Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Схема монтажа системы отопления: Разводка системы отопления в частном доме: схемы лучших вариантов

Содержание

выбор системы и ее установка своими руками, схемы и устройство

Способов обогреть жилье существует достаточно много. Монтаж системы отопления частного дома состоит из проектирования, установки приборов, разводки трубопроводов, запорной, регулирующей арматуры, автоматики, средств контроля, наладочных и пусковых работ. Камины, нагревательные приборы, теплые полы служат дополнительным, вспомогательным источником тепла. Воздушное отопление дома распространено редко.

Как выбрать котел

Основной показатель по части эффективности работы системы отопления – котел. Обычно монтажные работы начинаются с его установки, расположения регистров. Затем происходит обвязка трубопроводами. Выбирая данное устройство, следует узнать схему работы отопления, ведь современные котлы уже продаются с расширительным баком, циркуляционным насосом, контуром нагрева горячей воды. Выбор типа котла зависит от наличия энергетической структуры в регионе, доступности ее потребителю.

Предпочтение чаще отдается газовым котлам, твердотопливные менее популярны из-за ряда неудобств:

  • Постоянный контроль за горением топлива;
  • Частые его подкладывания;
  • Отдача тепла происходит циклически;
  • Заметны колебания температуры в течение суток.

Нейтрализовать недостатки можно, включив в систему теплоаккумуляторы большой емкости – от двух кубометров.

Теплоаккумулятор .

Монтаж, эксплуатация такого устройства не представляет сложности. Основное требование — наличие трехфазного питания, разрешение «Энергонадзора». Но цена такого отопления высока. Единственное мудрое решение — установка зонального счетчика, позволяющего максимально использовать дешевые ночные тарифы. Тогда удается оптимально прогреть дом, бак с теплой водой, а днем только поддерживать заданный режим.

Жидкотопливный котел при установке отопления выбирается, когда отсутствуют другие варианты. Топливо дорогое, экологичность минимальная, требования к эксплуатации, безопасности – повышенные.

Выбор и монтаж труб

Трубы – важная составляющая системы отопления. Кроме технических показателей, часто внимание уделяется эстетике, экологической безопасности. Существует несколько основных видов труб:

Металлические

Это стальные, оцинкованные и нержавеющие изделия. В отоплении используются давно. При правильной эксплуатации, подготовке теплоносителя прослужат не один год. Цена доступная. При монтаже требуются специальные знания, навыки, инструмент. Сборка трубопроводов осуществляется сваркой, резьбовыми соединениями.

Трубы из нержавеющей стали.

Медные

Самые дорогие, но срок эксплуатации – 100 лет. В монтаже легкие, удобные.

Полимерные трубы

Это полиэтиленовые, полипропиленовые, металлопластиковые трубы. Обладая долговечностью до 50 лет, практичностью, при доступной цене занимают промежуточное положение. Этот этап монтажа, из-за легкости сборки труб при помощи фитингов, переходников, тройников, и отсутствия необходимости специальной квалификации и дорогостоящего оборудования можно провести своими руками.

Труба из полимерных материалов.

Радиаторы

Монтаж отопления в частном доме предполагает использование любого типа радиаторов – здесь не существует таких повышенных требований, как в многоэтажках.

Чугунные – обладают хорошей теплоемкостью, выдерживают большое давление, но недостаточно быстро реагируют, точнее, обладают инертностью при применении автоматики. Для придания лучшего дизайна их закрывают металлическими решетками.

Стальные – обычно панельного типа, хорошо отдают тепло. Недостаток – возможность коррозии.

Алюминиевые – радиаторы нового поколения, отличные показатели теплоотдачи, взаимодействия с автоматикой, легкие, совершенных дизайнерских форм, но требовательны к химсоставу теплоносителя.

Радиаторы из алюминия.

Биметаллические – обладают положительными качествами вышеупомянутых радиаторов, но стальной каркас, покрытый алюминием, придает дополнительную устойчивость к физическим, химическим, термическим воздействиям.

Общие требования

Существовавшее ранее требование устанавливать отопительные котлы в отдельном помещении уже не действует.

Современные закрытые котлы можно устанавливать в любом доступном месте. Но для агрегата, имеющего открытую камеру сгорания, лучше предусмотреть специальное место.

Для скрытой проводки внутри стен, в полах лучше применять медные трубы. Хорошие показатели устойчивости к температуре, давлению, гарантируют надежную, долгую эксплуатацию. Расположение радиаторов в помещении — строго под окном на одном уровне.

Схемы обогрева

Монтаж систем отопления может проводиться разными способами, с приглашением специалистов или своими руками. Самым выгодным и оптимальным считается монтаж водяной системы отопления, где теплоносителем выступает вода или антифриз, циркулирующий по трубам.

Циркуляция теплоносителя может быть естественной или принудительной.

Схема с естественной циркуляцией.

Естественная

Естественная циркуляция основывается на разной плотности воды — горячая вода тяжелее холодной, поэтому она будет подниматься вверх. Преимущество данного метода заключается в отсутствии дополнительных устройств в виде насосов или нагнетателей.

Недостатком можно считать небольшую площадь отопления, так как давление в трубах невысокое.

Если выбор сделан в пользу такого способа, то следует учесть некоторые нюансы:

  1. Диаметр основной трубы должен быть несколько больше основного трубопровода;
  2. От расширительного бочка до радиатора и от радиатора к котлу трубы должны иметь естественный уклон, так как теплоноситель к ним будет поступать самотеком. Уклон трубы должен быть не меньше 3-5 градусов;
  3. Расширительный бочок должен располагаться выше всех остальных элементов отопления.

Принудительная

При принудительном методе циркуляции теплоносителя в систему отопления встраивается насос, который обеспечит необходимое давление даже на самые большие площади. Недостатком такой системы можно считать энергозависимость. Поэтому в доме должен быть запасной генератор — на случай отключения электричества.

Система принудительной циркуляции теплоносителя.

Однотрубное подключение

Монтаж отопления при помощи однотрубного метода является наименее затратным, в то же время разводка в две трубы будет наиболее эффективной, особенно если комнаты в доме имеют большую площадь. Преимущества такой схемы заключаются в следующем:

  1. Простота монтажа и ремонта;
  2. Экономичность;
  3. Возможность прокладки магистрали на уровне пола;
  4. Использование системы в одноэтажном и двухэтажном доме;
  5. Возможность принудительной или естественной циркуляции.

При однотрубной системе вода передвигается от одного радиатора к другому по трубе, а по достижении последнего радиатора сильно остывает. Регулировке такая система не поддается.

Варианты подключения.

Двухтрубное

При двухтрубной разводке радиаторы подключаются сразу к двум трубам, по одной из которых движется горячий теплоноситель, а по другой отводится уже остывший. Теплопотеря при такой схеме будет минимальной, но полностью избежать ее не удастся.

Преимуществом такого метода можно считать возможность регулирования уровня теплоотдачи каждой отдельной батареи.
Двухтрубная отопительная система, в свою очередь, может быть выполнена тремя способами.

Горизонтальная система с нижней подводкой.

Вертикальная система с нижней разводкой устанавливается следующим образом.

Магистральный трубопровод от нагревательного котла пускается по полу или по подвалу дома. От магистральной трубы теплоноситель попадает в батареи по специальным стоякам, которые монтируются вертикально. Остывший теплоноситель от батареи обратно в котел отходит по трубе обратного тока.

Такая нижняя разводка труб требует постоянного стравливания воздуха из отопительной системы. Это делается с помощью монтажа воздушной трубы, а также установкой расширительного бака и кранов Маевского на всех радиаторах.

Вертикальная система с верхней разводкой подразумевает подачу теплоносителя от котла на чердак или под самый потолок по магистральному трубопроводу. Затем вода опускается вниз к радиаторам по нескольким трубам, проходит через все батареи и возвращается обратно в котел. Данная схема действеннее нижнего варианта разводки, так как позволяет создать более высокое давление в стояках и радиаторах.

Устройство горизонтальной двухтрубной системы является наиболее распространенным вариантом.

Коллекторная система

Существует еще третий способ разводки труб — коллекторный. В этом случае к каждому радиатору подводятся две трубы с горячей и холодной водой. Такой способ позволяет регулировать температуру на любом участке трубопровода. Но для монтажа этой системы понадобится установка коллекторного шкафа.

Из котельной теплоноситель идет по главной магистрали к коллекторам, расположенным поэтажно. Коллекторы имеют выходы и входы, равные количеству отопительных элементов — батарей, находящихся на том же этаже. Радиаторы подключены к коллектору двумя трубами — для подачи и обратки.

Преимуществом такого варианта является эстетичность — трубы можно скрыть в стене. Сама отопительная система отличается повышенной надежностью.

виды и проекты отопительных систем отопления (29 фото)

Оборудование жилья отоплением – необходимое условие возможности проживания в любом регионе России, даже на юге страны. Поэтому в той или иной степени от решения вопроса обогрева жилища не уйти никому – система отопления необходима как владельцам частных домов, так и жильцам многоквартирных высотных построек.

Оборудование квартиры или дома отоплением – это комплекс из многих мероприятий, от продуманности и качества исполнения каждого из которых зависит успех решения задачи в целом. Рассмотрим правильный алгоритм выполнения и технологию операций по обустройству жилья отоплением, в том числе факторы, учёт которых обуславливает успех в достижении конечной цели – безопасного, эффективного и экономичного обогрева жилища.

Выбор вида отопительной системы

Оборудование жилья обогревом начинается с выбора типа отопления с привязкой к основному фактору – доступности определённого вида топлива или энергии, перерабатываемой в тепло. Фактор экономичности при выборе способа обогрева занимает второе после эффективности место.

Начнём с наименее затратного способа — водяное отопление системой радиаторов, подключенной к тепловой магистрали. Этот вид обогрева максимально безопасен и избавляет от необходимости приобретения/установки обогревательного котла с автоматикой, сужая объём работ до монтажа отопительного контура и подключения его к теплоцентрали после согласования с организацией, эксплуатирующей теплосеть. Но при относительной простоте монтажа в таком отоплении присутствует полная зависимость от характеристик теплоносителя, работоспособности теплоцентрали и человеческого фактора, связанного с обслуживающим теплосеть персоналом.

Если теплоцентрали поблизости нет, но район газифицирован, то целесообразно рассмотреть возможность установки водонагревательного котла на природном газе. Относительная дешевизна газового топлива сопровождается, кроме необходимости покупки газового котла, неизбежностью устройства дымохода, вентиляции и, возможно, даже отдельной котельной. Кроме того, газ является топливом повышенной опасности, поэтому система нуждается в высоком уровне контроля эксплуатации.

[adinserter block=»9″][adinserter block=»20″]

В ситуации, когда предпочитают не связываться с газом, или его просто нет поблизости, обоснованным выбором будет система водяного отопления с нагревательным котлом на электричестве. Этот способ отопления сначала пугает стоимостью электроэнергии, но потом радует скрытой экономичностью — отсутствием необходимости устройства котельной, дымохода с вентиляцией, чистки этой коммуникации и постоянных опасений утечки газового топлива. Кроме того, котлы на электричестве производятся разных типов, с нагревательными элементами и без них, поэтому в этом сегменте при выборе есть место для манёвра.

Ещё одним вариантом решения вопроса отопления жилья может стать котёл на жидком топливе. Наиболее распространены отопительные системы с жидкотопливными агрегатами, потребляющими солярку. Этот вид топлива, как и электричество, сегодня не дёшев, и, если учесть сопутствующие расходы на дымоход и вентиляцию, котёл на солярке экономичен лишь при возможности льготного приобретения этого топлива.

Если домовладелец – сторонник традиционных видов топлива, например, дров, которые к тому же, очень дешевы в этом регионе, то рациональным решением будет установка твёрдотопливного котла шахтного исполнения с использованием процесса пиролиза – раздельного длительного горения. Для таких хозяев заготовка дров и чистка дымохода – занятие привычное, компенсируемое экологичностью и дешевизной топлива.

Существуют и другие способы отопления – тёплый пол, плинтусные обогреватели, инфракрасные нагревательные приборы, успешно используемые в небольшом доме или, к примеру, двухкомнатной квартире, но в основе их действия лежит всё то же электричество или газ.

Сделав выбор в пользу того или иного способа обогрева, оценивают свои возможности в плане самостоятельного монтажа и, в зависимости от результатов оценки, приступают к исполнению или следующему этапу – проектированию системы отопления.

Проект системы отопления

Отопительная система всегда была сложным оборудованием, требующим контроля как при монтаже, так и в процессе эксплуатации. Прогресс усовершенствовал технику и технологии, но отопительные агрегаты не стали абсолютно безопасными, так как в них до сих пор используется электричество, природный газ и другие виды эне

Схема самотечной системы отопления с естественной циркуляцией

В небольших одноэтажных частных домах нередко применяют самотечные отопительные системы. Это значит, что теплоноситель циркулирует за счет разницы температуры жидкости. Самотечная система отопления имеет свои плюсы и минусы. Существует четыре разных схемы устройства контуров с естественной циркуляцией. Для надежной и эффективной работы отопительной сети нужно правильно подобрать трубопроводы, определиться с видом теплоносителя и вариантом подключения подачи.

Принцип работы отопительных систем с естественной циркуляцией

Самотечная система отопления частного дома организована с учетом физических законов. Разность между плотностью и весом нагретой и охлажденной жидкости способствует естественному току теплоносителя в сети. Давление в контуре практически отсутствует и составляет всего 0,5-0,7 атмосфер.

Поскольку в процессе нагревания объем жидкости увеличивается, в контуре устанавливается расширительный бак. Главное его назначение в уравновешивании давления в системе. Излишек расширившейся жидкости поступает в эту емкость, а при снижении давления в сети вода из бака переходит обратно в трубопроводы. Расширительный бак устанавливается в самой верхней точке сети после разгонного вертикального стояка.

К самотечному контуру можно подключать теплые полы. При этом требуется установить насосное оборудование только на трубопровод в полу, а в разводке отопительных приборов теплоноситель будет циркулировать естественным образом.

Также гравитационную схему можно использовать в комплексе с бойлером косвенного нагрева. Это оборудование устанавливают в наивысшей точке разводки, но ниже расширительного бака. При этом не придется использовать насосное оборудование. Если такую схему применить не получается, то насос монтируется только на накопительную емкость. В этом случае обязательно устанавливают обратный клапан для защиты от рециркуляции теплового носителя.

Важно! В самотечных контурах обязательно делают уклон трубопровода с обраткой в сторону котла, чтобы обеспечить движение охлажденной жидкости.

Плюсы и минусы самотечной системы

Преимущества гравитационного тока:

  1. Простота монтажа, эксплуатации и обслуживания сети.
  2. Не нужно монтировать циркуляционное оборудование и систему безопасности.
  3. Это полностью энергонезависимая схема, которая может работать при отключении подачи электроэнергии.

Недостаток контуров с естественным током в том, что они не подходят для больших и многоэтажных домов, потому что из-за низкой скорости движения теплоносителя не смогут эффективно и равномерно обогревать постройку.

Разновидности гравитационных схем

Существует четыре схемы монтажа контуров с гравитационной циркуляцией. Выбор определенной разновидности делают с учетом особенностей постройки и требуемой производительности. Для выбора схемы выполняют гидравлический расчет, оценивают параметры котла и определяют диаметр трубопровода.

Закрытая

Принцип работы контуров закрытого типа следующий:

  • Нагретый и расширившийся теплоноситель вытесняет воду из отопительного контура.
  • Вытесненная вода попадает в расширительный бак закрытого типа. Это емкость с эластичной мембранной перегородкой, разделяющей газовую и водяную камеры.
  • Поступившая под давлением жидкость продавливает мембрану и сжимает газ в воздушной камере. При остывании теплоносителя давление снижается, и газ выдавливает жидкость из емкости в трубопроводы.

Главный недостаток такой схемы в зависимости работы сети от объема расширительного бака. В доме большой площади с протяженным контуром придется устанавливать вместительную емкость.

Рекомендуем к прочтению:

Открытая

Если используется отопление самотеком, схема открытого типа отличается от предыдущей разновидности только конструкцией расширительного бака. В этом случае расширительную емкость можно изготовить самостоятельно из подходящих материалов. Бачок небольшого размера устанавливают на чердаке или высоко под потолком.

Главный минус открытого контура в том, что через расширительную емкость в сети попадает кислород, который способствует коррозии трубопроводов и радиаторов. Еще один недостаток в завоздушивании системы, поэтому на каждый прибор монтируют кран Маевского.

Двухтрубная

Двухтрубная схема системы отопления частного дома с естественной циркуляцией делается с использованием подающего и отводящего трубопровода, то есть все радиаторы подключаются к разводке параллельно, что способствует равномерному прогреву каждой комнаты и всего дома.

Преимущества двухтрубной разводки:

  1. Тепло равномерно распределяется по всему строению.
  2. Не нужно устанавливать дополнительные секции для регулировки теплоотдачи приборов.
  3. Отрегулировать работу сети с двухтрубной разводкой намного проще.
  4. Можно использовать трубы меньшего диаметра, чем при использовании однотрубной разводки.
  5. Эффективность и простота конструкции.

Главный недостаток в высокой материалоемкости системы. Перед монтажом нужно провести расчеты. От правильности их проведения и соблюдения технологии монтажа зависит эффективность отопительной сети.

Однотрубная

Однотрубная система отопления одноэтажного дома с естественной циркуляцией применяется редко, потому что не отличается эффективностью. В такой сети каждый отопительный прибор последовательно подключается к трубопроводу. Из-за этого в каждую последующую батарею поступает жидкость с меньшей температурой, чем в предыдущий. Для компенсации тепловых потерь приходится увеличивать количество секций в дальних радиаторах.

Преимущества однотрубной разводки:

  • Простота монтажа и использования. Не нужно проводить сложные расчеты для прокладки сети.
  • Экономия на материалах, потому что прокладывается только один трубопровод, к которому подключаются все приборы. Обратка поступает от последнего радиатора к котлу.

Главный недостаток однотрубной разводки в необходимости увеличения количества секций в дальних радиаторах, а также в неравномерном прогреве постройки. Удаленные от котла комнаты отапливаются хуже.

Какая схема лучше, принудительная или естественная?

Естественная система лучше в том случае, если нужно организовать отопление небольшого одноэтажного частного дома. В этом случае нет смысла тратиться на насосное оборудование, когда и естественного тока теплоносителя будет достаточно для обогрева всей постройки.

Контуры с принудительной циркуляцией лучше использовать в больших одноэтажных или многоэтажных домах. Благодаря быстрому движению теплового носителя в сети постройки значительных размеров будут хорошо и равномерно прогреваться. Контуры с естественной циркуляцией с этой задачей не справятся.

Правила монтажа контура без насоса

Рекомендуем к прочтению:

Теперь поговорим, как сделать циркуляцию воды без насоса. Любая разновидность гравитационной схемы имеет общий минус, который заключается в отсутствии давления в сети. Именно поэтому работоспособность системы снижается из-за повышенного количества поворотов трубопроводов, неправильного уклона и других погрешностей во время монтажа.

Для правильной организации контуров без насоса придерживайтесь следующих требований:

  1. Соблюдайте минимально необходимый уклон обратного трубопровода в сторону нагревательного оборудования.
  2. Для устройства разводки выбирайте трубы подходящего диаметра и типа.
  3. Учитывайте используемый тип теплоносителя и особенности его подачи.

Важно! Чтобы обеспечить уклон обратного трубопровода в сторону котла, нагревательное оборудование устанавливают в подвале или цокольном этаже либо делают пониженный уровень пола в котельной на первом этаже.

Подбор трубопроводов и их уклона

Чтобы обустроить водяное отопление в частном доме без насоса, нужно правильно подобрать диаметр трубопровода и рассчитать его уклон.

Для организации самотечной сети можно использовать следующие виды труб:

  • Стальные трубопроводы стоят недорого, достаточно прочные, выдерживают высокое давление. Главный недостаток в низкой коррозионной стойкости, особенно в завоздушенных сетях.
  • Металлопластиковые конструкции благодаря гладкой внутренней поверхности не так быстро засоряются. Они мало весят, не подвержены коррозии и имеют небольшое линейное расширение.
  • Полипропиленовые трубопроводы обладают высокой герметичностью, прочностью. Они просто монтируются, служат долго и устойчивы к замерзанию. Для монтажа трубопровода понадобится специальное паяльное оборудование.
  • Медные трубы стоят очень дорого, поэтому применяются редко. Это самые долговечные и красивые трубопроводы с хорошей теплоотдачей.

Важно! Минимальный уклон обратной магистрали при естественном токе теплоносителя составляет 0,5% на погонный метр. При неправильном уклоне сети быстро завоздушиваются, дальние радиаторы плохо прогреваются.

Выбор диаметра трубопровода производится на основе теплотехнического расчета. При превышении сечения магистрали увеличиваются расходы на отопление, а теплоотдача снижается. Диаметр стального трубопровода не должен быть меньше 50 мм.

Выбор теплоносителя

Естественная циркуляция в системе отопления частного дома может быть организована с использованием жидкого теплоносителя – воды или антифриза. Чаще используют воду, потому что меньшая теплоотдача и большая плотность антифриза повышают расходы топлива и времени на обогрев дома.

Антифриз стоит выбрать в том случае, если дом в холодный сезон будут надолго покидать либо посещать его с определенной периодичностью, а постоянно сливать воду из системы не хочется. В пользу антифриза говорит его лучшая текучесть, облегчающая циркуляцию теплоносителя, а также устойчивость к замерзанию.

Выбор нижнего или верхнего подключения подачи

Отопление самотеком можно организовать с нижним и верхним подключением подачи теплоносителя к отопительным приборам.

Особенности каждой подачи следующие:

  1. При нижней подаче теплоносителя трубопроводы прокладываются на уровне пола, поэтому не портят интерьер помещения. Однако однотрубные системы с нижней разводкой отличаются низкой тепловой эффективностью, поэтому такое подключение используют при высоком давлении в сети.
  2. Верхняя подача теплоносителя более всего подходит для устройства в частном доме с естественной циркуляцией. Трубопроводы прокладываются под потолком. Поскольку жидкость в радиаторы подается сверху, через краны Маевского легко стравливается воздух. Однотрубная разводка с верхней подачей более эффективная, чем с нижним подключением.

Ошибки при подборе способа подачи могут привести к низкой эффективности системы. Решить проблему получится только установкой циркуляционного насоса для создания лучшего тока теплового носителя.

Пошаговое руководство по установке солнечной фотоэлектрической системы

Photovoltaic Tutorial:

Пошаговое руководство по переходу на солнечную энергию

вернуться на предыдущую страницу

8. Выберите и установите меньшие электрические компоненты.

После того, как вы выбрали марки инвертора и модуля, вы будете готовы выбрать другие компоненты, которые будут играть вспомогательные роли в вашей фотоэлектрической системе.К настоящему моменту вы и / или ваш подрядчик должны были сконфигурировать массив, чтобы иметь установленное количество модулей, подключенных последовательно, параллельно или и то и другое.

Именно здесь учитываются многие требования Национального электрического кодекса (NEC). В частности, жилые солнечные электрические цепи, связанные с сетью, должны включать следующее:

  • Распределительная коробка или сумматор (для соединений проводов в массиве или рядом с ним)
  • DC Disconnect (Вы можете использовать тот, который поставляется с большинством инверторов.)
  • Защита от перегрузки по току (Предохранители и / или автоматические выключатели могут быть дополнительными на стороне постоянного тока или в вашей системе, но ваша сторона переменного тока всегда должна включать одно или несколько из этих устройств O.C.)
  • Защита от замыканий на землю (уже имеется в большинстве инверторов)
  • Розетка счетчика нетто (требуется многими коммунальными предприятиями)
  • Разъединитель переменного тока (размещается рядом с главной сервисной панелью)
  • Автоматический выключатель DP (устанавливается непосредственно на главной сервисной панели, где проводка вашей фотоэлектрической системы встречается с электросетью)

Более подробный обзор всех этих продуктов см. В разделе «Баланс элементов системы» — страница 2.

EnerzyTech.com
Эта иллюстрация фотоэлектрической схемы включает в себя резервную батарею и панель «нагрузки постоянного тока». Конструкция обычной сетевой системы (без батарей, контроллера заряда, панели выключателя постоянного тока и предохранителя батареи) представляет собой легкую прогулку по сравнению с этой установкой.

Чтобы определить подходящий размер и характеристики более мелких компонентов для установки, вам понадобится следующая информация:

  • уровни напряжения и тока цепи на входе в компонент
  • количество жил (проводов), входящих и выходящих из элемента
  • Размер кабелепровода, входящего и / или выходящего из компонента (если используется)
  • Требуемые размеры предохранителей / выключателей (на основе расчетов допустимой нагрузки.)
  • расположение шкафов (NEMA оценивает все электрические шкафы для использования внутри и вне помещений)
  • максимальная оценка температуры окружающей среды, в которой будет размещаться компонент
  • , является ли инвертор бестрансформаторным (Если да, требуется максимальная токовая защита как для положительного, так и для отрицательного проводов.)

При покупке компонентов проверьте, какие марки предохранителей или автоматических выключателей совместимы с каждым продуктом.Совместимость обычно весьма ограничена, поэтому убедитесь, что хотя бы одну модель предохранителя или прерывателя, указанную в спецификации продукта, легко найти и она не слишком дорогая.

Хотя большинство домашних фотоэлектрических систем легко подбираются по размеру из нескольких стандартных продуктов, представленных на рынке, все же неплохо понять математику, используемую для количественной оценки вольт, ампер и ватт, пульсирующих через цепь. Более того, если вы живете в месте, где очень жарко летом или очень холодно зимой, эти расчеты становятся критически важными при выборе компонентов, которые могут выдержать экстремальные условия.Высокая температура увеличивает нагрев внутри проводов и кабелепровода (и между клеммами), в то время как холодная температура может увеличить напряжение, превышающее допустимое для модулей массива.

Вот почему строительные инспекторы и коммунальные предприятия внимательно изучают схемы и спецификации продукции, представленные вместе с заявкой на получение разрешения на солнечную батарею. Во время проверки на месте инспектор также проверит рейтинги, указанные на самих компонентах, и подтвердит, что они совпадают с теми, которые вы указали в своем заявлении.

Начиная с простой части определения размеров компонентов, максимальное напряжение в фотоэлектрической цепи (то есть на стороне массива инвертора) рассчитывается по следующей формуле:

В макс = В o.c. X # модулей на строку X Поправочный коэффициент напряжения для низких температур

Если это уравнение кажется вам знакомым, это то же самое, что использовалось в Step 6 для определения размера инвертора.Опять же, учитывая спецификацию напряжения холостого хода 37,2 В для жилого модуля Sharp ND-235QCJ, сконфигурированного с двумя цепочками массивов из десяти модулей, математика выглядит так:

V max = 37,2 X 10 модулей X 1,13, что составляет 420,36 В.

Значение, используемое для «поправочного коэффициента низкотемпературного напряжения», было взято из таблицы 690.7 NEC, показанной ниже. Это простой способ регулировать напряжение в зависимости от температуры. Вы просто ищите свою самую низкую локальную температуру в диапазонах, указанных в таблице, затем выбираете соответствующий множитель в среднем столбце.Для Сакраменто это значение составляет 1,13.

NEC Таблица 690.7

В США максимально допустимое напряжение в любой жилой цепи составляет 600 вольт. Следовательно, электрические компоненты, продаваемые поставщиками, всегда рассчитаны на 600 вольт. С другой стороны, при выборе устройства защиты от перегрузки по току на стороне постоянного тока обычно необходимо использовать предохранители, поскольку автоматические выключатели не могут выдерживать напряжение более 240 вольт.

Выбор комбайнера или распределительной коробки

При отсутствии напряжения следующей задачей становится более неприятный расчет тока / силы тока.NEC использует термин допустимая нагрузка , а не сила тока при обсуждении номинальных значений и размеров компонентов. Пропускная способность — это мера способности проводника выдерживать ток, и это измерение имеет большой запас прочности на всякий случай. Максимальный порог тока определяется комбинацией математических формул, таблиц NEC, в которых перечислены пределы допустимой нагрузки для проводов, предохранителей, клемм и других электрических элементов, а в некоторых случаях — технических характеристик продукта.

Если у вас более одной цепочки модулей, но вы не хотите, чтобы после инвертора проходило более двух проводов, вы должны использовать сумматор.Это может иметь место, например, если у вас ограниченное пространство для прокладки провода через существующий канал. Однако чаще домашние солнечные электрические системы используют простую распределительную коробку и позволяют каждому набору проводов проходить по пути к инвертору. Большинство инверторов имеют входные клеммы ( или каналов), которые позволяют подключать от 2 до 4 (а иногда и больше) наборов проводов.

Какой бы компонент вы ни выбрали, распределительную коробку или сумматор следует разместить рядом с массивом, потому что в этом месте вы переключитесь на менее дорогой тип провода. NEC требует, чтобы любой переход проводов имел место внутри электрического шкафа. Вы не можете просто соединить соединительные провода вместе, обернуть их изолентой и оставить в элементах.

На фото слева изображен фотоэлектрический сумматор Soladeck с привязкой к сетке. Обратите внимание на четыре набора проводов (положительный и отрицательный), входящие снизу и отмеченные лентой (красный — для незаземленных проводов, белый — для заземленных). Сверху выходит только один комплект проводов вместе с зеленым проводом заземления.Клемма заземления в правом нижнем углу соединяет зеленый провод здания с голым медным заземлением, идущим снизу от массива.

На диаграмме справа, которая не соответствует тому, что вы видите на фотографии, показано, как соединение двух цепочек проходит от массива через блок объединителя. Большинство сетевых инверторов не используют контроллер заряда батареи, поэтому толстые красный и черный провода (положительный и отрицательный) вместо этого будут идти вниз по потоку к центральному инвертору.(Если в вашей системе используются микроконвертеры, сумматор будет объединять провода, по которым проходит переменный ток, и может проходить через автоматические выключатели вместо предохранителей.) В любом случае, предохранители внутри сумматора обеспечивают защиту от перегрузки по току, а грозовой разрядник обеспечивает защиту от перенапряжения защита , которая может потребоваться или не потребоваться в вашем городе. Зеленая линия обозначает заземление. Обратите внимание, что все физическое оборудование (модули, корпус коробки и т. Д.) Заземлено.Это требование NEC. Фото: SolaDeck —- Схема: HomePower.com

Защита от перегрузки по току (плавкие предохранители или автоматические выключатели) должна быть включена в фотоэлектрический источник или выходную цепь только в том случае, если у вас есть три или более цепочки массива. Предохранители обычно размещаются внутри коробки сумматора (если вы ее используете) или внутри разъединителя постоянного тока (если вы этого не делаете).

Большинство O.C. устройства рассчитаны на максимальную рабочую температуру 40 ° C (или 104 ° F). Это нормально для бытовой электропроводки.С другой стороны, из-за своего расположения на открытом воздухе или на чердаках фотоэлектрические компоненты могут подвергаться гораздо большему нагреву, чем это. Таким образом, если вы планируете поместить какие-либо предохранители или прерыватели на сильный нагрев, вам следует обратиться к спецификациям продукта для определения коэффициентов регулировки температуры. В противном случае в цепи могут возникать неприятные срабатывания или перегорать предохранители в жаркую погоду.

Для определения нормального O.C. номинал устройства (т.е. размер предохранителя или прерывателя), начните с этого уравнения:

Допустимая нагрузка цепи = I max X 1.56

На стороне постоянного тока цепи для этого расчета используется ток короткого замыкания (Isc). Если, например, ваш предохранитель будет помещен в сумматор или распределительную коробку, то Isc будет соответствовать спецификациям тока короткого замыкания для модулей. Для нашего образца массива модулей Sharp расчет выглядит следующим образом:

8,60 ампер (ток короткого замыкания) X 1,56 = 13,42 ампер.

Так как предохранители продаются типоразмеров (6, 8, 10, 15, 20, 25, 30 ампер и т. Д.)), NEC заявляет, что вы должны выбрать ближайший размер, равный или чуть превышающий значение допустимой нагрузки. Для 13,42 ампера это означает предохранитель на 15 ампер.

Для фотоэлектрических цепей, включающих обычный инвертор с трансформатором, только один из двух проводов в паре — незаземленный или горячий провод — защищен предохранителем. Однако, если у вас есть бестрансформаторные инверторы, оба провода в паре должны быть защищены предохранителями.

Кроме того, если вам интересно, множитель 1,56 в расчете допустимой нагрузки — это сокращение, которое включает две формулы NEC, применимые к фотоэлектрическим цепям.Первая формула — Imax X 1,25, что соответствует тому, что NEC называет постоянным током цепи. Вторая формула — это постоянный ток X 1,25, который обеспечивает амортизацию выше первого значения, чтобы избежать ложных отключений из-за незначительных колебаний тока. Теперь, если вы возьмете 1,25 х 1,25 (или 1,25 в квадрате), вы получите 1,56.

Для нашего образца системы с привязкой к сети с обычным инвертором, двумя цепочками массивов и напряжением (измеренным ранее) 420.36 вольт, приобретаемая нами распределительная или объединительная коробка должна быть рассчитана на 600 вольт постоянного тока (т. Е. Стандартного размера), вмещать положительный и отрицательный проводники как минимум на две струны и иметь номинальное значение не менее 30 А. (Вы все еще можете вставить предохранители на 15 ампер, но стандартный номинал для компонентов в этом диапазоне составляет 30 ампер.)

— —
Слева: сквозной корпус Soladeck AC / DC 3R работает как распределительная коробка для фотоэлектрических систем, установленных на крыше. Он поставляется с окладом, поэтому его можно установить на композитной черепичной черепице.На этой фотографии три набора проводов (для трех модулей) и земля выходят в направлении чердака. Однако большинство распределительных коробок устанавливаются в вертикальном положении и, желательно, в тени, защищенной от солнца. Обратите внимание на предусмотренные в этом продукте клеммы для подключения положительного и отрицательного проводов, а также заземляющего провода (от голой меди к зеленому). Это лучший способ подключения проводов, хотя простой электрический шкаф без клемм гораздо дешевле купить.Справа разъем для проводов Polaris будет использоваться для подключения проводов в недорогой распределительной коробке без клемм. Гайки для обычных проводов не рассчитаны на высокую температуру и могут расплавиться, что приведет к короткому замыканию, поэтому их никогда не следует использовать для солнечных батарей на крыше.

Между прочим, некоторые модели сумматоров поставляются с предварительно смонтированными изнутри, что позволяет сэкономить время на установку. Вот список продуктов Midnite Solar, компании, которая продает как предварительно смонтированные, так и традиционные сумматоры для жилых и коммерческих фотоэлектрических систем. Распределительные коробки и сумматоры в идеале должны быть рассчитаны на фотоэлектрические системы, поскольку эти изделия предназначены для работы с высокими температурами. Вы также захотите, чтобы ваш ящик имел рейтинг NEMA 3R или 4, если он будет размещен на открытом воздухе. Кроме того, в любой коробке, которую вы покупаете, должно быть достаточно места внутри, чтобы соединения проводов (включая заземляющий провод оборудования) были простыми и удобными. Провода, скрученные вместе в крошечном пространстве, естественно, будут выделять больше тепла и представлять более высокий риск короткого замыкания или отключения от клеммы.Ваша работа по электромонтажу становится намного проще, если в корпусе предусмотрены шины или клеммные колодки и блоки .

Выбор разъединителя постоянного тока

Если вы решите не использовать сумматор, у вас, скорее всего, будет два или более набора проводников, идущих ниже по потоку в разъединитель постоянного тока. Отключение — это ручной выключатель включения / выключения, помещаемый в цепь, чтобы дать людям возможность быстро отключить одну секцию фотоэлектрической цепи.Для небольшой фотоэлектрической системы, подключенной к сети, вам следует спросить своего строительного инспектора и коммунального предприятия, соответствует ли уже установленный на инверторе выключатель постоянного тока. В этом случае вы сэкономите время и деньги, пропустив дополнительный компонент.

Square-D, 600 В, выключатель постоянного тока с плавким предохранителем, 30 А

Если вы включаете в свою схему автономный выключатель постоянного тока, вам придется подобрать его таким же образом, как и распределительную коробку или сумматор. В большинстве случаев модель подходящего размера для вашей схемы будет рассчитана на 600 вольт постоянного тока.У вас также будет выбор: купить плавкий или неплавкий . В случае плавкого разъединителя размер, который вы выбираете для своих предохранителей, зависит от того, какой ток каждый набор проводников несет от массива через разъединитель, и от того, помещен ли сумматор в цепь перед разъединителем.

Если вы не комбинируете ток в своей фотоэлектрической цепи, здесь применимы те же формулы, использованные выше:

Допустимая нагрузка цепи = I max X 1.56

Если используется комбайнер, то:

O.C. ampacity = I max X #Module Строки в массиве X 1,56

Для нашего массива сэмплов с блоком сумматора математическое значение будет 8,60 ампер х 2 струны х 1,56, что составляет 26,84 ампера. Ближайший предохранитель с этим значением или выше — это 30-амперный предохранитель.

Чтобы узнать больше о разъединителях постоянного тока и их номиналах, ознакомьтесь с популярной моделью Square-D HU361RB.Буква «U» в номере модели обозначает незагруженный. Даже если вы не покупаете модель с плавким предохранителем, вам все равно необходимо рассчитать номинальную емкость для продукта. Таким образом, приведенная выше математика по-прежнему актуальна, и продукт, который вы покупаете, должен быть рассчитан на 30 ампер.

Выбор выключателя переменного тока

Этот разъединитель находится между инвертором и главной сервисной панелью дома. Примечательно, что электричество, которое видит отключение переменного тока, мало похоже на электричество фотоэлектрической матрицы на стороне постоянного тока вашей системы.В частности, у вас будут два «горячих» проводника (в дополнение к нейтрали), идущие от инвертора к главной сервисной панели, которые будут проходить через этот разъединитель. Каждый будет выдерживать половину 240 вольт, генерируемых инвертором.

Формула допустимой нагрузки NEC также изменяется на стороне переменного тока цепи. Вместо 1,56 множитель 1,25. Вместо тока короткого замыкания вы должны использовать максимальный или продолжительный выходной ток, указанный в спецификации инвертора.Таким образом, расчет допустимой нагрузки выглядит так:

Допустимая нагрузка цепи = Выходной ток переменного тока инвертора X 1,25

Fronius IG 4000, например, показывает выходной ток 16,7 ампер. Таким образом, 16,7 х 1,25, что составляет 20,88 ампер. Таким образом, правильный выключатель или предохранитель в цепи (или внутри инвертора со стороны выхода переменного тока) должен быть рассчитан на 25 ампер.

Для самого разъединителя переменного тока вы должны выбрать 2-полюсную модель на 30 А.Если ваш инвертор бестрансформаторный, и вы решили купить плавкий выключатель переменного тока, вам понадобится трехполюсная модель, чтобы предохранить нейтральный проводник в цепи, так как он не будет заземлен.

Для более подробного обсуждения того, как определить размер защиты от перегрузки по току в фотоэлектрической системе, вот статья эксперта NEC Джона Уайлса.

Выбор автоматического выключателя DP

Когда вы проводите проводку от разъединителя переменного тока к главной панели, вам необходимо установить новый двухполюсный прерыватель цепи ( он же DP ) в панель как часть этого подключение.Выключатель должен быть типа с обратным питанием , поскольку ток должен иметь возможность протекать в обратном направлении в электрическую сеть. Каждый полюс будет обрабатывать один из двух горячих 120-вольтных проводов, идущих от инвертора.

«Двухполюсный» означает, что автоматический выключатель имеет два отключающих выключателя, хотя он занимает такое же место, как однополюсный выключатель. Когда вы покупаете этот компонент, обязательно сначала проверьте свою главную панель, чтобы узнать, какие марки автоматических выключателей совместимы с ним.

Здесь можно использовать те же вычисления, что и для отключения переменного тока:

Допустимая нагрузка цепи = Выходной ток переменного тока инвертора X 1,25

Опять же, 16,7 х 1,25 = 20,88 ампер, что означает, что для каждого токоведущего провода подходит 25-амперный выключатель. Кроме того, NEC требует, чтобы фотоэлектрический выключатель располагался на конце панели, противоположном «основным» выключателям. Это создает физический барьер между двумя источниками питания (электросеть и инвертор), что снижает вероятность возникновения дуги, короткого замыкания или другого случайного столкновения титанов.

Примечание: Если ваша основная сервисная панель имеет емкость шины 100 ампер, максимальный размер выключателя, который вы можете добавить, составляет 20% от 100, что составляет 20 ампер. Это означает, что вы не можете использовать инвертор мощностью более 3800 Вт без обновления главной панели или «бокового отвода линии». Максимальный выходной ток инвертора, приемлемый для 20-амперных автоматических выключателей, составляет 16 ампер, поскольку 16 X 1,25 равно 20. В качестве альтернативы вы можете уменьшить размер «основного» выключателя на сервисной панели со 100 до 80 ампер, что позволит вам использовать больший ток. размер выключателя.Однако это может привести к частому срабатыванию выключателя, когда вы используете несколько приборов в доме. Если шина вашей главной панели рассчитана на 200 ампер, вы можете использовать автоматический выключатель фотоэлектрической системы до 20% X 200 или 40 ампер.

Выбор счетчика нетто

Если требуется, между вашим инвертором и главной сервисной панелью необходимо установить корпус счетчика нетто и розетку. Инструкции, которые вы получите от своей коммунальной компании, должны включать спецификации, определяющие тип компонента, который будет выполнять эту задачу.Если вы не знаете, какой продукт купить, обратитесь к представителю компании.

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Продолжение на странице 9 … (Выбор и размер провода)

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Меню шагов установки солнечной энергии

Домашняя страница

————————————————- —————

Авторские права © 2012-2014 TheSolarPlanner.com

Любые отзывы или предложения отправляйте по адресу
info [at] thesolarplanner dot com .

————————————————- —————-

Обязательно введите все три слова:
TheSolarPlanner
, чтобы найти этот сайт позже.

Подготовка к экзамену IELTS — Диаграмма

  1. Дом
  2. IELTS написание
  3. Схема

Иногда IELTS Writing Task 1 требует
вам описать процесс.Если у вас есть задача с описанием процесса на экзамене,
Вам будет предоставлена ​​диаграмма с серией изображений. На схеме показаны этапы
, как что-то сделано или , как что-то работает .

Примеры вопросов


На схемах представлена ​​информация о производстве замороженных пирогов с рыбой.

Обобщите информацию, выбрав и сообщив об основных характеристиках, и проведите сравнения, где это необходимо.

На схеме показан процесс переработки алюминиевых банок.

Обобщите информацию, выбрав и сообщив об основных характеристиках, и проведите сравнения, где это необходимо.

На схеме показаны возможные будущие способы производства энергии в домашних условиях.

Обобщите информацию, выбрав и сообщив об основных характеристиках, и проведите сравнения, где это необходимо.

На схеме показано производство электроэнергии с помощью системы, называемой «Преобразование тепловой энергии океана» (OTEC).

Обобщите информацию, выбрав и сообщив об основных характеристиках, и проведите сравнения, где это необходимо.

На схемах показана конструкция, которая используется для выработки электроэнергии из энергии волн.

Обобщите информацию, выбрав и сообщив об основных характеристиках, и проведите сравнения, где это необходимо.

На схеме показано производство пара с использованием ядерного реактора с газовым охлаждением.

Обобщите информацию, выбрав и сообщив об основных характеристиках, и проведите сравнения, где это необходимо.

На схеме показано, как парниковые газы захватывают энергию Солнца.

Обобщите информацию, выбрав и сообщив об основных характеристиках, и проведите сравнения, где это необходимо.

На схеме показано, как работает система центрального отопления в доме.

Обобщите информацию, выбрав и сообщив об основных характеристиках, и проведите сравнения, где это необходимо.

На схемах представлена ​​информация об Эйфелевой башне в Париже и общий план ее расширения под землей.

Обобщите информацию, выбрав и сообщив об основных характеристиках, и проведите сравнения, где это необходимо.

Диаграмма дает информацию о цепи гавайских островов в центре Тихого океана.

Обобщите информацию, выбрав и сообщив об основных характеристиках, и проведите сравнения, где это необходимо.

На диаграмме показаны типичные этапы производства потребительских товаров, включая процесс, посредством которого информация возвращается на более ранние этапы для обеспечения возможности корректировки.

Обобщите информацию, выбрав и сообщив об основных характеристиках, и проведите сравнения, где это необходимо.

Все, что вам нужно знать о системах HVAC

Все шесть основных типов систем HVAC предлагают небольшие вариации операций, описанных выше.

Тепловой насос

Тепловые насосы — это эффективная система, которая извлекает тепло из холодного помещения (например, на открытом воздухе зимой), а затем нагревает и отдает его в комнату, чтобы контролировать температуру внутри.При использовании для обогрева тепловые насосы используют тот же цикл охлаждения, который используется в кондиционере, но вместо того, чтобы выпускать воздух наружу, как это сделала бы система охлаждения, они выталкивают воздух в противоположном направлении (т. Е. Обратно в комнату, чтобы греться).

Тепловые насосы также могут использоваться для охлаждения помещения, реверсируя поток воздуха, чтобы снова удалить нагретый воздух, поступающий в систему. Однако их реальная сила приносит пользу тем, кто нуждается в обогреве, поскольку тепловые насосы могут быть в четыре раза эффективнее в использовании энергии, чем более традиционные системы обогрева.

Блок на крыше

Крышные установки также часто называют кондиционерами воздуха, и, как следует из названия, они представляют собой большую систему отопления, вентиляции и кондиционирования воздуха, которая размещается на крыше для снижения температуры в большом помещении. Внутри больших ящиков, которые вы видите наверху офисных или многоквартирных домов, находятся воздуходувка, нагревательные и охлаждающие элементы, стойки для фильтров, камеры и заслонки.

Эти боксы обычно соединяются с системой вентиляции воздуховодов, которая затем распределяет воздух по всему зданию, прежде чем возвращать его в бокс для выпуска или возврата воздуха обратно в систему (в зависимости от модели).

Водяной тепловой насос

Для тех, кто заинтересован в устойчивом охлаждении и / или обогреве, тепловой насос с водным источником воды или, в более широком смысле, любой геотермальный тепловой насос — лучший выбор.

Тепловые насосы, использующие воду, относительно редки, поскольку они требуют близости к водоему; Однако популярность геотермальных тепловых насосов стремительно растет. Независимо от того, работает ли система на воде или на земле, эти насосы предлагают системы отопления и охлаждения, которые передают тепло в землю или из нее, используя преимущества более умеренных температур земли для повышения эффективности системы.

Однако дальнейшее развитие этой системы потребовало бы бурения скважины для создания ствола рядом с системой отопления, вентиляции и кондиционирования воздуха.
система.Охлажденная вода под землей может затем втягиваться системой для обеспечения питьевой водой и питания теплового насоса с открытым контуром. Это будет брать тепло из воды и использовать его для повышения тепла в системе водоснабжения дома, обеспечивая отопление и горячую воду. Затем излишки серой воды можно использовать для полива сада.

ОВКВ в корпусе

Упакованные кондиционеры немного похожи на крышные кондиционеры, но предназначены для небольшого домашнего использования.Если оконные кондиционеры и кондиционеры с мини-сплит-системой подходят для охлаждения небольших помещений весом до пяти тонн, то центральные системы кондиционирования рассчитаны на нагрузку более 20 тонн. По этой причине комплектный кондиционер был разработан с учетом потребностей каждого, кто находится между этими двумя рамками.

Блок 208: Системы центрального отопления

Презентация на тему: «Блок 208: Системы центрального отопления» — стенограмма презентации:

1

Блок 208: Системы центрального отопления
Результат 1 (часть 1) Типы бытовых систем центрального отопления, установленных в жилых домах

2

Законодательство Строительные нормы, часть L: Сохранение топлива и энергии BS EN 12828: Проектирование систем водяного отопления BS EN 14336: Установка и ввод в эксплуатацию систем водяного отопления BS 4422: Производство радиаторов CHeSS: Спецификация системы центрального отопления (базовая и лучшая) практика)

3

Законодательство Строительные нормы, часть L: Сохранение топлива и энергии L1a: В новых жилищах L1b: В существующих жилищах L2a: В новых, кроме жилищ L2b: В существующих, отличных от жилых помещениях Руководство по соблюдению норм отопления

4

Типы систем Основное назначение центрального отопления — обеспечение теплового комфорта в доме.Открытый огонь дает тепло в одной комнате, но центральное отопление может дать тепло в каждой комнате. Тепловой комфорт достигается, когда желаемый тепловой баланс между телом и окружающей средой соблюдается в рамках экономических ограничений клиента.

5

Типы систем Полное центральное отопление Это позволяет одновременно отапливать все комнаты в доме до определенной температуры, установленной заказчиком. Эта комфортная температура должна быть достигнута даже при наружной температуре -10 ° C.Выборочное центральное отопление. Это позволяет некоторым комнатам в собственности (частям собственности) одновременно отапливаться до определенной температуры, установленной заказчиком. Эти номера будут выбраны заказчиком. Эта комфортная температура должна быть достигнута даже при наружной температуре -10 ° C.

6

Типы систем Фоновое центральное отопление Это может быть как полное, так и выборочное, но этот тип отопления устанавливается в основном на основе затрат.Можно использовать котел меньшего размера или излучатели тепла, которые только убирают холод из комнат и нагревают комнаты до более низкой температуры. Если система не может достичь желаемой температуры комфорта при наружной температуре -10 ° C, система будет классифицироваться как фоновое отопление.

7

Типы систем За последние 100 лет открытый огонь в каждой комнате был разработан и заменен на: Самотечная система горячего водоснабжения Насосное отопление самотечной горячей водой Полностью насосная система Центральное отопление теперь предпочтительнее открытого огня, поскольку оно нагревает все свойство.

8

Типы систем Это развитие с течением времени привело к переходу от использования твердого топлива для обогрева системы к использованию газа, масла и электроэнергии для обогрева системы. Заказчик будет учитывать затраты не только на момент установки, но и на эксплуатационные расходы системы. Контроль эффективности технического обслуживания

9

Типы систем Современные бытовые системы центрального отопления делятся на две категории, в зависимости от способа заполнения системы водой и давления, при котором система работает.Низкое давление, открытые вентилируемые системы. Они питаются из бачка подачи и расширения, расположенного на высоком уровне. Это могут быть полностью откачиваемые или гравитационные системы. Герметичные системы под давлением. Они питаются непосредственно от водопроводной холодной воды и включают в себя расширительный бак для компенсации расширения нагретой воды. Этот тип системы представляет собой более современную полностью насосную или комбинированную котельную систему.

11

Типы систем Гравитационные или полугравитационные системы
Это старые системы, использующие конвекционные потоки для циркуляции воды по трубопроводу.У них обычно есть первичные обмотки диаметром 28 мм, связанные с твердотопливными котлами и необходимостью конвекционных токов. Полугравитация с одной трубкой Полугравитационная с двумя трубками Полугравитационная в плане C в полу-гравитационном плане Система C в полу-гравитации с двумя трубками в полугравитации с радиатором

Типы систем HVAC | IntechOpen

1. Введение

Система отопления, вентиляции и кондиционирования воздуха (HVAC) предназначена для удовлетворения экологических требований, касающихся комфорта людей и технологического процесса.

Системы отопления, вентиляции и кондиционирования воздуха чаще используются в различных типах зданий, таких как промышленные, коммерческие, жилые и институциональные здания.Основная задача системы отопления, вентиляции и кондиционирования воздуха заключается в обеспечении теплового комфорта людей, находящихся в помещении, путем регулирования и изменения условий наружного воздуха в соответствии с желаемыми условиями жилых зданий [1]. В зависимости от наружных условий наружный воздух втягивается в здания и нагревается или охлаждается перед тем, как он распределяется по жилым помещениям, затем он удаляется в окружающий воздух или повторно используется в системе. Выбор систем отопления, вентиляции и кондиционирования воздуха в данном здании будет зависеть от климата, возраста здания, индивидуальных предпочтений владельца здания и проектировщика проекта, бюджета проекта, архитектурного дизайна зданий [1] .

Системы HVAC можно классифицировать в соответствии с необходимыми процессами и процессом распределения [2]. Необходимые процессы включают процесс нагрева, процесс охлаждения и процесс вентиляции. Могут быть добавлены другие процессы, такие как процесс увлажнения и осушения. Этот процесс может быть достигнут с помощью подходящего оборудования HVAC, такого как системы отопления, системы кондиционирования воздуха, вентиляторы и осушители. Системы HVAC нуждаются в распределительной системе для подачи необходимого количества воздуха в желаемых условиях окружающей среды.Система распределения в основном различается в зависимости от типа хладагента и способа доставки, например оборудования для обработки воздуха, фанкойлов, воздуховодов и водопроводных труб.

2. Выбор системы HVAC

Выбор системы зависит от трех основных факторов, включая конфигурацию здания, климатические условия и желание владельца [2]. Инженер-проектировщик отвечает за рассмотрение различных систем и рекомендацию более чем одной системы для достижения цели и удовлетворения потребностей владельца здания.Можно рассмотреть некоторые критерии, такие как изменение климата (например, температура, влажность и давление в помещении), емкость здания, требования к пространству, стоимость, например капитальные затраты, эксплуатационные расходы и стоимость обслуживания, анализ жизненного цикла, надежность и гибкость.

Однако выбор системы имеет некоторые ограничения, которые необходимо определить. Эти ограничения включают доступную мощность в соответствии со стандартами, конфигурацию здания, доступное пространство, строительный бюджет, доступный источник коммунальных услуг, отопление и охлаждение здания.

3. Основные компоненты системы HVAC

Основные компоненты или оборудование системы HVAC, которая подает кондиционированный воздух для обеспечения теплового комфорта помещения и людей и достижения качества воздуха в помещении, перечислены ниже [3]:

  1. Нагнетательная камера смешанного воздуха и управление наружным воздухом

  2. Воздушный фильтр

  3. Приточный вентилятор

  4. Вытяжные или разгрузочные вентиляторы и выпускное отверстие для воздуха

  5. Забор наружного воздуха

  6. Воздуховоды

  7. Клемма устройства

  8. Система возвратного воздуха

  9. Змеевики нагрева и охлаждения

  10. Автономный блок нагрева или охлаждения

  11. Градирня

  12. Котел

  13. Control

  14. Водяной охладитель

  15. Оборудование для увлажнения и осушения

4.Классификация систем HVAC

Основная классификация систем HVAC — центральная система и децентрализованная или локальная система. Типы системы зависят от адресации к месту расположения основного оборудования, которое должно быть централизовано как кондиционирование всего здания в целом или децентрализовано как отдельное кондиционирование определенной зоны как части здания. Следовательно, система распределения воздуха и воды должна быть спроектирована на основе классификации системы и расположения основного оборудования. Критерии, упомянутые выше, также должны применяться при выборе между двумя системами.В таблице 1 показано сравнение центральной и локальной систем по критериям выбора [3, 4].

Критерии Центральная система Децентрализованная система
Требования к температуре, влажности и давлению в помещении Выполнение любого или всех проектных параметров Выполнение любого проекта параметры
Требования к емкости
Резервирование Резервное оборудование предназначено для устранения неисправностей и обслуживания Нет резервного или резервного оборудования
Особые требования
  • Помещение с кондиционированным оборудованием находится за пределами помещения с оборудованием площадь, прилегающая к зданию или удаленная от него

  • Установка вторичного оборудования для распределения воздуха и воды, требующего дополнительных затрат

Первоначальные затраты
Эксплуатационные расходы
Расходы на техническое обслуживание Доступ к аппаратной для обслуживания и сохранения оборудования в отличном состоянии, что экономит расходы на обслуживание Доступ к оборудованию, которое должно быть размещено в подвале или жилом помещении.Однако из-за плохой погоды сложно установить крышу.

Гибкость Выбор резервного оборудования для обеспечения альтернативного источника отопления, вентиляции и кондиционирования или резервного копирования Размещено во многих местах для большей гибкости

Таблица 1.

Сравнение центральной и местной систем HVAC.

5. Системные требования HVAC

Четыре требования являются базовыми для любых систем HVAC [4]. Им требуется основное оборудование, необходимое пространство, распределение воздуха и трубопроводы, как показано на рисунке 1.

Рисунок 1.

Горизонтальное иерархическое представление требований к системе HVAC.

Первичное оборудование включает отопительное оборудование, такое как паровые котлы и водогрейные котлы для обогрева зданий или помещений, оборудование для подачи воздуха в виде комплектного оборудования для подачи кондиционированного воздуха для вентиляции с помощью центробежных вентиляторов, осевых вентиляторов, пробковых или нагнетательных вентиляторов, а также холодильное оборудование, которое доставляет в космос охлажденный или кондиционированный воздух.Он включает в себя охлаждающие змеевики на основе воды из чиллеров или хладагентов из процесса охлаждения.

Необходимое пространство необходимо для того, чтобы сделать систему HVAC центральной или местной. Для этого требуются следующие пять помещений:

  1. Помещения для оборудования: поскольку общие требования к механическому и электрическому пространству составляют от 4 до 9% от общей площади здания. Предпочтительно располагаться в центре здания, чтобы уменьшить протяженность и размеры длинных каналов, труб и трубопроводов, упростить компоновку шахт и централизованное обслуживание и эксплуатацию.

  2. Помещения HVAC: отопительное и холодильное оборудование требует множества помещений для выполнения своих основных задач по обогреву и охлаждению здания. Для отопительного оборудования требуются котельные, насосы, теплообменники, оборудование для снижения давления, управляющие воздушные компрессоры и прочее оборудование, в то время как для холодильного оборудования требуются чиллеры или градирни для больших зданий, водяные насосы конденсаторов, теплообменники, кондиционирование воздуха. оборудование, управляющие воздушные компрессоры и прочее оборудование.При проектировании аппаратных помещений для размещения обоих элементов оборудования следует учитывать размер и вес оборудования, установку и техническое обслуживание оборудования, а также применимые правила в отношении воздуха для горения и воздуха для вентиляции.

  3. В вентиляторных помещениях есть вентиляторное оборудование HVAC и другое разное оборудование. Помещения должны учитывать размер установки и снятия валов и змеевиков вентиляторов, замены и обслуживания. Размер вентиляторов зависит от требуемой скорости воздушного потока для кондиционирования здания и может быть централизованным или локализованным в зависимости от доступности, местоположения и стоимости.Желательно иметь свободный доступ к наружному воздуху.

  4. Вертикальный вал: обеспечивает пространство для распределения воздуха и водяных и паровых труб. Распределение воздуха включает воздуховоды приточного, вытяжного и возвратного воздуха для ОВК. Распределение труб включает подачу горячей воды, охлажденной воды, воды в конденсатор и пар, а также возврат конденсатора. Вертикальная шахта включает другие механические и электрические распределительные устройства для обслуживания всего здания, включая водопроводные трубы, противопожарные трубы и электрические каналы / туалеты.

  5. Доступ к оборудованию: помещение с оборудованием должно позволять перемещение большого и тяжелого оборудования во время установки, замены и обслуживания.

При распределении воздуха учитывается система воздуховодов, по которой кондиционированный воздух доставляется в нужную зону прямым, бесшумным и экономичным способом. Распределение воздуха включает в себя воздухораспределительные устройства, такие как решетки и диффузоры, для подачи приточного воздуха в помещение с низкой скоростью; оконечные устройства с приводом от вентилятора, в которых используется встроенный вентилятор для подачи воздуха в помещение; оконечные устройства с переменным расходом воздуха, которые доставляют в помещение переменное количество воздуха; оконечные устройства всасывания воздуха, которые контролируют первичный воздух, нагнетают возвратный воздух и распределяют смешанный воздух в помещении; и оконечные устройства для впуска воздуха-воды, которые содержат катушку в воздушном потоке.Все воздуховоды и трубопроводы должны быть изолированы, чтобы предотвратить потери тепла и сэкономить энергию здания. Также рекомендуется, чтобы в зданиях было достаточно места на потолке для размещения воздуховодов в подвесном потолке и плите перекрытия, а также чтобы их можно было использовать в качестве приточной камеры для возвратного воздуха, чтобы уменьшить количество обратных воздуховодов.

Система трубопроводов используется для прямой, бесшумной и доступной подачи хладагента, горячей воды, охлажденной воды, пара, газа и конденсата к оборудованию HVAC и от него. Системы трубопроводов можно разделить на две части: трубопровод в центральном аппаратном помещении завода и трубопровод подачи.Трубопроводы HVAC могут быть изолированы или не изолированы в соответствии с существующими нормативными требованиями.

6. Центральные системы HVAC

Центральная система HVAC может обслуживать одну или несколько тепловых зон, а ее основное оборудование расположено за пределами обслуживаемой зоны (зон) в подходящем центральном месте внутри, наверху или рядом с здание [4, 5]. Центральные системы должны кондиционировать зоны с их эквивалентной тепловой нагрузкой. Центральные системы HVAC будут иметь несколько контрольных точек, таких как термостаты для каждой зоны.Среда, используемая в системе управления для обеспечения тепловой энергии, подклассифицирует центральную систему HVAC, как показано на рисунке 2.

Рисунок 2.

Горизонтальное иерархическое представление основных типов центральных систем HVAC.

Средой передачи тепловой энергии может быть воздух, вода или и то, и другое, которые представляют собой воздушные системы, воздушно-водяные системы, водные системы. Кроме того, центральные системы включают тепловые насосы с водяным источником и панели отопления и охлаждения. Все эти подсистемы обсуждаются ниже.Центральная система отопления, вентиляции и кондиционирования воздуха имеет комбинированные устройства в вентиляционной установке, как показано на рисунке 3, которая содержит вентиляторы приточного и возвратного воздуха, увлажнитель, змеевик повторного нагрева, змеевик охлаждения, змеевик предварительного нагрева, смесительную камеру, фильтр и наружный воздух.

Рисунок 3.

Расположение оборудования для центральной системы HVAC.

6.1. Воздушные системы

Средой передачи тепловой энергии через системы подачи в здание является воздух. Полновоздушные системы можно подразделить на одну зону и многозонную, скорость воздушного потока для каждой зоны — постоянный объем воздуха и переменный объем воздуха, конечный повторный нагрев и двойной воздуховод [5].

6.1.1. Одна зона

Система с одной зоной состоит из вентиляционной установки, источника тепла и источника охлаждения, распределительных воздуховодов и соответствующих устройств подачи. Приточно-вытяжные агрегаты могут быть полностью интегрированы там, где имеются источники тепла и охлаждения, или раздельными, если источник тепла и холода отделены. Интегрированный блок, как правило, представляет собой установку на крыше и соединен с воздуховодом для доставки кондиционированного воздуха в несколько помещений с одной и той же тепловой зоной. Основным преимуществом однозонных систем является простота конструкции и обслуживания, а также низкая первоначальная стоимость по сравнению с другими системами.Однако основным его недостатком является обслуживание одной тепловой зоны при неправильном применении.

В однозонной системе отопления, вентиляции и кондиционирования воздуха одно устройство управления, такое как термостат, расположенное в зоне, управляет работой системы, как показано на рисунке 4. Управление может быть плавным или двухпозиционным, чтобы соответствовать требуемой тепловой нагрузке. единой зоны. Это может быть достигнуто путем регулировки мощности источника нагрева и охлаждения в собранном блоке.

Рисунок 4.

Воздушная система отопления, вентиляции и кондиционирования воздуха для одной зоны.

Хотя несколько зданий могут быть одной тепловой зоной, одна зона может использоваться в нескольких приложениях. Односемейные жилые дома можно рассматривать как системы с одной зоной, в то время как другие типы жилых домов могут включать различную тепловую энергию в зависимости от занятости и структуры здания. Движение людей влияет на тепловую нагрузку здания, что приводит к разделению здания на несколько отдельных зон для обеспечения требуемых условий окружающей среды. Это можно наблюдать в больших жилых домах, где две (или более) системы с одной зоной могут использоваться для обеспечения теплового зонирования.В малоэтажных квартирах каждый квартирный блок может быть оборудован отдельной однозонной системой. Многие крупные одноэтажные здания, такие как супермаркеты, магазины уцененных товаров, могут быть эффективно кондиционированы с помощью серии систем с одной зоной. Большие офисные здания иногда обуславливаются серией отдельных систем с одной зоной.

6.1.2. Многозонный

В многозонной системе с полным воздухом отдельные воздуховоды приточного воздуха предусмотрены для каждой зоны в здании. Холодный воздух и горячий (или возвратный) воздух смешиваются в приточно-вытяжной установке для достижения тепловых требований каждой зоны.В конкретной зоне есть кондиционированный воздух, который не может быть смешан с воздухом других зон, и для всех нескольких зон с различными тепловыми требованиями требуются отдельные приточные каналы, как показано на Рисунке 5. Многозонная система кондиционирования воздуха состоит из блока обработки воздуха с параллельные пути потока через охлаждающие змеевики и нагревательные змеевики и внутренние смесительные заслонки. Рекомендуется, чтобы одна многозонная зона обслуживала максимум 12 зон из-за физических ограничений на соединения воздуховодов и размер заслонки. Если требуется больше зон, можно использовать дополнительные кондиционеры.Преимущество многозонной системы состоит в том, чтобы обеспечить надлежащее кондиционирование нескольких зон без потерь энергии, связанных с конечной системой повторного нагрева. Однако утечка между палубами кондиционера может снизить энергоэффективность. Главный недостаток — необходимость в нескольких приточных воздуховодах для обслуживания нескольких зон.

Рисунок 5.

Воздушная система отопления, вентиляции и кондиционирования воздуха для нескольких зон.

6.1.3. Терминальный повторный нагрев

Терминальная система повторного нагрева — это многозонная система, которая учитывает адаптацию однозонной системы, как показано на рисунке 6.Это может быть выполнено путем добавления нагревательного оборудования, такого как змеевик с горячей водой или электрический змеевик, к потоку после приточного воздуха от вентиляционных установок около каждой зоны. Каждая зона контролируется термостатом для регулировки тепловой мощности нагревательного оборудования в соответствии с тепловыми условиями. Приточный воздух от приточно-вытяжных установок охлаждается до самой низкой точки охлаждения, а конечный подогрев добавляет требуемую тепловую нагрузку. Преимущество терминального повторного нагрева заключается в гибкости и его можно устанавливать или снимать с учетом изменений зон, что обеспечивает лучший контроль тепловых условий в нескольких зонах.Однако конструкция терминала повторного нагрева не является энергосберегающей системой, потому что значительное количество чрезвычайно охлаждающего воздуха не требуется регулярно в зонах, что можно рассматривать как ненужную энергию. Поэтому энергетические нормы и стандарты регулируют использование систем повторного нагрева.

Рисунок 6.

Одноканальная система с оконечными устройствами повторного нагрева и байпасными устройствами.

6.1.4. Двойной воздуховод

Двойная воздуховодная система представляет собой модификацию многозонной концепции с терминальным управлением.Центральная приточно-вытяжная установка обеспечивает два кондиционированных воздушных потока, таких как холодная палуба и горячая палуба, как показано на рисунке 7. Эти воздушные потоки распределяются по всей площади, обслуживаемой приточно-вытяжной установкой, в отдельных и параллельных каналах. Каждая зона имеет клеммную смесительную коробку, управляемую зонным термостатом для регулировки температуры приточного воздуха путем смешивания приточного холодного и горячего воздуха. Этот тип системы сведет к минимуму недостатки предыдущих систем и станет более гибким за счет использования терминального управления.

Рис. 7.

Двухканальная система отопления, вентиляции и кондиционирования воздуха.

6.1.5. Переменный объем воздуха

В некоторых помещениях требуется другой поток приточного воздуха из-за изменений тепловых нагрузок. Таким образом, воздушная система с переменным объемом воздуха (VAV) является подходящим решением для достижения теплового комфорта. Предыдущие четыре типа воздушных систем представляют собой системы постоянного объема. Система VAV состоит из центрального кондиционера, который обеспечивает подачу воздуха к клеммной коробке управления VAV, расположенной в каждой зоне, для регулировки объема приточного воздуха, как показано на рисунке 8.Температура приточного воздуха в каждой зоне регулируется путем изменения расхода приточного воздуха. Основным недостатком является то, что контролируемая скорость воздушного потока может отрицательно влиять на другие соседние зоны с другой или подобной скоростью воздушного потока и температурой. Кроме того, в условиях частичной нагрузки в зданиях может потребоваться низкая скорость воздушного потока, что снижает мощность вентилятора, что приводит к экономии энергии. Это также может снизить скорость вентиляции, что может быть проблематичным для системы отопления, вентиляции и кондиционирования воздуха и повлиять на качество воздуха внутри здания.

Рисунок 8.

Воздушные системы HVAC с оконечными устройствами VAV.

6.2. Водяные системы

В полностью водяных системах нагретая и охлажденная вода распределяется из центральной системы в кондиционируемые помещения [4, 5]. Этот тип системы относительно невелик по сравнению с другими типами, поскольку в качестве распределительных емкостей используются трубы, а вода имеет более высокую теплоемкость и плотность, чем воздух, поэтому для передачи тепла требуется меньший объем. Системы водяного отопления включают в себя несколько устройств подачи, таких как напольные радиаторы, радиаторы плинтуса, модульные обогреватели и конвекторы.Однако системы, полностью использующие только водяное охлаждение, необычны, например, подвесные балки, установленные в потолке. Основным типом, который используется в зданиях для кондиционирования всего пространства, является фанкойл.

6.2.1. Блоки фанкойлов

Блок фанкойлов — это довольно компактный блок, используемый для нагрева и охлаждения змеевиков, циркуляционного вентилятора и соответствующей системы управления, как показано на рисунке 9. Блок может быть установлен вертикально или горизонтально. Фанкойл может быть размещен в комнате или открыт для людей, поэтому очень важно иметь соответствующую отделку и стиль.В центральных системах фанкойлы подключаются к бойлерам для нагрева и к чиллерам для охлаждения кондиционируемого помещения. Требуемая температура зоны определяется термостатом, который регулирует поток воды к фанкойлам. Кроме того, пассажиры могут регулировать фанкойлы, регулируя жалюзи приточного воздуха для достижения желаемой температуры. Основным недостатком фанкойлов является вентиляция воздуха, и его можно решить только в том случае, если фанкойлы подключены к наружному воздуху.Еще один недостаток — уровень шума, особенно в критических местах.

Рисунок 9.

Водопроводная система: фанкойлы.

6.3. Системы «воздух-вода»

Системы «воздух-вода» представлены как гибридная система, объединяющая в себе преимущества полностью воздушных и полностью водяных систем [5]. Объем комбинированного уменьшается, и производится наружная вентиляция для правильного кондиционирования желаемой зоны. Водяная среда отвечает за передачу тепловой нагрузки в здании на 80–90% за счет нагрева и охлаждения воды, тогда как воздушная среда кондиционирует остальное.Есть два основных типа: фанкойлы и индукционные.

6.3.1. Фанкойлы

Фанкойлы для систем воздух-вода аналогичны системам с водяным охлаждением, за исключением того, что приточный воздух и кондиционированная вода подаются в желаемую зону от центрального кондиционера и центральных систем водоснабжения ( например, бойлеры или чиллеры). Вентиляционный воздух может подаваться отдельно в пароструйные холодильные системы spac

| Схема поиска неисправностей холодильника

В пароструйных холодильных установках в качестве хладагента может использоваться вода.Как воздух, он совершенно безопасен. Эти системы успешно применялись в холодильной технике в первые годы этого века. При низких температурах давление насыщения низкое (0,008129 бар при 4 ° C), а удельные объемы высокие (157,3 м3 / кг при 4 ° C). Температуры, которые могут быть достигнуты с использованием воды в качестве хладагента, недостаточно низки для большинства холодильных приложений, но находятся в диапазоне, который может удовлетворять требованиям кондиционирования, охлаждения или охлаждения. Кроме того, эти системы используются в некоторых химических отраслях промышленности для нескольких процессов, например.грамм. удаление парафина из смазочных масел. Обратите внимание, что пароструйные холодильные системы не используются, когда требуется температура ниже 5 ° C. Основными преимуществами этой системы являются использование в основном низкопотенциальной энергии и относительно небольшой объем работы вала.

Пароструйные холодильные системы используют паровые эжекторы для снижения давления в резервуаре, содержащем возвратную воду из системы охлажденной воды. Пароструйный эжектор использует энергию быстро движущейся струи пара для улавливания паров расширительного бака и их сжатия.Промывка порции воды в баке снижает температуру жидкости. На рис. 3.66 схематически представлена ​​пароструйная холодильная установка для водяного охлаждения. В показанной системе пар высокого давления расширяется при прохождении через сопло 1. Расширение вызывает падение давления и огромное увеличение скорости. Из-за высокой скорости пар мгновенного испарения из резервуара 2 втягивается в быстро движущийся пар, и смесь попадает в диффузор 3. Скорость в диффузоре постепенно снижается, но давление пара в конденсаторе 4 увеличивается 5-10 раз больше, чем на входе в диффузор (например.грамм. от 0,01 до 0,07 бар).

Это значение давления соответствует температуре конденсации 40 ° C. Это означает, что смесь пара высокого давления и пара мгновенного испарения может быть сжижена в конденсаторе. Скрытая теплота конденсации передается воде конденсатора, которая может иметь температуру 25 ° C. Конденсат 5 перекачивается обратно в котел, из которого он снова может испаряться под высоким давлением. Испарение относительно небольшого количества воды в расширительном баке (или охладителе мгновенного испарения) снижает температуру основного водоема.Затем охлажденная вода перекачивается в качестве хладагента в теплообменник охлаждающей нагрузки.

Эжектор был изобретен сэром Чарльзом Парсонсом около 1901 года для удаления воздуха из конденсаторов паровых двигателей. Примерно в 1910 году эжектор был использован Морисом Лебланом в системе охлаждения с паровым эжектором. В начале 1930-х годов он пережил волну популярности для кондиционирования воздуха в больших зданиях. Позже на смену холодильным циклам с паровым эжектором пришли системы с механическими компрессорами.С того времени разработка и совершенствование эжекторных холодильных систем практически остановились, поскольку большинство усилий было сосредоточено на улучшении циклов сжатия пара (Aphornratana et al., 2001).

Кроме того, другой типичный газовый эжектор схематично показан на рисунке 3.67a. Первичная жидкость (P) высокого давления входит в первичное сопло, через которое она расширяется, образуя область низкого давления в выходной плоскости (1). Высокоскоростной первичный поток втягивает и увлекает вторичную жидкость (S) в смесительную камеру.Предполагается, что объединенные потоки полностью перемешиваются в конце смесительной камеры (2), а скорость потока сверхзвуковая. Затем в горловине смесительной камеры (3) создается нормальная ударная волна, создавая эффект сжатия, и скорость потока снижается до дозвукового значения. Дальнейшее сжатие жидкости достигается, когда смешанный поток проходит через секцию дозвукового диффузора (b).

На рисунке 3.67b показана принципиальная схема холодильного цикла эжектора.Видно, что бойлер, эжектор и насос используются для замены механического компрессора в обычной системе. Пар хладагента под высоким давлением и высокой температурой выделяется в котле для производства первичной жидкости для эжектора. Эжектор втягивает пар хладагента из испарителя в качестве вторичного. Это заставляет хладагент испаряться при низком давлении и производить полезное охлаждение. Эжектор выпускает пары хладагента в конденсатор, где он сжижается. Накопленный в конденсаторе жидкий хладагент возвращается в бойлер через насос, а остаток расширяется через дроссельный клапан в испаритель, завершая цикл.Поскольку потребляемая рабочая мощность, необходимая для циркуляции жидкости, обычно составляет менее 1% тепла, подаваемого в котел, COP может быть определен как отношение нагрузки охлаждения испарителя к подводимой теплоте в котел следующим образом:

Недавно Aphornratana et al. (2001) разработали новую систему охлаждения со струйным эжектором, использующую R-11 в качестве хладагента, как показано на рис. 3.68. Все сосуды в системах изготовлены из оцинкованной стали. Котел был спроектирован с электрическим обогревом, в нижнем конце располагались два электронагревателя мощностью 4 кВт.На его верхнем конце к сосуду были приварены три перегородки для предотвращения уноса капель жидкости с парами хладагента. Конструкция испарителя аналогична конструкции котла. Для моделирования охлаждающей нагрузки использовался один электрический нагреватель мощностью 3 кВт. В качестве конденсатора использовался пластинчатый теплообменник с водяным охлаждением. Подача охлаждающей воды 32 ° C. Котел был покрыт стекловатой толщиной 40 мм с алюминиевой фольгой. Испаритель был покрыт вспененным неопреном толщиной 30 мм.Для циркуляции жидкого хладагента из приемного бака в котел и испаритель использовали диафрагменный насос. Насос приводился в движение двигателем с регулируемой скоростью 1/4 л.с. Одним из недостатков использования диафрагменного насоса является кавитация жидкого хладагента во всасывающей линии из-за падения давления через впускной обратный клапан. Поэтому для переохлаждения жидкости R-11 перед подачей в насос использовался небольшой чиллер. На рис. 3.68c показана подробная принципиальная схема экспериментального эжектора. Сопло устанавливалось на вал с резьбой, что позволяло регулировать положение сопла.Были использованы две разные камеры смешения с диаметром горловины 8 мм: в камере смешения № 1 секция смешения представляет собой канал постоянной площади; в камере смешения № 2 секция смешения представляет собой сужающийся канал.

Эксперименты Aphornratana и др. Показали, что эжекторно-охлаждающая система, использующая R-11, оказалась практичной и могла обеспечить приемлемые характеристики. Он может обеспечить температуру охлаждения до -5 ° C. Холодопроизводительность от 500 до 1700 Вт при COP от 0.1 и 0,25.

.