|
Р, кВт | 1 | 2 | 3 | 3,5 | 4 | 6 | 8 |
I, A | 4,5 | 9,1 | 13,6 | 15,9 | 18,2 | 27,3 | 36,4 |
Сечение токопроводящей жилы, мм2 | 1 | 1 | 1,5 | 2,5 | 2,5 | 4 | 6 |
Макс. | 34,6 | 17,3 | 17,3 | 24,7 | 21,6 | 23 | 27 |
- Медь, U = 380 B, три фазы, трехжильный кабель
Р, кВт | 6 | 12 | 15 | 18 | 21 | 24 | 27 | 35 |
I, A | 9,1 | 18,2 | 22,8 | 27,3 | 31,9 | 36,5 | 41 | 53,2 |
Сечение токопроводящей жилы, мм2 | 1,5 | 2,5 | 4 | 4 | 6 | 6 | 10 | 10 |
Макс. | 50,5 | 33,6 | 47,6 | 39,7 | 51 | 44,7 | 66,2 | 51 |
* величина сечения может корректироваться в зависимости от конкретных условий прокладки кабеля
Мощность нагрузки в зависимости от номинального тока автоматического выключателя и сечения кабеля.
Наименьшие сечения токопроводящих жил проводов и кабелей в электропроводках.
Сечение жил, мм2 | ||
Проводники | медных | алюминиевых |
Шнуры для присоединения бытовых электроприемников | 0,35 | — |
Кабели для присоединения переносных и передвижных электроприемников в промышленных установках | 0,75 | — |
Скрученные двухжильные провода с многопроволочными жилами для стационарной прокладки на роликах | 1 | — |
Незащищенные изолированные провода для стационарной электропроводки внутри помещений: | ||
непосредственно по основаниям, на роликах, клицах и тросах | 1 | 2,5 |
на лотках, в коробах (кроме глухих): | ||
для жил, присоединяемых к винтовым зажимам | 1 | 2 |
для жил, присоединяемых пайкой: | ||
однопроволочных | 0,5 | — |
многопроволочных (гибких) | 0,35 | — |
на изоляторах | 1,5 | 4 |
Незащищенные изолированные провода в наружных электропроводках: | ||
по стенам, конструкциям или опорам на изоляторах; | 2,5 | 4 |
вводы от воздушной линии | ||
под навесами на роликах | 1,5 | 2,5 |
Незащищенные и защищенные изолированные провода и кабели в трубах, металлических рукавах и глухих коробах | 1 | 2 |
Кабели и защищенные изолированные провода для стационарной электропроводки (без труб, рукавов и глухих коробов): | ||
для жил, присоединяемых к винтовым зажимам | 1 | 2 |
для жил, присоединяемых пайкой: | ||
однопроволочных | 0,5 | — |
многопроволочных (гибких) | 0,35 | — |
Защищенные и незащищенные провода и кабели, прокладываемые в замкнутых каналах или замоноличенно (в строительных конструкциях или под штукатуркой) | 1 | 2 |
Продукция:
Услуги:
НОВИНКА
ECOLED-100-105W-
13600-D120 CITY
Светильник используют для освещения территорий предприятий, автостоянок, дворов, складских и производственных помещений.
ПОДРОБНЕЕ
Главная Услуги Загрузить | В таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов, для расчетов и выбора защитных средств, кабельно-проводниковых материалов и электрооборудования. Медные жилы, проводов и кабелей
Алюминиевые жилы, проводов и кабелей
В расчете применялись: данные таблиц ПУЭ; формулы активной мощности для однофазной и трехфазной симметричной нагрузки расчет кабеля по мощности, сечение кабеля по току, сечение провода по току, сечение кабеля по мощности, выбор сечения кабеля по мощности, расчет сечения кабеля по мощности, сечение провода по мощности, сечение провода и мощность, таблица сечения проводов, расчет сечения кабеля, сечение кабеля от мощности, сечение кабеля и мощность, выбор сечения кабеля по току, выбор кабеля по мощности, сечение провода мощность, расчет сечения провода по мощности, расчет кабеля по мощности, таблица сечения кабеля, сечение провода таблица, расчёт сечения кабеля по мощности, выбор кабеля по току, таблица соотношения ампер киловатт сечение, медь сколько киловатт, допустимый ток проводов сечения |
расчет сечения кабеля по мощности
Калькулятор позволяет рассчитать сечение токоведущих жил электрических проводов и кабелей по электрической мощности.
Вид электрического тока
Вид тока зависит от системы электроснабжения и подключаемого оборудования.
Выберите вид тока: ВыбратьПеременный токПостоянный ток
Материал проводников кабеля
Материал проводников определяет технико-экономические показатели кабельной линии.
Выберите материал проводников:
ВыбратьМедь (Cu)Алюминий (Al)
Суммарная мощность подключаемой нагрузки
Мощность нагрузки для кабеля определяется как сумма потребляемых мощностей всех электроприборов, подключаемых к этому кабелю.
Введите мощность нагрузки: кВт
Номинальное напряжение
Введите напряжение: В
Только для переменного тока
Система электроснабжения: ВыбратьОднофазнаяТрехфазная
Коэффициент мощности cosφ определяет отношение активной энергии к полной. Для мощных потребителей значение указано в паспорте устройства. Для бытовых потребителей cosφ принимают равным 1.
Коэффициент мощности cosφ:
Способ прокладки кабеля
Способ прокладки определяет условия теплоотвода и влияет на максимальную допустимую нагрузку на кабель.
Выберите способ прокладки:
ВыбратьОткрытая проводкаСкрытая проводка
Количество нагруженных проводов в пучке
Для постоянного тока нагруженными считаются все провода, для переменного однофазного — фазный и нулевой, для переменного трехфазного — только фазные.
Выберите количество проводов:
ВыбратьДва провода в раздельной изоляцииТри провода в раздельной изоляцииЧетыре провода в раздельной изоляцииДва провода в общей изоляцииТри провода в общей изоляции
Минимальное сечение кабеля: 0
Кабель с рассчитанным сечением не будет перегреваться при заданной нагрузке. Для окончательного выбора сечения кабеля необходимо проверить падение напряжения на токонесущих жилах кабельной линии.
Длина кабеля
Введите длину кабеля: м
Допустимое падение напряжения на нагрузке
Введите допустимое падение: %
Минимальное сечение кабеля с учетом длины: 0
Рассчитанное значение сечения кабеля является ориентировочным и не может использоваться в проектах систем электроснабжения без профессиональной оценки и обоснования в соответствии с нормативными документами!
Таблица сечения кабеля по мощности и току
Сечение
| Медные жилы проводов и кабелей | |||
Токопроводящие жилы
| Напряжение 220В | Напряжение 380В | ||
мм.
|
Ток, А
|
Мощность, кВт
|
Ток, А
|
Мощность, кВт
|
1,5
|
19
|
4,1
|
16
|
10,5
|
2,5
|
27
|
5,9
|
25
|
16,5
|
4
|
38
|
8,3
|
30
|
19,8
|
6
|
46
|
10,1
|
40
|
26,4
|
10
|
70
|
15,4
|
50
|
33,0
|
16
|
85
|
18,7
|
75
|
49,5
|
25
|
115
|
25,3
|
90
|
59,4
|
35
|
135
|
29,7
|
115
|
75,9
|
50
|
175
|
38,5
|
145
|
95,7
|
70
|
215
|
47,3
|
180
|
118,8
|
95
|
260
|
57,2
|
220
|
145,2
|
120
|
300
|
66,0
|
260
|
171,6
|
Сечение
| Алюминиевые жилы, проводов и кабелей | |||
токопроводящие жилы
| Напряжение, 220В | Напряжение, 380В | ||
мм.
|
ток, А
|
Мощность, кВт
|
Ток, А
|
Мощность, кВт
|
2,5
|
20
|
4,4
|
19
|
12,5
|
4
|
28
|
6,1
|
23
|
15,1
|
6
|
36
|
7,9
|
30
|
19,8
|
10
|
50
|
11,0
|
39
|
25,7
|
16
|
60
|
13,2
|
55
|
36,3
|
25
|
85
|
18,7
|
70
|
46,2
|
35
|
100
|
22,0
|
85
|
56,1
|
50
|
135
|
29,7
|
110
|
72,6
|
70
|
165
|
36,3
|
140
|
92,4
|
95
|
200
|
44,0
|
170
|
112,2
|
120
|
230
|
50,6
|
200
|
132,0
|
Для чего нужен расчет сечения?
Электрические кабели и провода – основа энергетической системы, если они подобраны неправильно, это сулит множество неприятностей. Делая ремонт в доме или квартире, а особенно при возведении новой конструкции, уделите должное внимание схеме проводки и выбору корректного сечения кабеля для питания мощности, которая в процессе эксплуатации может возрастать.
Специалисты нашей компании при монтаже стабилизаторов напряжения и систем резервного электропитания сталкиваются с халатным отношением электриков и строителей к организации проводки в частных домах, в квартирах и на промышленных объектах. Плохая проводка может быть не только в тех помещениях, где длительное время не было капитального ремонта, а также когда дом проектировался одним владельцем под однофазную сеть, а новый владелец решил «завести» трехфазную сеть, но уже не имел возможности подключить нагрузку равномерно к каждой из фаз. Нередко провод сомнительного качества и недостаточного сечения встречается в тех случаях, когда строительный подрядчик решил сэкономить на стоимости провода, а также возможны любые другие ситуации, когда рекомендуется делать энергоаудит.
Современный набор бытовых приборов требует индивидуального подхода для расчета сечения кабеля, поэтому нашими инженерами был разработан этот онлайн калькулятор по расчету сечения кабеля по мощности и току. Проектируя свой дом или выбирая стабилизатор напряжения, вы всегда можете проверить, какое сечение кабеля требуется для этой задачи. Все что от вас требуется, это внести корректные значения соответствующие вашей ситуации.
Обращаем ваше внимание, что недостаточное сечение кабеля ведет к перегреванию провода, тем самым существенно повышая возможность возникновения короткого замыкания в электрической сети, выходу из строя подключенного оборудования и возникновению пожара. Качество силовых кабелей и корректность выбора их сечения гарантирует долгие годы службы и безопасность эксплуатации.
Расчет сечения кабеля для постоянного тока
Данный калькулятор хорош также тем, что позволяет корректно рассчитать сечение кабеля для сетей постоянного тока. Это особенно актуально для систем резервного питания на основе мощных инверторов, где применяются аккумуляторы большой емкости, а разрядный постоянный ток может достигать 150 Ампер и более. В таких ситуациях учитывать сечение провода для постоянного тока крайне важно, поскольку при заряде аккумуляторов важна высокая точность напряжения, а при недостаточном сечении кабеля могут возникать ощутимые потери и, соответственно, аккумулятор будет получать недостаточный уровень напряжения заряда постоянного тока. Подобная ситуация может послужить ощутимым фактором сокращения срока службы батареи.
Выбор сечения кабеля по току
Используя таблицу ПУЭ можно правильно выбрать сечение кабеля по току. Так, например если кабель будет меньшего сечения, то это может привести к преждевременному выходу из строя всей системы проводки или порче включённого оборудования. Так же неправильный выбор толщины кабеля может стать причиной пожара, который произойдёт из-за плавления изоляции провода при его перегреве из-за высокой мощности.
При обратном процессе, когда толщина кабеля будет взята со значительным запасом по мощности, может произойти лишняя трата денег для приобретения более дорогостоящего провода.
Как показывает практика, в большинстве случаев выбирать сечение кабеля по току следует исходя из показателя его плотности.
Таблицы ПУЭ и ГОСТ
Плотность тока
При проведении выбора сечения провода необходимо знать некоторые показатели. Так, например величина плотности тока в таком материале как медь составляет от 6 до 10 А/мм2. Такой показатель является результатом многолетних наработок специалистов и принимается исходя из основных правил регламентирующих устройство электрических установок.
В первом случае при плотности в шесть единиц предусмотрена работа электрической сети в длительном рабочем режиме. Если же показатель составляет десять единиц, то следует понимать, что работа сети возможна не длительное время во время периодических коротких включений.
Поэтому производить выбор толщины необходимо именно по данному допустимому показателю.
Приведенные выше данные соответствуют медному кабелю. Во многих электрических сетях до сих пор применяются и алюминиевые провода. При этом медный кабель в сравнении с последним типом провода имеет свои неоспоримые преимущества.
К таковым можно отнести следующее:
- Медный кабель обладает намного большей мягкостью и в тоже время показатель его прочности выше.
- Изделия, изготовленные из меди более длительное время не подвержены процессам окисления.
- Пожалуй, самым главным показателем медного кабеля есть его более высокая степень проводимости, а значит и лучший показатель по плотности тока и мощности.
К самому главному недостатку такого кабеля можно отнести более высокую цену на него.
Показатель плотности тока для алюминиевого провода находится в диапазоне от четырёх до шести А/мм2. Поэтому его можно применять в менее ответственных сооружениях. Так же данный тип проводки активно применялся в прошлом веке при строительстве жилых домов.
Проведение расчетов сечения по току
При расчете рабочего показателя толщины кабеля, необходимо знать какой ток будет протекать по сети данного помещения. Например, в самой обычной квартире необходимо суммировать мощность всех электрических приборов, которые подключаются к сети.
В качестве примера для расчета можно привести стандартную таблицу потребляемой мощности основными бытовыми приборами, использующимися в обычной квартире.
Исходя и суммарной мощности, производится расчет тока, который будет течь по кабелям сети.
I=(P*K1)/U
В этой формуле Р означает общую мощность, измеряемую в Ваттах, К1 – коэффициент, который определяет одновременную работу всех бытовых приборов (его величина обычно равняется 0,75) и U – напряжение в домашней сети равное обычно 220 Вольтам.
Данный показатель расчета тока поможет сделать оценку нужного сечения для общей сети. При этом необходимо так же учитывать и рабочую плотность тока.
Такой расчет можно принимать как приблизительный выбор. При этом более точные показатели могут быть получены с использованием выбора из специальной таблицы ПУЭ. Такая таблица ПУЭ является элементом специальных правил устройства электрических установок.
Ниже приведен пример таблицы ПУЭ, по которой возможно производить выбор сечения.
Как видно такая таблица ПУЭ кроме зависимости сечений от показателя по току ещё предусматривает и учёт материала, из которого изготавливаются провода, а так же и его расположение. Кроме этого в таблице регламентируется количество жил и величина напряжения, которая может быть как 220, так и 380 Вольт.
Расчет по току с применением дополнительных параметров
При расчете сечения на основе тока с использованием таблицы ПУЭ можно пользоваться и дополнительными параметрами.
Например, есть возможность учитывать диаметр жилы. Поэтому при определении сечения жилы применяют специальное оборудование под названием микрометр. На основе его данных определяется толщина каждой жилы. Потом с использованием значений ранее полученных токов и специальной таблицы производится окончательный выбор величины сечения жилы провода.
Если же кабель состоит из нескольких жил, то следует произвести замер одной из них и посчитать её сечение. После этого для нахождения окончательного значения толщины, показатель, полученный для одной жилы, умножается на их количество в проводе.
Полученное таким образом с использованием расчетов и таблицы ПУЭ значение сечения кабеля позволит создать в доме или квартире проводку, которая будет служить хозяевам на протяжении довольно долгого периода времени без возникновения аварийных или внештатных ситуаций.
Таблица мощности проводов: рассмотрим подробно
Упрощенная таблица для выбора сечения проводника по номинальной мощности
Таблица зависимости мощности от сечения провода была разработана специально для новичков в вопросах электротехнике. Вообще выбор сечения провода зависит не только от мощности подключаемых нагрузок, но и от массы других параметров.
В одной из главных книг любого электрика – ПУЭ, правильному выбору сечения проводов посвящен целый пункт. И именно на основании него написана наша инструкция, которая должна помочь вам в нелегкой задаче выбора сечения проводов.
Как правильно выбирать сечение провода
Почему нельзя пользоваться таблицами мощности
Прежде всего вы должны знать, что любая таблица зависимости сечения провода от мощности не может противоречить ПУЭ. Ведь именно на основании этого документа осуществляют свой выбор не только профессионалы, но и конструкторские бюро.
Поэтому все те таблицы и видео, которые вы во множестве можете найти в сети интернет, предлагающие осуществлять выбор именно по мощности, являются своеобразным усредненным вариантом.
Итак:
- Практически любая таблица сечений проводов по мощности предлагает вам выбрать провод, исходя из активной мощности прибора или приборов.
Но, те кто хорошо учился в школе должны помнить, что активная мощность — это лишь составная часть полной мощности, которая кроме того содержит реактивную мощность.
Что такое cosα
- Отличаются эти составные части на cosα. Для большинства электрических приборов этот показатель очень близок к единице, но для таких устройств как трансформаторы, стабилизаторы, разнообразная микропроцессорная техника и тому подобное он может доходить до 0,7 и меньше.
- Но любая таблица сечения провода по мощности не точна не только из-за того, что не учитывает полную мощность. Есть и другие важные факторы. Так, согласно ПУЭ, выбор проводников напряжением до 1000В должен осуществляться только по нагреву. Согласно п.1.4.2 ПУЭ, выбор по токам короткого замыкания для таких проводов не является обязательным.
- Для того, чтобы выбрать сечение провода по нагреву, следует учитывать следующие параметры: номинальный ток, протекающий через провод, вид провода – одно-, двух- или четырехжильный, способ прокладки провода, температура окружающей среды, количество прокладываемых проводов в пучке, материал изоляции провода и, конечно, материал провода.
Не одна таблица нагрузочной способности проводов не способна совместить такое количество параметров.
Выбор сечения провода по номинальному току
Конечно, совместить все эти параметры в одной таблице сложно, а выбирать как-то надо. Поэтому, дабы вы могли произвести выбор своими руками и головой, мы предлагаем вам основные аспекты выбора в сокращенном варианте.
Мы отбросили все параметры выбора сечения для высоковольтных кабелей, малоиспользуемых проводов и оставили только самое важное.
Итак:
- Так как в ПУЭ используется таблица выбора сечения провода по току, то нам необходимо узнать, какой ток будет протекать в проводе при определенных значениях мощности. Сделать это можно по формуле I=P /U× cosα, где I – наш номинальный ток, P – активная мощность, cosα – коэффициент полной мощности и U – номинальное напряжение нашей электросети (для однофазной сети оно равно 220В, для трехфазной сети оно равно 380В).
На фото представлена таблица выбора сечения провода из ПУЭ для алюминиевых проводников
- Возникает закономерный вопрос, где взять показания cosα? Обычно он указан на всех электроприборах или его можно вывести, если указана полная и активная мощность.
Если расчёт ведется для нескольких электроприборов, то обычно принимается средняя либо рассчитывается номинальный ток для каждого из них.
Обратите внимание! Если у вас не получается узнать cosα для каких-то приборов, то для них его можно принять равным единице. Это, конечно, повлияет на конечный результат, но дополнительный запас прочности для нашей проводки не повредит.
- Зная нагрузки для каждой из планируемых групп нашей электросети, таблица зависимости сечения провода от тока, приведенная в ПУЭ, может быть использована нами. Только для правильного пользования следует остановиться еще на некоторых моментах.
- Прежде всего следует определиться с проводом, который мы планируем использовать. Вернее, нам следует определиться с количеством жил. Кроме того, следует определиться со способом прокладки провода. Ведь при открытом способе прокладки провода интенсивность отвода тепла от него значительно выше, чем при прокладке в трубах или гофре.
Это учитывается в таблицах ПУЭ.
Таблица выбора сечения провода для медных проводников
Обратите внимание! При выборе количества жил провода в расчет не принимаются нулевые и защитные жилы.
- Кроме того, таблица сечения провода по току поможет вам определиться с выбором материала для проводки. Ведь, исходя из получающихся результатов, вы можете оценить какой материал вам лучше принять.
Обратите внимание! Производя выбор сечения провода, всегда выбирайте ближайшее большее значение сечения. Кроме того, если вы собираетесь монтировать новую проводку к старой, то учитывайте, что, согласно п.3.239 СНиП 3.05.06 – 85, старые клеммные колодки не позволят использовать провод сечением больше 4 мм2.
Дополнительные аспекты выбора сечения провода
Но когда рассматривается таблица зависимости тока от сечения провода, нельзя забывать и об условиях, в которых проложен провод. Поэтому если у вас имеют место быть условия не благоприятные по условиям нагрева провода, то стоит обратить внимание на дополнительные аспекты.
Таблица поправочных температурных коэффициентов
- Прежде всего, это температура окружающей среды. Если она будет отличаться от среднестатистических +15⁰С, исходя из которых выполнен расчет в таблицах ПУЭ, то вам следует внести поправочные коэффициенты. Сводную таблицу этих коэффициентов вы найдете ниже.
- Также таблица нагрузки и сечения проводов по п.1.3.10 ПУЭ требует введение поправочных коэффициентов при совместной прокладке нагруженных проводов в трубах, лотках или просто пучками. Так, для 5-6 проводов, проложенных совместно, этот коэффициент составляет 0,68. Для 7-9 он будет 0,63, и для большего количества он равен 0,6.
Вывод
Надеемся, наша таблица нагрузки медных и алюминиевых проводов поможет вам определиться с выбором. А предложенная нами методика позволит даже не профессионалу сделать правильный выбор.
Ведь цена ошибки может быть очень велика. Чего стоит только статистика пожаров, случившихся из-за короткого замыкания. А причина в большинстве случаев — не отвечающая нормам по нагреву проводка.
Таблицы выбора сечения кабеля по мощности
Таблица подбора сечения кабеля и провода по мощности и силе тока (Сu)
Сечение токопроводящей жилы мм2 |
Для кабеля с медными жилами | |||
---|---|---|---|---|
Напряжение 220 В |
Напряжение 380 В | |||
Ток А |
Мощность кВт |
Ток А |
Мощность кВт | |
1,5 |
19 |
4,1 |
16 |
10,5 |
2,5 |
27 |
5,9 |
25 |
16,5 |
4 |
38 |
8,3 |
30 |
19,8 |
6 |
46 |
10,1 |
40 |
26,4 |
10 |
70 |
15,4 |
50 |
33,0 |
16 |
85 |
18,7 |
75 |
49,5 |
25 |
115 |
25,3 |
90 |
59,4 |
35 |
135 |
29,7 |
115 |
75,9 |
50 |
175 |
38,5 |
145 |
95,7 |
70 |
215 |
47,3 |
180 |
118,8 |
95 |
260 |
57,2 |
220 |
145,2 |
120 |
300 |
66 |
260 |
171,6 |
Таблица подбора сечения кабеля и провода по мощности и силе тока (Al)
Сечение токопроводящей
|
Для кабеля с алюминиевыми жилами | |||
---|---|---|---|---|
Напряжение 220 В |
Напряжение 380 В | |||
Ток А |
Мощность кВт |
Ток А |
Мощность кВт | |
2,5 |
20 |
4,4 |
19 |
12,5 |
4 |
28 |
6,1 |
23 |
15,1 |
6 |
36 |
7,9 |
30 |
19,8 |
10 |
50 |
11 |
39 |
25,7 |
16 |
60 |
13,2 |
55 |
36,3 |
25 |
85 |
18,7 |
70 |
46,2 |
35 |
100 |
22 |
85 |
56,1 |
50 |
135 |
29,7 |
110 |
72,6 |
70 |
165 |
36,3 |
140 |
92,4 |
95 |
200 |
44,0 |
170 |
112,2 |
120 |
230 |
50,6 |
200 |
132,0 |
Выбрать и купить кабель и провод Вы можете в разделе кабельно-проводниковая продукция.
Добавить вопрос/отзыв
Зависимость сечения кабеля и провода от токовых нагрузок и мощности
При проектировании схемы любой электрической установки и монтаже, выбор сечения проводов и кабелей является обязательным этапом. Чтобы правильно подобрать силовой провод нужного сечения, необходимо учитывать величину максимального потребления.
Сечения проводов измеряется в квадратных милиметрах или «квадратах». Каждый «квадрат» алюминиевого провода способен пропустить через себя в течение длительного времени нагреваясь до допустимых пределов максимум — только 4 ампера, а медный провода 10 ампер тока. Соответственно, если какой-то электропотребитель потребляет мощность равную 4 киловаттам (4000 Ватт), то при напряжении 220 вольт сила тока будет равна 4000/220=18,18 ампер и для его питания достаточно подвести к нему электричество медным проводом сечением 18,18/10=1,818 квадрата. Правда в этом случае провод будет работать на пределе своих возможностей, поэтому следует взять запас по сечению в размере не менее 15%. Получим 2,091 квадрата. И теперь подберем ближайший провод стандартного сечения. Т.е. к этому потребителю мы должны вести проводку медным проводом сечением 2 квадратных миллиметра именуемого нагрузкой тока. Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Алюминиевый провод будет соответственно в 2,5 раза толще.
Из расчета достаточной механической прочности открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться таблицами.
Медные жилы проводов и кабелей
| ||||
Сечение токопроводящей жилы, мм. | Напряжение, 220 В | Напряжение, 380 В | ||
ток, А | мощность, кВт | ток, А | мощность, кВт | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33,0 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66,0 | 260 | 171,6 |
Алюминиевые жилы проводов и кабелей
| ||||
Сечение токопроводящей жилы, мм. | Напряжение, 220 В | Напряжение, 380 В | ||
ток, А | мощность, кВт | ток, А | мощность, кВт | |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11,0 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22,0 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44,0 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132,0 |
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами к примеру кабель МКЭШВнг
| ||||||
Сечение токопроводящей жилы, мм. | Открыто | Ток, А, для проводов проложенных в одной трубе | ||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | ||
0,5 | 11 | — | — | — | — | — |
0,75 | 15 | — | — | — | — | — |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 39 | 34 | 37 | 31 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
150 | 440 | 360 | 330 | — | — | — |
185 | 510 | — | — | — | — | — |
240 | 605 | — | — | — | — | — |
300 | 695 | — | — | — | — | — |
400 | 830 | — | — | — | — | — |
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами
| ||||||
Сечение токопроводящей жилы, мм. | Открыто | Ток, А, для проводов проложенных в одной трубе | ||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | ||
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
150 | 340 | 275 | 255 | — | — | — |
185 | 390 | — | — | — | — | — |
240 | 465 | — | — | — | — | — |
300 | 535 | — | — | — | — | — |
400 | 645 | — | — | — | — | — |
Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,
| |||||||
Сечение токопроводящей жилы, мм. | Ток*, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
1,5 | 23 | 19 | 33 | 19 | 27 | ||
2,5 | 30 | 27 | 44 | 25 | 38 | ||
4 | 41 | 38 | 55 | 35 | 49 | ||
6 | 50 | 50 | 70 | 42 | 60 | ||
10 | 80 | 70 | 105 | 55 | 90 | ||
16 | 100 | 90 | 135 | 75 | 115 | ||
25 | 140 | 115 | 175 | 95 | 150 | ||
35 | 170 | 140 | 210 | 120 | 180 | ||
50 | 215 | 175 | 265 | 145 | 225 | ||
70 | 270 | 215 | 320 | 180 | 275 | ||
95 | 325 | 260 | 385 | 220 | 330 | ||
120 | 385 | 300 | 445 | 260 | 385 | ||
150 | 440 | 350 | 505 | 305 | 435 | ||
185 | 510 | 405 | 570 | 350 | 500 | ||
240 | 605 | — | — | — | — |
* Токи относятся к кабелям и проводам с нулевой жилой и без нее.
Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных
| |||||||
Сечение токопроводящей жилы, мм. | Ток, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
2,5 | 23 | 21 | 34 | 19 | 29 | ||
4 | 31 | 29 | 42 | 27 | 38 | ||
6 | 38 | 38 | 55 | 32 | 46 | ||
10 | 60 | 55 | 80 | 42 | 70 | ||
16 | 75 | 70 | 105 | 60 | 90 | ||
25 | 105 | 90 | 135 | 75 | 115 | ||
35 | 130 | 105 | 160 | 90 | 140 | ||
50 | 165 | 135 | 205 | 110 | 175 | ||
70 | 210 | 165 | 245 | 140 | 210 | ||
95 | 250 | 200 | 295 | 170 | 255 | ||
120 | 295 | 230 | 340 | 200 | 295 | ||
150 | 340 | 270 | 390 | 235 | 335 | ||
185 | 390 | 310 | 440 | 270 | 385 | ||
240 | 465 | — | — | — | — |
Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.
Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки | |||||
Сечение медных жил проводов и кабелей, кв.мм | Допустимый длительный ток нагрузки для проводов и кабелей, А | Номинальный ток автомата защиты, А | Предельный ток автомата защиты, А | Максимальная мощность однофазной нагрузки при U=220 B | Характеристика примерной однофазной бытовой нагрузки |
1,5 | 19 | 10 | 16 | 4,1 | группа освещения и сигнализации |
2,5 | 27 | 16 | 20 | 5,9 | розеточные группы и электрические полы |
4 | 38 | 25 | 32 | 8,3 | водонагреватели и кондиционеры |
6 | 46 | 32 | 40 | 10,1 | электрические плиты и духовые шкафы |
10 | 70 | 50 | 63 | 15,4 | вводные питающие линии |
В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.
Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях | |
Наименование линий | Наименьшее сечение кабелей и проводов с медными жилами, кв.мм |
Линии групповых сетей | 1,5 |
Линии от этажных до квартирных щитков и к расчетному счетчику | 2,5 |
Линии распределительной сети (стояки) для питания квартир | 4 |
Надеемся данная информация была полезна для Вас. Мы же напоминаем что у нас Вы можете купить кабель МКЭКШВнг отличного качества по низкой цене.
Искусство определения правильного сечения проводов низкого напряжения
Максимальная допустимая нагрузка по току
Чтобы прояснить в начале этой статьи, определение сечения проводов и кабелей, конечно, не самое лучшее. захватывающая часть электрического дизайна. Есть гораздо более сложные и захватывающие части, чем смотреть на бесконечные столы дирижеров. Однако эта часть должна выполняться профессионально так же, как и все остальные части дизайна. Итак, возьмите очки (если вы их носите), выпейте кофе и приступим.
Искусство определения правильного поперечного сечения проводов низкого напряжения
Определение поперечного сечения проводников основано на знании максимальной допустимой токовой нагрузки системы электропроводки, которая сама определяется на основе проводов и условия их эксплуатации. Стандарт IEC 60364-5-52 определяет текущие значения в соответствии с основными принципами работы для установок и безопасности людей. Основные элементы приведены ниже.
Таблица допустимых значений тока может использоваться для непосредственного определения поперечного сечения проводников в соответствии с:
- Тип проводника
- Эталонный метод (метод установки)
- Теоретическая допустимая нагрузка по току Iz (Iz th )
Iz th рассчитывается путем применения всех поправочных коэффициентов (f) к значению рабочего тока (I B ) .Коэффициенты f определяются в соответствии с методом установки, группировкой, температурой и т. Д.
I B = Iz th × f , что дает Iz th = I B / f
Рисунок 1 — Определение поперечного сечения с использованием таблицы пропускной способности по току
Весь процесс определения правильного поперечного сечения низковольтных проводов объясняется следующими шагами.
Содержание:
- Характеристики проводов
- Системы электромонтажа: методы монтажа
- Приложение 1 — «Группы монтажа» в зависимости от типа кабеля
- Группы цепей
- Температура окружающей среды
- Риски взрыва
- Параллельные проводники
- Общий поправочный коэффициент
- Пример определения трехфазной цепи
- Сечение нейтрального проводника
- Примеры: Применение понижающих коэффициентов для гармонических токов
1.Характеристики жил
Учитываются следующие данные:
- Тип жилы: медная или алюминиевая.
- Тип изоляции, определяющий максимально допустимую температуру во время эксплуатации, XLPE или EPR для изоляции, выдерживающей 90 ° C, и ПВХ для изоляции, выдерживающей 70 ° C
Таблица 1 — Макс. рабочие температуры в зависимости от типа изоляции
Тип изоляции | Максимальная температура (1) ° C |
Поливинилхлорид (ПВХ) | Проводник: 70 |
Сшитый полиэтилен (XlPE) и этилен-пропиленовый (EPr) проводник | Проводник: 90 (1) |
Минерал (с ПВХ-оболочкой или без нее, доступен) | Оболочка: 70 |
Минеральная (без оболочки, доступны и не контактируют с горючими материалами) | Оболочка: 105 (2) |
(1) Если проводник работает при температуре выше 70 ° C, рекомендуется проверить, что оборудование, подключенное к этому проводу, подходит для конечной температуры соединения.
(2) Для некоторых типов изоляции могут быть разрешены более высокие рабочие температуры, в зависимости от типа кабеля, его концов, условий окружающей среды и других внешних воздействий.
Вернуться к таблице содержания ↑
2. Системы электропроводки: методы установки
Стандарт определяет ряд методов установки, которые представляют различные условия установки. В следующих таблицах они разделены на группы и определены буквами от A до G , которые определяют, как читать таблицу допустимой токовой нагрузки в проводниках (см. Приложение 1)
Если используются несколько методов монтажа вдоль длина системы электропроводки, следует выбрать методы, для которых условия рассеивания тепла наименее благоприятны .
В стандарте нет четкого положения об определении поперечного сечения проводников внутри низковольтных распределительных щитов. Однако стандарт IEC 60439-1 определяет токи (используемые для испытаний на превышение температуры) для медных проводников с ПВХ изоляцией.
Таблица 2 — Группа установки в зависимости от типа кабеля
Группа установки | Тип кабеля | ||||||||
Изолированные жилы | Одножильные кабели | Многожильные кабели | A1) в теплоизолированной стене | • | • | ||||
(A1) в кабелепроводе в теплоизолированной стене | • | • | |||||||
(A1-A1-A1-A1-A1-A1-A2) теплоизолированная стена | • | ||||||||
(B1-B2) в канале на деревянной стене | • | • | • | ||||||
(C) 08 на деревянной стене | • | • | | ||||||
(C) закреплен на деревянной стене | • | • | |||||||
(D) в воздуховодах в земле | • | • | |||||||
(E) на открытом воздухе | • | ||||||||
(F) на открытом воздухе | G) На открытом воздухе | • |
Подробное описание каждой монтажной группы см. В Приложении 1 ниже.
Вернуться к таблице содержания ↑
3. Группы цепей
Таблицы, в которых описаны методы установки, также относятся к конкретным таблицам, которые используются для определения поправочных коэффициентов, связанных с группой цепей и трубопроводов.
Таблица 3 — Коэффициенты уменьшения для групп из более чем одной цепи или из более чем одного многожильного кабеля, которые будут использоваться с допустимой нагрузкой по току
Таблица 3 — Коэффициенты уменьшения для групп из более чем одной цепи или из более чем один многожильный кабель должен использоваться с допустимой нагрузкой по току
Эти коэффициенты применимы к одинаковым группам кабелей с одинаковой нагрузкой.Если горизонтальные зазоры между соседними кабелями в два раза превышают их общий диаметр, коэффициент уменьшения не требуется.
Те же коэффициенты применяются к:
- Группам из двух или трех одножильных кабелей;
- Многожильные кабели
Если система состоит как из двухжильных, так и из трехжильных кабелей, общее количество кабелей принимается как количество цепей, и соответствующий коэффициент применяется к таблицам для двух нагруженных проводников. для двухжильных кабелей и в таблицы для трех нагруженных жил для трехжильных кабелей.
Если группа состоит из n одножильных кабелей , она может рассматриваться либо как n / 2 цепей с двумя нагруженными проводниками, либо как n / 3 цепей из трех нагруженных проводников. Приведенные значения усреднены по диапазону размеров проводов и типам установки, включенным в таблицы, общая точность табличных значений находится в пределах 5%.
Для некоторых установок и других методов, не предусмотренных в приведенной выше таблице, может оказаться целесообразным использовать коэффициенты, рассчитанные для конкретных случаев.
Таблица 4 — Коэффициенты уменьшения для групп из более чем одной цепи, кабели, проложенные непосредственно в земле, метод D — одножильные или многожильные кабели
Таблица 4 — Коэффициенты уменьшения для групп из более чем одной цепи, кабелей проложенный непосредственно в грунте, метод D — одножильные или многожильные кабели
Приведенные значения относятся к монтажной глубине 0,7 м и тепловому сопротивлению грунта 2,5 км / Вт . Это средние значения для диапазона размеров и типов кабелей, указанных в таблицах.Процесс усреднения вместе с округлением в некоторых случаях может приводить к ошибкам до ± 10% .
Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287-2-1.
Рисунок 2 — Группирование цепей вместе приводит к снижению допустимой нагрузки по току (применение поправочного коэффициента)
Таблица 5 — Коэффициенты уменьшения для групп, состоящих из более чем одной цепи, кабели, проложенные в каналах, методом заземления D multi -жильные кабели в односторонних каналах
Таблица 5 — Многожильные кабели в односторонних каналах Таблица 5 — Одножильные кабели в односторонних каналах
Приведенные значения относятся к глубине прокладки 0,7 м и тепловому воздействию почвы. удельное сопротивление 2,5 км / Вт.Это средние значения для диапазона размеров и типов кабелей, указанных в таблицах. Процесс усреднения вместе с округлением в некоторых случаях может приводить к ошибкам до ± 10%.
Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287.
Таблица 6 — Коэффициенты уменьшения для групп, состоящих из более чем одного многожильного кабеля, должны применяться к эталонным номинальным значениям для многожильных кабелей бесплатно. воздух — метод установки E
Таблица 6 — Коэффициенты уменьшения для групп, состоящих из более чем одного многожильного кабеля, которые должны применяться к эталонным номиналам для многожильных кабелей на открытом воздухе — способ установки E
(1) Значения даны для вертикальных расстояний между лотками 300 мм и не менее 20 мм между лотками и стеной.Для более близкого расстояния коэффициенты следует уменьшить.
(2) Значения даны для горизонтального расстояния между лотками 225 мм с лотками, установленными вплотную. Для более близкого расстояния коэффициенты должны быть уменьшены
Таблица 7 — Коэффициенты уменьшения для групп, состоящих из более чем одной цепи одножильных кабелей (1) , которые должны применяться к справочному значению для одной цепи одножильных кабелей на открытом воздухе — метод установки F
Таблица 7 — Коэффициенты уменьшения для групп, состоящих из более чем одной цепи одножильных кабелей (1) , которые должны применяться к эталонному номиналу для одной цепи одножильных кабелей на открытом воздухе — метод установки F
(1) Коэффициенты даны для одинарных слоев кабелей (или групп трилистников), как показано в таблице, и не применяются, когда кабели проложены более чем в одном слое, соприкасаясь друг с другом.Значения для таких установок могут быть значительно ниже и должны определяться соответствующим методом.
(2) Значения даны для вертикального расстояния между противнями 300 мм. для более близкого расстояния коэффициенты следует уменьшить.
(4) Значения даны для горизонтального расстояния между противнями 225 мм с противнями, установленными спина к спине, и минимум 20 мм между поддоном и любой стеной. для более близкого расстояния коэффициенты следует уменьшить.
(5) для цепей, имеющих более одного параллельного кабеля на фазу, каждый трехфазный набор проводников следует рассматривать как цепь для целей данной таблицы.
Вернуться к таблице содержания ↑ v
4. Температура окружающей среды
Температура окружающей среды напрямую влияет на размер проводов. Следует учитывать температуру воздуха вокруг кабелей (установка на открытом воздухе) и температуры земли для подземных кабелей.
Следующие таблицы, взятые из стандарта IEC 60364-5-52, могут использоваться для определения поправочного коэффициента, применяемого для температур от 10 до 80 ° C . Во всех этих таблицах базовая температура воздуха составляет 30 ° C, а температура земли — 20 ° C.
Не следует путать температуру окружающей среды вокруг кабелей с температурой, принимаемой во внимание для защитных устройств, то есть внутренней температурой распределительного щита, в котором установлены эти защитные устройства.
Таблица 8 — Поправочные коэффициенты для температур окружающего воздуха, отличных от 30 ° C, которые должны применяться к допустимой токовой нагрузке для кабелей в воздухе (1) .
Таблица 8 — Поправочные коэффициенты для температур окружающего воздуха, отличных от 30 ° C, которые должны применяться к допустимой токовой нагрузке для кабелей в воздухе
При более высоких температурах окружающей среды следует проконсультироваться с производителем.
Таблица 9 — Таблица поправочных коэффициентов для температур окружающей среды земли, отличных от 20 ° C, которые должны применяться к допустимой токовой нагрузке для кабелей в кабельных каналах в земле
Таблица 9 — Таблица поправочных коэффициентов для температур окружающей среды земли, отличных от 20 ° C должен применяться к допустимой токовой нагрузке для кабелей в кабельных каналах в земле
Таблица 10 — Таблица поправочного коэффициента для кабелей в подземных каналах для теплового сопротивления почвы, отличного от 2,5 К.м / Вт, применяемые к допустимой нагрузке по току для эталонного метода D
Таблица 10 — Таблица 10 — поправочный коэффициент для кабелей в подземных каналах для теплового сопротивления почвы, отличного от 2,5 км / Вт, который применяется к допустимой нагрузке по току для эталонного метода D
Приведенные поправочные коэффициенты усреднены по диапазону размеров проводов и типам установки, приведенным в таблицах. Общая точность поправочных коэффициентов находится в пределах ± 5% . Поправочные коэффициенты применимы к кабелям, протянутым в заглубленные каналы; для кабелей, проложенных непосредственно в земле, поправочные коэффициенты для теплового сопротивления менее 2,5 К.м / Вт будет выше.
Если требуются более точные значения, они могут быть рассчитаны методами, приведенными в IEC 60287 . Поправочные коэффициенты применимы к каналам, проложенным на глубине до 0,8 м.
Вернуться к таблице содержания ↑
5. Риски взрыва
В установках, где существует риск взрыва (наличие, обработка или хранение материалов, которые являются взрывоопасными или имеют низкую температуру вспышки, включая присутствие взрывчатых веществ пыли), системы электропроводки должны иметь соответствующую механическую защиту n, а допустимая нагрузка по току будет подвергаться понижающему коэффициенту.
Описание и правила установки приведены в стандарте IEC 60079.
Интересное чтиво:
Почему оборудование подстанции выходит из строя и почему стоит подумать об этом до отказа
Вернуться к таблице содержания ↑
6. Параллельные проводники
До тех пор, пока расположение проводов соответствует правилам группирования, допустимая нагрузка по току в системе проводки может считаться равной сумме пропускных способностей по току каждого проводника к которому применяются поправочные коэффициенты, связанные с группой проводников.
Рисунок 3 — Параллельные проводники и кабели (фото: nktphotonics.com)
Вернуться к таблице содержимого ↑
7. Общий поправочный коэффициент
Когда известны все конкретные поправочные коэффициенты, можно определить глобальный поправочный коэффициент (f) , который равен произведению всех конкретных факторов. Затем процедура состоит из расчета теоретической допустимой нагрузки по току Iz th системы электропроводки:
Iz th = I B / f
Знание Iz th затем позволяет ссылаться на таблицы на допустимые токи для определения необходимого сечения.
Считайте данные из столбца, соответствующего типу проводника и эталонному методу. Затем просто выберите в таблице значение допустимой нагрузки непосредственно над значением Iz th , чтобы найти поперечное сечение.
Обычно допускается отклонение в 5% от значения iz. например, рабочий ток I B 140 A приведет к выбору сечения 35 мм 2 с допустимой нагрузкой по току 169 A .Применение этого допуска позволяет выбрать меньшее поперечное сечение 25 мм 2 , которое может выдерживать ток 145 A (138 + 0,5% = 145 A) .
Таблица 11 — Максимальный ток в амперах
Таблица 11 — Максимальный ток в амперах
Где (1)
- PVC 2: ПВХ изоляция, 2 нагруженных проводника
- PVC 3: PVC изоляция, 3 нагруженных проводника
- PR 2: изоляция XLPE или EPR, 2 нагруженных проводника
- PR 3: изоляция XLPE или EPR, 3 нагруженных проводника.
Используйте PVC 2 или PR 2 для однофазных или двухфазных цепей и PVC 3 или PR 3 для трехфазных цепей.
Вернуться к таблице содержимого ↑
7.1 Пример
Определение трехфазной цепи, образующей связь между главным распределительным щитом и вторичным распределительным щитом.
Гипотезы
- Оценка нагрузок позволила рассчитать рабочий ток проводников: I B = 600 A
- Система электропроводки состоит из одножильных медных кабелей с изоляцией PR
- Жилы устанавливаются в перфорированном кабельном канале, соприкасаясь друг с другом.
- Предпочтительно прокладывать кабели параллельно, чтобы ограничить поперечное сечение устройства до 150 мм. в перфорированном кабельном лотке соответствует эталонному методу F
Таблица 12 — Выдержка из таблицы методов установки
Если достаточно одного провода на фазу, коррекция не требуется.Если необходимы два проводника на фазу, следует применить понижающий коэффициент 0,88.
Таблица 13 — Выдержка из таблицы с поправочными коэффициентами для групп
Следовательно, теоретическое значение Iz th будет определяться следующим образом: Iz th = I B / F = 600 / 0,88 = 682 A , т.е. 341 А на провод .
Таблица 14 — Считывание из таблицы допустимых значений тока
Для проводника PR 3 в эталонном методе f и допустимой нагрузке по току 382 A (значение сразу выше 341 A) в таблице указано поперечное сечение из 120 мм 2 .
Вернуться к таблице содержания ↑
8. Поперечное сечение нейтрального проводника
В принципе, нейтраль должна быть того же поперечного сечения, что и фазный провод во всех однофазных цепях. В трехфазных цепях с поперечным сечением более 16 мм 2 (25 мм 2 алюмин.) Поперечное сечение нейтрали можно уменьшить до поперечного сечения / 2.
Однако это уменьшение не допускается, если:
- На практике нагрузки не сбалансированы.
- Содержание третьей гармоники превышает 15%.
Если это содержание на больше, чем 33% , сечение токоведущих жил многожильных кабелей выбирается путем увеличения тока I B . Стандарт IEC 60364-5-52 дает таблицу, показывающую поправочные коэффициенты в соответствии с THD (полное гармоническое искажение), с последующим примером определения допустимой токовой нагрузки кабеля.
Таблица 15 — Таблица коэффициентов уменьшения для токов гармоник в 4- и 5-жильных кабелях
Таблица 15 — Таблица коэффициентов уменьшения для токов гармоник в четырех- и пятижильных кабелях (IEC 60364-5-52)
Вернуться к таблице содержимого ↑
8.1 Примеры
Применение понижающих коэффициентов для гармонических токов (IEC 60352-5-52)
Рассмотрим трехфазную цепь с расчетной нагрузкой 39 А , которая должна быть установлена с использованием четырехжильного кабеля с изоляцией из ПВХ, прикрепленного к стене. , способ установки C . Кабель 6 мм 2 с медными жилами имеет допустимую нагрузку по току 41 A и, следовательно, подходит, если в цепи отсутствуют гармоники.
Если присутствует 20% третьей гармоники , то применяется понижающий коэффициент 0,86, и расчетная нагрузка становится: 39 / 0,86 = 45 A .Для этой нагрузки необходим кабель 10 мм 2 .
Если присутствует 40% третьей гармоники , выбор размера кабеля основан на токе нейтрали, который составляет: 39 × 0,4 × 3 = 46,8 A , и применяется понижающий коэффициент 0,86 , что приводит к расчетной нагрузке: 46,8 / 0,86 = 54,4 А . Для этой нагрузки подходит кабель 10 мм 2 .
Если присутствует 50% третьей гармоники , размер кабеля снова выбирается на основе тока нейтрали, который составляет: 39 × 0,5 × 3 = 58,5 A .В этом случае номинальный коэффициент равен 1 , и требуется кабель 16 мм 2 .
Выбор всех вышеуказанных кабелей основан на допустимой нагрузке на кабель; падение напряжения и другие аспекты конструкции не учитывались.
Вернуться к таблице содержимого ↑
Приложение 1 — «Группы установки» в зависимости от типа кабеля
Приложение 1 — «Группы установки» в соответствии с типом кабеля
Вернуться к таблице содержимого ↑
Источники :
Постельное белье Ecotex: отзывы, характеристики, особенности
Ecotex — торгово-производственная компания, занимающаяся производством домашнего текстиля.Она одна из самых крупных в стране. Одно из направлений компании — производство постельного белья. По отзывам, Ecotex радует своих покупателей отменным качеством и огромным ассортиментом. Постельное белье производится не только для взрослых, но и для детей.
Характеристика продукта
Ecotex — надежный и проверенный производитель с безупречной репутацией, о чем свидетельствует 15-летний опыт работы на рынке домашнего текстиля.
Продукция производится из высококачественного сырья.Компания представляет широкий ассортимент продукции, способный удовлетворить вкусы и потребности всех слоев населения.
В производстве широко используются инновационные технологии.
Все разновидности постельного белья изготавливаются из натуральных материалов. Они содержат 100% хлопок. Благодаря этому продукция экологически чистая, гипоаллергенна, проста в уходе и износостойка.
В настоящее время компания представляет 5 основных коллекций. Среди них постельное белье Ecotex Harmonica выделяется своими особыми свойствами.Материал, из которого изготовлено изделие — сатин.
К основным характеристикам ткани можно отнести натуральный состав, плотность, легкость и невероятную мягкость.
Цвета разнообразны, представлено 95 видов:
- Цветочные мотивы. К ним относятся сериалы «Августин», «Евдокия», «Мадемуазель» и «Очарование».
- Яркая геометрия. Это Стефано, Романс и другие.
- Строгая и лаконичная клетка: «Генри», «Ховард».
- Узоры и орнаменты.Они представлены сериями: «Восточная сказка», «Рамзес» и другими.
Постельное белье доступно в следующих размерах: полуторное, двуспальное, евро и пуховое.
Отзывы покупателей
По отзывам, постельное белье Ecotex обладает множеством положительных качеств и поэтому заслужило полное доверие своих покупателей.
Отзывы о нем в основном положительные. Постельное белье соответствует всем стандартам качества и имеет широкий выбор. Поэтому продукция Ecotex особенно популярна на текстильном рынке.
Многие женщины довольны качеством постельных принадлежностей, разнообразием цветов, размеров и длительным сроком службы и планируют в будущем приобретать продукцию этой компании.
Как правильно подобрать размер кабелепровода | Центр знаний
6
минут | 10 сен 2019Заполнение кабелепровода, также известное как заполнение кабелепровода, представляет собой величину площади поперечного сечения кабелепровода, занимаемой или заполненной кабелем или несколькими кабелями. Заполнение зависит от наружного диаметра кабеля (О.D.) и внутренний диаметр канала (I.D.).
Определение заполнения кабелепровода имеет решающее значение для соответствия требованиям Национального электротехнического кодекса (NEC). Несоблюдение этого правила может привести к дорогостоящему и отнимающему много времени ремонту, как минимум, а как максимум — к опасной электрической установке.
У вас нет доступа к книге NEC?
Вам понадобится книга NEC, чтобы рассчитать размер кабелепровода для кабеля. Если вы находитесь за пределами США.S. и у вас нет доступа к книге, вам может быть полезна эта таблица заполнения кабеля кабелепровода.
Начало работы
Во-первых, полезно иметь представление о типе кабелепроводов, которые вам следует использовать, так что давайте начнем с этого.
1. Из какого материала кабелепровода?
Трубопроводы — это форма защиты кабеля, поэтому вам необходимо убедиться, что вы выбрали правильный материал для вашего приложения. Вы можете использовать гибкий пластиковый кабелепровод для кабелей или кабелепровод с металлическим основанием.Вот три популярных варианта.
Материал Заявка Почему Труба из ПНД Обычно содержит и защищает электрические и телекоммуникационные кабели, например уличный хозяйственный шкаф или уличный шкаф для телекоммуникационного оборудования Превосходная устойчивость к коррозии, химическим воздействиям и ультрафиолетовому излучению
Очень гибкая защита кабеля
Высокая ударопрочностьНейлоновая трубка Обычно используется в машиностроении и автомобилестроении. Очень гибкий кабелепровод
Высокая усталостная прочность
Самозатухающий
Устойчивый к истиранию
Высокая устойчивость к растворителям и маслам
Хорошая атмосферостойкостьМеталлический трубопровод с ПВХ-покрытием Обычно общая заводская проводка и соединения с машинами Высокая механическая прочность
Очень гибкий протектор кабеля2.Какой изолированный провод?
Изолированные жилы или изолированные провода — это заполнение кабелепровода. Убедитесь, что вы используете правильные провода для вашего приложения. Например, не используйте THHN во влажных условиях; он рассчитан только на сухие и влажные места. Вот наиболее часто используемые типы.
Проводник Характеристики Типовые области применения THHW Номинальная температура 167 ° F для влажных помещений и 90 ° C для сухих помещений
На изоляцию нет внешних покрытийСлужебный вход, фидеры и ответвления для стационарных установок THHN Номинальная температура 194 ° F для сухих и влажных помещений
Нейлоновая куртка поверх изоляцииСтанки
Цепи управления
ПриборыTHWN Расчетная температура 167 ° F для сухих и влажных помещений
Нейлоновая куртка поверх изоляцииКабелепровод
Станки
Управляемые цепи
Электромонтажные работы общего назначенияXHHW Номинальная температура 167 ° F для влажных помещений и 194 ° F для сухих и влажных помещений
Нет внешнего покрытия на его изоляцииЭлектропроводка в здании
Кабелепровод
Электропроводка фидера и цепиTHW Расчетная температура 167 ° F для сухих и влажных помещений Электропроводка в здании
Фидерные и ответвительные цепи
Внутреннее вторичное промышленное распределениеРазмер кабелепровода для кабеля
Несколько слов перед тем, как мы начнем: при расчетах необходимо учитывать три фактора:
- Количество кабелей в кабелепроводе
- Площадь поперечного сечения ваших кабелей
- Количество изгибов в вашем трубопроводе
Вам необходимо: NEC книга
Вы будете использовать таблицы NEC, чтобы найти диаметры типа проводов, объемы заполнения и диаметры кабелепровода.
Шаг 1: Откройте книгу NEC до главы 9
Вам необходимо выбрать таблицу заполнения. Это будет зависеть от типа кабелепровода и провода, который вы используете.
- Прочтите первый столбец в таблице заполнения, чтобы найти калибр провода.
- Напротив калибра провода вы найдете максимальное количество проводов, которое можно проложить внутри кабелепровода.
- Выберите число, равное или превышающее количество проводов, которые вы проложите внутри кабелепровода.
Шаг 2: Расчет площади поперечного сечения провода
Вы знаете необходимое количество проводов и тип изоляции.Книга NEC подскажет вам калибр. Теперь вам просто нужно определить площадь поперечного сечения каждого провода и просуммировать их.
Пример :
Допустим, у вас есть следующие типы проводов и их количество:
Количество проводов Тип изоляции Калибр 4 THHN 8 AWG 2 THW 4 AWG - Провод 8AWG THHN имеет сечение 23.61 кв. Мм (0,03659 кв. Дюйма)
- A 4 AWG THW имеет поперечное сечение 62,77 кв. Мм (0,09729 кв. Дюйма)
Следовательно, общая площадь поперечного сечения проводов составляет:
(23,61 кв. Мм) x 4 + (62,77 кв. Мм) x 2 = 219,98 кв. Мм
Шаг 3. Найдите минимальное доступное пространство для кабелепровода
Технические характеристики NEC:
- Один провод: максимальное заполнение составляет 53% пространства внутри кабелепровода
- Два провода: максимальное заполнение 31%
- Три провода или более: максимальное заполнение составляет 40% от общего доступного пространства кабелепровода
Используя уже рассчитанные площади поперечного сечения проводов, теперь вы можете определить минимальный размер кабелепровода, который вам нужен.
Пример:
Возвращаясь к примеру на шаге 2, вы используете всего 6 проводов. Это означает, что ваш максимальный процент заполнения составляет 40%. У вас уже есть общая площадь проводов, поэтому теперь вы можете рассчитать минимальную площадь кабелепровода:
219,98 кв. Мм / 0,4 = 549,95 кв. Мм
Шаг 4. Найдите заполнение кабелепровода
Вернуться к вашей книге NEC. Найдите тип кабелепровода, который вы хотите использовать, в таблице 4.
Пример:
Если вы используете кабелепровод с металлическими электрическими трубками (EMT), вы увидите, что ближайший размер, который вам нужен, — это кабелепровод диаметром 1 дюйм, который обеспечивает заполнение на 39%.
Таблица заполнения кабельного ввода
Эта таблица размеров кабелепровода для кабеля основана на стандарте NEC 2017 года и использует общие типы кабелепроводов и проводов. Если у вас нет доступа к книге NEC, вы можете определить, сколько проводов можно безопасно разместить в кабелепроводе.
- Ряды, идущие поперек, показывают размер и тип трубопровода.
- В нижних столбцах указан калибр используемого провода.
Результатом является количество проводов этого калибра, которые могут быть пропущены через такой размер кабелепровода такого типа.
Информация в этой таблице взята из таблиц C1, C4 и C8 в Национальном электрическом кодексе 2017 года. NEC обновляется каждые три года.
Загрузите бесплатные CAD-файлы и попробуйте перед покупкой
Бесплатные САПР доступны для большинства решений, которые вы можете скачать бесплатно. Вы также можете запросить бесплатные образцы, чтобы убедиться, что выбранные вами решения именно то, что вам нужно. Если вы не совсем уверены, какой продукт лучше всего подойдет для вашего приложения, наши специалисты всегда рады проконсультировать вас.
Запросите бесплатные образцы или загрузите бесплатные САПР прямо сейчас.
Вам также могут понравиться следующие статьи:
Дорожки качения размера
для успешной установки
В соответствии с Национальными правилами по установке электрооборудования, количество проводников в дорожке не должно превышать то, что может быть установлено или снято без повреждения проводников или изоляции проводов. Этого можно достичь, ограничив общую площадь проводников в дорожке качения, чтобы они не превышали процент площади поперечного сечения дорожки, как указано в таблице 1 главы 9 ( таблица 1 ).
Площадь поперечного сечения дорожки качения зависит от диаметра дорожки качения, который отличается для каждого типа дорожки качения. См. Таблицу 4 в Главе 9. Например, общая площадь поперечного сечения различных типов 1-дюймовых дорожек качения показана в Таблица 2
NEC не предъявляет требований о максимальном расстоянии между точками соединения и отвода. Однако в нем оговаривается, что не должно быть более 360 ° общих изгибов между окончаниями дорожек качения (глава 9, таблица 1, примечание 1 мелким шрифтом) ( рис.1 ).
Определение размеров дорожки качения с использованием приложения C. В приложении C NEC указано количество проводников, разрешенных в дорожке качения, в соответствии с ограничениями по заполнению дорожки качения, указанными в таблице 1 главы 9, и площадь поперечного сечения данной дорожки. Однако эту таблицу в приложении можно использовать только в том случае, если все проводники имеют одинаковый размер и один и тот же тип изоляции.
Давайте рассмотрим несколько примеров, чтобы увидеть, как это работает.
Пример № 1: Сколько проводов 1/0 AWG THHN можно установить в 2-дюймовые металлические электрические трубки? ( Фиг.2 )
(а) 2 проводника
(б) 3 проводника
(в) 4 проводника
(г) 7 проводниковОтвет (г), 7 проводников. Вы получите этот ответ непосредственно из Таблицы C1 в Приложении C.
Пример № 2: Сколько компактных проводов 6 AWG XHHW можно установить в 1,25-дюймовые электрические неметаллические трубки?
(а) 10 проводников
(б) 6 проводников
(в) 16 проводников
(г) 13 проводниковОтвет (а), 10 проводников.Этот ответ взят непосредственно из Таблицы C2A в Приложении C.
Пример № 3: Сколько крепежных проводов TFFN 18 AWG можно проложить в водонепроницаемом гибком металлическом кабелепроводе диаметром 0,75 дюйма?
(а) 40 проводников
(б) 26 проводников
(в) 30 проводников
(г) 39 проводниковОтвет: (d), 39. Этот ответ взят непосредственно из Таблицы C7 в Приложении C.
Размер дорожки качения по таблицам 4 и 5
Если устанавливаемые проводники не одинакового размера и / или имеют разные типы изоляции, выполните следующие действия, чтобы правильно определить размер кабелепровода.
Шаг 1: Определите площадь поперечного сечения каждого проводника.
Изолированные провода см. В Таблице 5, Глава 9.
Для получения информации о неизолированных проводниках см. Таблицу 8, глава 9 (примечание 3, таблица 1).
Шаг 2: Определите общую площадь поперечного сечения всех проводников.
Шаг 3: Определите размер дорожки качения, используя Таблицу 4, Глава 9.
40% для дорожек качения, содержащих три или более проводников [Таблица 1]
60% для дорожек качения длиной 24 дюйма или менее (т.е.е. соски) [Примечание 4, таблица 1]
Давайте взглянем на другой пример расчета, чтобы прояснить эту процедуру.
Пример № 4: Фидерные провода установлены в жестком неметаллическом кабелепроводе Schedule 40. Дорожка кабельного телевидения имеет длину более 200 футов и содержит три проводника THHN на 500 тыс. Км / мил, один провод THHN на 250 тыс. Км / дюйм и один проводник THHN 3 AWG. Какой размер кабельной дорожки RNC требуется для этих проводов?
(а) 2 дюйма
(б) 2.5 дюймов
(c) 3 дюйма
(d) 3,5 дюймаШаг 1: Определите площадь поперечного сечения каждого проводника, обратившись к Таблице 5, Глава 9.
500 тыс. Куб. Мил THHN = 0,7073 кв. Дюйма
250 тыс. Куб. Мил THHN = 0,3970 кв. Дюйма
3 AWG THHN = 0,0973 кв. Дюйма
Шаг 2: Определите общую площадь поперечного сечения всех проводников.
500 тыс. Куб. Мил THHN = 0,7073 кв. Дюйма × 3 провода = 2,1219 кв. Дюйма
250 тыс. Куб. Мил THHN = 0.3970 кв. Дюймов × 1 провод = 0,3970 кв. Дюймов
3 AWG THHN = 0,0973 кв. Дюйма × 1 провод = 0,0973 кв. Дюйма
Итого = 2,1219 + 0,3970 + 0,0973 = 2,6162 кв. Дюйма
Шаг 3: Определите размер дорожки качения RNC при 40% заполнении в соответствии с таблицей 4 главы 9.
2,5 дюйма = 1,878 кв. Дюйма (слишком мало)
3 дюйма = 2,907 кв. Дюйма (в самый раз)
3,5 дюйма = 3,895 кв. Дюйма (больше, чем требуется)
Правильный ответ (c), 3 дюйма.
Размеры кабельных каналов для низковольтных кабелей
Ограничения по заполнению проводника дорожки качения, содержащиеся в 300.17 относятся к следующим системам сигнализации:
Кабели управления и сигнализации [725,3 (A) и 725,28]
Кабели без ограничения мощности для пожарной сигнализации (760,28)
Волоконно-оптические кабели (проложенные с силовыми проводниками) (770,6)
Звуковая система (аудио) кабели (640.23)
За исключением волоконно-оптического кабеля, NEC запрещает смешивать технологические кабели с силовыми кабелями класса 1 или проводами цепи пожарной сигнализации без ограничения мощности в одном кабельном канале.
Используйте фактический диаметр кабеля для определения площади для заполнения канала [Глава 9, Таблица 1, Примечание 5]. Формула определения площади:
Площадь = 3,14 × (0,5 × диаметр) 2
Многожильный кабель считается одножильным при расчете заполнения кабелепровода [Глава 9, Таблица 1, Примечание 9].
Давайте рассмотрим другой пример, чтобы убедиться, что вы понимаете выполняемые вычисления.
Пример № 5: Электрометаллическая трубка какого размера требуется для двух непроводящих волоконно-оптических кабелей диаметром 0,6 мм.25 дюймов и восемь силовых проводов 12 AWG THHN?
(a) 0,5 дюйма
(b) 0,75 дюйма
(c) 1 дюйм
(d) 1,25 дюймаШаг 1: Определите площадь поперечного сечения каждого кабеля и проводника.
Площадь кабеля определяется по следующей формуле:
Площадь = 3,14 × (0,5 × диаметр) 2
Оптическое волокно = [3,14 × (0,5 × 0,250 дюйма) 2 ] = 0,0491 кв. Дюйма
12 AWG THHN [Глава 9, Таблица 5] = 0,0133 кв.дюйм
Шаг 2: Определите общую площадь поперечного сечения всех проводников.
Оптическое волокно = 0,0491 кв. Дюйма × 2 кабеля = 0,0982 кв. Дюйма
12 AWG THHN50.0133 кв. Дюйма × 8 проводников = 0,1064 кв. Дюйма
Итого = 0,0982 + 0,1064 = 0,2046 кв. Дюйма
Шаг 3: Определите размер дорожки качения ЕМТ при 40% заполнении в соответствии с таблицей 4 главы 9 NEC.
A 0,75 дюйма EMT = 0,213 кв. Дюйма
Следовательно, правильный ответ (b), 0,75 дюйма.
Рекомендации по заполнению дорожки качения
Следующие технологические кабели не требуются NEC для установки в кабельный канал:
Кабель CATV (коаксиальный) (арт.820)
Кабели класса 2 или 3 (725,52)
Волоконно-оптические кабели (770,3)
Кабели пожарной сигнализации с ограничением мощности (760,3)
Кабели широкополосной связи с питанием от сети (арт. 830)
Радио и телевизионные кабели (арт.810)
Кабели связи (витая пара) (арт. 800)
Однако, если какой-либо из этих кабелей установлен в кабельном канале, они должны быть установлены в соответствии с рекомендациями по установке, содержащимися в документе «Установка кабелей BICSI». Руководство по эксплуатации. В данном руководстве по установке рекомендуется, чтобы участки дорожки качения были ограничены длиной 100 футов, имели не более двух изгибов на 90 ° и максимальное тяговое усилие в 25 фунтов для Cat. 5 и имеют максимальное тяговое усилие 100 фунтов для волоконно-оптического кабеля.
Поскольку большинство установщиков не знают, как ограничить натяжение сигнальных или коммуникационных кабелей, общепринятой практикой является такой размер кабелепровода, чтобы кабели не превышали процент заполнения, указанный в таблице 1, глава 9 NEC.
Давайте посмотрим на другой пример.
Пример № 6: Электрический металлический шланг какого размера требуется для четырех кат. 5 пленочных кабелей (диаметр 0,167 дюйма), три 12-жильных непроводящих волоконно-оптических кабеля (диаметр 0.250 дюймов), два 24-жильных непроводящих волоконно-оптических кабеля (диаметр 0,438 дюйма) ( Рис. 3)?
(a) 0,5 дюйма
(b) 0,75 дюйма
(c) 1 дюйм
(d) 1,25 дюймаШаг 1: Определите площадь поперечного сечения каждого кабеля.
Кат. 5 (4 пары) = 3,14 × (0,5 × 0,167 дюйма) 2 = 0,0219 кв. Дюйма
Оптическое волокно (12 жил) = 3,14 × (0,5 × 0,250 дюйма) 2 = 0,0491 кв. Дюйма
Оптическое волокно (24-жильное) = 3,14 × (0.5 × 0,438 дюйма) 2 = 0,1439 кв. Дюйма
Шаг 2: Определите общую площадь поперечного сечения всех проводников.
Кат. 5 (4 пары) = 0,0219 кв. Дюйма × 4 кабеля = 0,0876 кв. Дюйма
Оптическое волокно (12-жильное) = 0,0491 кв. Дюйма × 3 кабеля = 0,1473 кв. Дюйма
Оптическое волокно (24-жильное) = 0,1439 кв. Дюйма × 2 кабеля = 0,2878 кв. Дюйма
Итого = 0,0876 + 0,1473 + 0,2878 = 0,5227 кв. Дюйма
Шаг 3: Определите размер дорожки качения EMT при 40% заполнении в соответствии с таблицей 4, глава 9.
1,25 дюйма EMT = 0,5980 кв. Дюйма. Следовательно, правильный ответ (d), 1,25 дюйма.
Размер дорожки качения для «эллиптических технологических кабелей».
В примечании 9 к таблице 1 главы 9 указано, что для кабелей с эллиптическим поперечным сечением расчет площади должен основываться на большом диаметре эллипса.
Пример № 7: Электрическая неметаллическая трубка какого размера требуется для одного гибридного оптоволоконного кабеля / кабеля для передачи данных? Малый диаметр эллипса равен 0.188 дюймов, а наибольший диаметр эллипса в виде круга составляет 0,5 дюйма ( рис. 4, ).
(a) 0,5 дюйма
(b) 0,75 дюйма
(c) 1 дюйм
(d) 1,25 дюймаШаг 1: Определите площадь поперечного сечения кабеля, исходя из большого диаметра эллипса как диаметра окружности.
Гибридный кабель = 3,14 × (0,5 × 0,50 дюйма) 2 = 0,1960 кв. Дюйма
Шаг 2: Определите общую площадь поперечного сечения кабеля.
Гибридный кабель = 0,1960 кв. Дюйма × 1 = 0,1960 кв. Дюйма
Шаг 3: Измерьте ЛОР при заполнении на 53% (заполнение одного проводника) в соответствии с Таблицей 4, Глава 9.
0,5 дюйма ENT = 0,131 кв. Дюйма (слишком мало)
0,75 дюйма ENT = 0,240 кв. Дюйма (в самый раз)
1 дюйм ENT = 0,416 кв. Дюйма (больше, чем требуется)
Следовательно, правильный ответ (b), 0,75 дюйма.
Практическое руководство по выбору кабеля
% PDF-1.4
%
1 0 obj> поток
application / pdfA Практическое руководство по выбору кабеля- Замечания по применению
- Texas Instruments, Incorporated [SNLA164,0]
iText 2.1.7, автор 1T3XTSNLA1642011-12-08T04: 24: 47.000Z2011-12-08T04: 24: 47.000Z
конечный поток
эндобдж
2 0 obj> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Font >>> / MediaBox [0 0 540 720] / Contents [7 0 R 8 0 R 9 0 R 10 0 R] / Type / Страница / Родитель 11 0 R >>
эндобдж
3 0 obj> потокКалибры проводов AWG Номинальные значения тока
AWG — Американский калибр проводов — используется в качестве стандартного метода определения диаметра провода, измерения диаметра проводника (неизолированного провода) с удаленной изоляцией.AWG иногда также называют калибром проводов Брауна и Шарпа (B&S).
Приведенная ниже таблица AWG предназначена для одного сплошного круглого проводника. Из-за небольших зазоров между жилами в многожильном проводе многожильный провод с той же допустимой нагрузкой по току и электрическим сопротивлением, что и сплошной провод, всегда имеет немного больший общий диаметр.
Чем больше цифра, тем тоньше проволока. Типичная бытовая электропроводка — это AWG номер 12 или 14. Телефонный провод — это типичный AWG 22, 24 или 26.
В таблице ниже указаны номинальные токи одножильных и многожильных кабелей с ПВХ изоляцией. Имейте в виду, что текущая нагрузка зависит от метода установки — корпуса — и от того, насколько хорошо сопротивление отводится от кабеля. Важны рабочая температура жилы, температура окружающей среды и тип изоляции жилы. Перед детальным проектированием всегда проверяйте данные производителя.
Для полной таблицы с одноядерными и многоядерными текущими рейтингами — поверните экран!
1) Номинальный ток до 1000 В , одножильные и многожильные кабели с ПВХ изоляцией, температура окружающей среды до 30 o C
Загрузите и распечатайте диаграмму AWG
Значения для Сопротивление основано на удельном электрическом сопротивлении меди 1.724 x 10 -8 Ом · м (0,0174 мкОм · м) и удельное электрическое сопротивление для алюминия 2,65 x 10 -8 Ом · м (0,0265 мкОм · м).
Чем выше номер калибра, тем меньше диаметр и тоньше проволока.
Из-за меньшего электрического сопротивления более толстый провод пропускает больше тока с меньшим падением напряжения, чем более тонкий провод. Для больших расстояний может потребоваться увеличить диаметр провода — уменьшить калибр — чтобы ограничить падение напряжения.
Поправочные коэффициенты при температуре окружающей среды выше 30
o C
- температура окружающей среды 31-40 o C : поправочный коэффициент = 0,82
- температура окружающей среды 4 1-45 o C : поправочный коэффициент = 0,71
- температура окружающей среды 45-50 o C : поправочный коэффициент = 0,58
Как выбрать наиболее экономичный размер и тип кабеля?
Выбор кабеля заключается в выборе подходящего типа проводника и выборе подходящего размера / площади поперечного сечения / диаметра проводника в соответствии с областью применения.Во-первых, необходимо понять важность определения размеров и выбора кабеля. Затем будут обсуждены критерии выбора с учетом всех факторов снижения номинальных характеристик, которые могут снизить допустимую нагрузку на кабель. Закон, называемый законом Кельвина, играет жизненно важную роль в экономическом определении размеров проводников, поэтому он также будет объяснен здесь. Помимо размера проводника, будут изучены различные типы проводника. Также в конце будет обсуждаться экранирование и изоляция кабеля.
Размеры кабеля обычно определяются с точки зрения площади поперечного сечения, Kcmil (килограмм круговых милов) или AWG (американский калибр проводов).
Мы только что запустили нашу серию Power Systems Engineering Vlog , и в этой серии мы собираемся поговорить о всевозможных различных исследованиях и комментариях по проектированию энергосистем. Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам, , и получите от этого пользу.
Доступные стандарты для выбора и размера кабеля:
- IEC (Международная электротехническая комиссия)
- NEC (Национальный электротехнический кодекс)
- BS (Британские стандарты)
Важность выбора правильного размера и типа кабеля:
Выбор правильного размера и типа кабеля важен по следующим причинам:
- Если размер кабеля очень мал, когда ток превышает допустимую нагрузку кабеля, кабель нагревается и повреждается.Таким образом, необходимо выбрать размер кабеля, при котором он способен выдержать полный ток нагрузки и ток короткого замыкания, который может протекать по кабелю.
- Увеличение площади поперечного сечения кабеля потребует использования большего количества материала в его конструкции, что приведет к его удорожанию. Следовательно, будет сложно поддерживать хороший баланс между стоимостью кабеля и требованиями к его использованию. Таким образом, диаметр кабеля должен соответствовать требованиям.
- Необходимо обеспечить нагрузку подходящим напряжением, т. Е. С минимальным падением напряжения. Кабель с маленьким диаметром будет иметь более высокое сопротивление. Кроме того, это приведет к большему падению напряжения на кабеле. Поэтому необходимо выбирать такой кабель, который не вызывает падения напряжения или вызывает меньшее падение напряжения.
- Необходимо выбрать лучший тип кабеля в соответствии с требованиями применения, поскольку каждый тип проводника имеет собственное сопротивление, теплопроводность и т. Д.
Критерии выбора кабелей:
Размер кабеля определяется на основе следующих факторов:
Пропускная способность по току: Определяется путем оценки величины тока, потребляемого оборудованием или нагрузкой, подключенными к принимающему концу кабеля. В нем также предусмотрен запас прочности по току перегрузки.
Падение напряжения: Из-за сопротивления кабеля возникают потери мощности, в результате чего напряжение падает на определенную величину.В дополнение к этому, падение напряжения также зависит от температуры, поскольку температура влияет на сопротивление. Если нам известны значения сопротивления кабеля и тока, протекающего по кабелю, то мы можем определить падение напряжения на этом кабеле по формуле V = I * R.
Рейтинг короткого замыкания: Это способность кабеля выдерживать ток короткого замыкания в течение определенного времени повреждения, прежде чем он будет устранен без каких-либо повреждений.
Коэффициенты снижения мощности:
Существуют некоторые внешние помехи, которые влияют на номинальный ток кабеля i.е. токовая нагрузка кабеля. В таких сценариях текущие рейтинги должны быть улучшены путем применения некоторых подходящих факторов, известных как коэффициенты снижения номинальных характеристик. Поскольку у нас есть несколько типов коэффициентов снижения, поэтому значения всех коэффициентов снижения умножаются, чтобы получить среднее значение. Ниже приведены основные факторы снижения номинальных характеристик, которые следует учитывать при выборе сечения кабеля.
Температурный коэффициент снижения номинальных характеристик (C T ): Температурный коэффициент снижения номинальных характеристик (CT): кабели должны быть расположены таким образом, чтобы у них было минимальное пространство для рассеивания тепла в окружающей среде.Этот коэффициент используется в расчетах сечения кабеля, чтобы учесть расположение кабеля для минимизации тепловых потерь, тем самым увеличивая допустимую нагрузку кабеля.
Коэффициент группирования проводников (C G ): Электромагнитное поле вокруг проводников в группе создается, когда протекает ток, что приводит к снижению допустимой нагрузки кабеля. По этой причине учитывается фактор группировки проводников.
Термическое сопротивление грунта (C R ): Стандартная температура окружающей кабели составляет 40 ° C.Но если кабели должны быть закопаны в почву, температура вокруг них повышается, и это влияет на допустимую нагрузку кабеля. Поэтому в расчетах учитывается коэффициент термического сопротивления грунта, чтобы компенсировать повышение температуры.
Коэффициент снижения глубины залегания (C D ): Этот коэффициент зависит от глубины грунта, на которую должен быть заложен проводник. Более глубокое проникновение в заземляющий кабель приведет к увеличению коэффициента снижения мощности.
Как рассчитать сечение кабеля для заданной нагрузки?
Где,
P = Активная мощность (кВт) S = Полная мощность (кВА) В L = Напряжение сети I L = Линейный ток или допустимая нагрузка кабеля
С учетом факторов снижения номинальных характеристик:
Теперь выберите размер кабеля в зависимости от указанного выше тока из стандартных таблиц размеров кабеля e.грамм. «Каталоги МЭК».
Закон Кельвина для экономичного сечения кабеля:
Закон Кельвина гласит, что:
Самый экономичный размер проводника — это размер, для которого годовые проценты и амортизация капитальных затрат на него равны годовым эксплуатационным расходам
Скажем,
Размер (площадь поперечного сечения) проводника = a Годовая процентная и амортизационная стоимость кондуктора = песо 1 Годовая текущая стоимость кондуктора = P
P
Поскольку годовые проценты и амортизационная стоимость кондуктора прямо пропорциональны размеру кондуктора (поскольку увеличение размера кондуктора увеличит его капитальные затраты и, следовательно, процентные и амортизационные расходы) i.е.
П 1 ∝ а
Итак, P 1 = k 1 .a ———————— eq (i)
Кроме того, годовые эксплуатационные расходы на проводник обратно пропорциональны размеру проводника (так как увеличение размера проводника уменьшит потери энергии плюс повреждения из-за нагрева и, следовательно, эксплуатационные расходы), то есть
Итак, P 2 =
к 2 к
———————— уравнение (ii)
Здесь k 1 и k 2 — постоянные.
Общая годовая стоимость проводника (скажем, P) может быть получена путем сложения уравнений (i) и (ii):
Чтобы общая стоимость была минимальной, дифференциал «P» по отношению к «a» должен быть равен нулю:
дП / да
знак равно
д / да (к 1 .а + к 2 / а)
0 = к 1 + к 2 (- 1 / а 2 )
0 = к 1 — (к 2 / а 2 )
к 2 / а 2 = к 1
k 2 / a = k 1 .a
P 2 = P 1
Экономический размер проводника (при котором годовые проценты и амортизационные расходы равны годовым эксплуатационным расходам на проводника) можно рассчитать из приведенного выше вывода:
к 2 / а 2 = к 1
а = к 1 / к 2
а = √ (к 1 / к 2 )
Пример:
Рассмотрим кабель длиной 1 км с допустимой нагрузкой 150 А в течение года (8760 часов).Стоимость прокладки кабеля составляет 0,1 доллара США за метр, где a — размер жилы в см 2 . Стоимость энергии составляет 0,001 доллара США / кВтч, а 12% составляют проценты и амортизационные отчисления. Удельное сопротивление проводника составляет 1,91 мкОм · см, поэтому определите экономичный размер проводника.Автор: EagleRJOCC BY-SA 4.0, ссылка
Сопротивление проводника =
ρL / а
знак равно
(1,91×10 -6 ) (10 5 ) / Ом
Потери энергии / год
знак равно
2I 2 Rt / 1000 кВт · ч
Потери энергии / год
знак равно
2x (150) 2 x (0.191 / а) (8760) / 1000
Потери энергии / год
знак равно
75292.2 / а
) кВтч
Годовые текущие расходы =
Стоимость / кВтч
Икс
Потери энергии / год
Годовые текущие расходы = 0,1 x (
75292.2 / а
)
Годовые текущие расходы = $ (75292.2 / а
)
Капитальные затраты = $
16a / метр
Капитальные затраты = 16 долларов США × 1000 = 16000 долларов США
Ежегодные фиксированные платежи = проценты и амортизация капитальных затрат
Ежегодные фиксированные платежи = 12% от 16000 долларов США = 1920 долларов СШАa
Согласно закону Кельвина,
Годовые текущие платежи = Ежегодные фиксированные платежи
7529.22 / а
= 1920a
a = 3,92 см 2
Итак, экономичный размер жилы 3,92 см 2 .
Ограничения:
- Не могут быть определены точные проценты и амортизация по капитальным затратам.
- Некоторые факторы, такие как допустимая нагрузка кабеля, эффект коронного разряда и т. Д., Не рассматриваются в этом законе.
- По закону Кельвина может иметь место чрезмерное падение напряжения в размере проводника.
Типы проводников:
В зависимости от физической структуры проводники могут быть скрученными (несколько тонких проводов) или сплошными (сплошная металлическая проволока). Типы кабелей (жилы), которые используются в линиях электропередачи:
ACSR (алюминиевый проводник, армированный сталью): Он состоит из стальных нитей, окруженных алюминиевыми нитями. Это наиболее рекомендуемый проводник для линий электропередачи и используется для более протяженных участков.
ACAR (алюминиевый проводник, армированный сплавом): Он состоит из алюминиево-магниевого кремниевого сплава, окруженного алюминиевым проводником. Он имеет более высокую механическую прочность и проводимость, чем ACSR, поэтому его можно использовать для распределения и передачи в больших масштабах, но он более дорогой.
AAC (полностью алюминиевый проводник): Он также известен как ASC (алюминиевый многожильный проводник) и имеет проводимость 61% IACS. Хотя он обладает хорошей проводимостью, он все же ограничен в применении из-за низкой прочности.
AAAC (проводник из алюминиевого сплава): Он изготовлен из сплава алюминия-магния-кремния и имеет проводимость 52,5% IACS. Из-за большей прочности его можно использовать для распространения, но не рекомендуется для передачи. Подходит для использования в помещениях с повышенным содержанием влаги.
⁘ IACS (Международный стандарт на отожженную медь) — это стандарт, введенный США.
Это стандарт, с которым сравнивается проводимость любого проводника.
Это значение проводимости коммерчески доступной меди.
Экранирование и изоляция кабелей:
Существуют различные слои различных материалов, которые должны быть наложены на проводник, чтобы обеспечить изоляцию и экран кабеля с целью защиты проводника. Каждый слой имеет свою особую функцию, и ее требования зависят от применения кабелей. Например, для воздушных линий нам не нужна изоляция или экранирование, поскольку там используются неизолированные провода, но для подземных кабелей они должны быть изолированы и экранированы.
Изоляция: Изоляция кабеля выполняется с помощью любого диэлектрика, например ПВХ, чтобы предотвратить утечку тока из проводника.
Оболочка: Кабель снабжен оболочкой для защиты кабеля от влаги. Это должен быть какой-нибудь немагнитный материал, например, свинцовый сплав.
Подкладка: Предназначение подстилки — защитить оболочку кабеля от повреждений, вызванных броней.
Армирование: Армирование — это еще один слой оцинкованной стали поверх кабеля, защищающий его от любых механических повреждений.
Обслуживания: Повышает механическую прочность кабеля. Обеспечивает общую защиту от влаги, пыли и т. Д.
Подведение итогов:
Систему передачи электроэнергии можно сделать эффективной и экономичной, если следовать надлежащей методологии определения размеров и выбора кабеля.