Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Стабилизаторы напряжения это: Выбор стабилизатора напряжения | Стабилизаторы напряжения | Блог

Содержание

Как выбрать стабилизатор напряжения (2018) | Стабилизаторы напряжения | Блог

Вместо привычного с детства числа 220 в маркировке современных электроприборов все чаще попадается 230. С недавних пор именно 230 В является стандартным напряжением в России и многих других странах. Впрочем, для большинства электроприборов разницы между 230 и 220 В нет никакой. Стандартом допускаются отклонения напряжения сети на ±10%, т.е. от 207 до 253 В. Производители бытовой техники ориентируются именно на эти показатели.

Однако в реальности напряжение в этих рамках удерживается не всегда. В новых микрорайонах, в деревнях и поселках часто к старой подстанции, рассчитанной на определенную нагрузку, подключается много новых потребителей. Это приводит к падению напряжения до 190 В и даже ниже, что бывает хорошо заметно по горящим в полнакала лампочкам. К сожалению, снижением яркости лампочек проблема не исчерпывается. Возрастают токи в обмотках электродвигателей насосов, холодильников, стиральных машин, посудомоек и пр. Это может привести к выходу двигателя из строя.

Бывает в сети и повышенное напряжение, также довольно частое в загородных домах – иногда подстанции намеренно подстраиваются на выдачу повышенного напряжения, чтобы на удаленных потребителях оно поднялось до нормального. При этом на потребителях, близких к подстанции, оно может быть около 250 В. Если при этом еще и нулевой провод окажется не заземлен, то из-за перекоса фаз напряжение может подняться еще выше – до 260 В и даже больше. Ну и не так уж редки случаи, когда электрики случайно подключают в щитке вместо нулевого провода – еще одну фазу, выдавая потребителям 400 В вместо 230. Повышенное напряжение вредно всем потребителям без исключения, поскольку ведет к увеличению выделения тепла, перегреву деталей, выходу их из строя и даже воспламенению.

Можно защитить все электроприборы в доме, установив во входном щитке реле напряжения, но это не решит проблему полностью – при выходе напряжения за установленные рамки оно просто обесточит потребителей. Чтобы защититься от длительных просадок или повышений напряжения, следует ставить стабилизатор.

Конечно, можно поставить мощный стабилизатор на входе в дом и защитить всю технику скопом, но это будет стоить весьма недешево. Тем более что особой надобности в этом и нет – различные электроприборы по-разному реагируют на повышенное или пониженное напряжение. Вполне возможно, что не всей вашей технике нужна защита стабилизатором.

Защита электроприборов

Холодильники, морозильники и кондиционеры требуют защиты в первую очередь – пониженное напряжение в сети может стать причиной поломки компрессора и дорогостоящего ремонта.

Но еще одна особенность этой техники в том, что многие модели могут выйти из строя при быстром выключении-включении. Дело в том, что при выключении компрессора давление в системе выравнивается в течение некоторого времени (1-3 минуты). Если запустить компрессор раньше, его двигатель будет работать с повышенной нагрузкой (или вообще не сможет запуститься), что может привести к поломке. Современные холодильники и кондиционеры большей частью имеют встроенное реле задержки, но если у вас есть сомнения, или в руководстве указано, что перед повторным пуском следует выждать некоторое время, то стабилизатор обязательно должен иметь функцию задержки запуска минимум на 1 минуту.

Насосы, как погружные, так и поверхностные также требуют защиты от пониженного/повышенного напряжения и им тоже нужна задержка запуска. При пуске двигатель насоса в течение 1-2 секунд потребляет ток, в несколько раз превышающий номинальный. При этом обмотка двигателя нагревается. При обычном пуске излишки тепла снимаются прокачиваемой водой, но если напряжение в сети пропадает и появляется, то пусковые токи длятся дольше, а двигатель не успевает раскрутиться и прокачать воду. Контактирующая с насосом вода перегревается вплоть до закипания, что приводит к поломке насоса и перегоранию обмоток двигателя. Поэтому стабилизатор, защищающий насосы, должен также иметь задержку запуска в 5-10 секунд.

СВЧ-печь не выйдет из строя при падении напряжения, но эффективность её при этом снизится многократно. Если отвезенная на дачу «микроволновка» перестала греть, не спешите везти её в ремонт – возможно, дело в низком напряжении сети. Стабилизатор легко устранит эту проблему.

Электроника (компьютеры, современные телевизоры, аудиотехника), оснащенная импульсными блоками питания, пониженного напряжения не боится. Обычно это указывается в руководстве или прямо на блоке питания: «INPUT: 100-240 V». Так что, если ваша проблема состоит в пониженном напряжении, стабилизатор такой технике не нужен. Другое дело, если оно повышенное – при длительном воздействии напряжения от 240 В и выше, нагрузка (как тепловая, так и электрическая) на электронику БП сильно возрастает, что довольно быстро приводит к выходу его из строя.

Энергосберегающие лампы (как люминесцентные, так и светодиодные) к пониженному напряжению довольно лояльны, а вот повышенного не любят. Если всплески напряжения в вашей сети не редкость, то их лучше защитить стабилизатором. Тем более что потребляют они немного, и одного недорогого стабилизатора мощностью в 300-500 ВА хватит на освещение частного дома.

Нагревательным приборам, лампам накаливания, электрочайникам, утюгам и прочей подобной технике падения напряжения вообще не опасны – у них просто снизится эффективность. Повышенное напряжение может ускорить их износ, но в целом, напряжение, на 10-20% превышающее номинал, для большинства подобных приборов неопасно. Эти приборы можно включать в «проблемную» сеть без стабилизатора. Правда, это не относится ко многим современным моделям, оснащенным сложными электронными устройствами управления.

Определившись с тем, какие приборы следует защитить, следует определиться с характеристиками стабилизатора.

Характеристики стабилизаторов

Тип стабилизатора напряжения

Релейные стабилизаторы напряжения представляют собой трансформатор с несколькими отводами входной или выходной обмотки, коммутируемыми силовыми реле.

При нормальном входном напряжении трансформатор работает как разделительный – не повышая и не понижая напряжение. При выходе входного напряжения за установленные границы, электроника включает соответствующее реле, превращая трансформатор в понижающий или повышающий.

Преимущества релейных стабилизаторов:

– Низкая цена.

– Высокая перегрузочная способность – даже самые простые модели выдерживают 200% перегрузки в течение нескольких секунд. Модели же с мощными силовыми реле, рассчитанные на высокие пусковые токи, выдерживают непродолжительные десятикратные перегрузки.

– Малое время переключения – напряжение полностью стабилизируется через 20-100 мс после выхода его за нормальные границы.

Недостатки:

– Ступенчатость регулирования. Трансформатор имеет ограниченное число отводов на обмотке, поэтому изменять напряжение может только ступенчато – по 5, 10, а на недорогих моделях – по 20 вольт на одну ступень регулирования. В целом это для техники неопасно, но на граничных напряжениях частые переключения реле, сопровождающиеся мерцанием ламп накаливания, могут раздражать.

– Шумность. Реле при переключении щелкает довольно громко.

– Износ контактов реле. Основной недостаток этого вида стабилизаторов – опасность прогара или пригара контактов реле. Если в первом случае напряжение на выходе стабилизатора просто пропадет, то второй вариант намного неприятнее. Если пригар случится во время пониженного входного напряжения, то при возврате напряжения в норму, реле останется включенным. Трансформатор продолжит работать, как повышающий и напряжение на выходе станет повышенным! Спокойный за свою электротехнику владелец стабилизатора даже не будет подозревать, что именно в этот момент он сжигает её высоким напряжением. Поэтому не стоит выбирать релейный стабилизатор, если в сети случаются частые перепады напряжения – чем чаще реле срабатывает, тем быстрее снижается его ресурс.

Электромеханические (сервоприводные) стабилизаторы напряжения представляют собой тороидальный трансформатор с передвигающимся над внешней обмоткой токосъемником, контактирующим с обмоткой с помощью угольной щетки. При падении или превышении входного напряжения сервопривод перемещает токосъемник, нормализуя выходное.

Преимущества электромеханических стабилизаторов:

– Высокая перегрузочная способность – 200% перегрузки в течение 4-х секунд.

– Плавность регулирования.

– Высокая точность регулирования.

– Низкий уровень шума при регулировании.

Недостатки:

– Большое время переключения – токосъемник движется по обмоткам довольно медленно. Чем больше перепад напряжения, тем медленнее стабилизатор его отрабатывает. Это может привести к появлению импульсных помех на выходе стабилизатора, вызывающих сбои в работе электротехники.

– Износ токосъемника. Токосъемник желательно периодически смазывать графитовой смазкой. Но даже своевременная смазка не предотвращает полностью износа трущихся деталей.

– Высокая цена.

Инверторный стабилизатор сделан на основе инвертора – ток сначала выпрямляется, потом, с помощью инвертора, вновь преобразуется в переменный.

Это позволяет достичь высокой точности регулирования и позволяет добиться полного отсутствия возмущений на выходе. Благодаря отсутствию движущихся контактов, у них низкий уровень шума, ресурс выше и опасности пригара контактов они лишены.

Недостатки инверторных стабилизаторов:

– Недорогие инверторы дают на выходе не чистую синусоиду, а ступенчатую. Некоторые электронные приборы (измерительные приборы, газовые котлы, аудио- и видеотехника) могут начать сбоить или вообще откажутся работать с такой синусоидой.

– Низкая перегрузочная способность. Допускается перегрузка 25-50% от номинала, в течение 1-4 секунд. Для защиты приборов, имеющих высокий пусковой ток, стабилизатор такого типа потребуется брать с большим запасом по мощности.

– Высокая чувствительность к мощным импульсным помехам. Впрочем, в бытовых сетях такие помехи — явление маловероятное.

Ступенчатые электронные стабилизаторы конструктивно схожи с релейными, однако коммутирование обмоток в них производится не с помощью реле, а с помощью мощных полупроводниковых приборов.

Это позволяет добиться высочайшей скорости регулирования (5-40 мс на переключение) при достаточно низкой цене. Эти стабилизаторы тоже не имеют движущихся контактов, бесшумны и обладают высоким ресурсом.

Но свои недостатки есть и у этого вида стабилизаторов:

– Низкая перегрузочная способность. Допускается перегрузка 20-40% от номинала, и то весьма непродолжительное время.

– Ступенчатость регулирования.

– Высокая чувствительность к мощным импульсным помехам. Если в сети нередки сильные кратковременные всплески напряжения, прослужит такой стабилизатор недолго.

Необходимая полная выходная мощность стабилизатора рассчитывается исходя из мощностей всех подключенных к нему электроприборов. При подсчете полной мощности следует иметь в виду, что та мощность (в Ваттах), которая приводится в паспорте на электроприбор – это его активная мощность, т.е., выделяющаяся в виде тепла или света.

Нагревательные приборы и лампы накаливания имеют полную мощность, равную активной. Но некоторые потребители, содержащие в себе электродвигатели или трансформаторы, создают вдобавок к активной еще и реактивную нагрузку. Для определения их полной мощности следует активную мощность поделить на коэффициент мощности (cos(φ)), обычно указанный в паспорте на электроприбор. Если найти это значение не удается, можно воспользоваться таблицей:

Полные мощности всех потребителей следует сложить и добавить к получившейся сумме 30% — дело в том, что мощность стабилизатора приводится для напряжения 220В. При выходе напряжения за пределы нормального, мощность стабилизатора падает на 20-30%. Именно это падение и следует компенсировать.

Но это еще не все – теперь полную мощность каждого потребителя следует помножить на пусковой коэффициент, также взяв его из паспорта или из таблицы. Сумма получившихся чисел (не забываем про 30%) – это пусковая мощность, и перегрузочная способность стабилизатора должна её обеспечивать.

Например, нам следует защитить холодильник мощностью 150 Вт, погружной насос мощностью 500 Вт и линию освещения со светодиодными лампочками суммарной мощностью 500 Вт. Необходимая полная мощность в ВА будет равна:

  • 150/0,8=187,5
  • 500/0,7=714,3
  • 500/0,95=526,3

Суммируем полученные данные и прибавляем 30%. Итого 1857 ВА.

Пусковая мощность будет равна:

  • 187,5*3=562,5
  • 714,3*7=5000
  • 526,3*1,5=790

Также суммируем, прибавляем 30%, получается 8258 ВА. Таким образом, нам нужен стабилизатор на 3000 ВА, способный выдержать перегрузку в три раза больше (релейный с усиленными реле), либо стабилизатор на 4500 ВА, способный выдержать в два раза больше перегрузки (релейный или электромеханический), либо электронный (ступенчатый или инверторный) на 9000 ВА.

Если такой подбор выглядит слишком сложным, то можно просто сложить активные мощности электроприборов (в Ваттах) и подобрать стабилизатор также по активной выходной мощности. Но такой подбор будет грубее: во-первых, этот метод не учитывает индивидуальных особенностей электроприборов, во-вторых, все производители по-разному рассчитывают зависимость полной и активной мощностей. И здесь также следует быть уверенным, что перегрузочная способность стабилизатора поможет ему выдержать пусковую мощность потребителей.

Разъем для подключения нагрузки может быть в виде клемм, либо в виде розеток. Если стабилизатор планируется использовать для защиты какой-либо линии электропитания (например, осветительной) предпочтительнее разъем в виде клемм.

Если же защищать планируется отдельных потребителей, то удобнее подключать их напрямую в евророзетки (СЕЕ 7), обратите внимание, чтобы количество розеток соответствовало количеству потребителей.

Некоторые стабилизаторы оснащены компьютерными розетками IEC 320 C13 – как правило, эти стабилизаторы предназначены для защиты персональных компьютеров и учитывают низкий коэффициент мощности этого вида техники.

Задержка запуска, как указывалось выше, может потребоваться для защиты некоторых видов техники, не приемлющих частых включений-выключений: холодильников, кондиционеров, насосов и пр.

Варианты выбора стабилизаторов

Для защиты отдельного маломощного потребителя – газового котла или циркуляционного насоса – будет достаточно стабилизатора полной мощностью до 1000 ВА.

Для защиты электроприборов, наиболее сильно подверженных влиянию пониженного или повышенного напряжения, будет достаточно стабилизатора в 3000-6000 ВА.

С защитой всех домашних электроприборов справится мощный стабилизатор.

Для защиты компьютера и периферии удобно использовать специализированный стабилизатор с компьютерными розетками.

Релейные и электромеханические стабилизаторы обладают высокой перегрузочной способностью и хорошо подходят для защиты электроприборов с высокими пусковыми токами.

Стабилизатор напряжения — это… Что такое Стабилизатор напряжения?

Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного напряжения и сопротивления нагрузки.

По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного тока и переменного тока. Как правило, тип питания (постоянный либо переменный ток) такой же, как и выходное напряжение, хотя возможны исключения.

Стабилизаторы постоянного тока

Микросхема линейного стабилизатора КР1170ЕН8

Линейный стабилизатор

Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin — Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, т. е. должен быть установлен на радиатор нужной площади. Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых деталей.

В зависимости от расположения элемента с изменяемым сопротивлением линейные стабилизаторы делятся на два типа:

  • Последовательный: регулирующий элемент включен последовательно с нагрузкой.
  • Параллельный: регулирующий элемент включен параллельно нагрузке.

В зависимости от способа стабилизации:

  • Параметрический: в таком стабилизаторе используется участок ВАХ прибора, имеющий большую крутизну.
  • Компенсационный: имеет обратную связь. В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.
Параллельный параметрический стабилизатор на стабилитроне

Применяется для стабилизации напряжения в слаботочных схемах, так как для нормальной работы схемы ток через стабилитрон D1 должен в несколько раз (3-10) превышать ток в стабилизируемой нагрузке RL. Часто такая схема линейного стабилизатора применяется как источник опорного напряжения в более сложных схемах стабилизаторов. Для снижения нестабильности выходного напряжения, вызванной изменениями входного напряжения, вместо резистора RV применяется источник тока. Однако эта мера не уменьшает нестабильность выходного напряжения, вызванную изменением сопротивления нагрузки.

Последовательный стабилизатор на биполярном транзисторе

Uout = Uz — Ube.

По сути, это рассмотренный выше параллельный параметрический стабилизатор на стабилитроне, подключённый ко входу эмиттерного повторителя. В нём нет цепей обратной связи, обеспечивающих компенсацию изменений выходного напряжения.

Его выходное напряжение меньше напряжения стабилизации стабилитрона на величину Ube, которая практически не зависит от величины тока, протекающего через p-n переход, и для приборов на основе кремния приблизительно составляет 0,6В. Зависимость Ube от величины тока и температуры ухудшает стабильность выходного напряжения, по сравнению с параллельным параметрическим стабилизатором на стабилитроне.

Эмиттерный повторитель (усилитель тока) позволяет увеличить максимальный выходной ток стабилизатора, по сравнению с параллельным параметрическим стабилизатором на стабилитроне, в β раз (где β — коэффициент усиления по току данного экземпляра транзистора). Если этого недостаточно, применяется составной транзистор.

При отсутствии сопротивления нагрузки (или при токах нагрузки микроамперного диапазона), выходное напряжение такого стабилизатора (напряжение холостого хода) возрастает на 0,6В за счёт того, что Ube в области микротоков становится близким к нулю. Для преодоления этой особенности, к выходу стабилизатора подключают балластный нагрузочный резистор, обеспечивающий ток нагрузки в несколько мА.

Последовательный компенсационный стабилизатор с применением операционного усилителя

Часть выходного напряжения Uout, снимаемая с потенциометра R2, сравнивается с опорным напряжением Uz на стабилитроне D1. Разность напряжений усиливается операционным усилителем U1 и подаётся на базу регулирующего транзистора, включенного по схеме эмиттерного повторителя[1]. Для устойчивой работы схемы петлевой сдвиг фазы должен быть близок к 180°+n*360°. Так как часть выходного напряжения Uout подаётся на инвертирующий вход операционного усилителя U1, то операционный усилитель U1 сдвигает фазу на 180°, регулирующий транзистор включен по схеме эмиттерного повторителя, который фазу не сдвигает. Петлевой сдвиг фазы равен 180°, условие устойчивости по фазе соблюдается.

Опорное напряжение Uz практически не зависит от величины тока, протекающего через стабилитрон, и равно напряжению стабилизации стабилитрона. Для повышения его стабильности при изменениях Uin, вместо резистора RV применяется источник тока.

В данном стабилизаторе, операционный усилитель фактически включён по схеме неинвертирующего усилителя (с эмиттерным повторителем, для увеличения выходного тока). Соотношение резисторов в цепи обратной связи задают его коэффициент усиления, который определяет, во сколько раз выходное напряжение будет выше входного (т.е. опорного, поданного на неинвертирующий вход ОУ). Поскольку коэффициент усиления неинвертирующего усилителя всегда больше единицы, величина опорного напряжения (напряжение стабилизации стабилитрона) должна быть выбрана меньше требуемого минимального выходного напряжения.

Нестабильность выходного напряжения такого стабилизатора практически полностью определяется нестабильностью опорного напряжения, за счёт большого коэффициента петлевого усиления современных ОУ (Gopenloop = 105 ÷ 106).

Для исключения влияния нестабильности входного напряжения на режим работы самого ОУ, он может запитываться стабилизированным напряжением (от дополнительных параметрических стабилизаторов на стабилитроне).

Импульсный стабилизатор

В импульсном стабилизаторе ток от нестабилизированного внешнего источника подаётся на накопитель (обычно конденсатор или дроссель) короткими импульсами; при этом запасается энергия, которая затем высвобождается в нагрузку в виде электрической энергии, но, в случае дросселя, уже с другим напряжением. Стабилизация осуществляется за счёт управления длительностью импульсов и пауз между ними — широтно-импульсной модуляции. Импульсный стабилизатор, по сравнению с линейным, обладает значительно более высоким КПД. Недостатком импульсного стабилизатора является наличие импульсных помех в выходном напряжении.

В отличие от линейного стабилизатора, импульсный стабилизатор может преобразовывать входное напряжение произвольным образом (зависит от схемы стабилизатора):

  • Понижающий стабилизатор: выходное стабилизированное напряжение всегда ниже входного и имеет ту же полярность.
  • Повышающий стабилизатор: выходное стабилизированное напряжение всегда выше входного и имеет ту же полярность.
  • Повышающе-понижающий стабилизатор: выходное напряжение стабилизировано, может быть как выше, так и ниже входного и имеет ту же полярность. Такой стабилизатор применяется в случаях, когда входное напряжение незначительно отличается от требуемого и может изменяться, принимая значение как выше, так и ниже необходимого.
  • Инвертирующий стабилизатор: выходное стабилизированное напряжение имеет обратную полярность относительно входного, абсолютное значение выходного напряжения может быть любым.

Стабилизаторы переменного напряжения

Феррорезонансные стабилизаторы

Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно через них подключали телевизоры. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а в некоторые цепи и вовсе питались нестабилизированным напряжением), которые не всегда справлялись с колебаниями напряжения сети, особенно в сельской местности, что требовало предварительной стабилизации напряжения. С появлением телевизоров 4УПИЦТ и УСЦТ, имевших импульсные блоки питания, необходимость в дополнительной стабилизации напряжения сети отпала.

Феррорезонансный стабилизатор состоит из двух дросселей: с ненасыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность ВАХ насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах, но незначительное отклонение частоты питающей сети очень сильно влияло на характеристики стабилизатора.

Современные стабилизаторы

В настоящее время основными типами стабилизаторов являются:

  • электродинамические сервоприводные (механические)
  • статические (электронные переключаемые)
  • релейные
  • компенсационные (электронные плавные)

Модели производятся как в однофазном (220/230 В), так и трёхфазном (380/400 В) исполнении, мощность их от нескольких сотен ватт до нескольких мегаватт. Трёхфазные модели выпускаются двух модификаций: с независимой регулировкой по каждой фазе или с регулировкой по среднефазному напряжению на входе стабилизатора.

Выпускаемые модели также различаются по допустимому диапазону изменения входного напряжения, который может быть, например, таким: ±15%, ±20%, ±25%, ±30%, -25%/+15%, -35%/+15% или -45%/+15%. Чем шире диапазон (особенно в отрицательную сторону), тем больше габариты стабилизатора и выше его стоимость при той же выходной мощности.

Важной характеристикой стабилизатора напряжения является его быстродействие, то есть чем выше быстродействие, тем быстрее стабилизатор отреагирует на изменения входного напряжения. Быстродействие это промежуток времени (миллисекунды) за которое стабилизатор способен изменить напряжение на один вольт. У разного типа стабилизаторов разная скорость быстродействия, например у электродинамических быстродействие 12…18 мс/В, статические стабилизаторы обеспечат 2 мс/В, а вот у электронных, компенсационного типа этот параметр 0,75 мс/В.[источник не указан 943 дня]

Ещё одним важным параметром является точность стабилизации выходного напряжения. Согласно ГОСТ 13109-97 предельно допустимое отклонение напряжения питания ±10% от номинального. Точность современных стабилизаторов напряжения колеблется в диапазоне от 1% до 8%. Точности в 8% вполне хватает для обеспечения исправной работы абсолютного большинства бытовой и промышленной электротехники. Более жесткие требования (1%) обычно предъявляются для питания сложного оборудования (медицинское, высокотехнологичное и подобное). Важным потребительским параметром является способность стабилизатора работать на заявленной мощности во всем диапазоне входного напряжения, но далеко не все стабилизаторы соответствуют этому параметру. Некоторые стабилизаторы выдерживают десятикратные перегрузки, при покупке такого стабилизатора запас по мощности не требуется.

См. также

Литература

  • Вересов Г.П. Электропитание бытовой радиоэлектронной аппаратуры. — М.: Радио и связь, 1983. — 128 с.
  • В.В. Китаев и др Электропитание устройств связи. — М.: Связь, 1975. — 328 с. — 24 000 экз.
  • Костиков В.Г. Парфенов Е.М. Шахнов В.А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3
  • Штильман В. И. Микроэлектронные стабилизаторы напряжения. — Киев: Технiка, 1976.

Ссылки

Примечания

Стабилизаторы напряжения. Виды и устройство. Особенности

Многие люди знают, что такое перебои и скачки напряжения в электрической сети. Одно дело, когда от этого просто мигают лампочки, и могут сгореть. А другое дело, когда от перепадов напряжения сгорит стиральная машина или холодильник. Это существенно ударит по семейному бюджету. Импортная бытовая техника не рассчитана на такие скачки напряжения, которые часто происходят в отечественных сетях. Чтобы защитить себя от риска возникновения неисправностей в домашних бытовых устройствах, необходимо обзавестись стабилизатором напряжения, который выбирается по суммарной мощности устройств, которые будут работать в вашей домашней сети.

Разновидности

Стабилизаторы напряжения – это приборы, которые выравнивают величину напряжения питания до тех параметров, которые соответствуют стандартным значениям, а также очищают напряжение от высокочастотных помех. Вид стабилизатора определяет тип основного встроенного механизма, который выполняет функции стабилизатора.

Стабилизаторы напряжения делятся на два основных вида:
  1. Накапливающие.
  2. Корректирующие.

Первый вид стабилизаторов в настоящее время не используется, так как они имеют большие размеры. Ранее они использовались в сфере производства, а не в бытовых условиях. Стабилизаторы напряжения накапливающего действия функционируют с помощью накопления электрической энергии в емкости, и далее получают от этой емкости необходимый электрический ток с нужными параметрами. По аналогичному принципу работают источники бесперебойного питания.

Корректирующие стабилизаторы напряжения чаще всего включают в себя блок управления. Он реагирует на перепады напряжения в одну или другую сторону, и при этом подключает соответствующую обмотку трансформатора. Корректирующие стабилизаторы нашли широкое применение в бытовых условиях.

Они в свою очередь разделяются на несколько видов:
  • Релейные.
  • Электронные (тиристорные).
  • Феррорезонансные.
  • Электромеханические.
  • Инверторные.
  • Линейные.
Конструктивные особенности и работа

Корректирующий тип стабилизаторов стал наиболее популярным в быту.

Релейные стабилизаторы напряжения

Стали наиболее популярными, ввиду их невысокой стоимости и качества работы. Основным достоинством релейных стабилизаторов является их быстродействие. Они очень быстро срабатывают при изменениях напряжения, и возвращают его величину в стандартные пределы, осуществляя этим защиту бытовых устройств.

Из недостатков можно отметить, что при срабатывании реле возникает резкий скачок напряжения величиной 5-15 вольт, в зависимости от фирмы изготовителя. Для бытовой техники такой скачок не окажет негативного влияния, однако освещение при этом будет мигать заметно. Поэтому при работе релейного стабилизатора иногда наблюдается моргание ламп накаливания, в то время, как энергосберегающие и люминесцентные лампы на это не реагируют.

Как и в других видах стабилизатора, основным элементом релейной модели является силовой трансформатор и блок управления на полупроводниковых элементах. Электронный блок стабилизатора выполнен в виде мощного микроконтроллера, который анализирует напряжение на входе и выходе. В результате он вырабатывает сигналы управления для силовых реле или ключей. Микроконтроллер при создании напряжения управления учитывает время срабатывания силовых реле и ключей. Это дает возможность выполнять коммутацию цепей без их разрыва. В итоге форма графика выходного напряжения становится идентичной входной форме напряжения.

Электронные стабилизаторы напряжения

Тиристорные стабилизаторы работают по принципу, который основан на автоматической коммутации разных обмоток трансформатора силовыми ключами в виде тиристоров. Такой принцип похож на действие релейных приборов. Отличие релейных стабилизаторов состоит в том, что у них нет механических контактов, имеется большее количество ступеней выравнивания напряжения и высокая точность работы 2-5%.

Электронные приборы не создают шума в доме, так как отсутствуют механические реле. Их заменяют электронные ключи. Тиристорные стабилизаторы работают с большим КПД.

При практическом применении электронные модели показали себя чувствительными устройствами, на которые отрицательно влияет перегрев. Отечественные производители выпускают чаще всего именно такой вид стабилизаторов.

Самым серьезным недостатком тиристорных моделей является их высокая стоимость. Гарантийный срок работы практически всех видов стабилизаторов находится в пределах 1-3 лет, в зависимости от фирмы изготовителя.

Феррорезонансные 

Их действие основывается на изменении величины индуктивности катушек, имеющих металлический сердечник, при изменении тока. Последовательно с первичной обмоткой трансформатора подключают емкость С1. Она совместно с первичной обмоткой образует резонансный контур, который настроен на частоту сети, равную 50 герц.

Величина конденсатора зависит от мощности трансформатора. При мощности трансформатора до 60 ватт, конденсатор применяют величиной до 12 мкФ. Чтобы создать значительную мощность стабилизатора, используют дроссель насыщения.

При небольшом сетевом напряжении по дросселю проходит малый ток, и индуктивность дросселя большая. Основная часть тока протекает по параллельно подключенному конденсатору. При этом суммарное сопротивление этой цепи имеет емкостный тип.

Конденсатор компенсирует некоторую часть индуктивного сопротивления катушки трансформатора. При этом ток катушки повышается. Выходное напряжение трансформатора также увеличивается. Это характерно для эффекта резонанса напряжений.

При увеличении напряжения, ток дросселя также повышается, а его индуктивность падает. Величина емкости рассчитывается так, чтобы в контуре дроссель – конденсатор наступил резонанс, при котором сопротивление этого контура было бы наибольшим, а ток, приходящий из сети питания на трансформатор – наименьшим.

При увеличении напряжения сети увеличивается сопротивление контура до момента резонанса. Это дает возможность стабилизироваться напряжению на трансформаторе при больших перепадах напряжения.

Достоинством феррорезонансных приборов является надежность и простота. Недостатком является значительная зависимость напряжения на выходе прибора от частоты тока и искажение формы напряжения. Также, стабилизаторы с насыщенными сердечниками катушек обладают большим магнитным рассеянием. Это отрицательно влияет на функционирование окружающих устройств и на человека.

Электромеханические стабилизаторы напряжения

Принцип действия такого прибора довольно простой. Щетки из графита при перепадах напряжения передвигаются по катушке трансформатора, тем самым регулируется и подстраивается выходное напряжение.

В первых образцах электромеханических стабилизаторов для передвижения щеток использовался ручной способ (переключателем). Пользователь должен был постоянно контролировать показания индикатора напряжения.

В новых моделях приборов эта функция выполняется автоматически небольшим моторчиком, который при перепадах напряжения передвигает щетку по обмотке трансформатора.

Преимуществами таких стабилизаторов является простота и надежность устройства, повышенный КПД. Из недостатков можно отметить малое быстродействие при перепадах напряжения, а также быстрый износ механических деталей. Поэтому электромеханический вид стабилизатора требует постоянного обслуживания в виде контроля и замены щеток.

Инверторные стабилизаторы напряжения

Преобразуют постоянный ток в переменный, а также выполняют обратное действие, то есть, преобразуют переменный ток в постоянный с помощью микроконтроллера и кварцевого генератора.

Из достоинств инверторных стабилизаторов можно выделить малый шум при работе прибора, компактные размеры и широкий интервал входных рабочих напряжений, который колеблется в пределах 115-290 вольт.

Недостатком инверторных образцов является высокая стоимость, в отличие от многих других видов стабилизаторов.

Линейные

Выполнены в виде делителя напряжения. Нестабильное напряжение подается на вход такого устройства, а выровненное напряжение выходит с нижнего плеча делителя. Выравнивание выполняется изменением сопротивления плеча делителя напряжения. При этом величина сопротивления поддерживается такой величины, при которой выходное напряжение прибора было в определенных пределах.

При значительном отношении величин выходного и входного напряжений линейный стабилизатор обладает пониженным КПД, так как значительная часть мощности рассеивается в тепло на элементе настройки. Поэтому регулятор напряжения обычно монтируют на теплоотводящем радиаторе для возможности рассеивания тепла.

Достоинством линейного прибора является отсутствие помех, простота конструкции и малое число деталей. Недостатком является малый КПД, большое выделение тепла.

На что необходимо обратить внимание при выборе стабилизатора
  • Способ монтажа. Он бывает настенным, с горизонтальной или вертикальной установкой (для стационарных приборов). Может устанавливаться рядом с устройством, для которого он приобретается.
  • Точность работы, входное и выходное напряжение. Эта характеристика зависит в основном от параметров входного напряжения. Лучше выбрать наименьший показатель точности прибора от 1 до 3%, при напряжении 220 вольт.
  • Мощность стабилизатора выбирается не только мощностью подключаемого электрического устройства. К этой величине добавляется определенный резерв мощности. Для всей квартиры этот запас должен быть в пределах 30%.
  • Число фаз сети питания (однофазная или трехфазная сеть).
  • Быстродействие (время реакции на перепады напряжения), в миллисекундах.

  • Защита стабилизатора. Дорогие образцы приборов чаще всего оснащены защитными системами, которые предохраняют стабилизатор от коротких замыканий, резких изменений напряжения и других отрицательных явлений.
  • Габаритные размеры прибора и его шумность при функционировании.
  • Стоимость. Профессионалы не рекомендуют покупать дешевые китайские подделки, так как не стоит экономить на качестве стабилизатора. Качественный прибор не должен стоить дешево. Лучше приобрести отечественную модель, или прибор европейского производства.
  • Гарантийный срок играет большую роль при выборе любого устройства. Если прибор китайский, то вряд ли на него будет какая-то гарантия. Стабилизаторы, приобретенные в специализированных торговых точках можно за время гарантийного периода бесплатно обменять при возникновении неисправности или обнаружения брака.

Наибольшую трудность обычно вызывает при выборе прибора его мощность. Кроме активной составляющей мощности, которую расходуют бытовые устройства, некоторые из них обладают реактивной составляющей мощности. Она появляется при наличии индуктивности (если в устройстве имеется мощный электрический мотор). При его запуске ток повышается в несколько раз. Если выбрать стабилизатор без учета этой реактивной составляющей мощности, то он может не справиться с высокой нагрузкой при запуске устройства, имеющего электродвигатель.

Другим фактором, который значительно влияет на выбор стабилизатора, является коэффициент трансформации, который равен нулю, если стабилизатор функционирует в идеальных условиях. То есть, на вход поступает ровно 220 вольт, и выходит точно такая же величина к потребителю. А если стабилизатору приходится выравнивать напряжение, то мощность снижается.

Похожие темы:

Что такое стабилизатор напряжения, принцип работы и типы

Применение стабилизаторов напряжения стало необходимостью для каждого дома. Различные типы стабилизаторов напряжения доступны в настоящее время с различными функциями и работами. Последние достижения в технологии, такие как микропроцессорные чипы и силовые электронные устройства, изменили стабилизаторы напряжения. Теперь они полностью автоматические, интеллектуальные и оснащены множеством дополнительных функций. Они также имеют сверхбыструю реакцию на колебания напряжения и позволяют своим пользователям дистанционно регулировать требования к напряжению, включая функцию пуска или выключения.

Содержание

1 Что такое стабилизатор напряжения

2 Зачем нужны стабилизаторы напряжения и его важность

2.1 Эффекты повторяющегося перенапряжения в бытовой технике

3 Как работает стабилизатор напряжения, принцип работы понижения и повышения напряжения

3.1 Как работает функция понижения и повышения в стабилизаторе напряжения

3.2 Функция понижения в стабилизаторе напряжения

3.3 Функция повышения в стабилизаторе напряжения

3.4 Как конфигурация повышения и понижения работает автоматически

4 Различные типы стабилизаторов напряжения

5 Стабилизаторы напряжения типа реле

5.1 Как работает релейный стабилизатор напряжения

5.2 Использование и преимущества релейных стабилизаторов напряжения

5.3 Недостатки релейных стабилизаторов напряжения

6 Сервоприводные стабилизаторы напряжения

6.1 Как работает сервоприводный стабилизатор напряжения?

6.2 Классификация сервоприводных стабилизаторов напряжения

6.3 Недостатки сервоприводного стабилизатора напряжения

7 Стабилизаторы статического напряжения

7.1 Как работает статический стабилизатор напряжения

7.2 Использование / Преимущества статических стабилизаторов напряжения

7.3 Недостатки статического стабилизатора напряжения

8 В чем разница между стабилизатором напряжения и регулятором напряжения?

9 Как выбрать лучший стабилизатор напряжения для вашего дома? Руководство по покупке

9.2 Пошаговое руководство по выбору и покупке стабилизатора напряжения для вашего дома

9.3 Практический пример для лучшего понимания

10 Видео — Как правильно выбрать стабилизатор напряжения по мощности для дома. Расчёт и простые советы!

Что такое стабилизатор напряжения

Стабилизатор напряжения — это электрическое устройство, которое используется для подачи постоянного напряжения на нагрузку на своих выходных клеммах независимо от каких-либо изменений или колебаний на входе, то есть входящего питания.

Основное назначение стабилизатора напряжения заключается в защите электрических или электронных устройств (например, кондиционера, холодильника, телевизора и так далее) от возможного повреждения в результате скачков напряжения или колебаний, повышенного или пониженного напряжения.

Различные типы стабилизаторов напряжения

Стабилизатор напряжения также известен как AVR (автоматический регулятор напряжения). Использование стабилизатора напряжения не ограничивается домашним или офисным оборудованием, которое получает электропитание извне. Даже места, которые имеют свои собственные внутренние источники питания в виде дизельных генераторов переменного тока, сильно зависят от этих AVR для безопасности своего оборудования.

Мы можем увидеть различные типы стабилизаторов напряжения, доступных на рынке. Аналоговые и цифровые автоматические стабилизаторы напряжения доступны от многих производителей. Благодаря растущей конкуренции и повышению осведомленности о безопасности устройств. Эти стабилизаторы напряжения могут быть однофазными (выход 220-230 вольт) или трехфазными (выход 380/400 вольт) в зависимости от типа применения. Регулирование желаемой стабилизированной мощности осуществляется методом понижения и повышения напряжения в соответствии с его внутренней схемой. Трехфазные стабилизаторы напряжения доступны в двух разных моделях, то есть моделях с сбалансированной нагрузкой и моделях с несбалансированной нагрузкой.

Они доступны в различных рейтингах и диапазонах
КВА. Стабилизатор напряжения нормального диапазона может обеспечить стабилизированное выходное напряжение 200-240 вольт с усилением 20-35 вольт при питании от входного напряжения в диапазоне от 180 до 270 вольт. Принимая во внимание, что широкий диапазон стабилизатора напряжения может обеспечить стабилизированное напряжение 190-240 вольт с повышающим сопротивлением 50-55 вольт при входном напряжении в диапазоне от 140 до 300 вольт.

Они также доступны для широкого спектра применений, таких как специальный стабилизатор напряжения для небольших устройств, таких как телевизор, холодильник, микроволновые печи, для одного огромного устройства для всей бытовой техники.

В дополнение к своей основной функции стабилизаторы текущего напряжения оснащены многими полезными дополнительными функциями, такими как защита от перегрузки, переключение нулевого напряжения, защита от изменения частоты, отображение отключения напряжения, средство запуска и остановки выхода, ручной или автоматический запуск, отключение напряжения и так далее.

Стабилизаторы напряжения являются очень энергоэффективными устройствами (с эффективностью 95-98%). Они потребляют очень мало энергии, которая обычно составляет от 2 до 5% от максимальной нагрузки.

Зачем нужны стабилизаторы напряжения и его важность

Все электрические устройства спроектированы и изготовлены для работы с максимальной эффективностью с типичным источником питания, который известен как номинальное рабочее напряжение. В зависимости от расчетного безопасного предела эксплуатации рабочий диапазон (с оптимальной эффективностью) электрического устройства может быть ограничен до ± 5%, ± 10% или более.

Из-за многих проблем источник входного напряжения, которое мы получаем, всегда имеет тенденцию колебаться, что приводит к постоянно меняющемуся источнику входного напряжения. Это изменяющееся напряжение является основным фактором, способствующим снижению эффективности устройства, а также увеличению частоты его отказов.

Проблемы связанные со скачками напряжения:

  • Перегрев
  • Сниженный срок службы
  • Постоянный ущерб
  • Ущерб изоляции
  • Уменьшение производительности
  • Нарушение в мощности
  • Неправильная работа устройств
  • Низкая эффективность
  • Большой ток

Помните, нет ничего более важного для электронного устройства, чем отфильтрованный, защищенный и стабильный источник питания. Правильное и стабилизированное напряжение питания очень необходимо, чтобы устройство выполняло свои функции наиболее оптимальным образом. Это стабилизатор напряжения, который обеспечивает то, что устройство получает желаемое и стабилизированное напряжение, независимо от того, насколько сильно колебание. Таким образом, стабилизатор напряжения является очень эффективным решением для тех, кто хочет получить оптимальную производительность и защитить свои устройства от непредсказуемых колебаний напряжения, скачков напряжения и шума, присутствующих в источнике питания.

Как и источник бесперебойного питания, стабилизаторы напряжения также являются активом для защиты электронного оборудования. Колебания напряжения очень распространены независимо от того, где вы живете. Могут быть различные причины колебаний напряжения, такие как электрические неисправности, неисправная проводка, молнии, короткие замыкания и так далее. Эти колебания могут быть в форме перенапряжения или пониженного напряжения.

Эффекты повторяющегося перенапряжения в бытовой технике

  • Необратимые повреждения подключенного устройства
  • Повреждения изоляции обмотки
  • Перебои в нагрузке
  • Перегрев кабеля или устройства
  • Ухудшится срок полезного использования устройства
  • Неисправность оборудования
  • Низкая эффективность устройства
  • Устройство в некоторых случаях может занять дополнительные часы, чтобы выполнить ту же функцию
  • Ухудшить производительность устройства
  • Устройство будет потреблять больше электричества, что может привести к перегреву

Как работает стабилизатор напряжения, принцип работы понижения и повышения напряжения

Основная работа стабилизатора напряжения заключается в выполнении двух необходимых функций: функции понижения и повышения напряжения. Функция понижения и повышения — это не что иное, как регулирование постоянного напряжения от перенапряжения. Эта функция может выполняться вручную с помощью селекторных переключателей или автоматически с помощью дополнительных электронных схем

Основная функция стабилизатора напряжения

В условиях перенапряжения функция «понижения напряжения» обеспечивает необходимое снижение интенсивности напряжения. Аналогично, в условиях пониженного напряжения функция «повышения напряжения» увеличивает интенсивность напряжения. Идея обеих функций в целом заключается в том, чтобы поддерживать одинаковое выходное напряжение.

Стабилизация напряжения включает в себя сложение или вычитание напряжения из первичного источника питания. Для выполнения этой функции стабилизаторы напряжения используют трансформатор, который подключен к переключающим реле в различных требуемых конфигурациях. Немногие из стабилизаторов напряжения используют трансформатор, имеющий различные отводы на своей обмотке, для обеспечения различных коррекций напряжения, в то время как стабилизаторы напряжения (такие как Servo стабилизатор напряжения) содержат автоматический трансформатор для обеспечения желаемого диапазона коррекции.

Как работает функция понижения и повышения в стабилизаторе напряжения

Для лучшего понимания обеих концепций мы разделим его на отдельные функции

Принципиальная схема функции понижения в стабилизаторе напряжения

На приведенном выше рисунке показано подключение трансформатора в функции «Понижения». В функции понижения полярность вторичной катушки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом вычитания напряжения первичной и вторичной катушек.

В стабилизаторе напряжения есть схема переключения. Всякий раз, когда обнаруживается превышение напряжения в первичном источнике питания, подключение нагрузки вручную или автоматически переключается в конфигурацию режима «Понижения» с помощью переключателей (реле).

Принципиальная схема функции повышения напряжения в стабилизаторе напряжения

На рисунке выше показано подключение трансформатора в функции «Повышения». В функции повышения полярность вторичной обмотки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом сложения напряжения первичной и вторичной обмоток

Как конфигурация повышения и понижения работает автоматически

Вот пример 02 Stage Voltage Stabilizer. Этот стабилизатор напряжения использует 02 реле (реле 1 и реле 2) для обеспечения стабилизированного источника питания переменного тока для нагрузки в условиях перенапряжения и понижения напряжения.

На принципиальной схеме 02-ступенчатого стабилизатора напряжения (изображенного выше) реле 1 и реле 2 используются для обеспечения конфигурации понижения и повышения во время различных условий колебаний напряжения, то есть перенапряжения и пониженного напряжения. Например — предположим, что вход переменного тока 230 В переменного тока, а требуемый выход также постоянный 230 В переменного тока. Теперь, если у вас есть +/- 25 Вольт понижения & повышения стабилизация, это означает, что ваш стабилизатор напряжения может обеспечить вам постоянное требуемое напряжение (230 В) в диапазоне от 205 В (пониженное напряжение) до 255 В (повышенное напряжение) входного источника переменного тока.

В стабилизаторах напряжения, в которых используются трансформаторы с отводом, точки ответвления выбираются на основе требуемого количества напряжения, которое должно быть подавлено или повышено. В этом случае у нас есть разные диапазоны напряжения для выбора. Принимая во внимание, что в стабилизаторах напряжения, в которых используются автотрансформаторы, серводвигатели вместе со скользящими контактами используются для получения необходимого количества напряжения, которое необходимо стабилизировать или повысить. Скользящий контакт необходим, поскольку автотрансформаторы имеют только одну обмотку.

Различные типы стабилизаторов напряжения

Первоначально на рынке появились ручные / селекторные переключатели напряжения. В этих типах стабилизаторов используются электромеханические реле для подбора желаемого напряжения. С развитием технологий появились дополнительные электронные схемы и стабилизаторы напряжения стали автоматическими. Затем появился Servo стабилизатор напряжения, который способен стабилизировать напряжение непрерывно, без какого-либо ручного вмешательства. Теперь также доступны стабилизаторы напряжения на базе микросхем / микроконтроллеров, которые также могут выполнять дополнительные функции.

Стабилизаторы напряжения можно разделить на три типа:

  • Стабилизаторы напряжения типа реле
  • Сервоприводные стабилизаторы напряжения
  • Стабилизаторы статического напряжения

Стабилизаторы напряжения типа реле

Разберемся в процессе функционирования стабилизатора релейного типа. Электронная система измеряет параметры входящей электроэнергии. После считывания данных прибор сравнивает эти параметры с величинами номинального режима.

Прибор автоматически производит подключение необходимой обмотки трансформатора для достижения нужных параметров сети. Работа релейного стабилизатора довольно простая. Прибор регулирует параметры сети по ступеням, в результате чего при очередной ступени напряжение изменяется на конкретную величину. Бывают ситуации, когда уровень напряжения не соответствует норме даже после корректировки. Такие ступенчатые регулировки могут также вызвать перепады напряжения.

Если подробно разобраться в принципе действия, то можно понять, что прибор быстро выбирает нужные обмотки. Такие ступенчатые скачки параметров считаются незначительными. Они станут заметнее, если на входе будут наблюдаться подобные скачки напряжения. При подключении к сети высокочувствительных устройств при сильных перепадах напряжения устройства выйдут из строя.

Недобросовестные производители могут запрограммировать стабилизатор таким образом, что на его дисплее всегда будет показывать значение 220 В.

Чаще всего релейный стабилизатор справляется с перепадами сети за 0,15 с. Такой прибор может отключить питание выходным током, когда на входе возникли значения тока наименьшего допустимого значения. После нормализации напряжения прибор снова подключится к работе. Напряжение восстанавливается за 0,6 с.

Как работает релейный стабилизатор напряжения

Рисунок выше показывает, как стабилизатор напряжения типа реле выглядит изнутри. Он имеет трансформатор с ответвлениями, реле и электронную плату. Печатная плата содержит схему выпрямителя, усилитель, микроконтроллер и другие вспомогательные компоненты.

Электронные платы выполняют сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает любое увеличение или уменьшение входного напряжения выше эталонного значения, он переключает соответствующее реле для подключения требуемого постукивания для функции понижения и повышения.

Стабилизаторы напряжения релейного типа обычно стабилизируют входные колебания на уровне ± 15% с точностью на выходе от ± 5% до ± 10%.

Использование и преимущества релейных стабилизаторов напряжения

Этот стабилизатор в основном используется для приборов / оборудования с низким номинальным энергопотреблением в жилых / коммерческих / промышленных целях.

  • Малые габаритные размеры, так как трансформатор имеет только функцию повышения напряжения.
  • Большой интервал значений напряжения.
  • Значительный диапазон рабочих температур. Многие приборы нормально работают при температуре -40 +40 градусов.
  • Низкий уровень шума.
  • Допускается перегрузка до 110%.

Многие изготовители приборов утверждают, что их продукция способна функционировать много лет.

Недостатки релейных стабилизаторов напряжения

В работе релейных моделей стабилизаторов есть недостатки, которые обусловлены его методом работы, схемой прибора. Слабым звеном его конструкции считается реле. Если изготовитель установил некачественное реле, то оно может стать причиной неисправности прибора. Также при переключении режимов возникают щелчки и шумы.

Другим значимым недостатком является ступенчатое действие устройства выравнивания напряжения. При переключении с одной обмотки на другую напряжение может значительно изменяться, образуя некоторые скачки.

Недорогие модели имеют слабую мощность, которая не больше 30% от мощности бытовых устройств.

Правила пользования релейным стабилизатором

При вашем выборе релейного типа стабилизатора, необходимо регулярно проводить его обслуживание, в том числе ежегодно тщательно его осматривать внутри корпуса. При осмотре нужно обращать внимание на:

  • Надежность крепления соединений проводников.
  • Уровень охлаждения и циркуляции воздуха в корпусе прибора.
  • Имеются ли повреждения.
  • Точность работы указателей измерения.

При обнаружении слабых соединений, пыли, необходимо выключить из сети стабилизатор и произвести его обслуживание, очистив его и затянув все крепления контактов. Помещение, в котором находится стабилизатор напряжения, должно проветриваться и быть сухим. Влажность в помещении не должна быть более 80%. При работе в корпусе стабилизатора отверстия для вентиляции должны иметь доступ воздуха.

Сервоприводные стабилизаторы напряжения

Электромеханический стабилизатор напряжения, так же известный как сервоприводный, – это один из самых распространенных видов стабилизаторов, который, благодаря своей конструкции и характеристикам, обладает очень интересным набором возможностей и в некоторых ситуациях просто не имеет альтернативы.

Ни для кого не секрет, что бытовые сети питания сегодня не могут обеспечить стабильную эксплуатацию электрических устройств в доме. Перепады и скачки напряжения вполне можно ожидать от сети питания. Для решения этих задач как нельзя лучше подходит электромеханический вид стабилизатора напряжения, так как он стал наиболее популярным на рынке бытовых приборов защиты

Рисунок выше показывает, как серво стабилизатор напряжения выглядит изнутри. Он имеет серводвигатель, автотрансформатор, трансформатор понижения и повышения, двигатель, электронную плату и другие вспомогательные компоненты.

В стабилизаторе напряжения на основе сервопривода один конец первичной обмотки трансформатора понижения и повышения (отвод) подключен к фиксированному ответвлению автотрансформатора, а другой конец первичной обмотки соединен с подвижным рычагом, который контролируется серводвигателем. Один конец вторичной катушки трансформатора
понижения и повышения подключен к входному источнику питания, а другой конец подключен к выходу стабилизатора напряжения.

Как работает сервоприводный стабилизатор напряжения?

В системе замкнутого контура отрицательная обратная связь (также известная как ошибка подачи) гарантируется от выхода, чтобы система могла гарантировать, что был достигнут желаемый результат. Это делается путем сравнения выходных и входных сигналов. Если в случае, если желаемый выход превышает / ниже требуемого значения, то регулятором источника входного сигнала будет получен сигнал ошибки (Выходное значение — Входное значение). Затем этот регулятор снова генерирует сигнал (положительный или отрицательный в зависимости от достигнутого выходного значения) и подает его на исполнительные механизмы, чтобы привести выходное значение к точному значению.

Благодаря свойству замкнутого контура стабилизаторы напряжения на основе сервоприводов используются для приборов / оборудования, которые очень чувствительны и нуждаются в точном входном питании (± 01%) для выполнения намеченных функций.

Электронные платы выполняют сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает любое увеличение или уменьшение входного напряжения выше контрольного значения, он начинает работать с двигателем, который еще больше перемещает рычаг на автотрансформаторе.

При перемещении рычага на автотрансформаторе входное напряжение на первичной обмотке трансформатора понижения и повышения изменится на требуемое выходное напряжение. Серводвигатель будет продолжать вращаться, пока разность между значением опорного напряжения и выход стабилизатора становится равным нулю. Этот полный процесс происходит за миллисекунды. Современные серво стабилизаторы напряжения поставляются с микроконтроллерной / микропроцессорной схемой управления для обеспечения интеллектуального управления пользователями.

Классификация сервоприводных стабилизаторов напряжения:

Однофазные сервоприводные стабилизаторы напряжения

В однофазных стабилизаторах напряжения с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к переменному трансформатору.

Трехфазные сбалансированные сервоприводные стабилизаторы напряжения

В трехфазных стабилизированных стабилизаторах напряжения с сервоуправлением стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам, и общей цепи управления. Выходные данные автотрансформаторов варьируются для достижения стабилизации.

Трехфазные несбалансированные сервоприводные стабилизаторы напряжения

В трехфазных несимметричных стабилизаторах напряжения с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам и 03 независимым цепям управления (по одной на каждый автотрансформатор).

Использование и преимущества сервоприводных стабилизаторов напряжения

  • Они быстро реагируют на колебания напряжения
  • Они имеют высокую точность стабилизации напряжения
  • Они очень надежные
  • Они могут выдерживать скачки напряжения
  • Отсутствие шума

Недостатки сервоприводного стабилизатора напряжения

  • Они нуждаются в периодическом обслуживании
  • Чтобы обнулить ошибку, серводвигатель должен быть выровнен. Выравнивание сервомотора требует умелых рук.

Стабилизаторы статического напряжения

Статический выпрямитель напряжения не име

их схемы, принцип работы, плюсы и минусы

Содержание

Какие бывают виды стабилизаторов напряжения?


Возрастающий спрос на стабилизаторы напряжения связан как с активным использованием этих электроприборов во всех сферах человеческой деятельности, так и с периодически возникающими в сетях проблемами с качеством электроэнергии.


Специализированные магазины и интернет-сайты предлагают большой выбор стабилизаторов отечественного и зарубежного производства, удовлетворяющих практически любые запросы покупателей.


Каждый стабилизатор, несмотря на его мощность и стоимость, построен по типовой схеме (топологии), в основе которой заложен определённый физический принцип стабилизации электрической энергии. Всего таких топологий пять:

  • феррорезонансная;
  • электромеханическая;
  • релейная;
  • полупроводниковая;
  • инверторная.


Практически все виды стабилизаторов напряжения имеют свои преимущества и недостатки, которые в основном обусловлены схемой их построения. Основные параметры устройств каждого типа требуют пристального изучения, так как именно от их значений зависит эффективность работы выбранной модели стабилизатора с различной современной аппаратурой.

Феррорезонансные стабилизаторы


Это первые стабилизаторы, получившие широкое распространение в нашей стране. Начало их массового использования в 50-60-х годах ХХ века связано с появлением ламповых телевизоров и прочей бытовой техники, требующей защиты от сетевых колебаний.


Стабилизаторы такого типа отличаются от большинства более современных моделей простотой электронной схемой и отсутствием автотрансформатора. Они понижают или повышают значение напряжения за счёт эффекта феррорезонанса – электромагнитного взаимодействия между двумя дросселями один из которых имеет ненасыщенный сердечник (входной), а второй насыщенный (выходной).

Преимущества


Феррорезонансные стабилизаторы не имеют склонных к поломкам подвижных компонентов, что обеспечивает их надёжность и большой ресурс безотказной работы. Некоторые изделия советского производства до сих пор находятся в обиходе и исправно выполняют свою работу. Другие преимущества данной топологии:

  • надёжность и большой ресурс безотказной работы благодаря отсутствию склонных к поломкам подвижных компонентов;
  • высокая точность выходного напряжения за счёт плавного, безразрывного регулирования сетевого сигнала;
  • устойчивость к неблагоприятным условиям окружающей среды;
  • быстродействие.
Недостатки


Отвечающее современному уровню комфорта бытовое использование феррорезонансных стабилизаторов осложняется рядом свойственных им недостатков:

  • шумность работы – гул от встроенных трансформаторов ощущается даже через стену;
  • повышенное тепловыделение;
  • большой вес и крупные габариты;
  • малый диапазон регулируемого входного напряжения – более узкий, чем предельные значения отклонений, встречающихся в отечественных сетях;
  • невысокий КПД вследствие значительных потерь энергии на нагрев;
  • неспособность работать при перегрузках и на холостом ходу;
  • искажения синусоиды.


Стоить отметить, что все указанные недостатки характерны в первую очередь для классических феррорезонансных стабилизаторов первых поколений, в устройствах нового образца они максимально снижены или полностью исключены. Существенный минус современных моделей этой топологии – это их высокая цена, превышающая не только стоимость изделий других типов, но и on-line ИБП соответствующей мощности.

Применение


Несмотря на серьезные сдвиги в разработке более производительных, мощных и надежных преобразователей напряжения, устаревшие феррорезонансные стабилизаторы все еще пользуются спросом при работе с неприхотливой техникой такого же старого поколения. Приборы этой группы являются не самым удачным вариантом для бытового пользования по причине высокого уровня шумов и громоздкости конструкции, однако вполне могут быть использованы в подсобных помещениях или на загородных домах при плюсовых температурах.

Электромеханические стабилизаторы


Стабилизаторы данного типа появились практически одновременно с феррорезонансными, но имеют отличные от них конструкцию и принцип работы. Главные элементы любого устройства данной топологии – автотрансформатор и подвижный токосъёмный контакт, выполненный в виде ролика, ползунка или щетки.


Указанный контакт перемещается по обмотке трансформатора, вследствие чего происходит плавное увеличение или уменьшение коэффициента трансформации и соответствующее изменение (коррекция) поступающего из сети напряжения.


Первые электромеханические стабилизаторы имели ручную регулировки: специальный бегунок передвигался по катушке и отключал или подключал витки до количества, необходимого для достижения номинального значения выходного напряжения.


В современных устройствах этот процесс автоматизирован: плата управления анализирует входной ток и в случае отклонения его параметров сигнализирует сервоприводу, перекатывающему коммутационный контакт на сегмент тороидальной обмотки автотрансформатора с напряжением, максимально приближенным к номинальному.

Преимущества


Основное достоинство электромеханического принципа стабилизации напряжения – непрерывное регулирование с высокой точностью и без искажения синусоидальной формы сигнала. Также ключевым преимуществом является самая низкая стоимость электромеханических стабилизаторов на отечественном рынке.

Недостатки


Эти устройства имеют и ряд существенных недостатков, делающих их не самым оптимальным решением для защиты многих видов нагрузки, а именно:

  • низкое (за исключением некоторых моделей) быстродействие – скорость реакции на изменение входного сигнала ограничивается временем, требуемым сервоприводу для срабатывания;
  • возникновение кратковременных скачков выходного напряжения при резких перепадах входного, что пагубно влияет на чувствительные электронные компоненты защищаемого оборудования и осложняет применение в сетях с сильными перепадами напряжения;
  • низкое качество фильтрации входных электромагнитных помех и трансляция возмущающего воздействия на выход устройства;
  • низкая надежность из-за механически движущихся деталей, что значительно сокращает срок эксплуатации устройства, из-за чего именно этот тип стабилизаторов чаще всего выходит из строя.


Дополнительные неудобства при эксплуатации электромеханических стабилизаторов в домашних условиях создают:

  • повышенный уровень шума и возможное искрение при работе – следствие движения сервопривода по виткам катушки;
  • громоздкая конструкция, большое количество механических узлов и деталей, и, соответственно, большой вес;
  • необходимость периодического обслуживания подверженного износу узла механического контакта, надёжность которого снижается пропорционально числу срабатываний.


Кроме того, приборы этой группы могут давать сбои при длительном использовании в условиях отрицательной температуры – такому оборудованию комфортнее в отапливаемых помещениях.

Применение


Перечисленные недостатки обуславливают ограниченную сферу применения электромеханических стабилизаторов – они все еще востребованы в сетях без молниеносных скачков напряжения. Разумеется, такие устройства не подходят для бытового использования в домашних условиях, но вполне удачно используются в качестве временной стабилизации напряжения в подсобном хозяйстве, гаражах, небольших мастерских – там, где снижение температуры незначительно. Хотя рассматриваемый тип преобразователей постепенно уходит в прошлое и уступает место более современным конструкциям на релейной и тиристорной основе.

Релейные стабилизаторы


Приборы этой топологии относятся к электронным устройствам, действие которых построено на базе дискретного (ступенчатого) принципа стабилизации электроэнергии. Он заключается в автоматическом переключении обмоток автотрансформатора и выбора той, напряжение на которой максимально близко к номинальному.


Коммутация необходимых для повышения или снижения входного напряжения контуров происходит благодаря срабатыванию силовых электронных реле (отсюда и название данной разновидности стабилизаторов).


Управление процессом осуществляет специальный блок. Он контролирует характеристики сетевого напряжения и при их отклонении от установленного значения включает в работу ту или иную ступень стабилизации (количество ступеней соответствует числу установленных реле).

Преимущества


Основное преимущество этих устройств перед электромеханическими аппаратами устаревших конструкций – повышенная скорость срабатывания (не более 10-20 мс). Кроме того, релейные стабилизаторы обладают простейшей структурой, в которой исключены сложные узлы и дорогостоящие компоненты, что упрощает их техническое обслуживание и ремонт.


Ремонтные работы, как и сами приборы, отличаются низкой стоимостью. Релейные стабилизаторы не боятся перегрузок, чем и обусловлен их длительный срок эксплуатации. Также этот тип устройств выделяется сравнительно небольшими габаритами и малым весом. Они не требуют дополнительного охлаждения и отлично справляются со своими функциями в условиях отрицательных температур.

Недостатки


Главный недостаток релейных стабилизаторов напряжения – дискретное (неплавное) регулирование. Он обусловлен принципом работы и проявляется в виде мигания электрических ламп при переключении ступеней стабилизации.


Ступенчатая корректировка напряжения также:

  • снижает точность стабилизации (может достигать 10%), при этом рост быстродействия релейных устройств неминуемо повышает погрешность в их работе;
  • способствует трансляции искажений сетевой синусоиды на выход устройства.


Релейная топология сохраняет и ряд минусов

Для чего нужен стабилизатор напряжения

Стабилизатор – это устройство, представляющее собой электрический прибор, который используется для выравнивания колебаний напряжения сети при подаче тока на технику, такую как компьютеры, кондиционеры, насосы и др.

Для чего нужен стабилизатор напряжения? Регулятор в основном предназначен:

  • защищать электрооборудование от различных угроз, таких как колебания напряжения, высокое и низкое напряжение;
  • отключать технику от некачественного электропитания, при увеличении или снижении пороговых значений напряжения;
  • поддерживать напряжение на надлежащем уровне.

Этот аппарат имеет множество уникальных особенностей, которые позволяют экономить электроэнергию, влиять на производительность и повышать надежность техники. На дисплее аппарата высвечиваются основные параметры электрической сети, быть всегда в курсе о них – это значит владеть ситуацией. Функция задержки включения обеспечивает передышку и стабилизирует питание перед подачей на нагрузку, следовательно, увеличивает срок службы приборов.

И всё-таки, зачем нужен стабилизатор? Его использование представляет собой самую доступную и эффективную меру энергосбережения, сохранения приборов от выхода из строя и душевного спокойствия домочадцев.

Несколько советов по выбору стабилизатора

Если устройство выбрано правильно, то на него всегда можно положиться и довериться. Если в технике не особо разбираться, то можно положиться на предложения и советы продавца по выбору стабилизатора напряжения. Профессионал порекомендует для начала:

  • определиться с мощностью, типом стабилизатора и рабочим диапазоном напряжения;
  • выявить и проанализировать проблематику: повышенное, пониженное или скачкообразно изменяющееся напряжение в сети питания.

Исходя из полученных данных, затем приступить к выбору устройства.

Как правильно рассчитать мощность прибора? В идеале нужно определить, какой самый мощный потребитель присутствует в схеме электроснабжения. Допустим, электроприёмниками являются насосная станция мощностью 1, 5 кВт, сауна – 10 кВт плюс ещё какой-либо прибор с большим энергопотреблением. Все значения в киловаттах необходимо сложить и получить искомую мощность прибора.

Стабилизатор выбирается с небольшим запасом мощности (20%), особенно если в цепи присутствует оборудование с большим пусковым током. Речь идёт об электродвигателях и насосах, которые при пуске потребляют энергии больше, чем в обычном режиме.

Запас мощности обеспечивает долгую жизнь прибора, благодаря щадящему режиму работы, и создаёт резервный потенциал для подключения нового оборудования.

Выбирая стабилизатор также нужно учитывать сервисное обслуживание, потому что прибор следует правильно и качественно подключить, а также воспользоваться гарантийным сроком и отремонтировать в случае неисправности.

Как правильно выбирать стабилизатор напряжения для дома?

Можно воспользоваться самым простым вариантом: определить потребление мощности из сети по номиналу вводного автомата в квартирном щитке. Таким образом, узнаётся пропускная способность автомата и максимально возможная мощность потребления на бытовые нужды.

Приведём простой пример. Как выбрать стабилизатор напряжения 220 В для дома, если на вводе стоит автомат S40. С таким номинальным током от сети можно получить не более 10 кВт. Исходя из расчётных данных, и выбирается аппарат.

На сегодняшний день низкое напряжение в сети – проблема весьма актуальная и решить её лучше всего одним способом – приобрести стабилизатор, который защитит всю технику в доме от выхода из строя. Чтобы правильно выбрать устройство, сначала нужно разобраться с его разновидностями, а также преимуществами каждого варианта исполнения.

Типы защитных устройств

Самыми популярными типами стабилизаторов на сегодня являются:

  • электронные,
  • электромеханические.

Электронные стабилизаторы напряжения – это приборы наилучшего качества. Ввиду отсутствия механических частей характеризуются большим сроком службы, минимум 15 лет, и довольно высокой надёжностью. Можно подбирать по рабочему диапазону напряжений практически под любые задачи.

Электромеханические стабилизаторы напряжения характеризуются небольшим быстродействием, узким диапазоном напряжений, но зато хорошей перегрузочной способностью.

Полезная информация о стабилизаторах напряжения по поводу высокой точности

Многие стараются выбрать устройство с максимальной точностью стабилизации, вплоть до 0,5 %. Однако, как правило, отклонение в 10–15 В считается нормальным режимом работы для большинства техники. И только в редких случаях оборудование при таких отклонениях не работает или капризничает. Большая часть предлагаемых на рынке стабилизаторов обеспечивает именно такой режим работы.

Частым заблуждением покупателей является то, что приобретаемое устройство с высокой точностью стабилизации – это гарантия стабильного напряжения и отсутствие мерцания света. На самом деле, получается наоборот: чем больше точность у прибора, тем чаще он переключается, подстраиваясь под входную сеть, поэтому и лампочки не перестают мерцать. Это касается ламп накаливания и галогенок.

При установке стабилизатора симисторного и релейного типа мерцание лампочек стопроцентно будет сохраняться. Исключение составляют лишь стабилизаторы с плавной регулировкой сигнала. Это касается новых разработок стабилизаторов, таких как Вольтер. При выборе регулятора желательно руководствоваться рекомендациями от производителя или профессионалов. Можно для верности ещё почитать положительные и отрицательные отзывы в интернете на конкретную модель или бренд.

Какой выбрать однофазный или трехфазный?

Если в дом заведены три фазы, совсем необязательно устанавливать трёхфазный стабилизатор. Чаще всего, оказывается, можно обойтись однофазниками. При этом преимуществ можно получить очень много.

Во-первых, по стоимости, которая в общей сложности у трёх однофазных меньше, чем у трёхфазного. Во-вторых, по ремонтопригодности более надёжно. Одно дело – снять один блок и отвести его на ремонт, другое – снять полностью аппарат.

Коммерческая выгода от установки стабилизатора напряжения

Отечественные электросети физически сильно изношены, а местами и морально устарели. А потребителей становится всё больше и больше. Установка стабилизаторов выгодна по нескольким причинам:

  1. современная техника оснащена электронной начинкой, которой важно качественное питание. Для того чтобы она не вышла из строя или не подвергалась дорогостоящему ремонту, необходима установка стабилизатора;
  2. пониженное напряжение влечёт за собой большее потребление тока из сети. Приходится платить больше за расход электроэнергии. Выгода стабилизатора очевидна;
  3. повышенное напряжение может привести к короткому замыканию, перегреву проводов и пожару. Без стабилизатора в этом случае материальный и моральный ущерб может быть колоссальный, а то и непоправимый;
  4. при нормальном напряжении тоже могут случиться внезапные импульсы от молнии, ошибок персонала, перекоса фаз в час пик.

Во всех этих и других непредвиденных случаях стабилизатор напряжения поможет сберечь время, средства и нервы.

Возможные последствия для приборов (электрических потребителей) в условиях отклонения напряжения от нормы

  • Снижение напряжения приводит к уменьшению светового потока ламп. При плохом свете снижается производительность качество выполняемой работы.
  • Плохое освещение на улицах города приводит к росту несчастных случаев.
  • Повышение напряжения ведёт к резкому уменьшению срока службы лампочек, иногда вдвое, а то и в три раза.
  • Бытовые нагревательные приборы (плитки, утюги и т. п.), рассчитанные на паспортную мощность, при снижении напряжения дольше нагреваются. И поэтому получается перерасход электроэнергии на бытовые нужды.

Вот, что такое стабилизатор напряжения и зачем он нужен.

Подведём небольшой итог

Ценными качествами регуляторов являются быстрая реакция прибора на изменение параметров в сети, расширенный диапазон рабочего напряжения, хорошая перегрузочная способность, синусоида правильной формы на выходе, бесшумность.

Но сколько бы ни говорилось о достоинствах той или иной марки, для потребителя наиболее приоритетной характеристикой всегда остаётся соотношение цены и качества. Поэтому золотой серединой, несомненно, станет выбор качественной отечественной продукции.

Виды стабилизаторов напряжения, их отличия и устройство

Постоянство питающего напряжения обеспечивается стабилизаторами напряжения, которые выполняют свою функцию независимо от скорости изменения показателей. Эффективность приборов очевидна при изменениях силы тока и сопротивления, поэтому не только напряжение является характеристикой сети. Благодаря таким изменениям сохраняется работоспособность техники и пожарная безопасность в любом помещении. Короткое замыкание, перегревание проводов и расплавление изоляции случается из-за увеличенного сопротивления нагрузки. Вот уже на протяжении 65 лет имеются устройства для регулировки напряжения. И если ранее в повседневной жизни преобладали только ферромагнитные стабилизаторы, то в наши дни доминируют релейные, электромеханические и электронные устройства.

В настоящее время выделяют следующие виды напряжения:

  1. Релейные стабилизаторы.
  2. Электромеханические стабилизаторы.
  3. Электронные стабилизаторы.

1. Релейные стабилизаторы напряжения

Бытовой и компьютерной технике, оргтехнике, производственному оборудованию необходима бесперебойная работа, которая осуществляется выравниванием сетевых параметров тока. Безупречная сохранность для пользователей от перегруженности, коротких замыканий и иных отклонений от рабочего тока гарантируется чрезвычайной точностью сохранения заданных характеристик выходного напряжения. Основным элементом релейных стабилизаторов является автоматический трансформатор, а за управление устройством отвечает электронная схема. Витки трансформатора подключаются с помощью реле в соотношении, которое нужно для обеспечения номинальных выходных параметров тока.

Число обмоток трансформатора и количество коммутационных реле определяет количество ступеней регулировки выходного напряжения. Погрешность выходного вольтажа будет больше, если число ступеней меньше. Усредненный показатель – от пяти до семи, самый большой – 9.

Релейные устройства работают по следующей схеме:

  • Подача входного тока и сравнение параметров, которые требуются на выходе, осуществляется с помощью электронной схемы.
  • Вычислив разницу характеристик входного и выходного напряжения, блок управления вычисляет необходимое для стабилизации число обмоток и количество их витков, которые должны быть задействованы.
  • Благодаря реле осуществляется последовательное переподключение витков каждой из трансформаторных обмоток.

В итоге увеличения и уменьшения вольтажа на обмотках трансформатора на выход стабилизатора подаётся ток, параметры которого располагаются в разрешенных для нормальной работы подчинённой сети пределах.

Достоинствами релейных стабилизаторов являются миниатюрность, большой охват входных параметров тока и рабочей температуры. Практически бесшумная работа и невосприимчивость к частотным изменениям входного тока, жизнеспособность и сравнительно низкая цена являются отличительными чертами данного вида стабилизаторов.

К недостаткам стоит отнести сокращение скорости реакции стабилизатора при увеличении точности выравнивания параметров тока. Также следует отметить достаточно скорый износ релейных коммутаторов под влиянием механических и импульсных токовых нагрузок.

2. Электромеханические стабилизаторы напряжения

Главным элементом является трансформатор с отводами. 2-ая составляющая электромеханического стабилизатора – механизм с ползунком. Принцип работы следующий — при сниженном входном напряжении сети ползунок начинает движение по отводам. Движение прекращается, когда на выходе получается стандартное значение. Если оно превышено, он перемещается в обратную сторону. Щетки из графита, поддерживающие выходное напряжение с высочайшей точностью (около 2%), выполняют функцию ползунка-токосъемника, регулировка которого производится плавно. Такая регулировка является главным преимуществом, а если использовать две графитовые щетки, то устройство корректирует напряжение быстрее, т. к. повышается площадь контакта.

Существуют модели (свыше 30кВт), которые снабжаются еще одним трансформатором. Такие модели способны выдерживать высокие перегрузки, несмотря на присутствие движущихся частей.

Существенное упрощение расчета при выборе такого оборудования осуществляется суммой полученной средней его мощности с ее четвертью. Благодаря вышеуказанному сложению обозначается характеристика будущего стабилизатора. Соответственно, при покупке за меньшую стоимость допускается использовать наименьший запас по мощности стабилизатора. Явным техническим преимуществом является отсутствие внесения изменений в сеть по причине невосприимчивости к данному событию. А это очень актуально для медицинских и измерительных приборов, аудиоаппаратуры.

Среди отрицательных характеристик следует выделить износ движущихся частей. В процессе эксплуатации за такими деталями нужен уход, регулировка и замена. Также следует отметить незначительное запаздывание в реакции на изменения показателей сети. Габариты и большой вес являются показателями довольно мощных устройств, которые весьма требовательны к условиям эксплуатации, такие как, температура воздуха в помещении, где находится стабилизатор. Температурный диапазон от -5 до +40 Цельсия.

Ниже указаны диапазоны характеристик электромеханических стабилизаторов разных изготовителей:

Изготовитель Мощность, кВт Входное напряжение, В
Ресанта 0,5 — 100

140 — 260

240 — 430 (трехфазный)

Штиль 0,5 — 30

160 — 250

280 — 430 (трехфазный)

Энергия 0,5 — 100

140 — 260

240 — 430 (трехфазный)

Volter 1,0 — 60

140 — 260

240 — 430 (трехфазный)

3. Электронные стабилизаторы напряжения

Приборы данного типа осуществляют входное напряжение ступенчато, их еще называют дискретными. В основе находится автотрансформатор. Вторая составляющая электронных стабилизаторов – реле или полупроводники в виде тиристоров и симисторов. Принцип работы заключается в следующем: каждая обмотка трансформатора добавляет на выходе соответствующее напряжение. Определенная обмотка включается регулировкой входного напряжения реле или электронных ключей. Точность у разных приборов колеблется от 2 до 10%. Причиной таких колебаний кроется в ступенчатом регулировании. Величина колебаний напрямую зависит от количества обмоток.

Допустим, каждая прибавляет по 17,6 В (точность стабилизатора 8%) при входном напряжении 195 Вт переключаются две обмотки и на выходе получится 230,2 Вт. Данный стабилизатор осуществляет регулировку быстро, но с небольшой погрешностью. Если указано 2%, то мы получим на выходе 221,4 Вт. Но, обмоток уже получается 6, и поэтому регулировка в этом случае происходит дольше.

К тому же стоимость системы повышается за счет большого количества электронных ключей, при этом об увеличении надежности не может быть и речи.

Необходимо понимать, для какого устройства допустима погрешность. Для холодильников, плит, и других приборов с электродвигателем или нагревательным элементом, десятипроцентное отклонение входящего напряжения не отражается на стабильном рабочем режиме. В случае, когда требуется защитить кинотеатр или компьютер, необходимо остановить свой выбор на более точном устройстве.

Благодаря наличию цифрового управления, все соответствующие элементы располагаются на одной микросхеме. Следовательно, происходит уменьшение веса и габаритов прибора. Входное и выходное напряжение отображается на дисплее.

Самый главный плюс – отсутствие механического износа, т.к движущихся деталей нет. От качества тиристоров или симисторов зависит долговечность. Некоторые модели устойчивы к температурам от минус двадцати и ниже.

Явным минусом является чувствительность к коротким замыканиям или большим нагрузкам, которые могут вывести из строя электронные ключи. Поэтому следует выбирать электронный стабилизатор с хорошим запасом мощности.

Стабилизаторы используют в квартирах, на дачах, в коттеджах. Однофазные стабилизаторы используются при напряжении 220В. Мощность таких стабилизаторов от 0,5 до 30 кВт, что позволяет защитить один прибор или всю технику в доме. В сети 380 В возможны сочетания из трехфазных (3-30 кВт и выше) и однофазных стабилизаторов. Такие устройства представляют собой 3 однофазных стабилизатора, которые могут быть расположены под одним корпусом. Техническое решение модели более 100 кВт представляет собой три трансформатора на одном сердечнике. Устройства рассчитаны для защиты отдельных единиц техники, а так же они могут располагаться в загородных домах, офисах, на предприятиях для защиты всей сети.

Что такое стабилизатор напряжения и как он работает? Типы стабилизаторов

Что такое стабилизатор напряжения и зачем он нам? Работа стабилизатора, типы и применение

Введение в стабилизатор:

Внедрение технологии микропроцессорного чипа и силовых электронных устройств в конструкцию интеллектуальных стабилизаторов напряжения переменного тока (или автоматических регуляторов напряжения (AVR)) привело к -качественное, стабильное электроснабжение при значительных и продолжительных отклонениях сетевого напряжения.

В качестве усовершенствования традиционных стабилизаторов напряжения релейного типа в современных инновационных стабилизаторах используются высокопроизводительные цифровые схемы управления и полупроводниковые схемы управления, которые исключают регулировку потенциометра и позволяют пользователю устанавливать требования к напряжению с помощью клавиатуры, с возможностью запуска и остановки выхода. What is Voltage Stabilizer. Difference between Stabilizer & Regulator What is Voltage Stabilizer. Difference between Stabilizer & Regulator

Это также привело к тому, что время срабатывания или чувствительность стабилизаторов стали намного меньше, обычно менее нескольких миллисекунд, кроме того, это можно регулировать с помощью переменной настройки.В настоящее время стабилизаторы стали оптимизированным решением питания для многих электронных устройств, чувствительных к колебаниям напряжения, и они нашли работу со многими устройствами, такими как станки с ЧПУ, кондиционеры, телевизоры, медицинское оборудование, компьютеры, телекоммуникационное оборудование и т. Д.

Что такое стабилизатор напряжения?

Это электрический прибор, который разработан для подачи постоянного напряжения на нагрузку на своих выходных клеммах независимо от изменений входного или входящего напряжения питания.Он защищает оборудование или машину от перенапряжения, пониженного напряжения и других скачков напряжения.

Он также называется автоматический регулятор напряжения (АРН) . Стабилизаторы напряжения предпочтительны для дорогостоящего и драгоценного электрического оборудования, поскольку они защищают его от вредных колебаний низкого / высокого напряжения. Некоторое из этого оборудования — кондиционеры, офсетные печатные машины, лабораторное оборудование, промышленные машины и медицинское оборудование. What is a voltage stabilizer What is a voltage stabilizer

Стабилизаторы напряжения регулируют колебания входного напряжения до того, как оно может быть подано на нагрузку (или оборудование, чувствительное к колебаниям напряжения).Выходное напряжение стабилизатора будет оставаться в диапазоне 220 В или 230 В в случае однофазного питания и 380 В или 400 В в случае трехфазного питания в пределах заданного диапазона колебаний входного напряжения. Это регулирование осуществляется с помощью понижающих и повышающих операций, выполняемых внутренней схемой.

На современном рынке доступно огромное количество разнообразных автоматических регуляторов напряжения. Это могут быть одно- или трехфазные блоки в зависимости от типа применения и необходимой мощности (кВА).Трехфазные стабилизаторы выпускаются в двух версиях: модели со сбалансированной нагрузкой и модели с несбалансированной нагрузкой.

Они доступны в виде отдельных блоков для приборов или в виде больших стабилизаторов для целых приборов в определенном месте, например, в доме. Кроме того, это могут быть стабилизаторы аналогового или цифрового типа. Types of Voltage Stabilizers Types of Voltage Stabilizers

К общим типам стабилизаторов напряжения относятся стабилизаторы с ручным управлением или с переключением, автоматические стабилизаторы релейного типа, твердотельные или статические стабилизаторы и стабилизаторы с сервоуправлением.В дополнение к функции стабилизации большинство стабилизаторов имеют дополнительные функции, такие как отсечка низкого напряжения на входе / выходе, отсечка высокого напряжения на входе / выходе, отсечка при перегрузке, возможность запуска и остановки выхода, ручной / автоматический запуск, отображение отсечки напряжения, переключение при нулевом напряжении. и др.

Зачем нужны стабилизаторы напряжения?

Как правило, каждое электрическое оборудование или устройство рассчитано на широкий диапазон входного напряжения. В зависимости от чувствительности рабочий диапазон оборудования ограничен определенными значениями, например, одно оборудование может выдерживать ± 10 процентов номинального напряжения, а другое — ± 5 процентов или меньше.

Колебания напряжения (повышение или понижение величины номинального напряжения) довольно часто встречаются во многих областях, особенно на оконечных линиях. Наиболее частые причины колебаний напряжения — это освещение, неисправности в электросети, неисправность проводки и периодическое отключение устройства. Эти колебания приводят к поломке электрического оборудования или приборов. Why Voltage Stabilizers Are Needed? Why Voltage Stabilizers Are Needed?

Результатом длительного перенапряжения

  • Необратимое повреждение оборудования
  • Повреждение изоляции обмоток
  • Нежелательное прерывание нагрузки
  • Повышенные потери в кабелях и сопутствующем оборудовании
  • Снижение срока службы устройства

Длительное отсутствие напряжения приведет к

  • Неисправность оборудования
  • Более длительные периоды работы (как в случае резистивных нагревателей)
  • Снижение производительности оборудования
  • Вытягивание больших токов, которые в дальнейшем приводят к перегреву
  • Ошибки расчетов
  • Пониженная частота вращения двигателей

Таким образом, стабильность и точность напряжения определяют правильную работу оборудования.Таким образом, стабилизаторы напряжения гарантируют, что колебания напряжения на входящем источнике питания не влияют на нагрузку или электрические устройства.

Как работает стабилизатор напряжения?

Базовый принцип работы стабилизатора напряжения для выполнения операций понижения и повышения

В стабилизаторе напряжения коррекция напряжения при повышенном и пониженном напряжении выполняется посредством двух основных операций, а именно: b oost и понижающих операций . Эти операции могут выполняться вручную с помощью переключателей или автоматически с помощью электронных схем.В условиях пониженного напряжения режим повышения напряжения увеличивает напряжение до номинального уровня, в то время как понижающий режим снижает уровень напряжения во время состояния повышенного напряжения.

Концепция стабилизации включает в себя добавление или вычитание напряжения от сети. Для выполнения такой задачи в стабилизаторе используется трансформатор, который в различных конфигурациях соединен с переключающими реле. В некоторых стабилизаторах используется трансформатор с отводами на обмотке для обеспечения различных коррекций напряжения, в то время как в сервостабилизаторах используется автотрансформатор для обеспечения широкого диапазона коррекции.

Чтобы понять эту концепцию, давайте рассмотрим простой понижающий трансформатор с номиналом 230 / 12В и его связь с этими операциями приведена ниже. boost-operation-of-stabilizer boost-operation-of-stabilizer

Рисунок выше иллюстрирует конфигурацию повышения, в которой полярность вторичной обмотки ориентирована таким образом, что ее напряжение напрямую добавляется к первичному напряжению. Следовательно, в случае пониженного напряжения трансформатор (будь то переключение ответвлений или автотрансформатор) переключается с помощью реле или твердотельных переключателей, так что к входному напряжению добавляются дополнительные вольт.Buck Operation of Voltage Stabilizer Buck Operation of Voltage Stabilizer

На рисунке выше трансформатор подключен в компенсирующей конфигурации, в которой полярность вторичной катушки ориентирована таким образом, что ее напряжение вычитается из первичного напряжения. Схема переключения переключает соединение с нагрузкой в ​​эту конфигурацию во время состояния перенапряжения. Basic Principle to Perform Buck and Boost Operations Basic Principle to Perform Buck and Boost Operations

На рисунке выше показан двухступенчатый стабилизатор напряжения, в котором используются два реле для обеспечения постоянной подачи переменного тока на нагрузку во время перенапряжения и в условиях напряжения.Посредством переключения реле могут выполняться операции понижения и повышения напряжения для двух конкретных колебаний напряжения (одно находится под напряжением, например, 195 В, а другое — при повышенном напряжении, например, 245 В).

В случае стабилизаторов ответвительного трансформаторного типа, различные ответвления переключаются в зависимости от требуемой величины повышающего или понижающего напряжения. Но в случае стабилизаторов автотрансформаторного типа, двигатели (серводвигатели) используются вместе со скользящим контактом для получения повышающего или понижающего напряжения от автотрансформатора, поскольку он содержит только одну обмотку.

Типы стабилизаторов напряжения

Стабилизаторы напряжения стали неотъемлемой частью многих бытовых электроприборов, промышленных и коммерческих систем. Раньше использовались ручные или переключаемые стабилизаторы напряжения для повышения или понижения входящего напряжения, чтобы обеспечить выходное напряжение в желаемом диапазоне. В таких стабилизаторах используются электромеханические реле в качестве переключающих устройств.

Позже, дополнительная электронная схема автоматизирует процесс стабилизации, и на свет появились автоматические регуляторы напряжения РПН.Другой популярный тип стабилизатора напряжения — сервостабилизатор, в котором коррекция напряжения осуществляется непрерывно без какого-либо переключателя. Обсудим три основных типа стабилизаторов напряжения.

Стабилизаторы напряжения релейного типа

В стабилизаторах напряжения этого типа регулирование напряжения осуществляется переключением реле таким образом, чтобы одно из нескольких ответвлений трансформатора подключалось к нагрузке (как описано выше) независимо от того, он предназначен для работы в режиме наддува или противодействия.На рисунке ниже показана внутренняя схема стабилизатора релейного типа.

Он имеет электронную схему и набор реле, помимо трансформатора (который может быть тороидальным или трансформатором с железным сердечником с выводами на его вторичной обмотке). Электронная схема состоит из схемы выпрямителя, операционного усилителя, микроконтроллера и других мелких компонентов. Relay Type Voltage Stabilizers. Types of Voltage Stabilizers Relay Type Voltage Stabilizers. Types of Voltage Stabilizers

Электронная схема сравнивает выходное напряжение с опорным значением, представленного встроенным источником опорного напряжения.Всякий раз, когда напряжение повышается или опускается ниже заданного значения, схема управления переключает соответствующее реле для подключения к выходу требуемого ответвления.

Эти стабилизаторы обычно изменяют напряжение при колебаниях входного напряжения от ± 15 процентов до ± 6 процентов с точностью выходного напряжения от ± 5 до ± 10 процентов. Этот тип стабилизаторов наиболее часто используется для низкоуровневых устройств в жилых, коммерческих и промышленных помещениях, поскольку они имеют небольшой вес и низкую стоимость. Однако они страдают от нескольких ограничений, таких как низкая скорость коррекции напряжения, меньшая долговечность, меньшая надежность, прерывание пути питания во время регулирования и неспособность выдерживать высокие скачки напряжения.

Стабилизаторы напряжения с сервоуправлением

Их просто называют сервостабилизаторами (работа с сервомеханизмом, который также известен как отрицательная обратная связь), и название предполагает, что он использует серводвигатель для коррекции напряжения. Они в основном используются для обеспечения высокой точности выходного напряжения, обычно ± 1% при изменении входного напряжения до ± 50%. На рисунке ниже показана внутренняя схема сервостабилизатора, который включает в себя серводвигатель, автотрансформатор, повышающий трансформатор, драйвер двигателя и схему управления в качестве основных компонентов.Servo Controlled Voltage Stabilizers Servo Controlled Voltage Stabilizers

В этом стабилизаторе один конец первичной обмотки понижающего повышающего трансформатора соединен с фиксированным ответвлением автотрансформатора, а другой конец соединен с подвижным рычагом, управляемым серводвигателем. Вторичная обмотка понижающего повышающего трансформатора соединена последовательно с входящим источником питания, который представляет собой не что иное, как выход стабилизатора. Servo Controlled Voltage Stabilizers Working and Circuit Diagram Servo Controlled Voltage Stabilizers Working and Circuit Diagram

Электронная схема управления определяет падение напряжения и повышение напряжения путем сравнения входа со встроенным источником опорного напряжения.Когда схема обнаруживает ошибку, она запускает двигатель, который, в свою очередь, перемещает рычаг автотрансформатора. Он может питать первичную обмотку повышающего трансформатора, так что напряжение на вторичной обмотке должно быть желаемым выходным напряжением. Большинство сервостабилизаторов используют встроенный микроконтроллер или процессор для схемы управления для достижения интеллектуального управления.

Эти стабилизаторы могут быть однофазными, трехфазными симметричными или трехфазными несимметричными. В однофазном типе серводвигатель, соединенный с регулируемым трансформатором, обеспечивает коррекцию напряжения.В случае трехфазного симметричного типа серводвигатель соединен с тремя автотрансформаторами, так что стабилизированный выход обеспечивается во время колебаний путем регулировки выхода трансформаторов. В несимметричных сервостабилизаторах три независимых серводвигателя соединены с тремя автотрансформаторами и имеют три отдельные цепи управления. Three phase servo stabilizer Three phase servo stabilizer

Сервостабилизаторы имеют различные преимущества по сравнению со стабилизаторами релейного типа. Некоторые из них — более высокая скорость коррекции, высокая точность стабилизированного выхода, способность выдерживать броски тока и высокая надежность.Однако они требуют периодического обслуживания из-за наличия двигателей.

Стабилизаторы статического напряжения

Как следует из названия, стабилизатор статического напряжения не имеет движущихся частей в качестве механизма сервомотора в случае сервостабилизаторов. Он использует схему силового электронного преобразователя для достижения стабилизации напряжения, а не вариацию в случае обычных стабилизаторов. С помощью этих стабилизаторов можно добиться большей точности и отличного регулирования напряжения по сравнению с сервостабилизаторами, и обычно регулирование составляет ± 1 процент.Static Voltage Stabilizers Static Voltage Stabilizers

По сути, он состоит из повышающего трансформатора, преобразователя мощности IGBT (или преобразователя переменного тока в переменный) и микроконтроллера, микропроцессора или контроллера на базе DSP. Преобразователь IGBT с микропроцессорным управлением генерирует соответствующее количество напряжения с помощью метода широтно-импульсной модуляции, и это напряжение подается на первичную обмотку повышающего трансформатора. Преобразователь IGBT вырабатывает напряжение таким образом, что оно может быть синфазным или сдвинутым на 180 градусов по фазе входящего линейного напряжения, чтобы выполнять сложение и вычитание напряжений во время колебаний.Static voltage stabilizer circuit and Working Static voltage stabilizer circuit and Working

Каждый раз, когда микропроцессор обнаруживает провал напряжения, он отправляет импульсы ШИМ на преобразователь IGBT, так что он генерирует напряжение, равное величине отклонения от номинального значения. Этот выход находится в фазе с входящим питанием и подается на первичную обмотку повышающего трансформатора. Поскольку вторичная обмотка подключена к входящей линии, индуцированное напряжение будет добавлено к входящему источнику питания, и это скорректированное напряжение будет подаваться на нагрузку.

Точно так же повышение напряжения заставляет схему микропроцессора посылать импульсы ШИМ таким образом, что преобразователь выводит напряжение с отклоненной величиной, которое на 180 градусов не совпадает по фазе с входящим напряжением.Это напряжение на вторичной обмотке понижающего вольтодобавочного трансформатора вычитается из входного напряжения, так что выполняется понижающая операция.

Эти стабилизаторы очень популярны по сравнению со стабилизаторами с переключением ответвлений и сервоуправляемыми стабилизаторами из-за большого количества преимуществ, таких как компактный размер, очень быстрая скорость коррекции, отличное регулирование напряжения, отсутствие обслуживания из-за отсутствия движущихся частей, высокая эффективность надежность.

Разница между стабилизатором напряжения и регулятором напряжения

Здесь возникает серьезный, но сбивающий с толку вопрос: какова именно разница (я) в между стабилизатором и регулятором ? Хорошо.. Оба выполняют одно и то же действие, которое заключается в стабилизации напряжения, но основное различие между стабилизатором напряжения и регулятором напряжения составляет :

Стабилизатор напряжения: Это устройство или схема, которые предназначены для подачи постоянного напряжения на выход без изменений. входящего напряжения.

Регулятор напряжения: Это устройство или схема, которые предназначены для подачи постоянного напряжения на выход без изменения тока нагрузки.

Как выбрать стабилизатор напряжения правильного размера?

Прежде всего, необходимо учесть несколько факторов, прежде чем покупать стабилизатор напряжения для прибора.Эти факторы включают в себя мощность, необходимую для устройства, уровень колебаний напряжения, возникающих в зоне установки, тип устройства, тип стабилизатора, рабочий диапазон стабилизатора (на который стабилизатор подает правильное напряжение), отключение по перенапряжению / пониженному напряжению, тип схема управления, тип монтажа и другие факторы. Здесь мы привели основные шаги, которые следует учитывать перед покупкой стабилизатора для вашего приложения.  How to Choose a Correct Sized Voltage Stabilizer?  How to Choose a Correct Sized Voltage Stabilizer?

  • Проверьте номинальную мощность устройства, которое вы собираетесь использовать со стабилизатором, наблюдая за деталями паспортной таблички (вот образцы: паспортная табличка трансформатора, паспортная табличка MCB, паспортная табличка конденсатора и т. Д.) Или из руководства пользователя продукта .
  • Поскольку стабилизаторы рассчитаны на кВА (как и у трансформатора, рассчитанные на кВА, а не на кВт), также можно рассчитать мощность, просто умножив напряжение прибора на максимальный номинальный ток.
  • Рекомендуется добавить запас прочности к номиналу стабилизатора, обычно 20-25 процентов. Это может быть полезно для будущих планов по добавлению дополнительных устройств к выходу стабилизатора.
  • Если прибор рассчитан в ваттах, учитывайте коэффициент мощности при расчете номинальной мощности стабилизатора в кВА.Напротив, если стабилизаторы рассчитаны в кВт, а не в кВА, умножьте коэффициент мощности на произведение напряжения и тока.

ниже — это живой и решенный пример, что как выбрать стабилизатор напряжения подходящего размера для вашего электроприбора

Предположим, если прибор (кондиционер или холодильник) рассчитан на 1 кВА. Следовательно, безопасный запас в 20 процентов составляет 200 Вт. Прибавляя эти ватты к фактическому номиналу, мы получаем мощность 1200 ВА. Поэтому для прибора предпочтительнее стабилизатор на 1,2 кВА или 1200 ВА.Для домашних нужд предпочтительны стабилизаторы от 200 ВА до 10 кВА. А для коммерческих и промышленных применений используются одно- и трехфазные стабилизаторы большой мощности.

Надеемся, что представленная информация будет информативной и полезной для читателя. Мы хотим, чтобы читатели выразили свое мнение по этой теме и ответили на этот простой вопрос — какова цель функции связи RS232 / RS485 в современных стабилизаторах напряжения — в разделе комментариев ниже.

.

Различные типы стабилизаторов напряжения — для защиты вашей бытовой техники

Колебания напряжения вызывают временный или постоянный отказ нагрузки. Эти колебания напряжения также сокращают срок службы бытовой техники из-за нерегулируемого низкого или более высокого напряжения, чем предполагаемое напряжение, необходимое для нагрузки. Эти колебания напряжения возникают из-за внезапных изменений нагрузки или из-за неисправностей в энергосистеме. Значит, необходимо подавать на нагрузку стабильное напряжение, учитывая важность бытовой техники и необходимость ее защиты.Стабилизаторы напряжения используются для поддержания стабильного напряжения питания нагрузки, так что бытовая техника может быть защищена от повышенного и пониженного напряжения.

Что такое стабилизатор?

Стабилизатор — это вещь или устройство, используемое для поддержания чего-либо или количества в постоянном или стабильном состоянии. Существуют разные типы стабилизаторов в зависимости от количества, которое они используются для поддержания стабильности. Например, стабилизатор, используемый для поддержания стабильной величины напряжения в энергосистеме, называется стабилизатором напряжения.

What is Stabilizer? What is Stabilizer? Что такое стабилизатор?

Стабилизатор напряжения

Стабилизатор напряжения предназначен для поддержания стабильного уровня напряжения, чтобы обеспечить постоянную подачу напряжения, несмотря на любые колебания или изменения в подаче, с целью защиты бытовой техники. Обычно регуляторы напряжения используются для поддержания постоянного напряжения, и эти регуляторы напряжения, которые используются для обеспечения постоянного напряжения бытовой технике, называются стабилизаторами напряжения.

Voltage Stabilizer Voltage Stabilizer Стабилизатор напряжения

Существуют различные типы регуляторов напряжения, такие как электронные регуляторы напряжения, электромеханические регуляторы напряжения, автоматические регуляторы напряжения и активные регуляторы.Точно так же существуют различные типы стабилизаторов напряжения, такие как сервостабилизаторы напряжения, автоматические стабилизаторы напряжения, стабилизаторы напряжения переменного тока и стабилизаторы напряжения постоянного тока.

Работа стабилизатора напряжения

Работа стабилизатора напряжения может быть изучена путем рассмотрения различных типов стабилизаторов напряжения, таких как:

Стабилизаторы напряжения переменного тока

Эти стабилизаторы напряжения переменного тока подразделяются на различные типы, такие как напряжение переменного тока вращения катушки регуляторы, электромеханические регуляторы и трансформаторы постоянного напряжения.

1. Регуляторы переменного напряжения с вращением катушки

Это старый тип регулятора напряжения, который использовался в 1920-х годах. Работает по принципу аналогично вариопаре. Он состоит из двух катушек возбуждения: одна катушка неподвижна, а другая может вращаться вокруг оси, параллельной неподвижной катушке.

Coil Rotation AC Voltage Regulators Coil Rotation AC Voltage Regulators Регуляторы переменного напряжения вращения катушки

Постоянное напряжение может быть получено путем уравновешивания магнитных сил, действующих на подвижную катушку, что достигается путем размещения подвижной катушки перпендикулярно неподвижной катушке.Напряжение во вторичной катушке можно увеличивать или уменьшать, вращая катушку в том или ином направлении от центрального положения.

Механизм сервоуправления может использоваться для продвижения положения подвижной катушки для увеличения или уменьшения напряжения; при таком вращении катушки регуляторы переменного напряжения могут использоваться как автоматические стабилизаторы напряжения.

2. Электромеханические регуляторы

Электромеханические регуляторы напряжения, которые используются для регулирования напряжения в распределительных линиях переменного тока, также называемые стабилизаторами напряжения или переключателями ответвлений.Для выбора подходящего ответвления из нескольких ответвлений автотрансформатора в этих стабилизаторах напряжения используется работа сервомеханизма.

Electromechanical Regulators Electromechanical Regulators Электромеханические регуляторы

Если выходное напряжение выходит за пределы заданного значения, то для переключения ответвления используется сервомеханизм. Таким образом, изменяя коэффициент трансформации трансформатора, можно изменять вторичное напряжение для получения приемлемых значений выходного напряжения. Охота, которая может быть определена как отказ контроллера постоянно регулировать напряжение; это можно наблюдать в зоне нечувствительности, в которой контроллер не работает.

3. Трансформатор постоянного напряжения

Это тип насыщающего трансформатора, который используется в качестве стабилизатора напряжения; его также называют феррорезонансным трансформатором или феррорезонансным регулятором. В этих стабилизаторах напряжения используется бак-схема, состоящая из конденсатора для генерации почти постоянного среднего выходного напряжения с изменяющимся входным током и высоковольтной резонансной обмотки. Благодаря магнитному насыщению участок вокруг вторичной обмотки используется для регулирования напряжения.

Constant Voltage Transformer Constant Voltage Transformer Трансформатор постоянного напряжения

Простой, надежный метод используется для стабилизации источника переменного тока, который может быть обеспечен с помощью насыщающих трансформаторов.Из-за отсутствия активных компонентов подход с феррорезонансом является привлекательным методом, который полагается на характеристики насыщения прямоугольной петли цепи резервуара для поглощения изменений входного напряжения.

Стабилизаторы напряжения постоянного тока серии

или шунтирующие регуляторы часто используются для регулирования напряжения источников постоянного тока. Опорное напряжение подается с помощью регулятора шунта, как стабилитрон или регулятор напряжения трубки. Эти устройства стабилизации напряжения начинают проводить при заданном напряжении и проводят максимальный ток, чтобы удерживать заданное напряжение на клеммах.Избыточный ток отводится на землю, часто с помощью резистора малого номинала для рассеивания энергии. На рисунке показан стабилизатор постоянного напряжения с регулируемым напряжением на микросхеме LM317.

DC Voltage Stabilizers DC Voltage Stabilizers DC напряжения Стабилизаторы

Выходной сигнал регулятора шунта используется только для обеспечения стандартного опорного напряжения к электронному устройству, называемому в качестве стабилизатора напряжения, который способен обеспечить гораздо большие токи, основанные на спросе.

Автоматические стабилизаторы напряжения

Эти стабилизаторы напряжения используются в генераторных установках, аварийном электроснабжении, нефтяных вышках и т. Д.Это электронное силовое устройство, используемое для обеспечения переменного напряжения, и это можно сделать без изменения коэффициента мощности или фазового сдвига. Стабилизаторы напряжения больших размеров стационарно закреплены на распределенных линиях, а малые стабилизаторы напряжения используются для защиты бытовой техники от колебаний напряжения. Если напряжение источника питания меньше требуемого диапазона, то для повышения уровней напряжения используется повышающий трансформатор, и аналогично, если напряжение выше требуемого диапазона, оно понижается с помощью понижающего трансформатор.

Automatic Voltage Stabilizers Automatic Voltage Stabilizers Автоматические стабилизаторы напряжения

Практический пример автоматического стабилизатора напряжения можно увидеть в цепях питания, используемых для подачи питания на электронные и электронные схемы. Регулятор 7805 часто используется для обеспечения питания проектных комплектов на базе микроконтроллеров, поскольку микроконтроллеры работают от 5В. В этом стабилизаторе напряжения 7805 первые две цифры представляют собой положительный ряд, а последние две цифры представляют значение выходного напряжения регулятора напряжения.

7805 Regulator 7805 Regulator 7805 Регулятор

Развитие технологий привело к появлению множества новых стабилизаторов напряжения, которые автоматически регулируют уровни напряжения в требуемом диапазоне. В случае невозможности достижения этого требуемого диапазона напряжения, тогда источник питания будет автоматически отключен от нагрузки, чтобы защитить бытовую технику от нежелательных колебаний напряжения. Для получения дополнительной технической информации о стабилизаторах напряжения вы можете связаться с нами, разместив свои комментарии в разделе комментариев ниже.

Фото:

  • Регуляторы напряжения переменного тока вращения катушки от Writework
  • Электромеханические регуляторы от wikimedia
  • Автоматические стабилизаторы напряжения по щелчку

.