Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Самодельное твердотельное реле: Практическое применение и схемы подключения твердотельного реле

Содержание

Практическое применение и схемы подключения твердотельного реле

Классические пускатели и контакторы постепенно уходят в прошлое. Их место в автомобильной электронике, бытовой технике и промышленной автоматике занимает твердотельное реле – полупроводниковое устройство, в котором отсутствуют какие-либо подвижные части.

Приборы имеют различные конструкции и схемы подключения, от которых зависят их сферы применения. Прежде чем использовать устройство, необходимо разобраться в его принципе действия, узнать об особенностях функционирования и подключения разных видов реле. Ответы на обозначенные вопросы подробно изложены в представленной статье.

Содержание статьи:

Устройство твердотельного реле

Современные твердотельные реле (ТТР) представляют собой модульные полупроводниковые приборы, являющиеся силовыми электропереключателями.

Ключевые рабочие узлы этих устройств представлены симисторами, тиристорами или транзисторами. ТТР не имеют подвижных частей, чем отличаются от электромеханических реле.

Размер твердотельного реле во многом зависит от максимально допустимой нагрузки и возможности отводить тепло путем теплопередачи и конвекции (+)

Внутреннее устройство этих приборов может сильно различаться в зависимости типа регулируемой нагрузки  и электрической схемы.

Простейшие твердотельные реле включают такие узлы:

  • входной узел с предохранителями;
  • триггерная цепь;
  • оптическая (гальваническая) развязка;
  • переключающий узел;
  • защитные цепи;
  • узел выхода на нагрузку.

Входной узел ТТР представляет собой первичную цепь с последовательно подключенным резистором. Предохранитель в эту цепь встраивается опционально. Задача узла входа – принятие управляющего сигнала и передача команды на коммутирующие нагрузку переключатели.

При переменном токе для разделения контролирующей и основной цепи применяют гальваническую развязку. От её устройства во многом зависит принцип работы реле. Ответственная за обработку входного сигнала триггерная цепь может включаться в узел оптической развязки или располагаться отдельно.

Защитный узел препятствует возникновению перегрузок и ошибок, ведь в случае поломки прибора может выйти из строя и подключенная техника.

Основное предназначение твердотельных реле – замыкание/размыкание электрической сети с помощью слабого управляющего сигнала. В отличие от электромеханических аналогов, они имеют более компактную форму и не производят в процессе работы характерных щелчков.

Принцип работы ТТР

Работа твердотельного реле довольно проста. Большинство ТТР предназначено для управления автоматикой в сетях 20-480 В.

Оптическая развязка позволяет создавать управленческие сигналы минимальной мощности, что критически важно для датчиков, работающих от автономных источников питания (+)

При классическом исполнении в корпус прибора входит два контакта коммутируемой цепи и два управляющих провода. Их количество может изменяться при увеличении количества подключенных фаз. В зависимости от наличия напряжения в управляющей цепи, происходит включение или выключение основной нагрузки полупроводниковыми элементами.

Особенностью твердотельных реле является наличие небесконечного сопротивления. Если контакты в электромеханических устройствах полностью разъединяются, то в твердотельных отсутствие тока в цепи обеспечивается свойствами полупроводниковых материалов.

Поэтому при повышенных напряжениях возможно появление небольших токов утечки, которые могут негативно сказаться на работе подключенной техники.

Классификация твердотельных реле

Сферы применения реле разнообразны, поэтому и их конструктивные особенности могут сильно отличаться, в зависимости от потребностей конкретной автоматической схемы. Классифицируют ТТР по количеству подключенных фаз, виду рабочего тока, конструктивным особенностям и типу схемы управления.

По количеству подключенных фаз

Твердотельные реле используются как в составе домашних приборов, так и в промышленной автоматике с рабочим напряжением 380 В.

Поэтому эти полупроводниковые устройства, в зависимости от количества фаз, разделяются на:

  • однофазные;
  • трехфазные.

Однофазные ТТР позволяют работать с токами 10-100 или 100-500 А. Их управление производится с помощью аналогового сигнала.

К трехфазному реле рекомендуется подключать провода различных цветов, чтобы при монтаже оборудования можно было правильно их присоединить

Трехфазные твердотельные реле способны пропускать ток в диапазоне 10-120 А. Их устройство предполагает реверсивный принцип функционирования, который обеспечивает надежность регуляции одновременно нескольких электрических цепей.

Часто трехфазные ТТР используются для обеспечения работы асинхронного двигателя. В его электросхему управления обязательно включаются быстрые предохранители из-за высоких пусковых токов.

По виду рабочего тока

Твердотельные реле нельзя настроить или перепрограммировать, поэтому они могут нормально работать только при определенном диапазоне электропараметров сети.

В зависимости от потребностей ТТР могут управляться электроцепями с двумя видами тока:

  • постоянным;
  • переменным.

Аналогично можно классифицировать ТТР и по виду напряжения активной нагрузки. Большинство реле в бытовых приборах работают с переменными параметрами.

Постоянный ток не используется в качестве основного источника электроэнергии ни в одной стране мира, поэтому реле такого типа имеют узкую сферу применения

Устройства с постоянным управляющим током характеризуются высокой надежностью и используют для регуляции напряжение 3-32 В. Они выдерживают широкий диапазон температур (-30..+70°С) без значительного изменения характеристик.

Реле, регулирующиеся переменным током, имеют управляющее напряжение 3-32 В или 70-280 В. Они отличаются низкими электромагнитными помехами и высокой скоростью срабатывания.

По конструктивным особенностям

Твердотельные реле часто устанавливают в общий электрощит квартиры, поэтому многие модели имеют монтажную колодку для крепления на DIN-рейку.

Кроме того, существуют специальные радиаторы, располагающиеся между ТТР и опорной поверхностью. Они позволяют охлаждать прибор при высоких нагрузках, сохраняя его рабочие характеристики.

Реле крепиться на DIN-рейку преимущественно через специальный кронштейн, который имеет и дополнительную функцию – отводит излишки тепла при работе прибора

Между реле и радиатором рекомендуется наносить слой термопасты, который увеличивает площадь соприкосновения и увеличивает теплоотдачу. Существуют и ТТР, предназначенные для крепления к стене обычными шурупами.

По типу схемы управления

Не всегда принцип работы регулируемой реле техники требует его мгновенного срабатывания.

Поэтому производители разработали несколько схем управления ТТР, которые используются в различных сферах:

  1. Контроль «через ноль». Такой вариант управления твердотельным реле предполагает срабатывание только при значении напряжения, равном 0. Используется в устройствах с емкостной, резистивной (нагреватели) и слабой индуктивной (трансформаторы) нагрузкой.
  2. Мгновенное. Используется при необходимости резкого срабатывания реле при подаче управляющего сигнала.
  3. Фазовое. Предполагает регулирование выходного напряжения методом изменения параметров управляющего тока. Применяется для плавного изменения степени нагрева или освещения.

Твердотельные реле различаются и по многим другим, менее значимым, параметрам. Поэтому при покупке ТТР важно разобраться в схеме работы подключаемой техники, чтобы приобрести максимально соответствующее ей регулировочное устройство.

Обязательно должен быть предусмотрен запас мощности, потому что реле имеет эксплуатационный ресурс, который быстро расходуется при частых перегрузках.

Преимущества и недостатки ТТР

Твердотельные реле не зря вытесняют с рынка обычные пускатели и контакторы. Эти полупроводниковые приборы обладают множеством преимуществ перед электромеханическими аналогами, которые заставляют потребителей останавливать выбор именно на них.

Реле для микросхем имеет компактные размеры и сильно ограничены по максимально пропускаемому току. Крепятся они преимущественно путем припаивания специальных ножек

К таким достоинствам относят:

  1. Низкое потребление электроэнергии (на 90% меньше).
  2. Компактные габариты, позволяющие монтировать устройства в ограниченном пространстве.
  3. Высокая скорость запуска и отключения
  4. Пониженная шумность работы, отсутствуют характерные для электромеханического реле щелчки.
  5. Не предполагается техническое обслуживание.
  6. Длительный срок службы благодаря ресурсу в сотни миллионов срабатываний.
  7. Благодаря широким возможностям по модификации электронных узлов, ТТР имеют расширенные сферы применения.
  8. Отсутствие электромагнитных помех при срабатывании.
  9. Исключается порча контактов вследствие их механического удара.
  10. Отсутствие прямого физического контакта между цепями управления и коммутации.
  11. Возможность регулирования нагрузки.
  12. Наличие в импульсных ТТР автоматических цепей, защищающих от перегрузок.
  13. Возможность использования во взрывоопасных средах.

Указанных преимуществ твердотельных реле не всегда достаточно для нормальной работы оборудования. Именно поэтому они ещё не полностью вытеснили электромеханические контакторы.

Для стабильной работы мощных твердотельных реле важен эффективный отвод тепла, потому что при повышенных температурах резко искажается напряжение нагрузки (+)

ТТР имеют и недостатки, которые не позволяют им использоваться во многих случаях.

К минусам относят:

  1. Невозможность работы большинства устройств с напряжениями свыше 0,5 кВ.
  2. Высокая стоимость.
  3. Чувствительность к высоким токам, особенно в пусковых цепях электродвигателей.
  4. Ограничения по использованию в условиях повышенной влажности.
  5. Критическое снижение рабочих характеристик при температурах ниже 30°С мороза и выше 70°С тепла.
  6. Компактный корпус приводит к избыточному нагреву устройства при стабильно высоких нагрузках, что требует применения специальных устройств пассивного или активного охлаждения.
  7. Возможность расплавления устройства от нагрева при коротком замыкании.
  8. Микротоки в закрытом состоянии реле могут быть критическими для работы оборудования. Например, подключенные в сеть люминесцентные лампы могут периодически вспыхивать.

Таким образом, твердотельные реле имеют определенные сферы применения. В цепях высоковольтного промышленного оборудования их использование резко ограничено из-за несовершенных физических свойств полупроводниковых материалов.

Однако в бытовой технике и автомобильной промышленности ТТР занимают прочные позиции за счет своих положительных свойств.

Возможные схемы подключений

Схемы подключения твердотельных реле могут быть самые разнообразные. Каждая электрическая цепь строится, исходя из особенностей подключаемой нагрузки. В схему могут добавляться дополнительные предохранители, контроллеры и регулирующие устройства.

Благодаря тому, что цепи управления и нагрузки в приборе не перекрываются, их электрические характеристики могут отличаться любыми параметрами (+)

Далее будут представлены наиболее простые и распространенные схемы подключения ТТР:

  • нормально-открытая;
  • со связанным контуром;
  • нормально-закрытая;
  • трехфазная;
  • реверсивная.

Нормально-открытая (разомкнутая) схема – реле, нагрузка в котором находится под напряжением при наличии управляющего сигнала. То есть подключенная техника оказывается в отключенном состоянии при обесточенных входах 3 и 4.

 

Перед покупкой реле необходимо определиться с требуемым типом его первоначального состояния (замкнутое или разомкнутое), чтобы обеспечить правильную работу подключенной техники (+)

Нормально-замкнутая схема – подразумевается реле, нагрузка в котором находится под напряжением при отсутствии управляющего сигнала. То есть подключенная техника оказывается в рабочем состоянии при обесточенных входах 3 и 4.

Существует схема подключения твердотельного реле, в которой управляющее и нагрузочное напряжение одинаково. Такой способ можно использовать одновременно для работы в сетях постоянного и переменного тока.

Трехфазные реле подключаются несколько по иным принципам. Контакты могут соединяться в вариантах «Звезда», «Треугольник» или «Звезда с нейтралью».

Выбор трехфазной схемы подключения реле во многом зависит от особенностей работы техники, подключенной к нему в качестве нагрузки

Реверсные твердотельные реле применяются в электродвигателях в соответствующем режиме. Они изготавливаются в трехфазном варианте и включают два контура управления.

Если для реле важно соблюдение полярности подключения контактов, то на маркировке всегда будет указано, куда подключать фазу и ноль

Собирать электрические цепи с ТТР необходимо только после их предварительной прорисовки на бумаге, потому что неверно подключенные устройства могут выйти из строя из-за короткого замыкания.

Практическое применение устройств

Сфера использования твердотельных реле довольно обширна. Из-за высокой надежности и отсутствия потребности в регулярном обслуживании их часто устанавливают в труднодоступных местах оборудования.

Во многих реле подключение проводов управляющего контура требует соблюдения полярности, что необходимо учитывать в процессе монтажа оборудования

Основными же сферами применения ТТР являются:

  • система терморегуляции с применением ТЭНов;
  • поддержание стабильной температуры в технологических процессах;
  • контроль работы трансформаторов;
  • регулировка освещения;
  • схемы датчиков движения, освещения,  и т. п.;
  • управление электродвигателями;
  • .

С увеличением автоматизации бытовой техники твердотельные реле приобретают все большее распространение, а развивающиеся полупроводниковые технологии постоянно открывают новые сферы их применения.

При желании, собрать твердотельное реле можно собственноручно. Подробная инструкция представлена в .

Выводы и полезное видео по теме

Представленные видеоролики помогут лучше понять работу твердотельных реле и ознакомиться со способами их подключения.

Практическая демонстрация работы простейшего твердотельного реле:

Разбор разновидностей и особенностей работы твердотельных реле:

Тестирование работы и степени нагрева ТТР:

Смонтировать электрическую цепь из твердотельного реле и датчика может практически каждый человек.

Однако планирование рабочей схемы требует базовых знаний в электротехнике, потому что неправильное подключение может привести к удару током или короткому замыканию. Зато в результате правильных действий можно получить массу полезных в быту приборов.

Есть, что дополнить, или возникли вопросы по теме подключения и применения твердотельных реле? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования таких устройств. Форма для связи находится в нижнем блоке.

Простое твердотельное реле своими руками

Твердотельное реле, представляющее собой мощный тиристорный (симисторный) электронный ключ удобнее, надежнее, имеет значительно больший ресурс и работает бесшумно, по сравнению с традиционными электромагнитными реле. Такой ключ-реле не имеет подвижных частей, искрящих-пригорающих-изнашивающихся контактов. Не трудно сделать (даже в кустарных условиях) такое электронное реле любой мыслимой степени защиты (пыль, влажность, агрессивные среды). В большинстве случаев электронные ключи-реле с успехом применяются для коммутации нагрузки на переменном токе в строящихся приборах и аппаратах, модернизируя или ремонтируя старые приборы (применяя мощные электронные ключи) улучшаем их характеристики. Например, выход из строя примененных в множестве бытовой техники механических термостатов с биметаллическими изгибающимися контактами – очень частая причина поломок. Применив подобный электронный ключ мы разгружаем контактную группу штатного механического термостата, колоссально повышая его ресурс.

Здесь, реле-электронный ключ предназначено для управления электрическими нагревателями-спиралями в специальной печи небольшой мощности. Твердотельное реле управляется температурным контроллером имеющим специальный выход. Для сопряжения с контроллером применен транзисторный каскад. В целом, схема исполнительной части повторяет [1], отличаясь исполнением. Здесь, в качестве ключей применены симисторы в корпусах ТОР-3, что позволило сделать сборку вполне компактной.

Принципиальная схема твердотельного реле на симисторе. Здесь применен симистор ВТА-41, транзистор КТ315. Симисторная оптопара – МОС3020 (ток включения светодиода 30 мА). Цепочка С1, R3 предназначена для улучшения динамических характеристик симистора, меньшее из диапазона сопротивлений соответствует резистивной нагрузке ключа, большее – индуктивной. Резистор греется, лучше подобрать керамический, мощностью не менее 5 Вт. При необходимости, ключ может быть применен и для ручного включения, подобно [2], в этом случае транзисторный каскад удаляется, а на светодиод подается питание от маломощного сетевого блока. Такую схему исполнительного устройства можно применить и для контроллеров, не оснащенных специальным (для твердотельных реле) выходом. Достаточно, чтобы устройство управления имело обычный релейный выход, пусть и слабый. Нормально разомкнутую группу контактов штатного реле, следует при этом включить в разрыв питания светодиода.

В качестве радиаторов для симисторного ключа применены алюминиевые корпуса от отслуживших свой срок жестких дисков персонального компьютера. Они оказались вполне удобны для такого применения – преотлично нашлось место для крепления симистора, хорошо поместились и все детали высоковольтной части. Размер корпуса у HDD стандартен, имеются отверстия с нарезкой для специальных коротких саморезов. В ряде случаев, очень удобно применять и металлический корпус от старого системного блока. Модули симисторных ключей при этом монтируются на штатные места в специальную «корзину». Узко-высокий корпус-башню лучше проектировать для ее горизонтального положения, при этом все радиаторы с ключами внутри будут расположены вертикально, для нормального естественного охлаждения (не забыть про вентиляционные отверстия). Либо применять обдув и контроль температуры.

Мой блок управления будет трехфазным, это усложнит схему и увеличит громоздкость блока управления, зато втрое снизит проходящие токи, равномерно распределит греющиеся элементы (симисторы, элементы снабберов) и позволит задействовать пусть и перекошенную, но трехфазную деревенскую сеть.

Что понадобилось для работы.

Набор инструмента для электромонтажа, паяльник средней мощности (40…60 Вт) с принадлежностями, мультиметр, фен строительный или специальный для работы с термотрубками.

Набор инструмента для некрупных слесарных работ, ножницы по металлу, электрическая дрель или шуруповерт, набор сверл.

Материалы – отслужившие HDD, потребные радиоэлементы, крепеж, провод, мелочи

В своем электрическом хламе подобрал три гарантированно ненужных жестких диска, удалил платы контроллеров и механическую часть, оставил только крашеный порошковой краской алюминиевый поддон. В одном из вариантов HDD мотор дисков оказался насмерть запрессованным, оставил как есть, он не помешает.

Разметил места креплений для крупных элементов. Керамический 10 Вт резистор снаббера закрепил жестяной обоймой вырезанной из банки от сгущенного молока (съесть, отмыть, высушить, отрезать торцы, выровнять). Обоймы с резисторами закрепил винтиками М3 (+гайки-шайбы-стопоры).

Симисторы в выбранном месте прижал планками из нетонкого текстолита. Те же винтики М3 со всем сопутствующим, симистор изолировал от радиатора пластинкой из тонкой слюды. Под пластинку и под симистор плюхнул немного теплопроводящей пасты.

Весь электромонтаж велся короткими жесткими проводами – толстой медной луженой проволокой изолированной термотрубкой. Схема несложная, хватило выводов механически закрепленных элементов. Для более удобного подключения нагрузки, сделал от ножек симистора короткие проволочные выводы, сигнал управления подключается к выводам торчащей оптопары. Чтобы не путаться, незадействованный вывод откусил.

Испытания нагрузкой показали, что железка при работе с 2 кВт нагрузкой нагревается незначительно. Вместо сигнала управления зажигал светодиод оптопары от регулируемого БП, установив ток защиты 10 мА.

После проверки работоспособности каждого ключа, собрал трехфазный макет. Все три светодиода оптопар ключей (МОС3022, ток включения светодиода 10 мА) включены параллельно к одному транзисторному каскаду. Такое включение не рекомендуется – сложно достичь полной синхронности работы из-за неравенства, неидентичности оптопар. Мне пришлось применить оптопары имеющиеся. Из их большого количества отобрал три с одинаковыми измеренными параметрами светодиодов. Кроме того, возможной несинхронностью включения нагревателей в печи вполне можно пренебречь. Собственно, даже отказ одного из нагревателей скомпенсирует термоконтроллер.

Согласующий транзисторный каскад собран на отдельной некрупной платке и снабжен специальными проволочными выводами для винтовых клемм контроллера. Для уменьшения возни с травлением платку спроектировал так, чтобы границы между широкими контактными площадками легко и удобно прорезать бормашиной.

Контроллер для испытаний применил из временного состава миниатюрной печи для фьюзинга.

В качестве нагрузки-индикатора включил три 60 Вт лампы накаливания. Чтобы ничего не замкнуло в самый неподходящий момент, смонтировал все крупные элементы на живую нитку на куске ДСП. Пришлось к рабочему столу протянуть и все три фазы. Все отлично, все три включаются синхронно и надежно.

Babay Mazay, март, 2020 г.

Литература

1. Самодельное твердотельное реле, блок управления муфельной печью.
2. Трехфазное твердотельное реле на 40 А.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Твердотельное реле своими руками

В последнее время набрали популярность твёрдотельные реле. Для очень многих устройств силовой электроники твёрдотельные реле стали просто необходимы. Их преимущество в несоизмеримо большем количестве срабатываний, по сравнению с электромагнитными реле и большой скоростью переключений. С возможностью подключения нагрузки в момент перехода напряжения через ноль, тем самым избегая тяжёлых пусковых токов. В некоторых случаях их герметичность тоже играет свою положительную роль, но одновременно лишая владельца такого реле преимущества в возможности ремонта с заменой некоторых деталей. Твёрдотельное реле, в случае выхода из строя, не ремонтируется и подлежит замене целиком, это его отрицательное качество. Цены на такие реле несколько кусаются, и получается расточительно.
Попробуем вместе сделать твёрдотельное реле своими руками с сохранением всех положительных качеств, но, не заливая схему смолой или герметиком, чтобы иметь возможность ремонта, в случае выхода из строя.

Схема

Посмотрим схему этого очень полезного и нужного устройства.

Основу схемы составляют силовой симистор Т1 — BT138-800 на 16 Ампер и управляющий им оптрон МОС3063. На схеме выделены чёрным цветом проводники, которые нужно проложить медным проводом повышенного сечения, в зависимости от планируемой нагрузки.
Управление светодиодом оптрона мне удобнее запитать от 220 Вольт, а можно от 12 или 5 Вольт, кому как нужно.

Для управления от 5 Вольт, нужно гасящий резистор 630 Ом поменять на 360 Ом, остальное всё одинаково.
Номиналы деталей рассчитаны на МОС3063, если примените другой оптрон, то номиналы нужно пересчитать.
Варистор R7 защищает схему от бросков напряжения.
Цепочку индикаторного светодиода можно совсем убрать, но с ней получается нагляднее, что аппарат работает.
Резисторы R4, R5 и конденсаторы C3, C4 служат для предотвращения выхода из строя симистора, их номиналы рассчитаны на ток не выше 10 Ампер. Если потребуется реле на большую нагрузку, то номиналы нужно пересчитывать.
Радиатор охлаждения для симистора впрямую зависит от нагрузки на него. При мощности триста Ватт, радиатор не нужен вовсе, и соответственно – чем больше нагрузка, тем больше площадь радиатора. Чем меньше будет симистор перегреваться, тем дольше проработает и поэтому даже кулер охлаждения не будет лишним.
Если вы планируете управлять повышенной мощностью, то наилучшим выходом будет поставить симистор большей мощности, например, ВТА41, который рассчитан на 40 Ампер, или подобный ему. Номиналы деталей подойдут без пересчёта.

Детали и корпус

Нам потребуется:

  • F1 — предохранитель на 100 мА.
  • S1 — любой маломощный переключатель.
  • C1 – конденсатор 0.063 мкФ 630 Вольт.
  • C2 – 10 — 100 мкФ 25 Вольт.
  • C3 – 2.7 нФ 50 Вольт.
  • C4 – 0.047 мкФ 630 Вольт.
  • R1 – 470 кОм 0.25 Ватт.
  • R2 – 100 Ом 0.25 Ватт.
  • R3 – 330 Ом 0.5 Ватт.
  • R4 – 470 Ом 2 Ватта.
  • R5 – 47 Ом 5 Ватт.
  • R6 – 470 кОм 0.25 Ватт.
  • R7 – варистор TVR12471, или подобный.
  • R8 – нагрузка.
  • D1 – любой диодный мост на напряжение не менее 600 Вольт, или собрать из четырёх отдельных диодов, например — 1N4007.
  • D2 – стабилитрон на 6.2 Вольта.
  • D3 – диод 1N4007.
  • T1 – симистор ВТ138-800.
  • LED1 – любой сигнальный светодиод.

Изготовление твердотельного реле

Сначала намечаем размещение радиатора, макетной платы и прочих деталей в корпусе и закрепляем их на места.

Симистор нужно изолировать от радиатора охлаждения специальной теплопроводной пластиной с применением теплопроводной пасты. Паста должна слегка вылезти из-под симистора при закручивании крепёжного винта.

Далее размещаем следующие детали в соответствии со схемой и припаиваем их.

Припаиваем провода для подключения питания и нагрузки.

Помещаем устройство в корпус, предварительно испытав его при минимальной нагрузке.

Испытание прошло успешно.

Смотрите видео

Смотрите видео испытания устройства совместно с цифровым регулятором температуры.

Твердотельное реле своими руками | Все своими руками

Опубликовал admin | Дата 18 июля, 2018

Твердотельное реле (ТТР) или Solid State Relay (SSR) — это электронные устройства, которые выполняют те же самые функции, что и электромеханическое реле, но не содержит движущихся частей. Серийные твердотельные реле используют технологии полупроводниковых устройств, таких как тиристоры и транзисторы.

То есть вместо подвижных контактов в ТТР используются электронные полупроводниковые ключи, в которых цепи управления имеют гальваническую развязку с силовыми, коммутируемыми цепями. Благо сейчас переключательных полевых транзисторов приобрести нет никаких проблем. Таким образом, для построения твердотельного реле нам потребуется MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) транзистор, русский эквивалент термина — МОП-транзистор или полевой транзистор с изолированным затвором, и оптрон. На страницах сайта есть статьи, посвященные транзисторным ключам с оптической изоляцией – «Транзисторный ключ переменного тока»

В данной статье рассмотрен ключ для коммутации переменного тока. Используя SMD компоненты по этой схеме можно изготовить ТТР переменного тока. Часть деталей монтируется на печатной плате, которая крепится к алюминиевой положке. Транзисторы устанавливаются на подложку через слюдяные прокладки. Конденсатор С1 лучше брать или танталовый или керамический. Его емкость можно уменьшить.
Еще одна статья – «Транзисторный ключ с оптической развязкой»

В этой схеме к качестве коммутирующих транзисторов используются биполярные транзисторы разных структур.

Есть еще одна схема гальванически развязанного ключа на моп-транзисторе с защитой от предельного тока нагрузки. О нем шла речь в статье «Mощный ключ постоянного тока на полевом транзисторе»

Все это хорошо, если напряжения, с которыми работают ТТР реализованные на MOSFET, позволяют управлять этими полевыми транзисторами. А как быть с коммутацией напряжения, например 3,3 вольта. Для открывания полевого транзистора этого напряжения явно не достаточно. Нужен какой-то преобразователь, способный поднять напряжение управления хотя бы до пяти вольт. Классический импульсный преобразователь использовать для реле – слишком громоздко. Но есть другие преобразователи – оптические, например — TLP590B.

Такие преобразователи на выходе обеспечивают напряжение порядка 9 вольт, что вполне достаточно для управления моп-транзисторами. Из документации на эти преобразователи видно, что они очень маломощные и способные отдать на выходе ток всего лишь порядка 12мкА. У моп-транзисторов есть такой параметр – Заряд затвора – Qg. Пока затвор данного транзистора не получит необходимый заряд – транзистор не начнет открываться. Скорость заряда зависит от тока, который может обеспечить цепь управления, чем больше ток управления, тем быстрее затвор получает необходимый заряд, тем быстрее открывается транзистор. Тем меньше будет время, когда коммутирующий транзистор будет находиться в активной зоне выходной характеристики – тем меньше на нем будет выделяться тепла. Но в нашем случае, когда транзистор работает не в преобразователе, на относительно высоких частотах, а в качестве реле, вкл – выкл, ток в 12 мкА будет достаточен. Правда лучше конечно выбирать ключевые транзисторы с малым зарядом затвора. Например.

Этот транзистор способен коммутировать напряжение 600В при токе стока 7А. Мощность стока при температуре +25 С — 100Вт. При этом заряд затвора Qg всего 8,2 нанокулона = 8,2nC. Для сравнения популярный транзистор IRF840 имеет Qg = 63nC.

Для управления низковольтными нагрузками можно применить транзистор irlr024zpbf. При данных режимах измерения ток стока – 5А, напряжение сток – исток – 44В, напряжение затвор – исток -5В, имеет типовое значение заряд затвора Qg = 6,6nC.

Но у меня таких транзисторов нет и я для реле использовал транзисторы IRL2505 с каналом типа n. У данного транзистора Qg = 130nC !

Другой транзистор с каналом типа р — IRF4905, у этого транзистора максимальный Qg = 180nC !!!

Схему собрал самую простую, ту что на рисунке 4

В качестве коммутирующего транзистора в этой схеме использован транзистор IRF4905 с каналом – р. Транзистор не был снабжен теплоотводом и в открытом состоянии нагревался до +60˚С при токе 2А. Напряжение 3,3В коммутировал нормально. Теперь, имея в своем распоряжении такой преобразователь, что нам мешает использовать в положительном проводе питания и транзистор с каналом n?

Результат превзошел мои ожидания. Транзистор IRF2505 без радиатора практически не грелся при токе нагрузки 4А. при напряжении на нагрузке 12,6 В В обоих экспериментах ток управления я выставил примерно 10 мА. Максимальный ток светодиода по документам – 50 мА. Больше 10 мА не стоит увеличивать ток – практически ни чего не меняется. Я очень доволен таким реле. Если описать параметры этой релюхи, применительно к электромагнитному реле, то они были бы такими. Напряжение срабатывания – какое хочешь ! Только подбирай R2. Ток срабатывания – 10 мА. Ток и напряжение коммутации – какое хочешь !!! (В разумных пределах конечно)Только подбирай транзисторы. Не слабо. Хотелось бы проверить данные устройства с коммутацией емкостных и индуктивных нагрузок. Это позже. Пока искал буквы на клавиатуре, пришла еще одна мысль. Если транзистор поставить в диагональ диодного моста, то можно коммутировать переменные напряжения. Таким реле можно коммутировать обмотки трансформаторов. Пока все. Всем удачи. К.В.Ю.

Скачать “Самодельное-твердотельное-реле” Самодельное-твердотельное-реле.rar – Загружено 600 раз – 80 КБ

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:1 467

виды и конструкция, рекомендации по изготовлению

Содержание статьи:

Старые механические реле отличаются двумя недостатками – малым быстродействием и ограниченным ресурсом по количеству допустимых переключений. Пришедшие им на смену электронные коммутаторы (другое название – твердотельное транзисторное или симисторное реле) полностью лишены этих недостатков, что привлекло к ним внимание специалистов по электронике. Отсутствие механических частей, а также простота схемы позволяют без труда собирать их в домашних условиях. Справиться с поставленной задачей поможет ознакомление с особенностями устройства и принципом работы этих элементов.

Что такое твердотельные реле и их классификация

Самодельное твердотельное реле

Твердотельные реле (или ТТР) – это электронные приборы со структурой, не содержащей механических компонентов. Принцип их действия основан на особенностях работы полупроводниковых переходов, отличающихся высокой скоростью коммутаций и защищенностью от физических полей.

Переключение твердотельных реле основано на принципе срабатывания электронного ключа.

В качестве ключевых элементов в этих изделиях традиционно применяются такие распространенные электронные компоненты, как транзисторы, управляемые диоды или тиристоры. В зависимости от используемых при их изготовлении структур ТТР подразделяются на приборы, построенные на основе одного из перечисленных элементов (реле на симисторах, например).

В соответствии с режимами работы и по виду коммутируемых напряжений образцы твердотельных реле, изготавливаемых на базе полупроводников, делятся на следующие группы:

  • устройства, коммутирующие постоянный ток;
  • приборы, управляющие работой нагрузочных линий с переменными токовыми параметрами;
  • универсальные изделия, работающие в различных цепях.

Для первых устройств характерно управление постоянными напряжениями величиной не более 32 Вольт. Представители двух оставшихся позиций способны коммутировать значительные по величине потенциалы (вплоть до десятков киловольт).

Преимущества ТТР

К преимуществам реле относят:

  • возможность коммутации сравнительно мощных нагрузок;
  • высокое быстродействие;
  • работа в условиях гальванической развязки;
  • способность выдерживать кратковременные перегрузки.

Ни один образец механических или электромеханических изделий не в состоянии конкурировать с электронными коммутаторами. Поэтому новые структуры на основе полупроводников полностью вытеснили старые механические образцы.

Уникальные эксплуатационные характеристики ТТР позволяют применять их без каких-либо ограничений с одновременным увеличением ресурса срабатываний. Все перечисленные достоинства этих приборов являются прекрасным поводом для того, чтобы попытаться собрать твердотельное реле своими руками. К минусам этих изделий следует отнести необходимость дополнительного питания, а также потребность в отводе излишков тепла, образующегося при работе с мощными нагрузками.

Самостоятельное изготовление

Чтобы изготовить реле тока своими руками, нужно запастись рядом электронных компонентов, составляющих основу коммутирующих цепей. Также потребуются специальные материалы, из которых будет изготавливаться корпус самодельного реле.

Электронные элементы

В качестве электронных компонентов, используемых при самостоятельном изготовлении простейшего образца ТТР, обычно применяются следующие распространенные детали:

  • оптронная пара МОС3083;
  • симистор марки ВТ139-800;
  • биполярный транзистор серии КТ209;
  • комплект резисторов, а также стабилитрон и светодиод, служащий индикатором срабатывания реле.

Схема твердотельного реле

Перечисленные электронные элементы спаиваются навесным способом согласно приводимой в источниках схеме. Наряду с другими компонентами она содержит в своем составе ключевой транзистор, подающий стабилизированные импульсы на управляющий диод оптронной пары.

Момент подачи фиксируется светодиодным элементом, использование которого в исполнительной цепи допускает визуальный контроль.

Под воздействием этих импульсов происходит мгновенное срабатывание полупроводникового симистора, включенного в коммутируемую цепочку. Применение в такой схемы включения оптронной пары позволяет управлять постоянными потенциалами от 5 до 24 Вольт.

Ограничительная цепочка из резистора со стабилитроном необходима для снижения амплитуды тока, протекающего через светодиод и управляющий элемент до минимальной величины. Такое схемное решение позволяет продлить срок службы большинства используемых при построении схемы элементов.

Конструкция корпуса (заливка компаундом)

Заливка платы компаундом

Для изготовления корпуса сборного изделия в первую очередь потребуется алюминиевая пластина толщиной 3-5 мм, она будет служить основанием под электронную сборку. Размеры выбираются произвольно при условии, что они гарантируют хороший отвод тепла в окружение. Еще одно требование, предъявляемое к этой детали – хорошо обработанная, абсолютно гладкая поверхность, отполированная специальным инструментом или до блеска зачищенная шкуркой.

На следующем шаге подготовки корпуса выбранная в качестве основания пластина оборудуется окаймлением из приклеиваемой по периметру полоски картона. В итоге получится небольшой короб, предназначенный для размещения уже собранной ранее электронной схемы. На его основании из компонентов жестко крепится только симистор, все остальные элементы удерживаются в пределах корпуса за счет собственных связей.

Для подключения к нагрузке и электропитанию наружу коробки выводятся соответствующие проводники.

В дальнейшем надежный крепеж всей сборки обеспечивается заливаемым в коробку жидкого компаунда, заранее подготовленного в подходящей емкости. После его застывания получится монолитная конструкция, по защищенности от вибраций и других воздействий не уступающая лучшим промышленным образцам. Единственный ее недостаток – невозможность разборки с целью последующего ремонта схемы.

Разновидности ТТР

При сборке схем твердотельных реле своими руками следует иметь в виду, что для этих целей могут использоваться самые различные компоненты. Ничто не мешает взявшемуся за работу человеку выбрать современные полевые транзисторы, например, отличающиеся высоким быстродействием и малым энергопотреблением. Эти элементы управляются только потенциалами, обеспечивая возможность коммутации достаточно мощных потребителей. Такие полевые структуры, как MOSFET способны переключать нагрузочные цепи, мощность в которых достигает десятков кВт.

Для самостоятельного изготовления твердотельного реле допускается подбирать другие полупроводниковые структуры, способные управлять силовыми цепями: тиристоры, например, или биполярные транзисторы. Главное – чтобы они соответствовали требованиям, предъявляемым к функциональности данной схемы и рабочим параметрам ходящих в ее состав элементов. Все остальное зависит от подготовленности и внимательности исполнителя.

схема подключения, устройство, характеристики и управление

Содержание статьи:

Для контроля различного электронного оборудования требуется прибор, отличающийся миниатюрными размерами и высокой степенью надежности. К таким устройствам относятся твердотельные реле постоянного и переменного тока. Они нашли свое применение в бытовых и промышленных условиях. Реле можно самостоятельно собрать и установить своими руками без особых трудностей. Единственный критерий, препятствующий широкому распространению устройства – его стоимость. Прежде чем использовать твердотельное реле, нужно разобраться с его параметрами, принципом работы, конструкцией.

Принцип работы

Устройство твердотельного реле

Твердотельное реле – это модульный полупроводниковый прибор, используемый для замыкания и размыкания электрических сетей. Он представлен в виде транзисторов, симисторов, тиристоров. Твердотельные реле также называются SSR (solid state relay).

Основные компоненты, из которых состоит реле:

  • входной узел;
  • предохранители;
  • триггерная цепь;
  • развязка;
  • узел переключения;
  • защитная цепь;
  • выходной узел.

Большая часть твердотельных реле применяется для автоматики, подключенной к электросети 20-480 Вольт.

Принцип действия устройства прост. В корпус реле входят два контакта и два управляющих провода. Их число может изменяться в зависимости от фаз, которые были подключены. Под действием напряжения происходит переключение основной нагрузки.

Работая с реле, нужно учитывать, что под высокими напряжениями есть риск появления небольших токов утечки, которые могут навредить технике. Это связано с тем, что в реле остается небольшое сопротивление.

Известные модели

Расшифровка маркировки

Основные характеристики зависят от многих факторов. К популярным отечественным моделям, произведенным фирмами КИПпрбор, Протон, Cosmo, относятся:

  • ТМ-О. Устройства со встраиваемой схемой «ноль», через которую проходит переход фазы.
  • ТС. Модели, которые выключаются в любой момент времени.
  • Наиболее популярные и используемые – ТМВ, ТСБ, ТСМ, ТМБ, ТСА. Они обладают выходной RC цепью.
  • Тс/ТМ – силовые. Токи достигают значений 25 мА.
  • ТСА, ТМА – применяются в чувствительных приборах.
  • ТСБ, ТМБ – низковольтные модели. Напряжение не превышает 30 В.
  • ТСВ, ТМВ – высоковольтные. Напряжение достигает 280 В.

К иностранным аналогам относятся изделия, произведенные фирмами Carlo Gavazzi, Gefran, CPC.

Расшифровка

Модели SSR, TSR (однофазные и трехфазные соответственно) являются самыми популярными. Их сопротивление равно 50 Мом и более при напряжении 500 В.

Записывается обозначение как SSR -40 D A H. SSR или TSR обозначает число фаз. 40 – нагрузка в Амперах. Буквой обозначается сигнал на входе (L 4-20 мА, D – 3-32 В при постоянном токе, V – переменное сопротивление, A – 80-250 В при переменном токе). Следующая буква – входное напряжение (А – переменное, D – постоянное). Последняя буква – диапазон выходных напряжений (Н – 90-480 В, нет буквы – 24-380 В).

Особенности работы с устройством

Реле однофазное 220В

При работе с твердотельным реле 220в (управление 220), нужно придерживаться следующих правил:

  • Соединение должно осуществляться винтовым способом. Оно является достаточно надежным. Спайка частей не нужна, скрутка запрещена.
  • Нельзя допускать попадания пыли, воды и металлических предметов на реле. Они приводят к выходу из строя компонента.
  • Нельзя прикладывать недопустимые внешние воздействия на корпус. К ним относятся заливание жидкостью, удары, вибрации, падения.
  • Не трогать прибор во время работы. Корпус нагревается, из-за чего человек может получить ожог.
  • Не устанавливать реле рядом с легковоспламеняемыми предметами.
  • Перед подключением цепи следует убедиться в корректности собранных соединений.
  • При нагреве корпуса выше 60 градусов требуется установка дополнительного охлаждения с помощью радиаторов.
  • Нельзя допускать появления короткого замыкания на выходе.

При соблюдении требований к эксплуатации реле будет выполнять свою работу надежно и качественно весь заявленный срок.

Преимущества и недостатки

Твердотельные реле имеют ряд положительных качеств перед электромеханическими аналогами. К ним относятся:

  • Долговечность. Полупроводниковый прибор способен выдержать до десятков тысяч циклов включения и выключения.
  • Создается качественное подключение.
  • Грамотный контроль нагрузки.
  • Высокое быстродействие.
  • Отсутствие электромагнитных помех в замкнутой сети.
  • Быстрое срабатывание.
  • Бесшумность работы.
  • Миниатюрные размеры.
  • Отсутствие дребезгов контактов.
  • Высокая производительность.
  • Возможность плавного перехода между сетями постоянного и переменного тока. Зависит от мощности и типа прибора.
  • Широкая область применения.
  • Выдерживает перегрузки в 2000.
  • Защита от резких и больших скачков напряжения и тока.

Есть и ряд минусов, из-за которых электромеханическое реле может быть выгоднее в применении. В первую очередь это высокая стоимость изделия и сложность его покупки. Приобрести твердотельные реле можно только в профессиональном специализированном магазине электронных компонентов. Сложности возникают и при первичной коммутации – могут появиться высокие скачки тока. Возникающие в процессе работы микротоки также негативно сказываются на реле.

На работу устройства накладываются и эксплуатационные требования – в помещении должен быть нормальный уровень пыли и влажности. Оптимальные значения можно найти в документации к реле.

Твердотельные реле не могут работать с приборами, напряжение которых превышает 0,5 кВ. Повышение рекомендуемых значений может привести к расплавлению контактов.

Области применения

Область применения

Несмотря на высокую цену, твердотельные реле активно применяются в различных сферах. Они успешно справляются со следующими задачами:

  • Регулирование температуры с помощью тэна.
  • Поддержка нужной температуры в технологических процессах.
  • Коммутация управляющих цепей.
  • Замена пускателей бесконтактного типа.
  • Управление электрическими двигателями.
  • Контроль нагрева трансформаторов.
  • Регулирование уровня подсветки.

В каждом случае используется определенный тип реле.

Классификация твердотельных реле

Трехфазное реле

Полупроводниковые твердотельные реле можно классифицировать по разным показателям. По особенностям контролирующего и коммутируемого напряжения выделяют:

  • Твердотельные реле постоянного тока. Их используют в цепях постоянного электричества с мощностью от 3 до 32 Ватт. Отличаются высокими удельными характеристиками, наличием светодиодной индикации, надежностью. Рабочий температурный диапазон достаточно широк и составляет от -30 до +70 градусов.
  • Реле переменного тока. Они отличаются низким уровнем электромагнитных помех, отсутствием шумов, малым потреблением электроэнергии. Диапазон рабочих мощностей составляет от 90 до 250 Вт.
  • Реле с ручным управлением. С помощью таких устройств можно самостоятельно регулировать режим работы.

По типу напряжения выделяются однофазные и трехфазные реле. Однофазные приборы используются в сетях с силой тока от 100 до 120 А или от 100 до 500 А. В них управление осуществляется за счет получения аналогового сигнала и переменного резистора. Трехфазные реле используются для коммутации на трех фазах одновременно. Сила тока 10-120 А. Трехфазные модели служат дольше однофазных.

В отдельную группу из трехфазных твердотельных реле выделяют устройства реверсивного типа. Они отличаются маркировкой и бесконтактным соединением. Основной функцией является надежная коммутация каждой цепи по отдельности. Они защищают цепь от ложных срабатываний. Основное применение нашли в асинхронных двигателях. Для работы с реле необходима установка предохранителя или варистора.

По методу коммутации реле классифицируются так:

  • устройства емкостного или редуктивного типа, а также приборы слабой индукции;
  • со случайным или мгновенным срабатыванием;
  • с фазным управлением.

По конструкции можно выделить модели, устанавливающиеся на дин рейку и на специальную планку переходного типа.

Советы по выбору

Предохранитель от повышения нагрузок

Купить твердотельные реле можно только в специализированном магазине электронной техники.  Опытные специалисты помогут подобрать лучшее устройство для определенных целей. На стоимость изделия влияют следующие факторы:

  • тип реле;
  • наличие фиксирующих механизмов;
  • материал корпуса;
  • время включения;
  • фирма-изготовитель и страна производства;
  • мощность;
  • необходимая энергия;
  • габариты.

При покупке важно учесть, что должен быть запас по мощности, превышающий рабочую в несколько раз. Это убережет реле от поломок. Также дополнительно используются специальные предохранители. К самым надежным относятся:

  • G R – используются в широком диапазоне нагрузок, отличаются высоким быстродействием.
  • G S – работают во всем диапазоне токов. Надежно защищают устройство от превышения нагрузки электросети.
  • A R – защищают компоненты полупроводникового устройства от короткого замыкания.

Такие приборы обеспечивают высокую защиту от поломок. Их стоимость сопоставима с ценой самого реле. Меньшими защитными свойствами и, соответственно, меньшей стоимостью обладают предохранители классов B, C, D.

Для надежной и стабильной работы реле нужно подобрать охлаждающий радиатор. Особенно это актуально при превышении температуры выше 60 градусов. Запас тока для обычного реле должен превышать рабочие токи в 3-4 раза. При работе с асинхронными двигателями этот показатель должен увеличиться до 8-9 раз.

Схемы подключения

Существуют различные способы подключения твердотельных полупроводников. Они зависят от особенностей подключаемой нагрузки. Дополнительно в схему могут включаться различные элементы управления.

К наиболее используемым схемам относятся:

  • Нормально-открытая. Нагрузка находится под напряжением при наличии управляющего сигнала.
  • Нормально-закрытая. Нагрузка находится под напряжением при отсутствии управляющего сигнала.
  • Управляющее и нагрузочное напряжение равны. Используется для работы в сетях постоянного и переменного тока.
  • Трехфазное. Может подсоединяться по-разному – «звезда», «треугольник», звезда с нейтралью».
  • Реверсивное. Разновидность трехфазного реле. Включает в себя 2 контура управления.

Прежде чем собирать схему, ее нужно нарисовать на бумаге.

Подключение к сети производится через пускатели или контакты. При использовании трехфазного реле все 3 фазы должны быть подключены к соответствующим клеммам, расположенным сверху прибора. Маркируются верхние фазные контакты буквами A, B C, ноль – N.

На устройстве есть и нижние клеммы, маркирующиеся цифрами 1, 2, 3. Подключаются они по следующему алгоритму:

  • 1 – к выходу катушки в контакторе.
  • 3 – на любую фазу, которая проходит в обход реле.
  • 2 – к нулю сети.

Силовые элементы подключаются следующим образом: фазы под напряжением нужно подсоединить к соответствующим клеммам на контакторе; нагрузочные проводники – на выход контактора; нули объединяются на общей шине в распределительной коробке.

Настройка реле будет рассмотрена на примере VP 380 А:

  • Устройство включить в сеть.
  • Посмотреть на дисплей. При отсутствии напряжения будут мигать цифры. Появление черточек сигнализирует об изменении чередования фаз или отсутствии одной из них.

В нормальном состоянии электросети примерно через 15 секунд должны замкнуться контакты 1 и 3, подающие питание на катушку и в сеть.

Если подключение выполнено неверно, экран будет мигать. Тогда нужно проверить его правильность. Выставить необходимые настройки можно с помощью кнопок на корпусе. Кнопки с треугольниками отвечают за выставление нужных пределов.

Использование твердотельного реле

Узнайте, как легко подключить твердотельное реле

Твердотельное реле (SSR) является альтернативой классическому переключателю, когда вы хотите включить или выключить цепь. SSR запускается внешним напряжением, приложенным к его клемме управления. В нем нет движущихся частей, поэтому он может работать намного быстрее и дольше, чем традиционный переключатель. Если он использует инфракрасный свет в качестве контакта; две стороны реле фотосвязаны.

Зачем использовать реле вместо переключателя?

Основные факторы — это удобство, безопасность и стоимость.Реле меньше и дешевле переключателей. С переключателем вам также придется прокладывать более толстые провода (достаточные для работы с током 30-40 ампер), потому что для этого требуется больше напряжения, чем для реле. Думайте о реле как о пульте дистанционного управления, оно обеспечивает безопасность, увеличивая расстояние до источника питания.

Провода SSR меньше и большего сечения, чем выключатель. SSR также быстрее, меньше по размеру и имеют больший срок службы, чем механическое реле. Они помогают повысить безопасность, поскольку вы имеете дело с меньшим напряжением и силой тока, давая вам меньшее напряжение / силу тока, контролируя более высокое напряжение / силу тока.Для гораздо более высоких напряжений SSR — отличная альтернатива, когда обычный переключатель не может использоваться из-за сгорания под действием тока.

На схеме ниже показано, как подключить твердотельное реле. Обратите внимание, что диаграмма относится к твердотельным реле постоянного / постоянного тока (SSR).

Твердотельное реле (DC / DC):

Подсоедините положительную клемму (R) к кнопочному переключателю.
Подключите отрицательную клемму (R) к отрицательной клемме аккумулятора 1.
Подключите положительную клемму (L) к положительной клемме аккумулятора 2.
Подсоедините отрицательную клемму (L) к положительной клемме нагрузки.

Батарея 1:
Обратите внимание, что первая батарея использовалась в качестве изолятора.
Подсоедините отрицательную клемму аккумулятора 1 к отрицательной клемме SSR (R).
Подсоедините положительный полюс аккумуляторной батареи 1 к кнопочному переключателю.

Кнопочный переключатель:
Подключите одну клемму к положительной клемме (R) твердотельного реле.
Подсоедините вторую клемму к плюсовой клемме АКБ 1.

Нагрузка:
Подключите положительную клемму нагрузки к отрицательной клемме (L) SSR.
Подключите отрицательную клемму нагрузки к отрицательной клемме аккумуляторной батареи 2.

Аккумулятор 2:
Подключите положительный полюс аккумулятора 2 к положительному выводу на выходе.

Подключите отрицательную клемму аккумулятора 2 к отрицательной клемме нагрузки.


Если у вас есть вопросы, свяжитесь с технической группой Jameco по адресу [электронная почта защищена].

Введение в твердотельные реле

Когда мы думаем о реле, мы склонны думать о тех больших механических вещах, которые издают удовлетворительный «щелчок» при активации. Какими бы хорошими они ни были для релейных компьютеров, бывают случаи, когда вы не хотите иметь дело с шумом или ненадежностью движущихся частей. Здесь стоит подумать о твердотельных реле (SSR). Они переключаются быстрее, бесшумно, без дуг и дуг, служат дольше и не содержат большой индуктор.

Source Fotek SSR Specifications Sheet

SSR состоит из двух или трех стандартных компонентов, упакованных в модуль (вы даже можете построить один самостоятельно).Первый компонент — это оптопара, которая изолирует вашу цепь управления от сети, которой вы управляете. Во-вторых, симистор, выпрямитель с кремниевым управлением или полевой МОП-транзистор, который переключает сетевое питание с помощью выхода оптопары. Наконец, обычно (но не всегда) существует «схема обнаружения перехода через ноль». Это заставляет реле ждать, пока ток, которым оно управляет, не достигнет нуля, прежде чем отключиться. Большинство SSR аналогичным образом будут ждать, пока сетевое напряжение не пересечет нулевое напряжение, прежде чем включиться.

Если механическое реле включается или выключается вблизи пикового напряжения при подаче переменного тока, происходит внезапное падение или повышение тока. Если у вас индукционная нагрузка, такая как электродвигатель, это может вызвать большой скачок переходного напряжения при выключении реле, поскольку магнитное поле, окружающее индуктивную нагрузку, разрушается. Переключение реле во время пика сетевого напряжения также вызывает электрическую дугу между выводами реле, изнашивая их и способствуя механическому отказу реле.

При использовании SSR, который поддерживает обнаружение перехода через нуль, он будет поддерживать свое состояние до тех пор, пока форма выходного сигнала переменного тока сама не пересечет ноль. В этот момент он безопасно включается или выключается.

Затемнение с помощью SSR

Одним из недостатков такого поведения является то, что вы не можете легко использовать типичные SSR в качестве диммеров с широтно-импульсной модуляцией, несмотря на их относительно высокую скорость переключения. Каждый раз, когда вы пытаетесь контролировать время «включения» входного сигнала, обнаружение перехода через ноль будет ждать, пока сигнал переменного тока не пересечет ноль, перед переключением.

Другой тип SSR, называемый твердотельным реле «случайного включения», используется для регулирования яркости. Он работает так же, как и обычный SSR, за исключением того, что в нем нет схемы обнаружения перехода через ноль. Он просто включается всякий раз, когда получает сигнал. Это позволяет использовать только часть формы волны переменного тока для определенных типов нагрузок, таких как лампы или нагреватели. Тем не менее, он все еще ждет точки перехода через ноль сигнала переменного тока, прежде чем выключиться.

SSR бывают в вариантах переключения постоянного и переменного тока.Тип, который вам нужно использовать, зависит от типа переключаемого питания. В ТТР постоянного тока для управления переключением обычно используются силовые полевые МОП-транзисторы или транзисторы, а не симисторы или кремниевые выпрямители.

Одна особенность SSR переменного тока заключается в том, что измерение изменения сопротивления на выходе SSR при подаче сигнала на вход не даст очень полезной информации. Вы по-прежнему будете видеть высокое сопротивление на выходе. В этом случае мы измерили 22 кОм, что не позволило сделать вывод о корректной работе SSR.Стендовые испытания SSR перед использованием возможны с батареей 9 В и лампочкой (предупреждение в формате PDF).

Другие недостатки SSR

Еще одним потенциальным недостатком является то, что твердотельные реле имеют меньшее сопротивление на выходных клеммах в выключенном состоянии по сравнению с механическими реле и, кроме того, некоторый ток утечки. Утечка обычно очень мала, но если вы измеряете выходной сигнал SSR, подключенного к сети, с помощью мультиметра, вы, скорее всего, зарегистрируете напряжение независимо от того, включен он или нет.

Из-за внутренней конструкции SSR они доступны только в однополюсной конфигурации с одним направлением (SPST).Однополюсный означает, что он может управлять только одной цепью, а однополюсный означает, что есть только два положения, в которых может находиться переключатель (одно включенное и одно выключенное состояние). Механические реле не имеют этого ограничения и доступны с несколькими полюсами и ходами.

ТТР

выделяют больше тепла, чем эквивалентное механическое реле. Это связано с тем, что на полупроводниках внутри твердотельного реле происходит падение напряжения, тогда как механическое реле в активном состоянии является просто проводником. важно, прикрепить радиатор к твердотельным реле и обеспечить достаточный воздушный поток для любого приложения, потребляющего значительный ток.Подробную информацию о безопасности SSR см. В этом документе Omron (предупреждение в формате PDF). Он также предлагает некоторые полезные конструктивные особенности для различных типов нагрузки.

Когда твердотельное тело и механика объединяются

В некоторых ситуациях полезно использовать как SSR, так и механическое реле. Допустим, что основным недостатком твердотельных реле в конструкции является то, что они выделяют больше тепла, чем эквивалентное реле. Точно так же основным недостатком реле в конструкции является то, что они подвержены риску механического отказа из-за дуги между контактами при каждом включении.

В этом случае можно объединить две части параллельно с отдельными входами. Для его активации система управления сначала включает SSR. Это устанавливает ток через нагрузку. Затем система управления активирует реле, в котором не возникает дуги, поскольку оно по существу параллельно замкнутому переключателю. Наконец, после небольшой задержки, позволяющей реле отсканировать, SSR деактивируется. Теперь весь ток проходит через механическое реле. Это позволяет создать эффективный и надежный переключатель, снижая при этом требования к теплоотводу для SSR.

Приложение для быстрой проверки — Управление SSR с помощью ESP8266

У

SSR есть несколько причуд, но они кажутся жизнеспособной альтернативой механическим реле в современном модном Интернете коммутаторов. Я предпочитаю сосредоточиться на интересных частях моих проектов автоматизации, чем на механических сбоях, и, честно говоря, все щелчки могут быть слишком сильными. Чтобы лучше познакомиться с SSR, я построил простую тестовую схему на основе Fotek SSR-40DA SSR. Принципиально он похож на этот проект коммутируемой розетки SSR.

В техническом описании указано, что они рассчитаны на ток до 40 ампер, хотя для этого требуются большой радиатор, вентиляция и оригинальные запчасти. В своем тесте я использую его для управления вентилятором мощностью 47 Вт от сети 220 В переменного тока, 50 Гц. Радиатор не был сочтен необходимым для этого быстрого теста, но я добавил предохранитель на один ампер на входе сети, чтобы предотвратить его случайное использование для чего-то большого. Когда у вас много проектов, легко забыть об ограничениях каждого из них через несколько месяцев.

Я подключил цифровой выход D0 ESP8266 напрямую к входам SSR. Чип был прошит NodeMCU и запрограммирован на переключение D0 при переключении емкостного сенсорного переключателя, и я заставил его изменить цвет светодиода состояния.

Первое, что я заметил, это то, что во время загрузки контакты на ESP8266 ненадолго поднимаются высоко. Это привело к активации SSR на короткое время во время запуска, что недопустимо! Это легко исправить, инвертируя сигнал аппаратно с помощью транзистора, а затем программно.

При нажатии кнопки вентилятор включался или выключался соответственно, а также световой индикатор на SSR. В целом это было очень просто, хотя я обязательно вытравлю плату должным образом и добавлю радиатор, прежде чем использовать ее при более высоких токах или длительных периодах времени.

В моей сетевой проводке нет заземления. Это не из-за халатности, а потому, что я строю это во Вьетнаме, а в инфраструктуре этой страны нет заземления жилого дома.Если у вас есть заземленная проводка в жилом помещении, воспользуйтесь этим, чтобы сделать вашу конструкцию более безопасной.

Хотя это тривиальный тест, я извлек два практических урока. Во-первых, проводка занимает гораздо больше места, чем я думал. Во-вторых, соблюдение безопасного расстояния между проводами, по которым идет сеть, и сигналом от ESP8266, требует некоторых размышлений с точки зрения конструкции корпуса (особенно для радиатора на SSR). Дело не только в том, чтобы запихнуть его в корпус, и если я не собираюсь печатать на 3D-принтере нестандартный, я, конечно, ошибусь в пользу чего-то большего и с отдельной секцией для компонентов высокого и низкого напряжения.Другими словами, не делайте этого:

Втиснуть случайно построенный проект в ящик — далеко не лучший подход.

Я также узнал, что емкостные сенсорные переключатели с подсветкой прекрасно вписываются в корпуса переключателей, выглядят довольно мило и вписываются в стену, если обрезать несколько кусочков пластика. В более поздних тестах кнопки нет рядом с реле. Он использует второй ESP8266, который отправляет UDP-пакет для управления ретранслятором, а также прослушивает UDP-пакеты для обновления состояния светодиодного индикатора, если что-то еще выключает рассматриваемую систему.Работало нормально.

Когда он красный, у него есть определенный вид «Боюсь, я не позволю тебе сделать это, Дэйв».

Наконец, хочу отметить, что поддельные SSR очень распространены. Обычно они выходят из строя при токах, значительно меньших их номинальных, даже с правильными радиаторами. Хотя мои SSR на самом деле могут быть подлинными, я предполагаю, что они не настоящие, и буду использовать их при номинальных токах!

AC-DC модуль двойного твердотельного реле | MySensors

MySensors AC / DC выключатель света

Примечание о статусе «незавершенное производство»

Я создал более раннюю версию этой платы (v3.3.1) на прошлой неделе, и с тех пор он работал нормально! Единственное отличие платы в этом проекте (v3.3.2) — это добавление датчика температуры DS18B20 и небольшие исправления в шелкографии. Так что и с этой новой версией проблем не жду. Если вы все же хотите, чтобы я сначала подтвердил это, я рекомендую подождать еще немного.

Цель

Основная цель этого проекта заключалась в том, чтобы предложить легкое и простое в интеграции решение для управления освещением в доме.При разработке этого решения я хотел удовлетворить следующие требования:

  • Легко интегрируется в существующую электросеть.
  • Свет всегда должен управляться обычным выключателем света.
  • Поскольку я хотел управлять всем освещением в моем доме (и нужно было собрать много узлов), это также должно быть дешево (цель составляла 10 евро за узел).
  • Полностью питается от сети, а не от батарей.
  • Следует безопасно оставлять его включенным на долгие годы без необходимости дополнительного внимания.

Решение

С большой помощью моего MySensors.org я разработал небольшую печатную плату размером 50 мм на 50 мм. Из-за этого небольшого размера эту нестандартную печатную плату можно даже разместить за выключателем света.
Плата предназначена для установки следующих основных компонентов:

  • HLK-PM01 как преобразователь переменного тока в постоянный ток 5 В
  • Arduino Pro Mini
  • NRF24L01 или NRF24L01 +
  • Предохранители, ограничители температуры и варисторы для защиты цепи
  • Конденсаторы для обеспечения стабильного напряжения модуля Arduino и NRF24L01
  • твердотельное реле 2x 2A
  • Датчик температуры для контроля температуры печатной платы.
  • Винтовые клеммы для подачи питания на печатную плату и для подключения твердотельных реле.
  • 2x 2 контакта для подключения переключателей света к плате

Конечный результат выглядит примерно так:

Эти платы доступны через DirtyPCBs

Схема печатной платы

Нижняя сторона, Верхняя сторона.

Как собрать плату

Из-за того, что плата занимает мало места, важно устанавливать все компоненты в определенной последовательности.Перед установкой всего на плату убедитесь, что все компоненты исправны. Проверьте исправность предохранителей, прошейте Arduino, ..
Рекомендуется устанавливать компоненты в следующем порядке:

  1. Припаяйте временный предохранитель очень быстро, чтобы убедиться, что он не перегорел. После пайки этого временного предохранителя проверьте мультиметром, чтобы убедиться, что он все еще проводит ток.
  2. Продолжайте укреплять следы между разъемами и реле. Чтобы убедиться, что 2A не прожигает плату, рекомендуется усилить эти следы, добавив к ним припой.
  3. Припаяйте 4 контакта (7 — GND — GND — 4) к верхней части платы. Вы можете использовать для этого 6-контактный разъем Arduino, если хотите.
  4. Припаяйте NRF24L01 к нижней стороне печатной платы.
  5. Установите разъемы для AC INPUT, RELAY1 и, возможно, RELAY2 на верхней стороне печатной платы.
  6. Установите твердотельное реле G3MB RELAY1 и, возможно, RELAY2.
  7. После этого добавьте немного ленты или другого изоляционного материала, чтобы закрыть следы между разъемами и реле.
  8. Затем припаяйте следующие компоненты в любом порядке: LE33ACZ, 3 конденсатора (обязательно припаяйте конденсатор 100 нФ сбоку, чтобы на него можно было поставить Arduino), плавкий предохранитель, варистор.
  9. Припаяйте разъемы Arduino к плате, но не саму Arduino! Arduino будет установлен после установки HLK-PM01. На этом этапе нужно припаять к плате только контакты 2,54 мм.
  10. На верхней стороне установите преобразователь переменного / постоянного тока HLK-PM01 и припаяйте его к печатной плате.
  11. После установки HLK-PM01 продолжайте пайку Arduino на разъемах в нижней части платы (убедитесь, что Arduino ориентирован правильно!).

Как подключить плату за выключателем света

Как видно на рисунке ниже, выключатель света больше не подключен к цепи переменного тока. Выключатель света теперь служит входом для Arduino, после чего Arduino замыкает реле и включает свет. Дополнительное 2-е реле можно подключить так же, как и реле 1.

История версий

3.3.2

Известные проблемы: Нет.

Исправлений:

  • Добавлен некоторый интервал между дорожками высокого напряжения (110 или 230 В) и 5 ​​В. На всякий случай, если дощатый дом поставляет печатные платы низкого качества.
  • Выходной разъем Relay2 смещен на 0,5 мм за пределы платы. Реле 2 и соответствующий разъем находились немного близко друг к другу.
  • Полярность конденсаторных площадок 100 мкФ и 4,7 мкФ была изменена / исправлена.
  • Шелкография для LE33 была изменена / исправлена.
    Новые функции: DS18B20

3.3.1

Известных проблем:

  • Полярность конденсаторов 100 мкФ и 4,7 мкФ поменяна местами. К круглому разъему следует припаять минус, а к квадратному разъему припаять положительную сторону конденсаторов.
  • Шелкография для LE33EZ перевернута. LE33EZ следует размещать на плате наоборот.
    Исправления:
    Новые возможности: /

Общие сведения о твердотельных реле

Без движущихся частей

Температурные аспекты
Одно из основных соображений при использовании SSR — это правильное управление теплом, которое выделяется при коммутации токов выше примерно 5 ампер (A).В этом случае опорная пластина SSR должна быть установлена ​​на хороший проводник тепла, например, алюминий, и использоваться с хорошей теплопередающей средой, такой как термопаста или теплопроводящая прокладка. При использовании этого метода тепловое сопротивление корпуса SSR и теплоотвода снижается до незначительного значения 0,1 ° C / Вт.

Расчет нагрузки
Основной причиной проблем с SSR является неправильный отвод тепла. Проблемы также могут возникать из-за условий эксплуатации, которые накладывают определенные нагрузки на SSR.При проектировании твердотельного реле в качестве коммутационного решения следует тщательно учитывать импульсные характеристики нагрузки.

Резистивные нагрузки
Нагрузки с постоянными значениями сопротивления — простейшее применение SSR. Надлежащее рассмотрение теплового режима, наряду с вниманием к номинальным токам в установившемся режиме, обеспечит бесперебойную работу.

Нагрузки постоянного тока
Этот тип нагрузки следует рассматривать как индуктивную, и диод должен быть помещен поперек нагрузки для поглощения любых скачков напряжения во время выключения.

Лампы нагрузки
Нагрузки от ламп накаливания, хотя в основном резистивные, могут представлять некоторые проблемы. Поскольку сопротивление холодной нити составляет от 5 до 10 процентов от нагретого значения, может возникнуть большой бросок тока. Важно убедиться, что этот пусковой ток находится в пределах характеристик всплеска SSR. Также необходимо убедиться, что номинал лампы SSR не превышен. Это рейтинг UL®, основанный на пусковом токе типичной лампы. Из-за необычно низкого сопротивления нити накала во время включения характеристика включения при нулевом напряжении особенно желательна для ламп накаливания.

Емкостные нагрузки
Эти типы нагрузок могут оказаться проблематичными из-за их первоначального появления в виде коротких замыканий. Во время зарядки могут возникать высокие импульсные токи, которые ограничиваются только сопротивлением цепи. Следует проявлять осторожность при работе с емкостными нагрузками с низким сопротивлением, чтобы убедиться, что возможности di / dt не превышаются. Включение при нулевом напряжении является особенно ценным средством ограничения di / dt при емкостных нагрузках.

Двигатели и соленоиды
Нагрузки на двигатель и соленоид могут создать проблемы для надежной работы SSR.Соленоиды имеют высокие начальные импульсные токи, потому что их стационарный импеданс очень низкий. Двигатели также часто имеют сильные пусковые токи при запуске и могут создавать необычно высокие напряжения во время выключения. Когда ротор двигателя вращается, он создает противо-ЭДС, уменьшающую ток. Эта обратная ЭДС может добавляться к приложенному линейному напряжению и создавать условия перенапряжения при выключении. Точно так же следует тщательно учитывать пусковые токи, связанные с механическими нагрузками, имеющими высокий пусковой момент или инерцию, такими как вентиляторы и маховики, чтобы убедиться, что они находятся в пределах импульсных возможностей твердотельного реле.Для проверки длительности пускового тока следует использовать токовый шунт и осциллограф.

Трансформаторы
При управлении трансформаторами следует учитывать характеристики вторичной нагрузки, поскольку они отражают эффективную нагрузку на ТТР. Переходные процессы напряжения от вторичных цепей нагрузки также часто встречаются в трансформаторах и могут быть наложены на SSR. Трансформаторы представляют проблему в том, что, в зависимости от состояния потока трансформатора во время выключения, трансформатор может насыщаться в течение первого полупериода последующего приложенного напряжения.Это насыщение может вызвать очень большой ток (в 10–100 раз больше номинального) на SSR, который намного превышает его номинальное значение перенапряжения за полупериод. SSR со случайным включением могут иметь больше шансов на выживание, чем устройство с перекрестным нулевым включением, поскольку они обычно требуют, чтобы трансформатор поддерживал только часть первого полупериода напряжения. С другой стороны, устройство случайного включения часто замыкается в точке пересечения нуля, и тогда SSR должен выдерживать ток насыщения наихудшего случая. Устройство с нулевым перекрестным включением имеет то преимущество, что оно включается в известном режиме и немедленно демонстрирует наихудшее состояние.Рекомендуется использовать токовый шунт и осциллограф, чтобы проверить, не превышена ли допустимая полуволновая импульсная мощность.

Типичный подход к применению ТТР к нагрузке трансформатора состоит в том, чтобы выбрать ТТР, имеющий номинальное значение импульсного тока полупериода, превышающее максимальное приложенное линейное напряжение, деленное на сопротивление первичной обмотки трансформатора. Сопротивление первичной обмотки обычно легко измерить, и на него можно положиться как на минимальный импеданс, ограничивающий первую половину цикла пускового тока. Присутствие некоторого остаточного магнитного потока плюс реактивное сопротивление при насыщении первичной обмотки затем дополнительно ограничит, в худшем случае, полупериодный импульсный выброс в пределах допустимого уровня выбросов твердотельного реле.

Коммутационные аппараты
Семейство полупроводниковых тиристоров состоит из нескольких очень полезных устройств. Наиболее широко используемыми из этого семейства являются металлооксидные полупроводниковые полевые транзисторы (MOSFET), кремниевые выпрямители (SCR), симисторы и альтернаторные симисторы. Во многих приложениях эти устройства выполняют ключевые функции, и для правильного определения надежной системы совершенно необходимо понимать их преимущества и недостатки. При правильном применении тиристоры могут быть важным преимуществом в плане соответствия требованиям к окружающей среде, скорости и надежности, которые не могут быть выполнены их электромеханическими аналогами.

МОП-транзистор
MOSFET — это полупроводниковое устройство, которое состоит из двух металлооксидных полупроводниковых полевых транзисторов (MOSFET), одного N-типа и одного P-типа, интегрированных на одном кремниевом кристалле. MOSFET идеально подходит для переключения нагрузок постоянного тока.

SCR
Выпрямитель с кремниевым управлением (SCR) — это четырехслойное твердотельное устройство, контролирующее ток. SCR действует как переключатель, проводящий, когда его затвор получает импульс тока, и он продолжает проводить до тех пор, пока он находится в прямом смещении.SCR идеально подходит для переключения всех типов нагрузок переменного тока.

Симисторы
Симистор — это электронный компонент, приблизительно эквивалентный двум выпрямителям с кремниевым управлением, соединенным в обратную параллель (параллельно, но с обратной полярностью), и их затворы соединены вместе. Это приводит к двунаправленному электронному переключателю, который может проводить ток в любом направлении. Симистор идеально подходит для переключения резистивных нагрузок переменного тока.

Симистор переменного тока
Генератор переменного тока, используемый для переключения нагрузок переменного тока, был специально разработан для приложений, переключающих высокоиндуктивные нагрузки.Специальная микросхема обеспечивает производительность, аналогичную двум тиристорам, подключенным обратно параллельно (встречно-встречно), обеспечивая лучшее поведение при выключении, чем стандартный симистор. Альтернативный симистор — это экономичное решение, которое идеально подходит для переключения индуктивных нагрузок переменного тока.

Тепловые характеристики и теплоотвод
Управление температурным режимом является фундаментальным фактором при разработке и использовании твердотельных реле из-за рассеивания на контактах (обычно 1 Вт на ампер). Следовательно, жизненно важно обеспечить достаточный отвод тепла, в противном случае срок службы и надежность переключения SSR будут поставлены под угрозу.Чтобы правильно определить размер радиатора, необходимо учитывать, что нужно для получения чисел теплового сопротивления, чтобы понять, что это означает. Начнем с определения некоторых переменных:

P = рассеиваемая мощность (Вт)
EDROP = Падение напряжения — максимальное открытое состояние (В), можно найти в таблице технических характеристик
ILOAD = ток нагрузки (A)
TA = Максимальная температура окружающей среды, в которой будет расположено реле (° C)
TJ = максимальная температура полупроводникового перехода — обычно 100 ° CTR = допустимое повышение температуры (° C)
REJC = Термическое сопротивление переходной части к корпусу — указано в таблице технических характеристик (° C / Вт)
RECS = тепловое сопротивление от корпуса к радиатору — обычно 0.1 ° C / Вт. Этим объясняются потери в термопасте или теплопередающей подушке
.
RESA = Тепловое сопротивление, теплоотвод к окружающей среде — это требуемая характеристика теплоотвода в зависимости от его объема и конструкции (° C / Вт)

Основные формулы следующие:
P = EDROP x ILOAD
TR = TJ — TA
TR = P (REJC + RECS + RESA)
Решение для RESA
RESA = (TR / P) — (REJC + RECS)

Пример: Какова требуемая характеристика теплового сопротивления радиатора для твердотельного реле с падением напряжения 1.6 В и тепловое сопротивление (переход-корпус) 1,02 ° C / Вт, при нагрузке 20 А и температуре окружающей среды 25 ° C?

Присвоение переменных:
EDROP = 1,6 В (из таблицы технических характеристик каталога)
ILOAD = 20A
TA = 25 ° C
ТДж = 100 ° С
REJC = 1,02 ° C / Вт (из таблицы технических характеристик каталога)
RECS = 0,1 ° C / Вт (общепринятое тепловое сопротивление из-за смазки или теплопередающей прокладки)

Решение:
Р = 1.6 x 20 = 32 Вт
TR = 100-25 = 75 ° C
RESA = (75/32) — (1,02 + 0,1)
R ESA = 1,22 ° C / Вт

Обычно рекомендуется округлять до ближайшей десятой, чтобы обеспечить дополнительный запас. Это приведет к термическому сопротивлению 1,2 ° C / Вт.

Использование таблицы дополнительно поможет в выборе радиатора. Существует множество диаграмм, доступных из разных источников, в зависимости от использования вентилятора и материалов. Для получения более подробной информации лучше всего обратиться к производителю радиатора.

Твердотельные реле | Руководство по выбору | Индонезия


Пункт
Модель


G3NE

G3NA

G3PA

G3PE


Внешний вид


Фаза в наличии

1-местный

Одиночная / опционально 2 ножки

Одно / трехфазное, 2/3 ножки


Максимальное напряжение нагрузки
(AC / DC)

От 75 до 264 В переменного тока

От 24 до 480 В переменного тока;
От 5 до 200 В постоянного тока

От 24 до 480 В переменного тока

От 100 до 480 В переменного тока


Максимальный ток
в наличии

5 А, 10 А, 20 А

5 А, 10 А, 20 А, 40 А, 50 А, 75 А, 90 А

10 А, 20 А, 30 А, 40 А, 50 А, 60 А

15 А, 25 А, 35 А, 45 А


Способ обжига

Ноль
кроссовер

Нулевой кроссовер и стандартное включение / выключение

Вход сигнала

Логика

В постоянного тока
сигнал

Логический сигнал

В переменного / постоянного тока

Логика

В постоянного тока
сигнал


Функция плавного пуска

Не поддерживается


Рабочий режим

Не поддерживается


Встроенный ток
трансформатор


Поддержка внешних
КТ


Опция связи

Не поддерживается


Тип крепления

Тип винта


Опция радиатора

Заказ как принадлежности

Интегрированный


Сертификация
допуск

UL, CSA, IEC / EN (TÜV)

UL, CSA, -UTU модель от
TÜV

UL, CSA, VDE (усилить
изоляция)

UL, CSA, EN (сертификация TÜV)


Самостоятельное обнаружение
функция

Не поддерживается


Выход сигнала тревоги

Не поддерживается


Сменная мощность
картридж / модуль

Да (устройство питания
картридж)

№ ​​


Пункт
Модель

G3PC

G3PF


Внешний вид


Фаза в наличии

1-местный


Максимальное напряжение нагрузки
(AC / DC)

От 100 до 240 В переменного тока

От 100 до 480 В переменного тока


Максимальный ток
в наличии

20 А

25 А, 35 А


Способ обжига

Ноль
кроссовер

Вход сигнала

Логика

В постоянного тока
сигнал


Функция плавного пуска

Не поддерживается


Рабочий режим

Не поддерживается

Поддерживается


Встроенный ток
трансформатор

Встроенный


Поддержка внешних
КТ

Есть


Опция связи

Не поддерживается


Тип крепления

Тип винта


Опция радиатора

Интегрированный


Сертификация
допуск

ЕС, UL, CSA

Сертификация UL, CSA, EN


Самостоятельное обнаружение
функция

Обнаружение отказа SSR Обнаружение отказа SSR, нагреватель
обнаружение отказов


Выход сигнала тревоги

Поддерживается


Сменная мощность
картридж / модуль


Контроллеры мощности


Пункт
Модель


G3PW

G3ZA


Внешний вид


Фаза в наличии

Однофазный

Восьмифазный с SSR


Максимальное напряжение нагрузки
(AC / DC)

От 100 до 240 В переменного тока

От 100 до 480 В переменного тока


Максимальный ток
в наличии

20 А, 45 А, 60 А

Определить при выборе SSR


Способ обжига

Фазовый угол / оптимальный цикл

Контроль до 8 SSR

Вход сигнала

от 4 до 20 мА
Логический сигнал постоянного тока

RS-485 Compoway / F


Функция плавного пуска

Поддерживается


Рабочий режим

Поддерживается

Не поддерживается


Встроенный ток
трансформатор

Да (модель с постоянным током)

Нет


Поддержка внешних
КТ

Есть


Опция связи

RS-485

RS-485 Compoway / F


Тип крепления

Крепление на винтах

Крепление на винтах или на DIN-рейке


Опция радиатора

Интегрированный


Сертификация
допуск

CE и UL на рассмотрении

Знак CE, TÜV, UL, CSA


Самостоятельное обнаружение
функция

Обнаружение отказа SSR, нагреватель
обнаружение сбоев


Выход сигнала тревоги

Поддерживается


Сменная мощность
картридж / модуль

.