Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Схема работы люминесцентной лампы: Схема подключения и принципы работы люминесцентных ламп.

Содержание

Схема подключения и принципы работы люминесцентных ламп.

Среди всех источников искусственного света самыми распространенными сегодня являются люминесцентные лампы. Благодаря тому что они в 5-7 раз экономичнее ламп накаливания и гораздо дешевле самых сверхэффективных на сегодня- светодиодных.

Люминесцентные лампы сегодня можно встретить на каждом шагу. Они используются преимущественно для освещения в магазинах, супермаркетах, учебных заведениях, общественных зданиях, а после появления компактных вариантов, подходящих под обычные патроны E27 и E14 домашних светильников и люстр, люминесцентные лампы стали широко применяться для освещения в многоквартирных квартирах и частных домах.

Принцип работы.

Люминесцентная лампа — это газоразрядный источник света, внутри стрелянной трубы протекает электрический разряд между двумя спиралями (катодом и анодом), расположенными  с обоих сторон. Пары ртути под воздействием электрического разряда излучают невидимое для наших глаз ультрафиолетовое излучение, которое затем преобразовывается в видимый свет при помощи нанесенного по внутренней поверхности лампы люминофора, состоящего из смеси фосфора с другими элементами.

Схема подключения с применением электромагнитный балласта или  ЭмПРА.

ЭмПРА — это сокращенная аббревиатура- Электромагнитный Пускорегулирующий Аппарат. Часто называемый, как дроссель. Его мощность должна соответствовать общей мощности подключаемым к нему лампам.
Это довольно старая (активно применяемая еще в советское время) простая стартерная схема подключения к электросети  люминесцентной лампы дневного света.

Стартер — это миниатюрная лампочка с неоновым наполнением с  двумя биметаллическими электродами внутри, которые разомкнуты в нормальном положении.

Принцип работы: при включении электропитания в стартере возникает разряд и замыкаются накоротко биметаллические электроды, после чего ток в цепи электродов и стартера ограничивается только внутренним сопротивлением дросселя, в результате чего возрастает почти в три раза больше  рабочий ток в лампе и моментально разогреваются  электроды люминесцентной лампы. Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В этот момент разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и зажигается лампа. После этого напряжение на ней будет равняться половине от сетевого, которого будет недостаточно  для повторного замыкания электродов стартера.
Если лампа светит стартер не будет участвовать в схеме работы и его контакты всегда будут разомкнуты.

Часто встречается последовательная схема включения  2 ламп, для работы в которой применяются стартеры на 127 Вольт,  но они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт!

 

Недостатки  схемы ПРА:

  1. По сравнению со схемой с электронным балластом на 10-15 % больший расход электроэнергии.
  2. Долгий запуск  не менее 1 до 3  секунд (зависимость от износа лампы).
  3. Звук от гудения пластин дросселя, возрастающий со временем.
  4. Стробоскопический эффект мерцания лампы, что негативно влияет на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  5. Неработоспособность при низких температурах окружающей среды. Например, зимой в неотапливаемом гараже.

Схема подключения с применением электронного балласта или ЭПРА.

Электронный Пускорегулирующий Аппарат (сокращенно-  ЭПРА) в отличии от электромагнитного-  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает возможность появления заметного для глаз мигания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Схемы подключений бывают разные, как правило они наносятся сверху на блоке и не вызывают трудности в подключении. Давайте рассмотрим пример.

Слева, L – фаза и N- ноль от электропитания. Один провод общий на контакты с левой стороны и два — раздельные.
Справа, 4 контакта. По два на каждую нить накала. Только соблюдайте схему подключения на каждую лампу с обоих сторон.

Преимущества схем с ЭПРА:

  • Увеличение срока службы люминесцентных ламп, благодаря специальному режиму работы и запуска.
  • По сравнению с ПРА до 20% экономия электроэнергии.
  • Отсутствие в процессе работы шума и мерцания.
  • Отсутствует в схеме  стартер, который часто ломается.
  • Специальные модели выпускаются с возможностью диммирования  или регулирования яркости свечения.

Как Вы уже поняли у ЭПРА  много преимуществ,  именно поэтому Мы только и рекомендуем их использовать.
Дополнительно прочитайте по этом теме нашу статью  ”Характеристики люминесцентных ламп и светильников”.

устройство, принцип работы, виды, маркировка

Среди огромного разнообразия устройств искусственного освещения достаточно весомую нишу занимают люминесцентные лампы. Этот вид световых приборов был впервые представлен еще в 1938 году, бросив вызов единственным монополистам того времени, лампочкам накаливания. С того времени их конструктивные особенности претерпели значительные изменения и доработки за счет чего люминесцентные лампы перешли в разряд энергосберегающих. Но, чтобы разобраться во всех за и против, детально ознакомиться с особенностями их эксплуатации в быту и промышленности, мы детально изучим этот вид осветительных приборов.

Устройство и принцип работы

Конструктивно люминесцентные лампы представляют собой стеклянную колбу, внутренняя поверхность которой покрывается специальным составом – люминофором. Он состоит из галофосфата кальция и  других примесей, некоторые варианты содержат редкоземельные элементы – тербий, европий или церий, но такие комбинации являются довольно дорогими.

Из колбы на этапе изготовления откачивается весь воздух, а емкость заполняется смесью инертных газов, чаще всего аргона, и паров ртути. В зависимости от модели лампы химический состав, как инертных газов, так и люминофора будет отличаться. Внутри газовой смеси располагается вольфрамовая нить накала, которая покрывается эмитирующим покрытием.

Рис. 1. Устройство и принцип действия люминесцентной лампы

Принцип действия такой энергосберегающей лампы заключается в такой последовательности электрохимических процессов:

  • На контакты газоразрядной ртутной лампы подается напряжение питания, за счет чего в цепи нити накаливания начинает протекать электрический ток.
  • При протекании электрического тока с поверхности нити начинает распространяться тепловая энергия и частицы эмиттеры, которые активируют инертный газ и обуславливают выделение ультрафиолетового излучения.
  • Свечение газов имеет относительно низкий процент видимого спектра, так как большая часть приходится на ультрафиолетовые волны. Но при достижении ультрафиолетом стеклянной колбы газоразрядной лампы, происходит  активация и последующей свечение люминофора.

Спектр свечения люминесцентных лампочек может варьироваться в довольно широком диапазоне. Выбор оттенков свечения в осветительных устройствах осуществляется посредством изменения процентного соотношения магния и сурьмы в составе люминофора.

Также важным моментом является температурный показатель, поэтому величина подаваемого напряжения и протекающего электрического тока должны иметь постоянное значение для каждого диаметра колбы. Именно строгое соблюдение электрических характеристик по отношению к ее геометрическим параметрам в люминесцентной лампе позволяет выдавать нужный цвет и яркость свечения.

Разновидности

Все разнообразие люминесцентных ламп характеризуется достаточно большим спектром параметров. Но в рамках данной статьи мы рассмотрим наиболее отличительные из них.

По величине давления газа внутри колбы, на практике различают светильники высокого и низкого давления:

  • Высокого давления – такие люминесцентные приборы выдают плотный световой поток насыщенных цветовых оттенков. Применяются в достаточно мощных моделях с номиналом от 50 до 2000 Вт, характеризуются сроком службы от 6 тыс. до 15 тыс. часов.
  • Низкого давления – отличается относительно небольшой плотностью газа в емкости, применяется для освещения помещений в быту или на производстве.

По форме колбы энергосберегающей лампочки – колба может иметь классическую грушевидную  форму со стеклянной спиралью внутри, продолговатую вытянутую форму, вид спиралевидной трубки закрученной вокруг оси, кольцевидные и других форм.

Рис. 2. Разновидности колбы

По конструкции цоколя различают люминесцентные лампы со стандартным цоколем E с числовым обозначением, указывающим диаметр самого цоколя газоразрядного источника. G – штыревой, в котором число после буквенной маркировки показывает расстояние между контактами, а перед на количество пар контактов. Также можно встретить модели с  цоколем типа W и F, но они используются довольно редко.

Рис. 3. Разновидности цоколей

По цветовой температуре свечения различают люминесцентные приборы с горячим желтым и холодным синим спектром. Также существуют варианты нейтрального цвета свечения. Цветовые температуры подбираются в соответствии с поставленными задачами: теплые для жилья, холодные для производственных объектов.

Рис. 4. Цветовая температура

Маркировка

Система обозначения люминесцентных лампочек определяет их основные параметры Однако, в зависимости от страны производителя будут отличаться и стандарты в обозначении. Для сравнения рассмотрим оба варианта маркировки на примере отечественных и зарубежных производителей.

Отечественная

Отечественная маркировка включает в себя буквенно-цифровое обозначение, которое включает в себя четыре позиции для букв и одну для чисел. К примеру: ЛБЦК-60.

Первая буква в маркировке Л означает лампа. Вторая позиция более сложная, она может выражаться как одной, так и парой буквосочетаний, обозначает индексы цветопередачи, в ней возможны такие варианты:

  • Д – дневного спектра;
  • ХБ – холодное белое свечение;
  • Б – белого цвета;
  • ТБ – белый теплых оттенков;
  • ЕБ – белый естественного спектра;
  • УФ – ультрафиолетового спектра;
  • Г – голубого цвета;
  • С – синего оттенка;
  • К – красный спектр излучения;
  • Ж – желтого оттенка
  • З – зеленого цвета.

Третья позиция определяет качество цветопередачи, но в наличии есть только два варианта Ц – улучшенного качества или ЦЦ – особенно повышенного, которое часто применяется в декоративном освещении.

В четвертой позиции указывается конструкция светильника. Имеются пять основных позиций:

  • А – амальгамного типа;
  • Б – с быстрым пуском;
  • К – кольцевого вида;
  • Р – рефлекторные лампы
  • У – U образные.

Зарубежная

Люминесцентные лампы зарубежного образца имеют идентичный принцип маркировки. В начале указывается мощность изделия в ваттах, ее легко узнать по латинской букве W.

Тип свечения определяется цифровым кодом с буквенным пояснением на английском:

  • 530 – это теплый тон люминесцентных ламп, но относительно плохой цветопередачи;
  • 640/740 – не совсем холодный, но близкий к нему с посредственным уровнем цветопередачи;
  • 765 – голубого оттенка с посредственным уровнем передачи цветов;
  • 827 – близкий к лампе накаливания, но с хорошей передачей цветов;
  • 830 – близкий к галогенной лампочке, с хорошим уровнем передачи цвета;
  • 840 – белого оттенка с хорошим уровнем передачи цветов;
  • 865 – дневного спектра с хорошей цветопередачей;
  • 880 – дневной спектр с отличной степенью передачи света;
  • 930 – теплый тон с отличными параметрами цвета и низким уровнем светоотдачи;
  • 940 – холодный тон с отличной передачей цвета и средним уровнем светоотдачи.
  • 954/965 – люминесцентные устройства с непрерывным спектром.

Технические характеристики

Важными техническими характеристиками для люминесцентных ламп являются:

  • Мощность лампы – может варьироваться в пределах от 10 до 80 Вт для классических бытовых нужд, промышленные модели могут достигать 2000 Вт;
  • Номинальное напряжение – в большинстве случаев применяется напряжение 220В;
  • Температура цветового свечения – варьируется в пределах от 2700 до 6500°К;
  • Светоотдача – количество выделяемого светового потока в перерасчете на 1Вт потребленной электроэнергии для люминесцентных устройств составляет от 40 до 60Лм/Вт, но существуют и более эффективные модели;
  • Габаритные параметры – зависят от конкретной модели люминесцентной лампы;
  • Тип цоколя – E14 (миньон), E27 (стандартный типоразмер), G10 и  G13 штырькового образца и другие.

Особенности подключения к сети

В виду сложностей, связанных с ионизацией газового промежутка, в люминесцентных лампах может использоваться несколько вариантов схемы включения, упрощающих зажигание разряда. Наиболее популярными являются электрические схемы электромагнитного и электронного балласта, которые мы и рассмотрим далее.

Электромагнитный балласт

Является наиболее старым вариантом, применяемым в пуске люминесцентных ламп с холодными катодами.

Рис. 5. Схема подключения с электромагнитным балластом

Как видите, в этой схема лампа подключается через электромагнитный дроссель и стартер. В момент подачи напряжения стартер, состоящий из биметаллической пластины, представляет собой цепь с очень низким сопротивлением, поэтому ток в нем нарастает в значительной степени, но не доходит до величины КЗ благодаря дросселю. Этот процесс запускает электрический разряд в люминесцентной лампе, а при нагревании электроды стартера разомкнуться.

Электронный балласт

Такой способ подключения предусматривает использование специального автогенератора, собранного на трансформаторе и транзисторном блоке, способном выдавать напряжение повышенной частоты, что позволяет получить световой поток без мерцаний.

Рис. 6. Использование электронного балласта

Как видите, готовый блок электронного балласта для питания люминесцентных ламп, применяется в соответствии со схемой подключения, которая указывается прямо на корпусе изделия.

Причины выхода из строя

Достаточно часто потребители, столкнувшиеся с проблемой прекращения работы или ухудшением параметров свечения люминесцентных ламп, задаются вопросом поиска причин неисправности.

Наиболее частыми причинами выхода люминесцентных ламп со строя являются:

  • перегорание нити накала – характеризуется полным отсутствием свечения;
  • нарушение целостности контактов – также не дает лампе загореться;
  • разгерметизация колбы с последующим выходом инертного газа – характеризуется вспышками оранжевого цвета;
  • перегорание стартера, пробой его конденсатора – мерцание, неспособность долго запуститься, черное пятно возле контактов;
  • обрыв обмотки дросселя или пробой на корпус – не включается или дает попеременное включение/выключение в процессе работы люминесцентной лампы;
  • замыкание в патроне люминесцентной лампы или его контактах – характеризуется миганием, но без последующего пуска.

Плюсы и минусы

В связи с жесткой конкуренцией на рынке люминесцентные осветительные приборы принято сравнивать с параметрами работы ламп другого принципа действия.

К преимуществам люминесцентных устройств следует отнести:

  • Достаточно высокая эффективность, в сравнении с теми же лампами накаливания
    выдают на порядок больший световой поток на каждый ватт потребленной
    электроэнергии;
  • Имеет несколько вариантов цветового спектра, что делает обоснованным их
    применение для различных целей;
  • Срок эксплуатации до наработки на отказ в 10 – 15 раз превышает тот же
    показатель у ламп накаливания и галогенок;
  •  Достаточно большое разнообразие
    конструкций – компактные, большие, удлиненные и т.д.

Однако и недостатков у люминесцентных ламп существует немало:

  • Гораздо  более высокая стоимость;
  • Наличие ртути, которая при разрушении колбы попадает в окружающее пространство;
  • Даже уцелевшие отработанные лампы требуют специальной утилизации, которая также требует дополнительных затрат;
  • Стабильность работы во многом зависит от температуры и влажности окружающей среды;
  • Люминесцентные лампочки вызывают повышенную усталость глаз при длительном чтении или зрительном напряжении;
  • В сравнении со светодиодными светильниками, бояться механических повреждений;
  • Не поддаются классическим методам управления яркостью.

Область применения

Перечень сфер, в которых могут устанавливаться люминесцентные лампы, достаточно большой. Наиболее часто вы можете встретить их в бытовых помещениях или офисах как основное освещение. В магазинах или торговых центрах устанавливаются в качестве приборов подсветки витрин, стен и других элементов интерьера и могут легко заменить неоновую лампочку. Часто их можно встретить в подсветке коридоров и помещений большой площади удлиненными трубчатыми люминесцентными светильниками.

В промышленной сфере часто применяются как лампы для работы прожекторного освещения, которое охватывает большую площадь. Прожекторные люминесцентные приборы имеют отличную светопередачу, несмотря на удаленность по высоте от освещаемой поверхности.

Принцип работы люминесцентной лампы и ее устройство

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Устройство лампочки

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

Схема подключения лампы с дросселем и стартером

Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Лампы спецназначения

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Блок 1

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

При выборе нужно также ориентироваться на индуктивное сопротивление, регулирующее показатели мощности тока, подающегося на контакты люминесцентного осветительного прибора.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

Светильник люминесцентный

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Блок 2

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

Подробная схема подключения люминесцентной лампы, устройство 

Люминесцентные лампы обычно используют для освещения супермаркетов, учебных аудиторий, промышленных объектов, общественных закрытых помещений и прочего. С появлением более современных видов, которые выпускаются со стандартным цоколем E27, их начали использовать и в домашних условиях.

По истечении времени они набирают всё большей популярности. Но схема включения люминесцентных ламп достаточно сложная и требует особых познаний в этой области. Обычно подключают двумя схемами, о которых мы и поговорим дальше. Но сначала следует разобраться в принципе работы и строении такого светильника.

Принцип работы

Давайте разберём, что такое люминесцентная лампа, и как она работает. Представляет из себя стеклянную трубку, которая начинает работать за счёт разряда, который зажигает газы внутри её оболочки. На обоих концах установлен катод и анод, именно между ними и происходит разряд, который вызывает пусковое загорание.

Пары ртути, которые помещают в стеклянный футляр, при разряде начинаю излучать особый невидимый свет, который активизирует работу люминофора и других дополнительных элементов. Именно они и начинают излучать тот свет, который нам необходим.

Принцип работы лампы

Благодаря разным свойствам люминофора, такой светильник излучать большой спектр разнообразных цветов.

Подключаем, используя электромагнитный балласт

Электромагнитный Пускорегулирующий аппарат, сокращённой аббревиатурой для него является ЭмПРА. Также часто называют дросселем. Мощность такого устройства должна быть равной той мощности, которую потребляют лампы при работе. Довольно старая схема, с помощью которой раньше подключали люминесцентные лампы.

Схема с электромагнитным балластом

Принцип работы такого устройства состоит в следующем. После начала подачи тока, он попадает на стартер, после чего на небольшой период времени биметаллические электроды замыкаются. Благодаря этому, весь ток, который появляется в цепи, замыкается между электродами и ограничивается только сопротивлением дросселя.

Таким образом, он возрастает примерно в три-четыре раза, и электроды начинают практически моментально разогреваться.

Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет. После включения, напряжение в схеме будет равно примерно половине от входящего с сети.

Такого показателя мало для создания повторного импульса, из-за чего лампа начинает стабильно работать.

Какими недостатками она обладает:

  1. Сравнивая со схемой, где применяется электронный балласт, расход электроэнергии выше на десять-пятнадцать процентов.
  2. В зависимости от того, сколько лампа уже проработала времени, период запуска будет увеличиваться и может дойти до трёх-четырёх секунд.
  3. Такая схема подключения люминесцентных ламп со временем способствует появлению гудения. Такой звук будет исходить от пластин дросселя.
  4. В процессе работы светильника будет довольно высокий коэффициент пульсации света. Такое явление негативно сказывается на зрении человека, а при продолжительном нахождение действие таких мерцающих лучей может стать причиной ухудшения зрения.
  5. Неспособны работать при низкой температуре. Таким образом, отпадает возможность использовать такие лампы на улице или в неотапливаемых помещениях.

Подключаем лампу, используя электронный балласт

Главным отличием такой системы от электромагнитной то, что напряжение, которое доходит до самой лампы имеет повышенную частоту начиная от 25 и доходит до 140 кГц. Благодаря повышению частоты тока, значительно уменьшается показатель мерцания, и он находит на таком уровне, который уже не является слишком вредным для человеческого глаза.

Подключение с ЭПРА

Система ЭПРА используется специальный автогенератор в своей схеме, такое дополнение включает трансформатор и выходной каскад на всех транзисторах. Зачастую производители указывают схему прямо на задней части блока светильника. Таким образом, у вас сразу есть наглядный пример, как правильно подключить и установить устройство для работы от сети.

Преимуществами стартерной схемы подключения

  • Стартерная система продлевает период работы светильника.
  • Особый принцип работы также продлевает период службы примерно на десять процентов.
  • Благодаря принципу действия, устройство экономит около двадцати-тридцати процентов потребляемой электроэнергии.
  • Облегчённая установка, так как производитель указывает схему, по которой должна происходить установка взятого вами светильника.
  • Во время работы практически полностью отсутствует мерцание и шум от светильника. Такие явления присутствуют, но они незаметны для человека и никак не влияют на здоровье.

Существуют модели, которые поддерживают установку диммера в качестве регулятора. Установка таких приборов несколько отличается от стандартной установки.

Подведём итог

Мы постарались раскрыть вопрос как подключить люминесцентную лампу, показали схемы, с помощью которых происходит подключение люминесцентных ламп. Разобравшись со схемой электромагнитного и электронного балласта, вы можете решить какую лучше использовать именно в вашем случае. Но так как первая имеет ряд значительных недостатков, то скорей всего выбор ляжет именно на электронный балласт.

Причины неисправностей — решение проблем

Схема электронного дросселя была придумана позже, и разрабатывалась специально для того, чтобы убрать все недостатки электромагнитного аналога, с целью максимального повышения качества освещения с помощью люминесцентных ламп.

Установка таких устройств уже не составляет особого труда, как это было раньше. Производители начали указывать схему, по которой производится установка на тыльной стороне прибора что значительно облегчает работу монтажника.

устройство, праметры, схема, плюсы и минусы

Современные люминесцентные лампы (ЛЛ) прекрасно справляются с освещением жилых, рабочих и технических помещений большой площади и позволяют снизить общее потребление электричества на 50-83%, уменьшив таким способом счета за коммунальные услуги.

В этой статье рассмотрим рабочие характеристики ЛЛ, их устройство, разберем основные преимущества и недостатки в сравнении с другими типами осветительных приборов. В дополнение приведем тематические фото и схемы, а также видеоролики о принципе работы лампочек люминесцентного типа и особенностях их применения.

Содержание статьи:

Принцип работы и устройство ЛЛ

Люминесцентный прибор представляет собой газозарядный источник света, где в ртутных парах электрический разряд создает интенсивное ультрафиолетовое излучение.

Компактные модули люминесцентного типа имеют стандартный цоколь, благодаря которому становятся удобной заменой ярких, но более энергозатратных ламп накаливания.

Как работает люминесцентная лампочка?

В видимый человеческому глазу свет его преображает специальный состав под названием люминофор, состоящий из галофосфата кальция, смешанного с дополнительными элементами.

После подключения к центральной электросети люминесцентной лампы, внутри стеклянной колбы требуется поддерживать так называемый тлеющий разряд.

Он дает возможность обеспечить свечение люминофорного слоя в постоянном режиме и даже в период кратковременного отключения центрального электропитания.

Раньше классическая лампа люминесцентного типа имела вид запаянной с двух сторон трубки, внутри которой находятся пары ртути. Сейчас приборы выпускаются в более разнообразных формах и конфигурациях

Конструкционные особенности прибора

Традиционная лампа люминесцентного типа — это стеклянный цилиндр с внешним диаметром 12, 16, 26 и 38 мм, обычно представленный как:

  • прямая удлиненная трубка;
  • изогнутый U-образный модуль;
  • кольцо;
  • сложная фигура.

В торцевые края герметично впаяны ножки. На их внутренней стороне размещены вольфрамовые электроды, конструктивно напоминающие биспиральные тела накала, встроенные в лампочки «Ильича».

В отдельных типах люминесцентных ламп используются более прогрессивные триспирали, представляющие собой закрученную биспираль. Оснащенные ими приборы имеют повышенный уровень КПД и более низкий порог теплопотери, существенно поднимающие общую эффективность светопотока

С наружной части электродные элементы подпаяны к металлическим штырькам металлического , на которые подается рабочее напряжение.

U-подобные и прямые приборы обычно оснащены цоколями G5 и G13, где буквенная кодировка означает штырьковый тип цокольного элемента, а цифровая показывает, на каком расстоянии друг от друга располагаются рабочие элементы.

Электропроводная среда, располагающаяся внутри стеклянной колбы, обладает отрицательным сопротивлением. Когда между двумя противоположными электродами возникает рост тока, требующий ограничения, оно проявляется и снижает рабочее напряжение.

В схему цепи включения обычной люминесцентной лампочки входит или балластник. Он отвечает за создание высокоуровневого импульсного напряжения, необходимого для корректной активации лампы.

Рисунок показывает внутреннее обустройство лампы люминесцентного типа и наглядно объясняет базовый принцип работы ее основных составных элементов

Помимо этой детали, ЭмПРА комплектуется . Он представляет собой элемент тлеющего разряда, внутри которого располагаются два электрода, окруженные средой инертного газа.

Один из них состоит из биметаллической пластины. В спящем режиме оба электрода находятся в разомкнутом состоянии.

Распространенные виды таких лампочек

Первичная классификация изделий на люминесцентной основе производится по уровню базового давления. Приборы высокого давления используются для осветительных установок большой мощности и наружного уличного освещения.

Лампы низкого давления применяются в быту для подачи света в производственные, технические и жилые помещения различного назначения.

Вид #1 — модули высокого давления

Устройства высокого давления вырабатывают насыщенный светопоток хорошей плотности. Внутренняя поверхность колбового элемента имеет специальное люминофорное покрытие из фторогерманата или арсената магния.

Рабочая мощность таких люминесцентных ламп колеблется в диапазоне 50-2000 Вт.

Ртутные модули высокого давления для корректной работы нуждаются в 220 ваттном номинальном сетевом напряжении. Коэффициент их пульсации обычно составляет от 61 до 74%

Полный розжиг осветительного модуля происходит в течение 3 секунд. Срок службы 80-125-ваттных изделий составляет около 6 000 ч, а лампы от 400 Вт и более могут проработать до 15 000 ч при беспрекословном соблюдении правил эксплуатации, установленных изготовителем.

Вид #2 — изделия низкого давления

ЛЛ низкого давления применяется для обеспечения светопотоком жилых, технических и производственных помещений.

Конструкционно прибор является трубкой из прочного стекла, содержащей внутри аргон под давлением 400 Па и в небольшом количестве ртуть либо амальгаму. На рынке предлагается в самых разнообразных модификациях и оснащается двумя электродными элементами.

Самая низкая температура, которую могут переносить ЛЛ низкого давления, составляет -15 °C. Поэтому для использования на открытых площадках эти источники света считаются неактуальными

Стеклянная колба может иметь самый разный диаметр. Уровень светоотдачи варьируется в зависимости от мощности самого устройства. Для его корректной работы требуется стартер дроссельного типа. Средний срок службы составляет 10 000 часов.

Особенности компактных ЛЛ

ЛЛ компактного типа – это изделия-гибриды, соединяющие в себе некоторые специфические отличительные черты ламп накаливания и характеристики люминесцентов.

Благодаря прогрессивным технологиям и расширившимся инновационным возможностям, имеют небольшой диаметр и некрупные габариты, свойственные лампочкам «Ильича», а также высокий уровень энергоэффективности, характерный для линейки приборов ЛЛ.

ЛЛ компактного типа выпускаются под традиционные цоколи E27, E14, E40 и очень активно вытесняют с рынка классические лампы накаливания за счет обеспечения качественного света при существенно меньшем потреблении электроэнергии

КЛЛ в большинстве случаев оснащаются электронным дросселем и могут использоваться в осветительных приборах специфического типа. Также применяются для замены в новых и раритетных светильниках простых и привычных ламп накаливания.

При всех достоинствах у компактных модулей есть такие специфические недостатки, как:

  • стробоскопический эффект или мерцание – основные противопоказания здесь касаются эпилептиков и людей с различными заболеваниями глаз;
  • выраженный шумовой эффект – в процессе пролонгированного применения появляется акустический фон, способный вызвать определенный дискомфорт у человека, находящегося в помещении;
  • запах – в некоторых случаях изделия издают едкие, неприятные ароматы, раздражающие обоняние.

Последняя позиция чаще наблюдается у безымянных поделок китайского происхождения, а первыми двумя часто страдают даже брендовые приборы, изготовленные согласно всем правилам и современным требованиям. Рейтинг лучших производителей КЛЛ мы привели .

Базовый спектр цветовых температур

Цвет свечения – один из самых важных параметров, напрямую зависящий от состава люминофора, преображающего ультрафиолетовое излучение в свет.

Сегодня к наиболее распространенным относятся 7 определений оттенков потока, вырабатываемого люминесцентными лампами:

  • ЛЕБ – естественный белый с заметным холодным оттенком;
  • ЛДЦ – натуральный дневной с улучшенным качеством цветопередачи;
  • ЛТБ – теплый белый;
  • ЛД – традиционный дневной белый;
  • ЛБ – классический белый;
  • ЛЕЦ – естественный с максимально качественной передачей оттенков;
  • ЛХБ – простой холодный белый.

Для жилых помещений, где человек проводит много времени, подходят оттенки теплой гаммы или натуральные дневные лампы с повышенным уровнем цветопередачи.

Белые и дневные тона, как правило, присутствуют в офисных, рабочих, промышленных помещениях, кабинетах и аудиториях. Они способствуют концентрации внимания, повышают мозговую активность и улучшают общую обучаемость и производительность труда.

Самые холодные оттенки применяются в медицинских учреждениях, лабораториях, больницах и технических помещениях. Они придают предметам дополнительную четкость и усиливают остроту зрения.

Люминесценты для мясных витрин продовольственных магазинов отличаются специально подобранным спектром излучения розового цвета. Он подчеркивает естественные оттенки продукции, делая ее более привлекательной в глазах покупателей

Цветовые компоненты, добавленные в люминофор, позволяют получать розовый, голубой, зеленый и другие необычные ламповые оттенки.

Такие приборы используются в дизайнерских, рекламных и коммерческих целях. С их помощью создают оригинальное свечение, необходимое в конкретном отдельно взятом случае.

Больше информации о цветовой температуре света, особенностях восприятия цвета человеком и нюансах выбора мы писали .

Сильные и слабые стороны устройств

Как у любых технических приспособлений, предназначенных для освещения бытовых и рабочих помещений, у люминесцентных ламп имеются свои слабые и сильные стороны.

На основании этой информации можно определить, где разумнее их использовать, а в каких случаях стоит отдать предпочтение источникам света иного плана.

Положительные стороны ламп

Основным преимуществом люминесцентных изделий считается повышенная светоотдача и хороший уровень КПД. Они обеспечивают помещение освещением, не раздражающим глаз, и демонстрируют нормальную выносливость даже в условиях интенсивной эксплуатации.

Модуль примерно в 5 раз превышает базовую мощность обычной лампочки «Ильича». А 20-ваттный люминесцент дает световой поток, равный тому, что обеспечивает лампа накаливания в 100 Ватт

Разнообразные температуры световых оттенков, приближенные по гамме к естественному солнечному свету, позволяют подобрать подходящий осветительный прибор под различные цели и для помещений любого назначения.

Поток света, выдаваемый модулем, получается не направленным, а рассеянным. Спокойное, приятное глазу сияние исходит не только от вольфрамовой нити, располагающейся внутри, но и от всей наружной поверхности колбы.

Это позволяет использовать люминесцентные источники как для создания общего фонового освещения, так и для организации зонального света.

Для применения в местах, где освещение включается автоматически, согласно сигналам датчиков движения, люминесценты не подходят. Они ограничены по допустимому количеству включений за определенный временной период и при слишком частой активации могут выйти из строя

Продолжительность службы люминесцентных изделий варьируется в зависимости от модели и доходит до 20 000 часов или до 5 лет.

Однако, покупателю следует знать, что этот ресурс лампа вырабатывает только при соблюдении таких условий, как:

  • наличие достаточного объема качественного электропитания без скачков и перепадов;
  • качественный ;
  • определенное количество активаций, обычно, не более 2000 за первые 2 года использования, что составляет всего 5 включений в день.

Нарушение этих базовых условий существенно ухудшит эффективность осветительного прибора, и значительно укоротит срок его жизни.

Модули можно использовать для освещения теплиц. Они обеспечивают естественный свет, максимально приближенный к солнечному, не потребляют много электропитания и проявляют хорошую стойкость к перепадам напряжения, характерным для загородных энергоподающих сетей

Уровень энергопотребления у люминесцентов почти в 5 раз ниже, чем у традиционных изделий, поэтому их можно отнести к источникам света.

С их помощью удастся эффективно осветить большое помещение, не расходуя при этом больших денег на коммунальные платежи.

Рабочая температура на поверхности колбы не превышает 50 градусов. Это дает возможность эксплуатировать лампу в помещениях, где к пожарной безопасности предъявляются повышенные требования.

Основные недостатки модулей

Первым большим минусом изделий является излишняя чувствительность к температурным перепадам. Они сильно реагируют на движение ртутного столбика и могут перестать работать при похолодании ниже -20 °C.

Жара, превышающая +50 °C, далеко не лучшим образом сказывается на функционировании и серьезно ограничивает спектр использования этих источников света.

Влаговоспримчивость тоже не относится к плюсам и не позволяет широко применять изделия в ванных комнатах и санитарных помещениях.

Со временем люминофор в ламповых колбах деградирует и спектр излучения изменяется. Параллельно падает уровень светоотдачи прибора и заметно снижается КПД

Иногда к недостаткам причисляется и сам светопоток, имеющий линейчатый, неравномерный спектр, искажающий естественные оттенки находящихся в комнате предметов.

Не все ощущают это визуально, но для тех, кто улавливает этот минус слишком явственно, продаются лампы с люминофором, приближенным к сплошному, более натуральному спектральному цвету. Правда, их светоотдача существенно меньше.

Случаются ситуации, когда люминесценты мерцают с удвоенной частотой питающей сети. Проблема эта решаема некоторым усовершенствованием прибора, в частности, применением с подходящим уровнем емкости сглаживающего конденсатора выпрямленного тока на входе инвертора.

Но то, что производители пытаются сэкономить и не комплектуют приборы конденсаторами необходимой емкости, несколько огорчает.

Бытовые ЛЛ модули лучше всего себя чувствуют, когда температура окружающего воздуха держится в диапазоне от +5 до +35 ˚С. Когда градусник демонстрирует меньшие показатели, пуск устройства существенно затрудняется, а время эксплуатации заметно сокращается

Потребность в дополнительном пусковом устройстве тоже немного снижает популярность ламп. Им обязательно требуется либо чрезмерно шумный и довольно громоздкий дроссель со стартером низкой надежности или более прогрессивный ЭПРА, имеющий функцию корректировки мощности, но при этом стоящий солидных денег.

Еще одно уязвимое место люминесцентов – высокая чувствительность к включению. Во время непосредственной активации лампы на электродах выгорает и осыпается особый состав, который обеспечивает стабильность разряда и защищает внутреннюю вольфрамовую нить от перегрева.

Постоянное включение существенно снижает срок службы прибора. Кроме того, появляется заметное глазу, раздражающее мерцание, а края ламповой колбы темнеют и теряют эстетичность.

Химическая угроза здоровью

Одним из основных недостатков люминесцентных источников света является химическая опасность. В ламповой колбе содержится высокотоксичная ртуть, причем ее количество колеблется от 1 до 70 мг.

Пары этого вещества могут нанести вред здоровью людей, постоянно находящихся в помещениях, освещаемых приборами ЛЛ типа.

Целостность отработавшей лампы нельзя нарушать, иначе токсичная ртуть попадет во внешнюю среду. За несанкционированную утилизацию предусмотрен штраф, поэтому лучше передать изделие в центр, занимающийся переработкой элементов, опасных для природы и человека

Когда модуль выходит из строя, его ни в коем случае нельзя разбивать или отправлять в обыкновенную урну. Его необходимо и правилам, четко описанным в действующем законодательстве.

Например, отвозить на полигоны, где от населения принимают токсичные материалы для их корректного уничтожения или переработки.

Сравнение с другими источниками света

Изделия ЛЛ-типа существенно отличаются как от устаревающих ламп накаливания, так и от прогрессивных светодиодных.

По сравнению с первыми они потребляют в 5 раз меньше электроэнергии, обеспечивая при этом такой же уровень насыщенности светопотока. Зато LED-приборам они несколько уступают по мощности в сочетании с энергопотреблением.

Таблица наглядно в цифрах показывает, насколько выгоднее использовать вместо традиционных лампочек Эдисона более современные источники качественного освещения

Правда, лампа накаливания весь период работы горит с одинаковой интенсивностью, тогда как люминесценты теряют часть насыщенности из-за выгорания внутреннего слоя, отражающего ультрафиолет.

LED-изделия в процессе эксплуатации приобретают некоторую тусклость благодаря деградации рабочих диодов. А в отдельных моделях есть возможность регулировки яркости освещения при помощи диммера.

В лампах накаливания или люминесцентах такая функция не предусмотрена. Но этот удобный режим в LED-приборах не бесплатен и за него придется отдать дополнительную сумму.

По уровню конструкционной хрупкости лампы накаливания и люминесценты схожи, так как имеют стеклянную колбу. Лед-модули в этом плане более устойчивы к ударам и механическим повреждениям. Да и отсутствие внутри каких-либо вредных и токсичных элементов делает их значительно привлекательнее для эксплуатации в домашних условиях.

Самые высокие расходы за весь эксплуатационный период влечет за собой использование ламп накаливания. Люминесценты расходуют энергию в разумных пределах, а светодиоды дают возможность снизить затраты до самых минимальных показателей

Что касается финансовой стороны, то изначально меньше других стоит лампочка накаливания. Однако, учитывая ее рабочий ресурс всего в 1 000 часов, это вряд ли можно считать ярко выраженным достоинством.

Базовая цена люминесцентов выше, однако, и служат они значительно дольше. Как говорят солидные производители, их хватает на 10 000-15 000 часов в том случае, если количество ежедневных активаций не превышает 5-6 раз.

Светодиодные модули могут похвастаться еще лучшими показателями, но и заплатить за это удовольствие придется намного больше, а это не во всех случаях целесообразно. Хотя тенденция замены одних источников света другими, прослеживается повсеместно. О необходимости замены люминесцентных лампочек светодиодными и порядке выполнения этой работы .

Выводы и полезное видео по теме

По какому принципу работают люминесценты. Подробное объяснение всех нюансов функционирования экономичных и энергоэффективных приборов для освещения:

В чем заключаются основные отличия люминесцентных элементов от простых и традиционных ламп накаливания. Сравнение мощности, светопотока и энергопотребления двух современных осветительных изделий:

Что собой представляют компактные энергосберегающие лампочки люминесцентного типа. Как они работают, сколько ватт потребляют и для каких целей используются:

Прибор люминесцентного типа – это практичный аналог классической лампы накаливания. С его помощью можно обеспечить качественным светопотоком помещение любых габаритов, снизив при этом энергопотребление. Прослужит он долго и не доставит владельцам никаких существенных хлопот.

Потом, когда лампы отработают свой срок, их понадобится утилизировать, а взамен купить новые, более прогрессивные модули.

А какой тип лампочек предпочитаете вы и что думаете о лампочках-люминесцентах? Поделитесь с другими пользователями своим мнением, расскажите, в чем вы видите основные плюсы ЛЛ, а что, лично для вас, является существенным недостатком этих приборов.

Если вы владеете хорошими теоретическими знаниями по теме вышеизложенной статьи и хотите дополнить наш материал полезными нюансами, пишите, пожалуйста, свои комментарии в блоке ниже.

Схема люминесцентной лампы

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Применение

Электропроводная газовая среда внутри ламп дневного света обладает отрицательным сопротивлением, проявляющимся в том, что с увеличением тока напряжение между электродами снижается.

Схема работы люминесцентной лампы

Поэтому в схему подключается ограничитель тока LL1 – балластник, как видно из рисунка. Устройство также служит для создания кратковременного повышенного напряжения зажигания ламп, которого недостаточно в действующей сети. Еще его называют дросселем.

Пускорегулирующее устройство также содержит небольшую лампу тлеющего разряда E1 – стартер. Внутри нее расположены 2 электрода, один из которых подвижный, он выполнен из биметаллической пластины.

В исходном состоянии электроды разомкнуты. При подаче на схему напряжения сети замыканием контакта SA1 в начальный момент через лампу дневного света ток не проходит, а внутри стартера между электродами образуется тлеющий разряд. От него нагреваются электроды, и биметаллическая пластина изгибается, замыкая контакт внутри стартера. В результате ток через балласт LL1 увеличивается и нагревает электроды люминесцентной лампы.

После замыкания разряд внутри стартера E1 прекращается, и электроды начинают остывать. При этом происходит их размыкание, и в результате самоиндукции дроссель создает значительный импульс напряжения, зажигающий ЛЛ. При этом через нее начинает проходить ток, равный по величине номинальному, который затем уменьшается в 2 раза из-за падения напряжения на дросселе. Этого тока недостаточно, чтобы в стартере появился тлеющий разряд, поэтому его электроды остаются разомкнутыми, пока горит лампа дневного света. Конденсаторы С1 и С2 позволяют уменьшить реактивные нагрузки и увеличить кпд.

Балластники для люминесцентных ламп подключения и принципы работы

Люминесцентная лампа (ЛЛ) – это источник света из стеклянной герметичной колбы, внутри которой создается электрический электродный разряд, протекающий в газовой среде. На ее внутренней поверхности находится фосфорсодержащий слой (люминофор). Внутри лампы находится инертный газ и 1% паров ртути. При действии на них электрического разряда они излучают невидимый визуально ультрафиолетовый свет, который заставляет светиться люминофор.

Балластники для люминесцентных ламп

Если в помещении разобьется даже одна люминесцентная лампа, пары ртути превысят допустимые показатели в 10 раз. Ее вредное влияние сохраняется в течение 1-2 месяцев.

Причины неполадок люминесцентных светильников

Стоит коротко описать взаимодействие компонентов люминесцентного светильника – сама лампа не может работать без пускорегулирующего аппарата (балласта), который бывает электромагнитным (ЭмПРА ) в виде дросселя и стартера, и электронным (ЭПРА ), в котором физические условия запуска и свечения источника света обеспечиваются радиоэлектронными составляющими.

Электронный балласт для люминесцентных светильников Osram

Соответственно, причиной неработающего светильника могут быть неполадки, как в электронной схеме пускорегулирующего аппарата, так и старение, износ и перегорание самой лампы. Правильное определение причин позволит осуществить своими руками ремонт неработающей лампы дневного света.

Мигание лампы как признак неполадок

В отличие от обычных лампочек накаливания, которая перестает работать (перегорает) мгновенно и всегда неожиданно, скорый износ лампы дневного света можно определить по тому, как она моргает (мигает) во время запуска. Данный процесс свидетельствует об изменениях в химическом составе светящегося газа (вырождение паров ртути) а также о выгорании электродов.

Мигает, как правило, лампа дневного света, у которой с торцов наблюдается почернение – данный нагар свидетельствует о выгорании спирали и об необратимых химических процессах, происходящих внутри колбы – ремонту такой источник света не подлежит, но можно продлить срок его службы.

Очень часто люминесцентный светильник моргает из-за неполадок в ЭмПРА или ЭПРА. Замена лампы на новую позволит точно определить причину мигания

Но не стоит выбрасывать старую лампу. Во первых, ее нужно утилизировать, согласно государственным законам, так как внутри колбы имеются вредные пары ртути.

Во вторых, даже если перегорели нити накаливания, можно продлить строк эксплуатации данного источника света, при помощи несложной схемы, которую можно спаять своими руками, или подключив лампу к ЭПРА с холодным запуском, замкнув контактные выводы, как показано на видео:

Иногда даже исправный люминесцентный светильник моргает при запуске из-за череды неблагоприятных стартовых обстоятельств – разрыв цепи стартера происходит в момент прохождения синусоидой нуля, из-за чего индукционный всплеск напряжения оказывается недостаточным для ионизации газа внутри колбы.

По аналогичной причине люминесцентная лампа мигает на старте из-за низкого напряжения сети. Во время работы, если скачки напряжения не превышают допустимых пределов, исправный светильник дневного света мигать не должен – пускорегулирующий аппарат поддерживает ток в газе на одном уровне.

Почернение у торцов лампы свидетельствует о потере эмиссии, что влечет мигание при запуске, нестабильную работу и ослабление свечения

Принцип работы люминесцентной лампы и область ее применения

Рабочая способность лампы дневного освещения заключается в свечении люминофоров, которые реагируют на воздействие ультрафиолетовых лучей. Светоотдача этого прибора в 5 раз превышает свойство у ламп накаливания.

Принцип работы люминесцентной лампы и область ее применения

Срок действия может быть достаточно длительным, но на это влияет ряд важных факторов, таких как, соблюдение электрического балласта, исключения скачков напряжения и коротких замыканий.

Лампа дневного освещения сегодня пользуется большим спросом и применяется в домашних условиях. Этот прибор достаточно экономичен в стоимости и в дальнейшей эксплуатации. Не исключено применение люминесцентных ламп в производстве. В этой отрасли они очень практичны и позволяют хорошо освещать помещение в любое время суток. Немного рассмотрев, как работает люминесцентная лампа, перейдем к вопросу утилизации данного приспособления.

Внимание! Хранение в домашних условиях люминесцентной лампы опасно для вашего здоровья!

Изготовить своими руками

Трубчатые ЛЛ длиной 1200 мм недорого стоят и могут освещать большие площади. Светильник можно изготовить своими руками, например, из 2 ламп по 36 Вт.

  1. Корпус – основание прямоугольной формы из негорючего материала. Можно использовать бывший в употреблении светильник, для которого ремонт уже не требуется.
  2. ЭПРА подбирается под мощность светильников.
  3. На каждую из ламп понадобится по 2 патрона G13, многожильный провод и крепеж.
  4. Патроны для ламп крепятся на корпусе после выбора расстояния между ними.
  5. ЭПРА устанавливается в зоне минимального нагрева от ламп (обычно ближе к центру) и подключается к патронам. Каждый блок выпускается со схемой подключений на корпусе.
  6. Светильник крепится на стене или потолке с подключением к сети питания на 220 В через выключатель.
  7. Для защиты ламп желательно применять прозрачный колпак.

Правила поиска неисправности лампы

Каждое дело по работе с электрическими приборами должно начинаться правилами, поэтому рассмотрим, как следует выявить неисправность люминесцентного прибора, при этом не повредив его оболочку и рабочие детали.

  1. Снимаем рассеиватель света. Для этого аккуратно отгибаем все крепежи. Если корпус прикреплен болтами, значит пользуемся фигурной отверткой.
  2. Снимаем из гнезд саму лампу дневного света, рассматриваем внимательно ее внешний вид. Встречаются случаи, когда на белом фоне видны темные пятна. Они говорят о том, что этот прибор навряд ли уже будет годен к применению.

Внимание! Не выбрасывайте дневную лампу, если на ней по краям есть почернение—проверьте ее дополнительно

  1. Теперь проводим механическую диагностику. Берем мультиметр и проверяем работоспособность нитей накала. Значения прибора, указывающие на сопротивление, подскажут, что нити, еще способны работать. Показания электроники равные единице—это знак неисправности одной из нитей.
  2. В случае, когда проверка показала рабочие результаты, но освещение так и не появилось, прибегают к ремонту электронного балласта. Возможно, из-за окислившихся контактов, лампа не способна пропускать электроды.
  3. Далее очищаются контакты, если есть необходимость. В ситуациях, когда прибор не заработал, он заменяется на новый.

Как проверить люминесцентную лампу

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Ремонт ЭПРА

В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

Инструкция по ремонту

Сейчас мы рассмотрим основные неисправности, которые можно устранить без особых вложений. Начнем с электронного балласта, ведь в его схеме достаточно много элементов, которые могут выйти из строя и к тому же трубчатые люминесцентные лампы с ЭПРА на сегодняшний день встречаются более часто.

Самая распространенная неисправность — это пробой транзисторов. Определить данную поломку можно только, выпаяв из схемы транзисторы и проверив их тестером. В целом транзисторе сопротивление перехода

400-700 Ом. Сгорая, транзистор за собой тянет резистор в цепи базы номиналом 30 Ом.

Также на плате присутствует предохранитель или низкоомный резистор 2-5 Ом, скорее всего его придется заменить, на чем ремонт и закончится. Возможно дополнительно придется поменять диодный мост или его элементы.

Редко встречается пробой пленочных конденсаторов 47n(пол микрофарада) или конденсатора резонанса в цепи накала. Бывали случаи, когда все из выше перечисленного целое и исправно, а светильник не работает, причина кроется в динисторе DB3. Если вы проверили все элементы цепи, то попробуйте заменить динистор.

Возможно решите, что дешевле будет приобрести новый ЭПРА, чем отремонтировать сломанный. Замена пусковой аппаратуры не должна вызывать сложности, ведь схема подключения нанесена на само устройство. При внимательном изучении проста для понимания, L и N это клеммы для подключения к сети 220В.

Также рекомендуем просмотреть видео, на котором наглядно показывается, как самому отремонтировать электронный балласт люминесцентной лампы:

Инструкция по ремонту ЭПРА

Обращаем ваше внимание на то, что по такой технологии можно починить и энергосберегающую лампочку КЛЛ. К примеру, если перегорел один накал, ремонт представляет собой следующий порядок действий:

Стартер + дроссель

Если у вас не зажигается лампа старого образца и вы уверены, что причина кроется именно в ней, первым делом рекомендуем проверить стартер. Проще всего выполнить проверку, имея под рукой рабочий стартер с такими же характеристиками. Однако если для замены нет подходящего устройства, тогда можно осуществить проверку работоспособности, используя лампочку накаливания с патроном. Все достаточно просто — подключаем один провод от патрона напрямую в розетку, а второй через стартер, как показано на фото ниже:

Если лампочка светится не будет, значит причина в нем. Инструкция по замене стартера люминесцентной лампы наглядно предоставлена на видео:

Как заменить стартер?

Дроссель можно проверить мультиметром, прозвонив его обмотку. Если действительно вышел из строя дроссель, то ремонт люминесцентной лампы сводится к тому, что нужно просто поменять дроссель на целый.

Вот перечислены основные неисправности, с которыми лично сталкивались и успешно устраняли. Следуя нашему алгоритму поиск неисправности займет немного времени и вернуть светильник в работу самостоятельно будет пара пустяков. Надеемся, наша инструкция по ремонту люминесцентной лампы своими руками была для вас понятной и полезной! Обязательно просмотрите видео уроки, т.к. в них подробно рассмотрены все этапы, позволяющие починить неработающую лампочку.

Будет интересно прочитать:

Инструкция по ремонту ЭПРА

Возможные неисправности люминесцентных ламп

Люминесцентные лампы относятся к газоразрядным лампам низкого давления. Они могут быть различной формы: прямые трубчатые, фигурные и компактные (КЛЛ). Люминесцентные светильники по конструкции намного сложнее, чем светильники с лампами накаливания. и у них бывает гораздо больше неисправностей. В нижеприведенной таблице приведены типовые неисправности и способы их устранения.

Схема включения люминесцентной лампы.

Трубчатые лампы имеют двухштырьковые типы цоколей, отличающиеся расстоянием между штырьками: G-13 (расстояние — 13 мм) для ламп диаметром 40 мм и 26 мм и G-5 (расстояние — 5 мм) для ламп диаметром 16 мм.

Особенность устройства компактных люминесцентных ламп в том, что трубка делается специальной формы для уменьшения длины лампы. Многие компактные люминесцентные лампы небольшой мощности (до 20 Вт) предназначены для замены ламп накаливания и сконструированы так, что могут ввертываться в резьбовой патрон непосредственно или через адаптер. Компактные люминесцентные лампы могут быть разных форм, могут быть с электронным пускорегулирующим аппаратом (ЭПРА) и разной длины.

Люминесцентные лампы требуют для работы специального устройства — пускорегулирующего аппарата (дросселя). Большинство зарубежных ламп могут работать как с обычными (с дросселем), так и с электронными пускорегулирующими аппаратами (ЭПРА). Но некоторые из них предназначены только для одного вида ПРА.

Таблица 1. Типовые неисправности светильников с люминесцентными лампами.

Светильники с ЭПРА имеют следующие преимущества: лампа не мерцает, лучше зажигается, не шумит (шум от дросселя), легче по весу, экономит электроэнергию (потери мощности в ЭПРА намного ниже, чем в ПРА).

Достоинства: по сравнению с лампами накаливания, они экономичнее и долговечнее, обладают хорошей светопередачей. Срок службы до 10000 часов у импортных ламп и до 5000-8000 часов у отечественных. Удобно использовать там, где свет горит много часов.

Недостатки: при температуре ниже 5 градусов тяжело зажигаются и могут гореть более тускло.

Меняя виды люминофора, можно изменять цветовые характеристики ламп. Буквы, входящие в наименование типов таких ламп, означают: Л — люминесцентная, Б — белой цветности, ТБ — тепло-белая, Д — дневной цветности, Ц — с улучшенной цветопередачей. Цифры 18, 20, 36, 40, 65, 80 обозначают номинальную мощность в ваттах. Например, ЛДЦ-18 — лампа люминесцентная, дневная, с улучшенной цветопередачей, мощностью 18 Вт.

Таблица 2. Типовые неисправности светильников с люминесцентными лампами.

Светильник с люминесцентными лампами работает следующим образом. Трубчатая лампа заполнена аргоном и парами ртути. Стартер необходим для пуска лампы, нужно на короткое время прогреть электроды. Ток, текущий через дроссель и стартер, значительно увеличивается, нагревает биметаллическую пластину стартера. Электроды лампы прогреваются, контакт стартера размыкается, ток в цепи уменьшается, на дросселе образуется кратковременное большое напряжение. Его накопленной энергии хватает на то, чтобы пробить газ в колбе лампы. Далее ток идет через дроссель и лампу, при этом 110 Вольт падает на дросселе, а 110 Вольт на лампе. Пары ртути с помощью люминофора создают свечение, воспринимаемое глазом человека.

Дроссель почти не потребляет энергию. Энергию, которую он берет при намагничивании, он почти полностью возвращает при размагничивании, при этом бесполезно загружаются провода. Чтобы разгрузить сеть, используется конденсатор С. Обмен энергией происходит не между сетью и дросселем, а между дросселем и конденсатором. Наличие конденсатора повышает КПД лампы, без него КПД лампы 50-60%, с конденсатором С — 95%. Конденсатор, который подключен параллельно стартеру, используется для защиты от радиопомех.

Неисправность люминесцентного светильника может заключаться в нарушении электрического контакта в схеме светильника или в выходе из строя одного из элементов светильника. Надежность контактов проверяется визуальным осмотром и проверкой тестером.

Работоспособность лампы или пускорегулирующей аппаратуры проверяется путем последовательной замены всех элементов на заведомо исправные.

Светильник с двумя люминесцентными лампами

Для начала рассмотрим схемы таких светильников с люминесцентными лампами:

Схема рис.1 содержит:

  • две люминесцентные лампы;
  • два стартера;
  • один дроссель;
  • конденсатор.

Люминесцентная лампа имеет две спирали накаливания. Лампы, стартера и дроссель в электрическую цепь включены последовательно. Конденсатор подключен параллельно.

Схема рис.2 содержит:

  • конденсатор;
  • два стартера;
  • две люминесцентных лампы;
  • два дросселя.

Подключение люминесцентных ламп рис.2 ни чем не отличаются от схемы подключения ламп рис.1. Два провода фаза, ноль имеют в этой схеме ответвление.

И наиболее простая схема светильника с одной лампой показана на рис.3, где конденсатор, лампа и стартер в схеме, — подключены параллельно. Дроссель подключен в электрической цепи — последовательно.

Подобные светильники встречаются и с тремя лампами. Сама суть дела не в этом,- не в количестве ламп.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Схемы подключения люминесцентных ламп | ehto.ru

Вступление

Существует два способа подключения люминесцентных ламп: при помощи стартера и дросселя (ЭМПРА) и при помощи электронного пускового аппарата (ЭПРА). Нельзя сказать, что они отличаются принципиально, но в схемах подключения задействованы различные устройства.

Схемы подключения люминесцентных ламп при помощи ЭМПРА

ЭМПРА это электромагнитный пускорегулирующий аппарат, а по сути, обычный дроссель. В схеме подключения ЭМПРА обязательно задействуется стартер, который создает первый импульс для начала свечения люминесцентной лампы.

Читать, ЭПРА и ЭмПРА. В чем отличия пускорегулирующих аппаратов

Схема подключения люминесцентной лампы ЭМПРА

Данная схема подключения используется в большинстве стандартных одноламповых светильниках местного освещения эконом класса.

Схема индуктивная реализация

  • Напряжение питания 220 Вольт;
  • Дроссель (LL) подключается последовательно к проводу питания и выводу 1 лампы;
  • Стартер подключается параллельно к выводам 2 и 3 лампы;
  • Вывод  4 лампы подключается ко второму проводу питания;
  • В схеме участвует конденсатор, который снижает импульс напряжения, увеличивает срок службы стартера и снижает радиопомехи при работе светильника.

Схема индуктивно-ёмкостная реализация

Вторая схема подключения называется индуктивно-ёмкостной. В ней дроссель и конденсатор (индуктивное и ёмкостное сопротивление схемы) включаются последовательно. Стартер по-прежнему подключен параллельно вывода 2-3 лампы.

Схема подключения 2-х люминесцентных ламп до 18 Вт (ЭМПРА)

Несколько меняются схемы подключений при двух лампах. Наиболее распространены две схемы для ламп до 18 Вт (последовательная) и ламп 36 Вт (параллельная).

В первой схеме, по-прежнему участвуют два стартера, один стартер для каждой лампы. Дроссель подключается, как в схеме с индуктивной реализацией. Мощность дросселя подбирается суммированием мощности ламп.

Важно! В данной (последовательной) схеме необходимо использовать стартеры на 127 (110-130) Вольт. Мощность ламп не может быть больше 22 Вт.

Во второй параллельной схеме, участвуют уже два дросселя (LL1 и LL2). Стартеров по-прежнему два, один стартер для каждой лампы.

Важно! В данной схеме используются стартеры на 220-240 Вольт. Мощность ламп до 80 Вт.

Важно замечание. Современные ЭмПРА выпускаются в едином корпусе. Для подключения на корпусе есть только выводы контактов. Схема подключения ламп указывается на корпусе.

Схемы подключения люминесцентных ламп при помощи ЭПРА

ЭПРА это электронное пускорегулирующие устройство. По сути это сложная электронная схема которая обеспечивает и запуск и стабильную работу люминесцентных ламп (светильников).

Отмечу, что каждый производитель ЭПРА по-своему выводит контакты для подключения к ним ламп. Схема подключения люминесцентных ламп указана на корпусе или в паспорте ЭПРА Пример на фото.

Для информации публикую подбор схем подключения различных ламп к ЭПРА различной маркировки.

Схемы подключения компактных люминесцентных ламп к нерегулируемым ЭПРА (OSRAM), марки QT-ECO

Схемы подключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVE, лампы 2х55, 1х10-13, 2х16-42.

Схемы подключения нерегулируемым ЭПРА QTP5 лампы 2х14-35Вт, 2х24-39Вт, 2х54Вт, 1х14-35Вт, 1х24-39Вт, 1х54Вт, 1х80.

Схемы подключения ЭПРА QT-FQ, QT-FC ламп Т5 (трубчатые)

©Ehto.ru

Еще статьи

Люминесцентная лампа

и принцип работы люминесцентной лампы

Что такое люминесцентная лампа?

Люминесцентная лампа — это легкая ртутная лампа, в которой используется флуоресценция для излучения видимого света. Электрический ток в газе возбуждает пары ртути, которые доставляют ультрафиолетовое излучение через процесс разряда, а ультрафиолетовое излучение заставляет люминофорное покрытие внутренней стенки лампы излучать видимый свет. Люминесцентная лампа преобразовала электрическую энергию в полезную световую энергию гораздо эффективнее, чем лампы накаливания.Нормальная световая способность каркасов люминесцентных осветительных приборов составляет от 50 до 100 люмен на ватт, что в несколько раз больше, чем у ламп накаливания с эквивалентной светоотдачей.

Как работает люминесцентная лампа?

Прежде чем перейти к принципу работы люминесцентной лампы, мы сначала покажем схему люминесцентной лампы, другими словами схему лампового света.
Здесь мы подключаем один балласт, один выключатель и питание последовательно, как показано. Затем подключаем к ней люминесцентную лампу и стартер.

  • При включении питания полное напряжение поступает на лампу, а также на стартер через балласт. Но в этот момент не происходит разряда, т.е. нет выхода люмена из лампы.
  • При этом полном напряжении сначала в пускателе возникает тлеющий разряд. Это связано с тем, что зазор между электродами неоновой лампы стартера намного меньше, чем у люминесцентной лампы.
  • Затем газ внутри стартера ионизируется за счет этого полного напряжения и нагревает биметаллическую ленту.Это приводит к изгибу биметаллической ленты для соединения с неподвижным контактом. Теперь через стартер начинает течь ток. Хотя потенциал ионизации неона больше, чем у аргона, но все же из-за небольшого межэлектродного зазора в неоновой лампе появляется высокий градиент напряжения, и, следовательно, тлеющий разряд запускается первым в стартере.
  • Как только ток начинает течь через прикоснувшиеся контакты неоновой лампы стартера, напряжение на неоновой лампе уменьшается, поскольку ток вызывает падение напряжения на катушке индуктивности (балласт).При пониженном или нулевом напряжении на неоновой лампе стартера газовый разряд больше не будет, и, следовательно, биметаллическая полоса остынет и оторвется от неподвижного контакта. В момент размыкания контактов в неоновой лампочке стартера ток прерывается, и, следовательно, в этот момент на катушку индуктивности (балласт) попадает большой скачок напряжения.
  • Это высокое импульсное напряжение проходит через электроды люминесцентной лампы (лампы накаливания) и попадает в смесь пеннинга (смесь газообразного аргона и паров ртути).
  • Процесс газового разряда начинается и продолжается, и, следовательно, ток снова проходит через саму трубку люминесцентной лампы (ламповый светильник). Во время разгрузки газовой смеси сопротивление газа ниже, чем сопротивление стартера.
  • Разряд атомов ртути производит ультрафиолетовое излучение, которое, в свою очередь, возбуждает порошковое покрытие люминофора, чтобы излучать видимый свет.
  • Стартер становится неактивным во время свечения люминесцентной лампы (лампового света), потому что в этом состоянии через стартер не проходит ток.

Физика за люминесцентной лампой

Когда на электроды подается достаточно высокое напряжение, создается сильное электрическое поле. Небольшой ток через нити электродов нагревает катушку накала. Поскольку нить накала покрыта оксидом, создается достаточное количество электронов, и они устремляются от отрицательного электрода или катода к положительному электроду или аноду из-за этого сильного электрического поля. Во время движения свободных электронов налаживается разрядный процесс.

Основной процесс разряда всегда состоит из трех этапов:

  1. Свободные электроны выводятся из электродов и ускоряются приложенным электрическим полем.
  2. Кинетическая энергия свободных электронов преобразуется в энергию возбуждения атомов газа.
  3. Энергия возбуждения атомов газа преобразуется в излучение.

В процессе разряда образуется одиночная ультравысокая спектральная линия 253,7 нм при низком давлении паров ртути.Для генерации ультравысокого луча с длиной волны 253,7 нм температура баллона поддерживается в диапазоне от 105 до 115 o F.
Отношение длины к диаметру трубки должно быть таким, чтобы фиксированная потеря мощности происходила на обоих концах. Место, где происходит потеря мощности или свечение электродов, называется областью катодного и анодного падения. Эта потеря ватт очень мала.
Катоды снова должны быть покрыты оксидом. Горячий катод обеспечивает обилие свободных электронов. Горячие катоды означают те электроды, которые нагреваются циркулирующим током, и этот циркулирующий ток обеспечивается дросселем или устройством управления.Некоторые лампы также имеют холодный катод. Холодные катоды имеют большую эффективную площадь, и на них подается более высокое напряжение, например 11 кВ, для получения ионов. Из-за этого высокого напряжения начинает выделяться газ. Но при 100-200 В катодное свечение отделяется от катода, это называется катодным падением. Это обеспечивает большой запас ионов, которые ускоряются к аноду для образования вторичных электронов при ударе, которые в конечном итоге производят больше ионов. Но катодное падение в разряде горячего катода составляет всего 10 В.

История и изобретение люминесцентной лампы

  • В 1852 году сэр Джордж Стокс открыл преобразование ультрафиолетового излучения в видимое излучение.
  • С этого времени и до 1920 года проводились различные эксперименты по развитию электрических разрядов низкого и высокого давления в парах ртути и натрия. Но все разработанные схемы оказались неэффективными для преобразования ультравысокого луча в видимый луч. Это было потому, что; электроды не могли испускать достаточно электронов, чтобы установить явление дугового разряда.И снова многие электроны столкнулись с атомами газа, и это было упруго. Таким образом, возбуждение не создавало спектральную линию, которую можно было бы использовать. Но с люминесцентными лампами работ было сделано очень мало.
  • Но в 20-е годы произошел крупный прорыв. Обнаружен факт, что смесь паров ртути и инертного газа при низком давлении эффективна на 60% для преобразования входящей электрической мощности в единую спектральную линию на длине волны 253,7 нм.
    Ультра-нарушенный луч преобразуется в лучи видимого света с помощью соответствующего флуоресцентного материала внутри лампы.С этого времени люминесцентные лампы стали применяться в повседневной жизни людей.
  • Позже д-р В. Л. Энфилд в 1934 г. получил отчет от д-ра А. Х. Кромптона об использовании лампы с люминесцентным покрытием. Сразу же в Энфилде была создана исследовательская группа, которая приступила к созданию коммерческой люминесцентной лампы. В 1935 году их команда создала прототип зеленой люминесцентной лампы с КПД около 60%.
  • Спустя два с половиной года на рынке были представлены люминесцентные лампы белого и шести других цветов.Различные смеси порошка люминофора используются для получения люминесцентных ламп разных цветов. Первая лампа была представлена ​​мощностью 15, 20 и 30 Вт и длиной 18, 25 и 36 дюймов.
  • Вскоре после того, как T12 40 Вт, 4-футовая лампа была представлена ​​и широко использовалась в офисном, школьном и промышленном освещении. Первые лампы давали свет несколько желтоватым до 3500K. Позже лампы дневного света 6500K были разработаны таким образом, что они излучают свет, имитирующий средний северный свет неба на пасмурном небе.
  • Как правило, 4-футовые лампы диаметром 1,5 дюйма и мощностью 40 Вт были доступны на рынке в 1940 году. Но постепенно конструкция была изменена в сторону более эффективного использования. В дуге изменена разрядная часть ламп. Но аргон по-прежнему используется, хотя давление несколько ниже прежнего. Пары ртути поддерживаются под тем же давлением, что и предыдущий. Для этой лампы требуется 425 мА при падении напряжения от 100 до 105 В.

Принцип работы люминесцентной лампы и схема подключения

Привет, на этой странице мы обсудим люминесцентные лампы.Люминесцентная лампа — это тип лампы, работающей на явлении люминесценции. Люминесцентные лампы дают большой световой поток по сравнению с лампами накаливания. он возник в 19 веке. Эти лампы дают свет белого цвета за счет фосфорного покрытия на внутренней поверхности стеклянной трубки.

Принципиальная схема

Эти лампы состоят из нескольких основных частей:

  • Балласт или (Электрический дроссель)
  • Стартер
  • Электроды
  • Лампа

Балласт — магнитный балласт (электрический дроссель) содержит катушку с медным проводом.Магнитное поле, создаваемое проволокой, улавливает большую часть тока, поэтому флуоресцентный свет проникает только в нужном количестве. Это количество может колебаться в зависимости от толщины и длины медного провода.

Стартер — в системе люминесцентного освещения балласт регулирует ток, подаваемый на лампы, и обеспечивает напряжение, достаточное для запуска ламп. Без балласта, ограничивающего ток, люминесцентная лампа, подключенная непосредственно к источнику питания высокого напряжения, быстро и неконтролируемо увеличивает потребление тока.Через секунду лампа перегреется и перегорит.

Электроды — люминесцентная лампа состоит из стеклянной трубки, заполненной смесью аргона и паров ртути. Металлические электроды на каждом конце покрыты оксидом щелочноземельного металла, который легко испускает электроны.

Лампа — Люминесцентная лампа состоит из длинного стержня трубки, заполненного смесью газа под низким давлением.

Схема работы

При включении питания переменного тока (переменного тока). Эти источники питания достигли электродов, но это мгновенное питание также поступает к пускателю через электрический дроссель (балласт).Этот стартер содержит биметаллический контакт. Когда напряжение достигает стартера, он вызывает короткое замыкание и нагревает биметаллическую полосу. Из-за нагрева биметаллическая полоса изгибается в сторону контакта и замыкает цепь. Напряжение на пускателе уменьшается, поскольку ток вызывает падение напряжения на катушке индуктивности (балласт). При пониженном или нулевом напряжении на пускателе больше не происходит газового разряда, и, таким образом, биметаллическая полоса охлаждается и размыкает контакт. В момент размыкания контактов пускателя ток прерывается, и, следовательно, большой скачок напряжения проходит через индуктор (балласт).Это высокое напряжение создает в трубке смесь газов. Смесь аргона и ртути создает ультрафиолетовый свет, невидимый человеческим глазом. Из-за покрытия порошка фосфора на внутренней поверхности трубки. Этот ультрафиолетовый свет излучает белый свет, видимый человеческим глазом.

Связанные

Start it Up — Как работают люминесцентные лампы

В классической конструкции люминесцентных ламп, которая по большей части пришла на второй план, использовался специальный механизм включения стартера для зажигания лампы.Вы можете увидеть, как эта система работает, на схеме ниже.

При первом включении лампы путь наименьшего сопротивления проходит через цепь байпаса и через выключатель стартера . В этой цепи ток проходит через электроды на обоих концах трубки. Эти электроды представляют собой простые нити и , как в лампе накаливания. Когда ток проходит через байпасную цепь, электричество нагревает нити. Это отрывает электроны от поверхности металла, отправляя их в газовую трубку, ионизируя газ.

В то же время электрический ток вызывает интересную последовательность событий в выключателе стартера. Обычный выключатель стартера представляет собой небольшую газоразрядную лампу, содержащую неон или другой газ. Колба имеет два электрода, расположенных рядом друг с другом. Когда электричество первоначально пропускается через байпасную цепь, электрическая дуга (по сути, поток заряженных частиц) прыгает между этими электродами, чтобы установить соединение. Эта дуга зажигает лампочку так же, как большая дуга зажигает люминесцентную лампу.

Один из электродов представляет собой биметаллическую полосу , которая изгибается при нагревании. Небольшое количество тепла от зажженной лампы сгибает биметаллическую полосу, так что она входит в контакт с другим электродом. Поскольку два электрода соприкасаются друг с другом, току больше не нужно прыгать по дуге. Следовательно, через газ не протекают заряженные частицы, и свет гаснет. Без тепла от света биметаллическая полоса охлаждается, отклоняясь от другого электрода.Это размыкает цепь.

К тому времени, когда это произойдет, нити уже ионизировали газ в люминесцентной лампе, создав электропроводящую среду. Для возникновения электрической дуги трубке просто требуется скачок напряжения на электродах. Этот толчок обеспечивается балластом лампы , трансформатором особого типа, включенным в цепь.

Когда ток протекает через байпасную цепь, он создает магнитное поле в части балласта.Это магнитное поле поддерживается протекающим током. При размыкании переключателя стартера ток кратковременно отключается от балласта. Магнитное поле схлопывается, что вызывает внезапный скачок тока — балласт высвобождает накопленную энергию.

Этот выброс тока помогает создать начальное напряжение, необходимое для образования электрической дуги в газе. Вместо того, чтобы проходить через байпасную цепь и прыгать через зазор в выключателе стартера, электрический ток течет через трубку.Свободные электроны сталкиваются с атомами, выбивая другие электроны, что создает ионы. В результате получилась плазма , газ, состоящий в основном из ионов и свободных электронов, движущихся свободно. Это создает путь для электрического тока.

Удар летящих электронов сохраняет две нити в тепле, поэтому они продолжают испускать новые электроны в плазму. Пока есть переменный ток и нити не изношены, ток будет продолжать течь через трубку.

Проблема с такой лампой в том, что она загорается через несколько секунд.В наши дни большинство люминесцентных ламп рассчитаны на то, чтобы загораться почти мгновенно. В следующем разделе мы увидим, как работают эти современные конструкции.

3. Как работают люминесцентные лампы?

3.4. Физические характеристики ламп

Принципы работы

Люминесцентная лампа генерирует свет от столкновений в горячей
газ («плазма») свободного ускоренного
электроны с атомами–
обычно ртуть — в
какие электроны поднимаются на более высокие уровни энергии, а затем
отступать при излучении на двух линиях УФ-излучения (254
нм и 185 нм).Таким образом
созданное УФ-излучение затем преобразуется в
видимый свет УФ
возбуждение флуоресцентного покрытия на стеклянной оболочке
напольная лампа. Химический состав этого покрытия подобран таким образом, чтобы
излучать в желаемом спектре.

Строительство

Трубка люминесцентной лампы заполнена газом с низким содержанием
пар ртути под давлением и
благородные газы в целом
давление около 0.3% от
атмосферное давление. В
самая обычная конструкция, пара эмиттеров накала, один
на каждом конце трубки, нагревается током и используется для
испускать электроны, которые
возбуждают благородные газы и газообразную ртуть путем ударной ионизации.
Ионизация может происходить только в исправных лампочках.Следовательно, вредные последствия для здоровья от этого процесса ионизации
невозможно. Кроме того, лампы часто оснащаются двумя
конверты, что значительно снижает количество УФ-излучения
испускается.

Электрические аспекты эксплуатации

Для запуска лампы и
поддерживать ток на достаточном уровне для постоянного света
эмиссия.В частности, схема подает высокое напряжение на
запускают лампу и регулируют ток через трубку.
Возможны различные конструкции. в
в простейшем случае используется только резистор, что относительно
энергоэффективность. Для работы от
переменный ток (AC)
напряжения сети, использование индуктивного балласта является обычным явлением и было
известен отказ до конца срока службы лампы, вызывающий
мерцание лампы.Различные схемы, разработанные для
начать и запустить
люминесцентные лампы выставляют
различные свойства, то есть излучение акустического шума (гула),
срок службы (лампы и балласта), энергоэффективность и
мерцание интенсивности света. Сегодня в основном улучшенная схемотехника
используется, особенно с компактными люминесцентными лампами, где
схемотехника не подлежит замене перед люминесцентными лампами.Это уменьшило количество технических сбоев, вызывающих
эффекты, как перечисленные выше.

ЭМП

Часть
электромагнитный спектр
который включает статические поля, а поля до 300 ГГц — вот что
здесь упоминается как
электромагнитные поля
(ЭДС).Литература о том, какие виды и сильные стороны ЭМП.
которые излучаются из КЛЛ
редко. Однако есть несколько видов ЭДС, обнаруженных в
близость этих ламп. Как и другие устройства, которые зависят
на электричество для выполнения своих функций они излучают
электрические и
магнитные поля в
низкочастотный диапазон (
частота распространения 50 Гц и, возможно, также гармоники
из них, e.грамм. 150 Гц, 250 Гц и т. Д. В Европе). Кроме того, КЛЛ,
в отличие от
лампы накаливания,
также излучают в высокочастотном диапазоне ЭДС (30-60 кГц).
Эти частоты различаются
между разными типами ламп.

Мерцание

Все лампы будут различать интенсивность света при удвоении мощности от сети.
(линейная) частота, так как
мощность, подаваемая на лампу, достигает пика дважды за цикл при 100
Гц или 120 Гц.Для
лампы накаливания это
мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла
емкость нити. Если модуляция света
интенсивности достаточно для восприятия человеческим глазом, тогда
это определяется как мерцание. Модуляции на 120 Гц не видно,
в большинстве случаев даже не при 50 Гц (Seitz et al.2006 г.).
Флюоресцентные лампы
включая КЛЛ, которые используют
поэтому высокочастотные (кГц) электронные балласты называются
«без мерцания».

Однако как лампы накаливания (Chau-Shing and Devaney, 2004), так и
«немерцающие» люминесцентные источники света (Хазова и О’Хаган
2008) производят еле заметное остаточное мерцание.Дефектный
лампы или схемы могут в некоторых случаях привести к мерцанию при более низкой
частот, либо только в
часть лампы или во время цикла запуска в несколько минут.

Световое излучение, УФ-излучение и синий свет

Имеются характерные различия между излучаемыми спектрами.
люминесцентными лампами и
лампы накаливания, потому что
различных принципов работы.Лампы накаливания
настраиваются по своей цветовой температуре за счет специальных покрытий из
стекло и часто продаются с атрибутом «теплый» или
«Холодный» или, более конкретно, по их цветовой температуре для
профессиональные светотехнические приложения (фотостудии,
магазины одежды и т. д.). В случае люминесцентных ламп
спектральное излучение зависит от покрытия люминофора. Таким образом,
люминесцентные лампы могут быть обогащены синим светом (длины волн
400-500 нм), чтобы
лучше имитируют дневной свет по сравнению с лампами накаливания.
Как и люминесцентные лампы, КЛЛ излучают больше синего цвета.
светлее, чем лампы накаливания.Есть на международном уровне
признанные пределы воздействия излучения (200-3000 нм)
испускается лампами и осветительными приборами, защищенными от
фотобиологические опасности (Международная электротехническая
Комиссия 2006 г.). Эти ограничения также включают излучение от
КЛЛ.

УФ-содержание излучаемого спектра зависит как от
люминофор и стеклянная колба люминесцентной лампы.УФ
выброс
лампы накаливания есть
ограничивается температурой нити накала и
поглощение стекла. Некоторые
КЛЛ с одной оболочкой излучают
УФ-В и следы УФ-С излучения на длине волны 254
нм, что не так
для ламп накаливания (Khazova and O´Hagan 2008).Экспериментальный
данные показывают, что КЛЛ производят больше
УФ-излучение, чем
вольфрамовая лампа. Кроме того, количество
УФ-В излучение производится из
КЛЛ с одной оболочкой, с того же расстояния 20 см, составляли примерно
в десять раз выше, чем облучается вольфрамовой лампой
(Мозли и Фергюсон, 2008 г.).

Люминесцентные лампы — как работают люминесцентные лампы и их применение

Что такое люминесцентные лампы?

Люминесцентные лампы — это лампы, в которых свет возникает в результате движения свободных электронов и ионов внутри газа. Типичная люминесцентная лампа состоит из стеклянной трубки, покрытой люминофором и содержащей пару электродов на каждом конце. Он заполнен инертным газом, обычно аргоном, который действует как проводник, а также состоит из жидкой ртути.

Люминесцентная лампа

Как работает люминесцентная лампа?

Когда электричество подводится к трубке через электроды, ток проходит через газовый проводник в форме свободных электронов и ионов и испаряет ртуть. Когда электроны сталкиваются с газообразными атомами ртути, они испускают свободные электроны, которые переходят на более высокие уровни, а когда они возвращаются на свой исходный уровень, излучаются фотоны света. Эта излучаемая световая энергия находится в форме ультрафиолетового света, невидимого для человека.Когда этот свет попадает на люминофор, нанесенный на трубку, он возбуждает электроны люминофора на более высокий уровень, и когда эти электроны возвращаются к своему исходному уровню, излучаются фотоны, и эта световая энергия теперь находится в форме видимого света.

Запуск люминесцентной лампы

В люминесцентных лампах ток течет по газообразному проводнику, а не по твердотельному проводнику, где электроны просто текут от отрицательного конца к положительному. Для прохождения заряда через газ должно быть много свободных электронов и ионов.Обычно в газе очень мало свободных электронов и ионов. По этой причине необходим специальный пусковой механизм, чтобы ввести в газ больше свободных электронов.

Два пусковых механизма для люминесцентной лампы

1. Один из методов заключается в использовании выключателя стартера и магнитного балласта для обеспечения протекания переменного тока к лампе. Выключатель стартера требуется для предварительного нагрева лампы, так что требуется значительно меньшее количество напряжения для запуска образования электронов на электродах лампы.Балласт используется для ограничения силы тока, протекающего через лампу. Без выключателя стартера и балласта большое количество тока будет течь непосредственно к лампе, что уменьшит сопротивление лампы и, в конечном итоге, нагреет лампу и разрушит ее.

Люминесцентная лампа с магнитным балластом и выключателем стартера

Используемый выключатель стартера представляет собой обычную лампу, состоящую из двух электродов, так что между ними образуется электрическая дуга, когда через лампу протекает ток. В качестве балласта используется магнитный балласт, который состоит из катушки трансформатора.Когда через катушку проходит переменный ток, создается магнитное поле. По мере увеличения тока магнитное поле увеличивается, и это в конечном итоге препятствует прохождению тока. Таким образом ограничивается переменный ток.

Первоначально для каждого полупериода сигнала переменного тока ток течет через балласт (катушку), создавая вокруг него магнитное поле. Этот ток, проходя через нити трубки, медленно нагревает их, вызывая образование свободных электронов. Когда ток проходит через нить накала к электродам колбы (используется в качестве выключателя стартера), между двумя электродами колбы образуется электрическая дуга.Поскольку один из электродов представляет собой биметаллическую полосу, он изгибается при нагревании, и в конечном итоге дуга полностью гаснет, а поскольку через пускатель не течет ток, он действует как размыкающий выключатель. Это вызывает коллапс магнитного поля на катушке, и в результате возникает высокое напряжение, которое обеспечивает необходимое срабатывание для нагрева лампы, чтобы произвести необходимое количество свободных электронов через инертный газ, и в конечном итоге лампа загорится.

6 причин, почему магнитный балласт не считается удобным?

  • Потребляемая мощность довольно высокая, порядка 55 Вт.
  • Они большие и тяжелые
  • Они вызывают мерцание при работе на более низких частотах
  • Они не служат дольше.
  • Потери от 13 до 15 Вт.

2. Использование электронного балласта для запуска люминесцентных ламп

Электронные балласты, в отличие от магнитных балластов, подают переменный ток в лампу после увеличения частоты сети примерно с 50 Гц до 20 кГц.

Электронный балласт для запуска люминесцентной лампы

Типичная схема электронного балласта состоит из преобразователя переменного тока в постоянный, состоящего из мостов и конденсаторов, которые преобразуют сигнал переменного тока в постоянный и отфильтровывают пульсации переменного тока для выработки постоянного тока.Это постоянное напряжение затем преобразуется в высокочастотное прямоугольное напряжение переменного тока с помощью набора переключателей. Это напряжение приводит в действие резонансный контур LC-резервуара, чтобы произвести отфильтрованный синусоидальный сигнал переменного тока, который подается на лампу. Когда ток проходит через лампу с высокой частотой, он действует как резистор, образуя параллельную RC-цепь с цепью резервуара. Первоначально частота переключения переключателей снижается с помощью схемы управления, что приводит к предварительному нагреву лампы, что приводит к увеличению напряжения на лампе.В конце концов, когда напряжение на лампе достаточно увеличивается, она загорается и начинает светиться. Имеется устройство для измерения тока, которое может определять величину тока, протекающего через лампу, и соответственно регулировать частоту переключения.

6 причин, по которым предпочтение отдается электронным пускорегулирующим устройствам больше

  • Имеют низкое энергопотребление, менее 40 Вт
  • Убыток незначительный
  • Устранение мерцания
  • Они легче и больше помещаются в места
  • Они служат дольше

A Типичное применение с люминесцентной лампой — автоматическое переключение света

Вот вам полезная домашняя схема.Эта автоматическая система освещения может быть установлена ​​в вашем доме для освещения помещения с помощью КЛЛ или люминесцентных ламп. Лампа автоматически включается около 18:00 и гаснет утром. Таким образом, эта схема без выключателя очень полезна для освещения помещений в доме, даже если заключенных нет дома. Обычно автоматические огни на основе LDR мерцают при изменении интенсивности света на рассвете или в сумерках. Поэтому КЛЛ нельзя использовать в таких схемах. В автоматических осветительных приборах с симисторным управлением возможна только лампа накаливания, поскольку мерцание может повредить цепь внутри КЛЛ.Эта схема преодолевает все подобные недостатки и мгновенно включается / выключается при изменении заданного уровня освещенности.

Как это работает?

IC1 (NE555) — это популярная микросхема таймера, которая используется в схеме в качестве триггера Шмитта для получения бистабильного действия. Действия установки и сброса IC используются для включения / выключения лампы. Внутри микросхемы два компаратора. Компаратор с верхним порогом срабатывает при 2/3 В постоянного тока, в то время как компаратор с нижним триггером срабатывает при 1/3 В постоянного тока. Входы этих двух компараторов связаны вместе и соединены на стыке LDR и VR1.Таким образом, напряжение, подаваемое LDR на входы, зависит от интенсивности света.

LDR — это разновидность переменного резистора, сопротивление которого меняется в зависимости от интенсивности падающего на него света. В темноте LDR предлагает очень высокое сопротивление, достигающее 10 Мегаом, но при ярком свете оно уменьшается до 100 Ом или меньше. Таким образом, LDR — идеальный датчик света для автоматических систем освещения.

В дневное время LDR имеет меньшее сопротивление, и ток течет через него на пороговый (вывод 6) и триггерный (вывод 2) входы IC.В результате напряжение на пороговом входе превышает 2/3 Vcc, что сбрасывает внутренний триггер, и выход остается низким. В то же время триггерный вход получает более 1/3 В постоянного тока. Оба условия поддерживают низкий уровень выходного сигнала IC1 в дневное время. Транзистор драйвера реле подключен к выходу IC1, так что реле остается обесточенным в дневное время.

Схема автоматического переключения света

На закате сопротивление LDR увеличивается, и ток, протекающий через него, прекращается.В результате напряжение на входе компаратора пороговых значений (вывод 6) падает ниже 2/3 В постоянного тока, а напряжение на входе компаратора триггера (вывод 2) — менее 1/3 В постоянного тока. Оба эти условия приводят к тому, что выходной сигнал компараторов становится высоким, что устанавливает триггер. Это изменяет выход IC1 на высокий уровень и запускает T1. Светодиод указывает на высокий выход IC1. Когда T1 проводит, реле активируется и замыкает цепь лампы через общий (Comm) и NO (нормально разомкнутый) контакты реле.Это состояние продолжается до утра, и IC сбрасывается, когда LDR снова подвергается воздействию света.

Конденсатор C3 добавлен к базе T1 для чистого переключения реле. Диод D3 защищает Т1 от обратного ЭДС при выключении Т1.

Как установить?

Соберите схему на общей печатной плате и поместите в противоударный корпус. Коробка адаптера вставного типа — хороший выбор для размещения трансформатора и цепи. Разместите блок в местах, где в дневное время доступен солнечный свет, предпочтительно вне дома.Перед подключением реле проверьте выход с помощью светодиодного индикатора. Отрегулируйте VR1, чтобы светодиод загорелся при определенном уровне освещенности, например, в 18:00. Если все в порядке, подключите реле и соединения переменного тока. Фаза и нейтраль могут быть отведены от первичной обмотки трансформатора. Возьмите фазный и нейтральный провода и подключите к патрону. Вы можете использовать любое количество ламп в зависимости от номинального тока контактов реле. Свет от лампы не должен попадать на LDR, поэтому установите лампу соответствующим образом.

Осторожно : На контактах реле 230 В во время зарядки. Поэтому не прикасайтесь к цепи, когда она подключена к сети. Используйте хорошую оплетку для контактов реле, чтобы избежать удара.

Фото:

  • Люминесцентная лампа от wikimedia
  • Запуск люминесцентной лампы с использованием магнитного балласта и выключателя стартера от wikimedia

Как работают люминесцентные лампы? Пояснение и схема в комплекте

В середине 1930-х годов, когда на рынке появились первые люминесцентные лампы, они стали настоящим откровением.Люди были поражены, увидев, что их дома и офисы освещены так же ярко, как прохладный дневной свет. Узнайте, как они работают здесь.

Что внутри люминесцентной лампы?

  • Люминесцентная лампа в основном состоит из длинной стеклянной газоразрядной трубки. Его внутренняя поверхность покрыта фосфором и заполнена инертным газом, обычно аргоном, с примесью ртути.

  • Затем трубку окончательно герметизируют при низком давлении двумя нитевыми электродами на обоих концах.

  • Эти электродные нити используются для предварительного нагрева трубки и инициирования быстрой проводимости электронов между двумя концевыми электродами. Первоначально процесс требует относительно большого количества энергии.

  • Энергия также преобразует часть ртути из жидкости в стекло. Затем электроны сталкиваются с атомами газообразной ртути, увеличивая количество энергии. Когда электроны возвращаются к своему первоначальному уровню энергии, они начинают излучать свет. Однако излучаемый ими свет является ультрафиолетовым и невидимым невооруженным глазом, поэтому необходимо сделать еще один шаг, прежде чем мы сможем увидеть свет.

  • Вот почему трубка была покрыта фосфором. Люминофор излучает свет при воздействии света. Под воздействием ультрафиолетового света частицы излучают белый свет, который мы можем видеть.

  • Когда электронная проводимость между электродами завершена, больше не требуется нагрев нитей, и вся система работает при гораздо более низком токе.

Подключение люминесцентных ламп

Вот один пример лампового светильника, состоящего из большого тяжелого квадратного «дросселя» или «балласта» и маленького цилиндрического «стартера».«Давайте попробуем понять, как работает вся система. При чтении следующих пунктов обращайтесь к принципиальной схеме справа:

  • Дроссель на самом деле представляет собой большую катушку индуктивности. Он состоит из длинной медной обмотки поверх железных пластин.

  • Катушка индуктивности по своей природе всегда имеет тенденцию отбрасывать накопленный в ней ток каждый раз, когда питание через нее отключается. Этот принцип дросселя используется при освещении люминесцентной лампы.

  • Когда переменное напряжение подается на ламповый светильник, напряжение проходит через дроссель, стартер и нити лампы.

  • Нити накаливания загораются и мгновенно нагревают трубку. Стартер состоит из разрядной колбы с двумя электродами рядом с ней. Когда через него проходит электричество, между двумя электродами возникает электрическая дуга. Это создает свет, однако тепло от лампы заставляет один из электродов (биметаллическую полоску) изгибаться, вступая в контакт с другим электродом.Это мешает заряженным частицам создавать электрическую дугу, которая создаёт свет. Однако теперь, когда тепло от света уходит, биметаллическая полоса остывает и отклоняется от электрода, снова размыкая цепь.

  • В этот момент балласт или дроссель «отбрасывает» его, в нем накапливается ток, который снова проходит через нити и снова зажигает лампу.

  • Если трубка не заряжается в достаточной степени, последующие толчки доставляются дросселем из-за быстрого переключения стартера, так что трубка в конце концов ударяет.

  • После этого дроссель действует как ограничитель тока с низким импедансом для лампы, пока свет продолжает гореть.

Распространенной проблемой, связанной с этими типами приборов, является гудение или жужжание. Причина этого кроется в плохо закрепленном дросселе на приспособлении, который вибрирует в соответствии с частотой 50 или 60 герц нашей сети переменного тока и создает жужжащий шум. Затягивание винтов воздушной заслонки может мгновенно устранить проблему.

Принцип работы современных электронных балластов заключается в том, чтобы избегать использования стартеров для предварительного нагрева. Кроме того, они очень легкие. Они подавляют начальное мерцание лампового света, которое обычно наблюдается в обычных ламповых светильниках, изменяя частоту сетевого питания на гораздо более высокие 20 000 герц или более. Кроме того, электронные балласты очень энергоэффективны.

Надеюсь, это обсуждение предоставило вам достаточно информации о том, как работают люминесцентные лампы.

Ссылки

Как работают люминесцентные лампы

Как работают люминесцентные лампы

Elliott Sound Products Как работают люминесцентные лампы

© 2007 Род Эллиотт (ESP)


Лампы и Индекс энергии

Основной указатель


Содержание


1 Введение

Статья «Традиционные люминесцентные ламповые лампы и их альтернативы» рассматривает работу люминесцентных ламп в довольно простых терминах, но здесь мы рассмотрим лампы и их балласты (как «традиционные» магнитные, так и электронные) и немного углубимся в их внутреннюю часть. выработки.Используются альтернативные схемы балласта (например, схема «опережение / запаздывание»), и это показано в предыдущей статье. Здесь это не рассматривается, потому что речь идет о том, как они работают, а не о способе подключения арматуры.

Принцип работы люминесцентной лампы сильно отличается от простой лампы накаливания, и современные люминесцентные лампы (особенно компактные люминесцентные лампы или КЛЛ) используют электронные балласты для регулирования напряжения на лампе и тока через нее.При первом запуске необходимо обеспечить значительно более высокое напряжение, чем обычно, чтобы вызвать возникновение внутренней дуги, а после запуска ток должен быть ограничен до безопасного значения для трубки.

В этой статье показаны некоторые способы достижения этих целей, начиная с базового индуктивного балласта, который был основой производства люминесцентных ламп на протяжении многих лет.

Обратите внимание, что показанные здесь формы сигналов представляют собой комбинацию моделирования и реальных измерений.При необходимости смоделированные формы сигналов корректируются для соответствия измеренным. Причина этого подхода проста … симулятор не может представить нагрузку с отрицательным импедансом с соответствующими напряжениями удара и другими характеристиками, которые представляет люминесцентная лампа. Точно так же очень сложно (и потенциально смертельно) пытаться уловить все напряжения и токи, которые существуют в цепях реальных люминесцентных ламп.

Хотя принятый подход действительно вносит некоторые незначительные ошибки в показанные формы сигналов, они относительно незначительны, а конечный результат находится в пределах любого традиционного производственного допуска для балластов, ламп и других компонентов.


2 Индуктивный балласт

Для объяснения индуктивного балласта я использовал старую «компактную» люминесцентную лампу, которая идеально подходит для тестирования. Хотя он по-прежнему работает, световой поток несколько ниже, чем должен быть, но это лишь немного меняет некоторые измеренные значения. Принципы не меняются.

Сама лампа имеет следующие характеристики …

Диаметр трубки 11,3 мм (нестандартный)
Длина 533 мм (21 дюйм)
Сопротивление нити (холодная) 12.8 Ом
Сопротивление накала (горячее) 23 Ом
Балластное сопротивление 105 Ом
Индуктивность балласта 2,11 H
Starter Starter 2,11 H
Стартер 1,2 нФ

Диаметр люминесцентных ламп обычно обозначается как T8 (например). Это означает, что диаметр равен 8 x 1/8 дюйма, что составляет 1 дюйм (25.4 мм). Ранние трубки были T12 (1½ дюйма или 38 мм в диаметре), но они были уменьшены в размерах до T8, когда были представлены (тогда) «новые» высокоэффективные типы. Стандартная 4-футовая трубка (1200 мм) раньше рассчитывалась на 40 Вт, но их замена была 36 Вт, а светоотдача была улучшена. Последнее воплощение — T5 (диаметр 16 мм), в котором используется меньшее расстояние между выводами и другой фитинг надгробной плиты. Они также короче (1163 мм) и не подходят для стандартного светильника. разработан для более ранних ламп.

В случае моего тестового образца диаметр трубки намного меньше обычного, потому что лампа обозначена как компактная, поэтому ее складывают, чтобы уменьшить общую длину.Упоминается сопротивление нити, потому что оно будет упомянуто позже в этой статье. Схема представлена ​​ниже и является стандартной во всех отношениях.

Рисунок 1 — Схема люминесцентной лампы

Катушка индуктивности — это балласт, и на самом деле это гораздо более важный компонент, чем он может показаться. Он не только ограничивает максимальный ток трубки, но и используется для генерации импульсов высокого напряжения, необходимых для запуска плазменной дуги внутри трубки. Сама люминесцентная лампа имеет на каждом конце нагреватель, небольшое количество ртути и инертный газ (обычно аргон).Стенка трубки покрыта люминофором, излучающим видимый свет при возбуждении интенсивным коротковолновым ультрафиолетовым светом, излучаемым ртутным дуговым разрядом. Дополнительный конденсатор (C2) предназначен для коррекции коэффициента мощности — подробнее об этом позже.

Маленькая лампочка — стартер. Биметаллическая полоса запечатана в стеклянную оболочку с (обычно) неоновым газом внутри. При подаче питания напряжения более чем достаточно, чтобы вызвать дугу в неоновом пускателе, но не настолько, чтобы вызвать дугу в самой лампе.Тепло от неоновой дуги заставляет биметаллическую полосу изгибаться, пока она не замыкает контакты. Затем дуга в неоновом стартере прекращается, и сеть подключается через балласт и нити на каждом конце трубки через выключатель стартера.

Когда в пускателе отсутствует дуга (или накал), биметаллическая полоса охлаждается, и примерно через секунду выключатель размыкается. Прерывание тока через катушку индуктивности вызывает возврат напряжения — импульс высокого напряжения, который (будем надеяться) зажжет дугу в трубке.Если дуга не запускается с первого раза, процесс повторяется до тех пор, пока не начнется. Вот почему стандартные люминесцентные лампы при включении несколько раз мигают. Нити — это нагреватели, которые действуют как катоды (эмиттеры электронов) и необходимы для обеспечения достаточного количества тепла для испарения ртути и для получения хорошего потока электронов для возбуждения плазмы. Когда лампа работает нормально, потока электронов достаточно для поддержания приемлемой рабочей температуры нити накала. Обе нити действуют как катоды и аноды поочередно, потому что полярность меняется 50 (или 60) раз в секунду.

Плазма имеет интересную характеристику … отрицательное сопротивление! Как только начинается дуга, более высокий рабочий ток вызывает падение сопротивления и меньшее напряжение появляется на трубке. Если бы это продолжалось, трубка очень быстро разрушилась бы. Балласт предотвращает это, потому что он вводит последовательный импеданс для ограничения тока. Сопротивление не сработает, потому что оно слишком расточительно и не обеспечивает накопления энергии для генерации всплеска обратного напряжения для повторного зажигания дуги при каждом изменении полярности.

Рисунок 2 — Рабочие осциллограммы

На Рисунке 2 вы можете видеть, что когда ток трубки (зеленая кривая) максимален, напряжение (красная кривая) на трубке минимально. Эффект можно увидеть сразу после каждого скачка напряжения. По мере увеличения тока напряжение падает (для этой трубки минимум составлял ± 126 В). Пик в точке пересечения нуля формы волны тока генерируется балластом, и именно он повторно зажигает дугу для каждого полупериода подключенной сети.На рисунке 3 показано напряжение на балласте — быстрые переходы соответствуют пикам, приложенным к лампе, и происходят около пика напряжения, где ток прерывается, когда проходит через ноль.

Рисунок 3 — Напряжение и ток в балласте

Форма волны напряжения на балласте по существу представляет собой разницу между приложенным сетевым напряжением и напряжением на лампе. Для работы на 120 В напряжение явно меньше, но лампе все еще нужно где-то в пределах 300-400 В, чтобы зажигать (или повторно зажигать) дугу, поэтому балласт должен иметь возможность компенсировать разницу с помощью обратного импульса на каждом нуле. -пересечение тока.У меня нет люминесцентной лампы или балласта на 120 В, поэтому я не могу предоставить полную информацию. То, что люминесцентные лампы вообще работают с напряжением 120 В, несколько примечательно, но легко понять, почему электронные балласты так популярны в США. Многие балласты для стран с напряжением 120 В используют «балласт» автотрансформатора, который увеличивает доступное напряжение и действует как ограничитель тока.


3 Системные потери

В системе несколько потерь, причем балласт является одним из основных факторов.Балласт, использованный в моих тестах, имеет сопротивление постоянному току 105 Ом, поэтому расходуется почти 7 Вт. Потери на самом деле выше, потому что стальные листы очень быстро нагреваются, поэтому «потери в железе» значительны. Это можно уменьшить только за счет использования стали более высокого качества и более тонких листов. Оба значительно увеличат стоимость.

Каждая нить накала имеет горячее сопротивление 23 Ом, и при работе лампы на каждой нити присутствует напряжение почти 6 В. Помните, что во время работы конец нити накала, идущий к стартеру, отключается (за исключением очень маленькой емкости на стартере).Измеренное напряжение представляет собой градиент, вызванный током плазмы, и каждая нить накала рассеивает около 1,5 Вт (всего 3 Вт). Только в этих компонентах люминесцентная лампа расходует 10 Вт подаваемой мощности в виде тепла (7 Вт для балласта, 3 Вт для нити накала).

Хотя отходы балласта можно уменьшить с помощью более качественного блока, потеря накала необходимы для работы лампы. Это относится ко всем люминесцентным лампам, кроме специализированных типов с холодным катодом, но для них требуется такой же специализированный электронный балласт.CCFL (люминесцентные лампы с холодным катодом) чаще всего встречаются в ЖК-мониторах и телевизорах, но теперь их заменяют светодиоды в новых моделях.

Есть еще одна потеря, которую пользователь не видит и даже не оплачивает. Эти потери являются результатом низкого коэффициента мощности люминесцентных ламп, и это вызвано преимущественно индуктивной нагрузкой. Индуктивная нагрузка вызывает запаздывающий коэффициент мощности, когда максимальный ток возникает после максимального напряжения. Вы также можете рассматривать это как точку, в которой нагрузка (лампа и индуктор) фактически возвращает некоторую мощность источнику питания.Для поставщика электроэнергии это означает, что трансформаторы, кабели и генераторы переменного тока должны выдерживать больший ток, чем должен быть. Это становится очень дорогостоящим, когда очень много нагрузок имеют низкий коэффициент мощности.

Рисунок 4 — Напряжение Vs. Текущие, нескорректированные и исправленные

На рисунке 4 вы можете видеть, что нескорректированная форма волны тока имеет видимые искажения около точки пересечения нуля. Как вы также можете видеть, среднеквадратичный ток также значительно выше, чем указано в номинальной мощности.Реактивные нагрузки имеют разные значения мощности и ВА, но для резистивной (или нереактивной) нагрузки они одинаковы.

В этом случае ток без C2 составляет 256 мА, а при добавлении C2 он падает до 162 мА. При приложенном напряжении 240 В это означает, что …

Без компенсации Общая мощность = 38 Вт
ВА = 61,4 Коэффициент мощности = 0,62
Компенсированный Общая мощность = 38 Вт
ВА =.9 Коэффициент мощности = 0,97

Коэффициент мощности можно рассчитать, используя фазовую задержку или разделив фактическую мощность на ВА (Вольт * Ампер). Что касается фазового угла, ток отстает от напряжения на 57,4 °, а коэффициент мощности рассчитывается путем взятия косинуса фазового угла — в данном случае 0,53. Цифры разные, потому что форма волны тока не является чистой синусоидой — она ​​имеет искажения. Добавление конденсатора сдвигает фазу искажения, так что скомпенсированный сигнал тока имеет плоскую вершину (что-то вроде ограничения усилителя).Хотя это вносит гармоники в сеть, их влияние далеко не так плохо, как в некомпенсированной цепи, о чем свидетельствует скорректированный коэффициент мощности. Добавление конденсатора правильного номинала в чисто индуктивную цепь (без искажения формы сигнала) даст коэффициент мощности, равный единице — идеальный вариант.

Обратите внимание, что использование косинуса фазового угла (CosΦ) является сокращением, и можно использовать только , когда оба
напряжение и ток являются синусоидальными волнами.Он вообще не работает для сильно искаженных сигналов, например, генерируемых электронными нагрузками, и будет давать неверные
ответ для индуктивных нагрузок, которые включают искажения (например, люминесцентные лампы). Вы получите , всегда получите правильный ответ, если разделите реальную мощность на ВА.

Также доступны пускорегулирующие аппараты с «быстрым пуском» и пускорегулирующие устройства без стартера. Они выходят за рамки данной статьи, которая предназначена для описания основных принципов, а не для подробного описания всех имеющихся балластов люминесцентного освещения.


4 электронных балласта

Электронные балласты становятся все более распространенными, потому что их можно сделать более эффективными, чем типичный магнитный балласт, и для них требуется гораздо меньше материала. Это делает их дешевле (в изготовлении, но не обязательно для покупки вами), чем люминесцентные лампы с обычным балластом. В частности, теперь во всех компактных люминесцентных лампах (КЛЛ) используется электронный балласт, который обычно поставляется вместе с самой лампой. Хотя это удобно, это ужасная трата ресурсов, потому что все электронные компоненты просто выбрасываются, когда лампа выходит из строя.Лампы T5 в настоящее время становятся стандартом для люминесцентного освещения, и для максимального срока службы электронный балласт является обязательным.

В некоторой степени повышение эффективности по сравнению с магнитным балластом может быть иллюзией — по крайней мере, частично. Поскольку они намного легче, есть реальная и определенная экономия на транспортных расходах, но магнитные балласты могут быть такими же эффективными, как и электронная версия, а может быть, даже больше. Как бы то ни было, переход к электронным балластам сейчас не остановить, и по мере того, как цена будет снижаться, их использование будет продолжать расти.У электронных балластов есть и другие преимущества, о которых мы поговорим позже.

Типичная (более или менее) принципиальная схема электронного балласта, используемого в КЛЛ, показана ниже. Те, которые используются для обычных люминесцентных ламп, будут очень похожи, но, как правило, будут использовать обновленные компоненты. В то время как электроника в КЛЛ может прослужить всего 15000 часов, фиксированный электронный балласт, как ожидается, прослужит около 100000 часов или более (более 10 лет непрерывной работы).На самом деле электронный балласт должен быть способен прослужить столько же, сколько и его магнитный аналог, поэтому срок службы 40 лет не так глуп, как может показаться.

Рисунок 5 — Схема электронного балласта [2]

Схема на Рисунке 5 представляет собой несколько упрощенную версию схемы, показанной в листе данных Infineon. Он полностью скорректирован по коэффициенту мощности и имеет защиту для обнаружения неисправных (или отсутствующих) ламп. Характерным режимом отказа люминесцентных ламп является «выпрямление», когда одна нить накала (катод) становится значительно слабее другой.Если не обнаружено, смещение постоянного тока приведет к отказу коммутирующих устройств, что сделает балласт бесполезным (маловероятно, что кто-то отремонтирует их, когда они выйдут из строя).

Электронный балласт действительно имеет ряд преимуществ перед магнитной версией. Поскольку дуга полностью погаснет примерно через 1 мс, при использовании более высокой частоты, чем сеть 50 или 60 Гц, дуга останется. Его не нужно наносить повторно, а просто меняет направление [1]. Кроме того, светоотдача увеличивается примерно на 10% выше 20 кГц, поэтому улучшается световая отдача.

До тех пор, пока коэффициент мощности всех этих электронных балластов не будет скорректирован, они будут вызывать проблемы с распределением. К сожалению, во многих странах не требуется, чтобы приборы малой мощности (обычно менее 75 Вт) имели коррекцию коэффициента мощности, но, учитывая распространение КЛЛ и электронных балластов в обычных люминесцентных лампах, это придется изменить. Поскольку освещение используется в каждом доме, проблема неисправленного коэффициента мощности выйдет из-под контроля, если что-то не будет сделано.

В отличие от магнитного балласта (индуктора), коэффициент мощности электронного балласта нельзя скорректировать простым добавлением конденсатора. Как видно на диаграмме выше (хотя это может быть не сразу очевидно), на выходе входного мостового выпрямителя имеется очень маленький конденсатор емкостью 220 нФ. Первый полевой МОП-транзистор работает как повышающий преобразователь и переключается на протяжении каждого полупериода. Таким образом, среднеквадратичный ток, потребляемый из сети, поддерживается в фазе с напряжением, а форма волны тока является приблизительно синусоидальной.Это дает очень хороший коэффициент мощности — возможно лучше 0,9. Чтобы предотвратить возвращение импульсов высокоскоростного переключения в сеть, необходима обширная фильтрация, на что указывает фильтр EMI (электромагнитных помех) на входе.

Для компактных люминесцентных ламп (КЛЛ) используется несколько более простая схема, так как схемы предназначены для выбрасывания. Лично я считаю это бессмысленным расточительством и надеюсь, что это не будет продолжаться (или, по крайней мере, будет введена переработка, чтобы восстановить как можно больше).Достаточно типичный инвертор CFL показан ниже …

Рисунок 6 — Типовая схема электронного балласта CFL

Я говорю «достаточно типичный», потому что реальные схемы сильно различаются. Доступны специализированные микросхемы драйверов MOSFET, но большинство дешевых (потребительских) CFL будут использовать вариант вышеупомянутого. Обратите внимание, что резистор 0,47 Ом, показанный на входе, обычно представляет собой плавкий резистор, и он используется в первую очередь в качестве предохранителя. Почему бы не использовать настоящий предохранитель? Резисторы дешевле.Большинство деталей будет выбрано таким образом, чтобы выжить в течение указанного срока службы лампы, поэтому передовые методы проектирования обычно игнорируются, если можно ожидать, что деталь с более низким номиналом (и более дешевая) прослужит около 10 000 часов.

Трансформатор (T1) обеспечивает обратную связь с транзисторами и генерирует базовый ток, необходимый для надежного переключения. Цикл инициируется DIAC — двунаправленным устройством, которое имеет резкий переход из непроводящего состояния в проводящее.Поскольку он имеет характеристики, очень похожие на устройство с отрицательным импедансом, его часто используют в диммерах, люминесцентных балластах и ​​даже в стробоскопах. Для получения дополнительной информации щелкните здесь, чтобы перейти к руководству по DIAC.

Обратите внимание, что схемы, показанные выше, предназначены только для информации и не должны быть построены так, как показано. Для некоторых компонентов требуются очень специфические характеристики, трансформаторы и индукторы имеют решающее значение. В схемах нет ничего неправильного, им просто не хватает всей информации, необходимой для их построения.Речь идет о том, как эти вещи работают, а не о том, как их построить.


5 Коэффициент мощности
Коэффициент мощности

не совсем понятен большинству энтузиастов электроники, и это вполне понятно, потому что он мало востребован в общих электронных схемах. Есть аспекты коэффициента мощности, которые даже не понимают многие инженеры, которым следует знать лучше. Когда создаются несинусоидальные формы волны тока, даже многие инженеры делают двойное замечание, потому что они не могут быть использованы для работы с электронными нагрузками.Я рассмотрю здесь оба случая, а также намереваюсь показать методы пассивной и активной коррекции коэффициента мощности. Хотя пассивный PFC (коррекция коэффициента мощности) привлекает своей простотой, на самом деле он оказывается более дорогим из-за необходимости в большой катушке индуктивности. Активный PFC кажется сложным (и это действительно так, если вам нужно его спроектировать), но однажды спроектированный использует относительно дешевые компоненты.

Самый простой случай — индуктивная нагрузка. Это относится ко многим электрическим машинам, включая двигатели, трансформаторы и (конечно) балласты люминесцентного освещения (магнитные типы).Когда двигатель или трансформатор полностью нагружены, он проявляет себя как резистивная нагрузка и имеет отличный коэффициент мощности. При малых нагрузках эта же часть оказывается индуктивной, и это приводит к отставанию тока от напряжения. Если нагрузка работает в этом режиме большую часть своего срока службы, необходимо применить поправку, чтобы вернуть коэффициент мощности как можно ближе к единице.

Коэффициент мощности резистивной нагрузки равен , всегда единиц — это идеально. Каждый вольт и каждый ампер используются для выработки тепла.Распространенными примерами являются электрические обогреватели, тостеры, чайники и лампы накаливания. Не все нагрузки резистивные, поэтому давайте рассмотрим типичный пример (но упрощенный для простоты описания и понимания).

Электрическая машина обычно работает с половинной нагрузкой, но может потребоваться полная мощность при запуске или для того, чтобы справиться с переходными нагрузками. Это может быть двигатель или трансформатор — две из наиболее распространенных используемых электрических машин (люминесцентная лампа с магнитным балластом немного сложнее).В каждом случае индуктивная и резистивная составляющие нагрузки будут равны (для половинной мощности), а формы сигналов напряжения, тока и мощности выглядят следующим образом …

Рисунок 7 — Электрическая машина на половинной мощности

Как и ожидалось, когда резистивная и индуктивная составляющие равны, наблюдается сдвиг фазы на 45 °, при этом ток отстает от напряжения (запаздывающий коэффициент мощности). Приложенное напряжение — 240 В, резистивная часть нагрузки — 120 Ом, индуктивное реактивное сопротивление — также 120 Ом, мощность — 240 Вт.Мы должны использовать 1 А от сети (240 В x 1 А = 240 Вт), а вместо этого потреблять 1,414 А. Дополнительный ток необходимо подавать, но он полностью расходуется впустую. Что ж, это не совсем так — его возвращают в сеть. Однако, если многие нагрузки делают то же самое, то оно просто рассеивается в виде тепла в трансформаторах, линиях электропередачи и генераторах электростанций. Очень мало реальных нагрузок являются емкостными, поэтому в схему добавляется конденсатор.

При сдвиге фаз 45 ° коэффициент мощности равен 0.707, и мы потребляем 1,42 А от сети вместо 1 А. Чтобы восстановить ток так, чтобы он был в фазе с напряжением, нам нужно добавить в схему конденсатор. Конденсатор фактически является противоположностью катушки индуктивности и (сам по себе) будет создавать ведущий коэффициент мощности — ток будет предшествовать напряжению. Добавив в схему конденсатор нужного номинала, коэффициент мощности можно восстановить до единицы, что приведет к значительному снижению тока, потребляемого из сети. Для этого примера 13 мкФ почти идеальны, но даже 10 мкФ уменьшат фазовый сдвиг запаздывания до 14.2 °, и это увеличивает коэффициент мощности до 0,96 — обычно считается максимально близким к идеальному.

Весь процесс несколько нелогичен. То, что нагрузка может потреблять больше тока, чем должно быть, достаточно легко понять, но то, что повторное прохождение большего тока через конденсатор уменьшит сетевой ток, кажется, не имеет никакого смысла. Все дело в относительной фазе двух токов, и это действительно работает. В противном случае наша энергосистема оказалась бы в крайне тяжелом положении.

Рисунок 8 — Флуоресцентный свет при нормальной работе

На несколько упрощенной диаграмме выше показаны формы сигналов напряжения и тока люминесцентной лампы. Упрощение состоит в том, что симуляторы не включают в себя нелинейные нагрузки с отрицательным сопротивлением, но на основной принцип (и результирующие формы сигналов) это существенно не влияет. Как видите, форма сигнала тока слегка искажена, и это влияет на форму сигнала после применения компенсации. Фактически, гармоники, генерируемые искажением, сдвинуты по фазе, поэтому окончательная форма волны тока выглядит как обрезанная синусоида.Однако после компенсации коэффициент мощности очень хороший, 0,98 — отличный результат.

Без компенсации потребляемый ток составляет 276,5 мА (что дает коэффициент мощности 0,57), а после компенсации он падает до 159,5 мА. Мощность в нагрузке (сама лампа) составляет 29,8 Вт, а резистивный компонент балласта (R1) рассеивает 7,8 Вт — это теряется в виде тепла. Все потраченное впустую тепло снижает общую эффективность, но это неизбежно, поскольку реальные компоненты имеют реальные потери.

Ситуация становится намного хуже, когда используется нелинейная (электронная) нагрузка.На рисунке 9 показаны эквивалентная схема и осциллограммы — ток протекает только на пике приложенного напряжения. Хотя этот ток находится в фазе с напряжением, коэффициент мощности ужасен, потому что форма волны тока не похожа на синусоиду. Резкие пики тока имеют сравнительно высокое среднеквадратичное значение, но мощность, подаваемая и передаваемая в нагрузку, намного меньше.

Рисунок 9 — Осциллограммы мощности электронной нагрузки

Скорректированный ток не показан по той простой причине, что для коррекции формы сигнала необходимы значительные дополнительные компоненты.В отличие от случая, когда ток нагрузки является синусоидальным (или близок к нему), простое добавление конденсатора ничего полезного не принесет. Пики тока таковы, что их можно удалить только с помощью фильтра, предназначенного для пропускания только частоты сети. Как показано, ток составляет 296 мА, но, как видно, пиковое значение составляет почти 2 А. Нагрузка рассеивает 28 Вт, но «полная мощность» (ВА) составляет 71,4 ВА. Это дает коэффициент мощности 0,39 — действительно очень плохо. Если вам интересно, куда пропала разница в 1 Вт между источником и нагрузкой, она теряется в диодах.

Добавив фильтр (пассивный PFC), состоящий из катушки индуктивности и пары конденсаторов, это можно улучшить, но требование относительно большой индуктивности значительно увеличивает вес и стоимость. Один Генри примерно настолько мал, насколько вы можете использовать для определения номинальной мощности нагрузки, и хотя большее значение будет работать лучше, оно также снова будет больше, а также с более высокими потерями. По этим причинам пассивная коррекция коэффициента мощности обычно не используется с импульсными источниками питания.

Рисунок 10 — Пассивная коррекция коэффициента мощности

За счет добавления катушки индуктивности и конденсатора, как показано на рисунке, коэффициент мощности значительно улучшается.Форма волны тока все еще не очень хорошая, но намного лучше, чем схема без коррекции. Среднеквадратичный ток снижен с 296 мА до 136 мА, что дает 32,6 ВА. Мощность нагрузки составляет 29 Вт, поэтому коэффициент мощности теперь составляет 0,88, что намного более достойно. Как показано на рисунке 9, электроника считается практически без потерь. Излишне говорить, что это не так, но речь идет скорее о PFC, чем о потерях в цепи.

Катушка индуктивности (L1) — это относительно большой компонент, и по этой причине он будет сравнительно дорогим.Для снижения стоимости и веса лучше использовать электронную схему коррекции коэффициента мощности, и она также будет более эффективной. Меньшие потери мощности означают меньше потерь тепла и более прохладную электронику.

Рисунок 11 — Схема активной коррекции коэффициента мощности

Схема, показанная здесь, почти идентична схеме на рисунке 5, но упрощена, чтобы ее было легче понять. Входящая сеть проходит через фильтр электромагнитных помех, состоящий из C1 и L1. Затем он идет на мостовой выпрямитель, но вместо большого электролитического конденсатора все, что нужно, — конденсатор 220 нФ (C2).Выходной сигнал является пульсирующим постоянным током и изменяется от почти нуля до полного пикового напряжения (340 В для источника питания 240 В RMS). Затем он передается на очень умный повышающий преобразователь режима переключения — L2, Q1 и D5. Это увеличивает любое мгновенное напряжение на его входе до пикового напряжения — в этом случае моделируемый преобразователь стабилизируется на уровне 446 В (несколько выше, чем обычно используется).

Время включения и выключения тщательно контролируется для поддержания тока, который пропорционален форме волны входящего переменного тока, поэтому рабочий цикл (коэффициент включения-выключения) постоянно изменяется для поддержания правильного повышенного напряжения и пропорционального тока.D6 включен для быстрой зарядки крышки основного фильтра (C3) от сети, а также обеспечивает подзарядку крышки. Это позволяет упростить схему управления.

Выходное напряжение повышающего преобразователя (обычно) регулируется, но регулирование не обязательно должно быть прекрасным, что опять же в некоторой степени упрощает схему. В схеме, показанной на рисунке 5, вы видите, что индуктор повышающего преобразователя (1,58 мГн) имеет вторичную обмотку. Это используется, чтобы сообщить IC контроллера, когда был достигнут правильный ток.В упрощенной схеме, показанной на рисунке 11, это не используется — период переключения фиксирован (схема была смоделирована, чтобы я мог получить форму тока, показанную ниже). Хотя эта упрощенная версия не так хороша, как «настоящая», она работает довольно хорошо — по крайней мере, в симуляторе.

Рисунок 12 — Формы сигналов активной коррекции коэффициента мощности

Как видите, форма сигнала тока довольно искажена, но измеренные характеристики симулятора впечатляют, несмотря на его относительную простоту.При 60 Вт в нагрузке (балласт и люминесцентная лампа) фактическая мощность сети составляет 61 Вт (потери в диодах, как и раньше), а при сетевом токе 266 мА он потребляет 64 ВА. Таким образом, коэффициент мощности составляет 0,94 — действительно очень удовлетворительный результат. Это значительно лучше, чем схема пассивной коррекции коэффициента мощности, и этого следовало ожидать. Весь анализ, который я видел, показывает, что активная схема коррекции коэффициента мощности превосходит пассивную схему как с точки зрения общей эффективности, так и коэффициента мощности. Катушки индуктивности имеют небольшие размеры (электрически и физически), а потери будут намного ниже, чем в любой пассивной цепи PFC.

Если вам интересно, мощность лампы в два раза больше, чем в двух предыдущих примерах, из-за того, что повышающий преобразователь имеет более высокое выходное напряжение, чем желаемое. Мне очень не хотелось тратить много времени на попытки подобрать уровни мощности, а моя упрощенная версия не регулируется. Успешно запустить симуляцию для импульсного преобразователя было непросто, а симуляция требует много времени из-за высокочастотного переключения.

Сейчас довольно стандартно, что искажение формы волны обозначается как THD (полное гармоническое искажение), которое в случае активной схемы PFC равно 11.7%. Делайте из этого то, что хотите.


6 Температура

Для правильной работы всех ртутных люминесцентных ламп очень важна температура. Есть относительно узкая полоса над и под которой уменьшается дуга, что приводит к более низкому, чем ожидалось, светоотдаче. Когда трубка холодная, в ней остается меньше паров ртути, поэтому дуга не может достичь полной силы, потому что не хватает молекул ртути для поддержания разряда на желаемом уровне.

Когда температура слишком высока, давление пара увеличивается, увеличивая эффективное сопротивление дуги и снова уменьшая ток разряда. Для большинства компактных ламп (а также, вероятно, большинства стандартных люминесцентных ламп) температура трубки должна быть около 40 ° C для максимальной светоотдачи. При 0 ° C светоотдача составляет всего 40% — действительно очень тусклая лампа. Более высокие температуры не так сильны, но слишком горячая лампа все равно будет сильно разряжена.

Рисунок 13 — Светоотдача в зависимости отТемпература

Когда температура приближается к -38,83 ° C, световой поток полностью прекращается. Это температура, при которой ртуть замерзает, поэтому пары ртути не могут поддерживать дугу и излучать УФ-излучение. Кроме того, при понижении температуры напряжение, необходимое для зажигания дуги, увеличивается, и при 0 ° C лампе для зажигания потребуется примерно на 40% больше напряжения по сравнению с напряжением зажигания при нормальной температуре окружающей среды.

Во многих частях мира 0 ° C (или ниже) — это нормальная температура окружающей среды в течение многих месяцев в году, поэтому лампу будет труднее запустить и она будет иметь низкую мощность, пока лампа не нагреется немного. .В таком климате трубка должна быть закрыта, чтобы защитить ее от ветра, который может значительно снизить температуру и светоотдачу.

%

%

.Температура окружающей среды

* Примечание — закрытый светильник обеспечивает повышение температуры на + 10 ° C по сравнению с окружающей средой.

Как и все материалы по этой теме, существуют различия в способе подачи материала, и разные типы трубок могут существенно отличаться друг от друга. Цифры в основном согласуются с приведенным выше графиком, но небольшое примечание предполагает, что указанные температуры находятся в состоянии теплового равновесия. Для стабилизации может потребоваться некоторое время, поэтому исходная светоотдача при первом включении лампы будет одинаковой для открытых и закрытых светильников.Поскольку объем светильника по отношению к лампе не указан, будут большие отклонения, если размер корпуса больше или меньше (неустановленных) значений, используемых в таблице.


Ссылки

  1. Электронный балласт для люминесцентных ламп, учебный модуль для студентов — Цзинхай Чжоу, Политехнический институт Вирджинии и Государственный университет
  2. ICB1FL02G Интеллектуальная микросхема управления балластом для балластов люминесцентных ламп, техническое описание, версия 1.
Относительная светоотдача (RLO) [3]
Окружающая температура Открытое приспособление Закрытое приспособление *
-10 ° C 25% 50346%
0 ° C 50% 80%
10 ° C 80% 100%
25 ° C 100% Выход 98%