким.Если бы напряжение переключения затвора было ниже — напряжение на переходе C1 и R1 должно было бы падать дальше.

Это потребует дополнительного времени.

И задержка была бы больше.

============

Когда вы нажимаете кнопку сброса — C1 разряжается — и контакты 1 и 2 становятся высокими.

Таким образом, на контакте 3 будет низкий уровень — транзистор выключится — и реле обесточится.

Когда вы отпустите кнопку сброса, таймер перезапустится.

============

Вы можете нажать кнопку и перезапустить таймер в любой момент.