Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Type c usb распиновка: Разъем USB 3.0 type C

Содержание

USB — A, B, C и D: распиновка, скорость и особенности подключения

Уже давно на сайте 2 Схемы была опубликована статья про виды USB коннекторов, но так как вопросы продолжают поступать в редакцию, решено было написать более подробное продолжение. Интерфейс USB имеет тип разъема, определенный в соответствующем стандарте, описывающем его. Но с развитием технологий и развитием USB-соединения появились другие типы разъемов. Они также имеют отношение к направлению передачи данных в интерфейсе. Чтобы полностью понять особенности типов A, B и C, надо сначала взглянуть на различные версии стандарта USB. Тип разъема «USB» относится только к физической форме и разводке портов разъемов, в то время как буквенная версия означает, среди прочего, скорость и функциональность, предлагаемые интерфейсом.

USB версии разъёмов

USB версии в настоящее время включают 1.1, 2.0, 3.0, 3.1 и 3.2.

  1. Тип USB 1.1 был первой версией стандарта USB, выпущенной ещё в 1998 году, и имеет максимальную скорость передачи 12 Мбит / с. Однако во многих случаях USB 1.1 работает только на скорости 1,2 Мбит / с. Сегодня он давно устарел и выведен из употребления.
  2. Стандарт USB 2.0, введенный в 2000 году, имеет максимальную скорость 480 Мбит / с в режиме Hi-Speed или 12 Мбит / с в обычном режиме работы. Он обратно совместим с USB 1.1. Как и версия 1.1, она имеет линии питания 5 В с током до 500 мА, что дает мощность 2,5 Вт.
  3. USB 3.0 был представлен в 2008 году и имеет самую высокую скорость передачи данных — 5 Гбит / с в режиме SuperSpeed. USB 3.0 коннекторы обычно синие. Этот интерфейс обратно совместим, но имеет повышенный выходной ток до 900 мА, что дает мощность 4,5 Вт.
  4. Следующая версия USB 3.1, которая была официально представлена на рынке в 2013 году. Он удваивает скорость интерфейса до 10 Гбит / с, передавая данные так же быстро, как и оригинальный стандарт Thunderbolt. Он обратно совместим с USB 3.0 и USB 2.0. USB 3.1 имеет три профиля питания и позволяет более крупным устройствам получать питание от хоста: до 2 А при 5 В (при потребляемой мощности до 10 Вт) и до 5 А при 12 В (60 Вт) или 20 В (100 Вт) — это так называемая технология USB Power Delivery (USB-PD), определяемая отдельно от самого стандарта USB.
  5. Последней версией интерфейса является USB 3.2. Он был представлен в 2017 году. Этот интерфейс сохраняет существующие режимы данных USB 3.1 — SuperSpeed и SuperSpeed+, с 5 Гбит / с и 10 Гбит / с соответственно, но также вводит два новых режима передачи данных, предлагающих скорости передачи 10 и 20 Гбит / с, однако они требуют USB-С. USB 3.2 также является первой версией интерфейса, в котором разъем USB-C является единственным доступным и приемлемым стандартом разъема.

Благодаря плоской и прямоугольной форме USB тип A был оригинальным дизайном для первого стандарта USB. В традиционном USB-кабеле разъем типа A, также известный как штекерный разъем A, подключается к хосту, к его USB-порту также относится тип A, который является гнездом типа A. Порты типа A обычно находятся в хост-устройствах, таких как настольные компьютеры. ноутбуки, игровые приставки и т. д. Кроме того, штекерные разъемы типа A можно найти на популярных девайсах, подключенных к вышеупомянутым устройствам — клавиатурам, мышам, и т. д.

Все USB 1.1, 2.0 и 3.0 имеют одинаковую конструкцию разъема типа A, это означает, что он всегда совместим с портом типа A, даже если устройство и хост используют разные версии USB. Они отличаются только тем, что в версиях 3.0 и 3.1 добавлены дополнительные линии для дополнительных сигналов, необходимых для использования режимов SuperSpeed и SuperSpeed+.

По сути, разъем B является конечной частью стандартного USB-кабеля, который подключается к периферийному устройству, например, принтеру, телефону или внешнему жесткому диску, и также известен как штыревой тип B. Поскольку периферийные устройства бывают разных форм и размеров, разъем B и его порт также доступны в нескольких различных версиях. В настоящее время доступно 5 популярных моделей USB-разъемов и разъемов типа B: оригинальный стандарт B, Mini-B, Micro-B, Micro-B USB 3.0 и стандартный разъем USB B типа 3.0. Они отличаются в основном размерами, что позволяет размещать разъемы типа B в очень маленьких устройствах.

В настоящее время кабели USB типа B практически забыты. Это потому, что принтеры и другие крупные устройства уже используют беспроводные WiFi каналы.

Конструкция стандартного разъема типа B используется для подключения больших периферийных устройств, таких как принтеры или сканеры, к компьютеру и была разработана для USB 1.1. Значительно меньшие порты Mini-B можно найти в старых портативных устройствах, таких как цифровые камеры и старые портативные накопители. Этот формат соединителя теперь устарел. Micro-B USB немного меньше, чем Mini-B, и является наиболее распространенным типом разъема USB для современных смартфонов и планшетов. Micro-USB 3.0 является самой массовой конструкцией и в основном используется для портативных накопителей USB 3.0. Интерфейсные разъемы USB 3.0 и выше, как правило, синего цвета для упрощения интуитивного подключения к компьютерам, где порты USB 3.x также синего цвета.

При размере 8,3 x 2,5 мм порт и разъем USB Type-C примерно такого же размера, что и порт USB Micro-B, что делает его достаточно маленьким для работы даже с самыми малогабаритными периферийными устройствами. Оба конца кабеля идентичны, что позволяет переворачивать кабель в произвольном виде. Кроме того, благодаря симметрии штекера, проблема вставки его вверх ногами устранена — он подходит для обеих ориентаций.

USB-C и USB 3.1 имеют обратную совместимость с USB 3.0 и 2.0. В чистом соединении USB Type-C порты и разъемы Type-A больше не включены, но для совместимости существуют кабели Type-C — Type-C, например, для подключения современных мобильных устройств к компьютерам. Существуют также адаптеры, которые позволяют хостам и устройствам С-типа работать с USB-устройствами. Хотя в настоящее время это может усложнить подключение, поскольку требуются разные USB-адаптеры, это будет временным явлением, поскольку в будущем будет использоваться только порт C.

Есть в продаже переходники USB Micro <-> C, советуем на запас купить несколько штук, так как будет появляться всё больше оборудования USB-C. Такие адаптеры будут полезны в ситуации, когда у всех вокруг есть только зарядные устройства с «обычным» Micro-USB.

USB 2.0 A и B всё ещё будут на рынке в течение долгого времени, потому что есть миллиарды устройств с этим портом, и это дешево, также потому что это механически самый сильный USB-разъем, если разъемы хорошего качества и платы не тонкие, то эти разъемы действительно надёжны. Это подтверждает их применение в сценическом оборудовании, где они являются стандартными и могут работать на сценах и студиях в течение многих лет без сбоев. Такое же дело стоит в оборудовании: осциллографы, цифровые БП, ЧПУ, автоматизация.

В ожидании USB-D

USB 3 C разъем хотя и лучше, чем mini и micro, но очень слабый по сравнению с A и B. Это подтверждается практикой. Так что будем ждать очередного стандарта (может USB-D?), который при высокой скорости также окажется достаточно надёжным.

Руководство по распиновке и особенностям USB-C

Добавлено 2 июня 2019 в 17:52

Сохранить или поделиться

Знаете ли вы, что именно представляет из себя разъем USB Type-C? В данной статье описывается анатомия распиновки USB Type-C и кратко рассматриваются ее различные режимы.

USB Type-C – это спецификация системы USB разъемов, которая завоевывает популярность среди смартфонов и мобильных устройств и способна как доставлять питание, так и передавать данные.

В отличие от своих USB предшественников, он также является двухсторонним – поэтому вам не нужны три попытки, прежде чем подключить его.

Рисунок 1 – Разъем USB Type-C

В данной вводной статье будут рассмотрены некоторые из наиболее важных функций стандарта USB-C. Прежде чем погрузиться в распиновку и объяснения каждого вывода, мы быстро рассмотрим, что такое USB-C и чем он лучше.

Что такое USB-C?

USB-C является относительно новым стандартом, целью которого является обеспечение высокоскоростной передачи данных со скоростью до 10 Гбит/с и способностью пропускать питание до 100 Вт. Эти функции могут сделать USB-C действительно универсальным стандартом подключения для современных устройств.

USB-C или USB Type-C?

Эти два термина обычно взаимозаменяемы (в этой статье мы будем использовать оба). Хотя USB-C используется чаще, USB Type-C, как указано на USB.org, является официальным названием стандарта.

Особенности USB-C

Интерфейс USB-C имеет три основные особенности:

  • Он имеет двухсторонний разъем. Интерфейс спроектирован таким образом, что вилка может быть перевернута относительно гнезда.
  • Он поддерживает стандарты USB 2.0, USB 3.0 и USB 3.1 Gen 2. Кроме того, он может поддерживать сторонние протоколы, такие как DisplayPort и HDMI в режиме работы, который называется альтернативным режимом.
  • Он позволяет устройствам согласовывать и выбирать соответствующий режим питания через интерфейс.

В следующих разделах мы увидим, как эти функции предоставляются стандартом USB Type-C.

Выводы разъемов вилки/гнезда USB Type-C

Разъем USB Type-C имеет 24 контакта. На рисунках 2 и 3 показаны выводы гнезда и вилки (разъема на кабеле) USB Type-C.

Рисунок 2 – Разъем гнезда USB Type-CРисунок 3 – Разъем вилки на кабеле USB Type-C

Дифференциальные пары USB 2.0

Выводы D+ и D- являются дифференциальными парами, используемыми для подключения USB 2.0. В гнезде есть два контакта D+ и два контакта D-.

Однако контакты соединены друг с другом, и на самом деле для использования доступна только одна дифференциальная пара данных USB 2.0. Избыточность включена только для обеспечения двухсторонности разъема.

Выводы питания и земли

Контакты VBUS и GND являются путями питания и обратными путями для сигналов. Напряжение VBUS по умолчанию составляет 5 В, но стандарт позволяет устройствам согласовывать и выбирать напряжение VBUS, отличное от значения по умолчанию. Протокол USB Power Delivery допускает на VBUS напряжение до 20 В. Максимальный ток также может быть увеличен до 5 А. Следовательно, USB Type-C может пропускать максимальную мощность 100 Вт.

Передача высокой мощности может быть полезна при зарядке большого устройства, такого как ноутбук. На рисунке 4 показан пример от RICHTEK, где используется повышающий преобразователь для создания соответствующего напряжения, запрошенного ноутбуком.

Рисунок 4 – Пример организации питания через USB Type-C

Обратите внимание, что технология подачи питания делает USB Type-C более универсальным, чем более старые стандарты, потому что делает уровень мощности адаптируемым к потребностям нагрузки. Вы можете заряжать как смартфон, так и ноутбук, используя один и тот же кабель.

Выводы RX и TX

Имеется две дифференциальные пары RX и две дифференциальных пары TX.

Одна из этих двух пар RX вместе с парой TX может использоваться для протокола USB 3.0 / USB 3.1. Поскольку разъем является двухсторонним, требуется мультиплексор для правильного перенаправления данных через кабель по используемым дифференциальным парам.

Обратите внимание, что порт USB Type-C может поддерживать стандарты USB 3.0/3.1, но минимальный набор функций USB Type-C не включает USB 3.0/3.1. В таких случаях пары RX/TX не используются соединением USB 3.0/3.1 и могут использоваться другими функциями USB Type-C, такими как альтернативный режим и протокол USB Power Delivery. Эти функциональные возможности могут использовать даже все доступные дифференциальные пары RX/TX.

Выводы CC1 и CC2

Эти выводы являются выводами конфигурирования канала (Channel Configuration). Они выполняют ряд функций, таких как обнаружение присоединения и извлечения кабеля, определение ориентации гнезда (розетки) и вилки (разъема на кабеле), оповещение о питании. Эти выводы могут также использоваться для связи, необходимой для подачи питания (Power Delivery) и альтернативного режима (Alternate Mode).

На рисунке 5 ниже показано, как выводы CC1 и CC2 раскрывают ориентацию гнезда/вилки. На этом рисунке DFP обозначает Downstream Facing Port (нисходящий выходной порт), который является портом, действующим либо в качестве хоста при передаче данных, либо в качестве источника питания. UFP обозначает Upstream Facing Port (восходящий выходной порт), который является устройством, подключенным к хосту, или потребителем питания.

Рисунок 5 – Определение ориентации гнезда и вилки USB Type-C с помощью выводов CC1 и CC2

DFP подтягивает выводы CC1 и CC2 к шине 5 В через резисторы Rp, но UFP подтягивает их к шине GND через резисторы Rd. Если кабель не подключен, источник видит высокий логический уровень на выводах CC1 и CC2. Подключение кабеля USB Type-C создает путь для протекания тока от источника 5 В до земли. Поскольку в кабеле USB Type-C имеется только один провод CC, формируется только один путь протекания тока. Например, в верхней части рисунка 5 вывод CC1 DFP подключен к выводу CC1 UFP. Следовательно, вывод CC1 DFP будет иметь напряжение ниже 5 В, но вывод CC2 DFP будет по-прежнему иметь высокий логический уровень. Поэтому, отслеживая напряжение на выводах DFP CC1 и CC2, мы можем определить подключение кабеля и его ориентацию.

В дополнение к ориентации кабеля путь Rp-Rd используется как способ передачи информации о возможностях источника тока. С этой целью потребитель энергии (UFP) контролирует напряжение на линии CC. Когда напряжение на линии CC имеет самое низкое значение (около 0,41 В), источник может обеспечить стандартное питание через USB, которое составляет 500 мА или 900 мА для USB 2.0 и USB 3.0 соответственно. Когда напряжение на линии CC составляет около 0,92 В, источник может выдавать ток 1,5 А. Максимальное напряжение на линии CC, которое составляет около 1,68 В, соответствует допустимому току источника 3 А.

Вывод VCONN

Как упоминалось ранее, USB Type-C призван обеспечить невероятно высокую скорость передачи данных наряду с высокими уровнями передаваемой мощности. Эти функции могут потребовать использования специальных кабелей с электронной маркировкой, использующих встроенную микросхему. Кроме того, некоторые активные кабели используют микросхему повторителя для усиления сигнала, компенсации потерь, вносимых кабелем, и так далее. В этих случаях мы можем питать электрическую схему внутри кабеля, подавая на вывод VCONN напряжение 5 В от источника мощностью 1 Вт. Пример этого показан на рисунке 6.

Рисунок 6 – Пример использования активного кабеля USB Type-C

Как вы видите, активный кабель использует резисторы Ra, чтобы подтянуть выводы CC2 к шине GND. Значение Ra отличается от Rd, поэтому DFP по-прежнему может определять ориентацию кабеля, проверяя напряжение на выводах CC1 и CC2 DFP. После определения ориентации кабеля вывод конфигурирования канала, соответствующий «микросхеме активного кабеля», будет подключен к источнику питания 5 В, 1 Вт для питания схемы внутри кабеля. Например, на рисунке 6 действительный путь Rp-Rd соответствует выводу CC1. Следовательно, вывод CC2 будет подключен к источнику питания, обозначенному VCONN.

Выводы SBU1 и SBU2

Эти два вывода соответствуют низкоскоростным сигнальным путям, которые используются только в альтернативном режиме.

Управление питанием USB Power Delivery

Теперь, когда мы знакомы с распиновкой стандарта USB-C, давайте кратко рассмотрим USB Power Delivery.

Как упоминалось ранее, устройства, использующие стандарт USB Type-C, могут согласовывать и выбирать соответствующий уровень передаваемой через интерфейс мощности. Эти согласования питания достигаются с помощью протокола под названием USB Power Delivery, который представляет собой однопроводную связь по линии CC, описанной выше. На рисунке 7 ниже показан пример использования USB Power Delivery, где приемник отправляет запросы источнику и подстраивает напряжение VBUS по мере необходимости. Сначала запрашивается шина 9 В. После того, как источник стабилизирует напряжение шины на уровне 9 В, он отправляет приемнику сообщение «источник питания готов». Затем приемник запрашивает шину 5 В, и источник предоставляет ее и снова отправляет сообщение «источник питания готов».

Рисунок 7 – Процесс согласования питания при подключении через USB Type-C с помощью протокола USB Power Delivery

Важно отметить, что «USB Power Delivery» – это не только переговоры, связанные с передачей энергии, но и другие переговоры, например, связанные с альтернативным режимом, также выполняются с использованием протокола USB Power Delivery на линии CC.

Альтернативные режимы

Этот режим работы позволяет нам, используя стандарт USB Type-C, реализовывать сторонние протоколы, такие как DisplayPort и HDMI. Все альтернативные режимы должны как минимум поддерживать соединение USB 2.0 и USB Power Delivery. Для получения дополнительной информации смотрите этот документ от TI.

Заключение

USB Type-C обладает интересными особенностями. Он поддерживает невероятно высокую скорость передачи данных до 10 Гбит/с и высокую передаваемую мощность до 100 Вт. Благодаря этому, а также двухстороннему разъему, USB Type-C может стать действительно универсальным стандартом для современных устройств.

Оригинал статьи:

Теги

USBUSB Power DeliveryUSB Type-CАльтернативный режим USB Type-C

Сохранить или поделиться

Распиновка USB type C | Оцифровка видео, аудио, фото 

На страницах сайта 01010101.ru были рассмотрены распиновки практически всех видов USB. Теперь осталось рассмотреть распайку (распиновку) USB type C, или как его называют USB 3.1. Почему у USB 3.1 такое название. Многие ознакомлены, что существует USB type A (привычное нам USB) и USB type B для периферийных устройств (принтеров, сканеров и пр.). По своей форме они физически не совместимы. USB type C (USB 3.1) — третья модификация, которая не совместима физически с предыдущими двумя.

И зачем в таком случае нам нужен новый стандарт. Плюсы, безусловно, есть. Кроме тех сразу четырех плюсов (по питанию) и добавления каналов передачи данных USB type C еще и симметричен. Теперь неважно верхней или нижней стороной его вставлять. Кроме того, появилась поддержка обоих протоколов (тип А и тип Б).

После короткого экскурса по распиновкам остальных USB, приступим непосредственно к данному разъему.
Распиновка USB 3.0
Распиновка micro-USB 3.0
Распиновка USB, mini- и micro-USB

Поскольку все преимущества, особенности, и отличия USB type C подробно расписаны в статье USB Type-C отличие от предыдущих коннекторов, в этой статье разберем только контакты разъема, их номера и назначение.

Количество контактов разъема USB type C — 24. 12 верхних пинов обозначены от А1 до А12. Внизу еще 12 пинов с обозначением от В12 до В1 (в обратную сторону). Таким образом получается симметрия, позволяющая вставлять порт как верхней, так и нижней стороной.

Сами контакты имеют 6 назначений (6 групп). Это питание, Земля, USB 3.1, USB 2.0, дополнительный и согласующий каналы. Ниже в цвете размещена картинка, на которой каждая группа обозначена отдельным цветом. Из рисунка видно какой группе принадлежит каждый номер контакта. Теперь разберем назначение групп.

USB 2.0 — группа контактов, выполняющая низкоскоростной режим передачи данных, скорость которого до 480 Мб/с. Контакты 6 и 7 (D+ и D-) служат для совместимости с устройствами, обладающими портом USB 2.0, которых на данный момент большинство.

Vbus (питание +). 4 независимых контакта питания, позволяющие регулировать поток напряжения и силу тока в зависимости от надобности (зависит от потребления периферийного устройства). Максимальный выдерживаемый ток 5А, максимальное напряжение 20 вольт. Множим одно на другое. Получаем максимальную мощность 100 ватт.

USB 3.1 — группа контактов, выполняющая высокоскоростной режим передачи данных, скорость которого до 10 Гб/с. Контакты 2, 3, 10, 11, именуемые TX+, TX-, RX+, RX-. Контакты RX — передача данных, TX — прием данных. Поскольку кабель симметричный, то и контакты эти перекроссированы. То есть, если на передающем устройстве будет контакт RX, то приемное устройство получит его как TX.

GND — Земля (соединенная с корпусом). Также выполняет роль «минуса».

SBU — дополнительный канал, представленный контактом 8. Этот канал используется редко в неординарных случаях, одним из которых может быть передача видеосигнала по кабелю.

СС — канал конфигурации или согласования, представленный контактом 5. Мы уже разобрали, что USB type-C способна не только передавать данные, но и работать с разными устройствами. Этот канал способен определить тип устройства и зафиксировать включено оно или отключено. При включенном устройстве определяется «номинал» напряжения и тока, которое необходимо подать для устройства периферии. Также СС готов подать питание к активному кабелю при необходимости. Только что мы рассмотрели SBU как дополнительный канал. Канал СС как раз способен выявить такой неординарный случай.

Ниже расположена таблица с распайкой USB type C разъема. Все тоже самое, только в виде таблицы.

Распиновка USB type C разъема таблица

Pin

Назначение

Обозначение

1

A1

Земля (Общий — )

GND

2

A2

Высокоскоростная передача данных +

TX1+

3

A3

Высокоскоростная передача данных —

TX1-

4

A4

Питание Плюс

VBUS

5

A5

Согласующий (конфигурирующ.) канал

CC1

6

A6

Низкоскоростная передача данных +

D+

7

A7

Низкоскоростная передача данных —

D-

8

A8

Дополнительный канал

SBU1

9

A9

Питание Плюс

VBUS

10

A10

Высокоскоростная передача данных —

RX2-

11

A11

Высокоскоростная передача данных +

RX2+

12

A12

Земля (Общий — )

GND

13

B1

Земля (Общий — )

GND

14

B2

Высокоскоростная передача данных +

TX2+

15

B3

Высокоскоростная передача данных —

TX2-

16

B4

Питание Плюс

VBUS

17

B5

Согласующий (конфигурирующ.) канал

CC2

18

B6

Низкоскоростная передача данных +

D+

19

B7

Низкоскоростная передача данных —

D-

20

B8

Дополнительный канал

SBU2

21

B9

Питание Плюс

VBUS

22

B10

Высокоскоростная передача данных —

RX1-

23

B11

Высокоскоростная передача данных +

RX1+

24

B12

Земля (Общий — )

GND

 

USB type C кабель распиновка

Если бы знать, что кто-то действительно соберется паять кабель USB 3.1 type C, но нарисовал бы еще подробнее. Собственно, не совпадают только некоторые цвета, а именно:
Все контакты GND не имеют изоляции, а представляют собой экранный кабель.
Провода питания (+) А4, А9, В4, В9 нарисованы коричневым. По факту они белые.
Контакты USB 2.0 соединены между собой только с одной стороны (как на рисунке).
На верхнем рисунке схема USB type C для прозвонки (коннекторы лицом к пользователю), на нижнем схема USB type C для распайки (вид со стороны контактов для пайки).

Вид с лицевой стороны:

Вид со стороны пайки:

Стоит отметить и то, что касается соединении с контактами A11, A12, B2, B3, A2, A3, B10, B11. Эти провода могут иметь и другой цвет, поскольку стандарт не регламентирует цвет соединения с этими контактами. А если учесть, что в официальной спецификации цвета пока не обозначены… В общем распиновка USB type C переходника именно в цвете не совсем получилась.

Представим себе шнурок для обуви. когда мы шнуруем ботинок, то нам без разницы где у него левая сторона, где правая, где верх, а где низ (особенно если длина его цилиндрическая). Переходник USB type C симметричен и не имеет понятий где А-коннектор, а где В.
Остается только добавить нововведенные аббревиатуры для распознания устройств:
UFP — пассивное устройство;
DFP — активное устройство;
PSC — заряжаемое устройство;
PSP — устройство, как источник заряда.
Устройства, способные изменять свой «статус» динамически получили название DRD.
Автор: Александр Кравченко.

https://01010101.ru/kommutaciya/raspinovka-kabelja-usb-type-c.htmlРаспиновка USB type CadminКоммутациякоммутацияНа страницах сайта 01010101.ru были рассмотрены распиновки практически всех видов USB. Теперь осталось рассмотреть распайку (распиновку) USB type C, или как его называют USB 3.1. Почему у USB 3.1 такое название. Многие ознакомлены, что существует USB type A (привычное нам USB) и USB type B для периферийных устройств (принтеров,…admin
AdministratorОцифровка видео, аудио, фото | Обзоры аппаратуры и новости

Otg кабель usb type c своими руками

• назначение контактов
• распиновка
• питание и заряд
• схемы переходников

Достоинства порта USB 3.1:
★ быстрый
★ мощный
★ универсальный

Достоинства разъёма Type-C:
★ долговечный
★ симметричный

Теперь гарантированно можно подключить USB кабель к устройству с первого раза.

⚠ Следует различать понятия «порт» и «разъём». Разъём (гнездо) Type-C можно припаять хоть старому телефону (вместо micro-USB), но порт так и останется старым USB 2.0 — скорости заряда и передачи данных это не прибавит. Из удобств появится лишь симметричность и надёжность разъёма.

⚠ Таким образом наличие Type-C ещё ни о чём не говорит. Продаются модели смартфонов с новым разъёмом, но со старым портом. Перечисленные в этой статье достоинства к таким смартфонам не относятся.

Назначение контактов

Контакты разъёмов на схемах показаны с внешней (рабочей) стороны, если обратное не оговаривается особо.

Порт содержит 24 контакта (12 контактов на каждой стороне). «Верхняя» линейка нумеруется A1…A12, «нижняя» — B1…B12. По большей части линейки идентичны друг другу, что и делает этот порт равнодушным к ориентации штекера. Контакты каждой линейки можно разбить на 6 групп: USB 2.0 , USB 3.1 , Питание , Земля , Согласующий канал и Дополнительный канал . А теперь рассмотрим подробнее.

• Собственно, USB 3.1. Линии высокоскоростной передачи данных: TX+, TX-, RX+, RX- (контакты 2, 3, 10, 11). Скорость до 10 Гб/с. В кабеле эти пары перекроссированы, и что для одного устройства является RX, другому представляется как TX. И наоборот. По особому распоряжению эти пары могут переквалифицироваться под другие задачи, например — под передачу видео.

• Старый добрый USB 2.0. Линии низкоскоростной передачи данных: D+/D- (контакты 6, 7). Этот раритет включили в порт ради совместимости со старыми тихоходными устройствами до 480 Мб/с.

• Плюс питания — Vbus (контакты 4, 9). Стандартное напряжение 5 вольт. Ток выставляется в зависимости от потребностей периферии: 0,5А; 0,9А; 1,5А; 3А. Вообще, спецификация порта подразумевает передаваемую мощность до 100Вт, и в случае войны порт способен питать монитор или заряжать ноутбук напряжением 20 вольт!

• GND — «Земля»-матушка (контакты 1, 12). Минус всего и вся.

• Согласующий канал (или конфигурирующий) — СС (контакт 5). Это главная фишка USB type-C! Благодаря этому каналу система может определить:

— Факт подключения/отключения периферийного устройства;
— Ориентацию подключенного штекера. Как это ни странно, но разъём не абсолютно симметричен, и в некоторых случаях устройству хочется знать его ориентацию;
— Ток и напряжение, которое следует предоставить периферии для питания или заряда;
— Необходимость работы в альтернативном режиме, например, для передачи аудио-видео потока.
— Кроме функций мониторинга этот канал в случае необходимости подаёт питание на активный кабель.

• Дополнительный канал — SBU (контакт 8). Дополнительный канал обычно не используется и предусмотрен лишь для некоторых экзотических случаев. Например, при передаче по кабелю видео, по SBU идёт аудиоканал.

Распиновка USB 3.1 Type-C

«Полосатым цветом» здесь изображены контакты неизолированного провода.

Странным решением было отмаркировать провода D+ и D- не как в USB 2.0, а наоборот: D+ белый, D- зелёный.

Серой обводкой помечены провода, чей цвет по словам Википедии не регламентирован стандартом. Автор вообще не нашёл каких-либо указаний на цвета проводов в официальной документации.

Распайка коннекторов Type-C ▼

Схема типового кабеля USB-C «вилка-вилка»▼

Технология питания/заряда USB PD Rev.2 ( USB Power Delivery)

У кабеля USB-C нет таких понятий как «коннектор-A» или «коннектор-B» — коннекторы теперь во всех случаях одинаковы.

Роли устройства обозначены новыми терминами:

DFP — активное, питающее устройство (как бы порт USB-A)
UFP — пассивное, приёмное устройство (как бы порт USB-B)
DRP — «двуличное», динамически изменяющее свой статус устройство.
Кроме того, заряжающее устройство называется Power Provider, заряжаемое — Power Consumer.

Распределение ролей осуществляется установкой на контакте CC определённого потенциала с помощью того или иного резистора:

▶Активное устройство (DFP) определяется по резистору между контактами CC и Vbus.
Номинал резистора сообщает потребителю, на какой ток он может рассчитывать:
56±20% кОм — 500 или 900 мА
22±5% кОм — 1,5 А
10±5% кОм — 3 А

Переходники с USB 2.0 (3.0) на USB-C, служащие для подключения новых смартфонов к старым ПК или ЗУ распаяны по схеме DFP, то есть, показывают себя смартфону как активное устройство

▶Пассивное устройство (UFP) определяется по резистору между контактами CC и GND.
Номинал резистора: 5,1 кОм

Переходники с USB-C на USB-OTG распаяны именно по схеме UFP, то есть, имитируют потребляющее устройство.

⚠ Технологию USB PD Rev2 в которой по контакту CC согласуются ток и напряжение заряда не следует путать с технологией Quick Charge (QC), где по контактам D− и D+ согласуется только напряжение заряда. USB PD Rev2 поддерживается только в USB 3.1.
QC поддерживается без привязки к версии порта.

Переходник USB-micro—USB-C

Переходник micro-USB 2.0 на USB type-C служит для подключения гаджета с гнездом Type-C к стандартному дата-кабелю USB 2.0 для заряда и синхронизации с ПК. В переходнике установлен резистор 56 кОм между контактами CC и Vbus.

Этот резистор как бы говорит смартфону: «К тебе подключили активное устройство − заряжайся. Больше 0,9 ампер не дам».

То есть, даже от мощного зарядного устройства (скажем, на 3 ампера) через такой переходник мы не возьмём больше 0,9 ампер. Чтобы смартфон не стеснялся и взял 3 ампера, нужно заменить резистор на 10 кОм ▼

Внешний вид платы ▼

Универсальный переходник USB-micro—USB-C с поддержкой OTG

Наш читатель Сергей выслал схему универсального переходника micro-USB-BF to USB type-C (Тип 51125 Z22) − через него можно подключить как Data-кабель так и OTG-кабель USB 2.0. В зависимости от кабеля смартфон либо заряжается, либо работает с периферией.

В идеале вместо 55 кОм стоило бы использовать 51 (как в аналогичном переходнике от Huawei), чтобы в цепи Vcc-CC получались каноничные 56 кОм. Но спецификация не требует такой точности. Номинал сопротивления Vcc-CC допускается в диапазоне 45…67 кОм.

Внешний вид платы ▼

Переходник USB-C—USB-AF

Чтобы подключить USB-периферию к устройству с портом USB-C, в переходнике необходим резистор 5,1 кОм между контактами CC и GND.
Этот резистор сообщает смартфону: «К тебе подключено пассивное устройство. Подай питание».

Рассмотрим схему переходника OTG type-C на примере Type-C USB 3.1 To USB 3.0 OTG Adapter. Это переходник для подключения периферии USB 3.0 (2.0) к ПК или к смартфону Type-C.
Цвета проводов Data, TX и RX в этой модели несколько отличаются от каноничных, прошу обратить на это внимание! ▼

Ещё одна важная деталь — во всех переходниках типа USBtype-C—type-C или USBtype-C—USB3.0 (не обязательно OTG!) между контактами Vbus и Gnd необходим конденсатор для защиты контактов разъёма от искр при подключении. Например, для переходников на USB 3.0 требуется номинал конденсатора — 10нФ±20%×30В. Переходники на USB 3.1 требуют конденсатор большей ёмкости, а переходники на USB 2.0 не требуют конденсатора вовсе. Подробнее читайте в англоязычной статье «VBUS Bypass Capacitor».

Распайка платы переходника Type-C to USB 3.0 OTG с разных сторон ▼

Аналоговый звук через Type-C

Стандартом предусмотрена возможность передачи аналогового звука через цифровой порт. Эта возможность реализована в смартфонах HTC серии U, HTC 10 Evo, Xiaomi Mi, LeTV. Автор будет признателен, если читатель пополнит этот список.

Режим называется «Audio Adapter Accessory Mode». За подробностями обращайтесь к статье «Аналоговый звук через USB-C».

Для работы в этом режиме служат аналоговые гарнитуры с вилкой Type-C. Для подключения классической гарнитуры со штекером «джек» предусмотрены переходники.

Аналоговый звук передаётся по каналам Data−, Data+, SBU1 и SBU2. Смартфон переходит в этот режим, если в вилке гарнитуры или переходника между контактами A1—A5 и B1—B5 установлено сопротивление менее 0,8…1,2 кОм. Вместо резистора доводилось видеть просто перемычку.

Видео через USB-C

Для передачи видео через USB 3.1 разработан режим «DisplayPort Alternate Mode».
См. перечень устройств, поддерживающих этот режим.
В режиме «Display Port» назначение контактов порта меняется — две пары TX2/RX2 превращаются в видеоканал, а звуком занимается SBU1/2 ▼

Вопрос! Если мне нужно получить от устройства через type-c напряжение 12v кроме резистора на 5,1Ком между CC1 и gnd и CC2 и gnd что еще нужно? Где-то видел что на D+ и D- подать некоторое напряжение

Снова забыл по приветствовать… Здравствуйте!

Запрос на повышение зарядного напряжения потребитель подаёт цифровым способом, а не просто подачей напряжения. Эмулировать запрос можно с помощью специального контроллера, поддерживающего технологию USB PD, но это уже выходит за рамки моей компетенции.

Thanks, for the great work.
I am a little bit confused if you can help me.
I have a USB C port which will connect with the phone. Now I have two other ports. One is USB A port which will connect with a pheripheral device and 2nd is a USB C port which will connect with a Wall charger. Now I want to know the connection and resistors value for both functions. Like if I connect a pheripheral device then phone behave as a power sourcing device along with data but when I connect a wall charger then phone recieve power and charge. Note: I don’t want to use both at the same time but if it is possible that would be great. thanks for help

Hello! I hope that I understand you correctly.
Resistors are needed only when we connect the USB 3.1 port (Type-C) to the old USB port (2.0 or 3.0).
When we connect type-C to type-C, the devices themselves are negotiating and no resistors are needed.

Д.день, уважаемый Rones. Спасибо за ваш сайт и желание делиться с нами (читателями) своими знаниями. Вопрос такой: имею «маковский» 85-ваттный блок питания с выходом под USB-C разъем. Мак умер — блок остался, хочу расширить область его использования. Блок-то очень хороший — маленький и мощный. В спецификации написано, что потребителю может быть выдано 5-9-12-20вольт. Тупо подключил первый попавшийся шнурок USB-C/USB-2, включил в сеть. Померял напряжение на крайних контактах USB-2 — 0,1вольта. Как мне сообщить процессору блока питания, что мне нужно 5 вольт и все остальные вольты из спецификации? После прочтения вашей статьи дошло, что процессор узнаёт о том какое напряжение требуется потребителю, опрашивая линии кабеля и измеряя их калиброванные сопротивления и/или напряжение между линиями. Если моё предположение верно, то какие дополнительные сопротивления между какими линиями нужно припаять , чтобы получить, например, 5 вольт питания через вилку USB-2? Как получить другие напряжения?

Приветствую!
Напряжение 5 вольт порт выдаёт по умолчанию. Остальные напряжения потребляющее устройство должно «выпросить» у порта электронным способом. То есть, не с помощью контрольных напряжений, а путём обмена данными. Как это сымитировать я не знаю.
Стандартные 5 вольт порт выдаёт, если в вилке потребителя есть резистор 5,1 кОм между контактами CC и GND ▼

Здравствуйте!
Что будет если в Активном устройстве (DFP) между контактами Vcc и CC впаять резистор в 12 кОм? Устройство от источника питания начнёт потреблять не 0,5…0,9 А, а 1.5А? Дело в том что в продаваемых https://www.banggood.com/BlitzWolf-Ampcore-Turbo-TC10-3A-Durable-USB-Type-C-Charging-Data-Cable-p-1188424.html?rmmds=myorder&cur_warehouse=CN» кабелях уже впаян резистор 56 кОм…

Не знаю, что будет при 12 кОм. При 22 кОм потребитель попытается принять 1,5 А. Так как прот компа USB 2.0 или 3.0 способен дать лишь 0,5-0,9 А, в переходник впаивают резистор 56 кОм. Если потребитель попытается взять от компа 1,5 А могут быть неприятности.

• назначение контактов
• распиновка
• питание и заряд
• схемы переходников

Достоинства порта USB 3.1:
★ быстрый
★ мощный
★ универсальный

Достоинства разъёма Type-C:
★ долговечный
★ симметричный

Теперь гарантированно можно подключить USB кабель к устройству с первого раза.

⚠ Следует различать понятия «порт» и «разъём». Разъём (гнездо) Type-C можно припаять хоть старому телефону (вместо micro-USB), но порт так и останется старым USB 2.0 — скорости заряда и передачи данных это не прибавит. Из удобств появится лишь симметричность и надёжность разъёма.

⚠ Таким образом наличие Type-C ещё ни о чём не говорит. Продаются модели смартфонов с новым разъёмом, но со старым портом. Перечисленные в этой статье достоинства к таким смартфонам не относятся.

Назначение контактов

Контакты разъёмов на схемах показаны с внешней (рабочей) стороны, если обратное не оговаривается особо.

Порт содержит 24 контакта (12 контактов на каждой стороне). «Верхняя» линейка нумеруется A1…A12, «нижняя» — B1…B12. По большей части линейки идентичны друг другу, что и делает этот порт равнодушным к ориентации штекера. Контакты каждой линейки можно разбить на 6 групп: USB 2.0 , USB 3.1 , Питание , Земля , Согласующий канал и Дополнительный канал . А теперь рассмотрим подробнее.

• Собственно, USB 3.1. Линии высокоскоростной передачи данных: TX+, TX-, RX+, RX- (контакты 2, 3, 10, 11). Скорость до 10 Гб/с. В кабеле эти пары перекроссированы, и что для одного устройства является RX, другому представляется как TX. И наоборот. По особому распоряжению эти пары могут переквалифицироваться под другие задачи, например — под передачу видео.

• Старый добрый USB 2.0. Линии низкоскоростной передачи данных: D+/D- (контакты 6, 7). Этот раритет включили в порт ради совместимости со старыми тихоходными устройствами до 480 Мб/с.

• Плюс питания — Vbus (контакты 4, 9). Стандартное напряжение 5 вольт. Ток выставляется в зависимости от потребностей периферии: 0,5А; 0,9А; 1,5А; 3А. Вообще, спецификация порта подразумевает передаваемую мощность до 100Вт, и в случае войны порт способен питать монитор или заряжать ноутбук напряжением 20 вольт!

• GND — «Земля»-матушка (контакты 1, 12). Минус всего и вся.

• Согласующий канал (или конфигурирующий) — СС (контакт 5). Это главная фишка USB type-C! Благодаря этому каналу система может определить:

— Факт подключения/отключения периферийного устройства;
— Ориентацию подключенного штекера. Как это ни странно, но разъём не абсолютно симметричен, и в некоторых случаях устройству хочется знать его ориентацию;
— Ток и напряжение, которое следует предоставить периферии для питания или заряда;
— Необходимость работы в альтернативном режиме, например, для передачи аудио-видео потока.
— Кроме функций мониторинга этот канал в случае необходимости подаёт питание на активный кабель.

• Дополнительный канал — SBU (контакт 8). Дополнительный канал обычно не используется и предусмотрен лишь для некоторых экзотических случаев. Например, при передаче по кабелю видео, по SBU идёт аудиоканал.

Распиновка USB 3.1 Type-C

«Полосатым цветом» здесь изображены контакты неизолированного провода.

Странным решением было отмаркировать провода D+ и D- не как в USB 2.0, а наоборот: D+ белый, D- зелёный.

Серой обводкой помечены провода, чей цвет по словам Википедии не регламентирован стандартом. Автор вообще не нашёл каких-либо указаний на цвета проводов в официальной документации.

Распайка коннекторов Type-C ▼

Схема типового кабеля USB-C «вилка-вилка»▼

Технология питания/заряда USB PD Rev.2 ( USB Power Delivery)

У кабеля USB-C нет таких понятий как «коннектор-A» или «коннектор-B» — коннекторы теперь во всех случаях одинаковы.

Роли устройства обозначены новыми терминами:

DFP — активное, питающее устройство (как бы порт USB-A)
UFP — пассивное, приёмное устройство (как бы порт USB-B)
DRP — «двуличное», динамически изменяющее свой статус устройство.
Кроме того, заряжающее устройство называется Power Provider, заряжаемое — Power Consumer.

Распределение ролей осуществляется установкой на контакте CC определённого потенциала с помощью того или иного резистора:

▶Активное устройство (DFP) определяется по резистору между контактами CC и Vbus.
Номинал резистора сообщает потребителю, на какой ток он может рассчитывать:
56±20% кОм — 500 или 900 мА
22±5% кОм — 1,5 А
10±5% кОм — 3 А

Переходники с USB 2.0 (3.0) на USB-C, служащие для подключения новых смартфонов к старым ПК или ЗУ распаяны по схеме DFP, то есть, показывают себя смартфону как активное устройство

▶Пассивное устройство (UFP) определяется по резистору между контактами CC и GND.
Номинал резистора: 5,1 кОм

Переходники с USB-C на USB-OTG распаяны именно по схеме UFP, то есть, имитируют потребляющее устройство.

⚠ Технологию USB PD Rev2 в которой по контакту CC согласуются ток и напряжение заряда не следует путать с технологией Quick Charge (QC), где по контактам D− и D+ согласуется только напряжение заряда. USB PD Rev2 поддерживается только в USB 3.1.
QC поддерживается без привязки к версии порта.

Переходник USB-micro—USB-C

Переходник micro-USB 2.0 на USB type-C служит для подключения гаджета с гнездом Type-C к стандартному дата-кабелю USB 2.0 для заряда и синхронизации с ПК. В переходнике установлен резистор 56 кОм между контактами CC и Vbus.

Этот резистор как бы говорит смартфону: «К тебе подключили активное устройство − заряжайся. Больше 0,9 ампер не дам».

То есть, даже от мощного зарядного устройства (скажем, на 3 ампера) через такой переходник мы не возьмём больше 0,9 ампер. Чтобы смартфон не стеснялся и взял 3 ампера, нужно заменить резистор на 10 кОм ▼

Внешний вид платы ▼

Универсальный переходник USB-micro—USB-C с поддержкой OTG

Наш читатель Сергей выслал схему универсального переходника micro-USB-BF to USB type-C (Тип 51125 Z22) − через него можно подключить как Data-кабель так и OTG-кабель USB 2.0. В зависимости от кабеля смартфон либо заряжается, либо работает с периферией.

В идеале вместо 55 кОм стоило бы использовать 51 (как в аналогичном переходнике от Huawei), чтобы в цепи Vcc-CC получались каноничные 56 кОм. Но спецификация не требует такой точности. Номинал сопротивления Vcc-CC допускается в диапазоне 45…67 кОм.

Внешний вид платы ▼

Переходник USB-C—USB-AF

Чтобы подключить USB-периферию к устройству с портом USB-C, в переходнике необходим резистор 5,1 кОм между контактами CC и GND.
Этот резистор сообщает смартфону: «К тебе подключено пассивное устройство. Подай питание».

Рассмотрим схему переходника OTG type-C на примере Type-C USB 3.1 To USB 3.0 OTG Adapter. Это переходник для подключения периферии USB 3.0 (2.0) к ПК или к смартфону Type-C.
Цвета проводов Data, TX и RX в этой модели несколько отличаются от каноничных, прошу обратить на это внимание! ▼

Ещё одна важная деталь — во всех переходниках типа USBtype-C—type-C или USBtype-C—USB3.0 (не обязательно OTG!) между контактами Vbus и Gnd необходим конденсатор для защиты контактов разъёма от искр при подключении. Например, для переходников на USB 3.0 требуется номинал конденсатора — 10нФ±20%×30В. Переходники на USB 3.1 требуют конденсатор большей ёмкости, а переходники на USB 2.0 не требуют конденсатора вовсе. Подробнее читайте в англоязычной статье «VBUS Bypass Capacitor».

Распайка платы переходника Type-C to USB 3.0 OTG с разных сторон ▼

Аналоговый звук через Type-C

Стандартом предусмотрена возможность передачи аналогового звука через цифровой порт. Эта возможность реализована в смартфонах HTC серии U, HTC 10 Evo, Xiaomi Mi, LeTV. Автор будет признателен, если читатель пополнит этот список.

Режим называется «Audio Adapter Accessory Mode». За подробностями обращайтесь к статье «Аналоговый звук через USB-C».

Для работы в этом режиме служат аналоговые гарнитуры с вилкой Type-C. Для подключения классической гарнитуры со штекером «джек» предусмотрены переходники.

Аналоговый звук передаётся по каналам Data−, Data+, SBU1 и SBU2. Смартфон переходит в этот режим, если в вилке гарнитуры или переходника между контактами A1—A5 и B1—B5 установлено сопротивление менее 0,8…1,2 кОм. Вместо резистора доводилось видеть просто перемычку.

Видео через USB-C

Для передачи видео через USB 3.1 разработан режим «DisplayPort Alternate Mode».
См. перечень устройств, поддерживающих этот режим.
В режиме «Display Port» назначение контактов порта меняется — две пары TX2/RX2 превращаются в видеоканал, а звуком занимается SBU1/2 ▼

Вопрос! Если мне нужно получить от устройства через type-c напряжение 12v кроме резистора на 5,1Ком между CC1 и gnd и CC2 и gnd что еще нужно? Где-то видел что на D+ и D- подать некоторое напряжение

Снова забыл по приветствовать… Здравствуйте!

Запрос на повышение зарядного напряжения потребитель подаёт цифровым способом, а не просто подачей напряжения. Эмулировать запрос можно с помощью специального контроллера, поддерживающего технологию USB PD, но это уже выходит за рамки моей компетенции.

Thanks, for the great work.
I am a little bit confused if you can help me.
I have a USB C port which will connect with the phone. Now I have two other ports. One is USB A port which will connect with a pheripheral device and 2nd is a USB C port which will connect with a Wall charger. Now I want to know the connection and resistors value for both functions. Like if I connect a pheripheral device then phone behave as a power sourcing device along with data but when I connect a wall charger then phone recieve power and charge. Note: I don’t want to use both at the same time but if it is possible that would be great. thanks for help

Hello! I hope that I understand you correctly.
Resistors are needed only when we connect the USB 3.1 port (Type-C) to the old USB port (2.0 or 3.0).
When we connect type-C to type-C, the devices themselves are negotiating and no resistors are needed.

Д.день, уважаемый Rones. Спасибо за ваш сайт и желание делиться с нами (читателями) своими знаниями. Вопрос такой: имею «маковский» 85-ваттный блок питания с выходом под USB-C разъем. Мак умер — блок остался, хочу расширить область его использования. Блок-то очень хороший — маленький и мощный. В спецификации написано, что потребителю может быть выдано 5-9-12-20вольт. Тупо подключил первый попавшийся шнурок USB-C/USB-2, включил в сеть. Померял напряжение на крайних контактах USB-2 — 0,1вольта. Как мне сообщить процессору блока питания, что мне нужно 5 вольт и все остальные вольты из спецификации? После прочтения вашей статьи дошло, что процессор узнаёт о том какое напряжение требуется потребителю, опрашивая линии кабеля и измеряя их калиброванные сопротивления и/или напряжение между линиями. Если моё предположение верно, то какие дополнительные сопротивления между какими линиями нужно припаять , чтобы получить, например, 5 вольт питания через вилку USB-2? Как получить другие напряжения?

Приветствую!
Напряжение 5 вольт порт выдаёт по умолчанию. Остальные напряжения потребляющее устройство должно «выпросить» у порта электронным способом. То есть, не с помощью контрольных напряжений, а путём обмена данными. Как это сымитировать я не знаю.
Стандартные 5 вольт порт выдаёт, если в вилке потребителя есть резистор 5,1 кОм между контактами CC и GND ▼

Здравствуйте!
Что будет если в Активном устройстве (DFP) между контактами Vcc и CC впаять резистор в 12 кОм? Устройство от источника питания начнёт потреблять не 0,5…0,9 А, а 1.5А? Дело в том что в продаваемых https://www.banggood.com/BlitzWolf-Ampcore-Turbo-TC10-3A-Durable-USB-Type-C-Charging-Data-Cable-p-1188424.html?rmmds=myorder&cur_warehouse=CN» кабелях уже впаян резистор 56 кОм…

Не знаю, что будет при 12 кОм. При 22 кОм потребитель попытается принять 1,5 А. Так как прот компа USB 2.0 или 3.0 способен дать лишь 0,5-0,9 А, в переходник впаивают резистор 56 кОм. Если потребитель попытается взять от компа 1,5 А могут быть неприятности.

Не все старые планшеты поддерживают функцию подключения флешки или модема, а я Вам расскажу как их перехитрить и подключить к ним флешку, модем и даже жесткий диск.

Сегодня хочу представить вашему вниманию OTG – переходник.

Для начала хочу рассказать Вам что такое OTG? Это способ подключения к вашему планшету или телефону который поддерживает функцию OTG, принтер, флешку и даже жесткий диск. Еще это подключение называют — USB-host.

Также можно подключить клавиатуру или мышь к Вашему гаджету, если гаджет такую функцию поддерживает.

И так, для создания этого чудо кабеля, нам понадобится:
• Старый удлинитель USB
• Micro USB разъем (достать можно из обычного USB кабеля для вашего девайса)
• Паяльник и паяльные принадлежности

И так, поехали, чтобы нам сделать такой кабель, нам будет необходимо соединить 4й контакт с 5м контактом разъема micro USB

Мы должны добраться до четвёртого контакта и соединить его перемычкой с проводом GND так как показано на картинке

После того как мы соединим перемычкой 4й и 5й контакты, наш гаджет будет выполнять функцию активного устройства и будет понимать, что к нему собираются подключить другое пассивное устройство. Пока мы не поставим перемычку то гаджет и дальше будет выполнять роль пассивного устройства и не будет видеть ваши флешки.

Но это еще не всё, чтобы подключить к телефону или планшету жесткий диск, этого переходника нам будет недостаточно. Для подключения устройств у которых потребление больше чем 100мА, а именно 100мА может выдать порт вашего устройства, нам потребуется подключить к нашему OTG-кабелю дополнительное питания которого должно быть достаточно чтобы ваш жесткий диск заработал.

Вот схема такого переходника

Теперь пора приступить к сбору
Берем старый удлинитель USB и разрезаем его не сильно далеко от разъема 2.0, так как ток всего лишь 100мА, чтобы избежать больших потерь. Отрезаем приблизительно в том месте как показано на фото

После зачищаем наш провод

Далее его необходимо залудить и припаять как показано на схеме. Залудить нужно приблизительно 1мм провода, так как контакты на разъеме micro USB очень мелкие. Вот что получилось у меня.

Я соединил каплей припоя 4 и 5 контакты.

Ну и вот весь наш кабель в сборе

Осталось только проверить работоспособность, берем планшет, вставляем «переходник» и вставляем в него флешку, все работает о чем нам говорит мигающий светодиод на флешке и планшет определяющий флешку.

Ограничения:
Старые мобильники этого делать не умеют.
Флешка должна быть отформатирована в FAT32.
Максимальная ёмкость подключаемой флешки ограничена аппаратными возможностями телефона или планшета.

Рекомендуем к прочтению

Распиновка USB – энциклопедия VashTehnik.ru

Распиновка USB – это информация, показывающая назначения каждого контакта коннектора соответствующего интерфейса. Универсальная последовательная шина, разработанная фирмами Майкрософт и Компак в далёком 1996 году, постепенно вытеснила из компьютерной техники многие протоколы, к примеру, GamePort, COM и LPT. Кое-где USB уже применяется вместо PS/2.

Универсальная последовательная шина

Считается по-настоящему универсальной, состоит всего из двух проводов. Пара контактов предоставляет подключаемым устройствам питание. Благодаря указанной особенности становится возможным заряжать смартфоны от персональных компьютеров, что намного удобнее, чем постоянно носить (допустим, в гости) кучу адаптеров. Системный блок снабжается большим количеством портов, чтобы одновременно общаться со множеством устройств. Мощнейшие обнаруживают собственный блок питания, прочие берут энергию прямо по проводу.

По этой причине с ростом номера поколения стандарта увеличивается и лимит тока, передаваемого посредством интерфейса:

  1. Ток потребления устройств через USB 0 до 0,5 A.
  2. Ток потребления устройств через USB 0 до 0,9 A.
  3. Ток потребления устройств через USB BC 2 до 1,5 A.
  4. Ток потребления устройств через USB Type C до 3 A.
  5. Ток потребления устройств через USB-PD до 5 А.

Универсальная распиновка

Чтобы стало понятнее, при напряжении питания 20 В для USB-PD при указанном токе способен передавать мощность 100 Вт. Этого вполне хватит для подключения струйного принтера. Кстати, если посмотрите очерки в сети, не приводится конкретных цифр. Между тем выяснение мощности потребления предельно простое. Советы для желающих выполнить задачу собственноручно:

  • Изготавливается удлинитель, со шнуром питания без общей изоляции, но с частной изоляцией каждой жилы.
  • Токовым клещами обхватить любую жилу.
  • Принтер включается в работу.
  • Засекаются показания.

Потом полагается умножить ток на 220 В. Точность цифрового индикаторы обычно позволяет засечь доли ампера, что годится для оценки, хватит ли 100 Вт (ток потребления 0,45 А) для наших целей. Ещё проще использовать цифровой мультиметр в нужном режиме. Понятно, что придётся собрать специальный стенд. Уверены, что струйный принтер потребляет намного менее 100 Вт.

Когда стала понятна перспективность технологии (дополнительно – в силу лоббирования интересов интерфейса разработчиками) стали появляться новые версии. Стандартного размера порт с габаритами, выбранными исходя из требования прочности, нельзя применять по массе соображений. Авторы потрудились перевести на русский картинку из Википедии, и теперь читатели узнают, как выглядит распиновка USB-вилки. В розетке на задней стороне системного блока раскладка зеркально отражена.

История развития

Интерфейс считается совместным детищем Эджея Бхата из IBM и форума разработчиков USB. До первого релиза 1.0 порт претерпел немало редакций. Участие с 1994 года принимали семь компаний:

  • Компак (компьютерная и цифровая техника).
  • DEC (сегодня закрыта).
  • Интел (процессоры и прочая электроника).
  • Майкрософт (без комментариев).
  • NEC (больше известна по DVD-приводам).
  • IBM (производитель программного и комплектующих).
  • Нортел (основана Александром Беллом, специализируется в сегменте связи).

Типы USB разъёмов

Целью стала интеграция. Производители электроники понимали, что обилие разновидностей интерфейсов путает потребителя, снижая спрос на изделия. В этом смысле конкурентоспособным решением стало принять единый интерфейс, избавивший большую часть населения от решения сложных технических задач. Сегодня мышь USB начинает работать через доли секунды после подключения без вопросов и уведомлений. Для сравнения – аналог на PS/2 становится виден системе исключительно после перезагрузки. А интерфейс для мышей COM уже давно канул в небытие из-за низких скоростей передачи информации.

Таким образом, шина получилась универсальной и простой для понимания. Хотя сложное оборудование по-прежнему требует установки специальных драйверов. Однако мышь A4Tech X7 со всеми макросами выполняет общие функции немедленно. И только использование специальных возможностей вызывает необходимость установки драйвера. Иными словами, возможности порта уникальны. Уже первый релиз поддерживался на уровне операционной системы Windows 95 второй версии и предоставлял пользователю две скорости:

  1. 1,5 Мбит/с хватало для указателей, джойстиков и прочих манипуляторов.
  2. 12 Мбит/с позволяли подключать внешние накопители.

Для сравнения: порт COM обеспечивал 100 кбит/с. По техническим соображениям продвинутых возможностей достигнуть не удавалось. Первым широко распространённым релизом считают 1.1. Единственный порт через разветвители умел поддерживать одновременно до 127 устройств. Амбиции разработчиков выглядели поистине гигантскими.

Для аппаратной поддержки компанией IBM стали выпускаться специальные чипы, которые производители материнских плат использовали в составе продукции. Популяризации интерфейса способствовал успех компьютеров iMac фирмы Apple. В апреле 2000 года анонсирована спецификация USB 2.0, где максимальная скорость передачи данных выросла в 40 раз по сравнению с первым релизом. Порт оставлял полную совместимость с предыдущими версиями и теперь уже поддерживал три битрейта.

Во втором поколении появилась возможность питания устройств посредством указанного интерфейса, а пользователь стал радоваться опции Plug-and-Play (включай и играй), немедленно переименованной в Plug-and-Pray (включай и молись). Спецификация развивалась, посредством протокола On-The-Go стало возможным объединять два цифровых устройства без хоста, в этой роли выступал системный блок персонального компьютера. В 2000 году появились первые флэшки, однозначно привязавшие сердца пользователей к новому интерфейсу. В то время носитель вмещал целых 8 МБ данных.

Интерфейс 2010 года USB 3.0 поддерживает четыре (три унаследованных и одну новую – SuperSpeed) скорости до 4,8 Гбит/с (а USB 3.1 уже до 10 Гбит/с), оставляя совместимость с прежней версией. И хотя старые кабели соответствуют по габаритам, в силу технических особенностей (учитывая количество проводов) передача информации на полной скорости потребовала бы покупки новых. В упомянутом поколении максимальный ток потребления подключаемых устройств оказался резко увеличен. Одновременно вышел в свет тип С вилок и розеток USB. Понятно, что в изобилии легко запутаться.

Отличительной чертой коннекторов считается наличие характерного значка в виде трезубца со стрелками на концах там, где логотип помещается.

Разновидности коннекторов

Распиновка USB неодинакова для разных версий порта, расположение контактов и количество меняется. Познакомились с типами А и В (по рисунку). Тип С включает:

  1. Четыре пары контактов питания.
  2. Две пары старых протоколов передачи USB0.
  3. Четыре высокоскоростные шины данных SuperSpeed.
  4. Два контакта полосы передачи данных.
  5. Два конфигурационных контакта.

Распиновка с типами А и В

Попытаемся сейчас упорядочить озвученный набор информации. До третьего поколения существовали два типа А и В, в каждом по три подвида: обычный, мини и микро. Мини А сейчас считается устаревшим, но все представлены на рисунках. Обычные несут четыре контакта (с английского – пина), прочие – по 5. Назначение приводим в таблице:

Нормальный Мини и микро
1 +5 В (провод красный, оранжевый) +5 В (провод красный, оранжевый)
2 Данные – (провод белый, золотой) Данные – (провод белый, золотой)
3 Данные + (провод зелёный) Данные + (провод зелёный)
4 Земля (провод чёрный, синий) Идентификатор роли устройства
5 Земля (провод чёрный, синий)

Чтобы понять роль устройства, вспомним, что интерфейсы мини и микро применяются при изготовлении цифровых гаджетов и оргтехники. На системном блоке таких нет. При соединении двух устройств одно становится хостом (доминантой), тогда контакт заземляется, а второе – клиентом (контакт висит в воздухе). Большинство сотовых телефонов, iPad оборудовано сегодня подобными интерфейсами. Через них, кстати, ведётся и подзарядка. Полагаем, что люди порой не знают о возможностях опции On-The-Go.

Разъёмы коннекторов

Коннекторы типа А без изменений пережили все поколения (если не считать, что мини устарел), тип В стал чуть больше по размерам. Вилки типа В USB 2.0 в новые гнезда умещаются, но не наоборот. Разумеется, сохранена электрическая совместимость. USB 3.0 micro B стал состоять из двух слотов. Количество контактов изменилось, увеличилось. Упомянутое показано на рисунке, а ниже приведена таблица назначения контактов.

Назначение контактов разъёма Micro-B USB 3.0
1 Питание 5 В
2 USB 2.0 Дата –
3 USB 2.0 Дата +
4 Идентификатор роли устройства
5 Земля питания
6 USB 3.0 Передача –
7 USB 3.0 Передача +
8 Земля
9 USB 3.0 Приём –
10 USB 3.0 Приём +
Назначение контактов разъёма USB 3.0
1 Питание 5 В (провод красный)
2 USB 2.0 Дата – (провод белый)
3 USB 2.0 Дата + (провод зелёный)
4 Земля питания (провод чёрный)
5 USB 3.0 Передача – (провод синий)
6 USB 3.0 Передача + (провод жёлтый)
7 Земля сигнала (цвет провода не определён)
8 USB 3.0 Приём – (провод фиолетовый)
9 USB 3.0 Приём + (провод оранжевый)

Новый интерфейс одновременно работает на приём и передачу по новому стандарту и имеет обратную совместимость. Технически в один из слотов интерфейса возможно вставить разъем микро В предыдущих версий. Проводка контактов 2 и 3 образуют витую пару, известен «усиленный» интерфейс типа В, где присутствует ещё 2 силовых контакта питания. Все показано на рисунке.

Осталось добавить, что контакты питания обычно чуть длиннее, нежели у данных. Этим обеспечивается сохранность информации на съёмных носителях, где прежде часто регистрировалась потеря. Указанное затруднение и сегодня учитывается в операционных системах, где присутствует опция извлечения съёмного носителя. Удлинение контактов питания обеспечивает их приоритет во включении даже при физическом перекосе разъёма.

Коннектор USB Type-C

Данный коннектор вмещает 24 контакта, распиновка USB-вилки приведена ниже, рисунок смотрите в разделе.

Распиновка вилки

Назначение контактов коннектора USB Type C
1 А1 Земля (провод платиновый)
2 А2 USB 3.0 Передача +
3 А3 USB 3.0 Передача –
4 А4 Питание
5 А5 Канал конфигурации
6 А6 USB 2.0 Дата +
7 А7 USB 2.0 Дата –
8 А8 Полоса передачи данных
9 А9 Питание
10 А10 USB 3.0 Приём +
11 А11 USB 3.0 Приём –
12 А12 Земля
13 А1 Земля (провод платиновый)
14 А2 USB 3.0 Передача +
15 А3 USB 3.0 Передача –
16 А4 Питание
17 А5 Канал конфигурации
18 А6 USB 2.0 Дата +
19 А7 USB 2.0 Дата –
20 А8 Полоса передачи данных
21 А9 Питание
22 А10 USB 3.0 Приём +
23 А11 USB 3.0 Приём –
24 А12 Земля

USB коннектор Type-C

Несмотря на обилие контактов размер коннекторов USB 3.0 Type C скромный, на уровне подвида mini. Этот интерфейс поддерживается, начиная с операционных систем Windows 8 и Android 6. На системных блоках персональных компьютеров представлен в малом количестве, по большей части предназначен для нетбуков, смартфонов и прочих мобильных устройств. Посмотрите на расположение пинов: благодаря этому шнур вышел реверсивным. Больше нет разницы, какой стороной втыкать коннектор в слот. Это удобно в темноте, ведь часто носим гаджеты на улицу, где в вечернее время освещение недостаточное.

Распиновка и функции USB-C

USB Type-C — это спецификация системы USB-разъемов, которая завоевывает популярность среди смартфонов и мобильных устройств и способна как питать устройства, так и передавать данные.

В отличие от своих предшественников USB, он легко подключается, и вам не нужно пытаться подключить его 2-3 раза.

В этой вводной статье будут рассмотрены некоторые из наиболее важных функций стандарта USB-C. Прежде чем погрузиться в распиновку и объяснить, на что способен каждый, мы быстро рассмотрим, что такое USB-C и в чем он лучше своих предшественников.

Что такое USB-C?

USB-C является относительно новым стандартом, целью которого является обеспечение высокоскоростной передачи данных со скоростью до 10 Гбит/с и пропускной способности до 100 Вт. Эти функции могут сделать USB-C действительно универсальным стандартом подключения для современных устройств.

USB-C или USB Type-C?

Эти два термина обычно взаимозаменяемы (мы будем использовать оба в этой статье). Хотя USB-C используется чаще, USB Type-C является официальным названием стандарта, как указано на USB.org .

Функциональные особенности

Интерфейс USB-C имеет 3 основные функции:

  1. интерфейс спроектирован таким образом, что вилка может быть перевернута относительно розетки в любом положении.
  2. поддерживает стандарты USB 2.0, USB 3.0 и USB 3.1 Gen 2. Кроме того, он может поддерживать сторонние протоколы, такие как DisplayPort и HDMI, в альтернативном режиме.
  3. это позволяет устройствам согласовывать и выбирать соответствующий уровень мощности через интерфейс.

Давайте посмотрим как эти функции обеспечиваются стандартом USB Type-C.

Разъем USB Type-C

Разъем USB Type-C имеет 24 контакта. На рисунках 1 и 2 показаны контакты для гнезда и разъема USB Type-C.

Разъем USB Type-C

Контакт Название Описание
A1 GND Заземление
A2 TX1+ SuperSpeed дифференциальная пара #1, передача+
A3 TX1- SuperSpeed дифференциальная пара #1, передача-
A4 VBUS Плюс питания
A5 CC1 Конфигурирующий канал (или согласующий)
A6 D+ High-Speed дифференциальная пара, положение 1, данные+
A7 D- High-Speed дифференциальная пара, положение 1, данные-
A8 SBU1 Дополнительный канал (Sideband)
A9 VBUS Плюс питания
A10 RX2- SuperSpeed дифференциальная пара #4, прием-
A11 RX2+ SuperSpeed дифференциальная пара #4, прием+
A12 GND Заземление
B12 GND Заземление
B11 RX1+ SuperSpeed дифференциальная пара #2, прием+
B10 RX1- SuperSpeed дифференциальная пара #2, прием-
B9 VBUS Плюс питания
B8 SBU2 Дополнительный канал (Sideband)
B7 D- High-Speed дифференциальная пара, положение 2, данные-
B6 D+ High-Speed дифференциальная пара, положение 2, данные+
B5 CC2 Конфигурирующий канал (или согласующий)
B4 VBUS Плюс питания
B3 TX2- SuperSpeed дифференциальная пара #3, передача-
B2 TX2+ SuperSpeed дифференциальная пара #3, передача+
B1 GND Заземление

USB 2.0 дифференциальные пары

Контакты D + и D- являются дифференциальными парами, используемыми для подключения USB 2.0. В гнезде есть два контакта D + и два контакта D-.

Однако контакты соединены друг с другом, и на самом деле для использования доступна только одна дифференциальная пара данных USB 2.0.

Контакты питания и заземления

Контакты VBUS и GND являются питанием и обратными путями для сигналов. Напряжение VBUS по умолчанию составляет 5 В, но стандарт позволяет устройствам согласовывать и выбирать напряжение VBUS, отличное от значения по умолчанию. Блок питания позволяет по VBUS передавать вплоть до 20 В. Максимальный ток также может быть увеличен до 5 А. Следовательно, USB Type-C может выдавать максимальную мощность 100 Вт.

Такая высокая мощность может быть полезна при зарядке большого устройства, такого как ноутбук. На рисунке 3 показан пример от RICHTEK, где используется повышающий преобразователь для создания соответствующего напряжения, запрошенного ноутбуком.

Обратите внимание, что технология подачи питания делает USB Type-C более универсальным, чем старые стандарты, потому что уровень мощности адаптируется согласно потребностям нагрузки. то есть одним кабелем вы можете заряжать как свой смартфон, так и ноутбук.

Контакты RX и TX

Существует 2 набора дифференциальных пар RX и TX.

Одна из этих 2-х пар RX вместе с парой TX может использоваться для протокола USB 3.0 / USB 3.1. Поскольку разъем является перекидным, мультиплексор необходим для правильного перенаправления данных по используемым дифференциальным парам через кабель.

Обратите внимание, что порт USB Type-C может поддерживать стандарты USB 3.0 / 3.1, но минимальный набор функций USB Type-C не включает USB 3.0 / 3.1. В таких случаях пары RX / TX не используются соединением USB 3.0 / 3.1 и могут использоваться другими функциями USB Type-C, такими как альтернативный режим и протокол USB Power Delivery. Эти функциональные возможности могут использовать даже все доступные дифференциальные пары RX / TX.

Контакты CC1 и CC2

Эти контакты являются контактами конфигурации канала. Они выполняют ряд функций, таких как обнаружение присоединения и извлечения кабеля, определение ориентации розетки / штекера. Эти контакты могут также использоваться для связи, необходимой для подачи питания и альтернативного режима.

На рисунке ниже показано, как выводы CC1 и CC2 показывают ориентацию розетки / штекера. На этом рисунке DFP обозначает нисходящий выходной порт, который является портом, действующим либо в качестве хоста при передаче данных, либо в качестве источника питания. UFP обозначает восходящий выходной порт, который является устройством, подключенным к хосту или потребителю энергии.

DFP вытягивает контакты CC1 и CC2 через резисторы Rp, но UFP вытягивает их через Rd. Если кабель не подключен, источник видит высокий логический уровень на выводах CC1 и CC2. При подключении кабеля USB Type-C создается токовый путь от источника питания 5 В до земли. Поскольку внутри кабеля USB Type-C имеется только один провод CC, формируется только один путь тока. Например, на верхнем рисунке рисунка 4 вывод CC1 DFP подключен к выводу CC1 UFP. Следовательно, вывод DFP CC1 будет иметь напряжение ниже 5 В, но вывод DFP CC2 будет по-прежнему иметь высокий логический уровень. Поэтому, отслеживая напряжение на выводах DFP CC1 и CC2, мы можем определить подключение кабеля и его ориентацию.

В дополнение к ориентации кабеля путь Rp-Rd используется как способ передачи информации о текущих возможностях источника. С этой целью потребитель энергии (UFP) контролирует напряжение на линии CC. Когда напряжение на линии CC имеет самое низкое значение (около 0,41 В), источник может обеспечить питание по умолчанию USB, которое составляет 500 мА и 900 мА для USB 2.0 и USB 3.0 соответственно. Когда напряжение в линии CC составляет около 0,92 В, источник может выдавать ток 1,5 А. Максимальное напряжение в линии CC, которое составляет около 1,68 В, соответствует допустимому току источника 3 А.

Контакт VCONN

Как упоминалось выше, USB Type-C призван обеспечить невероятно высокую скорость передачи данных наряду с высокими уровнями передачи питания. Эти функции могут потребовать использования специальных кабелей с электронной маркировкой при использовании микросхемы внутри. Кроме того, некоторые активные кабели используют микросхему повторного драйвера для усиления сигнала и компенсации потерь, понесенных кабелем, и т. Д. В этих случаях мы можем питать электрическую схему внутри кабеля, применяя мощность 5 В, 1 Вт. питание к выводу VCONN.

Как вы видите, активный кабель использует резисторы Ra, чтобы опустить штыри CC2. Значение Ra отличается от Rd, поэтому DFP по-прежнему может определять ориентацию кабеля, проверяя напряжение на выводах DFP CC1 и CC2. После определения ориентации кабеля вывод конфигурации канала, соответствующий «активной кабельной ИС», будет подключен к источнику питания 5 В, 1 Вт для питания схемы внутри кабеля. Например, на рисунке действительный путь Rp-Rd соответствует выводу CC1. Следовательно, вывод CC2 подключен к источнику питания, обозначенному VCONN.

Контакты SBU1 и SBU2

Эти 2 контакта соответствуют низкоскоростным трактам сигналов, которые используются только в альтернативном режиме.

USB Power Delivery

Теперь, когда мы знакомы с контактами стандарта USB-C, давайте кратко рассмотрим USB Power Delivery.

Как упомянуто выше, устройства, использующие стандарт USB Type-C, могут согласовывать и выбирать соответствующий уровень потока мощности через интерфейс. Эти согласования мощности достигаются с помощью протокола, называемого USB Power Delivery, который представляет собой однопроводную связь по линии CC, описанной выше. На рисунке ниже показан пример USB Power Delivery, где приемник отправляет запросы источнику и регулирует напряжение VBUS по мере необходимости. Сначала запрашивается 9-вольтовая шина. После того, как источник стабилизирует напряжение шины на уровне 9 В, он отправляет сообщение «готов к питанию» в приемник. Затем приемник запрашивает шину 5 В, а источник предоставляет ее и снова отправляет сообщение «готов к питанию».

USB Power Delivery

Важно отметить, что «USB Power Delivery» — это не только переговоры, связанные с питанием, но и другие, например, связанные с альтернативным режимом, выполняются с использованием протокола Power Delivery на линии CC стандарта.

Альтернативные режимы

Этот режим работы позволяет реализовывать сторонние протоколы, такие как DisplayPort и HDMI, используя стандарт USB Type-C. Все альтернативные режимы должны как минимум поддерживать соединение USB 2.0 и USB Power Delivery.

Разъём USB Type-C может работать и в альтернативных режимах, когда его контакты используются для передачи данных по другим протоколам:

  1. DisplayPort — опубликован VESA в сентябре 2014 года, поддерживает стандарт DisplayPort 1.3.
  2. Mobile High-Definition Link (MHL) — анонсирован в ноябре 2014 года, поддерживает стандарт MHL 1.0-3.0 и superMHL.
  3. Thunderbolt — поддержка стандарта Thunderbolt 3.
  4. HDMI — объявлен в сентябре 2016 года, поддерживает HDMI 1.4b.

Для реализации альтернативных режимов DisplayPort и HDMI используется кабель-переходник на вилку своего физического интерфейса. Для режимов MHL и Thunderbolt (20 Gbps) используется стандартный Type-C кабель; высокоскоростной режим Thunderbolt 3 (40 Gbps), как и высокомощные режимы USB Power Delivery 2.0, требует специальных кабелей, маркированных электронным чипом как совместимые.

Для работы съёмных кабелей в альтернативном режиме могут использоваться четыре высокоскоростные (SuperSpeed) пары и два контакта Sideband. В случае док-станций, съёмных устройств и несъёмных (постоянных) кабелей, можно также использовать два контакта D+/D- и один конфигурационный контакт. Режимы настраиваются через конфигурационный контакт с использованием сообщений, определяемых вендором (VDM).

Не все альтернативные режимы реализуются в каждом устройстве с разъёмом USB Type-C; поддерживаемые альтернативные режимы обозначаются соответствующими логотипами рядом с разъёмом.

Изучаются возможности использования этого коннектора другими последовательными высокоскоростными протоколами, например PCI Express и Base-T Ethernet.

Заключение

USB Type-C имеет интересные особенности. Он поддерживает невероятно быструю скорость передачи данных до 10 Гбит/с и высокую мощность до 100 Вт. Благодаря этому, а также двухстороннему разъему, USB Type-C может стать действительно универсальным стандартом для современных устройств.

Разъем USB Type-C теперь с шестью выводами

Тип: USB Type-C 6 pin
Номинальный ток: 3 А
Номинальное напряжение: 20 В
Напряжение пробоя изоляции: AC 100 RMS
Сопротивление выводов: 40 мОм
Рабочий диапазон температуры: от -40 °C до +85 °C
Вставка: 5-20 кгс
Извлечение: 6-20 кгс
Коло-во циклов: 10000

Когда появился новый разъем USB Type-C некоторые начали ныть, мол даже у Micro-USB шаг выводов довольно мал для самодельных плат, ну а тут кроме уменьшения шага количество контактов увеличилось с 5 до 24, что вынуждает отказаться от него в любительских устройствах.

Сравнение

Но сейчас появились разъемы с шестью выводами, причем они шире и расположены на достаточно большом расстоянии, так что даже среднего качества плата сделанная ЛУТом удовлетворит наименьшую ширину дорожек и расстояние между ними, а монтаж не будет затруднен даже при использовании обычного ЭПСН с тонким жалом.

А действительно, ведь нам нужен этот разъем в основном для питания (зарядки), а шины данных необходимы для проектов уровня, когда платы заказываются на заводе.

Посадочное место

Чертеж можно скачать здесь (pdf).

Модель

(скачать можно на 3DContent):

Назначение выводов

Следует ознакомиться с цоколевкой данного разъёма т.к. на первый взгляд может угадаться, что контакты посередине являются шинами данных, но на самом деле они отвечают за управление питанием.

Как получить 5В от ноутбучного ЗУ через Type-С?

Советую установить резисторы 5,1 кОм между землей и выводами CC1 и CC2, что даст возможность зарядному устройству с Power Delivery (PD) определить подключенное как потребитель и выдать 5 В.

Плата

Плата может быть сделана даже при использовании маркера.

Видеообзор

Итого

Надеюсь и вы откажитесь (если еще нет) от устаревших соединителей в пользу USB типа C.
Качество исполнения находится не на высочайшем уровне, обработка поверхности плоховата, есть маленький шат, но это все же лучше, чем что-либо другое. Таким образом упрощенная модель дает возможность применения нового современного действительно универсального разъема в своих самодельных устройствах за разумную цену.
Распиновка

USB Type C @ pinoutguide.com

USB type-c подробности

Разработанная примерно в то же время, что и спецификация USB 3.1, но отличная от нее, спецификация USB Type-C 1.0 определяет новый небольшой двусторонний разъем для USB-устройств. Штекер Type-C подключается как к хостам, так и к устройствам, заменяя различные разъемы и кабели Type-B и Type-A стандартными, рассчитанными на будущее, такими как Apple Lightning и Thunderbolt. Двусторонний 24-контактный разъем обеспечивает четыре пары питания / заземления, две дифференциальные пары для USB 2.0 (хотя только одна пара реализована в кабеле Type-C), четыре пары для высокоскоростной шины данных, два контакта использования боковой полосы и два контакта конфигурации для определения ориентации кабеля, данные конфигурации выделенного кода двухфазной метки (BMC) канал, и питание VCONN +5 В для активных кабелей. Адаптеры и кабели типа A и B потребуются для более старых устройств для подключения к хостам типа C; адаптеры и кабели с розеткой типа C не допускаются.

Распиновка USB type-C

Штифт
Число
Штифт
Название
Описание
1 A1 GND
2 A2 TX1 +
3 A3 TX1-
4 A4 VBUS
5 A5 CC1
6 A6 D +
7 A7 D-
8 A8 СБУ1
9 A9 VBUS
10 A10 RX2-
11 A11 RX2 +
12 A12 GND
13 B1 GND
14 B2 TX2 +
15 B3 TX2-
16 B4 VBUS
17 B5 CC2
18 B6 D +
19 B7 D-
20 B8 СБУ2
21 B9 VBUS
22 B10 RX1-
23 B11 RX1 +
24 B12 GND

Кабель USB типа C

Полнофункциональные кабели USB Type-C — это активные кабели с электронной маркировкой, которые содержат микросхему с функцией идентификации на основе канала данных конфигурации и сообщений, определенных поставщиком (VDM) от USB Power Delivery 2.0 спецификация. Устройства USB Type-C также поддерживают токи питания 1,5 А и 3,0 А по шине питания 5 В в дополнение к базовым 900 мА; устройства могут либо согласовывать увеличенный ток USB через строку конфигурации, либо они могут поддерживать полную спецификацию Power Delivery, используя как линию конфигурации с кодом BMC, так и устаревшую линию VBUS с кодом BFSK.

Альтернативный режим выделяет некоторые физические провода в кабеле Type-C для прямой передачи от устройства к хосту альтернативных протоколов данных.Четыре высокоскоростных полосы, два контакта боковой полосы, два контакта USB 2.0 и один контакт конфигурации могут использоваться для передачи в альтернативном режиме. Режимы настраиваются с помощью сообщений, определенных поставщиком, через канал конфигурации.

Кабель USB

типа C также известен как некоторые оригинальные кабели USB: Huawei HL1289, LG DC12WB-G, кабель Sony UCB20 и некоторые другие.

Должен быть совместим с:

  • Samsung Galaxy A5 (2017), Galaxy A3 (2017), Galaxy A7 (2017), Galaxy S8 (2017), Galaxy S8 +, Galaxy Note 7, Galaxy Note 8, Galaxy S8 Active, Galaxy Note FE, Galaxy C5 Pro, Galaxy C7 Pro, Galaxy C9 Pro, Galaxy Tab S3 9.7
  • Leeco Letv Le Superphone, Letv Le 1, Letv Le 1 Pro, Letv Le Max, Le Max 2, Le 2 Pro, Letv Le 2 X527, Le Pro 3 AI Edition, Le Pro3 Elite, Le S3, Le Pro3
  • Huawei P9 (2A), P9 plus (2A)
  • Huawei Mate 9 (5A), Mate 9 Pro (5A)
  • Huawei P10, P10 Plus, G9 Plus
  • Huawei Нова, Нова 2, Нова 2 плюс
  • Huawei Честь 9, Честь V8, Честь 8 Pro, Честь Магия
  • Huawei Maimang 5 MLA-AL10, Mate 9, Nexus 6P
  • LG V20, G5, G6, X CAM, X SCREEN, Nexus 5X, G Pad III 10.1, 8 квартал
  • HTC M10, Bole, U11, U Ultra, U Play, 10 evo, 10
  • OnePlus 3 A3000, 3T, 2 Два, 5
  • Nokia Lumia 950 XL, Lumia 950, N1, Nokia 8
  • Xiaomi 5s, 5S плюс, 4C, 4S
  • Xiaomi Mi 5, Mi 5X, Mi 5S, Mi 5S Plus, Mi 5c, Mi 6, Mi Note 2, Mi Max 2, Mi Pad 3, Mi Mix
  • Meizu Pro 5, Pro 6, Pro 6s, Pro 6 Plus, M3x, M6 Note, Pro 7, Pro 7 Plus, MX6
  • Microsoft Lumia 950, Lumia 950 XL
  • Lenovo Zuk Z1, Zuk Z2, ZUK Edge, Z2 Plus, ZUK Z2 Pro
  • Lenovo Tab 4 10 Plus, Tab 4 8 Plus, Yoga Tab 3 Plus
  • ZTE Nubia Z9 Max, Nubia N2, Nubia M2, Nubia Z11 mini S, nubia Z11 mini, Nubia M2 lite, Nubia Z17, Z17 mini, nubia N1, nubia Z11, nubia Z11 Max
  • ZTE Blade V8 Pro, Blade Z Max Blade V7 Max, ZTE Axon 7s, Axon 7, Axon 2, Axon Max, Axon 7 Max, Axon 7 mini
  • ZTE Zmax Pro, Max XL, Project CSX, Hawkeye, Grand X4, Grand X Max 2
  • Sony Xperia L1, Xperia XZs, Xperia XZ Premium, Xperia XA1 Ultra, Xperia XA1, Xperia XZ, Xperia X Compact, Xperia Z5
  • Google ChromeBook Pixel, Pixel XL, Pixel C, Nexus 6P, Nexus 5X
  • Motorola Moto M, Moto Z Play (XT1635-03), Moto Z2 Play, Moto Z, Moto Z2 Force
  • Asus Zenfone 3, Zenfone 4, Zenpad Z8s, Zenpad 3S, Zenfone AR, Zenpad 3, Zenpad Z10, Zen AiO
  • Vivo Xplay5 Elite, X5 pro
  • BlackBerry DTEK60, Keyone DTEC 70
  • Alcatel Pulsemix, Idol 5s, Flash (2017)
  • BQ Aquaris X Pro, BQ Aquaris X
  • Coolpad Cool M7, Cool1 dual, Cool S1, Cool Play 6
  • Микромакс Дуал 5
  • Yota YotaPhone 3
  • ZOPO Скорость 8
  • Nextbit Робин
  • Smartron т.телефон
  • Gionee S6, S плюс
  • Intex Aqua Secure
  • OnePlus Два
  • Коммутатор Nintendo
  • HP Pavilion x2
  • Apple Новый MacBook 12 дюймов

Обратите внимание, что не все телефоны поддерживают QC2 или 3 (быстрая зарядка 2 или 3).

Знакомство с разъемами USB типа C только с питанием

USB-разъемы

были представлены в середине 1990-х годов и с тех пор изменились по размеру, форме, возможностям передачи данных и ограничениям по мощности.Сегодня последним физическим стандартом является тип C, и помимо большей пропускной способности, а также двунаправленности и обратимости, эта новейшая итерация способна передавать значительно более высокую мощность, чем предыдущие поколения. Когда дело доходит до USB-разъемов, существует три различных связанных стандарта: физический разъем, протокол передачи данных и подача питания. У CUI Devices есть подробный блог, в котором описаны эти стандарты. На высоком уровне разъем USB Type C соответствует стандарту физического разъема.Этот физический стандарт разработан для соответствия стандарту мощности до 100 Вт, что открывает USB-порт для новых возможностей в области электропитания.

USB 2.0 2,5 Вт 5 В 500 мА
USB 3.0 и 3.1 4,5 Вт 5 В 900 мА
USB BC 1.2 7,5 Вт 5 В 1,5 А
USB Type-C 1.2 15 Вт 5 В 3 А
USB PD 3.0 100 Вт 20 В 5 А

Развитие уровней мощности USB

Преимущества USB Type C для приложений питания

Стандартный разъем USB Type C содержит 16 контактов для передачи данных, 4 контакта питания и 4 контакта заземления, всего 24 контакта. Обладая мощностью до 100 Вт, USB Type C теперь является жизнеспособным вариантом для многих приложений, требующих значительного количества энергии, и может заменить стандартный разъем питания постоянного тока, даже если передача данных не требуется.

Самым большим преимуществом использования USB в качестве метода подачи питания является стандартизация. USB-разъемы стали повсеместными, и переход к типу C быстро набирает обороты. Многие новые телефоны и мобильные устройства уже поставляются с USB Type C, а также возрастает вероятность того, что ЕС перейдет к переходу на разъем Type C в качестве стандарта зарядки для всех устройств в будущем. Обещанное удобство использования одного стандартного типа кабеля для множества различных продуктов чрезвычайно соблазняет конечного пользователя.С точки зрения OEM, эти разъемы, как только питание, так и данные + питание, легко найти с очень стабильной цепочкой поставок, поскольку стандартизация гарантирует определенный уровень взаимодействия. Стандарт также обеспечивает легкую интеграцию конструкции, а тип C занимает гораздо меньшую площадь, чем многие цилиндрические соединители. Наконец, разъемы USB Type C обладают прочностью и рассчитаны на 10 000 циклов сопряжения, что обеспечивает долгий и полезный срок службы.

Разъем USB типа C только для питания

Благодаря перечисленным выше преимуществам, компания CUI Devices разработала розетки USB типа C только с питанием для конструкций, в которых зарядка или подача питания являются единственной функцией.Разъемы USB Type C мощностью 60 Вт только с питанием от CUI Devices удаляют 16 контактов для передачи данных и 2 контакта заземления, оставляя только 4 контакта питания и 2 контакта заземления, в то время как версия 100 Вт сохраняет все 4 контакта питания и заземления в целом. из 8 контактов.

24-контактный тип C (слева) против 6-контактного и 8-контактного типа C с питанием только от источника питания (справа)

Благодаря упрощенной конструкции самого разъема, имеющего только 6 или 8 контактов вместо стандартных 24, стоимость разъем значительно уменьшен. Помимо более низкой стоимости деталей, это снижает сложность и частоту отказов, устраняя большинство контактов и связанных точек пайки.Хотя они не могут использоваться для передачи данных, они работают с любым стандартным кабелем USB Type C, который передает как данные, так и питание, поэтому конечному пользователю не нужны дополнительные действия или оборудование при взаимодействии с продуктом.

Обратите внимание, что, поскольку контакты для передачи данных были удалены, процесс согласования мощности USB 3.0 не происходит, и в этом случае зарядное устройство вернется к стандартной скорости передачи мощности USB 5 В и 1 А. Для всех других приложений, разъем будет функционировать как любой другой разъем питания, а зарядка будет регулироваться адаптером / схемой зарядки.

Другие источники питания

Хотя разъемы USB Type C чрезвычайно полезны в широком спектре сценариев, бывают случаи, когда выделенные варианты подачи питания по-прежнему являются практическим решением. Например, с жестким пределом в 100 Вт Type C просто не будет работать в тех случаях, когда требуется больше мощности. В других случаях может потребоваться другой размер посадочного места или разъема из-за определенных конструктивных ограничений. В конечном итоге, когда требуется более индивидуальное решение, разъем USB Type C может быть ограничен его стандартизированной площадью, размером и спецификациями.Для получения дополнительной информации о том, когда другие разъемы питания все еще могут быть лучшим решением, прочитайте блог CUI Devices о выборе разъема питания постоянного тока.

Будущее USB Type C

Разъемы

USB Type C и стандарт Power Delivery открыли новый взгляд на управление питанием и передачу. Несмотря на то, что это не окончательное решение, его мощные возможности и глобальная стандартизация делают его отличным вариантом для использования во многих различных продуктах. Когда требуется только подача питания, разъемы USB Type C только с питанием от CUI Devices представляют собой интригующее решение для инженеров из-за их более низкой стоимости и упрощенной интеграции конструкции.

В настоящее время

CUI Devices предлагает горизонтальную или вертикальную розетку USB Type C мощностью 60 Вт с максимальным номинальным током 3 А и номинальным напряжением 20 В постоянного тока. Также доступна розетка USB Type C мощностью 100 Вт, которая может похвастаться полным номинальным током 5 А и номинальным напряжением 20 В постоянного тока, поддерживаемым разъемами USB Type C.

Дополнительные ресурсы



У вас есть комментарии к этому сообщению или темам, которые вы хотели бы, чтобы мы освещали в будущем?

Отправьте нам письмо по адресу cuiinsights @ cuidevices.ком

Проблема с проводкой при соединении пары кабелей USB Type-C

1. Кабель USB TYPE-C — USB 2.0 Standard-A

Нашел этот разъем TYPE-C с резистором 56 кОм от taobao, но на нем нет подробной принципиальной схемы.

Я хочу сделать из этого кабель USB TYPE-C (устройство) — USB 2.0 Standard-A (хост).

В документе спецификации

USB type-c указано:

Контакт A5 (CC) штекера USB Type-C должен быть подключен к VBUS через резистор Rp (56 кОм ± 5%).

Вопрос A: Могу ли я предположить, что резистор 56 кОм используется для резистора PULL-UP, как того требует спецификация?

А в разъеме есть по две медные контактные площадки для каждого из VBUS, GND соответственно.

Вопрос B: Следует ли мне подключить обе стороны медных контактов для VBUS и GND? или могу ли я игнорировать противоположную сторону для каждого из них?

Вопрос C: Следует ли мне избегать использования конденсатора 10NF для этого типа кабеля?


2.Кабель USB Type-C — USB 3.1 Standard-B

Также нашел этот соединитель TYPE-C с резистором 5,1 кОм и конденсатором 10 нФ,
и, конечно же, на нем нет подробной принципиальной схемы.

Я хочу сделать кабель USB Type-C (хост) — USB 3.1 Standard-B (устройство) с этим.

В документе спецификации

USB type-c указано:

Контакт A5 (CC) разъема USB Type-C должен быть подключен к GND через резистор Rd (5,1 кОм ± 20%).

Все контакты VBUS должны быть соединены вместе в штекере USB Type-C.Шунтирующий конденсатор
требуется между контактами VBUS и заземлением на стороне разъема USB Type-C кабеля. Обход
Конденсатор должен быть 10 нФ ± 20% в кабелях, в которых есть штекер USB Standard-B. Обход
конденсатор следует размещать как можно ближе к площадке источника питания.

Вопрос D: Могу ли я предположить, что резистор 5,1 кОм используется для резистора PULL-DOWN, как того требует спецификация?

Вопрос E: Могу ли я предположить, что конденсатор 10 нФ используется для шунтирующего конденсатора, как того требует спецификация?

Вопрос F: Могу ли я игнорировать медную площадку для CC? (оставить открытым)


Меня особенно беспокоит второй вариант, потому что кто-то сказал, что он может поджечь мой ноутбук, если я выберу неправильные детали.

В любом случае, спасибо, что прочитали это.

% PDF-1.6
%
1208 0 объект
>
эндобдж

xref
1208 103
0000000016 00000 н.
0000003262 00000 н.
0000003520 00000 н.
0000003549 00000 н.
0000003601 00000 п.
0000003657 00000 н.
0000003708 00000 п.
0000003749 00000 н.
0000003977 00000 н.
0000004084 00000 н.
0000004191 00000 п.
0000004298 00000 н.
0000004405 00000 н.
0000004512 00000 н.
0000004619 00000 н.
0000004703 00000 н.
0000004784 00000 н.
0000004866 00000 н.
0000004948 00000 н.
0000005030 00000 н.
0000005112 00000 н.
0000005194 00000 н.
0000005276 00000 н.
0000005358 00000 п.
0000005440 00000 н.
0000005522 00000 н.
0000005604 00000 н.
0000005686 00000 п.
0000005768 00000 н.
0000005850 00000 н.
0000005931 00000 н.
0000006012 00000 н.
0000006248 00000 п.
0000006385 00000 н.
0000007025 00000 н.
0000007634 00000 н.
0000007686 00000 н.
0000007738 00000 п.
0000008036 00000 н.
0000008140 00000 н.
0000008398 00000 н.
0000008650 00000 н.
0000011475 00000 п.
0000012042 00000 п.
0000012306 00000 п.
0000012776 00000 п.
0000013054 00000 п.
0000018261 00000 п.
0000018348 00000 п.
0000022404 00000 п.
0000022654 00000 п.
0000022870 00000 п.
0000051404 00000 п.
0000072263 00000 п.
0000072678 00000 п.
0000093677 00000 п.
0000127231 00000 н.
0000128085 00000 н.
0000157716 00000 н.
0000157776 00000 н.
0000157939 00000 п.
0000158094 00000 н.
0000158219 00000 н.
0000158346 00000 н.
0000158529 00000 н.
0000158648 00000 н.
0000158767 00000 н.
0000158892 00000 н.
0000159045 00000 н.
0000159180 00000 н.
0000159331 00000 н.
0000159504 00000 н.
0000159675 00000 н.
0000159824 00000 н.
0000159995 00000 н.
0000160168 00000 н.
0000160297 00000 н.
0000160424 00000 н.
0000160537 00000 н.
0000160636 00000 н.
0000160751 00000 п.
0000160876 00000 н.
0000161001 00000 н.
0000161156 00000 н.
0000161325 00000 н.
0000161496 00000 н.
0000161651 00000 н.
0000161834 00000 н.
0000161987 00000 н.
0000162100 00000 н.
0000162227 00000 н.
0000162416 00000 н.
0000162557 00000 н.
0000162666 00000 н.
0000162821 00000 н.
0000162950 00000 н.
0000163121 00000 н.
0000163262 00000 н.
0000163435 00000 н.
0000163572 00000 н.
0000163701 00000 н.
0000003080 00000 н.
0000002409 00000 н.
трейлер
] / Назад 473594 / XRefStm 3080 >>
startxref
0
%% EOF

1310 0 объект
> поток
hb«`b`Vd`c«) cb @

Что такое USB-C — USB Type C »Примечания к электронике

USB-C или USB Type-C — это система с 24-контактным разъемом USB, которая была представлена ​​в августе 2014 года для обеспечения расширенных возможностей подключения и более компактного и надежного разъема.


Универсальная последовательная шина USB Включает:
Введение в USB
Стандарты USB
Разъемы, распиновка и кабели
Передача данных и протокол
USB 3
USB-C
USB-концентраторы
Как купить лучший USB-концентратор


Разъем USB C или, вернее, разъем USB Type-C имеет много преимуществ по сравнению со своими предшественниками. Обеспечивая улучшенные возможности подключения и надежность, он широко выходит на рынок.

Сам разъем USB Type-C или USB-C может поддерживать новые возможности USB, такие как USB 3.1, USB 3.2 и теперь USB 4. Как часть этого, USB C также поддерживает улучшенные возможности USB Power Delivery и USB PD. Действительно, его разработка была тесно связана с введением стандартов USB 3 и более поздних версий. Фактически, USB Type-C используется с USB3, то есть USB 3.0, 3.1, 3.2 и т. Д.,

Стандартный USB-разъем, используемый на таких элементах, как карты флэш-памяти и многие компьютерные разъемы типа A, а также есть другие типы, которые используются для разъемов камеры, смартфонов и тому подобного, но разъем типа A остался так же очень много лет.

USB-C был принят для огромного количества устройств от смартфонов и планшетов до компьютерных ноутбуков и других устройств. Даже разъем Apple Lightning можно заменить, по крайней мере, на смартфонах для Европы.

Что такое USB-C

Разъем

USB Type-C — это новый стандартный разъем меньшего размера для USB. Это примерно треть размера старых разъемов типа A.

Другое преимущество разъема USB-C заключается в том, что это единый стандарт разъема, который может использоваться для всех устройств, поэтому количество различных разъемов должно уменьшиться по мере того, как USB-C становится все более распространенным.

В USB-C было вложено много средств разработки, и он значительно более гибкий, чем предыдущие версии. Его можно использовать для подключения к устройствам с низким энергопотреблением, таким как смартфоны, камеры и т.п., или для компьютеров и ноутбуков.

На самом деле разъем USB-C значительно прочнее, чем разъемы USB mini и USB micro, которые были широко распространены раньше.

Разъем USB C на проводе

Разъем USB-C имеет некоторое сходство с разъемом micro USB, но имеет более овальную форму и немного толще.Как и разъемы Lightning и MagSafe, разъем USB-C не имеет ориентации вверх или вниз. Правильно выровняйте разъем, и вам не нужно его переворачивать, чтобы подключить.

Другое отличие состоит в том, что на обоих концах кабеля используется один и тот же разъем USB-C, т. Е. Он двусторонний. Нет необходимости различать восходящие и нисходящие разъемы, как это было необходимо для USB 2 с его разъемами A и B. Стандарты USB 3 обеспечивают необходимую защиту, если два источника питания подключены друг к другу.

Порты

USB-C значительно более гибкие, чем их предшественники. USB-C может поддерживать множество различных протоколов, используя так называемые альтернативные режимы. Это позволяет иметь адаптеры, которые могут выводить HDMI, VGA, DisplayPort или другие типы подключений через один порт USB.

Это обеспечивает значительный уровень удобства, поскольку различные порты USB, HDMI, DisplayPort, VGA и питания на типичных ноутбуках могут быть объединены для использования одного типа порта.USB-C / USB 3 может поддерживать другие интерфейсы в режиме, известном как альтернативный режим.

Многие производители ноутбуков, такие как Apple, сокращают количество интерфейсных разъемов на своих ноутбуках до минимума, чтобы они выглядели более элегантно, делая их более тонкими, а также сокращая расходы и т. Д., Наличие даже двух разъемов USB-C дает достаточные возможности при использовании дополнительного концентратора для обеспечения всех необходимых возможностей подключения.

USB-тип C и USB3.1

Новый разъем USB-C также способен передавать гораздо более высокие скорости передачи данных, которые теперь доступны с USB3 / USB3.1.

Поскольку скорость передачи данных из различных источников увеличивается, а также возможность использования USB-C для HDMI и других возможностей, разъем должен поддерживать такие скорости передачи данных.

Благодаря USB 3.1, обеспечивающему скорость передачи данных 5 Гбит / с, эти скорости соизмеримы с частотами в микроволновом диапазоне.

Разъем USB C на проводе для питания ноутбука

Распиновка и функции разъема USB C

Разъем USB C типа имеет гораздо большее количество линий, которые доступны для обеспечения расширенных возможностей.

Разъемы имеют 24 контакта и, в отличие от USB1 и USB2, разъем можно вставить любым способом вверх, хотя при использовании вместе с разъемом USB 1 / USB2 x, возможно, потребуется перевернуть разъем.

На схеме ниже показана распиновка USB-C как для розетки, т. Е. Розетки, так и для вилки.

Распиновка разъема USB C для вилки и розетки / гнезда

Отдельные линии в разъеме USB-C имеют разные функции.

  • CC1 и CC2: CC обозначает конфигурацию канала, и эти линии выполняют многие функции конфигурации, необходимые для порта / кабеля, включая обнаружение присоединения / отсоединения кабеля, определение ориентации розетки / штекера и текущую рекламу.Эти линии также используются для связи и настройки, необходимых для USB-PD и альтернативного режима, где USB-соединение требуется для взаимодействия с другими стандартами интерфейса, такими как HDMI и т. Д.

  • D + & D-: Линии D + и D- обеспечивают дифференциальные пары для подключения USB 2. Можно видеть, что в разъеме есть два набора контактов, которые используются для того, чтобы разъем можно было переворачивать, то есть вставлять в любом направлении вверх.

  • GND: Линии заземления используются для обеспечения обратного пути для сигналов и питания. Несколько выводов заземления используются для обеспечения постоянного контакта.

  • Пары RX и TX: Разъем USB-C включает два набора дифференциальных пар RX и два для передающей стороны. На схеме разъемов они показаны как RX ± 1 и RX ± 2 для приемной стороны и TX ± 1 и TX ± 2 для передачи.Два набора необходимы, чтобы соединитель можно было переворачивать. Для достижения требуемых характеристик передачи включен мультиплексор, который правильно направляет данные в используемые дифференциальные пары в кабеле.

  • SBU1 & SBU2: Эти две линии используются для альтернативного режима для приложений, таких как использование порта USB-C / USB3 / 4 для управления HDMI или другими интерфейсами. Порт переконфигурируется, чтобы действовать так же, как HDMI или другой интерфейс.Линии SBU1 и SBU2 поданы в суд в рамках этой операции.

  • VBUS: Напряжение VBUS обычно составляет 5 В, что идеально для небольших устройств, таких как смартфоны и другие небольшие перезаряжаемые устройства, но USB-C может заряжать более крупные устройства, включая ноутбуки, и для них требуется большее напряжение.

    Для достижения этого стандарт позволяет удаленным устройствам согласовывать с хостом, чтобы выбрать необходимое напряжение VBUS. USB Power Delivery позволяет VBUS подавать напряжение до 20 В.Максимальный ток также может быть увеличен до 5 А, что дает общую мощность 100 Вт

  • VCONN: Для обеспечения очень высоких скоростей и высоких уровней мощности, используемых для USB 3 и USB 4, могут потребоваться специальные кабели, в которые встроены микросхемы: они могут включать микросхему драйвера, которая подали в суд на возмещение потерь кабеля. Питание этих внутрикабельных микросхем обеспечивается по линии VCONN.

USB-C и USB PD

Подача энергии — ключевая функция системы USB в наши дни.Обычной практикой является подключение устройства для зарядки через USB-кабель. Первоначально USB-кабель обеспечивал 5 вольт, и этого было достаточно для зарядки многих устройств, но поскольку USB C используется для многих ноутбуков, требуется гораздо более сложный механизм подачи питания USB. Это достигается с помощью схемы USB PD, Power Delivery.

Разъем USB-Type-C был разработан с учетом требований спецификации USB PD. Многие устройства, включая смартфоны, планшеты и другие мобильные устройства, используют свое USB-соединение для получения энергии для зарядки.Однако старые разъемы были ограничены по мощности, которую они могли передать. Подключение USB 2.0 обеспечивает мощность до 2,5 Вт. Этого достаточно для большинства небольших устройств, но не для более крупных, таких как ноутбуки.

Спецификация USB Power Delivery обеспечивает уровень мощности до 100 Вт.

USB-C двунаправлен, как и система подачи питания. Это означает, что с помощью одного и того же разъема устройство может либо отправлять, либо получать питание. Новые провода USB C можно купить с одинаковыми разъемами USB C на обоих концах.При использовании более старой системы соединителей на одном конце провода требовался соединитель типа A, а на другом — типа B, чтобы обеспечить различие между восходящим и нисходящим потоком.

Питание также может подаваться во время передачи данных, а это означает, что, по сути, возможна параллельная работа обеих возможностей.

Чтобы обеспечить доставку большей мощности и более высоких напряжений, необходимых для ноутбуков и т. Д., Используется протокол, называемый USB Power Delivery. USB PD использует однопроводную связь по линии CC.Первоначально источник питания (то есть элемент, требующий питания через USB-C) отправляет запросы источнику, и в результате источник регулирует напряжение VBUS по мере необходимости.

Возможности USB-C

USB-C поддерживает многие функции USB 3 и выше. Это позволяет использовать разъем USB C во многих сценариях для включения множества различных функций.

Возможности системы USB-C приведены в таблице ниже:

Разъем USB Type-C Обзор технических характеристик
Параметр Спецификация
Отверстие розетки ~ 8.3 x ~ 2,5 мм
Срок службы 10 000 циклов
Мощность подачи 3A для стандартных разъемов
5A для разъемов
Совместимость с USB 2 LS / FS / HS
Совместимость с USB 3 Gen 1 (5 Гбит / с)
Gen 2 (10 Гбит / с)
EMI Улучшено по сравнению с USB-A и USB-B
Повышенная мощность передачи USB PD
Опора для стыковки Опция конфигурации интерфейса на основе USB PD

USB-C или USB Type-C может обеспечить значительно улучшенные возможности подключения для системы USB и в первую очередь предназначен для поддержки USB 3.0, USB 3.1, USB3.2 и USB 4 версии USB. Таким образом, это помогает обеспечить сверхскоростную передачу данных, которую можно достичь с помощью этих новых стандартов.

Дополнительная возможность позволяет использовать все функции последних версий USB, включая высокую скорость передачи данных и возможность для USB-концентраторов, использующих USB-C, взаимодействовать со многими другими стандартами, а также обеспечивает дополнительную возможность зарядки, необходимую для ноутбуков и других устройств. устройства, выходящие за рамки основных требований небольших устройств, таких как смартфоны.

Темы беспроводного и проводного подключения:
Основы мобильной связи
2G GSM
3G UMTS
4G LTE
5G
Вай фай
IEEE 802.15.4
Беспроводные телефоны DECT
NFC — связь ближнего поля
Основы сетевых технологий
Что такое облако
Ethernet
Серийные данные
USB
SigFox
LoRa
VoIP
SDN
NFV
SD-WAN

Вернуться к беспроводному и проводному подключению

Разъяснение к USB Type-C, USB PD и USB PPS

Архитектура USB (универсальная последовательная шина) используется в качестве стандарта для разъемов и связанных с ними сигналов и подачи питания с 1996 года.За это время в спецификации были внесены многочисленные изменения для повышения производительности систем, использующих эти стандарты. Последние разработки, применимые к конструкциям источников питания, включают разъем USB Type-C, спецификацию USB Power Delivery и спецификацию программируемого источника питания USB. Эти усовершенствования делают USB отличным вариантом для подачи питания, тогда как в прошлом USB был в первую очередь поставщиком данных и сигналов с ограниченными возможностями питания. В этом посте мы обсудим взаимосвязь между USB Type-C, USB Power Delivery и USB Programmable Power Supply, а также их отношение к источникам питания.

  • USB Type-C: — стандартизированный разъем USB; Преимущества включают компактный, гладкий и двусторонний дизайн.
  • USB Power Delivery: — это спецификация, которая позволяет нагрузке и источнику питания согласовывать несколько стандартных уровней подачи питания. USB Power Delivery увеличивает мощность USB до 100 Вт и особенно полезен при подаче питания на несколько устройств.
  • Программируемый блок питания USB : дополнительная спецификация к USB Power Delivery, описывающая, как нагрузка и источник питания взаимодействуют для уровней инкрементной подачи энергии.Эта функция может быть особенно полезна для зарядки аккумуляторов.

Разъем USB Type-C

Конструкция разъема USB Type-C (также называемого USB-C) симметрична, поэтому его можно подключать любым способом, то есть нет перевернутой или перевернутой правой стороны. Это позволяет вставлять штекер быстрее и проще, чем предыдущие конструкции разъемов USB. С предыдущими конструкциями разъемов пользователь должен визуально осмотреть разъем, чтобы определить правильную ориентацию, или пройти процесс проб и ошибок, вставляя разъем; создавая легкое, но слишком знакомое неудобство.Еще одна особенность штекера USB Type-C заключается в том, что у него закругленные края, что обеспечивает преимущество самовыравнивающейся характеристики при вставке штекера.

Штекер USB Type-C предназначен для обеспечения умеренных уровней мощности (менее 100 Вт), а характеристики, связанные с небольшим штекером, позволяют подавать питание на широкий спектр компактных электронных устройств. Одним из преимуществ использования USB-разъемов для подачи питания и сигналов является то, что это сложная конструкция с относительно низкими затратами на разработку.Это в значительной степени связано с эффектом масштаба, достигнутым благодаря широкому распространению соединителя на глобальном уровне. Еще одним преимуществом является то, что система была проверена большим количеством пользователей и разработок продуктов, а это означает, что конструкция продемонстрировала свою надежность и оставляет очень небольшую вероятность возникновения каких-либо неизвестных операционных проблем. Важно отметить, что USB Type-C обычно будет стоить больше, чем USB-разъемы более старого поколения из-за сложности и скорости, которые обеспечивает USB Type-C.Однако по мере того, как разъемы USB Type-C становятся все более распространенными, ожидается, что стоимость будет соответствующим образом скорректирована.

Несоответствующие приложения USB Type-C

Разработчик может решить использовать разъем USB Type-C из-за элегантного дизайна, небольшого размера и низкой стоимости, но решит не соответствовать стандартам USB Power Delivery. Вероятность повреждения оборудования из-за несоответствующей конструкции будет низкой, пока напряжение несоответствующего источника питания составляет 5 В, а максимальный ток нагрузки, указанный в спецификации, меньше номинального значения 5 А для разъема.Значительный риск повреждения нагрузки будет существовать, если несоответствующий источник питания выдает выходное напряжение, превышающее стандартное напряжение USB 5 В.

Связь между USB Type-C, Power Delivery и 3.1 Gen 2

Разъем USB Type-C тесно связан с USB 3.1 Gen 2 и USB Power Delivery. Это часто создает путаницу в отношении взаимосвязи между концепциями Type-C, 3.1 Gen 2 и USB Power Delivery. Важно отметить, что, хотя эти концепции связаны и дополняют друг друга, они независимы.Устройство или блок питания могут использовать USB-разъем, но не поддерживают USB 3.1 Gen 2 или USB Power Delivery.

Важно отметить, что протоколы USB могут быть реализованы с разъемами, отличными от указанных разъемов USB. Заказчик может выбрать использование протоколов данных и питания USB, чтобы воспользоваться преимуществами чрезвычайно больших усилий по разработке и проверке, уже развернутых USB, но не использовать стандартизованные разъемы USB для создания собственной системы.

Подача питания через USB

Одна из целей USB — поддерживать взаимодействие между соответствующими реализациями старых и новых версий спецификаций. В предыдущих версиях стандартов USB подаваемое напряжение было задано равным 5 В. Стандарт USB Power Delivery допускает подаваемое напряжение 5 В, 9 В, 15 В или 20 В при уровнях мощности до 100 Вт.

Версия Максимальная мощность Напряжение Максимальный ток
USB 2.0 2,5 Вт 5 В 500 мА
USB 3.1 4,5 Вт 5 В 900 мА
USB BC 1.2 7,5 Вт 5 В 1,5 А
USB Type-C 1,2 15 Вт 5 В 3 А
USB PD 100 Вт 5/9/15/20 В 5 А

Развитие уровней мощности USB

USB Power Delivery устанавливает рабочие протоколы, чтобы гарантировать, что более высокое напряжение, доступное в последних версиях USB, не повредит устаревшее оборудование, которое было разработано для работы с напряжением 5 В.Чтобы предотвратить такое повреждение, USB Power Delivery требует, чтобы соответствующее оборудование первоначально подало на нагрузку 5 В при максимальном токе 900 мА. Связь между нагрузкой и источником питания может тогда установить более высокий максимальный ток нагрузки и большее рабочее напряжение. Если после подключения нагрузки и источника питания обмен данными не происходит, тогда конфигурация источника питания остается на максимальном токе нагрузки 5 В и 900 мА. Если связь между нагрузкой и источником питания будет потеряна после того, как она была установлена, источник питания безопасно вернется к конфигурации 5 В и 900 мА.

Уровни мощности указаны в USB Power Delivery

USB Power Delivery Applications

Преимущество USB Power Delivery в создании единого источника питания, который можно использовать для обеспечения питания нескольких продуктов, будет самым большим преимуществом, когда продукты будут сложными и дорогими. Примером приложения для USB Power Delivery является источник питания, который используется для зарядки сотовых телефонов, ноутбуков, планшетов, умных часов и наушников. Все эти продукты достаточно сложны, так что добавленная стоимость и сложность связи с источником питания являются приемлемыми.Кроме того, пользователь может находиться в транспортном средстве, комнате, офисе или путешествовать, где они ожидают, что для этих устройств будет обеспечено питание, но будет трудно предсказать сочетание различных силовых нагрузок. В этих сценариях источники питания USB Power Delivery будут согласовывать с каждым устройством правильную конфигурацию напряжения и тока в соответствии с требованиями этой нагрузки.

Хотя утверждения о том, что USB Power Delivery обеспечивает более быструю зарядку аккумулятора, не ошибочны, они могут быть неправильно поняты.Время, необходимое для зарядки аккумулятора, ограничено конструкцией аккумулятора и мощностью источника питания. Внедрение USB Power Delivery сократит время, необходимое для зарядки аккумулятора, если зарядка аккумулятора была ограничена мощностью зарядки зарядного устройства, а не конструкцией аккумулятора. USB Power Delivery не сокращает время зарядки по сравнению с источником питания с фиксированной выходной мощностью, когда выходная мощность обоих источников одинакова.

Продукты, которые не могут быть хорошими кандидатами для USB Power Delivery, — это менее сложные и менее дорогие продукты с относительно низкими требованиями к мощности. Менее дорогие продукты могут быть не в состоянии покрыть затраты на проектирование и производство из-за возможности USB Power Delivery, встроенной в устройство для связи с источником питания. В большинстве приложений, где источник питания выбирается для подачи питания на нагрузку, мощность источника питания будет выбираться только в соответствии с требованиями нагрузки.Если был указан источник питания большей мощности, то избыточная мощность в источнике питания приведет к тому, что размер и стоимость источника питания будут больше, чем требуется. Мощность источника питания USB должна быть рассчитана на максимальную номинальную мощность настраиваемого источника. Система с небольшой нагрузкой, которая может питаться либо от источника питания USB, либо от источника питания меньшего размера, потребует дополнительных затрат и размера за использование источника питания USB.

Программируемый блок питания USB

Протокол USB-программируемого источника питания обеспечивает больший контроль над подачей питания, чем устаревшие протоколы и протоколы USB Power Delivery. В то время как рабочий протокол USB Power Delivery определяет, как блоки питания USB обеспечивают дискретные уровни напряжения, рабочий протокол USB Programmable Power Supply устанавливает возможность управления выходным напряжением и токовыми характеристиками блока питания на детальном уровне.

Приложения для программируемых источников питания USB

Распространенным приложением, требующим детального контроля напряжения и тока, которое предлагает программируемый источник питания USB, является зарядка аккумуляторов.В традиционной топологии зарядного устройства для аккумуляторных батарей источник напряжения подается на схему управления зарядом аккумуляторной батареи, и выход системы обеспечивает надлежащее напряжение и ток для зарядки аккумуляторной батареи. Это хорошо работает, когда характеристики напряжения и тока зарядки аккумулятора стандартизированы, и, таким образом, схема зарядки аккумулятора может иметь стандартную конструкцию. Для приложений, где для аккумулятора требуется настраиваемый профиль напряжения и тока зарядки, лучшим решением может быть программируемый блок питания USB.При использовании источника питания с программируемым USB-источником питания нагрузка будет контролировать состояние батареи и подавать команды источнику питания, чтобы батарея заряжалась с правильным профилем напряжения и тока. Следует отметить, что когда конфигурация программируемого источника питания USB используется для зарядки аккумулятора, группе разработчиков потребуется разработать, реализовать и протестировать алгоритм и схемы зарядки аккумулятора, тогда как при выборе стандартной схемы зарядки аккумулятора поставщик аккумулятора цепь зарядки выполнила большинство или все из этих задач.

Заключение

Разъем USB Type-C и спецификация USB Power Delivery значительно расширяют стандарты USB. Внедрение полного стандарта позволит значительно усовершенствовать системы, но значительные преимущества могут быть также реализованы за счет реализации только частей нового стандарта и протокола. Ожидается, что разъем USB Type-C будет использоваться во многих традиционных приложениях для подачи питания 5 В с требованиями к току нагрузки 5 А или менее из-за небольшого размера, улучшенной конструкции и низкой стоимости разъема.

Категории:
Новости отрасли
, Выбор продукта

Вам также может понравиться



У вас есть комментарии к этому сообщению или темам, которые вы хотели бы, чтобы мы освещали в будущем?

Отправьте нам письмо по адресу powerblog @ cui.ком

Распиновка USB

@ pinouts.ru

Универсальная последовательная шина (USB) — это интерфейс для установления связи между устройствами и главным контроллером (обычно персональным компьютером). Сегодня USB заменил множество более ранних интерфейсов ПК (таких как последовательный RS-232, параллельный порт и даже FireWire). Из-за возможности подачи питания на предварительные устройства USB часто используется в качестве зарядного устройства для портативных устройств.

Архитектура системы USB состоит из хост-контроллера, порта USB и нескольких подключенных устройств. Могут быть включены дополнительные концентраторы USB, позволяющие создавать ветвления в древовидной структуре до пяти уровней. USB может подключать компьютерные периферийные устройства, такие как мыши, клавиатуры, цифровые камеры, КПК, мобильные телефоны, принтеры, персональные медиаплееры, устройства протокола передачи мультимедиа (MTP), флэш-накопители, GPS, сетевые адаптеры и внешние жесткие диски. Для многих из этих устройств USB стал стандартным методом подключения.

Интерфейс USB направлен на устранение необходимости добавлять карты расширения в шину PCI или PCI-Express компьютера и улучшить возможности plug-and-play, позволяя выполнять горячую замену или добавление устройств в систему без перезагрузки компьютера.

Штифт Имя Цвет кабеля Описание
1 VCC Красный +5 В постоянного тока
2 D- Белый Данные —
3 D + зеленый Данные +
4 GND Черный Земля

Разъемы USB

Есть несколько типов разъемов USB.Разъем, установленный на хосте или устройстве, называется розеткой, а разъем, прикрепленный к кабелю, называется вилкой. В исходной спецификации USB подробно описаны вилки и розетки стандартов A и B. На сегодняшний день известно 7 разъемов USB: Standard-A, Standard-B, Mini-A, Mini-B, Micro-A, Micro-AB, Micro-B, Type-C. Распиновка Mini-USB и Micro-USB немного отличаются: стандартный USB использует 4 контакта, а Mini-USB и Micro-USB используют 5 контактов в разъеме. Дополнительный штифт используется как индикатор наличия подключенного устройства.

Распиновка сигналов USB

USB — это последовательная шина. Он использует 4 экранированных провода: два для питания (+ 5 В и GND) и два для дифференциальных сигналов данных (обозначены как D + и D- в распиновке). Схема кодирования NRZI (Non Return to Zero Invert), используемая для отправки данных с полем синхронизации для синхронизации часов хоста и приемника. В USB-кабеле для передачи данных сигналы Data + и Data- передаются по витой паре. Прекращение не требуется. Полудуплексная дифференциальная сигнализация помогает бороться с эффектами электромагнитного шума на более длинных линиях.Вопреки распространенному мнению, D + и D- действуют вместе; они не являются отдельными симплексными соединениями. USB 2.0 обеспечивает максимальную длину кабеля 5 метров для устройств, работающих на высокой скорости.

Режимы передачи USB

Универсальная последовательная шина поддерживает режимы управления, прерывания, групповой и изохронной передачи.

Характеристики USB-интерфейсов.

В настоящее время известно несколько основных версий USB:

USB 1.0 — низкая или полная скорость

  • 1996 года выпуска.
  • Определяет скорость передачи данных 1,5 Мбит / с (низкая пропускная способность, в основном используется для устройств ввода человеком (HID), таких как клавиатуры, мыши, джойстики и часто кнопки на высокоскоростных устройствах, таких как принтеры или сканеры) и 12 Мбит / с. (Полная пропускная способность).
  • в настоящее время все еще используется некоторыми устройствами, которым не требуется более высокая скорость передачи данных.

USB 2.0 — высокоскоростной

  • выпуска 2000 г.
  • в дополнение к USB 1.0 добавляет скорость передачи сигналов 480 Мбит / с (Hi-Speed)
  • совместим с USB 1.0, но некоторое оборудование, разработанное для USB 2.0, может не работать с хост-контроллерами USB 1.0.

USB 3.0 — SuperSpeed ​​

  • выпуска 2008 г.
  • добавлена ​​скорость передачи до 5 Гбит / с (SuperSpeed)
  • USB 3.1, выпущенный в 2013 году, добавил скорость передачи SuperSpeed ​​+ до 10 Гбит / с
  • USB 3.2, выпущенный в 2017 году, добавил скорость передачи SuperSpeed ​​+ до 20 Гбит / с и режимы нескольких каналов

USB 1.0 и USB 2.0 имеет одинаковую распиновку разъема, распиновку USB 3.0, а USB Type C имеет новые разъемы со своими собственными выводами.

USB-устройство должно указывать свою скорость, подтягивая линию D + или D- к уровню 3,3 В. Эти подтягивающие резисторы на стороне устройства также будут использоваться хостом или концентратором для обнаружения присутствия устройства, подключенного к его порту. Без подтягивающего резистора USB предполагает, что к шине ничего не подключено.

Чтобы помочь пользователю определить максимальную скорость устройства, USB-устройство часто указывает свою скорость на крышке с одним из специальных маркетинговых логотипов USB.

Когда новое устройство впервые подключается, хост перечисляет его и загружает драйвер устройства, необходимый для его запуска. Загрузка соответствующего драйвера выполняется с использованием комбинации PID / VID (Product ID / Vendor ID), предоставляемой подключенным оборудованием. Хост-контроллеры USB имеют свои собственные спецификации: UHCI (универсальный интерфейс хост-контроллера), OHCI (открытый интерфейс хост-контроллера) с USB 1.1, EHCI (расширенный интерфейс хост-контроллера) используется с USB 2.0.

Устройства с питанием от USB

Разъем USB обеспечивает одиночный провод 5 В, от которого подключенные устройства USB могут питаться сами.Данный сегмент шины рассчитан на передачу до 500 мА. Этого часто бывает достаточно для питания нескольких устройств, хотя этот бюджет должен быть разделен между всеми устройствами, находящимися ниже по потоку от концентратора без питания. Устройство с питанием от шины может использовать столько энергии, сколько позволяет порт, к которому оно подключено.

Концентраторы

с питанием от шины могут продолжать распределять питание по шине на подключенные устройства, но спецификация USB допускает только один уровень устройств с питанием от шины от концентратора с питанием от шины. Это запрещает подключение концентратора с питанием от шины к другому концентратору с питанием от шины.Многие концентраторы включают в себя внешние источники питания, которые будут питать устройства, подключенные через них, без получения питания от шины. Устройства, которым требуется более 500 мА или более 5 В, должны обеспечивать собственное питание.

Когда USB-устройства (включая концентраторы) подключаются впервые, они опрашиваются хост-контроллером, который запрашивает каждое из их требований к максимальной мощности. Однако похоже, что любая нагрузка, подключенная к USB-порту, может рассматриваться операционной системой как устройство. Операционная система хоста обычно отслеживает требования к питанию сети USB и может предупреждать оператора компьютера, когда для данного сегмента требуется больше энергии, чем доступно, и может отключать устройства, чтобы сохранить потребление энергии в пределах доступного ресурса.

Энергопотребление USB:

Спецификация Текущий Напряжение Мощность (макс.)
Устройство малой мощности 100 мА 5 В 0,50 Вт
Устройство с низким энергопотреблением SuperSpeed ​​(USB 3.0) 150 мА 5 В 0,75 Вт
Устройство большой мощности 500 мА 5 В 2.5 Вт
Устройство высокой мощности SuperSpeed ​​(USB 3.0) 900 мА 5 В 4,5 Вт
Зарядка аккумулятора (BC) 1,2 1,5 А 5 В 7,5 Вт
Тип-C 1,5 А 5 В 7,5 Вт
3 А 5 В 15 Вт
Подача энергии 2.0 Micro-USB 3 А 20 В 60 Вт
Подача питания 2.0 Тип-A / B / C 5 А 20 В 100 Вт

Чтобы распознать зарядку аккумулятора, специальный порт зарядки устанавливает сопротивление, не превышающее 200 Ом, на клеммах D + и D−.

Режим специального зарядного устройства:

Простое зарядное устройство USB должно включать резистор 200 Ом между проводами D + и D- (иногда достаточно короткого замыкания D + и D-).В этом случае устройство не будет пытаться передавать или принимать данные, но может потреблять до 1,8 А, если источник питания может это обеспечить.

Напряжение USB:

Напряжение, подаваемое хостом или портами концентратора с питанием, составляет от 4,75 В до 5,25 В. Максимальное падение напряжения для концентраторов с питанием от шины составляет 0,35 В от хоста или концентратора до выходного порта концентратора. Все концентраторы и функции должны иметь возможность отправлять данные конфигурации при напряжении 4,4 В, но при этом напряжении должны работать только маломощные функции. Нормальное рабочее напряжение для функций не менее 4.75 В.

Экранирование кабеля USB:

Shield должен быть подключен к заземлению только на хосте. Ни одно устройство не должно подключать экран к земле.

провода кабеля USB:

экранированный:
Данные: 28 AWG витой
Мощность: 28 AWG — 20 AWG, нескрученный

Неэкранированный:
Данные: 28 AWG, нескрученный
Мощность: 28 AWG — 20 AWG, нескрученный

Датчик мощности Макс.