Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Скорость воздуха в воздуховоде допустимая: Допустимые скорости воздуха в воздуховодах: уменьшение аэродинамических потерь

Содержание

Системы вентиляции: сделай расчет сам

Проектирование и расчет систем вентиляции является задачей проектировщиков систем вентиляции. Такие работы выполняет компетентный специалист, непрофессионал не может и не должен выполнять такие работы.

У многих заказчиков создается неверное впечатление о «простоте» проекта вентиляции. Попробуем предложить вам самим рассчитать свою систему.

Итак, Вы – Заказчик. И хотите знать, как происходит выбор оборудования для системы вентиляции.

При выборе оборудования необходимо рассчитать следующие параметры:

  • Производительность по воздуху;
  • Мощность калорифера;
  • Рабочее давление, создаваемое вентилятором;
  • Скорость потока воздуха и площадь сечения воздуховодов;
  • Допустимый уровень шума.

Ниже мы приводим упрощенную методику подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.


Расход воздуха или производительность по воздуху

Проектирование системы начинается с расчета требуемой производительности по воздуху, измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь.

Расчет вентиляции начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении. Например, для помещения площадью 50 квадратных метров с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров в час.

Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами).

Так, для большинства жилых помещений достаточно однократного воздухообмена, для офисных помещений требуется 2-3 кратный воздухообмен.

Но, подчеркиваем, это не Правило!!! Если это офисное помещение 100 кв.м. и в нем работает 50 человек (допустим операционный зал), то для обеспечения вентиляции необходима подача около 3000 м3/ч.

Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.

  1. Расчет воздухообмена по кратности:

    L = n * S * H, где

L — требуемая производительность приточной вентиляции, м3/ч;

n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;

S — площадь помещения, м2;

H — высота помещения, м;

  1. Расчет воздухообмена по количеству людей:

    L = N * Lнорм, где

L — требуемая производительность приточной вентиляции, м3/ч;

N — количество людей;

Lнорм — норма расхода воздуха на одного человека:

    • в состоянии покоя — 20 м3/ч;
    • работа в офисе — 40 м3/ч;
    • при физической нагрузке — 60 м3/ч.

Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках оборудования.

Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.

Типичные значения производительности систем вентиляции

  • Для квартир — от 100 до 600 м3/ч;
  • Для коттеджей — от 1000 до 3000 м3/ч;
  • Для офисов — от 1000 до 20000 м3/ч.

Мощность калорифера

Калорифер используется в приточной системе для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха.

Два последних параметра определяются СНиП. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоной и для России может составлять от -22°С и ниже (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов).

Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 40°С.

При этом приточная система желательно должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года, дабы не платить большие счета за электричество (если стоит электрический калорифер, возможно обустройство водяного калорифера).

При расчете мощности калорифера необходимо учитывать ограничения

  • Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.
  • Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле:

    I = P / U, где

I — максимальный потребляемый ток, А;

Р — мощность калорифера, Вт;

U — напряжение питание:

    • 220 В — для однофазного питания;
    • 660 В (3 × 220В) — для трехфазного питания.

В случае если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:

ΔT = 2,98 * P / L, где

ΔT — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;

Р — мощность калорифера, Вт;

L — производительность по воздуху, м3/ч.

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной калорифер).

Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров).

Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. Проводим аэродинамический расчет, находим внешнее давление сети воздуховодов.

От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. А межпотолочное пространство любят уменьшать и дизайнеры и вы, заказчик.

Поэтому при проектировании часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов. Для бытовых систем приточной вентиляции обычно используются гибкие воздуховоды сечением 160—250 мм и распределительные решетки размером 200×200 мм — 200×300 мм.

Помимо всего, осталось выполнить схему автоматики и всё – упрощенно система спроектирована!

Измерение расхода воздуха в помещениях

Для комфортной и надежной работы системы вентиляции и кондиционирования необходима их качественная настройка и постоянное техобслуживание.
Замеры скорости воздуха и его расхода могут проводиться как на вентиляционной входной решетке, так и прямо в воздуховоде. Для этого применяют различные контрольно-измерительные приборы.

Наиболее популярными типами таких приборов являются следующие:

  1. Крыльчатый анемометр. Измеряет скорость воздуха по скорости вращения крыльчатки прибора.
  2. Термоанемометр. Измеряет скорость воздуха в зависимости от скорости остывания датчика.
  3. Ультразвуковой трехмерный анемометр. Измеряет скорость воздуха по изменению частоты звука между контрольными точками
  4. Трубка Пито. В данном приборе применяется цифровой электрический манометр. С его помощью в заданной точке потока фиксируется разница между полным и статическим давлением.
  5. Балометр. Быстро определяет суммарный расход воздушной массы, концентрируя поток в точке замеров с заранее установленным сечением.

Измерение расхода воздуха на потолочных диффузорах

При пуско-наладке вентиляции необходимо сделать точные замеры объемного расхода воздуха. Наиболее надежный и цивилизованный метод —сделать замеры при помощи балометра. Верхний конфузор прикладывается к плоскости потолка, закрывая диффузор, и производятся замеры воздуха. Замеряется как приточный, так и вытяжной потоки. Этот прибор достаточно дорогой и редкий в России.

Некоторые замерщики пытаются вставлять зонд в пространство между ламелями диффузора и крутят им, пока не будет получен средний результат по расходу. Такой подход неверен, так как турбулентность потоков воздуха в пленуме очень велика и поэтому реальный расход не увидеть. Да и прямо по потоку зонд не выставить. Таким образом замерщик, вертящий зондом в решетке, создает только видимость работы и ничего больше.

Второй способ (по ГОСТ) предполагает наличие перед воздухораспределителем прямого участка воздуховода, на котором поток равномерный по сечению. Делают измерительные отверстия и через них делают замеры. Такая методика хоть и точна, но часто неуместна. Не везде есть прямые участки с двумя диаметрами до и шестью диаметрами после места возмущения потока, нужно постоянно лезть за подвесной потолок. Для подобной методики нужно несколько человек: один замеряет, второй стремянку держит, ну и так далее…

Поэтому, если нужно получить результат быстро и точно — то нужен специалист именно с балометром.

Измерение расхода воздуха на вентиляционной решетке

Замеры объемного расхода воздуха на решетке воздуховода производят, используя анемометр или термоанемометр с достаточно большой крыльчаткой.

При своем диаметре от 60 до 100 мм она вполне сопоставима с габаритами решетки.

Благодаря такому прибору можно достичь оптимального результата при минимальном количестве замеров.

Получить доступ для замеров в труднодоступных местах позволит также применение специального телескопического зонда (удлинителя зонда).

Измерение расхода воздуха в воздуховоде

Контрольно-измерительные операции в воздуховоде проводят через специальное рабочее отверстие в стенке трубы. Его диаметр должен точно соответствовать диаметру зонда.

Важно точно выбрать и место для замеров. Согласно ГОСТ, указанное отверстие следует просверлить на прямом отрезке воздуховода, длина которого должна составлять не менее 5 диаметров трубы. При этом само отверстие надо располагать таким образом, чтобы расстояние до него равнялось 3 диаметрам, а после него — 2 диаметрам воздуховода.

При измерении расхода воздуха внутри воздуховода рекомендуется применять крыльчатые анемометры с крыльчаткой небольшого диаметра (16-25 мм). 

В случае достаточно высокого расположения воздуховода в помещении (например, под потолком комнаты) рекомендуется воспользоваться зондом с телескопической ручкой либо удлинителем зонда.

Правила использования приборов

Использование контрольно-измерительных приборов для определения расхода воздуха должно осуществляться строго в номинальных температурных диапазонах, указанных в паспортах приборов.

Проводя замеры скорости и расхода воздуха, надо следить, чтобы чувствительный датчик зонда был всегда сориентирован точно навстречу воздушному потоку. Несоблюдение данного требования ведет к искажению результатов измерений. Причем искажения и неточности будут тем значительнее, чем больше будет степень отклонения датчика от идеального положения.

Правильный выбор и применение приборов позволяет специалистам составить объективную картину вентиляции помещений.

Цены на замеры воздухообмена вентиляции и других услуг компании можно узнать, позвонив нам по тел.+7(495) 108-07-93 или отправив электронный запрос нашим менеджерам. В подробностях контакты и схему проезда смотрите здесь.



К НАЧАЛУ СТРАНИЦЫ

Расчет воздуховодов, площади сечения, сопротивления сети, мощности калориферов

Расчет воздуховодов или проектирование систем вентиляции

В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от  загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции.  Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.

Расчет площади сечения воздуховодов

После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.

Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.

При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.

Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.

Площадь сечения воздуховода определяется по формуле:

Sс = L * 2,778 / V, где

 — расчетная площадь сечения воздуховода, см²;

L — расход воздуха через воздуховод, м³/ч;

V — скорость воздуха в воздуховоде, м/с;

2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).

Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.

Фактическая площадь сечения воздуховода определяется по формуле:

S = π * D² / 400 — для круглых воздуховодов,

S = A * B / 100 — для прямоугольных воздуховодов, где

S — фактическая площадь сечения воздуховода, см²;

D — диаметр круглого воздуховода, мм;

A и B — ширина и высота прямоугольного воздуховода, мм.

Расчет сопротивления сети воздуховодов

После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.

Для расчета сопротивления участка сети используется формула:

P=R*L+Ei*V2*Y/2

Где R – удельные потери давления на трение на участках сети

L – длина участка воздуховода (8 м)

Еi – сумма коэффициентов местных потерь на участке воздуховода

V – скорость воздуха на участке воздуховода, (2,8 м/с)

Y – плотность воздуха (принимаем 1,2 кг/м3).

Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.

В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:

№ уч.Gм3/чVм/сdммМПаRПа/мR*LПаЕiWПаРПа
1216052,85604,70,0180,092,19,879,961
2216032,85604,70,0180,0542,411,2811,334
3432034,563012,20,0330,0990,910,9811,079
4216032,85604,70,0180,0542,411,2811,334
5648026,763026,90,0770,1540,924,2124,264
6216032,85604,70,0180,0542,411,2811,334
7864038,963047,50,0770,5310,628,5029,031

Где М=V2 *Y/2, W=M*Ei

Pmax=P1+P3+P5+P7=74,334 Па.

Таким образом, потери давления в вентиляционной сети составляют Р=74,334 Па

Расчет мощности калорифера воздуховодов

После того как вы определили сопротивление сети, следует рассчитать требуемую мощность калорифера.

Для этого необходимо учитывать желаемую температуру воздуха на выходе и минимальную температуру наружного воздуха.

Температура воздуха, поступающего в помещение, должна быть выше 18°С. Минимальная температура наружного воздуха зависит от конкретных климатических условий. Например в Московской области она составляет примерно –26°С в зимний период. Таким образом, включенный на полную мощность калорифер должен иметь потенциал для нагрева воздуха на 44°С. Для квартирного помещения расчетная мощность калорифера, как правило, варьируется от 1 до 5 кВт, а для офисов этот показатель составляет 5–50 кВт.

Для более точного расчета используйте следующую формулу:

P = ΔT * L * Cv / 1000, где

Р  —  мощность калорифера, кВт;

ΔT — разность температур воздуха на выходе и входе калорифера,°С.

Для Москвы ΔT=44°С, для других регионов — определяется по СНиП;

L  —  производительность вентиляции, м³/ч.

Cv — объемная теплоемкость воздуха, равная 0,336 Вт·ч/м³/°С. Этот параметр зависит от давления, влажности и температуры воздуха, но в расчетах мы этим пренебрегаем.

Для получения более подробной информации, расчета площади, стоимости и заказа воздуховодов обращайтесь в нашу компанию.

Расчет скорости воздуха в воздуховоде



Расчет скорости воздуха в воздуховоде — Завод вентиляции Вентпром

+7 (863) 206-16-72

г. Ростов-на-Дону
ул. 1-й Конной Армии, 1


Введите исходные данные:

Расход воздуха, L

Выделить значения:

Скорость воздуха в воздуховоде круглого сечения

⌀ мм⌀ 100⌀ 125⌀ 160⌀ 200⌀ 250⌀ 280⌀ 315⌀ 355⌀ 400⌀ 450⌀ 500⌀ 560⌀ 630⌀ 710⌀ 800⌀ 900⌀ 1000⌀ 1120⌀ 1250⌀ 1400⌀ 1600
V, м/с

Скорость воздуха в воздуховоде прямоугольного сечения

AxB мм501001502002503003504004505005506006507007508008509009501000
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000

формула, габариты и подбор оборудования

Описание. Формулы. Калькулятор.

Расчёт сечения воздуховода для механической (принудительной) вентиляции?

prjamougolnij_vozduhovodkrugliy_vozduhovod

   Расчёт сечения прямоугольного и/ли круглого воздуховода осуществляется с помощью двух известных параметров: воздухообмен по помещению и скорость потока воздуха.

   Воздухообмен по помещению может быть заменён на производительность вентилятора. Производительность приточного или вытяжного вентиляторов указывается заводом изготовителем в паспортных данных изделия. При проектировании или предпроектной разработке, воздухообмен рассчитывается исходя из кратности. Кратность (количество раз замены полного объёма воздуха в помщении за 1 час) — это коэффициент из нормативной документации.

   Скорость потока в воздуховоде необходимо измерить, если это смонтированная система. А если проект находится в стадии разработки, то скорость потока в воздуховоде  задаётся самостоятельно. Скорость потока в воздуховоде не должна превышать 10 м/с.

Ниже приведены формулы и калькулятор на их основе,  с помощью которых вы сможете рассчитать сечение прямоугольных и круглых воздуховодов.

Формула для расчёта круглого сечения (диаметра) воздуховода

Формула для расчёта прямоугольного сечения  воздуховода

Калькулятор расчёта сечений прямоугольных и круглых воздуховодов через воздухообмен и скорость потока

Введите в поля параметры воздухообмена и требуемую скорость потока в воздуховоде

Задача организованного воздухообмена комнат жилого дома либо квартиры – вывести лишнюю влагу и отработанные газы, заместив свежим воздухом. Соответственно, для устройства вытяжки и притока нужно определить количество удаляемых воздушных масс – произвести расчет вентиляции отдельно по каждому помещению. Методики вычислений и нормы расхода воздуха принимаются исключительно по СНиП.

Санитарные требования нормативных документов

Минимальное количество воздуха, подаваемое и удаляемое из комнат коттеджа вентиляционной системой, регламентируется двумя основными документами:

  1. «Здания жилые многоквартирные» — СНиП 31-01-2003, пункт 9.
  2. «Отопление, вентиляция и кондиционирование» — СП 60.13330.2012, обязательное Приложение «К».

В первом документе изложены санитарно-гигиенические требования к воздухообмену в жилых помещениях многоквартирных домов. На этих данных и должен базироваться расчет вентиляции. Применяется 2 типа размерности – расход воздушной массы по объему за единицу времени (м³/ч) и часовая кратность.

Справка. Кратность воздухообмена выражается цифрой, обозначающей, сколько раз в течение 1 часа полностью обновится воздушная среда помещения.

Проветривание — примитивный способ обновления кислорода в жилище

В зависимости от назначения комнаты приточно-вытяжная вентиляция должна обеспечивать следующий расход либо количество обновлений воздушной смеси (кратность):

  • гостиная, детская, спальня – 1 раз в час;
  • кухня с электрической плитой – 60 м³/ч;
  • санузел, ванная, туалет – 25 м³/ч;
  • для топочной с твердотопливным котлом и кухни с газовой плитой требуется кратность 1 плюс 100 м³/ч в период работы оборудования;
  • котельная с теплогенератором, сжигающим природный газ, — трехкратное обновление плюс объем воздуха, потребного для горения;
  • кладовка, гардеробная и прочие подсобные помещения – кратность 0. 2;
  • сушильная либо постирочная – 90 м³/ч;
  • библиотека, рабочий кабинет – 0.5 раз в течение часа.

Примечание. СНиП предусматривает снижение нагрузки на общеобменную вентиляцию при неработающем оборудовании либо отсутствии людей. В жилых помещениях кратность уменьшается до 0.2, технических – до 0.5. Неизменным остается требование к комнатам, где расположены газоиспользующие установки, — ежечасное однократное обновление воздушной среды.

Выброс вредных газов за счет природной тяги — самый дешевый и простой способ обновлять воздух

В п. 9 документа подразумевается, что объем вытяжки равен величине притока. Требования СП 60.13330.2012 несколько проще и зависят от числа людей, находящихся в помещении 2 часа и более:

  1. Если на 1 проживающего приходится 20 м² и более площади квартиры, в комнаты обеспечивается свежий приток в объеме 30 м³/ч на 1 чел.
  2. Объем приточного воздуха считается по площади, когда на 1 жильца приходится меньше 20 квадратов. Соотношение такое: на 1 м² жилища подается 3 м³ притока.
  3. Если в квартире не предусмотрено проветривание (отсутствуют форточки и открывающиеся окна), на каждого проживающего необходимо подать 60 м³/ч чистой смеси независимо от квадратуры.

Перечисленные нормативные требования двух различных документов вовсе не противоречат друг другу. Изначально производительность вентиляционной общеобменной системы рассчитывается по СНиП 31-01-2003 «Жилые здания».

Результаты сверяются с требованиями Свода Правил «Вентиляция и кондиционирование» и при необходимости корректируются. Ниже мы разберем расчетный алгоритм на примере одноэтажного дома, показанного на чертеже.

Определение расхода воздуха по кратности

Данный типовой расчет приточно-вытяжной вентиляции выполняется отдельно для каждой комнаты квартиры либо загородного коттеджа. Чтобы выяснить расход воздушных масс по зданию в целом, полученные результаты суммируются. Используется довольно простая формула:

Расшифровка обозначений:

  • L – искомый объем приточного и вытяжного воздуха, м³/ч;
  • S – квадратура помещения, где рассчитывается вентиляция, м²;
  • h – высота потолков, м;
  • n – число обновлений воздушной среды комнаты в течение 1 часа (регламентируется СНиП).

Пример вычисления. Площадь гостиной одноэтажного здания с высотой потолков 3 м составляет 15.75 м². Согласно предписаниям СНиП 31-01-2003, кратность n для жилых помещений равна единице. Тогда часовой расход воздушной смеси составит L = 15.75 х 3 х 1 = 47.25 м³/ч.

Важный момент. Определение объема воздушной смеси, удаляемой из кухни с газовой плитой, зависит от устанавливаемого вентиляционного оборудования. Распространенная схема выглядит так: однократный обмен согласно нормативам обеспечивает система естественной вентиляции, а дополнительные 100 м³/ч выбрасывает бытовая кухонная вытяжка.

Аналогичные расчеты делаются по всем остальным комнатам, разрабатывается схема организации воздухообмена (естественной или принудительной) и определяются размеры вентиляционных каналов (смотрим пример ниже). Автоматизировать и ускорить процесс поможет расчетная программа.

Онлайн-калькулятор в помощь

Программа считает требуемое количество воздуха по кратности, регламентируемой СНиП. Просто выберите разновидность помещения и введите его габариты.

Примечание. Для котельных с газовым теплогенератором калькулятор учитывает только трехкратный обмен. Количество приточного воздуха, идущего на сжигание топлива, нужно прибавлять к результату дополнительно.

Выясняем воздухообмен по числу жильцов

Приложение «К» СП 60.13330.2012 предписывает производить расчёт вентиляции помещения по простейшей формуле:

Расшифруем обозначения представленной формулы:

  • L – искомая величина притока (вытяжки), м³/ч;
  • m – объем воздушной чистой смеси в расчете на 1 чел., указанный в таблице Приложения «К», м³/ч;
  • N – количество людей, постоянно находящихся в рассматриваемой комнате 2 часа в день и более.

Очередной пример. Резонно предположить, что в той же гостиной одноэтажного дома два члена семьи пребывают длительное время. Учитывая, что проветривание организовано и на каждого жильца приходится свыше 20 квадратов площади, параметр m принимается равным 30 м³/ч. Считаем количество притока: L = 30 х 2 = 60 м³/ч.

Важно. Заметьте, полученный результат больше значения, определенного по кратности (47.25 м³/ч). В дальнейшие расчеты следует включить цифру 60 м³/ч.

Результаты подсчетов лучше сразу нанести на планировку этажа здания

Если количество проживающих в квартире настолько велико, что каждому человеку отведено меньше 20 м² (в среднем), то представленную выше формулу использовать нельзя. Правила указывают: в данном случае площадь гостиной и других комнат следует умножить на 3 м³/ч. Поскольку общая квадратура жилища равна 91.5 м², расчетный объем вентиляционного воздуха составит 91.5 х 3 = 274.5 м³/ч.

В просторных залах с высокими потолками (от 3 м) обновление атмосферы считается двумя способами:

  1. Если в помещении часто пребывает большое число людей, вычисляйте кубатуру подаваемого воздуха по удельному показателю 30 м³/ч на 1 чел.
  2. Когда количество посетителей постоянно меняется, вводится понятие обслуживаемой зоны высотой 2 метра от пола. Определяете объем этого пространства (умножьте площадь на 2) и обеспечиваете требуемую нормами кратность, как описано в предыдущем разделе.

Пример расчета и обустройства вентиляции

За основу возьмем планировку частного дома внутренней площадью 91.5 м² и перекрытиями высотой 3 м, представленного выше на чертеже. Как рассчитать количество вытяжки / притока на здание целиком согласно методике СНиП:

  1. Объем удаленного воздуха из гостиной и спальни, имеющей равную квадратуру, составит 15.75 х 3 х 1 = 47.25 м³/ч.
  2. В детской комнате: 21 х 3 х 1 = 63 м³/ч.
  3. Кухня: 21 х 3 х 1 + 100 = 163 м³/ч.
  4. Санузел – 25 м³/ч.
  5. Итого 47.25 + 47.25 + 63 + 163 + 25 = 345.5 м³/ч.

Примечание. Воздушный обмен в прихожей и коридоре не нормируется.

Наружная схема подачи воздуха и выброса вредных газов из комнат загородного дома

Теперь проверим результаты на соответствие второму нормативному документу. Поскольку в доме проживает семья из 4 человек (2 взрослых + 2 детей), в гостиной, спальне и детской долго находятся по 2 чел. Пересчитаем воздухообмен в указанных комнатах по количеству людей: 2 х 30 = 60 м³/ч (в каждом помещении).

Объем вытяжки из детской удовлетворяет требованиям (63 куба в час), а вот значения для спальни и гостиной придется откорректировать. Двум человекам недостаточно 47.25 м³/ч, берем 60 кубов и снова пересчитываем общую величину воздухообмена: 60 + 60 + 63 + 163 + 25 = 371 м³/ч.

Не менее важно правильно распределить воздушные потоки в здании. В частных коттеджах принято устраивать системы естественной вентиляции – это значительно дешевле и проще монтажа электрических нагнетателей с воздуховодами. Добавим лишь один элемент принудительного удаления вредных газов – кухонную вытяжку.

Пример организация воздухообмена в одноэтажном дачном доме

Как правильно организовать естественное движение потоков:

  1. Приток во все жилые помещения обеспечим через автоматические клапаны, встроенные в оконный профиль либо прямо в наружную стену. Ведь стандартные металлопластиковые окна герметичны.
  2. В перегородке между кухней и санузлом устроим блок из трех вертикальных шахт, выходящих на кровлю.
  3. Под межкомнатными дверьми предусмотрим зазоры шириной до 1 см для прохода воздуха.
  4. Установим кухонную вытяжку и подключим к отдельному вертикальному каналу. Она возьмет на себя часть нагрузки – удалит 100 кубов отработанных газов за 1 час в процессе готовки пищи. Останется 371 — 100 = 271 м³/ч.
  5. Две шахты выведем решетками в санузел и кухню. Размеры труб и высоту рассчитаем в последнем разделе данного руководства.
  6. За счет естественной тяги, возникающей в двух каналах, воздух устремится из детской, спальни и зала в коридор, а дальше — к вытяжным решеткам.

Обратите внимание: свежие потоки, изображенные на планировке, направляются из комнат с чистой воздушной средой в более загрязненные зоны, затем выбрасываются наружу через шахты.

Подробнее об организации природной вентиляции смотрите на видео:

Вычисляем диаметры вентканалов

Дальнейшие расчеты несколько сложнее, поэтому каждый этап мы сопроводим примерами вычислений. Результатом станет диаметр и высота вентиляционных шахт нашего одноэтажного здания.

Весь объем вытяжного воздуха мы распределили на 3 канала: 100 м. куб. принудительно удаляет вытяжка на кухне в период включения плиты, оставшийся 271 кубометр уходит по двум одинаковым шахтам естественным образом. Расход через 1 воздуховод получится 271 / 2 = 135.5 м³/ч. Площадь сечения трубы определяется по формуле:

  • F – площадь поперечного сечения вентканала, м²;
  • L – расход вытяжки через шахту, м³/ч;
  • ʋ — скорость движения потока, м/с.

Справка. Скорость воздуха в каналах естественной вентиляции лежит в пределах 0.5—1.5 м/с. В качестве расчетного значения принимаем средний показатель – 1 м/с.

Как рассчитать сечение и диаметр одной трубы в примере:

  1. Находим размер поперечника в квадратных метрах F = 135. 5 / 3600 х 1 = 0.0378 м².
  2. Из школьной формулы площади круга определяем диаметр канала D = 0.22 м. Выбираем ближайший больший воздуховод из стандартного ряда – Ø225 мм.
  3. Если речь идет о заложенной внутрь стены кирпичной шахте, то под найденное сечение подойдет размер вентканала 140 х 270 мм (удачное совпадение, F = 0.0378 м. кв.).

Кирпичные шахты имеют строго фиксированные размеры — 14 х 14 и 27 х 14 см

Диаметр отводящей трубы под бытовую вытяжку считается аналогичным образом, только скорость потока, нагнетаемого вентилятором, принимается больше – 3 м/с. F = 100 / 3600 х 3 = 0.009 м² или Ø110 мм.

Подбираем высоту труб

Следующий шаг – определение силы тяги, возникающей внутри вытяжного блока при заданном перепаде высот. Параметр зовется располагаемым гравитационным давлением и выражается в Паскалях (Па). Расчетная формула:

  • p – гравитационное давление в канале, Па;
  • Н – перепад высот между выходом вентиляционной решетки и срезом вентканала над крышей, м;
  • ρвозд – плотность воздуха помещения, принимаем 1. 2 кг/м³ при домашней температуре +20 °С.

Методика расчета основана на подборе требуемой высоты. Вначале определитесь, на сколько вы готовы поднять трубы вытяжки над кровлей без ущерба внешнему виду здания, затем подставьте значение высоты в формулу.

Пример. Берем перепад высот 4 м и получаем давление тяги p = 9.81 х 4 (1.27 — 1.2) = 2.75 Па.

Теперь грядет сложнейший этап – аэродинамический расчет отводных каналов. Задача – выяснить сопротивление воздуховода потоку газов и сопоставить результат с располагаемым напором (2.75 Па). Если потеря давления окажется больше, трубу придется наращивать либо увеличивать проходной диаметр.

Аэродинамическое сопротивление воздуховода вычисляется по формуле:

  • Δp – общие потери давления в шахте;
  • R – удельное сопротивление трению проходящего потока, Па/м;
  • Н – высота канала, м;
  • ∑ξ – сумма коэффициентов местных сопротивлений;
  • Pv – давление динамическое, Па.

Покажем на примере, как считается величина сопротивления:

  1. Находим значение динамического давления по формуле Pv = 1. 2 х 1² / 2 = 0.6 Па.
  2.  Сопротивление от трения R находим по таблице, ориентируясь на показатели динамического напора 0.6 Па, скорости потока 1 м/с и диаметра воздухопровода 225 мм. R = 0.078 Па/м (обозначено зеленым кружочком).
  3. Местные сопротивления вытяжной шахты – это жалюзийная решетка и отвод кверху 90°. Коэффициенты ξ этих деталей – величины постоянные, равные 1.2 и 0.4 соответственно. Сумма ξ = 1.2 + 0.4 = 1.6.
  4. Окончательное вычисление: Δp = 0.078 Па/м х 4 м + 1.6 х 0.6 Па = 1.27 Па.

Теперь сравниваем расчетный напор, образующийся в воздухопроводе, и полученное сопротивление. Сила тяги p = 2.75 Па значительно больше, чем потери давления (сопротивление) Δp = 1.27 Па, шахта высотой 4 метра слишком высока, строить такую бессмысленно.

Поскольку цифры отличаются вдвое (грубо), укоротим вентканал до 2 м, снова произведем перерасчет:

  1. Располагаемое давление p = 9.81 х 2 (1.27 — 1.2) = 1.37 Па.
  2. Удельное сопротивление R и местные коэффициенты ξ остаются прежними.
  3. Δp = 0.078 Па/м х 2 м + 1.6 х 0.6 Па = 1.15 Па.

Напор природной тяги 1.37 Па превышает сопротивление системы Δp = 1.15 Па, значит, шахта двухметровой высоты станет исправно работать на естественную вытяжку и обеспечит нужный расход удаляемых газов.

Замечание. Укорачивать воздуховод до 1 м не стоит, соотношение изменится в другую сторону: p = 0.69 Па, Δp = 1.04 Па, силы тяги не хватит.

Канал вентиляции Ø225 мм можно разделить на 2 меньших трубы, но не по диаметру, а по сечению. Получаем 2 круглых вентканала 150—160 мм, как сделано на фото. Высота обеих шахт остается неизменной — 2 м.

Как упростить задачу — советы

Вы могли убедиться, что расчеты и организация воздухообмена в здании – вопросы довольно сложные. Мы постарались разъяснить методику в максимально доступной форме, но вычисления все равно выглядят громоздкими для рядового пользователя. Дадим несколько рекомендаций по упрощенному решению задачи:

  1. Первые 3 этапа придется пройти в любом случае – выяснить объем выбрасываемого воздуха, разработать схему движения потоков и посчитать диаметры вытяжных воздуховодов.
  2. Скорость потока принимайте не более 1 м/с и по ней определяйте сечение каналов. Аэродинамику одолевать необязательно — правильно рассчитайте диаметры и просто выведите воздухопроводы на высоту не менее 2 метров над заборными решетками.
  3. Внутри здания старайтесь использовать пластиковые трубы – благодаря гладким стенкам они практически не сопротивляются движению газов.
  4. Вентканалы, проложенные по холодному чердаку, обязательно утеплите.
  5. Выходы шахт не перекрывайте вентиляторами, как это принято делать в туалетах квартир. Крыльчатка не даст нормально функционировать природной вытяжке.

Для притока установите в помещениях регулируемые стеновые клапаны, избавьтесь от всех щелей, откуда холодный воздух может бесконтрольно проникать в дом.

Приточно вытяжные установки

Завод ВЕНТС выпускает огромный ассортимент приточно-вытяжных установок различных типоразмеров СЃ водяным Рё электрическим нагревателем.Подробнее…

Выставочный зал

Рндивидуальный РїРѕРґС…РѕРґ Рє каждому потребителю климатического оборудования

Склад готовой продукции

Завод имеет большие складские запасы вентиляционного оборудования . Подробнее…

Павильон продукции ВЕНТС

Продукция ВЕНТС представлена на выставке климатического оборудования

Сборочные площадя

Производственная площадка, сборка крышных вентиляторов

Рнжиниринг

Конструкторский цех разрабатывает и внедряет в производство новые модели климатического оборудования новых стандартов.

Продукция ВЕНТС

Вентс занимает лидирующие позиции в продаже вентиляционного оборудования в Украине

Новинки этого сезона

Новинки промышленной и бытовой вентиляции этого сезона

Роторный рекуператор

Роторный рекуператор новинка 2014 года с фреоновым охладителем

Содержание

Зачем нужен расчет диаметров воздухопроводов

Промышленная вентиляция проектируется с учетом нескольких фактов, на все существенное влияние оказывает сечение воздухопроводов.

  1. Кратность обмена воздуха. Во время расчетов принимаются во внимание особенности технологии, химический состав выделяемых вредных соединений, и габариты помещения.
  2. Шумность. Системы вентиляции не должны ухудшать условия труда по параметру шумности. Сечение и толщина подбирается таким образом, чтобы минимизировать шум воздушных потоков.
  3. Эффективность общей системы вентиляции. К одному магистральному воздухопроводу могут присоединяться несколько помещений. В каждом из них должны выдерживаться свои параметры вентиляции, а это во многом зависит от правильности выбора диаметров. Они выбираются с таким расчетом, чтобы размеры и возможности одного общего вентилятора могли обеспечивать регламентируемые режимы системы.
  4. Экономичность. Чем меньше размеры потерь энергии в воздуховодах, тем ниже потребление электрической энергии. Одновременно нужно принимать во внимание стоимость оборудования, выбирать экономически обоснованные габариты элементов.

Эффективная и экономичная система вентиляции требует сложных предварительных расчетов, заниматься этим могут только специалисты с высшим образованием. В настоящее время для промышленной вентиляции чаще всего используются пластиковые воздуховоды, они отвечают всем современным требованиям, дают возможность уменьшить не только габариты и себестоимость вентиляционной системы, но и затраты на ее обслуживание.

Пластиковая промышленная вентиляция

Расчет диаметра воздухопровода

Для расчетов габаритов нужно иметь исходные данные: максимально допустимую скорость движения воздушного потока и объем пропускаемого воздуха в единицу времени. Эти данные берутся из технических характеристик вентиляционной системы. Скорость движения воздуха оказывает влияние на шумность системы, а она строго контролируется санитарными государственными организациями. Объем пропускаемого воздуха должен отвечать параметрам вентиляторов и требуемой кратности обмена. Расчетная площадь воздухопровода определяется по формуле Sс = L × 2,778 / V, где:

Sс – площадь сечения воздуховода в квадратных сантиметрах; L – максимальная подача (расход) воздуха в м3/час; V – расчетная рабочая скорость воздушного потока в метрах за секунду без пиковых значений; 2,778 – коэффициент для перевода различных метрических чисел к значениям диаметра в квадратных сантиметрах.

Проектировщики вентиляционных систем учитывают следующие важные зависимости:

  1. При необходимости подачи одинакового объема воздуха уменьшение диаметра воздухопроводов приводит к возрастанию скорости воздушного потока. Такое явление имеет три негативных последствия. Первое – увеличение скорости движения воздуха увеличивает шумность, а этот параметр контролируются санитарными нормами и не может превышать допустимых значений. Второе – чем выше скорость движения воздуха, тем выше потери энергии, тем мощнее нужны вентиляторы для обеспечения заданных режимов функционирования системы, тем больше их размеры. Третье – небольшие габариты воздухопроводов не в состоянии правильно распределять потоки между различными помещениями.

Зависимость скорости воздуха от диаметра воздухопровода

  1. Неоправданное увеличение диаметров воздуховодов повышает цену вентиляционной системы, создает сложности во время монтажных работ. Большие размеры оказывают негативное влияние на стоимость обслуживания системы и себестоимость изготавливаемой продукции.

Чем меньше диаметр воздухопровода, тем быстрее скорость движения воздуха. А это не только повышает шумность и вибрацию, но и увеличивает показатели сопротивления воздушного потока. Соответственно, для обеспечения необходимой расчетной кратности обмена требуется устанавливать мощные вентиляторы, что увеличивает их размеры и экономически невыгодно при современных ценах на электрическую энергию.

При увеличении диаметров вышеописанные проблемы исчезают, но появляются новые – сложность монтажа и высокая стоимость габаритного оборудования, включая различную запорную и регулирующую арматуру. Кроме того, воздуховоды большого диаметра требуют много свободного места для установки, под них приходится проделывать отверстия в капитальных стенах и перегородках. Еще одна проблема – если они используются для обогрева помещений, то большие размеры воздуховода требуют увеличенных затрат на мероприятия по теплозащите, из-за чего дополнительно возрастает сметная стоимость системы.

В упрощенных вариантах расчетов принимается во внимание, что оптимальная скорость воздушных потоков должна быть в пределах 12–15 м/с, за счет этого удается несколько уменьшить их диаметр и толщину. В связи с тем, что магистральные воздуховоды в большинстве случаев прокладываются в специальных технических каналах, уровнем шумности можно пренебрегать. В ответвлениях, заходящих непосредственно в помещения, скорость воздуха уменьшается до 5–6 м/с, за счет чего уменьшается шумность. Объем воздуха берется из таблиц СаНиПина для каждого помещения в зависимости от его назначения габаритов.

Проблемы возникают с магистральными воздуховодами значительной протяженности на больших предприятиях или в системах с множеством ответвлений. К примеру, при нормируемом расходе воздуха 35000 м3/ч и скорости воздушного потока 8 м/с диаметр воздухопровода должен быть не менее 1,5 м толщиной более двух миллиметров, при увеличении скорости воздушного потока до 13 м/с габариты воздуховодов уменьшаются до 1 м.

Таблица потери давления

Потери давления

Диаметр ответвлений воздухопроводов рассчитывается с учетом требований к каждому помещению. Допускается использовать для них одинаковые размеры, а для изменения параметров воздуха устанавливать различные регулируемые дроссельные заслонки. Такие варианты вентиляционных систем позволяют в автоматическом режиме изменять показатели работы с учетом фактической ситуации. В помещениях не должно быть сквозняков, вызванных работой вентиляции. Создание благоприятного микроклимата достигается за счет правильного выбора места монтажа вентиляционных решеток и их линейных размеров.

Сами системы рассчитываются методом постоянных скоростей и методом потери давления. Исходя из этих данных, подбираются размеры, тип и мощность вентиляторов, рассчитывается их количество, планируются места установки, определяются размеры воздуховода.

Хотите узнать стоимость изделия?

Заполните наш опросный лист

ЗаполнитьСодержание статьи:вентиляция необходима любому зданию

Хотя для расчетов вентиляции существует множество программ, многие параметры все еще определяются по старинке, с помощью формул. Расчет нагрузки на вентиляцию, площади, мощности и параметров отдельных элементов производят после составления схемы и распределения оборудования.

Это сложная задача, которая под силу лишь профессионалам. Но если необходимо подсчитать площадь некоторых элементов вентиляции или сечение воздуховодов для небольшого коттеджа, реально справиться самостоятельно.

Расчет воздухообмена

движение потоков воздуха при разных схемах вентиляции

Если в помещении нет ядовитых выделений или их объем находится в допустимых пределах, воздухообмен или нагрузка на вентиляцию рассчитывается по формуле:

R=n * R1,

здесь R1 – потребность в воздухе одного сотрудника, в куб.мчас, n – количество постоянных сотрудников в помещении.

Если объем помещения на одного сотрудника составляет больше 40 кубометров и работает естественная вентиляция, не нужно рассчитывать воздухообмен.

Для помещений бытового, санитарного и подсобного назначения расчет вентиляции по вредностям производится на основании утвержденных норм кратности воздухообмена:

  • для административных зданий (вытяжка) – 1,5;
  • холлы (подача) – 2;
  • конференц-залы до 100 человек вместимостью (по подаче и вытяжке) – 3;
  • комнаты отдыха: приток 5, вытяжка 4.

Для производственных помещений, в которых постоянно или периодически в воздух выделяются опасные вещества, расчет вентиляции производится по вредностям.

Воздухообмен по вредностям (парам и газам) определяют по формуле:

Q=K(k2-k1),

здесь К – количество пара или газа, появляющееся в здании, в мгч, k2 – содержание пара или газа в оттоке, обычно величина равна ПДК, k1 – содержание газа или пара в приточке.

Разрешается концентрация вредностей в приточке до 13 от ПДК.

Для помещений с выделением избыточного тепла воздухообмен рассчитывается по формуле:

Q=Gизбc(tyxtn),

здесь Gизб – избыточное тепло, вытягиваемое наружу, измеряется в Вт, с – удельная теплоемкость по массе, с=1 кДж, tyx – температура удаляемого из помещения воздуха, tn – температура приточки.

Расчет тепловой нагрузки

диаграмма тепловой нагрузки от общеобменной вентиляции

Расчет тепловой нагрузки на вентиляцию осуществляется по формуле:

Qв= Vн * k * p * Cр(tвн – tнро),

в формуле расчета тепловой нагрузки на вентиляцию  – внешний объем строения в кубометрах, k – кратность воздухообмена, tвн – температура в здании средняя, в градусах Цельсия, tнро – температура воздуха снаружи, используемая при расчетах отопления, в градусах Цельсия, р – плотность воздуха, в кгкубометр, Ср – теплоемкость воздуха, в кДжкубометр Цельсия.

Если температура воздуха ниже tнро снижается кратность обмена воздуха, а показатель расхода тепла считается равной , постоянной величиной.

Если при расчете тепловой нагрузки на вентиляцию невозможно уменьшить кратность воздухообмена, расход тепла рассчитывают по температуре отопления.

Расход тепла на вентиляцию

Удельный годовой расход тепла на вентиляцию рассчитывается так:

Q=[Qo – (Qb + Qs) * n * E] * b * (1-E),

в формуле для расчета расхода тепла на вентиляцию Qo – общие теплопотери строения за сезон отопления, Qb – поступления тепла бытовые, Qs – поступления тепла снаружи (солнце), n – коэффициент тепловой инерции стен и перекрытий, E – понижающий коэффициент. Для индивидуальных отопительных систем 0,15, для центральных 0,1b – коэффициент теплопотерь:

  • 1,11 – для башенных строений;
  • 1,13 – для строений многосекционных и многоподъездных;
  • 1,07 – для строений с теплыми чердаками и подвалами.

Расчет диаметра воздуховодов

воздуховоды различного диаметра и формы сечения

Диаметры и сечения воздуховодов вентиляции рассчитывают после того, как составлена общая схема системы. При расчетах диаметров воздуховодов вентиляции учитывают следующие показатели:

  • Объем воздуха (приточного или вытяжного), который должен пройти через трубу за заданный промежуток времени, куб.мч;
  • Скорость движения воздуха. Если при расчетах вентиляционных труб скорость движения потока занижена, установят воздуховоды слишком большого сечения, что влечет дополнительные расходы. Завышенная скорость приводит к появлению вибраций, усилению аэродинамического гула и повышению мощности оборудования. Скорость движения на притоке 1,5 – 8 мсек, она меняется в зависимости от участка;
  • Материал вентиляционной трубы. При расчете диаметра этот показатель влияет на сопротивление стенок. Например, наиболее высокое сопротивление оказывает черная сталь с шероховатыми стенками. Поэтому расчетный диаметр воздуховода вентиляции придется немного увеличить по сравнению с нормами для пластика или нержавейки.
Вид участкаСкорость потока, мс
Магистральные трубопроводыОт 6 до 8
Боковые отводкиОт 4 до 5
Распределительные трубопроводыОт 1,5 до 2
Верхние приточкиОт 1 до 3
ВытяжкиОт 1,5 до 3

Таблица 1. Оптимальная скорость воздушного потока в трубах вентиляции.

Когда известна пропускная способность будущих воздуховодов, можно рассчитать сечение воздуховода вентиляции:

S=R3600v,

здесь v – скорость движения воздушного потока, в мс, R – расход воздуха, кубометрыч.

Число 3600 – временной коэффициент.

Зная площадь сечения, можно рассчитать диаметр круглого воздуховода вентиляции:

здесь: D – диаметр вентиляционной трубы, м.

Если необходимо рассчитать диаметр вентиляционной трубы прямоугольного сечения, ее показатели подбирают исходя из полученной площади сечения круглой трубы.

Расчет площади элементов вентиляции

Расчет площади вентиляции необходим в том случае, когда элементы изготавливаются из листового металла и нужно определить количество и стоимость материала.

Площадь вентиляции рассчитывают электронные калькуляторы или специальные программы, их во множестве можно найти в интернете.

Мы приведем несколько табличных значений наиболее популярных элементов вентиляции.

Диаметр, ммДлина, м
11,522,5
1000,30,50,60,8
1250,40,60,81
1600,50,811,3
2000,60,91,31,6
2500,81,21,62
2800,91,31,82,2
31511,522,5

Таблица 2. Площадь прямых воздуховодов круглого сечения.

Значение площади в м. кв. на пересечении горизонтальной и вертикальной строчки.

Диаметр, ммУгол, град
1530456090
1000,040,050,060,060,08
1250,050,060,080,090,12
1600,070,090,110,130,18
2000,10,130,160,190,26
2500,130,180,230,280,39
2800,150,220,280,350,47
3150,180,260,340,420,59

Таблица 3. Расчет площади отводов и полуотводов круглого сечения.

Расчет диффузоров и решеток

диффузор в промышленной вентиляции

Диффузоры используются для подачи или удаления воздуха из помещения. От правильности расчета количества и расположения диффузоров вентиляции зависит чистота и температура воздуха в каждом уголке помещения. Если установить диффузоров больше, увеличится давление в системе, а скорость падает.

Количество диффузоров вентиляции рассчитывается так:

N=R(2820 * v* D * D),

здесь R – пропускная способность, в куб.мчас, v – скорость воздуха, мс, D – диаметр одного диффузора в метрах.

Количество вентиляционных решеток можно рассчитать по формуле:

N=R(3600 * v * S),

здесь R – расход воздуха в куб.мчас, v – скорость воздуха в системе, мс, S – площадь сечения одной решетки, кв.м.

Расчет канального нагревателя

электрический канальный нагреватель

Расчет калорифера вентиляции электрического типа производится так:

P=v * 0,36 * ∆T

здесь v – объем пропускаемого через калорифер воздуха в куб.м.час, ∆T – разница между температурой воздуха снаружи и внутри, которую необходимо обеспечить калориферу.

Этот показатель варьирует в пределах 10 – 20, точная цифра устанавливается клиентом.

Расчет нагревателя для вентиляции начинается с вычисления фронтальной площади сечения:

Аф=R * p3600 * Vp,

здесь R – объем расхода приточки, куб.м.ч, p – плотность атмосферного воздуха, кгкуб.м, Vp – массовая скорость воздуха на участке.

Размер сечения необходим для определения габаритов нагревателя вентиляции. Если по расчету площадь сечения получается чересчур большой, необходимо рассмотреть вариант из каскада теплобменников с суммарной расчетной площадью.

Показатель массовой скорости определяется через фронтальную площадь теплообменников:

Vp=R * p3600 * Aф.факт

Для дальнейшего расчета калорифера вентиляции определяем нужное для согрева потока воздуха количества теплоты:

Q=0,278 * W * c (Tп-Tу),

здесь W – расход теплого воздуха, кгчас, Тп – температура приточного воздуха, градусы Цельсия, Ту – температура уличного воздуха, градусы Цельсия, c – удельная теплоемкость воздуха, постоянная величина 1,005.

Так как в приточных системах вентиляторы размещаются перед теплообменником, расход теплого воздуха вычисляем так:

W=R * p

Рассчитывая калорифер вентиляции, следует определить поверхность нагрева:

Апн=1,2Qk(Tс.т-Tс.в),

здесь k – коэффициент отдачи калорифером тепла, Tс.т – средняя температура теплоносителя, в градусах Цельсия, Tс.в – средняя температура приточки, 1,2 – коэффициент остывания.

Расчет вытесняющей вентиляции

схема движения потоков воздуха при вытесняющей вентиляции

При вытесняющей вентиляции в помещении оборудуются рассчитанные восходящие потоки воздуха в местах повышенного выделения тепла. Снизу подается прохладный чистый воздух, который постепенно поднимается и в верхней части помещения удаляется наружу вместе с избытком тепла или влаги.

При грамотном расчете вытесняющая вентиляция намного эффективнее перемешивающей в помещениях следующих типов:

  • залы для посетителей в заведениях общепита;
  • конференц-залы;
  • любые залы с высокими потолками;
  • ученические аудитории.

Рассчитанная вентиляция вытесняет менее эффективно если:

  • потолки ниже 2м 30 см;
  • главная проблема помещения – повышенное выделение тепла;
  • необходимо понизить температуру в помещениях с низкими потолками;
  • в зале мощные завихрения воздуха;
  • температура вредностей ниже, температуры воздуха в помещении.

Вытесняющая вентиляция рассчитывается исходя из того, что тепловая нагрузка на помещение составляет 65 – 70 Вткв.м, при расходе до 50 л на кубометр воздуха в час. Когда тепловые нагрузки выше, а расход ниже, необходимо организовывать перемешивающую систему, комбинированную с охлаждением сверху.

Видеоролик расскажет о компактной вентиляционной установке, работающей по принципу вытеснения:

Используемые источники:

  • https://torvent.ru/raschyot_ventilyacii/
  • https://otivent.com/raschet-ventiljacii-pomeshhenija
  • http://vent.vn.ua/propusknaya-sposobnost-ventilyatsionnykh-kanalov.html
  • https://plast-product.ru/vyibor-i-raschet-diametra-vozduhovoda/
  • https://strojdvor.ru/ventilyaciya/raschet-sistemy-ventilyacii-i-ee-otdelnyx-elementov-ploshhadi-diametrov-trub-parametrov-nagrevatelej-i-diffuzorov/

Скорость потока воздуха в вентиляции | Вентиляция

» Вентиляция

Определение скорости воздуха в воздуховоде

  • Порядок выполнения расчета
    • Подбор габаритов канала
    • Рекомендации по подбору в стесненных условиях

Для разработки будущей системы вентиляции немаловажно определиться с габаритами каналов, которые нужно проложить в тех или иных условиях. Во вновь строящемся здании это сделать проще, еще на стадии проектирования расположив все инженерные сети и технологическое оборудование в соответствии с нормативными документами. Другое дело, когда идет реконструкция или техническое перевооружение производства, тут требуется прокладка трасс воздуховодов с учетом существующих условий. Размеры каналов могут сыграть большую роль, а чтобы их правильно вычислить, необходимо принять оптимальную скорость движения воздуха.

Таблица скорость воздуха в воздуховоде.

Порядок выполнения расчета

Имеется еще один вариант устройства приточно-вытяжной вентиляции с механическим побуждением. Заключается он в том, чтобы использовать существующие воздухопроводы для новых вентиляционных установок. Тут также не обойтись без просчета скорости потока в этих старых трубопроводах на основании обследований и измерений.

Общая формула расчета величины скорости воздушных масс (V, м/с) происходит из формулы вычисления расхода приточного воздуха (L, м.куб/ч) в зависимости от размера площади сечения канала (F, м.кв.):

L = 3600 x F x V

Примечание: умножение на цифру 3600 необходимо для приведения в соответствие единиц времени (часы и секунды).

Процесс замера скорости воздуха.

Соответственно, формулу скорости потока можно представить в следующем виде:

Рассчитать площадь сечения существующего канала не составляет труда, а если ее нужно вычислить? Тогда и приходит на помощь способ подбора размеров воздуховода по рекомендуемым скоростям воздушных потоков. Изначально из трех параметров, участвующих в расчетах, на данном этапе четко должен быть известен один #8211; это количество воздушной смеси (L, м.куб/ч), необходимое для вентиляции того или иного помещения. Оно определяется в соответствии с нормативной базой в зависимости от назначения строения и его внутренних комнат. Выполняется расчет по числу людей в каждом помещении или по величине выделяющихся вредных веществ, излишков тепла или влаги. После этого нужно принять предварительное значение скорости воздуха в воздуховодах, сделать это можно воспользовавшись таблицей рекомендуемых скоростей.

Подбор габаритов канала

Выбрав вид воздухопровода и приняв расчетную скорость, можно определить сечение будущего канала по формулам, приведенным выше. Если планируется его изготовить круглой формы, то диаметр посчитать просто:

Расчет воздуховодов для равномерной раздачи воздуха.

  • D #8211; диаметр круглого канала в метрах;
  • F #8211; площадь его поперечного сечения в м.кв.;
  • π = 3.14

Далее необходимо обратиться к нормативным документам, которые определяют стандартные размеры воздуховодов круглой формы, и выбрать среди них ближайший к расчетному диаметр. Это делается для того, чтобы унифицировать производство элементов вентиляционных систем, номенклатура изделий которых и так достаточно велика. Понятно, что принятый по СНиП новый диаметр будет иметь и другое сечение, поэтому потребуется пересчитать его в обратной последовательности и выйти на значение действительной скорости потока воздушных масс в стандартном канале. При этом величина расхода L по-прежнему должна участвовать в вычислениях как константа. Таким методом просчитывается каждый отдельно взятый участок вентиляционной системы, а разбивка на участки производится по одному неизменному признаку #8211; количеству воздуха (расходу).

Если предполагается выполнить прокладку каналов прямоугольной конфигурации, то нужно подобрать размеры сторон такими, чтобы их произведение дало площадь сечения, которая была вычислена ранее. Нормативное ограничение к таким каналам одно:

Здесь параметры А и В #8211; размеры сторон в метрах. Простыми словами, нормами запрещается выполнять прямоугольные трубопроводы слишком узкими при большой высоте или чересчур низкими и широкими. На таких участках сопротивление потоку будет слишком большим и вызовет экономически необоснованные энергозатраты. Остальной просчет действительной скорости воздуха в воздуховоде производится так, как было описано выше.

Вернуться к оглавлению

Рекомендации по подбору в стесненных условиях

При разработке вентиляционных схем нужно руководствоваться одним правилом, которое просматривается и в таблице: скорость воздуха на каждом участке системы должна возрастать по мере приближения к вентиляционной установке. Если результаты вычислений дают показатели скоростей на каких-нибудь участках, не соответствующие данному правилу, то такая схема работать не будет или же в реальных условиях величины скорости потоков будут далеки от расчетных. Решить вопрос можно изменением размеров воздухопроводов на проблемных участках в сторону уменьшения или увеличения.

Формула определения воздухообмена по кратности.

При выполнении строительных работ по реконструкции или техническому перевооружению производственных зданий часто возникает ситуация, когда для устройства вентиляционных каналов просто не остается свободного места, поскольку насыщенность технологическим оборудованием и трубопроводами в помещении слишком велика. Тогда приходится прокладывать трассы в самых труднодоступных местах либо пересекать перекрытия и стены несколько раз. Все эти факторы могут значительно увеличить сопротивление таких участков. Получается замкнутый круг: чтобы пройти узкие места, нужно уменьшить размер и увеличить скорость, что резко повысит сопротивление участка. Уменьшить скорость воздуха нельзя, потому что тогда увеличатся габариты канала и он не пройдет где нужно. Выход из ситуации заключается в уменьшении габаритов и наращивании мощности вентилятора либо разветвлении воздухопровода на несколько параллельных рукавов.

Если возникает необходимость просчета существующей системы приточных или вытяжных каналов для использования их с другими параметрами производительности по воздуху, то вначале потребуется снять натурные замеры каждого участка воздуховода с разными габаритами. Затем, используя новые значения расходов воздуха, определить действительную скорость потока и сравнить полученные значения с таблицей. На практике допускается превышение рекомендованных скоростей на 3-5 м/с в магистральных, разводящих каналах и ответвлениях. В приточных и вытяжных устройствах увеличение скорости приводит к повышению уровня шума, поэтому недопустимо. Если эти условия соблюдаются, старые воздухопроводы пригодны к использованию после соответствующего их обслуживания.

Правильность всех выполненных расчетов вентиляционной системы покажут пусконаладочные работы, в процессе которых производятся замеры скорости

Информационный бюллетень

: Объяснение операции Warp Speed ​​

Какова цель?

Цель

Operation Warp Speed ​​- произвести и доставить 300 миллионов доз безопасных и эффективных вакцин с начальными дозами, доступными к январю 2021 года, в рамках более широкой стратегии по ускорению разработки, производства и распространения вакцин против COVID-19, терапевтических средств, и диагностика (все вместе известные как контрмеры).

Как будет достигнута цель?

Инвестируя и координируя разработку мер противодействия, OWS позволит быстрее доставлять пациентам такие контрмеры, как вакцина, при соблюдении стандартов безопасности и эффективности.

Кто работает над Operation Warp Speed?

OWS — это партнерство между компонентами Министерства здравоохранения и социальных служб (HHS), включая Центры по контролю и профилактике заболеваний (CDC), Национальные институты здравоохранения (NIH) и Управление перспективных биомедицинских исследований и разработок (BARDA). ) и Министерства обороны (DoD). OWS сотрудничает с частными фирмами и другими федеральными агентствами, включая Министерство сельского хозяйства, Министерство энергетики и Министерство по делам ветеранов.Он будет координировать существующие в масштабах HHS усилия, в том числе партнерство NIH по ускорению терапевтических вмешательств и вакцинации против COVID-19 (ACTIV), инициативу NIH по быстрому ускорению диагностики (RADx) и работу BARDA.

Какой план и что на данный момент произошло?

Развитие

Для ускорения разработки при сохранении стандартов безопасности и эффективности OWS выбирает наиболее многообещающих кандидатов на меры противодействия и оказывает скоординированную государственную поддержку.

Протоколы для демонстрации безопасности и эффективности согласовываются, что позволит проводить испытания быстрее, а протоколы испытаний будут контролироваться федеральным правительством, в отличие от традиционных государственно-частных партнерств, в которых фармацевтические компании определять свои собственные протоколы. Вместо того, чтобы исключать этапы из традиционных сроков разработки, этапы будут выполняться одновременно, например, начало производства вакцины в промышленных масштабах задолго до демонстрации эффективности и безопасности вакцины, как это обычно происходит.Это увеличивает финансовый риск, но не риск продукта.

Выберите действия для поддержки разработки вакцины OWS и терапевтических средств, включая:

марта

30 марта: HHS объявила о выделении 456 миллионов долларов на вакцину-кандидат Johnson & Johnson (Janssen). Клинические испытания фазы 1 начались в Бельгии 24 июля и в США 27 июля. Масштабное клиническое исследование фазы 3 компании Janssen началось 22 сентября 2020 года, что сделало их четвертым кандидатом на OWS, который начал клинические испытания фазы 3 в США.В испытании будет задействовано до 60 000 добровольцев в 215 центрах клинических исследований в США и за рубежом.


Апрель

16 апреля: HHS выделила 483 миллиона долларов на поддержку вакцины-кандидата Moderna, испытания которой начались 16 марта и получили ускоренное разрешение от FDA. Это соглашение было расширено 26 июля, чтобы включить дополнительные 472 миллиона долларов для поддержки поздних стадий клинических разработок, включая расширенное исследование фазы 3 вакцины мРНК компании, которое началось 27 июля.


мая

21 мая: HHS объявила о выделении до 1,2 миллиарда долларов в поддержку вакцины-кандидата AstraZeneca, разработанной совместно с Оксфордским университетом. Соглашение предусматривает предоставление по крайней мере 300 миллионов доз вакцины для Соединенных Штатов, причем первые дозы будут доставлены уже в октябре 2020 года, если продукт успешно получит лицензию FDA EUA или лицензию. 31 августа 2020 года началось крупномасштабное клиническое исследование фазы 3 AstraZeneca.


июля

, 7 июля: HHS объявила о выделении 450 миллионов долларов для поддержки крупномасштабного производства исследуемого препарата Regeneron против COVID-19 против вирусных антител, REGN-COV2.Это соглашение является первым из ряда наград OWS, направленных на поддержку потенциальных терапевтических препаратов на всем пути к производству. В рамках демонстрационного проекта производства дозы лекарства будут упакованы и готовы к немедленной отправке, если клинические испытания пройдут успешно и FDA предоставит EUA или лицензию.

7 июля: HHS объявила о выделении 1,6 миллиарда долларов для поддержки крупномасштабного производства вакцины-кандидата от Новавакс. Финансируя производственные мощности Novavax, федеральное правительство будет владеть 100 миллионами доз, которые, как ожидается, станут результатом демонстрационного проекта.

, 22 июля: HHS объявила о выделении Pfizer 1,95 миллиарда долларов на крупномасштабное производство и общенациональное распространение 100 миллионов доз вакцины-кандидата. Федеральному правительству будут принадлежать 100 миллионов доз вакцины, первоначально произведенной в результате этого соглашения, и Pfizer будет поставлять дозы в США, если продукт успешно получит FDA EUA или лицензию, как указано в руководстве FDA , после завершения демонстрация безопасности и эффективности в большом клиническом испытании фазы 3, которое началось 27 июля.

31 июля: HHS объявила о выделении примерно 2 миллиардов долларов на поддержку передовых разработок, включая клинические испытания и крупномасштабное производство, экспериментальных адъювантных вакцин Sanofi и GlaxoSmithKline (GSK). Финансируя производство, федеральное правительство будет владеть примерно 100 миллионами доз, которые, как ожидается, будут получены в результате демонстрационного проекта. Дозы вакцины с адъювантом могут быть использованы в клинических испытаниях или, если FDA разрешит использование, как указано в руководстве агентства , дозы будут распределены в рамках кампании вакцинации COVID-19.


августа

5 августа: HHS объявила о выделении примерно 1 миллиарда долларов на поддержку крупномасштабного производства и поставки исследовательской вакцины-кандидата Johnson & Johnson (Janssen). По условиям соглашения, правительство США будет владеть полученными 100 миллионами доз вакцины и будет иметь возможность приобрести больше. Исследовательская вакцина компании основана на технологии рекомбинантного аденовируса Janssen, AdVac, технологии, используемой для разработки и производства вакцины Janssen против Эболы при поддержке BARDA; Эта вакцина получила одобрение Европейской комиссии и использовалась в Демократической Республике Конго (ДРК) и Руанде во время вспышки Эболы в 2018–2020 годах, которая началась в ДРК.

11 августа: HHS объявила о выделении до 1,5 миллиарда долларов на поддержку крупномасштабного производства и поставки экспериментальной вакцины-кандидата Moderna. По условиям соглашения, правительство США будет владеть полученными 100 миллионами доз вакцины и будет иметь возможность приобрести больше. Вакцина, получившая название мРНК-1273, была разработана Модерна совместно с учеными из Национального института аллергии и инфекционных заболеваний (NIAID), входящего в состав Национальных институтов здравоохранения.NIAID продолжает поддерживать разработку вакцины, включая доклинические исследования и клинические испытания. Кроме того, BARDA поддержала фазы 2/3 клинических испытаний, расширение производства вакцины и другие мероприятия по разработке этой вакцины. Клинические испытания фазы 3, которые начались 27 июля, являются первым финансируемым государством клиническим испытанием фазы 3 вакцины COVID-19 в Соединенных Штатах.

, 23 августа: В рамках усилий агентства по борьбе с COVID-19 FDA выдало разрешение на экстренное использование (EUA) исследуемой плазмы выздоравливающих.Основываясь на доступных научных данных, FDA установило, что плазма выздоравливающих может быть эффективной для уменьшения тяжести или сокращения продолжительности заболевания COVID-19 у госпитализированных пациентов, и что известные и потенциальные преимущества продукта перевешивают известные и потенциальные риски. EUA разрешает распространение плазмы выздоравливающих в США, а также ее применение поставщиками медицинских услуг, при необходимости, для лечения подозреваемых или подтвержденных случаев COVID-19. Узнайте больше о EUA.


Октябрь

9 октября: HHS объявила о соглашении с AstraZeneca на позднюю стадию разработки и крупномасштабное производство исследуемого продукта компании по COVID-19 AZD7442, коктейля из двух моноклональных антител, который может помочь в лечении или профилактике COVID-19. Цель партнерства AstraZeneca с правительством США — разработать коктейль моноклональных антител, который может помочь предотвратить инфекцию. Эффективное моноклональное антитело, которое может предотвратить COVID-19, в частности, длительное и доставляемое внутримышечной инъекцией, может быть особенно полезным в определенных группах.Сюда входят люди с ослабленной иммунной функцией, люди старше 80 лет и люди, проходящие лечение, которое не позволяет им получить вакцину COVID-19.

28 октября: HHS объявила о соглашении на 375 миллионов долларов с Eli Lilly and Company о покупке первых доз исследуемого терапевтического антитела бамланивимаба против COVID-19, также известного как LY-CoV555. В настоящее время бамланивимаб проходит оценку в рамках клинических испытаний фазы 3, финансируемых Eli Lilly, в дополнение к клиническим испытаниям в рамках государственно-частного партнерства ACTIV.FDA рассматривает бамланивимаб как возможное средство лечения COVID-19 в амбулаторных условиях. Моноклональные антитела, имитирующие иммунную систему человека, связываются с определенными белками вируса, снижая способность вируса инфицировать клетки человека.


Ноябрь

10 ноября: HHS объявила о планах по распределению начальных доз исследуемого терапевтического моноклонального антитела Eli Lilly and Company, бамланивимаба, получившего разрешение на экстренное применение от FDA 9 ноября, для лечения не госпитализированных пациентов с легкими или умеренными подтвержденными случаями COVID-19.Система на основе данных обеспечит непрерывное справедливое и равноправное распространение этих новых продуктов. Еженедельные ассигнования для государственных и территориальных отделов здравоохранения будут пропорционально основаны на подтвержденных случаях COVID-19 в каждом штате и территории за последние семь дней на основе данных, которые больницы и отделы здравоохранения штата вводят в платформу сбора данных HHS Protect. Чтобы узнать, сколько бамланивимаба было выделено конкретным штатам, территориям и юрисдикциям, посетите панель распределения.Эта информационная панель будет обновляться каждую неделю распространения до тех пор, пока FDA не выпустит пересмотренный EUA, указывающий, что участие правительства США в процессе распределения и распределения больше не требуется.


Как было объявлено 15 мая, план разработки вакцины может быть изменен по мере выполнения работ:

  • Четырнадцать многообещающих кандидатов были выбраны из более чем 100 вакцин-кандидатов, находящихся в разработке, некоторые из них уже проходят клинические испытания с U.С. Государственная поддержка.
  • 14 вакцин-кандидатов сокращаются до примерно семи кандидатов, представляющих наиболее многообещающие кандидаты из целого ряда технологических вариантов (нуклеиновая кислота, вирусный вектор, белковая субъединица), которые будут проходить дальнейшее тестирование на ранних стадиях клинических испытаний.
  • Крупномасштабные рандомизированные испытания для демонстрации безопасности и эффективности будут продолжены для наиболее многообещающих кандидатов.

Производство

Федеральное правительство вкладывает средства в необходимые производственные мощности на свой страх и риск, вселяет в фирмы уверенность в том, что они могут активно инвестировать в разработку, и позволяет быстрее распространять вакцину, которая в конечном итоге может быть получена.Производственные мощности для отобранных кандидатов будут расширяться, пока они все еще находятся в стадии разработки, а не после утверждения или авторизации. Созданные производственные мощности будут использоваться для любой вакцины, которая в конечном итоге станет успешной, если это возможно, с учетом характера успешного продукта, независимо от того, какие фирмы создали этот потенциал.

Выберите действия для поддержки производственных усилий OWS, включая:

мая

Соглашения HHS от 21 мая, 16 апреля и 30 марта с AstraZeneca, Moderna и Johnson & Johnson соответственно включают инвестиции в производственные мощности.


июнь

, 1 июня: HHS объявила о заказе с Emergent BioSolutions для расширения возможностей отечественного производства потенциальной вакцины COVID-19, а также терапевтических средств на сумму около 628 миллионов долларов с использованием Центра инноваций в передовых отделах и производстве, поддерживаемого Emergent BARDA.


июля

, 27 июля: HHS объявила о заказе с Техасским университетом A&M и FUJIFILM на расширение возможностей отечественного производства и потенциала для потенциальной вакцины против COVID-19 стоимостью около 265 миллионов долларов с использованием другого CIADM, поддерживаемого BARDA.


августа

4 августа: Grand River Aseptic Manufacturing Inc., (GRAM) Гранд-Рапидс, штат Мичиган, заключила контракт с твердо фиксированной ценой на 160 миллионов долларов на внутренние производственные мощности по производству асептических и финишных материалов для критически важных вакцин и терапевтических средств в ответ на COVID-19 пандемия.


Октябрь

13 октября: HHS объявила о соглашении на 31 миллион долларов с Cytiva о расширении производственных мощностей компании для продуктов, необходимых для производства вакцин против COVID-19, таких как жидкие и сухие порошковые среды для культивирования клеток, буферы для клеточных культур, мешки для миксеров и биореакторы XDR. .Cytiva — крупный производитель фармацевтических расходных материалов и оборудования, а также основной поставщик многих компаний, которые в настоящее время работают с правительством США над разработкой вакцин против COVID-19. Это расширение мощностей поможет Cytiva удовлетворить спрос на расходные материалы и оборудование для вакцины COVID-19, не оказывая влияния на текущий объем производства.


Распределение

OWS и наши частные партнеры разрабатывают план по максимально быстрой и надежной доставке безопасного и эффективного продукта для американцев.Эксперты HHS возглавляют разработку вакцин, а эксперты Министерства обороны США сотрудничают с CDC и другими подразделениями HHS для координации поставок, производства и распределения вакцин.

Загрузить процесс распространения вакцины *

Выберите действия для поддержки усилий по распространению OWS, включая:

мая

, 12 мая: Министерство обороны и HHS объявили о контракте с ApiJect на 138 миллионов долларов на поставку более 100 миллионов предварительно заполненных шприцев для распространения в США к концу 2020 года, а также о развитии производственных мощностей для конечной производственной цели — более 500 миллионов. предварительно заполненных шприцев в 2021 году.


июнь

9 июня: HHS и Министерство обороны объявили о совместных усилиях по увеличению внутренних производственных мощностей для флаконов, которые могут потребоваться для вакцин и лечебных препаратов

11 июня: HHS объявила о выделении Corning 204 миллиона долларов на расширение внутренних производственных мощностей для производства примерно 164 миллионов флаконов Valor Glass в год, если это необходимо. Valor Glass обеспечивает химическую стойкость, сводя к минимуму загрязнение твердыми частицами. Специализированное стекло позволяет использовать методы быстрого наполнения и укупорки, которые могут повысить производительность производства на 50 процентов по сравнению с обычными линиями розлива, что, в свою очередь, может сократить общее время производства вакцин и препаратов.

11 июня: HHS объявила компании SiO2 Materials Science 143 миллиона долларов на наращивание мощностей по производству пластиковых контейнеров со стеклянным покрытием, которые можно использовать для лекарств и вакцин. Новые линии позволяют при необходимости производить дополнительно 120 миллионов флаконов в год.


августа

, 14 августа: HHS и Министерство обороны объявили, что McKesson Corporation будет центральным дистрибьютором будущих вакцин против COVID-19 и сопутствующих материалов, необходимых для проведения вакцинации от пандемии.CDC выполняет существующий вариант контракта с McKesson для поддержки распространения вакцины. Компания также распространяла вакцину против h2N1 во время пандемии h2N1 в 2009-2010 годах. Текущий контракт с McKesson, заключенный в рамках конкурентных торгов в 2016 году, включает возможность распределения вакцин в случае пандемии. В настоящее время ведется подробное планирование, чтобы обеспечить быстрое распространение, как только FDA разрешит одну или несколько вакцин. Как только эти решения будут приняты, Маккессон будет работать под руководством CDC по отправке вакцин против COVID-19 в административные центры.


Сентябрь

, 16 сентября: HHS и Министерство обороны опубликовали два документа, в которых излагается подробная стратегия администрации Трампа по максимально быстрой и надежной доставке безопасных и эффективных доз вакцины против COVID-19 американскому народу. Документы, разработанные HHS в сотрудничестве с Министерством обороны и Центрами по контролю и профилактике заболеваний (CDC), содержат обзор стратегического распределения, а также временные инструкции для государственных, племенных, территориальных и местных программ общественного здравоохранения и их партнеров о том, как планировать и внедрять вакцинацию против COVID-19 в пределах своей юрисдикции.


Октябрь

, 16 октября: HHS и Министерство обороны объявили о заключении соглашений с CVS и Walgreens о предоставлении и введении вакцины против COVID-19 жителям учреждений долгосрочного ухода (LTCF) по всей стране без личных расходов. Защита особо уязвимых американцев была важной частью работы администрации Трампа по борьбе с COVID-19, и жители СДУ могут входить в приоритетные группы для первоначальной вакцинации против COVID-19 до тех пор, пока не будет доступно достаточно доз для каждого американца, желающего пройти вакцинацию. привиты.Программа «Аптечное партнерство для долгосрочного ухода» обеспечивает полное управление процессом вакцинации от COVID-19. Это означает, что жители и сотрудники СДУ по всей стране смогут безопасно и эффективно пройти вакцинацию после того, как вакцины будут доступны и рекомендованы для них, если они не были ранее вакцинированы. Это также минимизирует нагрузку на пункты обслуживания СДУ и подчиненные ему отделы здравоохранения по обращению с вакцинами, их применению и выполнению требований к отчетности.


Ноябрь

, 12 ноября: HHS и Министерство обороны объявили о партнерстве с крупными сетевыми аптеками и сетями, которые представляют независимые аптеки и региональные сети.Благодаря партнерству с аптечными сетями эта программа охватывает примерно 60 процентов аптек в 50 штатах, округе Колумбия, Пуэрто-Рико и Виргинских островах США. Благодаря партнерству с администраторами сетей независимые аптеки и региональные сети также станут частью федеральной аптечной программы, что еще больше расширит доступ к вакцинам по всей стране, особенно в традиционно недостаточно обслуживаемых регионах.


Кто руководит операцией «Warp Speed»?

Секретарь HHS Алекс Азар и исполняющий обязанности министра обороны Кристофер Миллер контролируют OWS вместе с доктором Дж.Монсеф Слауи назначен главным советником, а генерал Густав Ф. Перна утвержден в качестве главного операционного директора. Чтобы позволить этим руководителям OWS сосредоточиться на оперативной работе, в ближайшем будущем в программе будут объявлены отдельные точки контакта, обладающие глубокими знаниями и вовлеченными в программу, для связи с Конгрессом и общественностью.

Что вы делаете, чтобы эта продукция стала доступной для американцев?

Администрация стремится как можно быстрее предоставить американскому народу бесплатные или недорогие меры противодействия COVID-19.Любая вакцина или терапевтические дозы, купленные на доллары налогоплательщиков США, будут предоставлены американцам бесплатно.

Как финансируется Operation Warp Speed?

Конгресс направил на эти усилия почти 10 миллиардов долларов за счет дополнительного финансирования, включая закон CARES. Конгресс также выделил другое гибкое финансирование. Почти 10 миллиардов долларов, специально предназначенных для этого, включают более 6,5 миллиардов долларов, предназначенных для разработки контрмер через BARDA, и 3 миллиарда долларов на исследования NIH.

Скачать версию для печати.

* Этот контент находится на рассмотрении согласно Разделу 508. Если вам нужна немедленная помощь в доступе к этому контенту, отправьте запрос по адресу [email protected].

Допустимая скорость

▷ Испанский перевод

велосидад разрешениеида (8)

Velocidad Admiral (5)

Максимально допустимое рабочее давление ▷ Французский перевод

МАКСИМАЛЬНОЕ ДОПУСТИМОЕ РАБОЧЕЕ ДАВЛЕНИЕ НА ФРАНЦУЗСКОМ ЯЗЫКЕ

Результатов: 18528,
Время: 0.1776

Максимальный

макси

оптимальный

максимизатор

optimale

Допустимое рабочее давление

допустимое давление

кондиционеров | Кондиционер с обратным циклом

Как ведущая компания в отрасли, Mitsubishi Electric имеет богатую историю производства и поставки передового электрического и электронного оборудования как для домашнего, так и для коммерческого использования.Наши усилия, направленные на то, чтобы сделать жизнь в помещении более комфортной, начались в 1921 году, когда был представлен наш первый электрический вентилятор, который мгновенно стал хитом. Спустя 10 лет мы начали производить кулеры, которые пользовались такой же популярностью.

Наша приверженность качественному обслуживанию, исследованиям и разработкам помогли нам занять лидирующие позиции на сегодняшнем рынке во многих областях, включая отопление, охлаждение и кондиционирование воздуха. Технологии Mitsubishi Electric сегодня обеспечивают контролируемый комфорт, где бы вы ни жили, работали и отдыхали.

Будь то постоянный обогрев или охлаждение дома или офиса, Mitsubishi Electric предлагает вам самые современные технологии, которые являются тихими, простыми в использовании, энергоэффективными и, прежде всего, надежными.

Одноместный номер

Сплит-система настенная

Линейка настенных кондиционеров сплит-системы с обратным циклом предназначена как для отдельных комнат, так и для больших жилых помещений открытой планировки. Ассортимент включает отмеченную наградами серию MSZ-AP.

Консоль напольная

Напольные кондиционеры Mitsubishi Electric серии MFZ-KJ с обратным циклом разработаны для стильной, ненавязчивой настенной установки на уровне пола. Они являются идеальным решением, когда пространство на стене ограничено.

На потолке

Нет стен для установки сплит-системы? Или ограниченное пространство на потолке для системы воздуховодов? Компактная потолочная кассетная система кондиционирования воздуха может стать идеальным решением.

Переборка

Наш потолочный блок имеет уменьшенную высоту монтажного пространства и впечатляюще тихую работу.Агрегаты устанавливаются в переборке и идеально подходят для спален и гостиных.

Многокомнатные

Мульти сплит-системы Mitsubishi Electric серии MXZ

позволяют подключать от 2 до 8 внутренних блоков к одному наружному блоку. Выбирайте из различных типов внутренних блоков (например, настенный, напольный, потолочный кассетный и т. Д.) В зависимости от задачи вашего дизайна.

Mini VRF Single Fan PUMY-SP позволяет подключать несколько внутренних блоков (до 12) к одному наружному блоку, все с индивидуальным управлением.Эти модели разработаны так, чтобы не бросаться в глаза при высоте наружного блока 981 мм.

Весь дом

Независимо от того, идет ли речь о постоянном обогреве и охлаждении дома или офиса, Mitsubishi Electric предлагает вам самые современные технологии, которые являются тихими, простыми в использовании, энергоэффективными и, прежде всего, надежными. Наши канальные системы кондиционирования идеально подходят для использования в нескольких помещениях и при необходимости могут включать дополнительный контроль зон.

Управляйте своим комфортом где угодно и когда угодно

Mitsubishi Electric Wi-Fi Control позволяет управлять кондиционером Mitsubishi Electric через смартфон, планшет или онлайн-аккаунт.Подключив дополнительный адаптер Wi-Fi Control к каждому внутреннему блоку, вы можете контролировать такие функции, как режим НАГРЕВА или ОХЛАЖДЕНИЯ, температуру и скорость вращения вентиляторов. Если у вас есть система воздуховодов с дополнительным контроллером зоны, вы можете управлять отдельными зонами. Узнайте больше о Mitsubishi Electric Wi-Fi Control, включая системные требования.

Умный кондиционер

Mitsubishi Electric Wi-Fi Control можно использовать в качестве интеллектуальной системы кондиционирования воздуха с помощью Amazon Alexa или Google Assistant.Если вы хотите установить температуру, включить или выключить кондиционер или услышать, на что настроен кондиционер, просто спросите Alexa или Google. Узнайте все, что вам нужно знать, чтобы включить голосовое управление с помощью кондиционера Mitsubishi Electric.

Удивительно доступные тепловые насосы для кондиционирования воздуха серии M обеспечивают значительную экономию в режиме обогрева по сравнению с более традиционными системами обогрева. Дополнительные функции, такие как Econo-Cool, позволяют точно направлять воздушный поток на пользователей, позволяя повысить заданную температуру на 2 ° C без потери комфорта и повышения энергоэффективности на 20%.

Достаточно гибкие, чтобы соответствовать ряду применений, серия M включает модели кондиционеров с мульти сплит системой, которые могут работать до восьми внутренних блоков на один наружный блок. Благодаря значительно увеличенной длине трубы и разнице в высоте по сравнению с предшественниками на R407c, новая серия M является чрезвычайно универсальной, помогая упростить применение системы.

Черные кондиционеры

Сплит-система кондиционирования воздуха Mitsubishi Electric включает модели, доступные в черном цвете.

Алмазные дилеры

Дилеры Mitsubishi Electric Diamond имеют опыт выбора системы кондиционирования воздуха подходящего размера для вашего дома.

Управление Wi-Fi

Эта инновационная технология позволяет подключить ваш домашний кондиционер Mitsubishi Electric High Wall или Floor к вашему смартфону, планшету или онлайн-аккаунту, что дает вам возможность полностью контролировать каждое устройство на ходу через подключение к Интернету.

Энергосберегающий кондиционер

Передовая инверторная технология Mitsubishi Electric обеспечивает высокоскоростное охлаждение и обогрев с дополнительной экономией энергии по сравнению с неинверторными моделями.

Сверхтихие кондиционеры

Очень тихая работа днем ​​и еще тише ночью.Серия MSZ-GE оснащена одними из самых тихих кондиционеров в отрасли — всего 19 дБ (A).

Широкий и длинный воздушный поток

Широкий и длинный потоки воздуха от специально разработанных горизонтальных лопастей обеспечивают оптимальное распределение температуры и комфорт, а также выталкивают воздух в большие жилые помещения.

Быстрая очистка дизайна

Для облегчения очистки уникальный дизайн Mitsubishi Electric Quick clean позволяет снимать переднюю панель и вентиляционные отверстия, обеспечивая открытый доступ, в том числе к вентилятору. Регулярная чистка внутреннего блока улучшает производительность, снижает потребление энергии и продлевает срок службы вашего кондиционера.

допустимое давление — это… Что такое допустимое давление?

  • Реле давления масла — Реле, которое указывает падение давления масла ниже минимально допустимого путем включения сигнальной лампы давления масла… Словарь автомобильных терминов

  • вакуумная техника — Введение всех процессов и физических измерений, выполняемых в условиях ниже нормального атмосферного давления. Процесс или физическое измерение обычно проводят в вакууме по одной из следующих причин: (1) для удаления… Универсалиума

  • Закон, преступность и обеспечение правопорядка — ▪ 2006 Введение Судебные процессы над бывшими главами государства У.S. Постановления Верховного суда по выдающимся делам и смертной казни, а также громкие дела против бывших руководителей крупных корпораций были главными правовыми и уголовными проблемами в 2005 году.…… Universalium

  • радиация — радиационная, прил. / ray dee ay sheuhn /, n. 1. Физика. а. процесс, в котором энергия излучается в виде частиц или волн. б. полный процесс, в котором энергия излучается одним телом, передается через промежуточную среду или пространство, и…… Universalium

  • Индия — / in dee euh /, n.1. Хинди, Бхарат. республика в Южной Азии: союз, состоящий из 25 государств и 7 союзных территорий; бывшая британская колония; независимость получила 15 августа 1947 г .; стала республикой в ​​составе Содружества Наций 26 января 1950 г.…… Универсалиум

  • Даты 2005 г. — ▪ 2006 г. Январь Это уникальный случай, когда людей, находящихся под оккупацией, просят провести свободные и справедливые выборы, когда они сами не свободны… Это важное внутреннее испытание, и я думаю, что это поворотный момент. точка.Палестинский законодатель Ханан…… Universalium

  • Лазерная безопасность — Типичный предупреждающий знак о лазерном излучении. Лазерная безопасность — это безопасное проектирование, использование и внедрение лазеров для сведения к минимуму риска лазерных аварий, особенно тех, которые связаны с травмами глаз. Поскольку даже относительно небольшое количество лазерного света может привести к…… Wikipedia

  • Экономические вопросы — ▪ 2006 Введение В 2005 году рост дефицита США, жесткая денежно-кредитная политика и повышение цен на нефть, вызванное ураганом в Мексиканском заливе, оказали сдерживающее влияние на мировую экономику и на США.