Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Состав стеклопластик: изделия, виды, в частности рулонный и листовой, его цена, плотность, технические характеристики, свойства, прочность, применение в строительстве

Содержание

О стеклопластике — просто. Применение и технологии


Стеклопластик — самый популярный материал тюнинговиков всего мира. Дело в том, что, в отличие от всех иных материалов, стеклопластиковые детали можно изготовить чуть ли не в гараже на коленках. Дерево, в принципе, также не требует дорогого оборудования и специальных помещений, но изготавливать бампер или крыло из дерева более чем странно.


Стекловата используется людьми с начала прошлого века. Стекловолокно появилось лишь в 40-х годах. Этот материал уже давно применяется при строительстве лодок. Стеклопластик — достаточно универсальный материал. Можно изготовить тоненькую декоративную накладку или бампер, которым можно будет снег во дворе разгребать. Были прецеденты, когда в автомобиль с кузовом, изготовленным из стеклопластика, врезались простые, «стальные» автомобили и результат был не в пользу последних. Конечно, речь идет о специальных деталях, где осуществляется специальное упрочнение, но в любом случае стеклопластиковые детали — достаточно крепкая штука.


Что же такое стеклопластик? Если просто, то этот материал представляет собой стекловолокно, пропитанное некой смолой. Смолы бывают разные, для разных условий работы и необходимых характеристик готового изделия. Есть смолы, которые застывают при комнатной температуре, а есть такие, которым необходим нагрев. Смола и специальный катализатор (отвердитель) тщательно смешиваются в определенной пропорции, и затем этим составом пропитывается полотно, состоящее из особых стекловолокон. Сама смола достаточно хрупкая штука, и именно стекловолокно придает ей необходимую прочность и гибкость. Для получения изделий из стекловолокна часто приходится изготавливать специальные матрицы, но об этом далее.


Очень важно правильно подобрать пропорции смолы и катализатора. Если переборщить с последним, то смола застынет раньше, чем вы сможете закончить работу. Если недолить, то смола будет сохнуть слишком долго.


МАТЕРИАЛЫ

Смола, в принципе, вещь стандартная, но смолы разных фирм могут довольно сильно отличаться друг от друга по качеству. На свойства смол и на их рабочие параметры довольно сильно влияют температурные характеристики помещения, в котором производятся работы, и его проветриваемость.


Порой для лучшего застывания матрицу с изделием помещают в специальную сушильную камеру. Это помогает значительно ускорить процесс получения готового изделия. Самые прочные изделия изготавливаются в автоклавах под большим давлением и высокой температурой.


Как было сказано выше, смолы — не столь крепкий материал, и стекловолокна выступают в качестве армирующего материала. Стекловолокно бывает различным и по толщине, и по структуре. Есть два основных типа: стекломат и стеклоткань. Стекломат состоит из хаотично расположенных волокон, а стеклоткань выглядит как обычная ткань. Наибольшее упрочнение дают различные марки стеклотканей. Стекломаты дают меньшую прочность, но они более легки в обработке и по сравнению со стеклотканью лучше повторяют форму матрицы.


Стекломат может быть очень тонким, воздушным (такой материал называют стек-ловуалью), а бывает толстым, как одеяло. Стекломаты различаются по толщине и плотности, но разделяют их по весу одного квадратного метра материала в граммах: 300, 450, 600, 900. Стекловуаль с плотностью 32 г/кв.м позволяет вывести поверхность очень высокой сложности, с большим количеством граней и резких переходов. Толстый мат (600 или 900) позволяет набрать толщину изделия и добиться необходимой прочности. Стоит отметить, что при создании толстых изделий работа проходит в несколько этапов. Выкладывается несколько листов для получения первого слоя и дается время на застывание. Затем дополнительно, уже на твердую поверхность, укладываются дополнительные листы мата для придания необходимой толщины. Если попытаться уложить сразу все слои, то велика вероятность, что готовое изделие покоробится, стянется.


Стеклоткани (иногда за характерное плетение их называют «рогожей») бывают разной толщины. Эти ткани также используются для придания жесткости и объема готовому изделию. Как и любая ткань, стеклоткань неодинаково работает при разнонаправленном растяжении. Поэтому для придания необходимой жесткости стеклоткань укладывается под разными углами. Качество стекловолокна также играет немаловажную роль. Оно должно хорошо пропитываться смолой и удерживать ее между волокнами.


Для придания изделиям с большими плоскостями прочности и стабильности, а также для снижения массы готового изделия применяются специальные вставки из нетканых материалов. Это материал из непрерывного полиэфирного волокна, содержащий в своей структуре микробаллоны. Он укладывается между несколькими слоями стекломата. Зачастую он вклеивается лишь армирующими полосками, а не большими полотнищами. К слову о прочности. Как это ни странно прозвучит, но чем меньше смолы в стекловолокне (при условии его полной пропитки и отсутствии пузырьков), тем прочнее будет готовое изделие и тем меньше окажется и его вес.


Часто можно услышать об автомобилях со стеклопластиковыми кузовными элементами, что они стойки к царапанью, так как окрашены в массе. Это не совсем так. Поцарапать их можно, но цвет сохранится. Происходит это потому, что при изготовлении деталей с качественной поверхностью поначалу в матрицу наносится декоративный слой гелькоута. Этот полиэфирный состав и освобождает изделия от дальнейшей покраски. Его можно подобрать по цвету или создать свой оттенок колеровочными составами. Кроме того, гелькоутный слой увеличивает срок службы изделия, защищает от воздействий окружающей среды и скрывает структуру стеклопластика. После того как гелькоут затвердел, укладывается стекловолокно и смола. Готовое изделие будет иметь ровную (зависит от качества матрицы), нужного цвета поверхность.


В этом процессе кроется один важный момент. Если слой гелькоута будет в одном месте слишком тонкий, то может случиться следующее: или в этом месте будет просвечивать структура стекловолокна, или гелькоут может вообще отойти и сморщиться. Поэтому крайне важно пользоваться правильными материалами и следовать технологии. Для равномерного нанесения гелькоута часто используют не кисти, а краскопульты. Так удается значительно сократить количество брака. Но для распыления гелькоут должен быть более жидким, чем для ручного нанесения.


МАКЕТ И МАТРИЦА

Для изготовления изделия из стеклопластика первое, что необходимо, — создать его макет. Собственно, макет нужен всегда, но при одноразовой работе иногда удается укладывать стеклоткань на временные распорки. Этот подход срабатывает только тогда, когда нет необходимости в создании качественной поверхности. К примеру, очень часто при изготовлении новых дверных панелей основу изготавливают из стеклопластика прямо на двери, защитив ее предварительно пленкой бумажного скотча, полиэтилена, воска и т. п. Плохое качество поверхности в данном случае мало кого волнует, так как затем на эту прочную стеклопластиковую корку клеится пористый материал, а на него кожа, ткань или что-то другое. Технология изготовления кузовных и декоративных изделий из стеклопластика и тех предметов, которые будут тиражироваться, несколько сложнее. Здесь не обойтись без макетирования и матрицирования.


Макет будущего изделия может быть изготовлен различными способами: фанера, пластилин, пенопласт и т. д. От того, насколько правильно сделан макет, будет зависеть качество будущих изделий. Более того, если необходимо, чтобы у детали, которая будет затем создаваться, была идеально ровная поверхность, над ее качеством придется поработать уже на макете. Чем более гладким и ровным будет макет, тем меньше работы потребуется потом, при изготовлении и доведении матрицы.


Еще до создания макета необходимо понять, можно ли изготовить деталь целиком или нет. Дело в том, что при работе со стеклопластиками и другими подобными материалами необходимо, чтобы готовую деталь после застывания можно было вытащить из матрицы, ничего не повредив при этом. Возможно, деталь будет иметь такую форму, что ее придется изготавливать из нескольких частей, а затем скреплять их друг с другом, но выклеить шар через угольное ушко вряд ли получится.


Матрица создается по макету. Это самый ответственный момент. Прежде всего макет вощится, т. е. покрывается тонким слоем воска. Эту процедуру можно сравнить с полировкой автомобиля. После того как макет подготовлен, на него наносится слой специального матричного гелькоута. Это покрытие в дальнейшем позволит вывести поверхность матрицы практически до зеркального блеска. Матричный гелькоут гуще, чем обычный, и ложится более толстым слоем.


После того как встанет этот слой, начинается укладывание стекломата. Сначала -тонкая стекловуаль. Она позволит точно повторить все изгибы и контуры макета. Далее желательно дать подсохнуть первому слою. Затем уже можно выложить еще несколько слоев более толстого мата, но сразу набирать толщину не стоит, иначе матрицу может повести (изогнуть и покоробить). При создании матриц на простые детали можно упростить процедуру. Тут главное — опыт.


Если матрица будет разъемной, то при ее изготовлении делаются специальные перегородки вокруг макета, разделяющие его на сегменты. Выложив основной, после его застывания перегородки вынимаются и, обработав кромки первого сегмента матрицы, выкладываются остальные. Для правильного позиционирования сегментов друг относительно друга в первом при формовании делаются специальные ямки. Когда будут формоваться следующие сегменты, эти ямки будут заполнены смолой и стекловолокном, и появятся бугорки. Эти пары и позволят при будущем использовании правильно скрепить различные части матрицы воедино. Для скрепления сегментов матрицы в ребрах всех отдельных частей сверлятся отверстия под крепежные болты. Для того чтобы матрица была прочной и хорошо держала форму, после ее изготовления, прежде чем вынуть макет, к матрице приформовывают ребра жесткости. В зависимости от ее размеров это может быть прочный стальной каркас или небольшие фанерные или деревянные ребра. Готовая матрица, если макет был изготовлен аккуратно, может и не потребовать дополнительной обработки, но зачастую приходится выводить поверхности, шлифовать и полировать матрицу до блеска. Только тогда можно получить идеальную деталь. А к кузовным элементам вообще нужно особое внимание.


Затем начинается долгий процесс вощения. Матрицу приходится тщательно натирать воском несколько раз с перерывами. Воск нужно не просто намазывать, а растирать до получения тонкой, гладкой, невидимой пленки. Если этого не сделать, то поверхность готового изделия будет не гладкой, а шершавой.


После, а порой и вместо вощения иногда используют специальные жидкости, которые, высыхая, создают пленочное покрытие, предотвращающее попадание смолы или гелькоута на матрицу, чего никак нельзя допускать. Как нельзя и царапать ее поверхность. В противном случае смола может «намертво» прирасти к матрице, и тогда процедуру шлифовки, полировки и вощения придется повторять снова. Порой используют особые составы, обработав которыми матрицу можно снимать с нее до 100 изделий, но старый добрый воск всегда остается самым понятным и надежным средством.


Процесс создания матрицы, описанный выше, является довольно распространенным вариантом, используемым в большинстве тюнинговых фирм, но это не означает, что нет иных способов. Существуют компьютерные технологии, станки с ЧПУ, позволяющие по виртуальной модели вырезать из любого материала любой макет или уже готовые пресс-форму или матрицу. Но это уже промышленный, не гаражный уровень.


Собственно, далее можно приступать к изготовлению деталей. Слой гелькоута в принципе не обязателен, но, во-первых, он придает более законченный вид готовому изделию, а будучи цветным, позволяет сэкономить на покраске или вообще от нее отказаться, а во-вторых, он защищает матрицу от стекловолокна, которое на самом деле очень даже абразивно, т. е. царапает.


ТЕХНОЛОГИИ

Технологий производства изделий из стекловолокна существует несколько. Стоит сразу оговориться, что эти методы используются и при работе с другими армирующими материалами, такими, как карбон, кевлар, другие тканые материалы и их сочетания.


Ручное (контактное) формование. Этот способ самый простой и дешевый (если не считать затрат на квалифицированную рабочую силу). Пропитка стекловолокна осуществляется валиком или кистью, которые должны быть стойкими к смолам. Волокно или сразу укладывается в форму, или уже после пропитки. Обработка стекловолокна разбивочными валиками способствует лучшему распределению смолы между волокнами. Затем укаточными валиками производят окончательную укатку стеклоткани, выдавливая пузырьки воздуха и равномерно распределяя смолу по всему объему. Крайне важно не допустить, чтобы под слоем стеклоткани оставались пузырьки воздуха. Если изделие застынет с таким браком, это место будет ослаблено вплоть до возможного сквозного продавливания. Такие брачки также могут помешать дальнейшей обработке изделия, потребовать его восстановления или полной замены. В любом случае будут затрачены дополнительные материалы, труд, а также деньги.


Ручной метод может быть несколько механизирован. Существуют смесители, подающие смолу с катализатором через валик, и иные приспособления. Но укатывать все равно приходится своими руками.


Достоинство ручного метода вполне очевидно: просто и дешево. Но любая экономия может иметь и обратную сторону. Качество готовых изделий очень сильно зависит от квалификации рабочих. И условия труда при таком подходе довольно вредные. Кроме того, очень сложно добиться большой производительности. Однако для небольших фирм и малых объемов работы этот метод самый подходящий.


Метод напыления рубленого ровинга. Этот подход куда более технологичен. В нем используется не стекловолокно, а стеклонить, которая подается в измельчитель специального пистолета, где рубится на короткие волокна. Затем пистолет «выплевывает» их вместе с порцией смолы и катализатора. В воздухе все смешивается и наносится на форму. Но после этой процедуры все равно массу необходимо прикатать, чтобы удалить пузырьки. Далее отвердевание происходит как обычно.


Такой способ выглядит очень заманчиво и просто. Казалось бы, стой и поливай из шланга. Но есть один существенный недостаток, из-за которого этот способ не столь популярен, — слишком большой расход смолы. Изделие получается очень тяжелым, и, так как волокна не переплетены друг с другом, механические свойства такого стеклопластика несколько хуже. Кроме того, к вредным парам смол подмешивается взвесь мелких частиц стекла от измельчителя, очень вредных для легких человека.


Метод намотки. Этот специфический метод предназначен для изготовления пустотелых круглых или овальных секционных компонентов, типа труб или резервуаров. Таким образом делаются парусные мачты, удочки, рамы велосипедов, глушители автомобилей и т. д. Стекловолокна пропускаются через ванну со смолой, затем через натяжные валики, служащие для натяжения волокна и удаления излишков смолы. Волокна наматываются на сердечник с необходимым сечением, угол намотки контролируется отношением скорости движения тележки к скорости вращения. Как намотка нитки на шпульку швейной машинки. В результате получаются крепкие и легкие изделия.


И достоинства, и недостатки этого метода очень близки. Им не сделать автомобильное крыло, но сделать мачту корабля или даже кардан другими способами не менее сложно.


Метод препрегов. В данном случае используются не отдельные смола и ткань, а так называемые препреги — предварительно пропитанная смолами стеклоткань. Стекловолокно предварительно пропитывается предката-лизированной смолой под высокой температурой и большим давлением. При низких температурах такие заготовки могут храниться недели и даже месяцы. При этом смола в пре-прегах находится в полутвердом состоянии. При формовании препреги укладываются в матрицу и закрываются вакуумным мешком. После нагрева до 120-180°С смола переходит в текучее состояние, и препрег под действием вакуума принимает нужную форму. При дальнейшем повышении температуры смола застывает.


Вся проблема этого метода в необходимости нагревательного оборудования, особенно автоклава. По этой причине изготавливать большие детали очень сложно. Но и плюсы очевидны. Использование вакуума позволяет значительно снизить вероятность появления воздушных пузырьков и существенно сократить долю смолы в готовом изделии.


Существуют и иные технологии — пултрузия, RFI, RTM и др. — практически на все случаи жизни. Выбор той или иной технологии зависит от необходимых объемов, сложности изделия и количества денег у организатора такого производства.


ВЫВОДЫ

Что дает стеклопластик? Прежде всего — вес. И хотя для создания по-настоящему крепких деталей порой приходится делать их толстыми, а это лишние килограммы, но, в отличие от стали или алюминия, стеклопластик способен возвращаться в исходную форму после ударов, не повлекших за собой разрушения элемента. И при ремонте деталей из стеклопластика понятие «кузов-ня» приобретает несколько иной смысл. Незначительные трещины могут быть заклеены изнутри смолой, с наложением листа стеклоткани или мата. Большие повреждения можно восстановить, уложив деталь снова в матрицу и восстановив по порядку нужный сегмент. Но такой способ может не дать хорошего качества, и велика вероятность повреждения матрицы, а этого никак нельзя допускать. Проще сделать новый элемент. Хотя стеклопластиковые детали можно восстанавливать и старым способом: шпаклевка, шпатель, шкурка и вода.


К недостаткам следует отнести высокую стоимость материалов. Но что самое плохое -большая токсичность. При работе с этим материалом крайне важно соблюдать технику безопасности. Желательно пользоваться респиратором, поскольку пары эпоксидных смол совсем небезвредны. Как бы то ни было, стеклопластик и по сей день остается самым популярным материалом мирового тюнинга. И хотя разнообразные кевлары, карбоны, пенополиуретаны, базальтовое волокно и т. п. начинают все сильнее его теснить, думается, что стеклопластик еще долго будет востребован.

Стеклопластик — свойства, характеристики, способы производства

Свойства и характеристики стеклопластика

Композитные материалы, состоящие из стеклянного наполнителя и синтетического полимерного связующего, называются стеклопластиками.

Наполнителем служат в основном стеклянные волокна в виде нитей, жгутов (ровингов), стеклотканей, стекломатов, рубленых волокон. Связующим — преимущественно термоактивные смолы (полиэфирные, феноло-формальдегидные, эпоксидные, полиимидные), а также термостойкие термопласты — ароматические полиамиды, полисульфоны, поликарбонаты. Низкоплавкие термопласты типа полиолефинов применяются относительно реже, так как имеют низкую адгезию к стекловолокнам и не позволяют реализовывать свойства стекловолокнистых наполнителей. Для стеклопластиков электротехнического назначения используют связующие с высокими диэлектрическими характеристиками, например, кремнийорганические и эпоксидные смолы.



Формы для лодок из стеклопластика

Изделия из стеклопластика могут быть любой формы, цвета и толщины: оконные профили, бассейны, купели, водные аттракционы и прочие гидросооружения, велосипеды, лодки, каноэ, рыболовные удилища, таксофонные кабины, кузовные панели для автомобилей и многое-многое другое.



Производство кабины фургона из стеклопластика (наш клиент компания MAB Food Trucks)



Лекция технолога «НСТ» по свойствам, технологии и оборудованию для стеклопластика

Характеристики стеклопластика

Стеклопластик обладает многими очень ценными свойствами, дающими ему право называться одним из материалов будущего:

Удельный вес стеклопластиков колеблется от 1,4 до 2,1 и в среднем составляет 1,7 г/см3. Напомним, что удельный вес металлов значительно выше, например, стали – 7,8, а меди — 8,9 г/см3. Даже удельный вес одного из наиболее легкого сплава, применяемого в технике, дуралюмина составляет 2,8 г/см3. Таким образом, удельный вес стеклопластика в среднем в пять-шесть раз меньше, чем у черных и цветных металлов, и в два раза меньше, чем у дуралюмина. Это делает стеклопластик особенно удобным для применения на транспорте. Экономия в весе на транспорте переходит в экономию энергии; кроме того, за счет уменьшения веса транспортных конструкций (самолетов, автомобилей, судов и т.п.) можно повысить их полезную нагрузку и за счет экономии топлива увеличить радиус действия.

  • Диэлектрические свойства

Стеклопластики являются прекрасными электроизоляционными материалам при использовании как переменного, так и постоянного тока.

  • Высокая коррозионная стойкость

Стеклопластики как диэлектрики совершенно не подвергаются электрохимической коррозии. Существует целый ряд смол, позволяющие получить стеклопластики стойкие к различным агрессивным средам, в том числе и к воздействию концентрированных кислот и щелочей.

  • Хороший внешний вид

Стеклопластики при изготовлении хорошо окрашиваются в любой цвет и при использовании стойких красителей могут сохранять его неограниченно долго. Прозрачность. На основе некоторых марок светопрозрачных смол можно изготовить стеклопластики, по оптическим свойствам немногим уступающим стеклу.

  • Высокие механические свойства

При своем небольшом удельном весе стеклопластик обладает высокими физико-механическими характеристиками. Используя некоторые смолы и определенные виды армирующих материалов, можно получить стеклопластик, по своим прочностным свойствам превосходящий некоторые сплавы цветных металлов и стали. Механические свойства стеклопластиков определяются преимущественно характеристиками наполнителя и прочностью связи его со связующим, а температуры переработки и эксплуатации стеклопластика — связующим. Наибольшей прочностью и жёсткостью обладают стеклопластики, содержащие ориентировано расположенные непрерывные волокна. Такие стеклопластики подразделяются на однонаправленные и перекрёстные; у стеклопластика первого типа волокна расположены взаимно параллельно, у стеклопластика второго типа — под заданным углом друг к другу, постоянным или переменным по изделию. Изменяя ориентацию волокон, можно в широких пределах регулировать механические свойства стеклопластиков. Большей изотропией механических свойств обладают стеклопластики с неориентированным расположением волокон: гранулированные и спутанно-волокнистые прессматериалы; материалы на основе рубленых волокон, нанесённых на форму методом напыления одновременно со связующим, и на основе холстов (матов).

  • Теплоизоляционные свойства

Стеклопластик относится к материалам с низкой теплопроводностью. Кроме того, можно значительно повысить теплоизоляционные свойства путем изготовления стеклопластиковой конструкции типа “сэндвич”, используя между слоями стеклопластика пористые материалы, например пенопласт. Благодаря своей низкой теплопроводности, стеклопластиковые сэндвичевые конструкции с успехом применяются в качестве теплоизоляционных материалов в промышленном строительстве, в судостроении, в вагоностроении и т.д.

  • Простота в изготовлении

Существует много способов изготовления стеклопластиковых изделий, большинство из которых требует минимальных вложений в оборудование. Например, для ручного формования потребуются только матрица и небольшой набор ручных инструментов (прикаточные валики, кисти, мерные сосуды и т.д.). Матрица может быть изготовлена практически из любого материала, начиная с дерева и заканчивая металлом. В настоящие время широкое распространение получили стеклопластиковые матрицы, которые имеют сравнительно небольшую стоимость и длительный срок службы.

Дополнительная информация по стеклопластикам:

Принципы создания высокопрочных ориентированных стеклопластиков.

Взаимодействие коротких хаотически армирующих стекловолокнистых элементов стеклопластика с полимерной матрицей

Масштабный эффект прочности у хаотически армированных стеклопластиков.

Полезная информация для изготовления стеклопластика

Стеклопластик это материал, состоящий из двух основных компонентов. Это материал из стекловолокна (стекловолокно, стеклоткань, стекломат), который служит для армирования (усиления) изделия, и смолы, являющейся связующим.

Материалы для изготовления стеклопластика.

Смола

Смола является связующим материалом и поэтому к выбору смолы надо подойти наиболее ответственно, особенно при отсутствии опыта изготовления стеклопластиковых изделий. Если при выборе стеклоткани или стекломата можно довольствоваться рекомендациями специалистов, т.к. этим выбором определяются, в основном, механические свойства готового изделия, то разная смола требует разных технологических процессов.

Для начинающих мы рекомендуем эпоксидную смолу. Эпоксидная смола менее привередлива в работе и имеет большее время застывания и поэтому у вас будет больше времени для исправления возможных ошибок. Эпоксидную смолу также рекомендуется использовать при ремонте изделий (лодок, бамперов…). Она хорошо склеивается с пластиком, деревом, металлом.

Полиэфирная смола, в основном, используется для изготовления цельных деталей

Хотим также напомнить, что на свойства смол и на их рабочие параметры довольно сильно влияют температурные характеристики помещения, в котором производятся работы, и его проветриваемость. Порой для лучшего застывания матрицу с изделием помещают в специальную сушильную камеру. Это помогает значительно ускорить процесс получения готового изделия. Самые прочные изделия изготавливаются в автоклавах под большим давлением и при высокой температуре.

Сама смола достаточно хрупкая, и именно стекломатериал придает ей необходимую прочность и гибкость

Материалы из стекловолокна

Для изготовления стеклопластиков используется стекловолокно, ровинг, стекломат, стеклоткань и другие стекломатериалы.

Самые распространенные это ровинг, стекломат и стеклоткань.

Ровинг

Ровинг это стекловолокно собранное в пучок и намотанное на бобину. Ровинг похож на некрученую стеклонить. Укладка ровинга производится специальным пистолетом, в который, во время работы, подается еще смола и катализатор.

Стекломат

Стекломат состоит из хаотично расположенных волокон, а стеклоткань выглядит как обычная ткань. Наибольшее упрочнение дают стеклоткани. Стекломаты дают меньшую прочность, но они более легки в обработке и по сравнению со стеклотканью лучше повторяют форму матрицы.

Стекломат может быть очень тонким, а бывает толстым, как одеяло. Стекломаты различаются по толщине и плотности, но разделяют их по весу одного квадратного метра материала в граммах: 300, 450, 600. Чем тоньше мат, тем более сложную поверхность он позволяет вывести, с большим количеством граней и резких переходов. Толстый мат (600 или 900) позволяет набрать толщину изделия и добиться необходимой прочности. При создании толстых изделий работа проходит в несколько этапов. Выкладывается несколько листов для получения первого слоя и дается время на застывание. Затем дополнительно, уже на твердую поверхность, укладываются дополнительные листы мата для придания необходимой толщины. Если попытаться уложить сразу все слои, то велика вероятность, что готовое изделие покоробится, стянется.

Стеклоткань

Стеклоткани бывают разной толщины. Стеклоткани также используются для придания жесткости и объема готовому изделию. Как и любая ткань, стеклоткань неодинаково работает при разнонаправленном растяжении. Поэтому для придания необходимой жесткости стеклоткань укладывается под разными углами. Стекловолокно в стеклоткани играет немаловажную роль. Оно должно хорошо пропитываться смолой и удерживать ее между волокнами. На это свойство пропитываемости в стеклоткани влияет наличие в ней и количество парафина. На ответственные изделия желательно выбирать стеклоткани без парафина. Парафин также можно выжигать перед применением.

К слову о прочности. Как это ни странно прозвучит, но чем меньше смолы в стекловолокне (при условии его полной пропитки и отсутствии пузырьков), тем прочнее будет готовое изделие и тем меньше окажется и его вес.

Гелькоут (gelcoat)

Для придания цвета готовой детали , а также для защиты от внешних воздействий используется особый материал гелькоут (gelcoat – гелевое покрытие). Можно сказать, что гелькоут это та-же смола, но с добавлением красителя. Его можно подобрать по цвету или создать свой оттенок колеровочными составами. Кроме того, слой гелькоута увеличивает срок службы изделия, защищает от воздействий окружающей среды и скрывает структуру стеклопластика. Готовое изделие будет иметь ровную (зависит от качества матрицы) поверхность, нужного цвета.

Гелькоуты бывают внутренними и внешними (topcoat).

Внутренний гелькоут наносится первым слоем в матрицу. После того как гелькоут затвердел, укладывается стекловолокно и смола. В этом процессе кроется один важный момент. Если слой гелькута будет в одном месте слишком тонкий, то может случиться следующее: или в этом месте будет просвечивать структура стекловолокна, или гелькоут может вообще отойти и сморщиться. Поэтому крайне важно пользоваться правильными материалами и следовать технологии. Для равномерного нанесения гелькоута часто используют не кисти, а краскопульты. Так удается значительно сократить количество брака и уменьшить расход материала. Но для распыления гелькоут должен быть более жидким, чем для ручного нанесения. В настоящее время в продаже имеются готовые гелькоуты для нанесения кистью и для напыления.

Внешний гелькоут (topcoat) наносится после того, как изделие вынули из матрицы. Здесь он выполняет роль краски. Благодаря присутствию в составе топкоута парафина поверхность после отверждения не остается липкой, хорошо шкурится и полируется. Топкоут можно изготовить самим на базе гелькоута или смолы, добавив раствор парафина в стироле.

Макет и матрица

Для изготовления изделия из стеклопластика первое, что необходимо, – создать его макет. В некоторых случаях макетом может являться уже существующее изделие, которое Вы хотите размножить. Например: бампер автомобиля. Для еще не существующих изделий макет может быть изготовлен различными способами: фанера, пластилин, пенопласт и т. д. От того, насколько правильно сделан макет, будет зависеть качество будущих изделий. Более того, если необходимо, чтобы у детали, которая будет затем создаваться, была идеально ровная поверхность, над ее качеством придется поработать уже на макете. Чем более гладким и ровным будет макет, тем меньше работы потребуется потом, при изготовлении и доведении матрицы.

Еще до создания макета необходимо понять, можно ли изготовить деталь целиком или нет. Дело в том, что при работе со стеклопластиками и другими подобными материалами необходимо, чтобы готовую деталь после застывания можно было вытащить из матрицы, ничего не повредив при этом. Возможно, деталь будет иметь такую форму, что ее придется изготавливать из нескольких частей, а затем скреплять их друг с другом.

Матрица создается по макету. Это самый ответственный момент. Прежде всего макет покрывается тонким слоем воска. Эту процедуру можно сравнить с полировкой автомобиля. После того как макет подготовлен, на него наносится слой специального матричного гелькоута. Это покрытие в дальнейшем позволит вывести поверхность матрицы практически до зеркального блеска. Матричный гелькоут гуще, чем обычный, и ложится более толстым слоем.

После того как встанет этот слой, начинается укладывание стекломатериала. Сначала более тонкого (стекловуаль, …). Он позволит точно повторить все изгибы и контуры макета. Далее желательно дать подсохнуть первому слою. Затем уже можно выложить еще несколько слоев более толстого материала (мат, стеклоткань), но сразу набирать толщину не стоит, иначе матрицу может повести (изогнуть и покоробить). При создании матриц на простые детали можно упростить процедуру.

Если матрица будет разъемной, то при ее изготовлении делаются специальные перегородки вокруг макета, разделяющие его на сегменты. Выложив основной, после его застывания перегородки вынимаются и, обработав кромки первого сегмента матрицы, выкладываются остальные. Для правильного позиционирования сегментов друг относительно друга в первом при формовании делаются специальные ямки. Когда будут формоваться следующие сегменты, эти ямки будут заполнены смолой и стекловолокном, и появятся бугорки. Эти пары и позволят при будущем использовании правильно скрепить различные части матрицы воедино. Для скрепления сегментов матрицы в ребрах всех отдельных частей сверлятся отверстия под крепежные болты.

Для того чтобы матрица была прочной и хорошо держала форму, после ее изготовления, прежде чем вынуть макет, к матрице приформовывают ребра жесткости. В зависимости от ее размеров это может быть прочный стальной каркас или небольшие фанерные или деревянные ребра.

Готовая матрица, если макет был изготовлен аккуратно, может и не потребовать дополнительной обработки, но зачастую приходится выводить поверхности, шлифовать и полировать матрицу до блеска. Только тогда можно получить идеальную деталь. А к кузовным элементам вообще нужно особое внимание.

Затем начинается долгий процесс вощения. Матрицу приходится тщательно натирать воском несколько раз с перерывами. Воск нужно не просто намазывать, а растирать до получения тонкой, гладкой, невидимой пленки. Если этого не сделать, то поверхность готового изделия будет не гладкой, а шершавой.

После, а порой и вместо вощения иногда используют специальные жидкости, которые, высыхая, создают пленочное покрытие, предотвращающее попадание смолы или гелькоута на матрицу, чего никак нельзя допускать. Как нельзя и царапать ее поверхность. В противном случае смола может намертво прирасти к матрице, и тогда процедуру шлифовки, полировки и вощения придется повторять снова. Порой используют особые составы, обработав которыми матрицу можно снимать с нее до 100 изделий, но старый добрый воск всегда остается самым понятным и надежным средством.

Процесс создания матрицы, описанный выше, является довольно распространенным вариантом, используемым в большинстве фирм, но существуют и другие, более сложные технологии.

Собственно, далее можно приступать к изготовлению деталей. Слой гелькоута в принципе не обязателен, но, во-первых, он придает более законченный вид готовому изделию, а будучи цветным, позволяет сэкономить на покраске или вообще от нее отказаться, а во-вторых, он защищает матрицу от стекловолокна, которое на самом деле очень даже абразивно, т. е. царапает.

Технологии

Технологий производства изделий из стекловолокна существует несколько. Стоит сразу оговориться, что эти методы используются и при работе с другими армирующими материалами, такими, как карбон, кевлар, другие тканые материалы и их сочетания.

Ручное (контактное) формование. Этот способ самый простой и дешевый (если не считать затрат на квалифицированную рабочую силу). Пропитка стекловолокна осуществляется валиком или кистью, которые должны быть стойкими к смолам. Волокно или сразу укладывается в форму, или уже после пропитки. Обработка стекловолокна разбивочными валиками способствует лучшему распределению смолы между волокнами. Затем укаточными валиками производят окончательную укатку стеклоткани, выдавливая пузырьки воздуха и равномерно распределяя смолу по всему объему. Крайне важно не допустить, чтобы под слоем стеклоткани оставались пузырьки воздуха. Если изделие застынет с таким браком, это место будет ослаблено вплоть до возможного сквозного продавливания. Такие брачки также могут помешать дальнейшей обработке изделия, потребовать его восстановления или полной замены. В любом случае будут затрачены дополнительные материалы, труд, а также деньги.

Ручной метод может быть несколько механизирован. Существуют смесители, подающие смолу с катализатором через валик, и иные приспособления. Но укатывать все равно приходится своими руками.

Достоинство ручного метода вполне очевидно: просто и дешево. Но любая экономия может иметь и обратную сторону. Качество готовых изделий очень сильно зависит от квалификации рабочих. И условия труда при таком подходе довольно вредные. Кроме того, очень сложно добиться большой производительности. Однако для небольших фирм и малых объемов работы этот метод самый подходящий.

Метод напыления рубленого ровинга. Этот подход куда более технологичен. В нем используется не стекловолокно, а стеклонить, которая подается в измельчитель специального пистолета, где рубится на короткие волокна. Затем пистолет «выплевывает» их вместе с порцией смолы и катализатора. В воздухе все смешивается и наносится на форму. Но после этой процедуры все равно массу необходимо прикатать, чтобы удалить пузырьки. Далее отвердевание происходит как обычно.

Такой способ выглядит очень заманчиво и просто. Казалось бы, стой и поливай из шланга. Но есть один существенный недостаток, из-за которого этот способ не столь популярен, – слишком большой расход смолы. Изделие получается очень тяжелым, и, так как волокна не переплетены друг с другом, механические свойства такого стеклопластика несколько хуже. Кроме того, к вредным парам смол подмешивается взвесь мелких частиц стекла от измельчителя, очень вредных для легких человека.

Метод намотки. Этот специфический метод предназначен для изготовления пустотелых круглых или овальных секционных компонентов, типа труб или резервуаров. Таким образом делаются парусные мачты, удочки, рамы велосипедов, глушители автомобилей и т. д. Стекловолокна пропускаются через ванну со смолой, затем через натяжные валики, служащие для натяжения волокна и удаления излишков смолы. Волокна наматываются на сердечник с необходимым сечением, угол намотки контролируется отношением скорости движения тележки к скорости вращения. Как намотка нитки на шпульку швейной машинки. В результате получаются крепкие и легкие изделия.

Метод препрегов. В данном случае используются не отдельные смола и ткань, а так называемые препреги – предварительно пропитанная смолами стеклоткань. Стекловолокно предварительно пропитывается предкатализированной смолой под высокой температурой и большим давлением. При низких температурах такие заготовки могут храниться недели и даже месяцы. При этом смола в препрегах находится в полутвердом состоянии. При формовании препреги укладываются в матрицу и закрываются вакуумным мешком. После нагрева до 120 -1800°C смола переходит в текучее состояние, и препрег под действием вакуума принимает нужную форму. При дальнейшем повышении температуры смола застывает.

Вся проблема этого метода в необходимости нагревательного оборудования, особенно автоклава. По этой причине изготавливать большие детали очень сложно. Но и плюсы очевидны. Использование вакуума позволяет значительно снизить вероятность появления воздушных пузырьков и существенно сократить долю смолы в готовом изделии.

Существуют и иные технологии – пултрузия, RFI, RTM и др. – практически на все случаи жизни. Выбор той или иной технологии зависит от необходимых объемов, сложности изделия и количества денег.

маты, плиты, ткань, рубленый материал, рулоны, панели

Фото 1Неорганическое стекловолокно – это популярный многофункциональный материал, применяемый в различных сферах деятельности человека.

Стекловолоконная продукция отлично зарекомендовала себя как утеплитель для стен и пола,ее используют для отделки помещений самого разного назначения.

Из него производится разнообразная строительная, промышленная и другая продукция.

Интересен материал и тем, что может производиться из вторичного сырья.

Технологический процесс получения стекловолокна довольно прост.

Древние жители Египта, которые первыми выплавили стекло из смеси песка, извести и соды, могли получать стеклянные волокна, но промышленную технологию производства стекловолокна изобрел Джон Плаер в далеком 1870 году.

С тех пор производство этого материала совершенствовалось с каждым годом и его стали использовать при изготовлении огромного ассортимента изделий.

В этой статье мы рассмотрим свойства и характеристики стекловолокна из стекольного боя, области его применения и виды продукции, которые изготавливают из этого материала.

Из чего делают стеклянные нити?

Фото 2Классический технологический процесс получения стекловолокна основан на выдувании стеклянных нитей из расплавленной при высокой в 1400 °C температуре смеси кварцевого песка, соды, извести и других специальных добавок.

Полученное жидкое стекло раздувается паром при выбросе из центрифуги или продавливается через фильеры (специальные платиновые сита с микроотверстиями) и на следующем этапе охлаждается.

При использовании центрифуг конечным продуктом является стекловата, а при применении фильеров — стеклянные нити, которые в дальнейшем идут на изготовление разнообразной продукции.

Возможность получения стеклянных волокон была открыта совершенно случайно. Авария на воздухопроводе привела к попаданию в расплав стекла струи воздуха под давлением, что привело к появлению стеклянных нитей. Этот факт и способствовал изобретению технологии производства стекловолокна.

Описанный выше техпроцесс получения стекловолокна является классическим из исходного природного сырья. Но эту же продукцию можно получать и из отходов стекла.

Рециклинг стеклянных изделий позволяет значительно снизить себестоимость конечного продукта, что дает конкурентные преимущества производителю, выбравшему такой способ производства стекловолокна.

Технология производства в этом случае практически не отличается от вышеприведенной, только вместо смеси природных компонентов плавится отсортированный бой стекла с соответствующими присадками.

Количество стеклянного боя в исходном сырье для производства стекловолокна может составлять до 90% общего объема. Это открывает широкие возможности для организации бизнеса по изготовлению стекловолокна на основе отходов стекла.

Фото 3

Свойства и характеристики

Использование стекловолокна в промышленности и строительстве обусловлено его отличными техническими характеристиками и свойствами. Именно они и привели к высокой популярности этого материала.

Ниже мы рассмотрим основной перечень технических характеристик и потребительских качеств изделий из стеклянных волокон:

Теплопроводность

Стекло само по себе имеет очень низкую теплопроводность, поэтому изделия из него обладают отличными теплоизоляционными свойства.

Самым низким коэффициентом среди всех изделий из стекловолокна обладает стекловата. Для этой продукции он составляет 0,05 Вт/м*К, что и определяет сферы ее использования.

Стекловата применяется для термоизоляции различных строительных конструкций, трубопроводов, промышленных объектов и т. д.

Химический состав

Эта характеристика зависит от состава исходного сырья. В любом неорганическом стекле основным компонентом является кварцевый песок, поэтому содержание SiO2 в стеклянных нитях варьируется от 50% до 99% в зависимости от их назначения.

Кроме этого компонента в стеклянном волокне присутствуют Al2O3, CaO и некоторые другие соединения.

От химического состава зависят физические характеристики стекловолокна и свойства изделий из него. В частности — щелочестойкость, которая определяется содержанием диоксида циркония (ZrO2) в стекле. Чем больше этого компонента, тем более щелочестойким является стекловолокно.

Плотность

Этот параметр непосредственно у стеклянных нитей подобен плотности стекла, из которого они изготовлены и равен 2500 кг/м³.

Плотность изделий из стеклянных волокон может колебаться в широких пределах. У стекловаты она минимальна, а такие продукты из этого материала, как листы, ткань и т. д. имеют максимальную плотность.

Для комбинированных материалов, таких как стеклопластик, плотность рассчитывается на основании плотности исходных материалов.

Температура плавления

Плавится любое стекловолокно при температуре от 1200 до 1400 °C.

Температура плавления зависит от состава стекла, из которого изготовлены волокна.

Чем больше в составе кварцевого песка, тем выше температура плавления. Поэтому для качественной переработки стеклянных отходов в стекловолокно необходимо точно знать его химический состав.

Стойкость к возгоранию

Стекло — полностью негорючий материал, поэтому изделия из него не способны поддерживать горение.

Все это в полной мере относится и к стеклянным волокнам – стекловолоконная продукция является пожаробезопасным материалом. Правда, некоторые композитные материалы, изготовленные на основе стекловолокна, могут возгораться при определенных условиях.

Таким образом, горит стекловолокно или нет, зависит от марки и компонентов, входящих в их состав.

Фото 4

Химические и физические характеристики стекловолокна определили виды продукции, которые можно изготовить из этого материала.

Марки

Перечень марок стекловолокна с соответствующими им характеристиками вы можете увидеть в таблице:

Фото 10

Ниже мы рассмотрим основные типы изделий из стеклянных волокон, наиболее популярные на современном рынке.

Материалы из стекловолокна

Среди всего разнообразия продукции из стеклянных волокон можно выделить две основные категории изделий: продукцию на 100% состоящую из этого материала и композитную, содержащую дополнительные вещества и элементы.

Рассмотрим некоторые изделия обоих видов и их характеристики.

  1. Маты из стекловаты. Эта продукция предназначена для теплоизоляции и шумопоглощения как в строительстве, так и в промышленной сфере. Структура теплоизоляционных матов состоит из ненаправленных отрезков стеклянных нитей, скрепленных между собой естественными силами. Продукция на 100% изготавливается из стекловолокна.
  2. Рулонная стекловата. Продукт полностью идентичный матам по своему составу и способу производства, только свернутый в рулоны. Для выполнения некоторых видов работ по теплоизоляции объектов такая форма поставки является более предпочтительной, чем маты.
  3. Сетка из стекловолокна. Изделие предназначено для армирования различных поверхностей при проведении отделочных работ. Состоит из гибких стеклянных нитей, переплетенных между собой и покрытых специальным раствором. Сетка выпускается как в листах, так и в рулонах различного размера.
  4. Ткань из стекловолокна. Эта продукция аналогична сетке из стекловолокна, только у нее более плотное плетение тонких стеклянных нитей. Изготавливается это изделие по ткацкой технологии в разнообразных исполнениях. Стеклоткань имеет широкую сферу применения: изготовление обоев, в частности стеклохолстов «паутинка», электротехнические работы и т. д.
  5. Стеклопластик. Это композитный универсальный материал, состоящий из стеклянных волокон и специальных связующих смол. Области использования стеклопластика самые разнообразные. Из него можно изготовить любые детали способом формовки и другими технологическими приемами.
  6. Стеклопластиковая арматура — достойная альтернатива металлическому аналогу, способная заменить его во всех сферах применения.

Конечно, это далеко не полный перечень продукции из стеклянного волокна.

Стекловолокно нашло применение в строительстве, электротехнике, радиотехники, медицине и других областях промышленности.

Следует заметить, что для производства тех или иных изделий используется стекловолокно разных марок, изготовленное по разным технологиям, имеющее различную длину и толщину нитей.

Фото 5

Штапельные стеклянные нити (короткие отрезки) применяются для производства стекловаты, рубленые из длинных волокон — для изготовления стеклопластика, а длинные (бесконечные) нити стекловолокна — для получения тканей и сеток.

Сферы применения

Стекловолоконная продукция используется в различных областях деятельности человека. Выше были описаны некоторые из них.

Рассмотрим этот вопрос подробнее, для каждой отрасли отдельно с перечнем основных изделий из стекловолокна, предназначенных для выполнения определенных работ, а также предметов, комплектующих и конструкций, которые могут быть изготовлены на основе стеклянных нитей.

Строительная индустрия

В строительстве стекловолоконные изделия используются в первую очередь для теплоизоляции:

  • жилых помещений;
  • промышленных зданий;
  • трубопроводов и других объектов.

Для этих целей используются:

  • маты;
  • рулоны из стекловаты;
  • листовое стекловолокно.

Для изготовления различных конструкций в строительной индустрии широко используется и стеклопластик — композиционный материал, состоящий из стекловолокна и полимеров.

Из него производятся разнообразные панели, плиты, в том числе теплоизоляционные, и другие защитные архитектурные элементы.

Стеклообои нашли свое применение в отделочных работах. Они изготавливаются из стекловолоконной ткани с различной структурой переплетения нитей.

Для штукатурных работ используется сетка из стеклянных волокон. Огнеупорное керамическое стекловолокно применяется в качестве теплоизоляции котлов, футеровки дымоходов, воздуховодов, стен и сводов нагревательных, термических печей.

Производство товаров

Стеклопластик широко используется в судостроении, производстве автотехники и других отраслях промышленности, где легкость, простота обслуживания, устойчивость к коррозии и низкая цена деталей являются определяющими факторами.

Из него изготавливаются корпуса и покрытия для лодок и яхт, элементы автомобилей, корпуса приборов и т. д.

Стеклопластиковые бассейны, емкости под воду, септики, лыжи, и другие товары прочно вошли в быт современного человека.

Ассортимент продукции из стеклопластиков огромен.

Электротехника и электроника

Стеклянное волокно используется для изготовления разнообразных электроизоляционных материалов.

Стекло является отличным диэлектриком, поэтому нити из него применяются при производстве специальных тканых материалов для изоляции токопроводящих конструкций и проводников электрической энергии.

Покрытый медной фольгой стеклотекстолит (смесь стеклянных волокон с эпоксидными смолами) является основой для изготовления многослойных печатных плат электронных устройства.

Оптоволокно, широко используемое в электронике, также является стекловолокном, изготовленным из кварцевого стекла.

Медицина

Стеклопластика применяется при изготовлении протезов различных частей человеческого тела, а также некоторых видов имплантов без вреда для здоровья. В стоматологии стеклянное волокно используется для изготовления зубных протезов. Во многих медицинских инструментах и оборудовании стекловолокно в различном виде присутствует как основной или второстепенный конструкционный материал. Одним из главных элементов хирургических лазерных скальпелей является все то же стекловолокно высокой степени очистки.

Фото 7

Из выше представленной информации можно сделать однозначный вывод, что стекловолокно, как основа для производства разнообразной продукции, является очень востребованным материалом в настоящее время.

Что можно сделать своими руками?

Для самостоятельного творчества стекловолокно является отличным материалом.

В основном поделки своими руками изготавливаются из стекловолоконных тканей и различных связующих смол: эпоксидного клея, полиэфирных смол и других синтетических наполнителей.

Что же можно изготовить из стеклоткани самостоятельно? Да все что угодно, от простой подставки для чайника до корпуса самодельной лодки или автомобиля. Все зависит от вашего желания и фантазии.

Самым простым способом изготовления любых деталей или конструкции из стекловолоконной ткани является технология послойного нанесения тканевой основы на модель с проклейкой каждого слоя эпоксидной смолой.

Этот метод позволяет создать практически любую конструкцию со сложной поверхностью из стеклопластика своими руками.Фото 8Это может быть панель прибора, бампер автомобиля или катер.

Главное — правильно подготовить модель, на которую вы будете накладывать и склеивать слои стеклоткани.

Ее можно изготовить из пластилина, глины, дерева или других легкообрабатываемых материалов.

Модель следует обмазать жидким парафином для облегчения снятия готового изделия.

Каждый слой стекловолокна проклеивается эпоксидным клеем и вся конструкция снимается с модели после полного затвердевания.

Заготовка обрезается по контуру, шлифуется и если необходимо в ней прорезаются отверстия, после этого деталь готова.

В этом описании нет привязки к конкретному изделию и коротко рассказано об общем принципе изготовления любых изделий из стекловолокна своими руками.

Видео по теме

В данном видео описан процесс послойного склеивания листов ткани из стекловолокна для изготовления различных изделий.

Заключение

Минеральное стекловолокно – это универсальный материал, который используется для производства огромного количества изделий во многих областях хозяйственной деятельности человечества.

Рынок сбыта этого уникального продукта практически неограничен, при условии конкурентоспособной цены. Рециклинг отходов стекла и переработка стекольного боя в изделия из стекловолокна позволяют создать рентабельный бизнес с низкой себестоимостью продукции.

Стеклопластик — свойства и производство стеклопластика | ПластЭксперт

Стеклопластик


Композитные материалы, состоящие из полимерного связующего и различных стекловолокнистых компонентов в качестве наполнителей, называются стеклопластиками.


Они получили распространение в строительстве, изготовлении емкостей, детских горок и горок аквапарков, труб, корпусов лодок, прочих конструкционных деталей.


Стеклянные волокна в таких композитах выполняют роль арматуры, которая обеспечивает отличные прочностные и прочие физико-механические характеристики, полимерные смолы соединяют волокна наполнителя в прочную монолитную систему.



Рис.1. Детские горки


Преимущества стеклопластиков


Стеклопластик имеет множество преимуществ, которые обуславливают его важное место в современном мире. Рассмотрим наиболее ценные из них:


  1. Небольшая плотность. Удельный вес марок стеклопластикового материала варьируется в широких пределах от 400 кг/куб.м до 1800 кг/куб.м. Средняя принятая величина плотности равна 1100 кг/куб.м, что чуть выше плотности воды. Для сравнения у металлов удельный вес намного больше, так у стали – 7800 кг/куб.м, у легкого дюралюминия 2800 кг/куб.м. У полимеров общего назначения плотность колеблется от 900 кг/куб.м (у полипропилена) до 1500 кг/куб.м (ПВХ и некоторые полиэфиры) и 1800 кг/куб.м (некоторые реактопласты). Такая легкость придает стеклопластику особые преимущества для использования в транспортной индустрии, где важна экономия топлива на перемещение. То же самое ценно при складских и прочих логистических применениях.


  1. Хороший диэлектрик. Стеклопластики обладают высокими диэлектрическими свойствами, что делает их отличными электроизоляторами. Эта характеристика нашли широкое применение в электротехнике, в том числе для выпуска электронных плат.


  1. Стойкость к коррозии. Стеклопластик стоек как к химическим, так и к электрохимическим воздействиям, что обуславливает его коррозионную резистентность. Используя определенные смолы в качестве связующих для стеклоктани можно произвести стеклопластики, которые будут иметь стойкость к очень агрессивным химикатам, даже к концентрированных кислотам и щелочам.


  1. Эстетические свойства стеклопластиков. В процессе производства данный композит можно окрасить в разные цвета, оттенки и их комбинации. При соблюдении правильной технологии и красителей стойкость цвета может сохраняться в течение всего срока службы изделия.


  1. Хорошая прозрачность. При использовании определенных видов смол существует возможность изготовить прозрачные стеклопластики. Их оптические показатели лишь несколько хуже, чем у силикатного стекла.


  1. Отличная физико-механика. Несмотря на невысокую плотность, стеклопластики характеризуются достаточными механическими свойствами. При определенных условиях производства композита – специальная полимерная основа и правильно подобранная стеклоткань – получают стекломатериал с более высокими физико-механическими свойствами, чем некоторые металлы и даже марки стали.


  1. Теплоизоляционность. Стеклопластик – это композит с небольшим коэффициентом теплопроводности. Однако, при изготовлении сэндвич-конструкций с использованием стеклопластиков, получают еще более изоляционные материалы. Для этого слои пластика чередуют с высокопористыми пластиками, например пенополиуретаном, вспененным полистиролом. Эти сэндвич-конструкции находят применение как теплоизоляцию в строительстве фабрик и заводов, судостроении, вагоностроении и т.п.


  1. Простое изготовление. Стеклопластиковые детали можно производить разными способами. Обычно такое производство не подразумевает больших инвестиций в станки, оборудование и материалы. Самый простой вариант выпуска таких продуктов – ручное формование. Для него нужна лишь изготавливаемая из подручного сырья (дерева, пластика, металла) матрица и несколько несложных инструментов и оснастки. На сегодняшний день в ходу матрицы из самого стеклопластика, которые также легко и недорого изготовить, к тому же они обладают отличной стойкостью и долговечностью. Таким образом, можно сказать, что стеклопластиковые детали воспроизводят сами себя.


Производство стеклопластиков


Стеклопластики, как правило, являются листовыми пластиками. Их изготавливают методом горячего прессования полимерного связующего, смешанного со стекловолокном или стеклотканью. При этом стекловолокно (стеклоткань) является армирующим элементом. Он дает получаемому продукту повышенные физико-механические свойства.


В промышленности для выпуска изделий из этого пластика применяют несколько разнообразных полимерных смол. Больше всего среди них популярны смолы на основе полиэфиров, винилэфирные, а также эпоксидные пластики. Все виды используемых полимеров по способу формования, химической структуре и назначению подразделяют на типы:


1) по способу формования:


— ручное;


— вакуумный впрыск;


— горячее прессование;


— намотка;


— пултрузия.


2) по назначению:


— стандартные конструкционные;


— химическистойкие;


— пожаробезопасные;


— теплостойкие;


— прозрачные.


Способы получения продуктов из стеклопластика


  1. 1. Ручное формование


Эта технология подразумевает пропитку стекловолокна или стеклоткани полимером используя ручной инструмент, такой как валики или кисти. В итоге получаются полуфабрикаты – стекломаты. После получения маты закладываются в формующую оснастку, в которой их обрабатывают при помощи прикаточных валиков. Прикатку валиками применяют для исключения из стекломатов пузырьков воздуха и распределения полимера в получающемся ламинате. Затем при комнатной температуре проводят выдержку на отверждение продукта. Затем он вынимается из формы, и происходит постобработка изделия: удаление грата, получение пазов и отверстий и прочее.


При данном формовании подходят практические любые перечисленные ранее виды смолы и стекловолокна, подходящие друг другу. Достоинствами технологии являются отсутствие дорогостоящего оборудования, простота, большой ассортимент подходящих компонентов, их невысокая стоимость, достаточно большой процент ввода стекловолокна. Минусами ручного формования можно назвать небольшую производительность, высокую зависимость качества готовой продукции от человеческого фактора – уровня подготовки и ответственности персонала, который к тому же вынужден работать во вредной для здоровья среде. Также при этом методе в изделии с большой вероятностью могут оставаться включения воздуха.


  1. 2. Способ напыления


При напылении стеклянная нить направляется на ножи специального устройства, которое ее рубит на волокна небольшой длины. Полученная субстанция называется рубленый роввинг.


Он перемешивается на воздухе с потоком связующего полимера и катализатора, а затем поступает в форму, где прокатывается для максимального отделения попавших в материал в ходе перемешивания воздушных пузырьков. После прикатки стеклопластик, также, как и в случае ручного формования, необходимо отвердить при нормальных условиях.


При напылении рубленого роввинга используют главные образом полиэфирные полимеры и стеклянную нить в форме ровницы. Метод применяется достаточно давно и привлекателен скоростью производства. Однако его более широкое внедрение сдерживается важными недостатками. Расход полимерной смолы обычно высок, что приводит к большой массе получаемого пластика. В нем содержатся исключительно короткие волокна, что обуславливает невысокие прочностные характеристики стеклопластика. Полимер применяется низковязкий, что также ведет к ухудшению механических и прочностных качеств и теплостойкости изделий. Подобно ручному формованию, условия в рабочей зоне при напылении вредные, в ее воздухе содержится много стеклянной пыли, а качество готовых изделий сильно зависит от уровня персонала.


  1. 3. Способ RTM


Этот метод, получивший название Resin Transfer Moulding слегка напоминает литьё пластмасс под давлением, особенно его разновидность IMD (In Mold Decoration). Он заключается в том, что стекломатериал помещается в матрицу в форме предварительно приготовленных заготовок или выкроек. После этого в форму помещается пуансон, закрепляющийся на матрице под воздействием специальных прижимов. Полимер под воздействием повышенного давления поступает в формообразующую полость. Для упрощения протекания процесса движения смолы через стекло в полости формы может быть применено вакуумное разрежение. После полной пропитки стеклянного материала смолой, впрыск прекращается и полуфабрикат, как и при применении прочих технологий, подвергают сшивке при н.у., но на этот раз прямо в форме. Также в случае RTM метода, отверждать можно при повышенной температуре.


Для получения изделий способом RTM используют эпоксидные или полиэфирные связующие и широкий спектр стеклянных волокон, желательно связанные и имеющие проводящий слой. Достоинствами данного способа является возможность получения материала с большим наполнением стеклом и низким содержанием воздушных включений. Также немаловажен тот факт, что работа ведется в изолированном оборудовании, что обеспечивает безвредные условия труда и отсутствие вредных выбросов в среду. Один оператор способен обслужить более одной установки, что дает увеличение производительности процесса и снижение себестоимости. Кроме того, внешний вид продукции при данном методе имеет преимущества перед ручным производством, а технологические потери минимальны. Недостатки процесса: обязательные инвестиции в дорогостоящее оборудование и сложные формы. Сам процесс изготовления тоже нельзя назвать простым, требователен к уровню персонала, в том числе обслуживающего машины и установки.


  1. 4. Пултрузия


Метод напоминает экструзию термопластов. Стекловолокно поступает из катушечной рамы через ёмкость со связующим и попадает в нагретый формующий инструмент (фильеру). Там с него снимаются излишки полимера, и проходит формирование профиля с последующим отверждением стеклопластика. В завершение готовый профиль поступает на отрезное устройство, где разрезается на мерные отрезки.



Рис.2. Профиль из стеклопластика


Для пултрузии применяют эпоксидные, полиэфирные или винилэфирные смолы и практически любые волокна. Плюсы метода заключаются в производительности и автоматизации процесса, а также возможности оперативно изменять состав композиции. Готовая продукция обладает хорошими прочностными свойствами из-за ориентации стекловолокна, его высокого содержания и стабильности техпроцесса. Процесс пултрузии закрыт, что и в случае с RTM обеспечивает достойные условия труда не дает выбросов. Среди минусов процесса небольшая номенклатура выпускаемой продукции, куда входят главным образом профили, а также дорогостоящее оборудование и оснастка.


5. Метод намотки


Этот способ наиболее часто применяется при производстве емкостей, труб и других пустотелых изделий. Суть технологии заключается в том, что стеклянные волокна пропускают сквозь ванну со связующим, потом через валики натяжения на намотку. Валики не только натягивают волокно для последующего использования, но и снимают с него лишнюю смолу. Обычно смоченные смолой волокна наматывают на оправку или сердечник нужного размера. После отверждения изделие снимается с сердечника.


При намотке нет ограничений по использованию того или иного связующего и волокон. Стеклоткани обычно не применяются. Главными преимуществами этой технологии являются скорость и производительность, возможность регулировки соотношения количества стекловолокна и полимера, хорошие прочностные данные этого композита и его небольшой удельный вес. Также при намотке волокна ориентированы, что дает дополнительное повышение свойств стеклопластику, содержание стекла в пластике достаточно велико. Среди минусов метода можно назвать узкий ассортимент продуктов, высокую стоимость оборудования и сердечника. Внешний вид готового изделий не всегда получается нужного качества.



Рис. 3. Намотка трубы


6. Технология RFI


Суть технологии под названием Resin Film Infusion заключается в закладке стеклотканей и слоев вязкой пленки из связующего в форму с получением полуфабрикатного пакета. Затем его закрывают пленкой, создавая в форме вакуумное разрежение. На следующей стадии форму переносят в термошкаф (используют также автоклавы). При нагреве в нем полимер расплавляется и пропитывает полуфабрикат. Затем происходит реакция сшивки смолы.


Для RFI технологии используют исключительно эпоксидные связующие, но волокна любого типа. Среди преимуществ процесса высокий процент стекловолокна и низкий – газообразных включений, хорошие прочностные свойства и низкая себестоимость, а также экологичность. Основным минусом является необходимость специального оснащения производства: вакуумной системой, термошкафом или автоклавом.


7. Препреги


Метод препрегов использует предварительно пропитанные связующими стеклянные ткани. Они пропитываются предкатализированным полимером при нагреве и повышенном давлении. Затем, если необходимо, препреги можно хранить продолжительное время, желательно при низкой температуре. В процессе формования их помещают на формующую поверхность и используют мешок для вакуумирования области формования. Материал нагревают в зависимости от типа смолы до 120-180 градусов. Связующее становится текучим и пластик занимает полость формы. Затем, как обычно, происходит сшивка полимера и система переходит в твердый продукт заданной формы.


При использовании технологии препрегов применяют эпоксидные, полиэфирные, фенольные и некоторые другие типы полиреактивных полимеров в качестве связующего и волокна любого типа. Достоинства метода – большой процент стекловолокна и малое количество газа. Также важны возможная автоматизация процесса, экологичность и хорошие показатели охраны труда. Из недостатков отметим дорогостоящие компоненты и ограниченные размеры получаемых деталей.

Объявления о покупке и продаже оборудования можно посмотреть на         

Обсудить достоинства марок полимеров и их свойства можно на               

Зарегистрировать свою компанию в Каталоге предприятий

Стеклопластики их свойства и область применения

Стеклопластики — вид композиционных материалов — пластические материалы, состоящие из стекловолокнистого наполнителя (стеклянное волокно, волокно из кварца и др.) и связующего вещества (термореактивные и термопластичные полимеры  в нашем случае это эпоксидные модифицированные смолы).

Основные сведения

Стеклопластик — материал с малым удельным весом и заданными свойствами, имеющий широкий спектр применения. Стеклопластики обладают очень низкой теплопроводностью (примерно, как у дерева), прочностью как у стали, биологической стойкостью, влагостойкостью и атмосферостойкостью полимеров, не обладая недостатками, присущими термопластам.

Стеклопластики уступают стали по абсолютным значениям предела прочности, но в 3,5 раза легче её и превосходят сталь по удельной прочности. При изготовлении равнопрочных конструкций из стали и стеклопластика, стеклопластиковая конструкция будет в несколько раз легче. Коэффициент линейного расширения стеклокомпозита близок к стеклу (составляет 11-13×106 1/°С), что делает его наиболее подходящим материалом для светопроницаемых конструкций. Плотность стеклопластика, полученного путем прессования или намотки, составляет 1,8-2,0 г/см3.

До недавнего времени стеклопластики использовались преимущественно в самолётостроении, кораблестроении и космической технике. Широкое применение стеклопластиков сдерживалось, в основном, из-за отсутствия промышленной технологии, которая позволила бы наладить массовый выпуск профилей сложной конфигурации с требуемой точностью размеров. Эта задача успешно решена с созданием пултрузионной технологии. Существуют достаточно много методов, позволяющих массово производить стеклопластиковые изделия различной конфигурации, необязательно профили — например, RTM, вакуумная формовка.

Стеклопластики являются одним из самых доступных и недорогих композиционных материалов. Основные затраты при производстве изделий из стеклопластика приходятся на технологическое оборудование и рабочую силу, затраты на которую велики за счет трудоемкости и больших временных затрат на производство. Соответственно, на данный момент изделия из стеклопластика проигрывают по цене изделиям из металла из-за трудоёмкого и длительного процесса выклейки стеклопластиковых деталей, что вызывает большие затруднения при массовом производстве. Наиболее выгодно использование стеклопластика при мелкосерийном производстве. Крупносерийное производство становится более выгодным при использовании вакуумного формования. Также выгодным может быть и контактное формование, в случае если цена рабочей силы невелика.

Применение

Из стеклопластиков производят следующие изделия: оконные и другие профили, стекла наручных часов, бассейны, купели, водные аттракционы, водные велосипеды, лодки, каноэ, рыболовные удилища, таксофонные кабины, кузовные панели и обвесы для грузовых и легковых автомобилей, диэлектрические лестницы и штанги для работ в опасной близости от конструкций под напряжением.

Очень удобно, что стеклопластик можно производить любой формы, цвета и толщины.

Стеклопластик — один из наиболее широко применяемых видов композиционных материалов. Из стеклопластиков в частности изготавливают трубы, выдерживающие большое гидравлическое давление и не подвергающиеся коррозии, корпуса ракетных двигателей твердого топлива (РДТТ), лодки, корпуса маломерных судов и многое другое. В США начало широкого применения конструкционных стеклопластиков было инициировано осуществлением программы «Поларис» во второй половине 1950-х годов — программы создания первой твердотопливной ракеты ВМФ США для подводного старта.

Трубы и трубчатые конструкции получают намоткой пропитанного связующим (смола + отвердитель + модифицирующие добавки) стекловолокна, на вращающуюся оправку (чаще всего стальную) с последующим отверждением и распрессовкой (снятием намотанной трубы со стальной оправки). Если диаметр трубы большой, то технически и экономически целесообразно использовать стеклопластиковую оправку.

Стойкость к действию химикатов и эксплуатационные показатели стеклопластика продемонстрированы за прошедшие 60 лет успешным использованием разнообразных изделий из композитов в сотнях различных химических сред. Практический опыт был дополнен систематической оценкой соединений, подвергнутых воздействию большого количества химических сред в лабораторных условиях.

Стеклопластиковые корпуса моделей судов, самолётов, машин и т. п. можно вручную изготавливать из эпоксидного клея и стеклоткани в условиях кружка или детской мастерской, что довольно часто практикуется в домах детского творчества.

Стеклопластики особых сортов широко используются в составе композитной брони танков и прочей военной техники.

Жилищное строительство

Стеклопластик также используются на рынке жилищного строительства для производства кровельных ламинатов, дверей, навесы окна, дымоходы, пороги. Использование стекловолокна для этих приложений обеспечивает гораздо более быстрый монтаж и в связи с уменьшением веса и скорости обработки. С появлением высоко производственных процессов увеличился объем стекловолоконых панелей, которые могут быть использованы в конструкции стен домов. Эти панели могут быть сделаны с соответствующей изоляцией, которая снижает потери тепла.

Изделия из химически стойкого стеклопластика:

  • напорные и безнапорные трубопроводы для транспортировки агрессивных жидкостей и сред;
  • емкости — как горизонтальные, так и вертикальные — для хранения и транспортировки агрессивных жидкостей;
  • желоба для подачи электролита;
  • секции охлаждающих градирен, напорные коллекторы;
  • газоотводящие стволы дымовых труб;
  • скрубберы, абсорберы, циклоны, аппараты Вентури;
  • колонные аппараты, регенерационные колонны, корпуса электрофильтров;
  • травильные, гальванические и электролизные ванны;
  • вентиляционные системы для удаления паров вредных веществ от технологического оборудования;
  • корпусы различного оборудования.

 

9.1. Основные компоненты стеклопластиков

В качестве связующего для стеклопластиков используют полиэфирные и эпоксидные смолы. Именно на их основе получают материалы для контактного формования. Применяют также феноло-формальдегидные, кремнийорганические, карбамидные, фурановые и другие смолы. Переработка стеклопластиков на их основе требует высоких температур (более 170 °С) и давления (25-100 кг/см2). В качестве связующего для стеклопластиков также применяют и термопластичные материалы — ПА, ПК, ПЭ, ПП. На их основе получают материалы, перерабатываемые литьем под давлением.

Применяемые связующие должны удовлетворять ряду требований:

—      хорошая смачивающая способность и адгезия к стекловолокнистым наполнителям;

—      усадка при отверждении пластика должна быть в пределах, не вызывающих образование микротрещин;

—      высокая когезионная прочность связующего;

—      устойчивость вязкостных свойств приготовленных композиций в течение длительного времени;

—      быстрое отверждение, по возможности без выделения побочных продуктов.

Наполнителем служат стекловолокна в виде нитей и жгутов из непрерывных волокон, штапельные волокна, тканевые материалы, стеклосетки и нетканые материалы — холсты или маты.

В процессе изготовления стекловолокна покрываются замасливателем для защиты их от атмосферной влаги и механических повреждений при дальнейшей переработке. Чаще всего замасливатель наносят в виде различ­ных эмульсий. Его готовят на минеральных маслах или жирных кислотах с добавлением парафина или поливинилового спирта. Однако замасливатель ухудшает физико-механиче­ские свойства изделия и, следовательно, перед использованием при получении пластика замасливатель удаляют либо термическим, либо химическим способом.


Для увеличения адгезии связующего к стекловолокнистым наполнителям их поверхность может обрабатываться специальными веществами — аппретами. Это многофункциональные соединения, способные взаимодействовать как со стеклом, так и со связующем. Для полиэфирных смол использует аппрет ГКС-9, для эпоксидных и эпоксифенольных смол — АГМ-9. Аппрет при этом вступает в химическое взаимодействие со связующим и наполнителем.

В качестве наполнителей используются стеклонити, состоящие из 100-200 элементарных волокон диаметром до 12 мкм. Наряду с нитями используются стекложгуты и ровинги. Ровинг — это непрерывная некрученая прядь, которая состоит из большого числа (до 60) первичных некрученых нитей, причем каждая из этих нитей состоит из 100-200 элементарных волокон. При использовании ровинга обеспечивается максимальная ориентация волокна в изделии, так как все волокна в изделии параллельны друг другу. На основе ровинга получают однонаправленные высокопрочные стеклопластики, которые изготавливаются методом намотки или укладки.

Широко используется стеклоткани. Они различаются типом и номером нити, а также типом переплетения. Обычно используют ткани трех типов переплетения — полотняного, саржевого, сатинового.

При полотняном (гарнитуровом) переплетении (рис. 9.1, а) нити утка изгибаются вокруг каждой нити основы и наоборот. Эти ткани обладают максимальной жесткостью. Имеется разновидность данного типа переплетения — рапсовое переплетение, при котором нить утка может перекрывать несколько нитей основы и наоборот.

Сатиновое (атласное) переплетение (рис. 9.1, б) отличается максимальными перекрытиями нитей. Ткани этого типа могут быть четырех-, шести- и восьмиремизными, т.е. нить утка может проходить над четырьмя, шестью и восьмью нитями основы и наоборот.

Ткани, у которых с лицевой стороны преобладают нити утка, называются сатинами, у которых нити основы — атласами (ластиками). С увеличением количества ремизов увеличивается длина участка неизогнутой нити, вследствие чего прочность нити уменьшается в меньшей степени и механические свойства ластика улучшаются.

 

Рис. 9.1. Схемы расположения нитей в стеклотканях: а — полотняное, б — сатиновое, в — саржевое, А — разрез в направлении основы, Б — в направлении утка

 

Саржевое (киперное) переплетение (рис. 9.1, в) характеризуется диагональным распределением перекрестия нити. В этом случае нить утка перекрывает две нити основы и в каждом ряду сдвигается на одну нить по диагонали.

Благодаря такой структуре ткани саржевого плетения характеризуются повышенной эластичностью и растяжимостью, особенно, при действии сил по диагонали.

Применяя ткани с различным типом переплетения, получают стеклопластики, отличающиеся различными механическими характеристиками.

Промышленностью также выпускаются жгутовые ткани и сетки из некрученых нитей. Все жгутовые ткани изготавливаются из первичной нити с диаметром волокон 10-11 мкм. Такие ткани предназначены для изготовления электротехнического и конструкционного стеклотекстолита.

В последнее время все шире стали применять нетканые армирующие материалы.

Нетканые листовые материалы получают в виде жестких и мягких холстов из рубленных стеклонитей, холстов из штапельного стекловолокна, из непрерывных стеклонитей, в виде нетканых перекрестных материалов из жгутов.

Стеклохолсты состоят из рубленного стеклоровинга или из штапельных хаотически распределенных волокон, связанных между собой при помощи небольших количеств связующего. Длина отдельных волокон стекломата должна быть 20-50 мм. Уменьшение длины волокон меньше 20 мм приводит к резкому уменьшению прочности изделия, а увеличение длины волокна  более 50 мм вызывает ухудшение формуемости материала и при этом не наблюдается увеличения прочности.

При изготовлении матов, скрепленных с помощью связующего, стеклянный ровинг разрезают на отрезки определенного размера, которые опрыскиваются связующим и подаются на ленту транспортера. В местах контакта волокна склеиваются между собой, образуя мат. Полученные маты подвергаются термической обработке для удаления растворителя или связующего. В качестве связующего используют растворы или эмульсии ПВА, ПС, полиэфирной смолы. Эти вещества должны хорошо совмещаться со связующим, которое применяется при изготовлении матов. Маты могут изготавливать также путем насасывания волокон, диспергированных в водной среде, на перфорированное полотно или сетку. В водной среде при этом также эмульгирован полимерный материал, который упрочняет мат. Образовавшийся на волокне водный мат обезвоживается и подвергается сушке.

Прошитые маты — мягкие холсты — получаются сшиванием на специальных машинах. Они представляют собой равномерный слой беспорядочно расположенных отрезков пряжи или ровинга, скрепленных подложенным материалом путем прошивки. В качестве подложки используют стеклосетку, тонкий жесткий холст, хлопчатобумажную марлю. В таких механически связанных и прошитых матах волокна под воздействием внешних сил могут смещаться друг относительно друга, благодаря чему маты легко формуются и могут применятся для изготовления глубоких и сложных по конфигурации изделий. В отличие от них в клее связанных или скрепленных с помощью связующих матов связующее (5%) соединяет отдельные пряди и удерживает их вместе, придавая стекломату достаточную прочность, необходимую при укладке в процессе формования изделия. Такие клеестекломаты имеют ограниченную гибкость, достаточную жесткость, формуются с трудом.


Изготавливаются холсты и из непрерывных стеклонитей. Они представляют собой равномерный слой первичных стеклянных нитей, уложенные своеобразной восьмеркой в одной плоскости и склеенных клеящим составом (рис. 9.2).

 

Рис. 9.2. Схема холста из непрерывных нитей

 

Нетканые перекрестные материалы, имеющие название ромбоидальный холст, представляют собой равномерный слой перекрещенных непрерывных нитей и жгутов, скрепленных клеем. Такой холст получают путем намотки нитей или жгутов на барабан. Их применяют для изготовления облицовочных и листовых конструкционных стеклопластиков.

 

Стекловолокно — типы, свойства и применение

Стекловолокно — это форма армированного волокном пластика, в котором стекловолокно является армированным пластиком. Возможно, по этой причине стекловолокно также называют пластиком, армированным стекловолокном, или пластиком, армированным стекловолокном. Стекловолокно обычно сплющивают в лист, размещают в произвольном порядке или вплетают в ткань. В зависимости от использования стекловолокна, стекловолокно может быть выполнено из разных видов стекла.

Стекловолокно легкое, прочное и менее хрупкое.Лучшая часть стекловолокна — это его способность принимать различные сложные формы. Это в значительной степени объясняет, почему стекловолокно широко используется в ваннах, лодках, самолетах, кровле и других применениях.

В этой статье мы подробнее поговорим о типах стекловолокна, их свойствах и применении. Давайте начнем.

Типы и формы стекловолокна:

В зависимости от используемого сырья и их пропорций для производства стекловолокна стекловолокно можно разделить на следующие основные типы:

  • A-стекло : стекло также называют щелочью. стекло и устойчиво к воздействию химикатов.По составу стекловолокно А близко к оконному стеклу. В некоторых частях мира его используют для изготовления технологического оборудования.
  • C-стекло : C-стекло обеспечивает очень хорошую стойкость к химическому воздействию и также называется химическим стеклом.
  • Стекло E : его также называют электрическим стеклом, оно является очень хорошим изолятором электричества.
  • AE-glass : Стекло, устойчивое к щелочам.
  • Стекло S : оно также называется структурным стеклом и известно своими механическими свойствами.

Стекловолокно бывает разных форм для различных областей применения, основными из которых являются:

  • Лента из стекловолокна : Ленты из стекловолокна состоят из стекловолоконной пряжи и известны своими теплоизоляционными свойствами. Эта форма стекловолокна находит широкое применение для обертывания сосудов, горячих трубопроводов и т.п.
  • Ткань из стекловолокна : Ткань из стекловолокна гладкая и доступна в различных вариантах, таких как пряжа из стекловолокна и пряжа из стекловолокна.Он широко используется в качестве теплозащитных экранов, противопожарных завес и др.
  • Канат из стекловолокна : Канаты сплетены из стекловолоконной пряжи и используются для упаковки.

Свойства стекловолокна

  • Механическая прочность : Стекловолокно имеет более высокое удельное сопротивление, чем сталь. Итак, из него делают высокопроизводительные
  • Электрические характеристики : Стекловолокно — хороший электроизолятор даже при небольшой толщине.
  • Негорючесть : Стекловолокно является минеральным материалом, поэтому оно негорючее. Он не распространяет и не поддерживает пламя. При нагревании он не выделяет дыма или токсичных продуктов.
  • Стабильность размеров : Стекловолокно нечувствительно к колебаниям температуры и гигрометрии. Имеет низкий коэффициент линейного расширения.
  • Совместимость с органическими матрицами : Стекловолокно может иметь различные размеры и может сочетаться со многими синтетическими смолами и некоторыми минеральными матрицами, такими как цемент.
  • Не гниет : Стекловолокно не гниет и не подвержено действию грызунов и насекомых.
  • Теплопроводность : Стекловолокно имеет низкую теплопроводность, что делает его очень полезным в строительной промышленности.
  • Диэлектрическая проницаемость : Это свойство стекловолокна делает его пригодным для изготовления электромагнитных окон.

Применение стекловолокна в различных отраслях промышленности

Материалы с высокотемпературной изоляцией обеспечивают эффективный тепловой барьер для промышленных прокладок.Поскольку стекловолокно прочно, безопасно и обеспечивает высокую теплоизоляцию, стекловолокно является одним из широко предпочтительных материалов для промышленных прокладок. Они не только обеспечивают лучшую изоляцию, но также помогают защитить оборудование, сберечь энергию и обеспечить безопасность профессиональных сотрудников. Возможно, по этой причине стекловолокно широко используется в отраслях промышленности, указанных ниже:

  • Производство напитков : Стекловолоконные решетки используются во многих областях, например, на линиях розлива и в варочных цехах.
  • Автомойки : В последнее время решетки из стекловолокна широко используются для защиты от ржавчины и для придания контрастного цвета участкам, которые ранее казались запрещенными. Он осветляет внутреннюю часть туннеля для мойки, делая автомобиль чище, чем был на самом деле.
  • Химическая промышленность : В этой отрасли решетка из стекловолокна используется для обеспечения защиты от скольжения заделанной зернистой поверхности и обеспечения химической стойкости различных смол. Используемые химические вещества сочетаются со смолами.
  • Градирни : Поскольку градирни всегда влажные, их необходимо защитить от ржавчины, коррозии и других проблем безопасности. Благодаря превосходным свойствам стекловолокна, оно используется в этих башнях в качестве экранирования для защиты людей и животных от опасных зон.
  • Доки и причалы : Доки корродируют, ржавеют и повреждаются соленой морской водой. Так, для защиты здесь используется стекловолокно.
  • Пищевая промышленность : На предприятиях по переработке курицы и говядины решетки из стекловолокна используются для защиты от скольжения и для удержания крови, которая является едкой.В большинстве областей пищевой промышленности также используется стекловолокно, поскольку другие материалы для решеток не подходят.
  • Фонтаны и аквариумы : В фонтанах и аквариумах всех размеров используется стекловолокно для поддержки камней, что способствует циркуляции и фильтрации из-под камней. В больших общественных фонтанах решетки из стекловолокна используются для защиты распылительных коллекторов и светильников от повреждений. Это также не дает людям утонуть в фонтанах.
  • Производство : поверхность решетки из стекловолокна с зернистостью обеспечивает сопротивление скольжению во влажных областях или в местах, где присутствуют гидравлические жидкости или масла.
  • Металлы и горнодобывающая промышленность : Решетка из стекловолокна используется в областях электронного рафинирования, подверженных химической коррозии. Другие материалы для решеток здесь использовать нельзя.
  • Производство электроэнергии : Стекловолокно используется во многих областях энергетики, таких как нефтебазы, скрубберы и другие. Причина этого — непроводящие свойства стекловолокна.
  • Гальванические установки : В данном случае используются решетки из стекловолокна из-за противоскользящих свойств поверхности.
  • Целлюлозно-бумажная промышленность : свойство стекловолокна, которое делает его устойчивым к химической коррозии, используется на целлюлозных и отбеливающих предприятиях. В последнее время стекловолокно используется во многих областях из-за его коррозионной стойкости и противоскользящих свойств.
  • Автомобильная промышленность : Стекловолокно широко используется в автомобильной промышленности. Практически в каждой машине есть компоненты и обвесы из стекловолокна.
  • Aerospace & Defense : Стекловолокно используется для производства деталей как для военной, так и для гражданской авиакосмической промышленности, включая испытательное оборудование, воздуховоды, кожухи и др.

Узнайте больше о ассортименте стекловолокна Phelps

Стекловолокно является важным компонентом целого ряда отраслей, включая очистные сооружения сточных вод, системы отопления, вентиляции и кондиционирования воздуха, противопожарную защиту и нефтяные месторождения. Чтобы узнать больше о стекловолокне и его применении, позвоните в Phelps @ 1-800-876-SEAL сегодня, чтобы получить более подробные инструкции, и ознакомьтесь с ассортиментом стекловолокна Phelps.

.

Высокое напряжение G10 Состав Стекловолоконный лист

Описание продукта

Производство сырья

♦ Стекловолоконная плита изготовлена ​​из стеклоткани и эпоксидной смолы под высокотемпературным композитным материалом

♦ Препрег прессуется в различные формы. толщина при высокой температуре и высоком давлении

Характеристики

♦ Обладает высокими механическими и диэлектрическими свойствами

♦ Хорошая термостойкость, может работать непрерывно при 170 градусах

♦ Водонепроницаемость, очень низкое водопоглощение

♦ Огнестойкий, может автоматически гасить

Применение

♦ Используется для звездчатой ​​передачи, пластиковой формы, литьевой формы, механического производства, формовочной машины, сверлильного станка.

♦ Машина для литья под давлением, двигатель, печатная плата, приспособление ICT, шлифовальная площадка стола.

Паспорт продукта

75

A

90 063

параллельно

E-24/50

+ D-24/23

Пункты

Метод испытания

Единица

Значения

94V0

Огнестойкость

C-96/20/65

170-180

Подставка напряжение

C-96/20/65

(дюйм 25 ℃, масло)

кВ / мм

18

12

А Сопротивление RC

C-96/20/65

S

60-80

Скорость индуцированного электрического тока

C-96/20/65

+ D -48/50

(IMHZ)

4.0-5,0

Индуцированное электричество на

C-96/20/65

+ D-48/50

(IMHZ)

0,03-0,04

Объемное сопротивление

C-96/20/65

C-96/40/90

Ом-см

5 * 1011-5 * 1011

Поверхностное сопротивление

C-96/20/65

C-96/40/90

Ω

5 * 1011-5 * 1012

Сопротивление изоляции

C-96 / 20/65

+ D-2/100

Ом

1012-1013

Прочность на сжатие

вертикальный

A

кг / мм2

29-34

19-24

прочность на изгиб

A

кг / мм2

40-50

ударная вязкость

A

кДж / м2

45-55

Разделенная вероятность

A

кг

850-1000

Bibulous rate

%

0.07-0.12

другой изоляционный продукт

Информация о компании

♦ Наша компания является производителем, с 2006 года более 10 лет опыта работы в индустрии электронных аксессуаров и компонентов.

♦ У нас есть достаточный запас, поэтому мы можем сократить ваши затраты и время выполнения заказа.

♦ Наша основная продукция, включая эпоксидный лист из стекловолокна, фенольный бакелитовый лист, панель GPO-3, жаропрочный лист, антистатический лист, инженерный пластик и т. Д.

♦ Мы можем обрабатывать по чертежам заказчика для резки, сверления, шлифования, фрезерования и гибки.

Наши услуги

Мы принимаем небольшие заказы

♦ Примерное обслуживание
Если вам нужен небольшой размер и количество, мы можем предоставить вам бесплатные образцы, но вам потребуется доставка сборы

♦ Индивидуальный заказ
Мы не только производим листы, но и можем обрабатывать их по вашему чертежу.Файлы dwg / stp

♦ Послепродажное обслуживание
Если через 2 месяца после использования возникла серия проблем, свяжитесь с нами

Упаковка и доставка

♦ Используйте профессиональную крафт-бумагу для упаковки на фанерный поддон, чтобы избежать столкновения rift

♦ Возможна индивидуальная упаковка в соответствии с вашими требованиями

♦ Если вы заказываете небольшое количество, можете использовать UPS, FedEx и DHL от двери до двери

♦ Если вы заказываете больше, доставка по морю — лучший способ, порт Шанхай находится ближе всего к us

FAQ

Q1: Вы торговая компания или мануфактура?

A1: Мы являемся производителем, с 2006 года, более 10 лет опыта в производстве изоляционных материалов.

Q2: Можете ли вы предоставить бесплатные образцы?

A2: Да, бесплатный образец доступен, но вам нужно заплатить за фрахт

Q3: Как долго длится ваш срок доставки?

A3: 1 ~ 3 дня, если товар в наличии, обычно 7 ~ 20 дней, если его нет на складе (зависит от вашего количества)

Q4: Цена может быть согласована?

A4: Да, его можно натереть в соответствии с вашим количеством

Q5: Можно ли обрабатывать по нашему чертежу?

A5: Да, доступны сверление, фрезерование, шлифовка, гибка и лазерная резка

.

Стекловолокно против углеродного волокна

Стекловолокно и углеродное волокно — хорошо зарекомендовавшие себя армирующие материалы. Оба являются синонимами чрезвычайно высокой прочности на разрыв в мире композитов, но исторически использовались для самых разных приложений и имеют разную репутацию.

Стекловолокно долгое время считалось «дешевым» материалом. Строительство судов, недорогие конструктивные элементы и дренажные изделия составляют основные области применения материала.Углеродное волокно, с другой стороны, стало синонимом скорости и высоких характеристик. Его часто можно увидеть на гоночных автомобилях, новых пассажирских самолетах и ​​других высокотехнологичных технических решениях. В контексте 3D-печати углеродное волокно и стекловолокно являются высококачественными волокнами, которые могут укреплять детали инженерного класса.

Итак, давайте рассмотрим углеродное волокно и стекловолокно и посмотрим, какое непрерывное армирующее волокно лучше всего подходит для вашего применения!

Получите бесплатный образец.

Стекловолокно

Стекловолокно изготовлено из неорганического кварцевого песка, нагретого до чрезвычайно высоких температур и вытянутого в аморфные ультратонкие волокнистые нити.Эти длинные и очень тонкие пряди стекла обладают чрезвычайно высокой прочностью на разрыв. Markforged может печатать на 3D-принтере два различных вида стекловолокна:

  • Стекловолокно
  • Высокопрочное высокотемпературное (HSHT) стекловолокно

Армирование непрерывными прядями стекловолокна вполне может быть нашим волокном «начального уровня», но стекловолокно может генерировать невероятные улучшения свойств печатных деталей. По сравнению, например, с АБС, печатные детали со сплошным армирующим волокном из стекловолокна в 20 раз прочнее и в 10 раз жестче при растяжении, чем обычные печатные детали из АБС.Непрерывное волокно из стекловолокна часто является идеальным выбором для изготовления оснастки / приспособления для производственных цехов или создания высокопрочных прототипов с учетом затрат.

Стекловолокно HSHT, с другой стороны, лучше всего использовать для замены критически важных обработанных алюминиевых деталей. Обладая превосходной термостойкостью и прочностью на изгиб, уступая только углеродному волокну, стекловолокно HSHT представляет собой экономичное решение для непрерывного армирования во многих промышленных областях, где требуется термостойкость и устойчивость к ударам.

Кроме того, как стекловолокно, так и стекловолокно HSHT обладают некоторыми потенциально уникальными и полезными вторичными свойствами.Хотя армирующее волокно обычно находится под поверхностью, при износе печатной детали армирующее стекловолокно или стекловолокно HSHT может обнажиться. Белые волокна армирующего стекловолокна или стекловолокна HSHT часто изнашиваются / растекаются по поверхности износа, обеспечивая четкое указание на близкий «конец срока службы». Кроме того, прочность обнаженного волокна может фактически продлить срок службы детали. . Наличие четкого «визуального маркера износа», а также характеристики «предотвращения износа» на поздней стадии может быть полезно в реальных промышленных / технологических приложениях.

Там, где «критические к отказу» детали используются в условиях циклической нагрузки, армирование стекловолокном HSHT (в частности) может не только обеспечивать прочность, близкую к прочности армирования углеродным волокном, но без обратной стороны катастрофического разрушения. Вместо этого он пластично поддается с минимальным отскоком энергии.

Поскольку оба варианта из стекловолокна являются аморфными, они предлагают улучшенное радиопрозрачное решение для многих приложений, основанных на ВЧ / антеннах.

Запросить демонстрацию

Углеродное волокно

Углеродное волокно производится из органических полимеров и обрабатывается при относительно низких температурах по сравнению со стекловолокном.Углеродные волокна являются кристаллическими по своей природе, поэтому низкотемпературная обработка происходит с помощью ряда сложных химических, термических и механических обработок. Полученный материал имеет одно из самых высоких соотношений прочности к весу — выше, чем у стали и титана.

В 3D-печати углеродное волокно является предпочтительным непрерывным волокном для обеспечения жесткости. Он в 25 раз жестче, чем ABS, и в 2 раза жестче, чем любое другое непрерывное армирующее волокно Markforged.

По сравнению с алюминием 6061, углеродное волокно, напечатанное на 3D-принтере, имеет на 50% более высокое отношение прочности к весу при изгибе и на 300% при растягивающем моменте, что делает это волокно идеальным материалом для достижения максимальных свойств.

Сплошное армирование углеродным волокном использовалось для создания конформных приспособлений / приспособлений и специальной оснастки для некоторых из крупнейших и наиболее престижных мировых предприятий, вплоть до одноразовых деталей для высокотехнологичных приложений в автоспорте.

Разработка более сложных генеративных компонентов в промышленности часто приводила к сложным требованиям к инструментам для «финишной обработки» на дорогих 5-осевых фрезерных станках. Markforged активно участвует во многих проектах по тестированию по всему миру сверхлегких, сильно «демпфированных» специальных «конформных» инструментов, позволяющих лидерам в отрасли 4.0, реализовать свой потенциал в полной мере.

В чем разница между 3D-принтером и станком с ЧПУ?

Углеродное волокно против стекловолокна: окончательный вердикт

Углеродное волокно и стекловолокно обеспечивают уникальные преимущества и возможности применения в зависимости от материальных потребностей. Не стесняйтесь обращаться к нам за дополнительной помощью или советом о том, какое армирующее волокно лучше всего подходит для вашего применения.

Получите доступ к нашему бесплатному руководству по дизайну для 3D-печати с использованием композитов , чтобы узнать больше.

.

Литье из стекловолокна | Фибер Гласт

Фото предоставлено IStock Photo.

Проверьте свои навыки формовки стекловолокна

Примите участие в нашей викторине по формованию стекловолокна!
    Фото предоставлено IStock Photo.
    Композиты

    открывают огромные возможности для изготовления деталей после понимания нескольких основных концепций. Ключ кроется в понимании различных доступных материалов, их применения и наилучших способов обращения с ними.

    Этот технический документ представляет собой общий обзор изготовления композитов с упором на изготовление деталей в формах. Широкий охват этого технического документа ограничивает количество деталей, содержащихся в основных принципах и конструкции пресс-формы. Fiber Glast Developments предлагает официальные документы, в которых более подробно рассматриваются конкретные аспекты этих областей.

Терминология

    Лучшее место для начала изучения композитных материалов — это понимание словаря, используемого в этой области.При описании процесса изготовления композита часто используются следующие термины:

    Штука: Готовый продукт, который вы изготавливаете.

    Заглушка: Фактический предмет, который должен быть продублирован из стекловолокна или других композитных материалов, который используется для создания формы. Заглушка может быть собственно частью или изготовлена ​​по индивидуальному заказу практически из любого материала.

    Форма: Изделие, из которого будет изготовлено изделие.Есть два основных типа слепков: мужские и женские. Патрубок идентичен дублируемому изделию, и деталь изготавливается поверх формы. Матричная или полая форма — это обратная сторона дублируемого предмета, и деталь изготавливается внутри формы. Это слово также можно использовать для описания процесса изготовления композита: формование детали.

    Ламинат: Прочная деталь, состоящая из комбинации смолы и армирующей ткани. Этот термин также можно использовать для описания процесса укладки детали: ламинирование детали.

    Гелевое покрытие (или поверхностное покрытие): Термин «гелькоут» часто используется в общем для описания любого поверхностного покрытия на основе смолы, но с технической точки зрения этот термин применяется к материалам на основе полиэстера. Термин «поверхностное покрытие» может использоваться для описания эпоксидных или полиэфирных материалов. Поверхностные покрытия представляют собой специально разработанные загущенные версии смол, которые можно наносить на поверхность формы или детали в качестве косметического и защитного покрытия.

    Разделительный агент: Любой из ряда материалов, нанесенных на поверхность формы перед изготовлением детали, чтобы способствовать высвобождению детали из формы.Это могут быть воски, масла или специальные антиадгезионные покрытия, такие как ПВА.

    Фланец / разделительная перемычка: Временное приспособление, прикрепляемое к заглушке при сборке составных форм. Как правило, это создает поверхность для формованных материалов, перпендикулярную плоскости симметрии разделения. Фланец помогает зажимать или скреплять секции формы вместе, а также служит точкой крепления во время операций вакуумной упаковки.

Материалы

    После того, как вы узнаете «ключевые слова» о композитах, следующим шагом будет изучение различных смол и вариантов армирования, доступных при работе с композитами.Первая часть этого раздела касается трех основных смол, используемых для большинства композитных конструкций, а вторая часть посвящена наиболее распространенным армирующим материалам.

Смолы

    Композитная структура состоит из термореактивной смолы, используемой в сочетании с некоторым типом армирования, например тканью из стекловолокна. Три основных типа смол, отверждаемых при комнатной температуре, используемых в производстве композитов, — это полиэфирные, винилэфирные и эпоксидные смолы.

    Полиэфирная смола — это смола общего назначения, подходящая для самых разных областей применения.Перекись метилэтилкетона (МЕКП) должна использоваться в качестве катализатора для начала процесса отверждения. Скорость катализа можно варьировать с помощью полиэфирных смол, чтобы приспособиться к различным условиям окружающей среды. В тонких слоях или при напылении гелькоута в качестве верхнего покрытия поверхность может оставаться липкой и не отверждаться должным образом, если оставить на воздухе. Для полного отверждения тонкие ламинаты или верхние покрытия должны содержать либо раствор стирольного воска, либо слой раствора поливинилового спирта (ПВА), нанесенный на них, чтобы изолировать воздух.В первом случае воск «всплывает» на поверхность по мере отверждения смолы, действуя как барьер для воздуха. После отверждения стирольный воск необходимо отшлифовать, а ПВА можно смыть теплой водой.

    Эпоксидные смолы не так просты в измерениях, как полиэфирные смолы, но эпоксидные смолы обеспечивают большую прочность и стабильность размеров. Они также лучше прилипают к другим материалам, чем полиэфирные смолы. Соотношение отвердителя эпоксидной смолы нельзя изменять, и во время процесса отверждения необходимо поддерживать соответствующую температуру (не менее 70 градусов по Фаренгейту).Системы на основе эпоксидных смол, как правило, стоят дороже, чем полиэфирные смолы, но они практически необходимы в некоторых случаях ремонта, например, при использовании листового формованного компаунда (SMC). Эпоксидные смолы также настоятельно рекомендуются для использования с кевларом и углеродным волокном.

    Третий тип смолы, винилэфирная смола, по своим качествам по большей части находится между полиэфирными и эпоксидными смолами. Тем не менее, он превосходит оба в области коррозионной стойкости, термостойкости (хорошо до 300 градусов по Фаренгейту) и прочности.Обычно используется для ремонта корпуса лодки, строительства полного резервуара и облицовки резервуаров для хранения химикатов. Как и полиэфирная смола, она катализируется МЕКП, но виниловый эфир имеет более короткий трехмесячный срок хранения.

Примеры продукции

    Смола на основе сложного винилового эфира

    Арт. Описание
    Полиэфирная смола Полиэфирные смолы — наиболее широко используемые смолы в композитной промышленности.Полиэфирные смолы менее дороги, обладают некоторой коррозионной стойкостью и более щадящие, чем эпоксидные смолы. Полиэфирные смолы просты в использовании, быстро отверждаются и устойчивы к экстремальным температурам и катализаторам.
    Смола сложного винилового эфира считается гибридом полиэфира и эпоксидной смолы, что означает, что ее эксплуатационные характеристики, свойства и цена обычно ниже двух других. Виниловый эфир отличается высокой устойчивостью к коррозии, температуре и растяжению.
    Эпоксидная смола Для композитных деталей, требующих максимальной прочности, производители будут использовать эпоксидную смолу. Помимо улучшенных прочностных свойств, эпоксидные смолы также обычно превосходят полиэфир и сложный виниловый эфир по стабильности размеров и улучшенному сцеплению с другими материалами.
    МЕКП Перекись метилэтилкетона или МЕКП требуется для всех полиэфирных смол, гелькоутов и винилэфирных смол.Для различных типов смол требуются разные концентрации МЭКП для надлежащего катализа. Просмотрите лист данных смолы для ваших конкретных измерений.
    ПВС Поливиниловый спирт, или ПВА, распыляется на тонкие ламинаты или верхние слои, чтобы изолировать воздух во время отверждения детали. После этого ПВА можно смыть теплой водой.
    Стироловый воск Стироловый воск — еще одно решение, позволяющее не допускать попадания воздуха в детали в процессе отверждения.В отличие от ПВА, воск будет «плавать» на поверхности смолы по мере ее отверждения. После отверждения стирольный воск необходимо отшлифовать.

Ткани

    Существует множество армирующих тканей, которые используются с обсуждаемыми смолами. Чаще всего используются три типа армирующих тканей: стекловолокно, кевлар® (арамейд) и углеродное волокно (графит). Каждый из них обладает разными качествами и преимуществами. Все три обычно доступны в виде жгутов или ровниц, вуалей и тканых материалов.Кроме того, стекловолокно доступно в виде мата из рубленых прядей, который состоит из коротких случайно ориентированных волокон, скрепленных связующим веществом.

    Углеродное волокно стоит дороже всего, но оно обеспечивает исключительно высокую прочность и жесткость, будучи чрезвычайно легким. Кевлар® также легкий и обеспечивает отличную стойкость к истиранию. Однако его трудно разрезать и смочить смолой. Для отделочных целей производители часто используют поверхностный слой из легкой стекловолоконной ткани в ламинатах Kevlar®, потому что после отверждения Kevlar® практически невозможно шлифовать.В большинстве универсальных приложений используется ткань из стекловолокна. Хотя ему не хватает легкого и высокопрочного углеродного волокна или кевлара®, его приобретение значительно дешевле. Ткань из стекловолокна бывает самых разных стилей и веса, что делает ее идеальной для многих областей применения. Доступны стили высокопрочного переплетения, и их можно рассматривать как экономически эффективную альтернативу более современным тканям.

Примеры продукции
    Арт. Описание
    Стекловолокно Стекловолокно — это основа индустрии композитов.Он легкий, имеет умеренную прочность на разрыв и прост в обращении. Производители будут использовать стекловолокно в широком спектре проектов в отрасли.
    Углеродное волокно Углеродное волокно встречается повсюду, от автогонок до авиакосмической отрасли. Хотя он дороже, чем стекловолокно и кевлар, он может похвастаться самой высокой прочностью на растяжение, сжатие, изгиб и изгиб в отрасли. Углеродное волокно обычно используется для проектов, требующих более высокого уровня прочности, таких как несущие детали.
    Кевлар Кевлар — одно из первых высокопрочных синтетических волокон, получивших признание в промышленности армированных волокнами пластмасс. Кевлар сияет в его устойчивости к ударам и истиранию. Кевлар идеально подходит для деталей, где ожидается сильный удар и истирание, таких как каноэ и каяки, панели фюзеляжа самолетов и сосуды высокого давления.

Конструкция пресс-формы

    Фото предоставлено IStock Photo.
    Первый шаг в изготовлении пресс-формы состоит из изготовления и / или подготовки пробки. Пробка может быть изготовлена ​​практически из чего угодно, если ее поверхность может быть обработана достаточно хорошо, чтобы получить подходящую поверхность формы. Как указывалось ранее, заглушка может быть либо существующим изделием, либо чем-то, изготовленным специально для процесса изготовления формы. Некоторые из материалов, обычно используемых при строительстве заглушек, включают дерево, гипс, металл и пенополиуретан. Последний выпускается либо в виде предварительно сформованных листов, либо в виде двухкомпонентной системы «смешивание и заливка», которая химически реагирует с образованием пены.Пена «смешай и вылей» будет соответствовать форме любой полости, в которую наливаются ингредиенты.

    Поверхность заглушки должна быть обработана как минимум так же, как желаемая поверхность изготавливаемой детали. В большинстве случаев предпочтительной поверхностью заглушки будет идеально гладкая и полированная поверхность класса «А». Если на готовой детали требуется особая текстура или узор, их можно включить в поверхность заглушки. Высококачественная шлифуемая грунтовка для поверхностей, такая как Duratec Grey Surfacing Primer (№ 1041-B), хорошо работает в качестве финишного покрытия на пробке.На этом этапе установите на заглушку фланцы и любые необходимые разделительные перегородки (см. «Особые рекомендации по конструкции пресс-формы»).

    Перед началом изготовления формы на заглушку необходимо нанести разделительный состав. Это самый важный шаг в процессе, потому что, если разделительный агент не действует, форму нельзя удалить, не повредив ее и заглушку. Немного дополнительных усилий на этом этапе лучше, чем часы, потраченные на попытки исправить повреждение пробки и формы.Разделительный агент может представлять собой комбинацию разделительного воска и ПВА или одностадийного разделительного агента, такого как FibRelease.

    При использовании воска нанесите четыре слоя с выдержкой в ​​час между вторым и третьим слоями. После полировки последнего воскового покрытия нанесите три тонких слоя ПВА и дайте ему высохнуть в течение 30-45 минут. FibRelease можно протереть или намочить на вилке и дать высохнуть в течение 30 минут. Обязательно нанесите разделительный состав на поверхность всех фланцев и перегородок.

    Контрольный список продуктов
      Арт. Описание
      Листы пенополиизоцианурата Листы из вспененного полиизоцианурата лучше всего подходят для создания моделей без формы, где изоляция является важным фактором. Его легко разрезать и придать форму острым ножом и наждачной бумагой. Fiber Glast имеет как 2-фунтовые, так и 6-фунтовые разновидности.
      Полиуретановая смесь и пена для заливки Эта пенная смесь поставляется в наборе из двух частей, которые создают систему с закрытыми ячейками, то есть отдельные ячейки пены улавливают воздух и не пропускают жидкости. После отверждения этой пене можно придать форму и вырезать ее для изготовления форм. Fiber Glast имеет варианты весом 2 и 6 фунтов.
      Серая грунтовка для поверхностей Duratec Surfacing Primer обеспечивает быстрое отверждение даже при нанесении тонких слоев.Он отличается высокой температурой теплового искажения и легко шлифуется до зеркального блеска класса А.
      Разделительный воск Partall Paste Wax — это не содержащий силикона зеленый воск, специально разработанный для получения прочной, долговечной и блестящей поверхности. Он будет предлагать отличные характеристики выпуска.
      ПВС PVA, или поливиниловый спирт, сочетается с разделительным воском, чтобы создать легкое разделение для форм.PVA устойчив к растворителям в любой системе смол, но он растворим в воде. Его нельзя использовать с продуктами, выделяющими воду во время отверждения.
      FibRelease В качестве альтернативы разделительному воску и ПВА производители могут сэкономить время, деньги и силы с помощью FibRelease. FibRelease — это раствор на водной основе, не содержащий вредных растворителей, летучих органических соединений или силиконов.

    Для большинства форм, полиэфирная смола и 1.5 унций / кв. футов мата из рубленых прядей дают удовлетворительные результаты. Прочность и толщину пресс-формы можно повысить быстрее, добавив тканый ровинг или инструментальную ткань. В случае форм из полиэстера первым шагом в изготовлении формы является нанесение гелевого покрытия для инструментов, которое отличается ярко-оранжевым или глубоким черным цветом. Перед нанесением обязательно нанесите гелькоут в нужном соотношении. Для достижения наилучших результатов гелькоут для оснастки следует нанести на заглушку с помощью пистолета для гелькоута за три прохода от семи до восьми мил каждый, достигая общей толщины 20-25 мил.

    Поверхностное покрытие должно быть стабилизировано первоначальным слоем мата в течение полутора-пяти часов, чтобы предотвратить усадку гелевого покрытия или отрывание поверхности заглушки. Нанесите слой смолы на поверхность и положите мат в смолу. Используя щетинную кисть, нанесите смолу на мат, придавая мату различные контуры вилки. Нанесение мазка гораздо эффективнее рисования, поскольку длинные мазки тянут коврик.

    Все воздушные карманы должны быть обработаны так, чтобы мат плотно прилегал к поверхности пробки и был равномерно пропитан смолой.Пузырьки воздуха и сухие участки будут казаться молочными на фоне гелевого покрытия инструмента. Используйте валик со щетиной, чтобы выдавливать воздушные карманы из мата, и валик для насыщения с канавками, чтобы уплотнить ламинат. Следите за перекрытием (поднятием) волокон на острых углах и в текстурированных областях. Любые пузырьки воздуха, оставшиеся после геля из смолы, необходимо аккуратно вырезать с помощью острого канцелярского ножа и наклеить на место спичку.

    Как только начальный слой затвердеет, слегка отшлифуйте его для подготовки к нанесению дополнительных слоев, следуя той же процедуре, что и с начальным слоем.В большинстве форм используется 8-10 слоев, но не следует наносить более трех-четырех слоев за раз, чтобы минимизировать тепловыделение (экзотермический эффект). После третьего слоя мата можно добавить слой тканого ровинга или инструментальной ткани для более быстрого наращивания толщины. Как правило, пресс-форма должна быть как минимум в два раза больше толщины детали, которую она должна изготовить.

    Дайте готовой форме высохнуть в течение как минимум 24 часов, прежде чем пытаться удалить. Любые опорные конструкции должны быть прикреплены к задней части формы до ее отсоединения от заглушки.Отжимные клинья могут быть вставлены по периметру формы, между формой и заглушкой, и постепенно вставлены на место. Клинья для впрыска воздуха, которые прикрепляются к воздушному компрессору, можно использовать для разделения устойчивых участков.

    Как только форма освободится, смойте остатки разделительного состава теплой водой и осмотрите поверхность. Любые дефекты необходимо зачистить и отремонтировать. После этого вы готовы начать подготовку формы для производства деталей.

    Контрольный список продуктов

      Пистолеты

      Арт. Описание
      Полиэфирная смола Для большинства форм полиэфирная смола дает удовлетворительные результаты. Полиэфирные смолы менее дороги, чем альтернативы, при этом обладают умеренными прочностными характеристиками и просты в обращении.
      Мат из рубленого волокна Мат из рубленых прядей чаще всего используется для придания толщины деталям между слоями ткани.Обычно производители рвут мат из рубленых прядей, а не разрезают его. Это сохраняет длину волокон вдоль разорванного края, создавая более прочное соединение.
      Тканый ровинг Тканый ровинг обеспечивает недорогое средство для ламинирования больших площадей в процессе создания формы. Волокна скручиваются в теплые и заполняющие нити, которые проходят под углом 0 и 90 градусов, обеспечивая твердую прочность готовой детали в двух направлениях.
      Гель-покрытие для инструментов Обладая характерным ярко-оранжевым или глубоким черным цветом, гелькоуты для инструментальной оснастки представляют собой стойкие к истиранию гелевые покрытия для изготовления форм, где ключевым фактором является сохранение блеска, твердость, устойчивость к образованию трещин и минимальное искажение.
      Пистолеты для гелькоута могут использоваться для эффективного распыления гелькоутов, ПВА и разделительной пленки, а также широкого выбора грунтовок.Пистолеты-распылители оставляют после себя гладкую однородную поверхность, свободную от несоответствий и мазков кисти, характерных для других методов нанесения.
      Выжимные клинья Разъемные клинья можно использовать для снятия формы с заглушки, избегая при этом ненужного повреждения поверхности формы. Клинья для впрыска Iar могут использоваться для разделения особо устойчивых участков.

Обслуживание пресс-формы

    Фото предоставлено IStock Photo.
    Перед тем, как какую-либо деталь можно будет изготовить в новой форме, ее необходимо отшлифовать и отполировать до класса «А». Постепенно смочите форму наждачной бумагой с зернистостью 400, 600 и, наконец, 1000. Не забудьте сменить воду в ведре и промыть поверхность формы при переходе на более тонкую бумагу, чтобы не осталось грубых зерен. Для полировки Fiber Glast Development Co. рекомендует использовать двухступенчатую полировальную пасту и высокоскоростной буфер. Первый этап удаляет шлифовальные царапины, а второй полирует поверхность до желаемого результата.

    После полировки формы нанесите на нее смазку, следуя процедурам, описанным для подготовки пробки. На новую форму часто наносят дополнительный слой разделительного агента в качестве дополнительной страховки. Если деталь не высвобождается должным образом и повреждает форму, потребуется ремонт. Любой незакрепленный или поврежденный материал необходимо удалить шлифованием или шлифованием, и на эту область следует нанести новый инструментальный гель-слой. Слой ПВА или вощеной бумаги, наложенный на ремонт, будет необходим для надлежащего отверждения.После отверждения ремонт можно отшлифовать и отполировать, как описано ранее.

    Контрольный список продуктов
      Арт. Описание
      Наждачная бумага Новые формы требуют гладкой поверхности или отделки класса «А», чтобы их можно было использовать при создании деталей. Вам нужно будет использовать влажную наждачную бумагу с более высоким уровнем зернистости, чтобы подготовить форму к использованию.
      Двухступенчатая полировка для пресс-форм После шлифовки вам необходимо отполировать форму, чтобы удалить все шлифовальные царапины, оставшиеся после очистки наждачной бумагой. Двухступенчатая полировальная паста обеспечит впечатляющий блеск, при этом она разработана для производителей, которым требуется только половина материала других полировальных смесей

Особенности конструкции пресс-формы

Многокомпонентные формы

    В некоторых случаях форма пробки может потребовать составной формы, так что форма может быть снята с пробки, а последующие части удалены из формы.При изготовлении многокомпонентной формы начните с создания временной перегородки на заглушке вдоль желаемой линии разделения. Эта плотина может быть построена из мазонита или подобного материала и удерживаться на месте с помощью глины. На той части, которую нужно формовать в первую очередь, необходимо сохранить острый угол без радиуса. К разделительной перемычке должны быть добавлены установочные шпонки или дюбели для перестановки деталей формы. В случае форм, состоящих из нескольких частей, сконструируйте всю форму перед тем, как снимать какую-либо часть формы, чтобы избежать проблем с переналадкой.После того, как первая часть формы застынет, удалите временную перегородку и используйте готовую часть фланца, чтобы сформировать разделительную перегородку для следующей половины. Нанесите разделительный состав на эту поверхность, прежде чем продолжить конструирование формы.

Альтернативные методы строительства

    Если прочность и стабильность размеров являются важными факторами в конструкции пресс-формы, вместо полиэфирной смолы можно использовать эпоксидную смолу. Процедура для этого во многом такая же, как и с полиэфирной смолой, за исключением того, что мат нельзя использовать с эпоксидной смолой, поскольку связующее, которое скрепляет мат, несовместимо с эпоксидными смолами.Начните с ткани весом 2–4 унции, чтобы минимизировать сквозную печать рисунка плетения. Затем перейдите на ткань весом 7-10 унций. Не забудьте разместить несколько слоев под углом 45 градусов для хорошей жесткости. Для достижения наилучших результатов эпоксидные покрытия следует нанести щеткой на пробку. Поскольку эпоксидные смолы менее склонны к усадке, чем полиэфирные материалы, немедленное нанесение стабилизирующего армирующего слоя на поверхностное покрытие не является критическим.

    Если требуются исключительно жесткие формы, вместо стеклоткани можно использовать углеродное волокно.Мы рекомендуем использовать эпоксидную смолу с углеродным волокном, а гибкий резиновый ракель лучше всего подходит для распределения смолы по ткани.

    Контрольный список продуктов
      Арт. Описание
      Эпоксидная смола При работе с формой, требующей повышенной прочности и стабильности размеров, обычно рекомендуются эпоксидные смолы.Хотя эпоксидные смолы дороже полиэфирных смол, они обладают большей прочностью, стабильностью и лучшей адгезией с другими материалами.
      Стекловолокно Рубленый мат нельзя использовать с эпоксидной смолой из-за несовместимости продукта. По этой причине рекомендуется начать с более легкой ткани, например, ткани весом 2–4 унции, а затем перейти на более плотную ткань.
      Ткань из углеродного волокна Ткань из углеродного волокна может использоваться почти так же, как стекловолокно при создании вашей формы.Изготовители обычно выбирают углеродное волокно, когда их форма требует исключительной жесткости.
      Ракели При конструировании формы важно сохранить и равномерно распределить смолу по всей ткани. Такие инструменты, как гибкий резиновый ракель, помогут равномерно распределить ткань по поверхности, сводя к минимуму возможные осложнения.

Выбор материалов для изготовления деталей

    После того, как форма будет должным образом отполирована и покрыта разделительным составом, можно приступать к изготовлению деталей! Первым этапом процесса формования деталей является определение того, какая смола и арматура будут использоваться.Обсудив ранее достоинства трех основных смол, мы сконцентрируемся здесь на особенностях выбора арматуры.

    После выбора типа армирования наиболее важными факторами являются выбор стиля (переплетения) и веса ткани, наиболее подходящей для конкретного применения. Три основных стиля ткани — это полотняное переплетение, саржевое переплетение и атласное переплетение. Кроме того, стекловолокно доступно в унциях на квадратный ярд, за исключением мата, который выражается в унциях на квадратный фут.

    Когда ткань ткется, волокна скручиваются в пряжу под углом 0 (основная пряжа) и 90 (пряжа наполнителя). Обычное переплетение использует узор «сверху-снизу», в то время как в атласном переплетении одна пряжа наполнения плавает над тремя-семью нитями основы перед сшиванием под другой нитью основы, а саржевое переплетение — это узор «2×2». Обычное переплетение является наименее дорогим и хорошим материалом общего назначения, но оно не обладает такой же прочностью, как атласное и саржевое переплетение, но одинаково прочно во всех направлениях.

    Чем легче ткань, тем легче она будет драпироваться по контурам и тем меньше смолы потребуется для ее смачивания. Легкие ткани чаще всего используются для отделки поверхностей и хобби с радиоуправлением. При ремонте и пошиве чаще всего используются ткани средней плотности. Самые тяжелые ткани обычно используются для быстрого наращивания толщины, например, для корпусов лодок и изготовления форм. Ткани продаются на складах, как правило, шириной 38, 50 и 60 дюймов, хотя не все ткани будут доступны со всей этой шириной.Для данного проекта выберите ширину, которая максимально приближена к ширине детали, которую нужно сделать. Идея состоит в том, чтобы использовать как можно меньше отдельных кусков ткани для каждого слоя. Необходимое количество смолы будет зависеть от веса выбранной ткани. Соотношение ткани и смолы для большинства тканых стекловолокон и Kevlar® составляет примерно 50:50, а углеродного волокна — 60:40. Мат из стекловолокна потребует примерно вдвое больше смолы, чем тканый стекловолокно для надлежащего насыщения. Дополнительную прочность можно придать деталям за счет конструкции сэндвич-сердечника.Этот процесс включает использование материала сердцевины, такого как бальзовое дерево с торцевыми волокнами, пенополиуретан, виниловая пена или соты, между двумя слоями ламината. Некоторые основные материалы бывают разной толщины в зависимости от потребностей конкретного применения. Прочность и жесткость детали можно значительно увеличить, добавив к ней очень небольшой дополнительный вес.

Процесс изготовления

    Фото предоставлено IStock Photo.
    Выбрав ткань и смолу, вы готовы приступить к лепке детали.Как указывалось ранее, при использовании формы в первый раз добавьте дополнительный слой разделительного агента, чтобы обеспечить надлежащее разделение. Пока разделительный состав высыхает, найдите время, чтобы обрезать арматуру до нужного размера и количества частей и сложить стопку рядом с рабочей зоной. Если вы используете коврик, разорвите его на кусочки подходящего размера, а не разрезайте. Обтрепанные края деталей будут перемешиваться, когда они будут помещены в форму, обеспечивая более прочное соединение, чем при стыковке двух обрезанных краев. В случае тканых материалов определите, где должна быть наибольшая прочность детали, и соответствующим образом сориентируйте волокна.При использовании тканей с полотняным переплетением более равномерная прочность может быть достигнута путем чередования ориентации волокон от 0/90 до 45/45 градусов.

    Процесс изготовления детали аналогичен этапам изготовления пресс-формы. При работе с охватывающей формой начните с нанесения соответствующего поверхностного покрытия на поверхность формы. Этот шаг не является абсолютно необходимым при изготовлении деталей, но гораздо лучший косметический вид готовой детали будет достигнут, если он будет использоваться. Нанесение первого слоя смолы и ткани непосредственно на поверхность формы может привести к неровностям поверхности, проколам и сквозной печати рисунка тканевого переплетения, если используется более тяжелая ткань.Эти недостатки можно исправить после того, как деталь будет извлечена из формы, но для этого потребуется утомительное шлифование и заполнение. Использование легкой ткани, например, двух или четырех унций, в качестве первого слоя может свести к минимуму эти проблемы, если не используется гелькоут или поверхностное покрытие. В качестве альтернативы гелевому покрытию грунтовку Duratec Surfacing Primer можно распылить в форму, обеспечивая прочную отделку поверхности.

    Гель-коут из полиэстера бывает белого или прозрачного цвета, который окрашен в различные цвета.Прозрачные гелькоуты очень точно воспроизводят цвета, а белые гелькоуты дают пастельные тона. Поверхность эпоксидной смолы белого цвета, также может быть пигментирована.

    Контрольный список продуктов
      Арт. Описание
      Полиэфирные гелькоуты Полиэфирные гелевые покрытия отличаются высокой прочностью и обычно считаются отраслевым стандартом при формовании.Fiber Glast представляет собой гель белого, прозрачного и нейтрального цвета.
      Эпоксидные покрытия Разработанный для формирования прочной и прочной поверхности на узорах, приспособлениях и эпоксидных формах, это эпоксидное покрытие легко наносится и наносится на детализированные поверхности, не задерживая пузырьков воздуха.
      Duratec Surfacing Primer Duratec Surfacing Primer обеспечивает быстрое отверждение даже при нанесении тонких слоев.Он отличается высокой температурой теплового искажения и легко шлифуется до зеркального блеска класса А.

    При нанесении гелькоута на форму наилучшие результаты будут достигнуты при распылении неразбавленного гелькоута с помощью пистолета-распылителя, почти таким же образом, как гелькоут на оснастке наносится в конструкции формы. Медленно нанесите гелькоут за три прохода до толщины 15-20 мил. Измеритель толщины гелькоута — лучший инструмент для определения толщины.Проверьте несколько мест на детали, чтобы убедиться, что слой наносится ровно. Слишком много или слишком мало на некоторых участках может вызвать образование складок или деформацию при застывании гелькоута. При использовании эпоксидного покрытия поверхность следует нанести щеткой в ​​форму.

    Придерживаясь указаний в разделе о конструкции пресс-формы в белой бумаге, нанесите гелькоут с первоначальным стабилизирующим слоем усиления. Если вы пигментировали гелькоут и хотите, чтобы он был одинакового цвета по всей детали, смолу также можно пигментировать.

    При укладке арматуры старайтесь использовать один неразрезанный кусок ткани для каждого слоя. К сожалению, это не всегда возможно. Иногда часть слишком велика, чтобы ее можно было покрыть одним куском ткани, поэтому необходимо использовать два или более куска. Когда две отдельные детали должны быть соединены вместе в форме, лучше всего перекрывать их на полдюйма или одного дюйма, а не стыковать детали более жестко. Соединяйте две детали вместе, чтобы получился шов, только если необходимо поддерживать постоянную толщину.

    Фото предоставлено IStock Photo.
    Контуры и формы детали также могут затруднить получение хорошей адгезии при использовании одного куска ткани. В частности, проблемы такого рода представляют вмятины и острые углы. Композитам можно придавать самые разные формы, но очень сложно получить острые углы (90 градусов и более) с непрерывными кусками ткани. Ткань будет подниматься в этих местах, что приводит к образованию пузырьков воздуха и слабых мест в ламинате.Если в детали требуется острый угол, лучший способ приблизиться к нему — это соединить вместе два отрезанных куска ткани на повороте. Для дополнительной прочности стыковых соединений смешайте небольшое количество смолы с измельченными стекловолокнами, чтобы получить структурный шпатлевочный наполнитель. Нанесите его на шов перед тем, как положить на ткань. В случае углублений лучше отрезать меньший кусок ткани, чтобы он соответствовал углублению, чем пытаться вдавить в него более крупный кусок ткани.

    Как и в случае с пресс-формой, используйте валики и ракель, чтобы тщательно пропитать ткань, выдавить воздушные карманы из ламината и максимально уплотнить слои.Это поможет избежать слабых мест и проблем с расслоением готовой детали. Поскольку слои армирования помещаются в форму, обратите внимание на ориентацию волокон при использовании тканого полотна, чередуя ориентацию слоев, чтобы увеличить прочность детали.

    Если планируется использовать многослойную конструкцию сердечника, определите, какой тип материала сердечника лучше всего подходит для данной области применения. Пенополиуретан очень жесткий и плохо повторяет контуры, тогда как пенополиуретан можно нагреть и придать ему самые разные формы.Бальза, которая обычно состоит из небольших блоков волокон на концах, скрепленных холстом ткани, может иметь мягкие изгибы. Материалы сотового заполнителя очень гибкие и могут принимать самые разные формы.

    Необходимо предпринять несколько шагов для подготовки материала сердцевины, чтобы получить прочную деталь. После резки и придания формы сердцевине материала контурам детали скосите края сердцевины по периметру под углом 45 градусов, чтобы сгладить переход ткани. Смешайте часть смолы со стеклянными микросферами до консистенции суспензии и используйте ее для заполнения любых зазоров, а также для сращивания нескольких частей или материала сердцевины вместе.Предварительно обработайте пенопласты с открытыми ячейками и сотовые заполнители этой суспензионной смесью, чтобы заполнить открытые ячейки чем-то более легким, чем чистая смола. Как только эти шаги будут выполнены, сердечник можно прикрепить на место.

    При работе с многокомпонентными формами почти всегда собирайте детали формы перед укладкой детали. Укладка детали, а затем сборка деталей формы затруднит получение хорошей связи между деталями и гладкой косметической отделки. Исключением из этого правила будет закрытый предмет, такой как топливный бак, который было бы невозможно складывать, если бы форма была собрана заранее.

    Если используется пресс-форма, другая половина пресс-формы может быть прижата к первой половине после того, как все армирующие слои будут на своих местах. Если пресс-форма не используется, но желательна гладкая поверхность с обеих сторон детали, поверх последнего слоя армирования можно нанести поверхностное покрытие. Когда ламинат достигнет стадии «кожистого» полуотверждения, обрежьте края острым канцелярским ножом. Выполнение этого сейчас значительно сократит время чистовой обработки и позволит сократить образование пыли в будущем.

    После того, как деталь затвердела, выньте ее из формы почти так же, как она была снята с заглушки. Любые остатки разделительного агента можно смыть с детали и обработать любым способом. Отделка обычно заключается в зачистке швов и шлифовке краев детали.

    Осмотрите форму на предмет повреждений или затупления поверхности формы. Если все в порядке, повторно нанесите агент выпуска, когда будете готовы построить следующую деталь.Если требуется ремонт или полировка, выполните эти операции, как описано выше.

    Тщательно следуя инструкциям в этом и других наших официальных документах, вы можете производить формы и готовые детали, которые соответствуют вашим ожиданиям или превосходят их. Если что-то пойдет не так, можно отремонтировать практически любое повреждение или проблему. Помните, что работа с композитами похожа на любой другой новый навык, который вы изучаете: чем больше вы над этим работаете и оттачиваете свои способности, тем лучше будут результаты.После того, как вы освоите основы, а затем отточите эти навыки, станет возможным практически все.

.