Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Выбор кабеля по мощности 10 кв: Пример выбора сечения кабеля на напряжение 10 кВ

Содержание

Пример выбора сечения кабеля на напряжение 10 кВ

Требуется выбрать сечение кабеля на напряжение 10 кВ для питания трансформаторной подстанции 2ТП-3 мощностью 2х1000 кВА для питания склада слябов на металлургическом комбинате в г. Выкса Нижегородская область. Схема электроснабжения представлена на рис.1. Длина кабельной линии от ячейки №12 составляет 800 м и от ячейки №24 составляет 650 м. Кабели будут, прокладываться в земле в трубах.

Таблица расчета электрических нагрузок по 2ТП-3

Наименование
присоединения
Нагрузка Коэффициент мощности
cos φ
Активная,
кВт
Реактивная, квар Полная,
кВА
2ТП-3
(2х1000 кВА)
955 590 1123 0,85

Трехфазный ток КЗ в максимальном режиме на шинах РУ-10 кВ составляет 8,8 кА. Время действия защиты с учетом полного отключения выключателя равно 0,345 сек. Подключение кабельной линии к РУ осуществляется через вакуумный выключатель типа VD4 (фирмы Siemens).

Рис.1 –Схема электроснабжения 10 кВ

Расчет

Сечение кабельной линии на напряжение 6(10) кВ выбирают по нагреву расчетным током, проверяют по термической стойкости к токам КЗ, потерям напряжения в нормальном и послеаварийном режимах.

Выбираем кабель марки ААБлУ-10кВ, 10 кВ, трехжильный.

1. Определяем расчетный ток в нормальном режиме (оба трансформатора включены).

где:
n – количество кабелей к присоединению;

2. Определяем расчетный ток в послеаварийном режиме, с учетом, что один трансформатор отключен:

3. Определяем экономическое сечение, согласно ПУЭ раздел 1.3.25. Расчетный ток принимается для нормального режима работы, т.е. увеличение тока в послеаварийных и ремонтных режимах сети не учитывается:

Jэк =1,2 – нормированное значение экономической плотности тока (А/мм2) выбираем по ПУЭ таблица 1. 3.36, с учетом что время использования максимальной нагрузки Тmax=6000 ч.

Сечение округляем до ближайшего стандартного 35 мм2.

Длительно допустимый ток для кабеля сечением 3х35мм2 по ПУЭ,7 изд. таблица 1.3.16 составляет Iд.т=115А > Iрасч.ав=64,9 А.

4. Определяем фактически допустимый ток, при этом должно выполняться условие Iф>Iрасч.ав.:

Коэффициент k1, учитывающий температуру среды отличающуюся от расчетной, выбираем по таблице 2.9 [Л1. с 55] и таблице 1.3.3 ПУЭ. Учитывая, что кабель будет прокладываться в трубах в земле. По таблице 2-9 температура среды по нормам составляет +25 °С. Температура жил кабеля составляет +65°С, в соответствии с ПУЭ, изд.7 пункт 1.3.12.

Принимаем по таблице 4.13 [Л5, с.86] среднемесячную температуру грунта для наиболее жаркого месяца (наиболее тяжелый температурный режим работы) равного +17,6 °С (г. Москва). Температуру грунта для г. Москвы, я принимаю в связи с отсутствием данных по г. Выкса, а так как данные города находятся в одном климатическом поясе — II, то погрешность в разности температур будет в допустимых пределах. Округляем выбранное значение температуры грунта до расчетной равной +20°С.

Для определения средней максимальной температуры воздуха наиболее жаркого месяца, можно воспользоваться СП 131.13330.2018 таблица 4.1.

По ПУЭ таблица 1.3.3 выбираем коэффициент k1 = 1,06.

Коэффициент k2 – учитывающий удельное сопротивление почвы (с учетом геологических изысканий), выбирается по ПУЭ 7 изд. таблица 1.3.23. В моем случае поправочный коэффициент для нормальной почвы с удельным сопротивлением 120 К/Вт составит k2=1.

Определяем коэффициент k3 по ПУЭ таблица 1.3.26 учитывающий снижение токовой нагрузки при числе работающих кабелей в одной траншее (в трубах или без труб), с учетом, что в одной траншее прокладывается один кабель. Принимаем k3 = 1.

Определив все коэффициенты, определяем фактически допустимый ток:

5. Проверяем кабель ААБлУ-10кВ сечением 3х35мм2 по термической устойчивости согласно ПУЭ пункт 1.4.17.

где:

  • Iк.з. = 8800 А — трехфазный ток КЗ в максимальном режиме на шинах РУ-10 кВ;
  • tл = tз + tо.в =0,3 + 0,045 с = 0,345 с — время действия защиты с учетом полного отключения выключателя;
  • tз = 0,3 с – наибольшее время действия защиты, в данном примере наибольшее время срабатывания защиты это в максимально-токовой защиты;
  • tо.в = 45мс или 0,045 с — полное время отключения вакуумного выключателя типа VD4;
  • С = 95 — термический коэффициент при номинальных условиях, определяемый по табл. 2-8, для кабелей с алюминиевыми жилами.

Сечение округляем до ближайшего стандартного 70 мм2.

6. Проверяем кабель на потери напряжения:

6.1 В нормальном режиме:

где:
r и x — значения активных и реактивных сопротивлений определяем по таблице 2-5 [Л1.с 48].

Для кабеля с алюминиевыми жилами сечением 3х70мм2 активное сопротивление r = 0,447 Ом/км, реактивное сопротивление х = 0,086 Ом/км.

Определяем sinφ, зная cosφ. Вспоминаем школьный курс геометрии.

Если Вам не известен cosφ, можно определить для различных электроприемников по справочным материалам табл. 1.6-1.8 [Л3, с 13-20].

6.2 В послеаварийном режиме:

Из расчетов видно, что потери напряжения в линии незначительные, следовательно, напряжение у потребителей практически не будет отличаться от номинального.

Таким образом, при указанных исходных данных выбран кабель ААБлУ-10 3х70.

Для удобства выполнения выбора кабеля всю литературу, которую я использовал в данном примере, Вы сможете скачать в архиве.

Читать еще: Пример выбора кабелей с изоляцией из сшитого полиэтилена

Литература:

  1. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.
  2. СНиП 23-01-99 Строительная климатология. 2003 г.
  3. Расчет и проектирование систем электроснабжения объектов и установок. Кабышев А.В, Обухов С. Г. 2006 г.
  4. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.
  5. Справочник работника газовой промышленности. Волков М.М. 1989 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Пример выбора сечения кабеля 10кВ

Выбор кабелей 10 кВ немного отличается от выбора кабелей 0,4 кВ. Здесь есть некоторые особенности, о которых нужно знать. Также хочу представить свою очередную вспомогательную программу, с которой выбор сечения кабелей 10 кВ станет проще.

Еще в далеком 2012 г у меня была статья: Как правильно выбрать сечение кабеля напряжением 6 (10) кВ? На тот момент я не владел теми знаниями, которые есть у меня сейчас, поэтому данная статья является дополнением.

Задача: выбрать кабель для питания трансформаторной подстанции 250 кВА. Расстояние от точки питания (РУ-10кВ, ТП проходного типа) до проектируемой КТП – 200 м. Объект в городской черте.

Первое, с чем необходимо определиться: тип кабеля.

Я решил применить кабель с изоляцией из сшитого полиэтилена.

Полезная информация из каталога:

Кабели марок ПвП, АПвП, ПвПу, АПвПу, ПвБП, АПвБП, в том числе с индексами «г», «2г», «гж» и «2гж» предназначены для эксплуатации при прокладке в земле независимо от степени коррозионной активности грунтов. Допускается прокладка этих кабелей на воздухе, в том числе в кабельных сооружениях, при условии обеспечения дополнительных мер противопожарной защиты, например, нанесения огнезащитных покрытий.

Прокладка одножильного кабеля в стальной трубе не допускается.

Кабели указанных марок с индексами «г», «2г», «гж» и «2гж» предназначены для прокладки в земле, а также в воде (в несудоходных водоемах) — при соблюдении мер, исключающих механические повреждения кабеля.

Кабели марок ПвПу, АПвПу, ПвБП, АПвБП, в том числе с индексами «г», «2г», «гж» и «2гж» предназначены для прокладки на сложных участках кабельных трасс, содержащих более 4 поворотов под углом свыше 30 градусов или прямолинейные участки с более чем 4 переходами в трубах длиной свыше 20 м или с более чем 2 трубными переходами длиной свыше 40 м.

Кабели марок ПвВ, АПвВ, ПвВнг-LS, АПвВнг-LS, ПвБВ, АПвБВ, ПвБВнг-LS, АПвБВнг-LS могут быть проложены в сухих грунтах (песок, песчано-глинистая и нормальная почва с влажностью менее 14%).

Кабели марок ПвВнг-LS, ПвБВнг-LS могут быть использованы для прокладки во взрывоопасных зонах классов В-I, B-Ia; кабели марок АПвВнг-LS,

АПвБВнг-LS – во взрывоопасных зонах В-Iб, В-Iг, B-II, B-IIa.

Кабели предназначены для прокладки на трассах без ограничения разности уровней.

Исходя из рекомендаций, выбор мой остановился на АПвБП. В этой статье не буду рассматривать стоимость различных марок кабелей.

Далее нам необходимо определиться с сечением кабеля.

Сечение кабеля 6 (10) кВ выбирают на основании расчетного тока линии, длины линии, тока трехфазного КЗ на шинах питания, времени срабатывания защиты, материала изоляции и жилы кабеля.

Основные проверки, которые нужно выполнить при выборе сечения кабеля 6 (10) кВ:

1 Проверка кабеля по длительно допустимому току.

2 Проверка кабеля по экономической плотности тока.

3 Проверка кабеля по термической устойчивости току трехфазного КЗ.

4 Проверка по потере напряжения (актуально для больших длин).

5 Проверка экрана кабеля на устойчивость току двухфазного КЗ (при наличии).

Для упрощения выбора сечения кабеля я сделал программу: расчет сечения кабеля 6 (10) кВ.

Внешний вид программы:

Программа для расчета сечения кабеля 6 (10)кВ

Более подробно о программе и выборе сечения кабеля смотрите в видео:

Выбор сечения кабеля:

Изначально выбираем кабель по расчетному току: АПвБП- (3×35) 16.  Расчетный ток в нашем примере всего около 15 А. По экономической плотности тока выходит и вовсе 10 мм2.

При проверке кабеля на термическую устойчивость минимальное сечение получается 29 мм2. Здесь стоит отметь, ток трехфазного КЗ я принял 10 кА, т. к. сейчас в отпуске и нет возможности запросить данное значение в РЭСе, а в ТУ не указано. Согласно ТУ необходимо предусмотреть КСО с выключателем нагрузки (для установки в подключаемой ТП). Выключатель нагрузки я применил с предохранителями типа ПКТ на 40 А.

Согласно время-токовой характеристике предохранителя ПКТ, время отключения составит не более 0,01 с. Я решил перестраховаться и принял время 0,1 с.

ВТХ ПКТ

Для расчета потери напряжения можно использовать программу: расчет потери напряжения в трехфазных сетях с учетом индуктивного сопротивления. В моем случае нет смысла проверять кабель на потери напряжения.

Экран выбранного кабеля способен выдержать ток двухфазного КЗ.

На основании всех расчетов и с учетом того, что ток трехфазного КЗ мне пришлось принять самому я решил подстраховаться и выбираю кабель АПвБП- (3×50) 16, за что от вас получу справедливую критику Попытаюсь запросить дополнительную информацию в РЭСе и сделаю новый расчет, который с этой программой займет пару минут.

Скачать статью: Особенности расчетов электрокабелей высокого напряжения.

На подготовку данного материала у меня ушло около двух дней. Но, с этими знаниями вы сможете сделать подобную программу значительно быстрее.

P.S. Условия получения всех программ смотрите на странице МОИ ПРОГРАММЫ.

Советую почитать:

2.4 Выбор сечения кабелей 10 кВ

Выбор кабелей,
питающих ЗРУ-10 кВ НПС-2, а также кабелей,
идущим к высоковольтным электродвигателям
и другим потребителям осуществляется
по длительному допустимому току нагрева.

Выбор сечения
производят по расчетному току. Поскольку
в большинстве потребители нефтяной
промышленности относятся к I
категории по надежности электроснабжения,
то за расчетные токи потребителей
принимают токи послеаварийного режима.

Для электродвигателей
номинальный ток определяется по формуле:

(2. 18)

где
cosφном= 0,86 –
коэффициент мощности двигателя при
номинальном режиме;

ηном
номинальный КПД двигателя.

Для понижающих
трансформаторов

(2.19)

где
Sном
номинальная мощность силового
трансформатора.

Произведем
предварительный выбор сечения проводов
по нагреву. Проверка удовлетворительна
если выполняется условие:

Iрасч
Iдоп.
(2.20)

Так как
система уже функционировала ранее, и
кабельные трассы с кабелями также уже
были проложены предлагается проверить
уже существующие кабели по допустимому
току и падению напряжения.

Для параллельно
работающих линий, питающих ЗРУ-10 кВ,
рассчитаем ток послеаварийного режима:

Ввиду большого
значения тока предлагается каждую
питающую линию выполнить проводами с
расщеплением фазы на два провода (т. е.
проверить возможность сохранения старой
ЛЭП).

Результаты
остальных расчетов сведены в таблицу
2.4.

Таблица 2.4
— Выбор сечений и марки силовых кабелей

Название

SР,

кВ.А

Iрасч,

А

Iдоп,

А

Сечение
жил, мм2

Марка кабеля

ТСН ТМ-630

630

36,4

240

3х120

ААБлУ

СТД-8000

8000

461,9

2х355

3х240

ААБлУ (2
каб. )

4АРМ-8000

8000

461,9

2х355

3х240

ААШВ (2 каб.)

КЛ «Жилпос.-1»,
КЛ «Жилпос.-2»

120

6,93

240

3х120

ААБлУ

ВЛ ЭХ3 «Юг»

260

15,0

240

3х120

ААБлУ

ВЛ ЭХ3 «Север»

100

5,8

240

3х120

ААБлУ

ВЛ ЭХ3 «Вагай»

270

15,6

240

3х120

ААБлУ

ВЛ к ЗРУ-10 кВ

26198,4

1512,6

2х1100

3х600

А-600 (2 пр. )

КЛ от ЗРУ 10
кВ НПС-3 (резервный ввод)

13099,2

(26198,4)

758,3

(1512,6)

4х355

3х240

ААБлУ (4
каб.)

Шинопровод

ЗРУ-10 кВ

26198,4

1512,6

1625

100х8

Алюминий

Как видно
из приведенной таблицы все кабельные
и воздушные линии работают без перегрузки,
что соответствует (2.20). И хотя многие КЛ
работают в недогруженном режиме, замену
их производить не будем, так как они еще
не выработали свой ресурс. При этом
большее сечение кабеля вызывает меньшее
падение напряжения в них.

Шинопровод
внутри ЗРУ-10 кВ при замене всего РУ
предполагается выбрать заново. Его
выбор по допустимому току также приведен
в табл. 2.4. Проверка по термической
и электродинамической стойкости будет
произведена после расчетов токов
короткого замыкания.

Проверим
правильность выбора кабелей по падению
напряжения в концах воздушных и кабельных
линий. Допустимое падение напряжения
в нормальном режиме составляет 5%.

Потери напряжения,
в процентах от номинального напряжения,
для участка ЛЭП определяются по формуле:

(2.21)

где r0
– удельное
активное сопротивление, Ом/км.

х0
– удельное
реактивное сопротивление, Ом/км.

l
– длина
участка, км.

Данные для
расчета проводов и сопротивлений ЛЭП,
а также результаты расчетов сведем в
таблицу 2.5.

Таблица
2.5 — Проверка
сечения КЛ-10 кВ на падение напряжения

Название
линии

l,
км

Iрасч,
А

R0,
Ом

X0,
Ом

cos
φ

ΔU,
%

ΔUΣ,
%

ВЛ
к ЗРУ-10 кВ

0,280

1512,6

0,025

0,001

0,98

0,18

0,18

ТСН1
ТМ-630

0,024

36,4

0,245

0,031

0,92

0,01

0,19

ТСН2
ТМ-630

0,038

36,4

0,245

0,031

0,92

0,01

0,19

СТД-8000
№1

0,150

461,9

0,563

0,038

0,9

1,05

1,23

СТД-8000
№3, 4

0,135

461,9

0,563

0,038

0,9

0,94

1,12

4АРМ-8000
№2

0,140

461,9

0,563

0,038

0,9

0,98

1,16

КЛ
«Жилпос.-1»,

КЛ
«Жилпос.-2»

0,3

6,93

0,245

0,031

0,96

0,01

0,20

ВЛ
ЭХ3 «Юг»

0,3

15,0

0,245

0,031

0,96

0,03

0,21

ВЛ
ЭХ3 «Север»

0,3

5,8

0,245

0,031

0,96

0,01

0,19

ВЛ
ЭХ3 «Вагай»

0,6

15,6

0,245

0,031

0,96

0,07

0,25

При определении
ΔUΣ
у электроприемников учитывалось падение
напряжения как в ЛЭП, питающих
непосредственно их, так и падение
напряжения в КЛ-10 кВ питающей
ЗРУ-10 кВ.

Как видно из
таблицы 2.5 все кабели работают с допустимым
падением напряжения.

3.2.3. Выбор сечения. Токовые нагрузки кабелей

3.2.3. Выбор сечения. Токовые нагрузки кабелей

Выбор сечения КЛ выполняется по нормативной плотности тока, установленной в зависимости от конструкции кабеля и числа часов использования максимальной нагрузки (табл. 3.36).

Таблица 3.36

Экономическая мощность КЛ, рассчитанная по нормированной плотности тока, приведена в табл. 3.37 и 3.38.

Таблица 3.37

Таблица 3.38

Таблица 3.39

Сечение жил кабеля, выбранное по нормированным значениям плотности тока, должно удовлетворять условиям допустимого нагрева в нормальных и послеаварийных режимах работы.

В ряде случаев (например, при прокладке в воздухе) сечение кабеля определяется допустимой длительной нагрузкой, которая (особенно для маслонаполненных кабелей) ниже экономической. Значение допустимого длительного тока для кабелей зависит от конструкции кабеля, условий прокладки, количества параллельно проложенных кабелей и расстояния между ними.

Для каждой КЛ должны быть установлены наибольшие допустимые токовые нагрузки, определяемые по участку трассы с наихудшими тепловыми условиями при длине участка не менее 10 м.


Длительно допустимые токовые нагрузки для разных марок кабелей напряжением до 35 кВ при различных условиях прокладки принимаются в соответствии с ПУЭ. В табл. 3.40-3.42 приведены допустимые длительные мощности КЛ, рассчитанные при среднем эксплуатационном напряжении (1,05 Uном).

Допустимые нагрузки для маслонаполненных кабелей в большой степени зависят от условий прокладки. Данные табл. 3.38 приведены для среднерасчетных условий и конструкций отечественных кабелей переменного тока. Приведенные значения соответствуют длинам, не превышающим 8-10 км. Для КЛ длиной более 10 км определение передаваемой мощности производится специальным расчетом или ориентировочно по данным рис. 3.3.

Допустимые длительные мощности соответствуют условию прокладки в земле одного кабеля. При прокладке нескольких кабелей вводятся поправочные коэффициенты: 0,9 — для двух кабелей, 0,77 — для четырех, 0,72 — для шести кабелей. При прокладке в воздухе и воде допустимые длительные мощности соответствуют любому количеству кабелей.

Данные табл. 3.40-3.42 определены исходя из температуры окружающей среды: при прокладке кабеля в земле +15 °C и при прокладке в воздухе (туннеле) +25 °C. При другой температуре окружающей среды данные умножают на коэффициенты, приведенные в табл. 3.43.

Таблица 3.40

Таблица 3.41

Таблица 3.42

Окончание табл. 3.42

Таблица 3.43

Для кабелей с бумажной пропитанной изоляцией напряжением до 10 кВ, несущих нагрузки меньше допустимых, кратковременную перегрузку допускается принимать в соответствии с таблицей 3.44.

Таблица 3.44

На период ликвидации послеаварийного режима для кабелей с изоляцией из сшитого полиэтилена допускается перегрузка до 17 % номинальной при их прокладке в земле и до 20 % при прокладке в воздухе, а для кабелей из поливинилхлоридного пластика и полиэтилена — до 10 % при их прокладке в земле и в воздухе на время максимума нагрузки, если его продолжительность не превышает 8 ч в сутки, а нагрузка в остальные периоды времени не превышает 1000 ч за срок службы кабелей.

Для кабелей, находящихся в эксплуатации более 15 лет, перегрузка по току не должна превышать 10 %.

Допустимый ток нагрузки одноцепных и двухцепных КЛ 110–220 кВ, проложенных в земле и воздухе, приведен в табл. 3.45—3.51. В случае двухцепных линий ток приведен для одной цепи.

В табл. 3.49-3.50 указан допустимый ток нагрузки одноцепных и двухцепных линий 110 и 220 кВ, проложенных в земле кабелем марки МВДТ.

Расстояние между центрами параллельных линий высокого давления, проложенных в земле, при расчете взаимного теплового влияния принято равным 800 мм. Допустимые нагрузки линий высокого давления, проложенных в земле, даны для случаев как естественного, так и искусственного охлаждения кабелей с помощью продольной циркуляции масла со скоростью 0,1 м/с, осуществляемой на участках различной длины.

В таблице 3.51 указан допустимый ток нагрузки линий 110 и 220 кВ, проложенных в воздухе кабелями МВДТ.

При прокладке в воздухе влияние параллельных линий высокого давления не учитывалось.

Таблица 3.45

Таблица 3.46

Таблица 3.47

Таблица 3.48

Таблица 3.49

Таблица 3.50

Таблица 3.51

Для маслонаполненных КЛ 110–220 кВ разрешается перегрузка до повышения температуры жилы не более чем на 10 °C выше нормированной заводом. При этом длительность непрерывной перегрузки не должна превышать 100 ч, а суммарная — 500 ч в год. Этим условиям примерно соответствуют кратности перегрузок, указанные в табл. 3.52.

Таблица 3.52

Кабель 110 кВ с пластмассовой изоляцией при заполнении суточного графика нагрузки 0,8 допускает перегрузку в 1,2 раза.

При прокладке нескольких кабелей в земле, а также в трубах продолжительно допустимые мощности (токи) должны быть уменьшены путем введения соответствующих коэффициентов (табл. 3.53).

Для кабелей, проложенных в земле, продолжительно допустимые мощности (токи) приняты из расчета, что удельное тепловое сопротивление земли составляет 1,2 мК /Вт. Если сопротивление отличается от указанного, следует применять поправочные коэффициенты по табл. 3.54.

Таблица 3.53

Таблица 3.54

Удельные емкостные токи однофазного замыкания на землю кабелей 6-35 кВ с бумажной изоляцией и вязкой пропиткой приведены в табл. 3.55.

Таблица 3.55

Технические параметры кабелей 10–70 кВ и 110–500 кВ с пластмассовой изоляцией фирмы «АВВ» приведены в табл. 3.56-3.68 В табл. 3.56-3.59 приведены длительно допустимые токи для одножильных кабелей с пластмассовой изоляцией 10–70 кВ и 110500 кВ, проложенных в земле и воздухе.

Таблица 3.56

Таблица 3.57

Таблица 3.58

Таблица 3.59

Поправочные коэффициенты для одножильных кабелей с пластмассовой изоляцией приведены в табл. 3.60-3.68

Поправочный коэффициент на сечение экрана применяется к одножильным кабелям, проложенным треугольником при заземлении экранов с двух сторон. Поправочный коэффициент на сечение экрана при заземлении с одной стороны или при транспозиции экранов не применяется. Поправочный коэффициент к таблицам 3.56 и 3.57 приведен в табл. 3.60

Таблица 3.60

Поправочный коэффициент к таблицам 3.58 и 3.59 приведен в табл. 3.61.

Таблица 3.61

В табл. 3.62-3.68 приведены поправочные коэффициенты: при прокладке кабелей в земле на глубину прокладки (табл. 3.62), на температуру грунта (табл. 3.63), на термическое удельное сопротивление грунта (табл. 3.64), на межфазное расстояние (табл. 3.65,

Таблица 3.62

Таблица 3.63

Таблица 3.64

Таблица 3.65

Таблица 3.66

Таблица 3.67

Поправочный коэффициент на кабели, проложенные в воздухе, приведен в табл. 3.68.

Таблица 3.68

Кабель с СПЭ-изоляцией может подвергаться перегрузкам с температурой свыше 90 °C, но как можно реже; при этом температура жилы может достигать 105 °C. Отдельные аварийные перегрузки не нанесут значительных повреждений кабелю. Тем не менее частота и длительность таких перегрузок должны быть сведены к минимуму.

Пример применения поправочных коэффициентов

Две группы кабелей с СПЭ-изоляцией на напряжение 110 кВ с алюминиевыми жилами 1×500/150 мм2, проложенные в земле треугольником. Экраны заземлены с двух сторон, температура жилы 90 °C. По табл. 3.59 определяется номинальный ток 595 А без поправки.


Линии напряжением 6—10–20 кВ подлежат проверке на максимальную потерю напряжения от ЦП до удаленной трансформаторной ПС (ТП) 6-10-20 кВ.

Опыт проектирования линий 6-10-20 кВ показывает, что достаточно анализировать только режимы крайних ТП: ближайшей к ЦП и наиболее удаленной.

Средние значения потерь напряжения в КЛ 6-10-20 кВ составляют 5–7 %, при этом меньшие значения соответствуют длинным, а большие — коротким линиям 0,4 кВ, отходящим от ТП 6—10–20/0,4 кВ. Линии 6-10 кВ, идущие к электроприемникам этого напряжения, проверяются на допустимые отклонения напряжения, регламентируемые ГОСТ 13109-97.

Кабельные линии (кроме защищаемых плавкими предохранителями) подлежат проверке по термической стойкости при токах КЗ. Температура нагрева проверяемых проводников при КЗ должна быть не выше следующих предельно допустимых значений, °С:

Кабели до 10 кВ включительно с изоляцией:

бумажно-пропитанной — 200;

поливинилхлоридной или резиновой — 150;

полиэтиленовой — 120;

Кабели 20-220 кВ — 125.

Предельные значения установившегося тока КЗ, соответствующего термической стойкости кабелей 10 кВ с медной и алюминиевой жилой и бумажной изоляцией, приведены на рис. 3.6.

Наибольшее развитие в России получили сети 6 кВ, на их долю приходится около 50 % протяженности сетей среднего напряжения. Одним из направлений развития сетей среднего напряжения является перевод сети 6 кВ на 10 кВ. Это наиболее сложно осуществить в городских сетях, где сеть 6 кВ выполнена кабелем.

Влияние повышенного напряжения на срок службы кабелей, переведенных с 6 на 10 кВ, определяет следующую последовательность принятия решений.

Целесообразность использования кабелей 6 кВ на напряжении 10 кВ или их замены при переводе КЛ 6 кВ на напряжение 10 кВ следует определять исходя из технико-экономического анализа с учетом местных условий. При этом следует учитывать, что сроки работы кабелей 6 кВ, переведенных на напряжение 10 кВ, в зависимости от их состояния на момент перевода и с учетом режимов работы линий распределительной и питающей городской сети (до и после перевода), а также предшествующего срока работы кабелей на номинальном напряжении могут быть приняты равными:

20 годам — для кабельных линий городской распределительной сети со сроком эксплуатации кабелей до перевода не более 15 лет;

15 годам — для кабельных линий городской распределительной сети со сроком эксплуатации кабелей до перевода более 15 лет и для кабельных линий, токовая нагрузка которых после перевода в течение ближайших пяти лет может превысить 0,5 длительно допустимой;

8-12 годам — для линий городской питающей сети и для кабельных линий, токовая нагрузка которых после перевода будет превышать 0,5 длительно допустимой.

Следует считать, что указанные сроки работы кабельных линий после их перевода с 6 кВ на напряжение 10 кВ не являются предельными и могут быть увеличены с учетом технического состояния кабельных линий и степени старения и износа изоляции кабелей.

По истечении указанных сроков эксплуатации кабельных линий, переведенных с 6 кВ на напряжение 10 кВ, степень старения и износа изоляции рекомендуется устанавливать путем измерения электрических характеристик (сопротивления изоляции, тангенса угла диэлектрических потерь), вскрытия и разборки трех образцов кабелей одного и того же года прокладки и перевода на повышенное напряжение и определения значения эквивалентного напряжения пробоя.

Потери электроэнергии в кабеле складываются из потерь в токоведущей части и изоляции кабеля. Потери в токоведущей части определяются в зависимости от номинального напряжения, материала жилы и загрузки КЛ, а в изоляции кабелей — от напряжения и тангенса угла диэлектрических потерь. Для эксплуатируемых в настоящее время кабелей годовые потери электроэнергии в изоляции составляют:

Меньшие значения относятся к кабелям малых сечений.







Данный текст является ознакомительным фрагментом.




Продолжение на ЛитРес








ПУЭ 7. Правила устройства электроустановок. Издание 7

1.3.25. Сечения проводников должны быть проверены по экономической плотности тока. Экономически целесообразное сечение S, мм2, определяется из соотношения

где I — расчетный ток в час максимума энергосистемы, А; Jэк — нормированное значение экономической плотности тока, А/мм², для заданных условий работы, выбираемое по табл. 1.3.36.

Сечение, полученное в результате указанного расчета, округляется до ближайшего стандартного сечения. Расчетный ток принимается для нормального режима работы, т. е. увеличение тока в послеаварийных и ремонтных режимах сети не учитывается.

1.3.26. Выбор сечений проводов линий электропередачи постоянного и переменного тока напряжением 330 кВ и выше, а также линий межсистемных связей и мощных жестких и гибких токопроводов, работающих с большим числом часов использования максимума, производится на основе технико-экономических расчетов.

1.3.27. Увеличение количества линий или цепей сверх необходимого по условиям надежности электроснабжения в целях удовлетворения экономической плотности тока производится на основе технико-экономического расчета. При этом во избежание увеличения количество линий или цепей допускается двукратное превышение нормированных значений, приведенных в табл. 1.3.36.

Таблица 1.3.36. Экономическая плотность тока

Проводники

Экономическая плотность тока, А/мм, при числе часов использования максимума нагрузки в год

более 1000 до 3000

более 3000 до 5000

более 5000

Неизолированные провода и шины:

– медные

2,5

2,1

1,8

– алюминиевые

1,3

1,1

1,0

Кабели с бумажной и провода с резиновой и поливинилхлоридной изоляцией с жилами:

– медными

3,0

2,5

2,0

– алюминиевыми

1,6

1,4

1,2

Кабели с резиновой и пластмассовой изоляцией с жилами:

– медными

3,5

3,1

2,7

– алюминиевыми

1,9

1,7

1,6

В технико-экономических расчетах следует учитывать все вложения в дополнительную линию, включая оборудование и камеры распределительных устройств на обоих концах линий. Следует также проверять целесообразность повышения напряжения линии.

Данными указаниями следует руководствоваться также при замене существующих проводов проводами большего сечения или при прокладке дополнительных линий для обеспечения экономической плотности тока при росте нагрузки. В этих случаях должна учитываться также полная стоимость всех работ по демонтажу и монтажу оборудования линии, включая стоимость аппаратов и материалов.

1.3.28. Проверке по экономической плотности тока не подлежат:

  • сети промышленных предприятий и сооружений напряжением до 1 кВ при числе часов использования максимума нагрузки предприятий до 4000-5000;
  • ответвления к отдельным электроприемникам напряжением до 1 кВ, а также осветительные сети промышленных предприятий, жилых и общественных зданий;
  • сборные шины электроустановок и ошиновка в пределах открытых и закрытых распределительных устройств всех напряжений;
  • проводники, идущие к резисторам, пусковым реостатам и т. п.;
  • сети временных сооружений, а также устройства со сроком службы 3-5 лет.

1.3.29. При пользовании табл. 1.3.36 необходимо руководствоваться следующим (см. также 1.3.27):

1. При максимуме нагрузки в ночное время экономическая плотность тока увеличивается на 40%.

2. Для изолированных проводников сечением 16 мм2 и менее экономическая плотность тока увеличивается на 40%.

3. Для линий одинакового сечения с n ответвляющимися нагрузками экономическая плотность тока в начале линии может быть увеличена в ky раз, причем ky определяется из выражения

где l1,l2,…ln — нагрузки отдельных участков линии; l1,l2,…ln — длины отдельных участков линии; L — полная длина линии.

4. При выборе сечений проводников для питания n однотипных, взаиморезервируемых электроприемников (например, насосов водоснабжения, преобразовательных агрегатов и т. д.), из которых m одновременно находятся в работе, экономическая плотность тока может быть увеличена против значений, приведенных в табл. 1.3.36, в kn раз, где kn равно:

1.3.30. Сечение проводов ВЛ 35 кВ в сельской местности, питающих понижающие подстанции 35/6 — 10 кВ с трансформаторами с регулированием напряжения под нагрузкой, должно выбираться по экономической плотности тока. Расчетную нагрузку при выборе сечений проводов рекомендуется принимать на перспективу в 5 лет, считая от года ввода ВЛ в эксплуатацию. Для ВЛ 35 кВ, предназначенных для резервирования в сетях 35 кВ в сельской местности, должны применяться минимальные по длительно допустимому току сечения проводов, исходя из обеспечения питания потребителей электроэнергии в послеаварийных и ремонтных режимах.

1.3.31. Выбор экономических сечений проводов воздушных и жил кабельных линий, имеющих промежуточные отборы мощности, следует производить для каждого из участков, исходя из соответствующих расчетных токов участков. При этом для соседних участков допускается принимать одинаковое сечение провода, соответствующее экономическому для наиболее протяженного участка, если разница между значениями экономического сечения для этих участков находится в пределах одной ступени по шкале стандартных сечений. Сечения проводов на ответвлениях длиной до 1 км принимаются такими же, как на ВЛ, от которой производится ответвление. При большей длине ответвления экономическое сечение определяется по расчетной нагрузке этого ответвления.

1.3.32. Для линий электропередачи напряжением 6-20 кВ приведенные в табл. 1.3.36 значения плотности тока допускается применять лишь тогда, когда они не вызывают отклонения напряжения у приемников электроэнергии сверх допустимых пределов с учетом применяемых средств регулирования напряжения и компенсации реактивной мощности.

Стандартные сечения кабеля и провода. Блог компании РусЭлектроКабель


Главные параметры кабеля, которые нужно учитывать при разработке проектов электроснабжения, материал и сечение жил. Производители выпускают широкий ассортимент продукции разных характеристик. Рассказываем о существующих видах кабеля и местах их применения. 


Медный и алюминиевый кабели имеют одинаковые стандартные сечения: 0,5; 0,75 1; 1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500; 625; 800; 1000; 1200; 1600 кв. мм. Однако, минимальная площадь сечения жилы алюминиевого кабеля 2,5 кв.мм и 0,5 кв.мм медного кабеля. Максимальное значение для обоих проводников – 1600 кв.мм. Алюминий – материал относительно низкой прочности, кабель толщиной менее 2,5 кв. мм легко ломается после двух, трех изгибов, а также «плывет» в местах объединения.


      


Выбор кабеля для подключения бытовых приборов


Для подключения бытовых устройств освещения подходит медный провод размером от 1 до 1,5 кв. мм. Его можно заменить алюминиевой продукцией минимальных параметров. Для установки розеток необходимо использовать изделия площадью не менее 2,5 кв. мм независимо от материала.


Если требуется подключить мощные устройства, создающие относительно большую нагрузку на сеть, лучше применять медный кабель размером от 4 до 10 кв. мм в зависимости от характеристик прибора. Чтобы снизить нагрузку с общей электропроводки, для питания мощной бытовой техники прокладывают выделенную линию. Такие кабели также используют для подвода напряжения к распредкоробкам, питающим несколько бытовых розеток.


Проводники площадью более 10 кв. мм применяют только для подвода напряжения к электрическим щиткам. Неэкранированный кабель сечением от 0,5 до 2,5 кв. мм применяют для подвода напряжения к бытовой технике.


Выбор сечения кабеля для электроснабжения производственных помещений


Для питания автоматических устройств, схем управления, аппаратов защиты, которые используются для безопасной и эффективной эксплуатации промышленного оборудования применяют провода площадью от 1 до 6 кв. мм.


Кабель силовой до 120 кв. мм востребован для электроснабжения производственного оборудования высокой мощности. Провода площадью 2,5 – 50 кв. мм применяют в схемах напряжением до 1 тыс. Вольт. Для прокладки высоковольтных сетей требуется кабель размером от 35 до 1600 кв. мм.

Онлайн расчет сечения кабеля по допустимой потере напряжения с учетом индуктивности линии .

Нравится

Онлайн расчеты.


1. Онлайн расчет сечения провода по нагреву и по допустимой потере напряжения (с учетом индуктивности линии) .

2. Онлайн расчет сечения провода по допустимой потере напряжения (с учетом индуктивности линии).

3. Упрощенный расчет онлайн расчет сечения провода по допустимой потере напряжения (без учета индуктивности линии).

4. Онлайн расчет стрелы провеса провода воздушной линии.


Расчет (выбор) сечения провода (кабеля) по допустимой потере напряжения с учетом индуктивности линии .

1. Введите мощность:  кВт

2. Введите cosfi:

3. Введите длину участка:  км

4. Если сечение провода велико Проложить в параллель: 1234 шт.

5. Выберите номинальное напряжение: 0.220.380.66610 кВ

6. Выберите количество фаз: 1фаза3фазы

7. Выберите материал проводника: АлюминийМедь

8. Выберите тип линии: ВЛКЛ

9. Выберите назначение линии:
Не определеноКабельная линия до 1 кВ.Кабельная линия 6 кВ.Кабельная линия 10 кВ.ВЛ без пересечений толщ. гололедн. стенки до 10 ммВЛ без пересечений толщ. гололедн. стенки 15 и болееВЛ пересечение с рекой толщ. гололедн. стенки до 10 ммВЛ пересечение с рекой толщ. гололедн. стенки 15 и болееВЛ пересечение с линиями связи ВЛ пересечение с надз. трубопроводом.ВЛ пересечение с Ж/д толщ. гололедн. стенки до 10 ммВЛ пересечение с Ж/д толщ. гололедн. стенки 15 и более

9. Введите допустимую потерю напряжения:
норма по ГОСТ 13109-97 — 5%
 %

Результаты вычисления

Расчетное сечение проводника:  мм2
Выбранное сечение проводника:  мм2
Расчетная величина потери напряжения:  %

Рассчет выполнен на основании методики данной в
Справочнике по расчету проводов и кабелей. Ф. Ф. Карпов и В.Н. Козлов.(стр. 134).
Справочнике по расчету электрических сетей. И. Ф. Шаповалов.(стр. 78)

Почитать теорию на сайте www.websor.ru

Также для выбора сечения провода необходимо руководствоваться ПУЭ-7 изд. и следующими таблицами из справочника

▷ Выбор силовых кабелей

Выбор силовых кабелей для данной цели зависит от ряда факторов. Следовательно, его выбор никогда не бывает простой задачей. Выбор также затруднен, поскольку на рынке доступно большое разнообразие кабелей.

В этой статье мы увидим некоторые важные факторы, определяющие выбор силовых кабелей.

Номинальное напряжение

Необходимо выбрать кабель питания, способный поддерживать определенное напряжение в системе.

В случае системы переменного тока номинальное напряжение силового кабеля всегда должно быть равно или превышать напряжение системы.

Для определения номинального напряжения используйте следующую формулу:

Если V0 — номинальное напряжение кабеля между каждым проводником и землей,

Тогда V — номинальное напряжение кабеля между фазными проводниками, выраженное как:

В = √3 В0

Точный выбор номинального напряжения силового кабеля зависит от пределов устойчивости к замыканиям на землю и технических характеристик, разработанных проектировщиками энергосистемы.

Согласно стандартам IEC существуют следующие три классификации:

  • Категория A: замыкание на землю должно быть устранено в течение 1 секунды
  • Категория B: КЗ на землю устраняется в течение 1 часа для кабелей типа IEC-183 и устраняется в течение 8 часов для кабелей типа IEC-502
  • Категория C: Все системы, не подпадающие под действие A и B

Для категорий A и B можно выбрать кабели с номинальным напряжением, равным напряжению системы. Однако для категории C номинальное напряжение кабеля должно быть выше напряжения системы.

например для системного напряжения 3,3 кВ следует выбирать кабель с номинальным напряжением 6,6 кВ.

Текущая пропускная способность

Каждый силовой кабель рассчитан на работу в определенных температурных условиях.

Допустимая нагрузка по току силового кабеля также зависит от материала проводника (медь / алюминий) и типа изоляции.
Таким образом, кабель с медным проводом имеет большую пропускную способность по току, чем алюминий.

Изоляция из сшитого полиэтилена

лучше, чем из ПВХ, поэтому допустимая нагрузка по току кабеля с изоляцией из сшитого полиэтилена больше, чем у кабеля с изоляцией из ПВХ.

Продолжительная эксплуатация кабеля сверх его номинальной допустимой нагрузки сокращает срок его службы, так как изоляция становится склонной к выходу из строя.

Допустимая нагрузка по току также зависит от рабочей температуры. Чем выше температура, тем ниже допустимая токовая нагрузка кабеля и наоборот.

Коэффициент снижения

Кабель питания, разработанный для стандартных условий эксплуатации, на практике может не работать.

Следовательно, это может повлиять на допустимую нагрузку по току.

Некоторые примеры этого: Кабели, проложенные глубоко под землей, будут иметь меньшую пропускную способность по току, чем кабели, проложенные в воздухе. На это влияет множество факторов, таких как температура почвы, тепловое сопротивление почвы и т. Д.

Чтобы справиться с этим, с кабелями связан коэффициент снижения номинальных характеристик, позволяющий получить фактическое значение допустимой нагрузки по току.

Фактическая пропускная способность по току = коэффициент снижения x допустимая токовая нагрузка кабеля ниже стандартного. условия.

Таким образом, для кабеля на 100 А с коэффициентом снижения 0,8 фактическая допустимая нагрузка по току будет: 0,8 x 100 = 80 A

Падение напряжения

Производитель силового кабеля указывает это как часть своего паспорта. Падение напряжения по длине кабеля питания очень важно. Выражается как: мВ / А-м.

Падение напряжения на единицу длины кабеля должно быть как можно меньше, чтобы напряжение на стороне подачи было примерно таким же, как на стороне питания.

Устойчивость к короткому замыканию

Силовой кабель в случае короткого замыкания должен выдерживать высокие значения тока без повреждения кабеля и изоляции.

Выбор выдерживаемой силы тока короткого замыкания силового кабеля напрямую зависит от технических характеристик подключенного защитного устройства.

Например, если выключатель, подключенный к силовому кабелю, настроен на срабатывание при 1000 А за 1 секунду, то нам нужно выбрать соответствующий кабель, который может выдерживать высокий ток 1000 А в течение 1 секунды.

Наличие кабелей

Это необходимо уточнить у производителя или продавца конкретного кабеля. Кабели производятся сегментами с минимальной длиной, поэтому будет сложно приобрести 30-метровый кабель площадью 300 кв. Мм, а не 300-метровый такой же кабель.

Кроме того, стоимость этих двух количеств может сильно различаться.

Радиус изгиба

Это может быть практической проблемой во время установки. Многожильные кабели большого размера имеют больший радиус изгиба, чем малогабаритные.Следовательно, многожильный кабель из сшитого полиэтилена того же размера имеет больший радиус изгиба, чем ПВХ.

Чтобы избежать этого, подрядчику, возможно, придется выбрать отдельные одножильные кабели.

Прочие факторы

Следует проявлять осторожность при работе с кабелями с алюминиевыми проводниками, поскольку металл имеет тенденцию к очень быстрому окислению при контакте с воздухом и образует тонкую пленку диэлектрического покрытия. Кабели с алюминиевыми жилами не используются при установке подстанций, подстанций.

Алюминий предпочтительнее для других областей применения из-за его высокого отношения проводимости к массе.

Кабели большого размера довольно жесткие, их сложно сгибать, устанавливать и заделывать.

Обзор тестирования и диагностики силового кабеля

В этой статье представлен обзор некоторых широко используемых методов технического обслуживания и диагностики, которые коммерчески доступны для проведения полевых испытаний силовых кабелей среднего и высокого напряжения. Фото: TestGuy.

Полевые испытания кабелей среднего и высокого напряжения могут проводиться по разным причинам, например, приемка после установки, определение постепенного ухудшения изоляции с течением времени, проверка стыков и стыков, а также специальный ремонт.Эта оценка относится как к самому кабелю, так и к связанным с ним аксессуарам (сращиваниям и заделкам), именуемым «кабельной системой».

В соответствии с ICEA, IEC, IEEE и другими согласованными стандартами испытания могут проводиться с использованием постоянного тока, переменного тока промышленной частоты или переменного тока очень низкой частоты. Эти источники могут использоваться для проведения испытаний на стойкость изоляции, базовых диагностических испытаний, таких как анализ частичных разрядов, а также для определения коэффициента мощности или коэффициента рассеяния.

В этой статье представлен обзор некоторых широко используемых методов технического обслуживания и диагностики, которые коммерчески доступны для проведения полевых испытаний силовых кабелей среднего и высокого напряжения. Из-за различных доступных методов тестирования кабелей выбор метода тестирования должен производиться только после оценки каждого метода тестирования и тщательного анализа установленной кабельной системы сертифицированным агентством по тестированию и владельцем кабеля.

Соображения безопасности

При проверке кабелей безопасность персонала является наиболее важной.Все испытания кабелей и оборудования должны выполняться только квалифицированными специалистами в изолированных и обесточенных системах, если иное не требуется и не разрешено. Бывают случаи, когда переключатели могут быть подключены к концу кабеля и служить для изоляции кабеля от остальной системы. Соблюдайте особую осторожность после обесточивания силовых кабелей, поскольку они способны удерживать большие емкостные заряды, используйте соответствующие СИЗ и инструменты электробезопасности, чтобы правильно разрядить кабели до и после испытания.


Типы испытаний кабелей

Полевые диагностические испытания могут проводиться на кабельных системах на различных этапах их эксплуатации. В соответствии со стандартом IEEE 400 испытания кабеля определяются как:

  • Проверка установки: Выполняется после установки кабеля, но перед установкой любых принадлежностей (стыков / сращиваний и концевых заделок). Эти испытания предназначены для обнаружения любых повреждений кабеля при изготовлении, транспортировке и установке.
  • Приемочное испытание: Выполняется после установки всех кабелей и принадлежностей, но до подачи на кабель системного напряжения. Его цель — обнаружение повреждений кабеля и кабельных аксессуаров при транспортировке и установке. Также называется «испытанием после укладки».
  • Техническое обслуживание: Выполняется на протяжении всего срока службы кабельной системы. Его цель — оценить состояние и проверить работоспособность кабельной системы, чтобы можно было инициировать соответствующие процедуры обслуживания.

  • Методы испытаний кабелей

    Выбор метода тестирования во многом зависит от возраста и типа установленной кабельной системы. Многие из методов, описанных в этой статье, могут быть выполнены как приемочные или эксплуатационные испытания, в зависимости от таких условий, как приложенное испытательное напряжение или продолжительность испытания.

    Выбор метода тестирования во многом зависит от возраста и типа установленной кабельной системы.

    Целью любого диагностического теста является выявление проблем, которые могут существовать с кабелем — неразрушающим способом — с тем, чтобы можно было принять превентивные меры, чтобы избежать потенциального отказа этого кабеля во время эксплуатации.Диагностические оценки могут применяться к кабельным системам, состоящим из самого кабеля и связанных с ним аксессуаров, таких как сращивания и заделки.


    1. Испытание на диэлектрическую стойкость

    Испытание на диэлектрическую стойкость — это базовое испытание на электрическую нагрузку, проводимое для обеспечения достаточного срока службы системы изоляции. Для испытания на стойкость испытуемая изоляция должна выдерживать заданное приложенное напряжение, которое выше, чем рабочее напряжение на изоляции, в течение заданного периода без пробоя изоляции.

    Величина выдерживаемого напряжения обычно намного больше, чем у рабочего напряжения, и время, в течение которого оно применяется, зависит от срока службы и других факторов.

    Испытание на стойкость диэлектрика — сравнительно простой тест. Если к концу испытания не наблюдается никаких признаков повреждения или нарушения изоляции, образец считается пройденным. Однако, если приложенное напряжение приведет к внезапному разрушению изоляционного материала, будет протекать сильный ток утечки, и изоляция будет признана непригодной для эксплуатации, так как может представлять опасность поражения электрическим током.

    1а. Выдерживаемое напряжение диэлектрика постоянного тока (DC)

    При проведении испытания с высоким напряжением постоянного тока напряжение постепенно повышается до заданного значения с постоянной скоростью нарастания, что обеспечивает постоянный ток утечки до тех пор, пока не будет достигнуто окончательное испытательное напряжение. Время от минуты до 90 секунд обычно считается достаточным для достижения конечного испытательного напряжения.

    Последнее испытательное напряжение затем удерживают в течение 5-15 минут, и если ток утечки недостаточно высок для отключения испытательной установки, изоляция считается приемлемой.Этот тип проверки обычно выполняется после монтажа и ремонта кабеля.

    DC Hipot Test измеряет сопротивление изоляции кабелей путем подачи высокого напряжения и измерения тока утечки, а сопротивление рассчитывается по закону Ома. Значения испытательного напряжения для испытаний с высоким напряжением постоянного тока основаны на окончательном заводском испытательном напряжении, которое определяется типом и толщиной изоляции, размером проводников, конструкцией кабеля и применимыми отраслевыми стандартами.

    ANSI / NETA-ATS 2017 Рекомендуемое испытательное напряжение постоянного тока для силовых кабелей. Фотография: ANSI / NETA

    .

    ANSI / NETA-MTS 2019 Рекомендуемое испытательное напряжение постоянного тока для силовых кабелей. Фотография: ANSI / NETA

    .

    Важно знать, что тестирование высокого напряжения постоянного тока не обеспечивает тщательного анализа состояния кабеля, а вместо этого предоставляет достаточную информацию о том, соответствует ли кабель определенным требованиям по прочности на высоковольтный пробой. Одним из преимуществ высокоскоростного испытания постоянного тока является то, что точки срабатывания по току утечки могут быть установлены на гораздо более низкое значение, чем при испытании напряжением переменного тока.

    В прошлом испытание на стойкость диэлектрика постоянного тока было наиболее широко используемым испытанием для приемки и технического обслуживания кабелей. Однако недавние исследования отказов кабелей показывают, что испытание на перенапряжение постоянного тока может причинить больше повреждений некоторой изоляции кабеля, такой как сшитый полиэтилен (XLPE), чем польза, полученная при испытании.

    При проведении профилактических испытаний существующих кабелей в процессе эксплуатации с использованием высокого напряжения постоянного тока необходимо учитывать множество факторов, чтобы правильно выбрать правильное испытательное напряжение диэлектрической прочности.Как правило, самые высокие значения для технического обслуживания не должны превышать 60% окончательного заводского испытательного напряжения, а минимальное испытательное значение должно быть не менее эквивалента постоянного тока рабочего напряжения переменного тока.

    Примечание: Если кабель нельзя отсоединить от всего подключенного оборудования, испытательное напряжение следует снизить до уровня напряжения подключенного оборудования с наименьшими номиналами.

    1б. Выдерживаемое напряжение диэлектрика при промышленной частоте (50/60 Гц)

    Кабели и аксессуары могут также выдерживать испытания с использованием напряжения промышленной частоты, хотя обычно этого не делают, поскольку для этого требуется тяжелое, громоздкое и дорогое испытательное оборудование, которое может быть недоступно в полевых условиях.

    Используемое испытательное оборудование переменного тока должно иметь адекватную вольт-амперную (ВА) емкость для обеспечения требуемых требований к току зарядки проверяемого кабеля. Тесты переменного тока с высоким напряжением могут проводиться только в режиме «годен — не годен» и, следовательно, могут вызвать серьезные повреждения, если тестируемый кабель выйдет из строя.

    Если необходимо провести приемочные испытания и техническое обслуживание кабелей переменного тока, то следует признать, что это испытание не очень практично. Наиболее распространенные полевые испытания, выполняемые на кабелях, — это испытания на постоянном токе или СНЧ вместо испытаний на переменном токе.

    Хотя это может быть не очень практично в полевых условиях, испытание с высоким напряжением переменного тока имеет явное преимущество, заключающееся в том, что изоляция кабеля подвергается нагрузке, сравнимой с нормальным рабочим напряжением. Этот тест повторяет заводское испытание, проведенное на новом кабеле.

    Высоковольтные испытания на переменном токе включают параллельное включение емкостного и резистивного тока, частота источника играет наибольшую роль в величине мощности, необходимой для зарядки емкости испытуемого образца. При выполнении испытания на переменном токе необходимо учитывать соответствие испытательного оборудования успешной зарядке испытуемого образца.

    ANSI / NETA-ATS 2017 Рекомендуемое испытательное напряжение переменного тока для силовых кабелей. Фотография: ANSI / NETA

    .


    2. Выдерживаемое напряжение диэлектрика при очень низких частотах (СНЧ)

    VLF-испытание можно классифицировать как испытание на устойчивость или диагностическое испытание, то есть его можно проводить как контрольное испытание для приемки или как испытание при техническом обслуживании для оценки состояния кабеля. В отличие от испытания напряжением постоянного тока, очень низкая частота не разрушает хорошую изоляцию и не приводит к преждевременным отказам.

    VLF-тестирование выполняется с помощью высокого напряжения переменного тока с частотой от 0,01 до 1 Гц. Наиболее широко распространенная тестовая частота составляет 0,1 Гц, однако частоты в диапазоне 0,00011 Гц могут быть полезны для диагностики кабельных систем, которые превышают ограничения тестовой системы на 0,1 Гц.

    Процедура тестирования VLF почти идентична процедуре тестирования постоянного тока с высоким напряжением и также проводится как тест «годен — не годен». Если кабель выдерживает приложенное напряжение в течение всего испытания, это считается пройденным.

    Схема подключения для тестирования кабеля VLF. Фото: High Voltage, Inc.

    .

    Правильное испытательное напряжение и продолжительность имеют решающее значение для успеха испытания СНЧ. Если применяемое испытательное напряжение слишком низкое и / или слишком короткое по продолжительности, риск отказа в работе может возрасти после испытания.

    ANSI / NETA-ATS 2017 Рекомендуемое испытательное напряжение СНЧ. Фотография: ANSI / NETA

    .

    ANSI / NETA-MTS 2019 Рекомендуемое испытательное напряжение СНЧ.Фотография: ANSI / NETA

    .

    VLF-тестирование используется не только для тестирования кабелей с твердым диэлектриком, любое приложение, требующее тестирования переменного тока нагрузок с высокой емкостью, может быть протестировано с использованием очень низкой частоты. Основное применение — испытание кабеля с твердым диэлектриком (согласно IEEE 400.2) с последующим испытанием большого вращающегося оборудования (согласно IEEE 433-1974), а иногда и испытания больших изоляторов, разрядников и т. Д.


    3. Напряжение затухающего переменного тока (DAC)

    Испытание напряжением ЦАП — один из альтернативных методов испытания напряжением переменного тока, применимый для широкого диапазона кабелей среднего, высокого и сверхвысокого напряжения.Затухающие напряжения переменного тока генерируются путем зарядки тестируемого объекта до заданного уровня напряжения и затем разряда его емкости через подходящую индуктивность.

    На стадии разряда присутствует ЦАП с частотой, зависящей от емкости и индуктивности тестируемого объекта. Емкость тестируемого объекта подвергается воздействию постоянно увеличивающегося напряжения со скоростью, зависящей от емкости тестируемого объекта и номинального тока источника питания.

    Большинство приложений ЦАП основаны на сочетании выдерживаемого напряжения и расширенных диагностических измерений, таких как частичный разряд и коэффициент рассеяния. Тестирование ЦАП — это усовершенствованный инструмент обслуживания, предлагающий больше, чем простое решение «пойти или нет»


    4. Коэффициент мощности / коэффициент рассеяния (тангенциальный треугольник)

    Tan Delta, также называемый испытанием угла потерь или коэффициента рассеяния (DF), представляет собой диагностический метод испытания кабелей для определения качества изоляции.Если изоляция кабеля не имеет дефектов, таких как деревья, влага, воздушные карманы и т. Д., Кабель приближается к свойствам идеального конденсатора.

    В идеальном конденсаторе напряжение и ток сдвинуты по фазе на 90 градусов, а ток через изоляцию является емкостным. Если в изоляции есть загрязнения, сопротивление изоляции уменьшается, что приводит к увеличению резистивного тока через изоляцию.

    Tan Delta / Dissipation Factor Угол.Фото: High Voltage, Inc.

    .

    Кабель становится менее совершенным конденсатором, и фазовый сдвиг будет меньше 90 градусов. Степень, в которой фазовый сдвиг составляет менее 90 градусов, называется «углом потерь», который указывает уровень качества / надежности изоляции.

    Кабели с плохой изоляцией имеют более высокие значения DF, чем обычно, и будут демонстрировать более высокие изменения значений тангенса дельты при изменении уровней приложенного напряжения. Хорошие кабели имеют низкие индивидуальные значения TD и низкие изменения значений тангенса дельты при более высоких уровнях приложенного напряжения.

    На практике в качестве источника напряжения для подачи напряжения на кабель для испытаний по касательной-дельте чаще всего используется высокочастотный высокочастотный переменный ток. Очень низкая частота предпочтительнее 60 Гц по двум причинам:

  1. Повышенная нагрузочная способность в полевых условиях, в которых 60 Гц слишком громоздкие и дорогие, что делает практически невозможным испытание кабеля значительной длины. При типичной частоте СНЧ 0,1 Гц для тестирования того же кабеля требуется в 600 раз меньше энергии по сравнению с 60 Гц.
  2. Величина тангенциального дельта-числа увеличивается с уменьшением частоты, что упрощает измерения.

При выполнении тангенциального треугольника тестируемый кабель должен быть обесточен и каждый конец изолирован. Испытательное напряжение подается на кабель, пока прибор для измерения тангенса дельта проводит измерения.

Приложенное испытательное напряжение повышается ступенчато, при этом сначала проводятся измерения до 1Uo или нормального рабочего напряжения между фазой и землей. Если желто-коричневые дельта-числа указывают на хорошую изоляцию кабеля, испытательное напряжение повышается до 1.5 2Uo.

Само испытание может занять менее двадцати минут, в зависимости от настроек прибора и количества используемых различных уровней испытательного напряжения. Для проведения анализа необходимо всего лишь зафиксировать несколько периодов формы волны напряжения и тока.


5. Сопротивление изоляции постоянного тока

Сопротивление изоляции кабеля измеряется мегомметром. Это простой неразрушающий метод определения состояния изоляции кабеля на предмет загрязнения из-за влаги, грязи или карбонизации.

Образец соединений для измерения сопротивления изоляции кабеля и трансформатора с помощью клеммы Guard. Фото: TestGuy.

Измерения сопротивления изоляции следует проводить через регулярные промежутки времени, а протоколы испытаний сохранять для целей сравнения. Продолжающаяся тенденция к снижению указывает на ухудшение изоляции, даже если измеренные значения сопротивления превышают минимально допустимый предел.

Для корректного сравнения показания должны быть скорректированы до базовой температуры (например, 20 ° C).Имейте в виду, что измерения сопротивления изоляции не позволяют измерить общую диэлектрическую прочность изоляции кабеля или слабых мест в кабеле.

При испытании кабеля на перенапряжение обычно сначала проводят измерение сопротивления изоляции, а затем проводят испытание на перенапряжение постоянного тока, если достигаются приемлемые показания. После завершения испытания на перенапряжение постоянного тока снова проводится испытание сопротивления изоляции, чтобы убедиться, что кабель не был поврежден высоким потенциалом.

Типичные кривые, показывающие эффект диэлектрической абсорбции при испытании «сопротивление времени», выполненном на емкостном оборудовании, таком как обмотка большого двигателя. Фото: Megger US.

Индекс поляризации — это еще один метод испытания сопротивления изоляции, который оценивает качество изоляции на основе изменения значения МОм с течением времени. После подачи напряжения значение IR считывается в два разных момента: обычно либо 30 и 60 секунд (DAR), либо 60 секунд и 10 минут (PI).

«Хорошая» изоляция со временем показывает постепенно увеличивающееся значение IR. Когда второе показание делится на первое показание, и полученное соотношение называется коэффициентом диэлектрического поглощения (DAR) или индексом поляризации (PI).


6. Частичный разряд

Частичный разряд — это локальный электрический разряд, который может возникать в пустотах, зазорах и подобных дефектах в кабельных системах среднего и высокого напряжения. Если не устранить должным образом, частичный разряд приведет к разрушению изоляции кабеля, обычно образуя древовидную структуру износа (электрическое дерево), и в конечном итоге приводит к полному выходу из строя и отказу кабеля или аксессуара.

Испытание включает приложение напряжения, способствующего частичному разряду, а затем прямое или косвенное измерение импульсов тока разряда с помощью калиброванных датчиков частичных разрядов. Характеристики частичного разряда зависят от типа, размера и расположения дефектов, типа изоляции, напряжения и температуры кабеля.

Известно, что испытание частичных разрядов обнаруживает небольшие дефекты изоляции, такие как пустоты или пропуски в изоляционном экранирующем слое, однако частичные разряды должны присутствовать для обнаружения любых частичных разрядов.Измерения могут проводиться на вновь установленных и прошедших срок эксплуатации кабелях, чтобы обнаружить любые повреждения, возникшие во время установки нового кабеля, или ухудшение изоляции кабеля в процессе эксплуатации из-за частичных разрядов.

6а. Онлайн PD (50/60 Гц)

Выполняемое без прерывания обслуживания, онлайн-тестирование частичного разряда — это неразрушающий, неинвазивный инструмент для профилактического обслуживания, который измеряет состояние стареющих кабельных систем на основе измерения частичных разрядов при рабочем напряжении кабеля.

6б. Автономный PD

Offline Partial Discharge Testing предлагает значительное преимущество перед другими технологиями, поскольку позволяет измерять реакцию кабельной системы на определенный уровень нагрузки и прогнозировать ее будущие характеристики, не вызывая неисправностей. Автономное тестирование также известно своей способностью определять точное местоположение дефекта на устаревшем оборудовании, что позволяет управляющему активами точно планировать техническое обслуживание и ремонт.

Проблема автономного тестирования заключается в том, что оборудование необходимо вывести из эксплуатации.Измерения выполняются при более высоком напряжении, чем рабочее напряжение кабеля, чтобы повторно инициировать активность частичных разрядов в обесточенном кабеле, что увеличивает риск отказов во время испытания.

Продолжительность теста должна быть достаточно большой, чтобы позволить электронам инициировать частичные разряды, но после обнаружения частичных разрядов напряжение должно подаваться достаточно долго, чтобы собрать достаточно данных о частичных разрядах.

ANSI / NETA-ATS 2017 Требования к частичной разрядке. Фотография: ANSI / NETA

.


Список литературы

Комментарии

Войдите или зарегистрируйтесь, чтобы комментировать.

Руководство по двигателям среднего и высокого напряжения

Несмотря на то, что низковольтные двигатели имеют широкий спектр потенциальных применений в промышленности, все же бывают случаи, когда для выполнения работы требуется более высокое напряжение. В 2018 году Hoyer расширит свою линейку продукции линейкой двигателей среднего напряжения с напряжением от 3 до 11 кВ, которые хорошо подходят для тяжелых нагрузок.

Технический менеджер Хойера, Бьярне Нор, знакомит с двигателями среднего и высокого напряжения.

Сохранение ограничений под контролем

Могут быть разные представления о том, что считать двигателем низкого, среднего или высокого напряжения.

«Некоторые люди считают все, что выше 1000 В, высоким напряжением. Однако пределы четко определены в стандарте IEC 60038: низкое напряжение — до 1000 В, среднее напряжение — от 1000 В до 35 кВ, а высокое напряжение — более 35 кВ. Таким образом, все двигатели нашей новой серии относятся к категории среднего напряжения », — говорит Бьярне Нор.

Более высокое напряжение дает возможность экономии

Среднее и высокое напряжение особенно актуально для тяжелых условий эксплуатации, где требуется двигатель мощностью от 400 кВт и выше.Здесь более высокое напряжение позволяет использовать кабели меньшего размера, что значительно снижает затраты на распределительные кабели.

«Увеличивая напряжение, можно снизить ток. Это означает, что можно использовать распределительные кабели меньшего размера. Более высокое напряжение также является очевидным выбором, если кабели необходимо прокладывать на большие расстояния, например, в туннелях ».

Эти сектора следует рассматривать как среднее и высокое напряжение

Двигатели среднего и высокого напряжения особенно хорошо подходят для профессионалов, работающих с большими нагрузками.

«Продукт идеально подходит для отрасли HVAC, например для производителей промышленных вентиляторов и винтовых компрессоров, а также для насосной отрасли».

Система изоляции отличается от низковольтной

С чисто механической точки зрения двигатели среднего напряжения не сильно отличаются от стандартных асинхронных двигателей низкого напряжения. Мы по-прежнему говорим о двигателе с ребристым охлаждением и смазывающими подшипниками. Однако есть некоторые важные отличия, — объясняет Бьярне Нор:

.

«Статор двигателя среднего напряжения имеет улучшенную систему изоляции, позволяющую рассчитать его на среднее напряжение.Это включает в себя систему вакуумной пропитки, при которой все углубления заполняются лаком вместе с материалами для защиты от коронного разряда для предотвращения электрического износа изоляционного материала. Кроме того, увеличиваются пути утечки и воздушные зазоры от проводника до земли ».

В отличие от двигателя низкого напряжения, двигатель среднего напряжения не имеет клеммной колодки, а вместо этого подключается с помощью изоляторов высокого напряжения.

Протестировано как на электрическую, так и на тепловую долговечность

Чем выше напряжение, тем больше влияние на срок службы двигателя.Таким образом, когда речь идет об обеспечении качества двигателей, к документации и испытаниям предъявляются всесторонние требования.

«В то время как двигатель низкого напряжения будет испытываться только на тепловой срок службы, наши двигатели среднего напряжения испытываются как на электрический, так и на тепловой срок службы. У нас есть документация на все наши двигатели на минимальный срок службы 20 000 часов. Естественно, у нас также есть кривые производительности и тому подобное, а также возможность классификации на основе проекта для морского сегмента.”

Если требуется регулируемая частота вращения, можно установить двигатели с токоизолированными подшипниками, как те, что используются в двигателях низкого напряжения, так что срок службы может быть увеличен за счет снижения тока подшипников.

Требуется авторизованная установка и исчерпывающий совет

В то время как большинство электриков могут подключить двигатель низкого напряжения, использование более высокого напряжения сложнее. Поэтому использование двигателей среднего напряжения требует исчерпывающих советов и тесного диалога.

«У вас должно быть специальное разрешение на установку двигателя среднего напряжения и подключение к электросети. И наши продавцы, и наш технический отдел готовы предложить поддержку, например, в выборе правильного типа двигателя и установке электрического интерфейса, включая зажимы и кабели », — завершает Бьярне Нор.

Факты о выборе двигателей среднего напряжения Hoyer

С начала 2018 года Hoyer будет предлагать стандартную программу двигателей среднего напряжения со следующими типами напряжения:

  • 3 кВ / 3.3 кВ
  • 6 кВ / 6,6 кВ
  • 10 кВ / 11 кВ

Существует также разработанная программа с возможностью индивидуальных решений.

Страница не найдена | Prysmian Group

НАСТОЯЩИЙ ВЕБ-САЙТ (И СОДЕРЖАЩАЯСЯ ЗДЕСЬ ИНФОРМАЦИЯ) НЕ СОДЕРЖИТ И НЕ ЯВЛЯЕТСЯ ПРЕДЛОЖЕНИЕМ НА ПРОДАЖУ ЦЕННЫХ БУМАГ ИЛИ ПРЕДЛОЖЕНИЯ НА ПОКУПКУ ИЛИ ПОДПИСКУ НА ЦЕННЫЕ БУМАГИ В СОЕДИНЕННЫХ ШТАТАХ, АВСТРАЛИИ, КАНАДЕ ИЛИ ЯПОНИИ ПРЕДЛОЖЕНИЕ ИЛИ ЗАЯВЛЕНИЕ ТРЕБУЕТ РАЗРЕШЕНИЯ МЕСТНЫХ ОРГАНОВ, ИНАЧЕ БУДЕТ НЕЗАКОННЫМ (« ДРУГИЕ СТРАНЫ, »).ЛЮБЫЕ ПУБЛИЧНЫЕ ПРЕДЛОЖЕНИЯ БУДУТ ПРОВОДИТЬСЯ В ИТАЛИИ В СООТВЕТСТВИИ С ПЕРСПЕКТИВОМ, ОБЯЗАТЕЛЬНО РАЗРЕШЕННЫМ CONSOB В СООТВЕТСТВИИ С ПРИМЕНИМЫМИ НОРМАМИ. ЦЕННЫЕ БУМАГИ, УКАЗАННЫЕ ЗДЕСЬ, НЕ БЫЛИ ЗАРЕГИСТРИРОВАНЫ И НЕ БУДУТ ЗАРЕГИСТРИРОВАНЫ В СОЕДИНЕННЫХ ШТАТАХ В соответствии с Законом США о ценных бумагах от 1933 года с внесенными в него поправками (Закон о ценных бумагах ) ИЛИ В СООТВЕТСТВИИ С СООТВЕТСТВУЮЩИМИ ДЕЙСТВУЮЩИМИ ПОЛОЖЕНИЯМИ СТРАН И НЕ МОГУТ ПРЕДЛОЖИТЬСЯ ИЛИ ПРОДАТЬ В СОЕДИНЕННЫХ ШТАТАХ ИЛИ «U. S. PERSONS », ЕСЛИ ТАКИЕ ЦЕННЫЕ БУМАГИ НЕ ЗАРЕГИСТРИРОВАНЫ В соответствии с Законом о ценных бумагах, ИЛИ ДОСТУПНО ОСВОБОЖДЕНИЕ ОТ РЕГИСТРАЦИОННЫХ ТРЕБОВАНИЙ Закона о ценных бумагах.КОМПАНИЯ НЕ ПРЕДНАЗНАЧЕНА ДЛЯ РЕГИСТРАЦИИ КАКОЙ-ЛИБО ЧАСТИ ПРЕДЛОЖЕНИЯ В СОЕДИНЕННЫХ ШТАТАХ.

ЛЮБОЕ ПРЕДЛОЖЕНИЕ ЦЕННЫХ БУМАГ В ЛЮБОМ ГОСУДАРСТВЕ-ЧЛЕНЕ ЕВРОПЕЙСКОЙ ЭКОНОМИЧЕСКОЙ ЗОНЫ (« EEA »), КОТОРОЕ ВЫПОЛНЯЛО ДИРЕКТИВУ ПРОЕКТА (КАЖДЫЙ, « СООТВЕТСТВУЮЩИЙ ГОСУДАРСТВУ ЧЛЕНА »), БУДЕТ ПРЕДСТАВЛЯТЬСЯ УТВЕРЖДЕНО КОМПЕТЕНТНЫМ ОРГАНОМ И ОПУБЛИКОВАНО В СООТВЕТСТВИИ С ДИРЕКТИВОМ PROSPECTUS («РАЗРЕШЕННОЕ ПУБЛИЧНОЕ ПРЕДЛОЖЕНИЕ ») И / ИЛИ ПРЕДОСТАВЛЯЕТСЯ ИСКЛЮЧЕНИЕМ ПО ДИРЕКТИВЕ PROSPECTUS ОТ ТРЕБОВАНИЯ К ПУБЛИКАЦИИ ПУБЛИЧНЫХ ПРЕДЛОЖЕНИЙ.

СОГЛАСНО ЛЮБОЕ ЛИЦО, ПРЕДСТАВЛЯЮЩЕЕ ИЛИ НАМЕРЕНОЕ ПРЕДЛОЖЕНИЕ ЦЕННЫХ БУМАГ В СООТВЕТСТВУЮЩЕМУ ГОСУДАРСТВЕ-ЧЛЕНАХ, ЗА ИСКЛЮЧЕНИЕМ РАЗРЕШЕННОГО ПУБЛИЧНОГО ПРЕДЛОЖЕНИЯ, МОЖЕТ СДЕЛАТЬ ЭТО ТОЛЬКО В ОБСТОЯТЕЛЬСТВАХ, В КОТОРЫХ НИКАКИЕ ОБЯЗАТЕЛЬСТВА НЕ ВОЗНИКАЮТ НА КОМПАНИЮ ИЛИ ОБЯЗАТЕЛЬСТВА МЕНЕДЖЕРОВ ОПУБЛИКОВАТЬ ПРОЕКТ В СООТВЕТСТВИИ СО СТАТЬЕЙ 3 ДИРЕКТИВЫ ПРОЕКТА ИЛИ ДОПОЛНИТЕЛЬНО В СООТВЕТСТВИИ СО СТАТЬЕЙ 16 ДИРЕКТИВЫ ПРОСПЕКТА В КАЖДОМ СЛУЧАЕ В ОТНОШЕНИИ ТАКОГО ПРЕДЛОЖЕНИЯ.

ВЫРАЖЕНИЕ «ДИРЕКТИВА ПРОСПЕКТА» ОЗНАЧАЕТ ДИРЕКТИВУ 2003/71 / EC (ДАННАЯ ДИРЕКТИВА И ПОПРАВКИ К НЕЙ, ВКЛЮЧАЯ ДИРЕКТИВУ 2010/73 / EC, В СТЕПЕНИ, ВНЕДРЕННОЙ В СООТВЕТСТВУЮЩЕМ ГОСУДАРСТВЕ-ЧЛЕНАХ, ВМЕСТЕ С ЛЮБЫМ УЧАСТНИКОМ) .ИНВЕСТОРАМ НЕ СЛЕДУЕТ ПОДПИСАТЬСЯ НА КАКИЕ-ЛИБО ЦЕННЫЕ БУМАГИ, УКАЗАННЫЕ В ДАННОМ ДОКУМЕНТЕ, ЗА ИСКЛЮЧЕНИЕМ ИНФОРМАЦИИ, СОДЕРЖАЩЕЙСЯ В ЛЮБОМ ПЕРСПЕКТИВЕ.

Подтверждение того, что сертифицирующая сторона понимает и принимает вышеуказанный отказ от ответственности.

Информация, содержащаяся в этом разделе, предназначена только для информационных целей и не предназначена и не открыта для доступа любым лицам, проживающим или проживающим в США, Австралии, Канаде, Японии или других странах.Я заявляю, что я не проживаю и не проживаю в США, Австралии, Канаде, Японии или других странах, и я не являюсь «США». Лицо »(согласно Положению S Закона о ценных бумагах). Я прочитал и понял вышеуказанный отказ от ответственности. Я понимаю, что это может повлиять на мои права. Я согласен соблюдать его условия.

Questo SITO интернет (Е LE Informazioni IVI CONTENUTE) НЕ CONTIENE Н.Е. COSTITUISCE UN’OFFERTA Д.И. Vendita Д.И. Strumenti FINANZIARI О РАС SOLLECITAZIONE ДИ ДИ Acquisto Оферта О SOTTOSCRIZIONE Д.И. Strumenti FINANZIARI NEGLI Stati Uniti, в Австралии, Канаде О Giappone О В QUALSIASI ALTRO PAESE NEL QUALE L’OFFERTA O SOLLECITAZIONE DEGLI STRUMENTI FINANZIARI SAREBBERO SOGGETTE ALL’AUTORIZZAZIONE DA PARTE DI AUTORITÀ LOCALI O COMUNQUE VIETATE AI SENSI DI LEGGE (GLI « 9011 ALTRI» PAESI).QUALUNQUE OFFERTA PUBBLICA SARÀ REALIZZATA В ИТАЛИИ SULLA BASE DI UN PROSPETTO, APPROVATO DA CONSOB IN CONFORMITÀ ALLA REGOLAMENTAZIONE APPLICABILE. GLI STRUMENTI FINANZIARI IVI INDICATI NON SONO STATI E NON SARANNO REGISTRATI AI SENSI DELLO US SECURITIES ACT DEL 1933, COME SUCCESSIVAMENTE MODIFICATO (IL « SECURITIES ACT »), O AI SECURITIES ACT «O AI SECURITIES ACT », O AI SECURITIES ACT , O AI CORI NENISPROLLE PALES, VALI, NENISPOLLE, PA ПРЕДЛОЖЕНИЕ O VENDUTI NEGLI STATI UNITI OA «США ЛИЦА »SALVO CHE I TITOLI SIANO REGISTRATI AI SENSI DEL SECURITIES ACT O IN PRESENZA DI UN’ESENZIONE DALLA REGISTRAZIONE APPLICABILE AI SENSI DEL SECURITIES ACT.NON SI INTENDE EFFETTUARE ALCUNA OFFERTA AL PUBBLICO DI TALI STRUMENTI FINANZIARI NEGLI STATI UNITI.

QUALSIASI DI Strumenti Оферта FINANZIARI В QUALSIASI Stato MEMBRO DELLO SPAZIO ECONOMICO EUROPEO ( « СМ ») CHE ABBIA RECEPITO LA DIRETTIVA PROSPETTI (CIASCUNO ООН « Stato MEMBRO RILEVANTE ») SARA EFFETTUATA SULLA БАЗА DI UN PROSPETTO APPROVATO DALL’AUTORITÀ COMPETENTE E PUBBLICATO IN CONFORMITÀ A QUANTO PREVISTO DALLA DIRETTIVA PROSPETTI (L ‘» OFFERTA PUBBLICA CONSENTITA «) E / O AI SENSI DI UN’ESENZIONE DAL REQUISITO DIRETTIVA PUBBL.

CONSEGUENTEMENTE, CHIUNQUE EFFETTUI O INTENDA EFFETTUARE UN’OFFERTA DI Strumenti FINANZIARI В UNO Stato MEMBRO RILEVANTE Диверса ДАЛЛ «Pubblica CONSENTITA Оферта» può FARLO ESCLUSIVAMENTE LADDOVE NON SIA PREVISTO ALCUN OBBLIGO PER LA Societa O UNO DEI СОВМЕСТНОЕ GLOBAL КООРДИНАТОРОВ O DEI МЕНЕДЖЕР DI PUBBLICARE RISPETTIVAMENTE UN PROSPETTO AI SENSI DELL’ARTICOLO 3 DELLA DIRETTIVA PROSPETTO O INTEGRARE UN PROSPETTO AI SENSI DELL’ARTICOLO 16 DELLA DIRETTIVA PROSPETTO, В RELAZIONE СКАЗОЧНОЕ ПРЕДЛОЖЕНИЕ.

L’Espressione «DIRETTIVA PROSPETTI» INDICA LA DIRETTIVA 2003/71 / CE (СКАЗКА DIRETTIVA E LE RELATIVE MODIFICHE, нонче LA DIRETTIVA 2010/73 / UE, NELLA MISURA В НПИ SIA RECEPITA NELLO Stato MEMBRO RILEVANTE, UNITAMENTE QUALSIASI MISURA DI ATTUAZIONE NEL RELATIVO STATO MEMBRO). GLI INVESTITORI NON DOVREBBERO SOTTOSCRIVERE ALCUNO STRUMENTO FINANZIARIO SE NON SULLA BASE DELLE INFORMAZIONI CONTENUTE NEL RELATIVO PROSPETTO.

Conferma, который соответствует сертификату и принимает заявление об отказе от ответственности.

У меня есть документы, содержащие информацию, представленную в последней информативной части и не имеющие прямого доступа к получению доступа ко всем лицам, которые находятся в Австралии, Канаде или в Джаппоне или Уно дельи Алтри Паэзи. Dichiaro di non essere soggetto резидентом или trovarmi negli Stati Uniti, в Австралии, Канаде или Джаппоне о уно дельи Altri Paesi e di non essere una «лицо США» (ai sensi della Regulation S del Securities Act). Ho letto e compreso il отказ от ответственности sopraesposto.Comprendo Che può condizionare i miei diritti. Accetto di rispettarne i vincoli.

(PDF) Выбор диапазона частот для высоковольтных испытаний кабельных систем с экструдированной изоляцией на месте

различия меньше, а сравнение двух частот

показывает очень небольшое отклонение. Интерпретация

этих результатов относительно типа испытательного напряжения на месте

возраста может быть выполнена двумя способами.Чувствительность дефектов на

выше для напряжений очень низкой частоты, по сравнению с 50 и

250 Гц, но абсолютные значения напряжения, необходимые для разрыва

вниз, выше. Напряжение пробоя без дефектов при

0,1 Гц составляет 200% от напряжения пробоя при 50 Гц, и это

означает, что механизм пробоя отличается для этой очень низкой частоты

. Напряжение пробоя без — как

, так и с — дефектами для 50 Гц и 250 Гц очень близко к

вместе, и, следовательно, механизм пробоя тот же

.Это еще раз подтверждает рекомендацию использовать частоту

в диапазоне от десяти до нескольких сотен Гц для испытаний на месте кабелей с изоляцией из сшитого полиэтилена напряжением переменного тока

. Fur

thermore, поведение при пробое исследуемой схемы электродов типа стержень-плоскость

аналогично поведению модельных кабелей

в зависимости от частот. Это

означает, что слабое место в изоляции может быть имитировано расположением электродов стержневой плоскости, и влияние частоты на процесс пробоя

сопоставимо с процесс пробоя в модельных кабелях.

Выводы

Испытания на месте высоковольтных кабелей с экструдированной изоляцией

необходимы для проверки качества монтажа системы

. Испытательное напряжение должно имитировать напряжение в условиях эксплуатации

и генерировать тот же механизм отказа.

Что касается оптимальной конструкции испытательных систем, диапазон частот

от 20 до 300 Гц, предложенный в последнем проекте IEC

для испытаний на месте кабелей с экструдированной изоляцией, представляется разумным.

Результаты испытаний модельных кабелей могут быть использованы для реальных кабелей

относительно влияния формы волны на напряжение пробоя

. Выдерживаемое напряжение уменьшается с увеличением частоты

. Выдерживаемое напряжение и электрическая напряженность поля

очень близки друг к другу для частот от

до

в диапазоне от 20 Гц до 300 Гц.

Механические дефекты, а также водяные деревья снижают напряжение пробоя

на 0.На 1 Гц больше, чем при 20–300 Гц, но

, абсолютные значения испытательного напряжения выше, и механизм разрыва

вниз отличается по сравнению с напряжениями

промышленной частоты или соседних частот.

Для испытаний на месте можно рекомендовать резонансные испытательные системы с частотной настройкой

(ACRF), поскольку они имеют очень хорошее соотношение веса к мощности

и очень низкое энергопотребление.

Эрнст Гоккенбах (M ‘83 -SM ‘88) получил

диплома в 1974 году и докторскую степень.D. в

1979 из Технического университета

Дармштадта. С 1979 по 1982 год он работал в

, лаборатории испытаний высокого напряжения завода распределительных устройств

, Siemens AG, Берлин, а

отвечал за испытательную площадку высокого напряжения

на открытом воздухе. С 1982 по 1990 год он работал

в компании E. Haefely, AG в Базеле, Швейцария, в качестве главного инженера по испытательному оборудованию высокого напряжения

. В настоящее время он является профессором

техники высокого напряжения и директором Schering-Institute

техники и техники высокого напряжения в университете

в Ганновере.Он является членом VDE и CIGRE, секретарем

Исследовательского комитета 15 СИГРЭ — Материалы для

Электротехнологии, секретарем Рабочей группы СИГРЭ

33-0 — Техника испытаний и измерений высокого напряжения и членом

несколько национальных и международных рабочих групп

по стандартизации испытаний и измерений высокого напряжения pro

cedures.

Вольфганг Хаушильд изучал электротехнику

в Дрезденском техническом университете,

стал ассистентом и старшим помощником в лаборатории HV

в Дрездене Т.У. получил степень доктора

tor в 1970 году и степень абилитации в

1976 года. В 1976/77 году он был приглашенным профессором в

Дамасском университете и построил там большую лабораторию HV

. В 1980 году он перешел в TuR

Dresden / HV Test Equipment Division, ныне HIGHVOLT

Prüftechnik Dresden GmbH, где он исполняет обязанности технического директора

. Доктор Хаушильд опубликовал две книги и множество статей

по высоковольтной инженерии, является членом Рабочей группы СИГРЭ

33.03, и немецкий спикер IEC TC 42.

Ссылки

1. Рабочая группа CIGRE 21.09, «Испытания после прокладки высоковольтных кабельных систем с экструдированной изоляцией

», Electra, № 173, 1997, стр. 33-41.

2. П. Грёнефельд, Р. фон Ольсхаузен, «Генератор очень низкой частоты 200 кВ

как предварительное условие для испытания изоляционных материалов напряжением 0,1 переменного тока»,

4

th

ISH, Афины, 1983, бумага 21.02.2014

3. В. Бун, Г.К. Дамстра, В. Дж. Янсен и К. де Лигт, «Генераторы VLF HV

для тестирования кабелей после прокладки», 5

th

ISH, Брауншвейг, 1987 г.,

, бумага 62-04.

4. Ф. Фарнети, Омбелло, Э. Бертани и В. Мош, «Генерация осциллирующих волн

для испытаний после укладки экструдированных кабельных линий», Сессия CIGRE

, Париж, 1990, Отчет 21-10 .

5. W. Schufft, P. Coors, W. Hauschild, J. Spiegelberg, «Частотно-резонансные испытательные системы

для тестирования и диагностики экструдированных кабелей

на месте», 11

th

ISH , Лондон, 1999, статья 5.335.P5.

6. Публикация IEC 600071-1: 1993, «Координация изоляции, часть 1:

Определения, принципы и правила».

7. Публикация МЭК 60060-1: 1989: «Методика высоковольтных испытаний, часть 1:

Общие определения и требования к испытаниям».

8. Проект МЭК 62067, «Силовые кабельные системы — кабели с экструдированной изоляцией

и их аксессуары для номинальных напряжений от 150 кВ до

от

до 500 кВ — методы и требования испытаний», Документ 20/376 / CD,

Январь 2000 г.

9. У. Хаушильд, В. Шаффт и Дж. Шпигельберг, «Переменное напряжение

Испытание кабелей с изоляцией из сшитого полиэтилена на месте: выбор параметров для

Частотно-настроенные резонансные испытательные системы», 10

th

ISH, Montreal, (1997),

Volume 4, pp. 75 — 78.

10. Г. Шиллер, «Durchschlagverhalten von vernetztem Polyethylen

(VPE) bei unterschiedlichen Spannungsformensis und Vorbeanspruchungen»,

Ганноверский университет, 1996 г.

11. Э. Гокенбах и Г. Шиллер, «Влияние частоты на электрическую прочность

изоляционных материалов из сшитого полиэтилена», 8

th

ISH, Yokohama, 1993, paper

23.05.

16 IEEE Electrical Insulation Magazine

Пример расчета падения напряжения и сечения электрического кабеля

Входная информация

Электрические характеристики:

Электрическая нагрузка 80 кВт , расстояние между источником и нагрузкой 200 метров , Напряжение системы 415В трехфазное , коэффициент мощности 0.8 , допустимое падение напряжения 5% , коэффициент потребления 1 .

Деталь прокладки кабеля:

Кабель направлен заглубленным в землю в траншее на глубине 1 метр . Температура грунта составляет приблизительно 35 градусов Цельсия. Количество кабеля в траншее 1 . Количество пробега кабеля 1 пролет .

Пример расчета падения напряжения и сечения электрического кабеля (фото: 12voltplanet.co.uk)

Подробная информация о грунте:

Термическое сопротивление грунта составляет не известно . Тип почвы влажная почва .

Хорошо, давайте погрузимся в расчеты…

  • Потребляемая нагрузка = Общая нагрузка · Коэффициент потребности:
    Потребляемая нагрузка в кВт = 80 · 1 = 80 кВт
  • Потребляемая нагрузка в кВт = кВт / пФ :
    Потребляемая нагрузка в кВА = 80 / 0,8 = 100 кВА
  • Ток полной нагрузки = (кВА · 1000) / (1.732 · Напряжение):
    Ток полной нагрузки = (100 · 1000) / (1,732 · 415) = 139 Ампер.

Расчет поправочного коэффициента кабеля на основе следующих данных:

Температурный поправочный коэффициент (K1), когда кабель находится в воздухе

9079 9079 907 907 907 907 907 907

Температурный поправочный коэффициент в воздухе: K1
Температура окружающей среды Изоляция
ПВХ XLPE / EPR
10 1.22 1,15
15 1,17 1,12
20 1,12 1,08
25 1,06
40 0,87 0,91
45 0,79 0,87
50 0,71 0,82
55 907.61 0,76
60 0,5 0,71
65 0 0,65
70 0 0,58

80 0 0,41

Поправочный коэффициент температуры грунта (K2)

86 9079 907 907 907 907 907 907 907

907

Поправочный коэффициент температуры грунта: K2
Температура грунта ПВХ Изоляция XL / EPR
10 1.1 1,07
15 1,05 1,04
20 0,95 0,96
25 0,89
40 0,71 0,85
45 0,63 0,8
50 0,55 0,76
55 0,71
60 0 0,65
65 0 0,6
70 0 0,53 907
80 0 0,38

Поправочный коэффициент термического сопротивления (K4) для почвы (когда известно термическое сопротивление почвы)
Термическое сопротивление почвы: 2.5 КМ / Вт
Сопротивление K3
1 1,18
1,5 1,1
2 1,05 7 9085 9085 907 9085 907

0,96

Коэффициент коррекции почвы (K4) почвы (когда термическое сопротивление почвы неизвестно)

21

9011 908 )

Природа почвы K3
Очень влажная почва 1
Влажная почва 1,13
Влажная почва 1,05
Сухая почва 1
Очень сухая почва
Глубина укладки (метр) Номинальный коэффициент
0,5 1,1
0,7 1,05
0.9 1,01
1 1
1,2 0,98
1,5 0,96

Коррекция расстояния кабеля 7 Коэффициент7 (K6)
Нет Диаметр кабеля 0,125 м 0,25 м 0,5 м 1 1 1 1 1 1

907 0785

907.75 0,8 0,85 0,9 0,9 3 0,65 0,7 0,75 0,8 0,85 907 0,67 0,8 5 0,55 0,55 0,65 0,7 0,8 6 0,5 0,55 0,6 9077 0,8

Фактор группировки кабелей (Фактор числа лотков) (K7)

907 907 907 907 3

9857 0,67

Число кабелей / лотков 1 2 3 4 8
1 1 1 1 1 1 1
2 0,84 0,8 0,78 0.8 0,76 0,74 0,73 0,72 0,71
4 0,78 0,74 0,72 0,71 0,7 0,71 0,7

0,7 0,69 0,68 0,67
6 0,75 0,71 0,7 0,68 0,68 0,686 0,69 0,675 0,66 0,66 0,64
8 0,73 0,69 0,68 0,67 0,66 907 0,66 907 поправочные коэффициенты:

— Поправочный коэффициент температуры грунта (K2) = 0,89
— Поправочный коэффициент грунта (K4) = 1,05
— Поправочный коэффициент глубины кабеля (K5) = 1.0
— Поправочный коэффициент расстояния кабеля (K6) = 1.0

Общий коэффициент снижения мощности = k1 · k2 · k3 · K4 · K5 · K6 · K7

— Общий коэффициент снижения = 0,93

Выбор кабеля

Для выбора подходящего кабеля должны быть выполнены следующие условия:

  1. Усилитель снижения номинальных характеристик кабеля должен быть на выше, чем ток полной нагрузки нагрузки .
  2. Падение напряжения на кабеле должно быть на меньше заданного падения напряжения .
  3. Количество кабельных трасс (ток полной нагрузки / ток снижения номинальных характеристик кабеля).
  4. Мощность короткого замыкания кабеля должна быть на выше, чем мощность короткого замыкания системы в этой точке .

Выбор кабеля — Корпус № 1

Давайте выберем 3,5-жильный кабель 70 кв. Мм для одиночной прокладки.

  • Максимальный ток кабеля 70 кв. Мм составляет: 170 А, ,
    Сопротивление = 0,57 Ом / км и
    Реактивное сопротивление = 0.077 MHO / км
  • Общий ток снижения номинальных значений кабеля 70 кв. Мм = 170 · 0,93 = 159 А .
  • Падение напряжения на кабеле =
    (1,732 · Ток · (RcosǾ + jsinǾ) · Длина кабеля · 100) / (Напряжение сети · Число пробега · 1000) =
    (1,732 · 139 · (0,57 · 0,8 + 0,077 · 0,6) · 200 · 100) / (415 · 1 · 1000) = 5,8%

Падение напряжения кабеля = 5,8%

Здесь падение напряжения для кабеля 70 кв. Мм (5,8%) выше, чем определенное падение напряжения (5%), поэтому либо выберите больший размер кабеля, либо увеличьте количество проложенных кабелей.

Если мы выберем 2 участка, то падение напряжения составит 2,8%, что находится в пределах лимита (5%), но использовать 2 участка кабеля 70 кв. Мм неэкономично, поэтому необходимо использовать кабель следующего большего размера. .

Выбор кабеля — Корпус № 2

Давайте выберем 3,5-жильный кабель 95 кв. Мм для одиночной прокладки, мощность короткого замыкания = 8,2 кА.

  • Максимальный ток кабеля 95 кв. Мм составляет 200 ампер ,
    Сопротивление = 0.41 Ом / км и
    Реактивное сопротивление = 0,074 МОНО / км
  • Общий ток снижения номинальных характеристик 70 кв. Мм. Кабель = 200 · 0,93 = 187 А .
  • Падение напряжения кабеля =
    (1,732 · 139 · (0,41 · 0,8 + 0,074 · 0,6) · 200 · 100) / (415 · 1 · 1000) = 2,2%

Решить 95 Квадратный миллиметр кабеля, необходимо проверить условия выбора кабеля.

  1. Снижение номинальных характеристик кабеля Amp (187 Amp) выше, чем ток полной нагрузки нагрузки (139 Amp) = O.K
  2. Падение напряжения на кабеле (2,2%) меньше заданного падения напряжения (5%) = OK
  3. Количество проложенных кабелей (1) ≥ (139A / 187A = 0,78) = OK
  4. Мощность короткого замыкания кабеля (8,2 кА) выше, чем способность к короткому замыканию системы в этой точке (6,0 кА) = ОК

Кабель 95 кв. Мм удовлетворяет всем трем условиям, поэтому рекомендуется используйте 3,5-жильный кабель 95 кв. мм .

Связанный контент EEP с рекламными ссылками

Spellman High Voltage Electronics Corporation

Чтобы помочь в выборе продукта, отвечающего вашим требованиям, мы сгруппировали наши различные модели по форм-факторам.

Модули

часто являются предпочтительным форм-фактором для OEM-приложений, в которых источник питания будет интегрирован в систему более высокого уровня. Это экономичное решение, модули обычно не имеют передней панели или местного управления.Индикаторы и потенциометры могут быть доступными функциями, но, как правило, управление и мониторинг осуществляется удаленными аналоговыми или цифровыми сигналами. Вход может быть переменным или постоянным током, в зависимости от модели.

Источники питания для монтажа в стойку / настольную установку можно использовать в стойке для оборудования или на столе. Настольные блоки питания имеют небольшие размеры, что делает их идеальными для лабораторных приложений. Эти модели оснащены элементами управления на передней панели, измерителями и индикаторами, а также имеют дистанционное управление с помощью аналоговых или цифровых сигналов (может быть опционально в зависимости от модели).Вход обычно AC.

Monoblocks® — это источники рентгеновского излучения. Spellman Monoblocks® — это больше, чем просто источник питания высокого напряжения, он включает в себя рентгеновскую трубку в сборке резервуара. Обычно бак заполнен маслом для изоляции и охлаждения. В некоторых случаях также предусмотрен встроенный теплообменник. Spellman предлагает Monoblocks® для множества применений, как стационарных, так и вращающихся.

Рентгеновские генераторы

состоят из интегрированных источников питания высокого напряжения и нити накала, а также схемы управления эмиссионным контуром для различных медицинских и промышленных применений.Они могут быть модульными или монтироваться в стойку.

Генераторы

CT представляют собой источники питания рентгеновского излучения, специально разработанные для приложений CT. Компоненты генераторов CT предназначены для установки на вращающемся портале, чтобы обеспечить непрерывное вращение машины CT. Наши генераторы CT работают в диапазоне от 16-64-сегментных компактных систем 32/42/50 кВт, 16-128-сегментных систем мощностью 50/80 кВт с отклонением сетки / Z до 64-256 сегментов 110 кВт первоклассных систем CT.

Загрузите брошюру CT.

Переносные рентгеновские аппараты

— это отдельные изделия, которые используются для неразрушающего контроля рентгеновских лучей (NDT).Типичная система может включать в себя источник рентгеновского излучения (головку трубки), контроллер, кабели, штатив для установки и позиционирования источника и, при необходимости, охладитель.

Продукты для конкретных приложений разработаны специально для использования в указанных приложениях. Масс-спектрометрия, E-Beam / IBeam, оборудование для подачи энергии, усилители изображения, электрофорез / электроспиннинг, зарядка конденсатора, испарение электронным лучом, электростатика. Не видите то, что вам нужно? Запросите нестандартный продукт.


Аксессуары включают высоковольтное испытательное оборудование, интерфейсы и контроллеры.

.