Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Разное

Зачем нужен драйвер для светодиода: Драйвер для светодиодов: назначение, выбор, подключение, схемы

Содержание

Драйвер для светодиодов: назначение, выбор, подключение, схемы

Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

Назначение

Поскольку светодиод — это полупроводниковые элементы, ключевой характеристикой, определяющей яркость их свечения, является не напряжение, а ток. Чтобы они гарантированно отработали заявленное  количество часов, необходим драйвер, — он стабилизирует ток, протекающий через цепь светодиодов.

Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор.

Применение

Драйверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д.

Принцип работы

Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

Подключим так же резистор 40 Ом к драйверу 300 мА.

Драйвер создаст на резисторе падение напряжения 12 В.

Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

  • мощность светодиодов;
  • яркость.

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

где Pled — мощность светодиода,

N — количество подключаемых светодиодов.

Максимальная мощность драйвера не должна быть меньше .

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

где Pmax   — максимальная мощность драйвера.

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод CREE XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1,25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

Как подобрать драйвер для светодиодов, способы подключения

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:

  1. Последовательно. При таком способе подключения потребуется драйвер напряжением 12 В и током 300 мА. Преимущество такого способа в том, что через всю цепь идет один и тот же ток, и светодиоды горят с одинаковой яркостью. Недостаток заключается в том, что для подключения большого числа светодиодов потребуется драйвер с очень большим напряжением. 
  2. Параллельно. Здесь уже будет достаточно драйвера на 6 В, но потребляемый ток будет примерно в 2 раза больше, чем при последовательном соединении. Недостаток: токи, текущие в каждой цепи, немного различаются из-за разброса параметров светодиодов, поэтому одна цепь будет светить несколько ярче другой. 
  3. Последовательно по два. Тут потребуется такой же драйвер, как и во втором случае. Яркость свечения будет уже более равномерная, но есть один существенный недостаток: при включении питания в каждой паре светодиодов из-за разброса характеристик один может открыться раньше другого, и через него пойдет ток, в 2 раза превышающий номинальный. Большинство светодиодов рассчитаны на такие кратковременные броски тока, но все-таки этот способ наименее предпочтителен.

Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

Виды

В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

  1. У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.
  2. Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

Импульсные работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока Icp на выходе.

Импульсные драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

Светодиодный драйвер на 220 В

Для включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность.

Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током.

Китайские драйверы

Востребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса.

Китайский драйвер для светодиода 3w

Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:

  • низкая надежность из-за использования дешевых схемных решений;
  • отсутствие защиты от перегрева и колебаний в сети;
  • высокий уровень радиопомех;
  • высокий уровень пульсаций на выходе;
  • недолговечность.

Ввиду большого количества недостатков эти драйверы пользуются маленьким спросом, но, сегодня в Китае производится огромное количество продукции, многие известные бренды перенесли свое производство в эту страну. В связи с этим, теперь в Китае можно купить и качественные драйверы для светодиодов, например на AliExpress, главное знать, что брать.

Что купить?

Мы проанализировали большое количество отзывов с форумов и самой площадки AliExpress и подготовили для вас свою подборку драйверов, которые подойдут для решения многих задач:

  1. Универсальный драйвер 5-24 Вольт, 2-4 Ампера, маленькие габариты. Входящее напряжение 85-260В. Есть 3 варианта компактного исполнения 5В, 2А; 12В,2А; 24В, 4А и еще один вариант 3 в 1. Цена очень приятная, от 4 до 9 долларов. Мы нашли самое выгодное предложение, продавец проверенный, отправляет быстро и качественно упаковывает. Только положительны отзывы. Посмотреть товар на AliExpress.
  2. Драйвер для светодиодных лампочек. Этот вид преобразователей в основном используется в лампочках и маленьких светильниках. Маленькие габариты и низкая цена. Входное напряжение 200-240В. Исходящее постоянное напряжение (DC) зависит от нагруженной мощности и может составлять 24-160 Вольт, соответственно мощность при этом составит 8-50 Вт. Мы также подобрали самое выгодное предложение с большим количеством заказов и положительных отзывов. Посмотреть товар на AliExpress.
  3. Еще один для лампочек. Этот товар такой же как и выше, но у этого продавца больше вариантов выбора по питанию и напряжению, возможно тут вы подберете то, что нужно именно вам. Посмотреть товар на AliExpress.
  4. Драйвер для светодиодных светильников и лент. Данный тип драйверов позволяет подключать светодиодные ленты и светильники. Входящее напряжение 110-260 Вольт. Максимальная нагрузка 300 Вт. Выходное напряжение 12 и 24 Вольта. Посмотреть товар на AliExpress.

Купить драйвер на AliExpress

Срок службы

Обычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:

  • нестабильность сетевого напряжения;
  • перепады температур;
  • уровень влажности;
  • загруженность драйвера.

Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов.

Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про срок службы светодиодных ламп.

Схемы драйверов (микросхемы) для светодиодов

Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

Простой драйвер тока на этой микросхеме представлен ниже.

Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:

Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора RON.

Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

Заключение

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.

LED драйвер. Зачем он нужен и как его подобрать?

В последнее время потребители всё чаще интересуются светодиодным освещением. Популярность LED ламп вполне обоснована – новая технология освещения не выделяет ультрафиолетового изучения, экономична, а срок службы таких ламп – более 10 лет. Кроме того, при помощи LED элементов в домашних и офисных интерьерах, на улице легко создать оригинальные световые фактуры.

Если вы решились приобрести для дома или офиса такие приборы, то вам стоит знать, что они очень требовательны к параметрам электросетей. Для оптимальной работы освещения вам понадобится LED — драйвер. Так как строительный рынок переполнен устройствами как различного качества так и ценовой политики, перед тем, как приобрести светодиодные устройства и блок питания к ним, не лишним будет ознакомиться с основными советами, которые дают специалисты в этом деле.

Для начала рассмотрим, для чего нужен такой аппарат как драйвер.

Каково предназначение драйверов?

Драйвер (блок питания)  — это устройство, которое выполняет функции стабилизации тока, протекающего через цепь светодиодов, и отвечает за то, чтобы купленный вами прибор отработал гарантированное производителем количество часов. При подборе блока питания необходимо для начала досконально изучить его выходные характеристики, среди которых ток, напряжение, мощность, коэффициент полезного действия (КПД), а также степень его защиты т воздействия внешних факторов.

К примеру, от проходных характеристик тока зависит яркость светодиод. Цифровое обозначение напряжения отражает диапазон, в котором функционирует драйвер при возможных скачках напряжения. Ну и конечно чем выше КПД, тем более эффективно будет работать устройство, а срок его эксплуатации будет больше.

Где применяются LED драйвера?

Электронное устройство – драйвер —  обычно питается от электрической сети в 220В, но рассчитан на работу и с очень низким напряжением в10, 12 и 24В. Диапазон рабочего выходного напряжения, в большинстве случаев, составляет от 3В до нескольких десятков вольт. К примеру, вам нужно подключить семь светодиодов напряжением 3В. В этом случае потребуется драйвер с выходным напряжением от 9 до 24В, который рассчитан на 780 мА. Обратите внимание, что, несмотря на универсальность, такой драйвер будет обладать малым коэффициентом полезного действия, если дать ему минимальную нагрузку.

Если вам нужно установить освещение в авто, вставить лампу в фару велосипеда, мотоцикла, в один или два небольших уличных фонаря или в ручной фонарь, питания от 9 до 36В вам будет вполне достаточно.

LED –драйверы по мощнее необходимо будет выбирать, если вы намерены подключить светодиодную систему, состоящую из трех и более устройств, на улице, выбрали её для оформления своего интерьера, или же у вас есть настольные офисные светильники, которые работают не менее 8 часов в день.

Как работает драйвер?

Как мы уже рассказывали, LED — драйвер выступает источником тока. Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, подключим к источнику напряжением 12 В резистор 40 Ом. Через него пойдет ток величиной 300мА.

Теперь включим сразу два резистора. Суммарный ток составит уже 600мА.

Блок питания поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться. Подключим так же резистор 40Ом к драйверу 300мА.

Блок питания создаст на резисторе падение напряжения 12В.

Если подключить параллельно два резистора, ток также  будет 300мА, а напряжение упадет в два раза.


Каковы основные характеристики LED — драйвера?

При подборе драйвера обязательно обращайте внимание на такие параметры, как выходное напряжение, потребляемая нагрузкой мощность (ток).

— Напряжение на выходе зависит от падения напряжения на светодиоде; количества светодиодов; от способа подключения.

— Ток на выходе блока питания определяется характеристиками светодиодов и зависит от их мощности и яркости, количества и цветового решения.

Остановимся на цветовых характеристиках LED — ламп. От этого, к слову, зависит мощность нагрузки. Например, средняя потребляемая мощность красного светодиода варьирует в пределах 740 мВт. У зеленого цвета средняя мощность составит уже около 1.20 Вт. На основании этих данных можно заранее просчитать, какой мощности драйвер вам понадобится.

Чтобы вам легче было просчитать общую потребляемую мощность диодов, предлагаем использовать формулу.

P=Pled x N

где Pled — это мощность LED, N — количество подключаемых диодов.

Еще одно важное правило. Для стабильной работы блока питания запас по мощности должен быть хотя бы 25%. То есть должно выполняться следующее соотношение:

Pmax ≥ (1.2…1.3)xP

где Pmax   — это максимальная мощность блока питания.

Как правильно подсоединять светодиоды-LED?

Подключать светодиоды можно несколькими способами.

Первый способ  – это последовательное введение. Здесь потребуется драйвер напряжением 12В и током 300мА. При таком способе светодиоды в лампе или на ленте  горят одинаково ярко, но если вы решитесь подключить большее число светодиодов, вам потребуется драйвер с очень большим напряжением.

Второй способ — параллельное подключение. Нам подойдет блок питания на 6В, а тока будет потребляться примерно в два раза больше, чем при последовательном подключении. Есть и недостаток — одна цепь может светить ярче другой.


Последовательно-параллельное соединение – встречается в прожекторах и других мощных светильниках, работающих и от постоянного, и от переменного напряжения.

Четвертый способ — подключение драйвера последовательно по два.  Он наименее предпочтителен.

Есть еще и гибридный вариант. Он соединил в себе достоинства от последовательного и параллельного соединения светодиодов.

Специалисты советуют драйвер выбирать перед тем, как вы купите светодиоды, да еще и желательно предварительно определить схему их подключения. Так блок питания будет для вас более эффективно работать.

Линейные и импульсные драйверы. Каковы их принципы работы?

Сегодня для LED ламп и лент выпускают линейные и импульсные драйверы.
У линейного выходом служит генератор тока, который обеспечивает стабилизацию напряжения, не создавая при этом электромагнитных помех. Такие драйверы просты в использовании  и не дорогие, но невысокий коэффициент полезного действия ограничивает сферу их применения.

 
Импульсные драйверы, наоборот, имеют высокий коэффициент полезного действия  (около 96%), да еще и компактны. Драйвер с такими характеристиками предпочтительнее использовать для портативных осветительных приборов, что позволяет увеличить время работы источника питания. Но есть и минус – из-за высокого уровня электромагнитных помех он менее привлекателен.

Нужен светодиодный драйвер на 220В?

Для включения в сеть 220В выпускаются линейные и импульсные драйверы. При этом если блоки питания обладают гальванической развязкой (передача энергии или сигнала между электрическими цепями без электрического контакта между ним), они  демонстрируют высокий коэффициент полезного действия, надежность и безопасность в эксплуатации.

Без гальванической развязки блок питания  обойдется вам дешевле, но будет не столь  надежным, потребует осторожности при подсоединении из-за опасности удара током.

При подборе параметров по мощности специалисты рекомендуют останавливать свой выбор на светодиодных драйверах с мощностью, превышающей необходимый минимум на 25%. Такой запас мощности не даст электронному прибору и питающему устройству быстро выйти из строя.

Стоит ли покупать китайские драйверы?

Made in China – сегодня на рынке можно встретить сотни драйверов различных характеристик, произведенных в Китае. Что же они собой представляют? В основном это устройства с импульсным источником тока на 350-700мА. Низкая цена и наличие гальванической развязки позволяют  таким драйверам быть в спросе у покупателей.  Но есть и недостатки прибора китайской сборки. Зачастую они не имеют корпуса, использование дешевых элементов снижает надежность драйвера, да еще и отсутствует защита от перегрева и колебаний в электросети.

Китайские драйверы, как и многие товары, выпускаемые в Поднебесной,  недолговечны. Поэтому если вы хотите установить качественную систему освещения, которая прослужит вам ни один год, лучше всего покупать преобразователь для светодиодов от проверенного производителя.
 

Каков срок службы led драйвера?

Драйверы, как и любая электроника, имеют свой срок эксплуатации. Гарантийный срок службы LED — драйвера составляет 30 000 часов. Но не стоит забывать, что время работы аппарата будет зависеть еще от нестабильности сетевого напряжения, уровня влажности и перепада температур, влияния на него внешних факторов.

Неполная загруженность драйвера также снижает срок эксплуатации прибора. К примеру, если LED – драйвер  рассчитан на 200Вт, а работает на нагрузку 90Вт, половина его мощности возвращается в электрическую сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания и прибор может перегореть, сослужив вам всего год.

Следуйте нашим советам и тогда не придется часто менять светодиодные устройства.

Драйвер и импульсный блок питания. Отличия, принцип работы. Что лучше выбрать?

Многие довольно часто путают блоки питания и драйвера, подключая светодиоды и светодиодные ленты не от тех источников что нужно.

В итоге через небольшой промежуток времени они выходят из строя, а вы и не подозреваете в чем была причина и начинаете ошибочно грешить на «некачественного» производителя.

Рассмотрим подробнее в чем их отличия и когда нужно применять тот или иной источник питания. Но для начала кратко разберемся в типах блоков питания.

Трансформаторный блок

Сегодня уже довольно редко можно встретить применение трансформаторного БП. Схема их сборки и работы довольно проста и понятна.

Самый главный элемент здесь, безусловно трансформатор. В домашних условиях он преобразует напряжение 220В в напряжение 12 или 24В. То есть, идет прямое преобразование одного напряжения в другое.

Частота сети при этом, привычные нам всем 50 Герц.

Далее за ним стоит выпрямитель. Он выпрямляет синусоиду переменного напряжения и на выходе выдает «постоянку». То есть 12В, подаваемые к потребителю, это уже постоянное напряжение 12V, а не переменное.

У такой схемы 3 главных достоинства:

  • незамысловатость конструкции
  • относительная надежность

Однако есть здесь и недостатки, которые заставили разработчиков задуматься и придумать что-то более современное.

  • во-первых это большой вес и приличные габариты
  • как следствие первого недостатка — большой расход металла на сборку всей конструкции
  • ну и ухудшает все дело низкий косинус фи и низкий КПД

Именно поэтому и были изобретены импульсные источники питания. Здесь уже несколько иной принцип работы.

Импульсные блоки питания

Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

Далее стоит генератор импульсов. Главная его задача — создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

Третий элемент в схеме — импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие — это маленькие габаритные размеры.

Это как раз таки и достигается за счет высокой частоты.

Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

Преимущества импульсных блоков:

  • маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе
  • напряжение питания можно подавать в большом разбросе
  • при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи

Есть и недостатки:

  • усложненность сборочной схемы
  • сложная конструкция
  • если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования

Проще говоря, блок питания что обычный, что импульсный — это устройство у которого на выходе строго одно напряжение. Его конечно можно «подкрутить», но в не больших диапазонах.

Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

В чем отличия драйвера от блока питания

Почему же для светодиодов нельзя применять простой БП, и для чего нужен именно драйвер?

Драйвер — это устройство похожее на блок питания.

Однако, как только в него подключаешь нагрузку, он заставляет стабилизироваться на одном уровне не напряжение, а ток!

Светодиоды «питаются» электрическим током. Также у них есть такая характеристика, как падение напряжения.

Если вы видите на светодиоде надпись 10мА и 2,7В, то это означает, что максимально допустимый ток для него 10мА, не более.

При протекании тока такой величины, на светодиоде потеряется 2,7 Вольт. Именно потеряется, а не требуется для работы. Добьетесь стабилизации тока и светодиод будет работать долго и ярко.

Более того, светодиод — это полупроводник. И сопротивление этого полупроводника зависит от напряжения, которое на него подано. Изменяется сопротивление по графику — вольтамперной характеристике.

Если на нее посмотреть, то становится видно, даже если вы не намного увеличите или уменьшите напряжение, это резко, в разы изменит величину тока.

Причем зависимость не прямо пропорциональная. 

Казалось бы, один раз выставь точное напряжение и можно получить номинальный ток, который необходим для светодиода. При этом, он не будет превышать предельные величины. Вроде бы и обычный блок с этим должен справиться.

Однако у всех светодиодов уникальные параметры и характеристики. При одном и том же напряжении они могут «кушать» разный ток.

Мало того, эти параметры еще способны меняться при изменении окружающей температуры.

А температурный диапазон работы светодиодных светильников очень большой.
Например, зимой на улице может быть -30 градусов, а летом уже все +40. И это в одном и том же месте.

Поэтому, если вы такие светильники подключите от обычного импульсного блока питания, а не от драйвера, то режим их работы будет абсолютно не предсказуем.

Работать они конечно будут, но в каком режиме светоотдачи и насколько долго неизвестно. Заканчивается такая работа всегда одинаково — выгоранием светодиода.

Кстати, при превышении температуры световой поток у светодиодных светильников всегда падает, даже у тех, которые подключены через драйвер. У некачественных экземпляров световой поток падает очень сильно, стоит им поработать около часа и нагреться.

У качественных изделий световой поток с нагревом уменьшается слабо, но все же уменьшается.

Поэтому каждому светильнику после запуска, нужно дать время, чтобы он вышел на свой рабочий режим и световой поток стабилизировался. Его изменение должно быть не более 10% от начального.

Многие недобросовестные производители хитрят и измеряют эти параметры сразу после включения, когда поток еще максимальный.

Если вам нужно соединить несколько светодиодов, то подключаются они последовательно. Это необходимо, чтобы через все элементы, несмотря на их разные ВАХ (вольт-амперные характеристики), протекал один и тот же ток.

А уже эту последовательную цепочку подключают к драйверу. Данные цепочки можно комбинировать различными способами. Создавать последовательно-параллельные или гибридные схемы.

Недостатки драйверов

Безусловно и у драйверов есть свои неоспоримые недостатки:

  • во-первых они рассчитаны только на определенный ток и мощность 

А это значит, что для каждого драйвера каждый раз придется подбирать определенное количество светодиодов. Если один из них случайно выйдет из строя в процессе работы, то драйвер весь ток запустит на оставшиеся.

Что приведет к их перегреву и последующему выгоранию. То есть потеря одного светодиода влечет за собой поломку всей цепочки.

Бывают и универсальные модели драйверов, для них не важно количество светодиодов, главное чтобы их общая мощность не превышала допустимую. Но они гораздо дороже.

  • узкоспециализированность на светодиодах 

Простые блоки питания можно использовать для разных нужд, везде где необходимы 12В и более, например для систем видеонаблюдения.

Основное же предназначение драйверов — это светодиоды.

А есть бездрайверные заводские светильники? Есть. Не так давно на рынке появилось немало таких Led светильников и прожекторов.

Однако энергоэффективность у них не очень высокая, на уровне обычных люминесцентных ламп. И как он поведет себя при возможных перепадах параметров в наших сетях, большой вопрос.

Светодиодные ленты — подключение от блока питания или драйвера?

Отдельный вопрос это светодиодные ленты. Для них вовсе не нужны драйвера, и как известно они подключаются от привычных нам блоков питания 12-36 Вольт.

Казалось бы в чем подвох? Там же тоже стоят светодиоды.

А дело в том, что драйвер уже автоматически присутствует в самой ленте.

Все вы видели на светодиодных лентах впаянные сопротивления (резисторы).

Они как раз таки и отвечают за ограничение тока до номинальной величины. Одно сопротивление устанавливается на три последовательно подключенных светодиода.

Такие участки ленты, рассчитанные на напряжение 12 Вольт называют кластерами. Эти отдельные кластеры на всем протяжении ленты подключены между собой в параллель.

И именно благодаря такому параллельному соединению, на все светодиоды подается одинаковое напряжение 12В. Благодаря кластеризации при монтаже низковольтной ленты, ее спокойно можно отрезать на мелкие кусочки, состоящие минимум из 3-х светодиодов.

Казалось бы, решение найдено и где здесь недостаток? А главный недостаток такого устройства — эти резисторы не проделывают никакой полезной работы.

Они лишь дополнительно нагревают окружающее пространство и сам светодиод возле него. Именно поэтому светодиодные ленты не светят так ярко, как нам хотелось бы. Вследствие чего, их используют лишь как дополнительный свет интерьера.

Сравните 60-70 люмен/ватт у светодиодных лент, против 120-140 лм/вт у светильников и решений на основе драйверов.

Возникает вопрос, а можно ли найти ленту без сопротивлений и подключить к ней драйвер отдельно? Да, такие устройства например применяют в светодиодных панелях.

Их часто монтируют в подвесном потолке и не только. Применяются они без сопротивлений. Еще их называют токовыми светодиодными линейками.

Именно токовыми. Здесь все отдельные участки линеек подключаются последовательно на один драйвер. И все прекрасно работает.

назначение, принцип работы, схема и ремонт

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки.

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:

Пример.Импульсная стабилизация (упрощенно)

При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет.  При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это — принцип ШИМ — широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.  

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.

Не стоит пытаться выжать из источника тока максимум. Это приводит к работе на предельных режимах, соответственно возникает повышенный нагрев. Превышение может вывести стабилизатор из строя.

Виды драйверов.

По типу их можно подразделить на:

Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.

Внутреннее устройство драйвера

Внешний вид и схема драйвера LED 1338G7.

Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.

ШИМ-драйвер Recom.

Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.

Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.

Драйвер с диммером.

LED драйвер на 220 В.

Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:

  • блок питания (БП),
  • источник тока,
  • адаптер питания,
  • источник питания.

Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.

Рекомендуемые производители светодиодных драйверов.

Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.

Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.

Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.

Led-драйвер Helvar.

Led-драйвер Mean Well.

Led-драйвер DEUS.

Led-драйвер «Ирбис».

Led-драйвер MOSO.

Из китайских можно доверять MOSO. Возможно появление новых брендов, которые производят конкурентоспособные устройства.

Хорошие рекомендации имеют Texas Instruments (США) и Rubicon (Япония, не путать с «Рубикон» Россия. Это разные марки). Но пока они дороги. 

Схема подключения драйвера к светодиодам.

Перед подключением светодиодов к драйверу необходимо уметь определять его полярность, иными словами, распознавать, где анод (+), где катод (-). Без этого света не будет.

Индикаторные диоды, а также некоторые маломощные осветительные, имеют два вывода.

Выводы светодиода.

Светодиоды в исполнении SMD (поверхностный монтаж) имеют либо 2, либо 4 вывода. В любом случае это анод и катод.

Выводы светодиодов в SMD-исполнении.

В первом случае выводы 3 и 4 могут быть не задействованы. Во втором случае косой срез расположен ближе к катоду. Обратите внимание, единого стандарта нет и возможны различия в полярности.

Поэтому можно либо обратиться к datasheet, либо использовать низковольтный источник постоянного тока и резистор ограничитель. В случае неправильной полярности светодиод не может загореться.

При использовании источника тока схема драйвера для светодиодов будет следующая:

Схема подключения светодиода.

Если у нас источник напряжения, то подключение осуществляется через ограничивающий резистор.

Схема подключения светодиода к источнику
напряжения через ограничитель.

Классическая светодиодная лента построена по такой схеме:

Схема светодиодной линейки.

В этом случае расчет производится по формулам:

Формула связи тока, напряжения, сопротивления.

При подключении важно учитывать:

  • При малой силе тока, мы теряем в яркости, при большой в сроке службы.
  • Напряжение из datasheet указывает падение напряжения при прохождении номинального тока. Этот параметром не основной.
  • Мощным светодиодам требуется и качественное питание, и хорошее охлаждение.

Схемы (микросхемы) светодиодных драйверов.

Как правило драйвера светодиодов строятся на интегральных стабилизаторах (КРЕНхх, либо импортные аналоги) или ШИМ. Схемы достаточно просты.

Использовании микросхем для стабилизации.

Принципиальные схемы светодиодных драйверов.

Существует схема самодельного источника тока на советской микросхеме К142ЕН12А.  Резистор R2 позволяет менять яркость свечения.

Принципиальная схема на отечественных компонентах.

Линейный светодиодный драйвер своими руками.

Эта часть статьи посвящена радиолюбителям.

Оригинальный линейный источник тока на компараторе.

Это весьма интересная схема. В качестве ключевого элемента выступает униполярный (полевой) транзистор. Степенью его открытия управляет микросхема – квадрантный компаратор напряжения. Возможно, эта схема покажется сложной, но тем не менее ее можно смело отнести к линейным источникам тока, так как управление током осуществляется через соединение «исток-сток». Степень открытия зависит от приложенного к затвору напряжения. Регулировка достигается за счет связи одного из входов компаратора и напряжения со стока. VD1 выполняет функцию защиты.

Срок службы светодиодных драйверов.

Как такового определенного срока службы нет, но многие производители готовы дать гарантию сроком в пять лет на свою продукцию. Естественно, при согласовании мощностей. Для того, чтобы источник питания прослужил дольше не следует давать нагрузку, при которой он будет отдавать предельные токи. Если он собран из качественных комплектующих, то он будет стабильно работать достаточно долгое время. Но рабочие температуры могут быть близки к критическим (зависит от схемотехнических решений). Оптимально, если мощность потребителей будет меньше на 20-30 процентов.

Если говорим о самодельном изготовлении, то многое зависит от качества сборки, качества радиодеталей. Интегральные стабилизаторы желательно закреплять на радиатор для обеспечения теплового режима, не следует забывать о про теплопроводящую пасту между корпусом стабилизатора и теплоотводом.


 

В чём отличия драйвера и трансформатора?

И трансформатор, и драйвер являются блоками питания какой-либо электроники. Даже иногда внешне они очень похожи.

Но отличия между ними есть и очень серьёзные. Чтобы их понять, нужно определиться, что обычно подразумевается под этими терминами.

Что такое трансформатор?

Классический трансформатор — это электромагнитная катушка как минимум с двумя обмотками с разным количеством витков в каждой.

Подавая переменное напряжение на одну из обмоток, с другой можно снимать переменное напряжение, как меньшего, так и большего значения, в зависимости от соотношения количеств витков в обмотках.

Все прочие электронные приборы, питающие какую-либо технику, технически не являются трансформаторами, либо являются ими только в какой-то своей части.

Светодиодный трансформатор на 50 ватт

Но, тем не менее, трансформатор — общепринятое название источника питания, под которым обычно понимается источник постоянного по значению напряжения, тип тока которого может быть как переменным, так и постоянным.

Именно в таком понимании мы используем термин трансформатор.

В нашем каталоге

Что такое драйвер?

Термин драйвер применяется к блокам питания, которые обеспечивают постоянный по значению ток в некотором диапазоне выходных напряжений.

Драйвер поддерживает в цепи постоянный по значению ток при изменении сопротивления подключённой нагрузки. Достигается это изменением выходного напряжения.

Для чего это нужно? Светодиоды нужно питать постоянным по типу и постоянным по значению током. Превышение номинального тока светодиода очень пагубно сказывается на его сроке эксплуатации — он быстро тускнеет, теряет яркость, перегревается и может перегореть.

Казалось бы, в чём проблема подсоединить светодиод к трансформатору постоянного тока? Подсоединяем же мы лампу накаливания — получаем и постоянный ток, и постоянное напряжение.

Можно, но не нужно! Дело в том, что сопротивление лампы накаливания практически не меняется, поэтому через неё и течёт постоянный по значению ток. Совсем другое дело светодиод — его сопротивление сильно «плавает» в зависимости от температуры. Поэтому, подключив его к трансформатору, мы получим на нём постоянное напряжение, но значение тока будет меняться и может превысить номинальный максимум. А от этого сильно страдает срок службы светодиодов.

Для решения этой проблемы и предназначены драйверы. Они меняют напряжение, поддерживая одно и то же значение тока, а светодиоды в этой ситуации чувствуют себя очень комфортно.

Светодиодный драйвер на 50 ватт

Применительно к светодиодным прожекторам термин драйвер идентичен термину блок питания — под ними всегда подразумевается одно и тоже.

Везде ли, где есть светодиоды, стоят драйверы?

Нет, не везде. Например, светодиодные ленты и почти все светодиодные лампы G4 лишены драйверов. При этом и те и другие подключаются к трансформаторам (ленты 220 вольт — к выпрямителям, но в данном контексте это одно и тоже). Также, например, различные светодиоды подсветки во всей технике подключаются явно не к драйверам.

Не имеют драйверов

Светодиодная лента 220 вольтСветодиодная лента 12 вольтСветодиодные лампы с цоколем G4

Но во всех перечисленных случаях светодиоды специально запитываются пониженным током, чтобы избежать перегрева. Т.е. в этих случаях светодиоды светят не в полную яркость, меньше греются и, дополнительно, не получают превышения предельных значений тока при подключении к трансформатору.

Но если мы хотим получить максимальную отдачу, максимальную яркость, как, например, в прожекторе, то неизбежно нужен драйвер для стабилизации тока и хороший теплоотвод в виде радиатора.

Можно ли использовать трансформатор вместо драйвера?

Например, наши светодиодные матрицы для прожекторов в штатном режиме работают примерно на 33 вольтах. Можно ли их подключить к трансформатору постоянного тока напряжением 33 вольта?

Можно, они будут работать. Но их процесс выгорания (потери яркости) будет сильно ускорен. Поэтому

мы категорически не рекомендуем этого делать

В последнее время на рынке появилось очень много дешевых светодиодных прожекторов, у которых в качестве одного из достоинств указано, что они «бездрайверные». Якобы это повышает надежность, т.к. электроники существенно меньше. Но об обратной стороне, указанной выше, продавцы подобных изделий всегда умалчивают.

У Вас есть вопрос? Спросите консультанта.

Позвоните нам.
Или кликните здесь и задайте свой вопрос — подробный ответ Вы получите очень быстро.
Мы всегда стараемся помочь.Каталог продукции

Драйвер для светодиодов: принцип работы

В этой статье мы расскажем чем отличается драйвер
для светодиодов от блока питания, какой принцип работы в основе стандартных
драйверов, а также в чем преимущества и недостатки каждого из этих элементов
питания.

 

Отличия блока питания от драйвера для светодиодов

 

Блок питания, просто даже судя по его
названию, это отдельный функциональный элемент какой-либо цепи, отвечающий за
подачу питания на те или иные приборы. Блок питания может иметь различные
показатели мощности, напряжения и силы тока, выдаваемых на выходе. И именно
напряжение является фактически основным параметром. В свою очередь драйвер для
питания светодиодов выполняет фактически ту же функцию, но основным отличием
является то, что драйвер отвечает за стабильную силу выдаваемого тока. В случае
со светодиодами это достаточно важный момент. Так как оба эти элемента, и блок
питания и драйвер, выполняют схожую функцию, их достаточно часто путают. Как
раз в маркетинговых целях и было придумано отдельное название
«драйвер», чтобы максимально разграничить эти два устройства.

В силу того, что большинство электроприборов
работает от 220 В и подключаются к стандартной розетке, мы не привыкли
задумываться о потребляемом токе. В случае же с подключением светодиодов,
светодиодных лент и прочей подобной осветительной техники — это фактически
самый важный параметр.

Блок питания

 

Рассмотрим отличия в работе блоков питания и
драйвера для светодиодов на простом примере. Блок питания, как мы выяснили,
отвечает за стабильное выходное напряжение. Значит, если к блоку питания с
выходным напряжением 12 В подключить, например, одну лампу 12 вольт 5 ватт, то
она потребует 0,42 А тока (5 / 12 = 0,42 А). Если подключить 2 такие лампы, то
блок питания вынужден будет для обеспечения 12 вольт для каждой лампы, выдать
ток в два раза больший. И так далее. Если неправильно рассчитать нагрузку на
блок питания, он будет продолжать работать и выдавать стабильное напряжение, но
со временем это может привести к его перегреву, выходу из строя, а может быть и
к пожару.

 

Драйвер для светодиодов

 

С драйвером для светодиодов все несколько
иначе. В его задачи входит вывод в цепь стабильного тока и что бы вы ни
подключили к драйверу, ток не будет больше, чем тот, на который рассчитан
драйвер. Например, у вас есть драйвер с параметрами мощности 3 ватта и тока 300
мА. Соответственно, напряжение, которое он сможет выдать равняется 10 вольтам
(3 / 0,3 = 10). Такой драйвер сможет контролировать работу любого количества
светодиодов, суммарное напряжение которых не превышает 10 вольт, а заявленный
рабочий ток составляет 300 мА. Если подключить к нему диоды с рабочим током 700
мА, они все равно будут получать не более 300 мА.

 

Это помогает обезопасить светодиоды от
перегрева, обеспечить более стабильную их работу, а как следствие, значительно
увеличивает срок их службы.

Основные виды драйверов


В продаже на сегодняшний день вы можете найти два вида драйверов. Одни из
них рассчитаны на любое количество светодиодов (главное, чтобы суммарная мощность
их не превышала заявленной). Другие служат для подключения строгого определенного
количества диодов. Именно этот момент стоит учитывать при выборе конкретного
драйвера.

 Также драйверы можно разделить по типу их конструкции и принципу работы.
Существуют драйверы на основе резистора, конденсаторной схемы, микросхемы
LM317, микросхемы HV9910, драйверы с низковольтным входом и сетевые драйверы.
Каждый из этих типов имеет свои преимущества и недостатки, свой КПД и особенности
подключения.


 


Выбор и покупка драйвера для светодиодов


 Для того, чтобы обеспечить качественное подключение светодиодов, а также
гарантировать их полную совместимость с драйвером и долговечность работы, Вам необходимо
приобретать диоды и драйвер строго в связке, подбирая их максимально
совместимыми друг к другу. Также при выборе драйвера обязательно стоит
учитывать условия, в которых он будет работать и конкретные задачи, которые
будут выполнять светодиоды, подключенные к нему.


 


Стоит заметить, что приобретая драйвер для светодиодов и сами диоды, многие
покупатели ошибочно воспринимают максимальный заявленный уровень тока как
рабочий. Например, если рабочий ток светодиодов 350 мА, то это максимальный
показатель. Следовательно, в качестве источника питания стоит использовать
драйвер с током 300-330 мА. Работа на повышенном токе, возможно, и не
спровоцирует выход светодиодов из строя, но может значительно сократить срок их
службы.

Драйвер тока для светодиодов

Hyundai Elantra когда-то была GL 😉 › Бортжурнал › Перегорают светодиоды? Делаем простейший драйвер своими руками.

…оооооочень много раз мне пришлось столкнуться с проблемой перегоревших светодиодов, установленных где-либо в машине…началось всё это с лампочек в габаритах, потом постоянно горела подсветка приборки, потом подсветка блока отопителя, багажника и т.д…

И вот как-то раз это явление достало меня окончательно и я, бегло пробежавшись глазами по записям в блогах одноклубников, решил сделать подсветку приборки “вечной” линейным стабилизатором напряжения L7812CV, +12в, что, естественно, никакого толка не дало и лента сгорела, как ни в чем не бывало 🙂

Вот он, виновник торжества.

…хотя…его вины тут нет. Виноваты тут далекие от электроники люди и я, человек который слишком мало копал, прежде, чем что-то сделать…Все мы ошибаемся, что поделать, потому и половина бортового журнала — это работа над ошибками… 🙂

Начнем с того, что светодиоды сгорают от скачков тока, а не напряжения.

“Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Есть параметр — падение напряжения! То есть сколько на нем теряется.
Если написано на светодиоде 20мА 3.4В, то это значить что ему надо не больше 20 миллиампер. И при этом на нем потеряется 3.4 вольта.
Не для питания нужно 3.4 вольта, а просто на нем «потеряется»!
То есть вы можете питать его хоть от 1000 вольт, только если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как надо, но после него останется уже на 3.4 вольта меньше. Вот и вся наука.
Ограничьте ему ток — и он будет сыт и будет светить долго и счастливо.”

Теперь понятно, почему с долбанными линейными стабами типа L7812CV постоянно все перегорает?
Да, стабилизация нужна по току, а не по напряжению и делается это резисторами!

Ладно, поехали дальше.
В связи с тем, что сейчас у меня висит 4 проекта по фарам, которые будут делаться на очень дорогостоящих COB кольцах (которые ещё дороже стали с учетом долбанного курса валют) стабилизация таковых просто жизненно необходима…

Вот как оно выглядит

Вы спросите сейчас, а нафига драйвер, если вон он, уже висит и все стабилизирует.
Ну да, я тоже так думал, а на деле оказалось, что там те же самые стабилизаторы напряжения стоят (у одного из клиентов одно кольцо уже начало моросить). Ну кто ж знал, что Китайцы в плане драйверов решили сэкономить.

Итак, делаем простейший драйвер.

Берем идеальную автомобильную сеть 12 Вольт и считаем какой нам нужен резистор на примере COB кольца, мощностью 5 Вт.

Мы можем узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания.
Потребляемый ток равен мощности деленной на напряжение в сети.
COB кольцо потребляет 5 Вт. Напряжение в идеальном автомобиле 12 Вольт.
Если считать не умеете, то можно посчитать тут
ydoma.info/electricity-zakon-oma.html
Получаем 420 милиампер потребляемого тока таким колечком.
дальше идем сюда
ledcalc.ru/lm317
вводим требуемый ток 420 милиампер и получаем:
Расчетное сопротивление: 2.98 Ом
Ближайшее стандартное: 3.30 Ом
Ток при стандартном резисторе: 379 мА
Мощность резистора: 0.582 Вт.

ЭТО РАСЧЕТ РАБОТАЕТ, КОГДА ВЫ ТОЧНО УВЕРЕНЫ В ХАРАКТЕРИСТИКАХ СВЕТОДИОДА, ЕСЛИ НЕТ, ТО ДЕЛАЕМ ЗАМЕР ПОТРЕБЛЕНИЯ ТОКА МУЛЬТИМЕТРОМ!
КАК ЭТО ДЕЛАТЬ, СМОТРИМ ТУТ!
К слову, выше расчет, где я взял спецификацию диода от китайца, является неверным, ибо при замере фактическое потребление тока оказалось не 420 мА, а 300мА. Потому сразу можно сделать вывод, что пятью ваттами там и не пахнет 🙂

Дальше идем в магазин и покупаем:
-LM317. Внешне как и LM7812. Корпус один, смысл несколько разный.

Драйверы для светодиодов: виды, назначение, подключение

LED-источники должны подключаться к электросети через специальные устройства, стабилизирующие ток – драйверы для светодиодов. Это преобразователи напряжения переменного тока 220 В в постоянный ток с необходимыми для работы световых диодов параметрами. Только при их наличии можно гарантировать стабильную работу, длительный срок эксплуатации LED-источников, заявленную яркость, защиту от короткого замыкания и перегрева. Выбор драйверов небольшой, поэтому лучше сначала приобрести преобразователь, а потом под него подбирать светодиодные источники освещения. Собрать устройство можно самостоятельно по простой схеме. О том, что такое драйвер для светодиода, какой купить и как правильно его использовать, читайте в нашем обзоре.

Мощный светодиод со стабилизатором

Что такое драйверы для светодиодов и зачем они нужны

Светодиоды – это полупроводниковые элементы. За яркость их свечения отвечает ток, а не напряжение. Чтобы они работали, нужен стабильный ток, определенного значения. При p-n переходе падает напряжение на одинаковое количество вольт для каждого элемента. Обеспечить оптимальную работу LED-источников с учетом этих параметров – задача драйвера.

Какая именно нужна мощность и насколько падает напряжение при p-n переходе, должно быть указано в паспортных данных светодиодного прибора. Диапазон параметров преобразователя должен вписываться в эти значения.

По сути, драйвер – это блок питания. Но основной выходной параметр этого устройства – стабилизированный ток. Их производят по принципу ШИМ-преобразования с использованием специальных микросхем или на базе из транзисторов. Последние называют простыми.

Преобразователь питается от обычной сети, на выходе выдает напряжение заданного диапазона, которое указывается в виде двух чисел: минимального и максимального значения. Обычно от 3 В до нескольких десятков. Например, с помощью преобразователя с напряжением на выходе 9÷21 В и мощностью 780 мА можно обеспечить работу 3÷6 светодиодных элементов, каждый из которых создает падение в сети на 3 В.

Таким образом, драйвер – это устройство, преобразующее ток из сети 220 В под заданные параметры осветительного прибора, обеспечивающее его нормальную работу и долгий срок эксплуатации.

Внешний вид LED-драйвера

Где применяют

Спрос на преобразователи растет вместе с популярностью светодиодов. LED-источники освещения – это экономичные, мощные и компактные приборы. Их применяют в разнообразных целях:

  • для фонарей уличного освещения;
  • в быту;
  • для обустройства подсветки;
  • в автомобильных и велосипедных фарах;
  • в небольших фонарях;

При подключении в сеть 220 В всегда нужен драйвер, в случае использования постоянного напряжения допустимо обойтись резистором.

Светодиодные уличные фонари – мощные и экономичные

Как работает устройство

Принцип работы LED-драйверов для светодиодов заключается в поддержании заданного тока на выходе, независимо от изменения напряжения. Ток, проходящий через сопротивления внутри прибора, стабилизируется и приобретает нужную частоту. Затем проходит через выпрямляющий диодный мост. На выходе получаем стабильный прямой ток, достаточный для работы определенного количества светодиодов.

Основные характеристики драйверов

Ключевые параметры приборов для преобразования тока, на которые нужно опираться при выборе:

  1. Номинальная мощность устройства. Она указана в диапазоне. Максимальное значение обязательно должно быть немного больше, чем потребляемая мощность, подключаемого осветительного прибора.
  2. Напряжение на выходе. Значение должно быть больше или равно общей сумме падения напряжения на каждом элементе схемы.
  3. Номинальный ток. Должен соответствовать мощности прибора, чтобы обеспечивать достаточную яркость.

В зависимости от этих характеристик, определяют какие LED-источники можно подключить при помощи конкретного драйвера.

Вся важная информация есть на корпусе устройства

Виды преобразователей тока по типу устройства

Производятся драйверы двух типов: линейные и импульсные. У них одна функция, но сфера применения, технические особенности и стоимость различаются. Сравнение преобразователей разных типов представлено в таблице:

Тип устройства Технические характеристики Плюсы Минусы Сфера применения
Генератор тока на транзисторе с p-каналом, плавно стабилизирует ток при переменном напряжении Не создает помех, недорогой КПД менее 80%, сильно нагревается Маломощные светодиодные светильники, ленты, фонарики
Работает на основе широтно-импульсной модуляции Высокий КПД (до 95%), подходит для мощных приборов, продлевает срок службы элементов Создает электромагнитные помехи Тюнинг автомобилей, уличное освещение, бытовые LED-источники

Как подобрать драйвер для светодиодов и рассчитать его технические параметры

Драйвер для светодиодной ленты не подойдет для мощного уличного фонаря и наоборот, поэтому необходимо как можно точнее рассчитать основные параметры устройства и учесть условия эксплуатации.

Параметр От чего зависит Как рассчитать
Расчет мощности устройства Определяется мощностью всех подключаемых светодиодов Рассчитывается по формуле P = P LED-источника × n, где P – это мощность драйвера; P LED-источника – мощность одного подключаемого элемента; n – количество элементов. Для запаса мощности 30% нужно P умножить на 1,3. Полученное значение – это максимальная мощность драйвера, необходимая для подключения осветительного прибора
Расчет напряжения на выходе Определяется падением напряжения на каждом элементе Величина зависит от цвета свечения элементов, она указывается на самом устройстве или на упаковке. Например, к драйверу 12 В можно подключить 9 зеленых или 16 красных светодиодов.
Расчет тока Зависит от мощности и яркости светодиодов Определяется параметрами, подключаемого устройства

Преобразователи выпускаются в корпусе и без. Первые выглядят более эстетичными и имеют защиту от влаги и пыли, вторые используются при скрытом монтаже и стоят дешевле. Еще одна характеристика, которую необходимо учесть – допустимая температура эксплуатации. Для линейных и импульсных преобразователей она разная.

Важно! На упаковке с устройством должны быть указаны его основные параметры и производитель.

Способы подключения преобразователей тока

Светодиоды можно подключить к устройству двумя способами: параллельно (несколькими цепочками с одинаковым количеством элементов) и последовательно (один за одним в одной цепи).

Для соединения 6 элементов, падение напряжения которых составляет 2 В, параллельно в две линии понадобится драйвер 6 В на 600 мА. А при подключении последовательно преобразователь должен быть рассчитан на 12 В и 300 мА.

Последовательное подключение лучше тем, что все светодиоды будут светиться одинаково, тогда как при параллельном соединении яркость линий может различаться. При последовательном соединении большого количества элементов потребуется драйвер с большим выходным напряжением.

Способы соединения светодиодов

Диммируемые преобразователи тока для светодиодов

Диммирование – это регулирование интенсивности света, исходящего от осветительного прибора. Диммируемые драйверы для светодиодных светильников позволяют изменять входные и выходные параметры тока. За счет этого увеличивается или уменьшается яркость свечения светодиодов. При использовании регулирования, возможно изменение цвета свечения. Если мощность меньше, то белые элементы могут стать желтыми, если больше, то синими.

Диммирование светодиодов при помощи пульта ДУ

Китайские драйверы: стоит ли экономить

Драйверы выпускаются в Китае в огромном количестве. Они отличаются низкой стоимостью, поэтому довольно востребованы. Имеют гальваническую развязку. Их технические параметры нередко завышены, поэтому при покупке дешевого устройства стоит это учесть.

Чаще всего это импульсные преобразователи, с мощностью 350÷700 мА. Далеко не всегда они имеют корпус, что даже удобно, если прибор приобретается с целью экспериментирования или обучения.

Недостатки китайской продукции:

  • в качестве основы используются простые и дешевые микросхемы;
  • устройства не имеют защиты от колебаний в сети и перегрева;
  • создают радиопомехи;
  • создают на выходе высокоуровневую пульсацию;
  • служат недолго и не имеют гарантии.

Не все китайские драйверы плохие, выпускаются и более надежные устройства, например, на базе PT4115. Их можно применять для подключения бытовых LED-источников, фонариков, лент.

Срок службы драйверов

Срок эксплуатации лед драйвера для светодиодных светильников зависит от внешних условий и изначального качества устройства. Ориентировочный срок исправной службы драйвера от 20 до 100 тыс. часов.

Повлиять на срок службы могут такие факторы:

  • перепады температурного режима;
  • высокая влажность;
  • скачки напряжения;
  • неполная загруженность устройства (если драйвер рассчитан на 100 Вт, а использует 50 Вт, напряжение возвращается обратно, от чего возникает перегрузка).

Известные производители дают гарантию на драйверы, в среднем на 30 тыс. часов. Но если устройство использовалось неправильно, то ответственность несет покупатель. Если LED-источник не включается или перестал работать, возможно, проблема в преобразователе, неправильном соединении, или неисправности самого осветительного прибора.

Как проверить драйвер для светодиодов на работоспособность смотрите в видео ниже:

Что такое драйвер и для чего он нужен светодиодам

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки .

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:

Пример.Импульсная стабилизация (упрощенно)

При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет. При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это – принцип ШИМ – широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.

Зачем нужен драйвер для светодиода и как подобрать

Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

Назначение

Поскольку светодиод — это полупроводниковые элементы, ключевой характеристикой, определяющей яркость их свечения, является не напряжение, а ток. Чтобы они гарантированно отработали заявленное количество часов, необходим драйвер, — он стабилизирует ток, протекающий через цепь светодиодов. Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор.

Применение

Драйверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д.

Принцип работы

Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

Подключим так же резистор 40 Ом к драйверу 300 мА.

Драйвер создаст на резисторе падение напряжения 12 В.

Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

где Pled — мощность светодиода,

N — количество подключаемых светодиодов.

Максимальная мощность драйвера не должна быть меньше .

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

где Pmax — максимальная мощность драйвера.

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод CREE XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1.25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

Как подобрать драйвер для светодиодов. Способы подключения LED

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:

  1. Последовательно. При таком способе подключения потребуется драйвер напряжением 12 В и током 300 мА. Преимущество такого способа в том, что через всю цепь идет один и тот же ток, и светодиоды горят с одинаковой яркостью. Недостаток заключается в том, что для подключения большого числа светодиодов потребуется драйвер с очень большим напряжением.
  2. Параллельно. Здесь уже будет достаточно драйвера на 6 В, но потребляемый ток будет примерно в 2 раза больше, чем при последовательном соединении. Недостаток: токи, текущие в каждой цепи, немного различаются из-за разброса параметров светодиодов, поэтому одна цепь будет светить несколько ярче другой.
  3. Последовательно по два. Тут потребуется такой же драйвер, как и во втором случае. Яркость свечения будет уже более равномерная, но есть один существенный недостаток: при включении питания в каждой паре светодиодов из-за разброса характеристик один может открыться раньше другого, и через него пойдет ток, в 2 раза превышающий номинальный. Большинство светодиодов рассчитаны на такие кратковременные броски тока, но все-таки этот способ наименее предпочтителен.

Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.

Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

Обычно они работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока Icp на выходе.

Такие драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

Светодиодный драйвер на 220 В

Для включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность.

Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током.

Китайские драйверы

Востребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса.

Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:

  • низкая надежность из-за использования дешевых схемных решений;
  • отсутствие защиты от перегрева и колебаний в сети;
  • высокий уровень радиопомех;
  • высокий уровень пульсаций на выходе;
  • недолговечность.

Срок службы

Обычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:

  • нестабильность сетевого напряжения;
  • перепады температур;
  • уровень влажности;
  • загруженность драйвера.

Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов.

Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про срок службы светодиодных ламп.

Схемы драйверов (микросхемы) для светодиодов

Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

Простой драйвер тока на этой микросхеме представлен ниже.

Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:

Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора RON.

Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

Заключение

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.

LED драйвер. Зачем он нужен и как его подобрать?

В последнее время потребители всё чаще интересуются светодиодным освещением. Популярность LED ламп вполне обоснована – новая технология освещения не выделяет ультрафиолетового изучения, экономична, а срок службы таких ламп – более 10 лет. Кроме того, при помощи LED элементов в домашних и офисных интерьерах, на улице легко создать оригинальные световые фактуры.

Если вы решились приобрести для дома или офиса такие приборы, то вам стоит знать, что они очень требовательны к параметрам электросетей. Для оптимальной работы освещения вам понадобится LED — драйвер. Так как строительный рынок переполнен устройствами как различного качества так и ценовой политики, перед тем, как приобрести светодиодные устройства и блок питания к ним, не лишним будет ознакомиться с основными советами, которые дают специалисты в этом деле.

Для начала рассмотрим, для чего нужен такой аппарат как драйвер.

Каково предназначение драйверов?

Драйвер (блок питания) — это устройство, которое выполняет функции стабилизации тока, протекающего через цепь светодиодов, и отвечает за то, чтобы купленный вами прибор отработал гарантированное производителем количество часов. При подборе блока питания необходимо для начала досконально изучить его выходные характеристики, среди которых ток, напряжение, мощность, коэффициент полезного действия (КПД), а также степень его защиты т воздействия внешних факторов.

К примеру, от проходных характеристик тока зависит яркость светодиод. Цифровое обозначение напряжения отражает диапазон, в котором функционирует драйвер при возможных скачках напряжения. Ну и конечно чем выше КПД, тем более эффективно будет работать устройство, а срок его эксплуатации будет больше.

Где применяются LED драйвера?

Электронное устройство – драйвер — обычно питается от электрической сети в 220В, но рассчитан на работу и с очень низким напряжением в10, 12 и 24В. Диапазон рабочего выходного напряжения, в большинстве случаев, составляет от 3В до нескольких десятков вольт. К примеру, вам нужно подключить семь светодиодов напряжением 3В. В этом случае потребуется драйвер с выходным напряжением от 9 до 24В, который рассчитан на 780 мА. Обратите внимание, что, несмотря на универсальность, такой драйвер будет обладать малым коэффициентом полезного действия, если дать ему минимальную нагрузку.

Если вам нужно установить освещение в авто, вставить лампу в фару велосипеда, мотоцикла, в один или два небольших уличных фонаря или в ручной фонарь, питания от 9 до 36В вам будет вполне достаточно.

LED –драйверы по мощнее необходимо будет выбирать, если вы намерены подключить светодиодную систему, состоящую из трех и более устройств, на улице, выбрали её для оформления своего интерьера, или же у вас есть настольные офисные светильники, которые работают не менее 8 часов в день.

Как работает драйвер?

Как мы уже рассказывали, LED — драйвер выступает источником тока. Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, подключим к источнику напряжением 12 В резистор 40 Ом. Через него пойдет ток величиной 300мА.

Теперь включим сразу два резистора. Суммарный ток составит уже 600мА.

Блок питания поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться. Подключим так же резистор 40Ом к драйверу 300мА.

Блок питания создаст на резисторе падение напряжения 12В.

Если подключить параллельно два резистора, ток также будет 300мА, а напряжение упадет в два раза.


Каковы основные характеристики LED — драйвера?

При подборе драйвера обязательно обращайте внимание на такие параметры, как выходное напряжение, потребляемая нагрузкой мощность (ток).

— Напряжение на выходе зависит от падения напряжения на светодиоде; количества светодиодов; от способа подключения.

— Ток на выходе блока питания определяется характеристиками светодиодов и зависит от их мощности и яркости, количества и цветового решения.

Остановимся на цветовых характеристиках LED — ламп. От этого, к слову, зависит мощность нагрузки. Например, средняя потребляемая мощность красного светодиода варьирует в пределах 740 мВт. У зеленого цвета средняя мощность составит уже около 1.20 Вт. На основании этих данных можно заранее просчитать, какой мощности драйвер вам понадобится.

Чтобы вам легче было просчитать общую потребляемую мощность диодов, предлагаем использовать формулу.

P=Pled x N

где Pled — это мощность LED, N — количество подключаемых диодов.

Еще одно важное правило. Для стабильной работы блока питания запас по мощности должен быть хотя бы 25%. То есть должно выполняться следующее соотношение:

Pmax ≥ (1.2…1.3)xP

где Pmax — это максимальная мощность блока питания.

Как правильно подсоединять светодиоды-LED?

Подключать светодиоды можно несколькими способами.

Первый способ – это последовательное введение. Здесь потребуется драйвер напряжением 12В и током 300мА. При таком способе светодиоды в лампе или на ленте горят одинаково ярко, но если вы решитесь подключить большее число светодиодов, вам потребуется драйвер с очень большим напряжением.

Второй способ — параллельное подключение. Нам подойдет блок питания на 6В, а тока будет потребляться примерно в два раза больше, чем при последовательном подключении. Есть и недостаток — одна цепь может светить ярче другой.


Последовательно-параллельное соединение – встречается в прожекторах и других мощных светильниках, работающих и от постоянного, и от переменного напряжения.

Четвертый способ — подключение драйвера последовательно по два. Он наименее предпочтителен.

Есть еще и гибридный вариант. Он соединил в себе достоинства от последовательного и параллельного соединения светодиодов.

Специалисты советуют драйвер выбирать перед тем, как вы купите светодиоды, да еще и желательно предварительно определить схему их подключения. Так блок питания будет для вас более эффективно работать.

Линейные и импульсные драйверы. Каковы их принципы работы?

Сегодня для LED ламп и лент выпускают линейные и импульсные драйверы.
У линейного выходом служит генератор тока, который обеспечивает стабилизацию напряжения, не создавая при этом электромагнитных помех. Такие драйверы просты в использовании и не дорогие, но невысокий коэффициент полезного действия ограничивает сферу их применения.


Импульсные драйверы, наоборот, имеют высокий коэффициент полезного действия (около 96%), да еще и компактны. Драйвер с такими характеристиками предпочтительнее использовать для портативных осветительных приборов, что позволяет увеличить время работы источника питания. Но есть и минус – из-за высокого уровня электромагнитных помех он менее привлекателен.

Нужен светодиодный драйвер на 220В?

Для включения в сеть 220В выпускаются линейные и импульсные драйверы. При этом если блоки питания обладают гальванической развязкой (передача энергии или сигнала между электрическими цепями без электрического контакта между ним), они демонстрируют высокий коэффициент полезного действия, надежность и безопасность в эксплуатации.

Без гальванической развязки блок питания обойдется вам дешевле, но будет не столь надежным, потребует осторожности при подсоединении из-за опасности удара током.

При подборе параметров по мощности специалисты рекомендуют останавливать свой выбор на светодиодных драйверах с мощностью, превышающей необходимый минимум на 25%. Такой запас мощности не даст электронному прибору и питающему устройству быстро выйти из строя.

Стоит ли покупать китайские драйверы?

Made in China – сегодня на рынке можно встретить сотни драйверов различных характеристик, произведенных в Китае. Что же они собой представляют? В основном это устройства с импульсным источником тока на 350-700мА. Низкая цена и наличие гальванической развязки позволяют таким драйверам быть в спросе у покупателей. Но есть и недостатки прибора китайской сборки. Зачастую они не имеют корпуса, использование дешевых элементов снижает надежность драйвера, да еще и отсутствует защита от перегрева и колебаний в электросети.

Китайские драйверы, как и многие товары, выпускаемые в Поднебесной, недолговечны. Поэтому если вы хотите установить качественную систему освещения, которая прослужит вам ни один год, лучше всего покупать преобразователь для светодиодов от проверенного производителя.

Каков срок службы led драйвера?

Драйверы, как и любая электроника, имеют свой срок эксплуатации. Гарантийный срок службы LED — драйвера составляет 30 000 часов. Но не стоит забывать, что время работы аппарата будет зависеть еще от нестабильности сетевого напряжения, уровня влажности и перепада температур, влияния на него внешних факторов.

Неполная загруженность драйвера также снижает срок эксплуатации прибора. К примеру, если LED – драйвер рассчитан на 200Вт, а работает на нагрузку 90Вт, половина его мощности возвращается в электрическую сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания и прибор может перегореть, сослужив вам всего год.

Следуйте нашим советам и тогда не придется часто менять светодиодные устройства.

Светодиодный драйвер: принцип работы и правила подбора

Светодиоды получили большую популярность. Главную роль в этом сыграл светодиодный драйвер, поддерживающий постоянный выходной ток определенного значения. Можно сказать, что это устройство представляет собой источник тока для LED-приборов. Такой драйвер тока, работая вместе со светодиодом, обеспечивает долголетний срок службы и надежную яркость. Анализ характеристик и видов этих устройств позволяет понять, какие они выполняют функции, и как их правильно выбирать.

Что такое драйвер и каково его назначение?

Драйвер для светодиодов является электронным устройством, на выходе которого образуется постоянный ток после стабилизации. В данном случае образуется не напряжение, а именно ток. Устройства, которые стабилизируют напряжение, называются блоками питания. На их корпусе указывается выходное напряжение. Блоки питания 12 В применяют для питания LED-линеек, светодиодной ленты и модулей.

Основным параметром LED-драйвера, которым он сможет обеспечивать потребителя длительное время при определенной нагрузке, является выходной ток. В качестве нагрузки применяются отдельные светодиоды или сборки из аналогичных элементов.

КПД импульсного драйвера для светодиодов достигает 95%

Драйвер для светодиода обычно питается от сети напряжением 220 В. В большинстве случаев диапазон рабочего выходного напряжения составляет от трех вольт и может достигать нескольких десятков вольт. Для подключения светодиодов 3W в количестве шести штук потребуется драйвер с выходным напряжением от 9 до 21 В, рассчитанный на 780 мА. При своей универсальности он обладает малым КПД, если на него включить минимальную нагрузку.

При освещении в автомобилях, в фарах велосипедов, мотоциклов, мопедов и т. д., в оснащении переносных фонарей используется питание с постоянным напряжением, значение которого варьируется от 9 до 36 В. Можно не применять драйвер для светодиодов с небольшой мощностью, но в таких случаях потребуется внесение соответствующего резистора в питающую сеть напряжением 220 В. Несмотря на то, что в бытовых выключателях используется этот элемент, подключить светодиод к сети 220 В и рассчитывать на надежность достаточно проблематично.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.

Дешевый светодиодный драйвер

На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Технические характеристики

Перед приобретением преобразователя для светодиодов следует изучить характеристики устройства. К ним относятся следующие параметры:

  • выдаваемая мощность;
  • выходное напряжение;
  • номинальный ток.

Схема подключения LED-драйвера

На выходное напряжение влияет схема подключения к источнику питания, количество в ней светодиодов. Значение тока пропорционально зависит от мощности диодов и яркости их излучения. Светодиодный драйвер должен выдавать столько тока для светодиодов, сколько потребуется для обеспечения постоянной яркости. Стоит помнить, что мощность необходимого устройства должна быть более потребляемой всеми светодиодами. Рассчитать ее можно, используя следующую формулу:

P(led) – мощность одного LED-элемента;

n — количество LED-элементов.

Для обеспечения длительной и стабильной работы драйвера следует учитывать запас мощности устройства в 20–30% от номинальной.

Подключение светодиодов к драйверу

Выполняя расчет, следует учитывать цветовой фактор потребителя, так как он влияет на падение напряжения. У разных цветов оно будет иметь отличающиеся значения.

Срок годности

Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:

  • низкого качества, с работоспособностью до 20 тысяч часов;
  • с усредненными параметрами — до 50 тысяч часов;
  • преобразователь, состоящий из комплектующих известных брендов — до 70 тысяч часов.

Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости. Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).

Как подобрать драйвер?

Насчитывается множество разновидностей драйверов, используемых для LED-освещения. Большинство из представленной продукции изготовлено в Китае и не имеет нужного качества, но выделяется при этом низким ценовым диапазоном. Если нужен хороший драйвер, лучше не гнаться за дешевизной китайского производства, так как их характеристики не всегда совпадают с заявленными, и редко когда к ним прилагается гарантия. Может быть брак на микросхеме или быстрый выход из строя устройства, в таком случае не удастся совершить обмен на более качественное изделие или вернуть средства.

Светодиодный драйвер без корпуса

Наиболее часто выбираемым вариантом является бескорпусный драйвер, питающийся от 220 В или 12 В. Различные модификации позволяют использовать их для одного или более светодиодов. Эти устройства можно выбрать для организации исследований в лаборатории или же проведения экспериментов. Для фито-ламп и бытового применения выбирают драйверы для светодиодов, находящиеся в корпусе. Бескорпусные устройства выигрывают в ценовом плане, но проигрывают в эстетике, безопасности и надежности.

Виды драйверов

Устройства, осуществляющие питание светодиодов, условно можно разделить на:

  • импульсные;
  • линейные.

Импульсный драйвер

Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток — во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.

Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.

Нужен ли мне светодиодный драйвер? — 1000Bulbs.com Blog

В связи с ужесточением правил в области энергетики большинство людей уже знакомы с длительным сроком службы и экономией энергии, связанными с светодиодами или светоизлучающими диодами. Однако многие не знают, что в этих инновационных источниках света для работы используются специальные устройства, называемые драйверами светодиодов. Драйверы светодиодов (также известные как источники питания для светодиодов) похожи на балласты для люминесцентных ламп или трансформаторы для низковольтных ламп: они обеспечивают светодиоды правильным источником питания для работы и максимальной производительности.Ниже мы обсудим, когда вам нужен светодиодный драйвер, зачем вам нужен светодиодный драйвер и какой тип драйвера может вам понадобиться.

Когда мне нужен светодиодный драйвер?

Для каждого светодиодного источника света требуется драйвер. Вопрос должен заключаться в том, нужно ли вам покупать его отдельно. Некоторые светодиоды уже имеют встроенный драйвер внутри лампы. Светодиоды, предназначенные для домашнего использования (лампы с цоколем E26 / E27 или GU24 / GU10 и работающие от 120 В), обычно уже включают драйвер. Однако низковольтные светодиодные источники света, такие как некоторые MR-лампы (MR GU5.3s, MR8s и MR11s) и ленточный светильник, а также некоторые приспособления, панели или наружные фонари обычно требуют отдельного драйвера. Когда светодиод, для которого требуется отдельный драйвер, перестает работать до истечения его номинального срока службы, его обычно можно сохранить, если заменить драйвер.

Зачем мне нужен светодиодный драйвер?

  • Светодиоды предназначены для работы от низкого напряжения (12-24В) постоянного тока. Тем не менее, большинство мест поставляют более высокое напряжение (120-277 В), электричество переменного тока.Основное назначение драйвера светодиода — выпрямлять более высокое напряжение переменного тока в низкое напряжение постоянного тока.

  • Драйверы светодиодов также защищают светодиоды от колебаний напряжения или тока. Изменение напряжения может вызвать изменение тока, подаваемого на светодиоды. Световой поток светодиода пропорционален потребляемому току, а светодиоды рассчитаны на работу в определенном диапазоне тока (измеряется в амперах). Поэтому слишком большой или слишком низкий ток может привести к изменению или более быстрому ухудшению светоотдачи из-за более высоких температур внутри светодиода.

В целом драйверы светодиодов служат двум целям: преобразовывать более высокое напряжение переменного тока в низкое напряжение постоянного тока и поддерживать напряжение или ток, протекающие по цепи, на номинальном уровне.

Какой тип драйвера светодиодов мне нужен?

Существует два основных типа внешних драйверов светодиодов, постоянного тока и постоянного напряжения, а также третий тип драйверов, называемый драйвером светодиодов переменного тока, который также будет обсуждаться. Каждый тип драйвера предназначен для работы со светодиодами с различным набором электрических требований.При замене драйвера требования старого драйвера к вводу / выводу должны быть максимально согласованы. Ключевые отличия подробно описаны ниже.

Постоянный ток

Драйверы светодиодов: зависимость постоянного тока от постоянного напряжения

«Какой тип драйвера для светодиодов мне нужен?» Поиск драйверов для светодиодов может быть сложнее, чем вы думаете, из-за множества имеющихся вариантов. Существует множество факторов, на которые следует обратить внимание при выборе того, который лучше всего подходит для вас, мы подробно рассмотрим это в нашем руководстве по светодиодным драйверам здесь.Одним из важных вариантов является выбор драйвера светодиодов постоянного тока по сравнению с драйвером светодиодов постоянного напряжения. Теперь известно, что драйверы светодиодов считаются устройствами постоянного тока, так почему же производители предлагают драйверы постоянного напряжения и для светодиодов? Как мы можем отличить эти два?

Драйверы светодиодов постоянного тока и драйверы светодиодов постоянного напряжения

Драйверы постоянного тока и постоянного напряжения являются жизнеспособными вариантами источника питания для светодиодных источников света, но отличается способ подачи питания.Драйверы светодиодов являются движущей силой, которая обеспечивает и регулирует необходимую мощность, чтобы светодиоды работали безопасно и стабильно. Понимание разницы между двумя типами может:

  1. Помощь в правильном включении светодиодов
  2. Избегайте серьезных повреждений ваших инвестиций в светодиоды

Что такое светодиодный драйвер постоянного тока?

Драйверы светодиодов постоянного тока предназначены для заданного диапазона выходных напряжений и фиксированного выходного тока (мА).Светодиоды, рассчитанные на работу с драйвером постоянного тока, требуют определенного источника тока, обычно указываемого в миллиамперах (мА) или амперах (А). Эти драйверы изменяют напряжение в электронной схеме, что позволяет току оставаться постоянным во всей светодиодной системе. Драйвер постоянного тока Mean Well AP — хороший пример, показанный ниже:

Чем выше номинальный ток, тем ярче светодиод, но если его не регулировать, светодиод будет потреблять больше тока, чем рассчитано. Термический разгон означает превышение максимального тока возбуждения светодиодов, что приводит к значительному сокращению срока службы светодиодов и преждевременному выгоранию из-за повышения температуры.Драйвер постоянного тока — лучший способ управлять светодиодами высокой мощности, поскольку он поддерживает постоянную яркость всех светодиодов в серии.

Что такое светодиодный драйвер постоянного напряжения?

Драйверы постоянного напряжения предназначены для одного выходного напряжения постоянного тока (DC). Наиболее распространенные драйверы постоянного напряжения (или блоки питания) — 12 В или 24 В постоянного тока. Светодиодный индикатор, рассчитанный на постоянное напряжение, обычно указывает количество входного напряжения, необходимое для правильной работы.

Источник постоянного напряжения получает стандартное линейное напряжение (120–277 В переменного тока).Это тип энергии, который обычно выводится из настенных розеток по всему дому. Драйверы постоянного напряжения переключают это напряжение переменного тока (VAC) на низкое напряжение постоянного тока (VDC). Драйвер всегда будет поддерживать постоянное напряжение независимо от того, какая на него токовая нагрузка. Пример блока питания постоянного напряжения ниже в Mean Well LPV-60-12.

LPV-60-12 будет поддерживать постоянное напряжение 12 В постоянного тока, если ток остается ниже 5-амперного максимума, указанного в таблице.Чаще всего драйверы постоянного напряжения используются в светильниках под шкафом и других гибких светодиодных лентах, но это не ограничивается этими категориями.

Итак, как мне узнать, какой тип драйвера светодиода мне нужен?

Корпус для постоянного тока драйверов:

Если вы посмотрите на светодиоды высокой мощности, одной уникальной характеристикой является экспоненциальная зависимость между приложенным прямым напряжением к светодиоду и током, протекающим через него. Вы можете ясно видеть это из электрических характеристик Cree XP-G2 ниже на Рисунке 1.Когда светодиод включен, даже малейшее изменение напряжения на 5% (от 2,74 В до 2,87 В) может вызвать 100% увеличение тока, подаваемого на XP-G2, как вы можете видеть по красным меткам, ток увеличился с 350 мА до 700 мА. .

Рисунок 1

Теперь более высокий ток действительно делает светодиоды ярче, но в конечном итоге приводит к перегрузке светодиода. См. Рисунок 2, на котором представлены характеристики Cree максимального прямого тока и кривые снижения номинальных значений в различных условиях окружающей температуры. В приведенном выше примере мы все равно могли бы управлять светодиодом XP-G2 с током 700 мА, однако, если бы у вас не было устройства ограничения тока, светодиод потреблял бы больше тока, поскольку его электрические характеристики изменялись из-за повышения температуры.Это в конечном итоге приведет к тому, что текущий способ превысит предел… особенно в более жарких условиях. Избыточный прямой ток приведет к дополнительному нагреву внутри системы, сокращению срока службы светодиодов и, в конечном итоге, к разрушению светодиода. Мы называем это тепловым разгоном, который более подробно объясняется здесь. По этой причине предпочтительным методом питания мощных светодиодов является драйвер светодиодов постоянного тока. При использовании источника постоянного тока, даже если напряжение изменяется с температурой, драйвер поддерживает постоянный ток, не перегружая светодиод и предотвращая тепловой пробой.

Рисунок 2

Когда мне использовать драйвер светодиода постоянного напряжения ?

Приведенный выше пример относится к светодиодам высокой мощности и в меньшем масштабе, поскольку мы говорили об использовании только одного светодиода. С освещением в реальном мире неудобно или экономично собирать все вручную из одного диода, светодиоды обычно используются вместе в последовательных и / или параллельных цепях для достижения желаемого результата. К счастью для дизайнеров освещения, производители представили на рынке множество светодиодных продуктов, в которых несколько светодиодов уже собраны вместе, например светодиодный тросовый светильник, светодиодные ленты, светодиодные полосы и т. Д.

Наиболее распространенные светодиодные ленты состоят из группы светодиодов, последовательно соединенных с токоограничивающим резистором. Производители следят за тем, чтобы резисторы были правильного номинала и в правильном положении, чтобы светодиоды на полосах были менее подвержены колебаниям источника напряжения, как мы говорили с XP-G2. Поскольку их ток уже регулируется, все, что им нужно, — это постоянное напряжение для питания светодиодов.

Когда светодиоды или массив светодиодов сконструированы таким образом, они обычно указывают напряжение, при котором они должны работать.Так что, если вы видите, что ваша полоса потребляет 12 В постоянного тока, не беспокойтесь о драйвере постоянного тока, все, что вам понадобится, это источник постоянного напряжения 12 В постоянного тока, так как ток уже регулируется бортовой схемой, встроенной производителем.

Преимущество использования светодиодного драйвера постоянного тока

Поэтому, когда вы создаете свой собственный светильник или работаете с нашими мощными светодиодами, в ваших интересах использовать драйверы постоянного тока, потому что:

  1. Они избегают нарушения максимального тока, указанного для светодиодов, тем самым предотвращая перегорание / тепловой пробой.
  2. Они упрощают дизайнерам управление приложениями и помогают создавать свет с более постоянной яркостью.

Преимущество использования драйвера светодиода постоянного напряжения

Драйвер светодиода с постоянным напряжением используется только при использовании светодиода или матрицы, рассчитанной на определенное напряжение. Это полезно как:

  1. Постоянное напряжение — это гораздо более привычная технология для инженеров-проектировщиков и монтажников.
  2. Стоимость этих систем может быть ниже, особенно в более крупных приложениях.

Не стесняйтесь ознакомиться с нашим руководством по светодиодным лентам, в котором есть множество устройств, которые могут работать от постоянного напряжения. Кроме того, если вам нужна помощь в выборе драйвера светодиода с постоянным током, ознакомьтесь с нашим полезным постом о том, как выбрать подходящий.

Зачем вообще нужны все эти светодиодные драйверы?

Покойный Боб Пиз, уважаемый и пользующийся всеобщим уважением инженер из National Semiconductor Corp. (ныне часть Texas Instruments), однажды написал серию технических размышлений, вдохновленных вопросами, которые в основном молодые инженеры должны были ему задавать где-то по ходу дела.Мы вспомнили, как мог бы отреагировать мистер Пиз, когда мы заметили недавний комментарий, опубликованный в ответ на одну из наших демонтажных работ с использованием светодиодных ламп мощностью 60 Вт:

Для отключения светодиодов от сети необходим трансформатор, мостовой выпрямитель и резистор! Вот и все. Чрезмерное усложнение приводит к низкой надежности, когда наработка на отказ светодиодов составляет около 200 лет.

Ну не совсем так.

Это хорошая возможность ознакомиться с основами того, почему не рекомендуется использовать для питания светодиода только мостовой выпрямитель / трансформатор / резистор и почему производители светодиодных ламп вынуждены идти на некоторые проблемы при разработке источников тока, состоящих из немного большего количества элементов. чем эти три компонента.

Часто говорят, что светодиоды должны приводиться в действие источниками тока, а не источниками напряжения. Основная причина заключается в том, что ток светодиода зависит от прямого напряжения, а световой поток светодиода зависит от прямого тока. В качестве конкретного примера рассмотрим светодиод Lumileds L150-xxxx500600000, устройство, оптимизированное для освещения. Изменение прямого напряжения на 200 мВ вызывает изменение прямого тока примерно на 100 мА. А изменение его прямого тока на 100 мА вызывает изменение его светоотдачи примерно на 20%.

Эти вариации не обеспечивают качественного освещения. Во многом именно поэтому драйверы светодиодов предназначены для подачи на светодиод постоянного тока, а не постоянного напряжения.

Как предложил автор комментария, самый простой способ установить ток светодиода — это подключить последовательно к нему резистор подходящего размера. Однако современные светодиодные источники питания этого не делают. Простой пример показывает, почему.

Предположим, у нас есть тот же светодиод Lumileds, упомянутый выше. Кривые характеристик показывают, что для получения номинальной светоотдачи светодиод должен выдерживать около 650 мА, и он должен работать с прямым напряжением 6.1 В. Для простоты предположим, что схема содержит только один светодиод Lumileds. Далее предположим, что мы используем питание 10 В. Согласно закону Ома, сопротивление, включенное последовательно с этим светодиодом на 6,1 В, необходимое для получения 650 мА от источника питания 10 В, составляет 3,9 / 0,65 = 6 Ом, потому что на резисторе должно быть падение 3,9 В. Таким образом, мощность, рассеиваемая в резисторе, составляет 3,9 × 0,65 = 2,5 Вт. Но мощность, рассеиваемая в светодиодах, составляет 6,1 × 0,65 = 4 Вт (в круглых числах). Таким образом, комбинация рассеивает 6,5 Вт, а резистор рассеивает почти 40% всей потребляемой здесь мощности.Ясно, что это не очень хорошее положение дел, поскольку причина замены ламп накаливания на светодиоды в основном заключается в повышении энергоэффективности.

И становится еще хуже. Еще один недостаток последовательного сопротивления — невозможность точно контролировать ток. Прямое напряжение светодиода может варьироваться от одного блока к другому, поэтому падение напряжения на любом резисторе, подключенном последовательно со светодиодом, также будет изменяться. Таким образом, как ток может варьироваться от одного светодиода к другому, так и световой поток.

Все светодиоды на этой пластине от эквивалентной лампы мощностью 60 Вт подключены последовательно в одну цепочку.Это довольно типично для недорогих светодиодных ламп.

Конечно, в реальном мире большинство светодиодных осветительных приборов содержат несколько светодиодов. Недостатки становятся более очевидными, когда задействовано несколько светодиодов. В примере источника питания 10 В светодиоды обязательно будут запитываться параллельно с мощностью, рассеиваемой на нескольких резисторах, и светоотдачей, изменяющейся от одного светодиода к другому. (Обратите внимание, что настоящие светодиодные лампы соединяют свои светодиоды последовательно.)

Все эти трудности делают более возможным управление светодиодами от источника постоянного тока, а не с помощью токоограничивающего резистора с источником постоянного напряжения.Опять же, по причинам энергоэффективности, импульсные источники питания являются предпочтительной топологией, а не линейными. Проблема с линейными источниками питания заключается в том, что все они содержат проходной элемент с переменным сопротивлением (то есть биполярный транзистор или MOSFET), используемый для измерения тока нагрузки (или напряжения нагрузки для источников постоянного напряжения). Мощность, рассеиваемая в проходном элементе, может быть значительной.

Например, предположим, что мы разрабатываем линейный источник питания, сначала подавая переменный ток от настенной розетки через классический двухполупериодный мост / сглаживающий конденсатор, чтобы получить уровень постоянного тока, близкий к 120 В.Если наш линейный источник питания работает в режиме постоянного тока, теперь мы хотим снизить 120 В до уровня 6,1 В / 650 мА, необходимого для работы светодиода Lumiled без последовательного резистора. Потери мощности через линейный регулятор — это разница между входным и выходным напряжением, умноженная на ток нагрузки. В данном случае это (120 — 6,1) × 0,65 = 74 Вт. Таким образом, мы теряем 74 Вт, пытаясь управлять светодиодом мощностью 4 Вт.

Очевидно, что если ваша задача — заменить лампу накаливания мощностью 60 Вт на светодиод мощностью 4 Вт, то обычный линейный источник питания не даст вам более энергоэффективную лампу.

С точки зрения энергоэффективности импульсный источник питания привлекает тем, что его потери мощности не равны разнице между входным и выходным напряжениями, умноженными на ток нагрузки, как в случае линейного источника питания. Самая простая модель импульсного источника питания — это переключатель с двумя состояниями, включенным и выключенным, который прерывает входное напряжение. Переключатель имеет сверхнизкое сопротивление, в отличие от проходного элемента с переменным сопротивлением, используемого в линейном источнике питания. Чтобы синтезировать устойчивый выходной сигнал из прерванной формы волны, добавлен выходной фильтр.Но фильтр состоит только из элементов временного накопления энергии, поэтому он состоит из компонентов практически без потерь.

Комбинация фильтрации почти без потерь и коммутации с низкими потерями позволяет переключать источники питания с показателем энергоэффективности в диапазоне 90%. Этого достаточно для питания светодиодов. Настоящая уловка заключается в том, чтобы упаковать компоненты блока питания в контейнер, достаточно маленький, чтобы их можно было вкрутить в обычную розетку A19. Как показали наши разборки светодиодных ламп, производители светодиодных ламп достигают этого с большей или меньшей степенью элегантности.

Зачем использовать драйверы светодиодов, а не электронные трансформаторы?

Светодиодные фонари

— отличное дополнение к дому или бизнесу, но ключ к достижению идеального светового баланса в вашем помещении заключается в использовании надлежащего источника питания. Существует два основных типа источников питания для светодиодных фонарей, драйверов светодиодов и электронных трансформаторов. Однако эти источники питания не обязательно могут быть взаимозаменяемыми, и вам нужно понимать, почему использование драйверов светодиодов может быть лучшим выбором, чем электронные трансформаторы.

Чем драйверы светодиодов отличаются от электронных трансформаторов?

светодиодных драйверов. Обеспечивая постоянное напряжение на светодиодной световой полосе, и ток, подаваемый на светодиодную подсветку, изменяется, чтобы обеспечить затемнение или регулировку индекса цветопередачи (CPI), который изменяет воспринимаемый вид света. Электронные трансформаторы работают аналогично драйверам светодиодов, но имеют тенденцию обеспечивать большую выходную мощность. Другими словами, для светодиодных лент большой длины может потребоваться источник питания мощностью более 200 Вт, а поскольку выходная мощность драйверов светодиодов может быть ограничена до 100 или 200 Вт, может потребоваться электронный трансформатор.

Когда следует использовать драйверы светодиодов?

Драйверы светодиодов

часто рассматриваются как превосходный источник питания для светодиодных фонарей из-за их повышенной безопасности и способности поддерживать целостность светодиодных фонарей, сообщает журнал LEDs Magazine. Драйвер светодиода обеспечивает постоянную выходную мощность, а изменение частоты импульсов в драйвере делает светодиод регулируемым. Драйверы светодиодов следует использовать для небольших установок светодиодного освещения. Однако можно установить несколько драйверов светодиодов для использования в качестве источников питания для нескольких конфигураций светодиодов.

Может ли электронный трансформатор справиться с малым светодиодным освещением?

Электронный трансформатор обычно может работать со светодиодными осветительными приборами того же размера, что и драйверы светодиодов. Кроме того, некоторые производители могут производить электронные трансформаторы, которые трудно скрыть. Однако MX LightForce предлагает полную линейку низковольтных трансформаторов освещения, которые нельзя использовать в жилых, коммерческих или промышленных светодиодных осветительных установках. Кроме того, электронный трансформатор может использоваться, когда существует комбинация светодиодного освещения и галогенного освещения.

Как насчет уменьшения яркости и срока службы светодиодов с помощью драйверов светодиодов или электронных трансформаторов?

В зависимости от технических характеристик вашей светодиодной ленты или осветительной установки можно использовать драйвер светодиода или электронный трансформатор. Но драйверы светодиодов являются предпочтительным выбором для обеспечения оптимальной регулировки яркости и увеличения срока службы светодиодов. Более того, более новые электронные трансформаторы также позволяют регулировать яркость TRIAC.

Выберите подходящий источник питания для светодиодного освещения

Рынок светодиодов меняется, и дни выбора конкретного драйвера светодиода или электронного трансформатора заканчиваются.Чтобы обеспечить удовлетворение ваших потребностей в светодиодном освещении и поддержание безопасности и целостности, убедитесь, что в вашей установке светодиодного освещения используется либо соответствующий светодиодный драйвер, либо электронный трансформатор. В противном случае выберите свой источник питания из соответствующих светодиодных драйверов и электронных трансформаторов, посетив MX LightForce.com, или позвольте эксперту помочь вам, заполнив онлайн-форму для связи, чтобы представитель связался с вами сегодня.

Как выбрать светодиодный драйвер

Добро пожаловать в это руководство по выбору драйвера светодиода.

Это руководство включает в себя основные факторы, которые следует учитывать при выборе драйвера светодиода для вашего приложения. За этими факторами также стоит информация, которая поможет вам принять решение. RS Components предлагает широкий выбор светодиодных драйверов и источников питания самых популярных брендов. Они также предлагают доставку на следующий день, конкурентоспособные цены и оптовые скидки.
Полную копию руководства в формате PDF можно найти внизу статьи.

Перед тем, как начать…

Вы выбрали светодиод (ы)? Мы предлагаем широкий выбор светодиодной продукции, в том числе:

Светодиоды видимого диапазона

Это стандартные светодиоды для сквозного монтажа и поверхностного монтажа.

COB Светодиоды

Белые светодиоды SMD высокой яркости. Они состоят из нескольких чипов / плашек на одной плате.

Светодиодные матрицы

Один или несколько светодиодов, предварительно установленных на печатной плате.

Гибкие светодиоды

Гибкие светодиодные ленты различных цветов и длины.

Светодиодные двигатели

Подобно светодиодным массивам, они также имеют на борту микросхему драйвера.

Зависимость постоянного тока от постоянного напряжения

Все драйверы работают либо с постоянным током (CC), либо с постоянным напряжением (CV), либо с обоими. Это один из первых факторов, которые необходимо учитывать в процессе принятия решений.Это решение будет определяться светодиодом или модулем, который вы будете включать, информацию о которых можно найти в техническом описании светодиода.

ЧТО ТАКОЕ ПОСТОЯННЫЙ ТОК?

Драйверы светодиодов постоянного тока (CC) поддерживают постоянный электрический ток во всей электронной схеме за счет переменного напряжения. Драйверы CC часто являются наиболее популярным выбором для светодиодных приложений. Драйверы светодиодов CC могут использоваться для отдельных лампочек или для последовательной цепочки светодиодов. Последовательность означает, что все светодиоды установлены вместе в линию, чтобы ток протекал через каждый из них.Недостатком является то, что при разрыве цепи ни один из ваших светодиодов не будет работать. Однако, как правило, они обеспечивают лучший контроль и более эффективную систему, чем постоянное напряжение.

ЧТО ТАКОЕ ПОСТОЯННОЕ НАПРЯЖЕНИЕ?

Драйверы светодиодов постоянного напряжения (CV) — это источники питания. У них есть заданное напряжение, которое они подают на электронную схему. Вы можете использовать драйверы светодиодов CV для параллельной работы нескольких светодиодов, например светодиодных лент. Источники питания CV можно использовать со светодиодными лентами, которые имеют токоограничивающий резистор, что в большинстве случаев есть.Выходное напряжение должно соответствовать требованиям напряжения всей светодиодной цепочки.

Драйверы

CV также могут использоваться для двигателей светодиодных фонарей, имеющих на борту микросхему драйвера.

ЧТО ТАКОЕ ПОСТОЯННОЕ ТОК / ПОСТОЯННОЕ НАПРЯЖЕНИЕ?

Некоторые драйверы светодиодов могут поддерживать оба варианта — CV и CC. Стандартно они работают как CV, но когда выходной ток превышает предел номинального тока, они переключаются в режим CC. Эта функция подходит для приложений, требующих гибкого драйвера светодиода.

КОГДА Я МОГУ ИСПОЛЬЗОВАТЬ CV ИЛИ CC?

ПОСТОЯННЫЙ ТОК

ПОСТОЯННОЕ НАПРЯЖЕНИЕ

Точечный светодиодный светильник

светодиодов параллельно

Офисное освещение

Светодиодные ленты

Светодиодное освещение для жилых помещений

Светодиодные двигатели

Освещение настроения

Движущиеся знаки

Освещение для розничной торговли

Сценическое освещение

Развлекательное освещение

Архитектурное освещение

Светодиодные вывески

Уличное освещение

Хай Бэй

Наружное освещение

ФАКТОРЫ ДЛЯ РАССМОТРЕНИЯ

Выходной ток (мА)

При использовании драйвера постоянного тока для светодиодов соблюдайте текущие требования для выбранных светодиодов.Затем драйвер CC должен отразить это значение. В технических паспортах светодиодов указано, что им требуется, со значением, указанным в амперах (А) или миллиамперах (мА). 1 А = 1000 мА

Существуют также регулируемые и выбираемые драйверы выходного тока. Они дают либо диапазон, например от 0 мА до 500 мА, либо ступенчатые значения, такие как 350 мА, 500 мА, 700 мА. Ваш светодиод должен соответствовать выбранному значению (ям).

Светодиоды

могут работать при более низком токе, чтобы продлить срок их службы. Использование более высокого тока может привести к более быстрому износу светодиода.

Выходная мощность (Вт)

Это значение указывается в ваттах (Вт). Используйте драйвер светодиода, по крайней мере, с таким же значением, как у вашего светодиода.

Выходная мощность драйвера должна быть выше, чем требуется для светодиодов для дополнительной безопасности. Если выходной сигнал соответствует требованиям к питанию светодиода, он работает на полную мощность. Работа на полной мощности может привести к сокращению срока службы драйвера. Точно так же средняя потребляемая мощность светодиодов. С добавлением допуска для нескольких светодиодов, вам потребуется более высокая выходная мощность от драйвера, чтобы покрыть это.

Выходное напряжение (В)

Это значение указывается в вольтах (В). Для драйверов постоянного напряжения он требует того же выхода, что и напряжение вашего светодиода. Для нескольких светодиодов требования к напряжению каждого светодиода суммируются для получения общего значения.

Если вы используете постоянный ток, выходное напряжение должно превышать требования светодиодов.

Ожидаемая продолжительность жизни

Драйверы

имеют ожидаемый срок службы в тысячи часов, известный как MTBF (среднее время до отказа).Вы можете сравнить уровень, на котором вы его используете, чтобы определить рекомендуемый срок службы. Использование драйвера светодиодов на рекомендованных выходах помогает продлить срок его службы, сокращая время и затраты на обслуживание.

Рейтинг IP

Насколько водонепроницаемым и пыленепроницаемым должен быть ваш светодиодный драйвер? Если ваш драйвер собирается куда-нибудь, где он может контактировать с водой / пылью, вы можете использовать драйвер с классом защиты IP65. Это означает, что он защищен от пыли и брызг воды.

Если вам нужно что-то водонепроницаемое, вам может понадобиться драйвер с рейтингом IP67 или IP68.Рейтинг IP указывается в виде числа. Первая цифра представляет твердые объекты, а вторая — жидкости. Вот определения:

Упаковка / инкапсуляция

Вам нужен светодиодный драйвер в корпусе? Или он будет встроен в систему? Драйверы светодиодов с открытой рамкой более компактны и могут быть встроены в ваше приложение. Инкапсуляция обеспечивает степень защиты IP и защиту автономных светодиодных драйверов.

Метод прерывания

Как вы подключите драйвер светодиода к выбранному вами приложению? Некоторые драйверы светодиодов поставляются с подвесными проводами.В качестве альтернативы вам может потребоваться приобрести провода отдельно. Также имеются отверстия под винты или колпачки для быстрого крепления кабелей к драйверу.

Копия моего руководства по покупке светодиодных драйверов прикреплена внизу страницы.

Нужен ли трансформатор для светодиодных ламп? — LED Hut

Для всех светодиодных ламп с питанием от сети требуется трансформатор. В зависимости от типа лампы трансформатор / драйвер может быть встроен в корпус лампы или может быть расположен снаружи. Назначение трансформатора — снизить сетевое напряжение (240 В) до желаемого уровня относительно лампы, на которую подается питание (например.г. 12 В или 24 В).

Переход на светодиоды — для каких ламп нужен трансформатор?

Большинство людей, которые решат переключиться на светодиоды, сделают это для домашнего использования. В большинстве случаев корпус отдельной светодиодной лампы содержит соответствующий драйвер, подходящий для питания этой лампы. Это означает, что лампочка готова к использованию и не требует дополнительных затрат на драйверы / трансформаторы. Лампочки, которые содержат драйвер светодиода и поэтому могут использоваться без добавления внешнего трансформатора, включают:

  • Колпачки для байонетных ламп (например,г. B22)
  • Винтовые колпачки для ламп (например, E26, E27)
  • Колпачки типа Twist and Lock (например, GU10, GU24)

Причина, по которой трансформатор описывается как «драйвер» по отношению к домашним светодиодным лампам, заключается в том, что, хотя термин «светодиодный трансформатор» стал популярным обобщающим термином для всех драйверов и трансформаторов, термин «трансформатор» следует зарезервировать для более крупных Проекты светодиодного освещения, требующие более мощного внешнего источника питания (подробнее см. Ниже).

В чем разница между светодиодным «драйвером» и светодиодным «трансформатором»?

При установке между сетью питания и светодиодной лампой в электрической цепи драйверы светодиодов и трансформаторы светодиодов выполняют ту же функцию (т.е.е. каждая служит для уменьшения подачи питания на лампочку). Однако между двумя электрическими компонентами есть четкое различие. Напряжение электросети в британских домах составляет около 240 В. Учитывая, что светодиодные лампы, предназначенные для домашнего использования, для правильной работы в течение ожидаемого срока службы требуют значительно ограниченного источника питания, поэтому для защиты лампы в цепи необходимо установить драйвер / трансформатор. Основное отличие светодиодных драйверов от светодиодных трансформаторов — выходная мощность:

Драйверы светодиодов

Обычно драйверы светодиодов ограничены максимальной выходной мощностью 100–200 Вт.Это означает, что драйверы светодиодов являются предпочтительным источником питания для небольших светодиодных осветительных установок в доме, поскольку для отдельных светодиодов может потребоваться только 2–4 В постоянного тока. Когда светодиоды соединены последовательно — или «массив» — требуется гораздо более высокое напряжение. В этом случае может быть установлен светодиодный трансформатор (например, для питания световой ленты).

Светодиодные трансформаторы

Светодиодные трансформаторы

способны управлять большим потоком электроэнергии. Таким образом, трансформаторы обеспечивают «тяжелое» решение по источникам питания для крупномасштабных проектов светодиодного освещения, таких как ленточное освещение (также известное как «светодиодная лента»).См. Ниже дальнейшие соображения по использованию светодиодного трансформатора со светодиодной лентой.

Как далеко я должен разместить светодиодный трансформатор?

В рамках рассмотрения вопроса о покупке осветительной ленты или светодиодной ленты необходимо решить вопрос о максимальном расстоянии, на котором источник питания должен быть размещен от световой ленты. Это связано с тем, что светодиодный трансформатор, который подключен к цепи на слишком большом расстоянии от светодиодной ленты, может привести к провалу источника питания, достигающего полосы.В зависимости от свойств электрических кабелей, подключенных к осветительной полосе (и, следовательно, в зависимости от электрической нагрузки, которую кабель может выдерживать), ответы будут следующими:

Электропроводка Максимальное рекомендуемое расстояние светодиодного трансформатора от осветительной ленты
0,75 мм 5 мес.
1 мм 10 мес.
1,5 мм 15 мм
2.5 мм 20 мес.

Могут ли несколько светодиодных лент питаться от одного трансформатора?

Да. Питание нескольких светодиодных лент может осуществляться через один светодиодный трансформатор при условии, что общая мощность, требуемая для лент, не превышает предельных значений электрической нагрузки трансформатора. Если нагрузка превышает возможности трансформатора, это повлияет на выход (что может привести к затемнению или мерцанию света).

Нужен ли для всех светодиодных даунлайтов отдельный драйвер?

Лампы, предназначенные для использования во влажных зонах (например, светильники в ванной комнате), должны иметь степень защиты IP для такого использования.Это означает, что каждая герметичная лампочка будет содержать драйвер, и внешний трансформатор не потребуется. При установке светодиодных точечных светильников в других частях дома, например, на кухонных потолках, необходимо учитывать электрическую арматуру — например, если светильник предназначен для размещения лампы MR16 (двухштыревой лампы), необходимо установить отдельный драйвер с лампой. . Консультации относительно драйверов для ламп MR16 можно получить в информации о продукте производителя и у качественных поставщиков продукта в момент покупки.

Могу ли я установить светодиодный трансформатор?

Всегда обращайтесь за советом к квалифицированному электрику, прежде чем приступать к крупномасштабным проектам освещения, которые требуют планирования и безопасного выполнения внешнего источника питания, питаемого через светодиодный трансформатор.

Один светодиодный драйвер — все, что вам нужно для автомобильных светодиодных блоков фар (LT3795)

Фары ближнего света, фары дальнего света, дневные ходовые огни и сигнальные огни часто объединяются в единый блок или группу, что позволяет дизайнерам создавать отличительные автомобильные передние части конец смотрит.В эти кластеры вошло светодиодное освещение, которое отличает современные роскошные автомобили высокого класса; но светодиоды предлагают больше, чем просто красивый внешний вид. У них есть ряд технических преимуществ по сравнению с конкурирующими осветительными технологиями — в частности, повышенная эффективность, надежность и срок службы. Несмотря на эти преимущества, дизайнеры автомобильного освещения сталкиваются с проблемой стоимости замены традиционных ламп на светодиоды.

Значительная часть стоимости светодиодного освещения обусловлена ​​стоимостью самих светодиодов, узлов терморегулирования (например, металлических радиаторов с оребрением) и надежных схем управления светодиодами.Традиционно для каждого светодиодного луча или типа света требуется собственная печатная плата драйвера светодиода. Стоимость и сложность можно значительно снизить, если использовать один драйвер для управления несколькими цепочками светодиодов (последовательно) в кластере освещения.

Комплексный драйвер для нескольких цепочек светодиодов должен поддерживать высокие напряжения и токи, необходимые для цепочек светодиодов высокой мощности. Он также должен ловко обрабатывать переходы включения / выключения одних светодиодных цепочек, в то время как другие остаются включенными и незатронутыми. В автомобильной среде он должен выдерживать широкий диапазон входных и выходных напряжений батареи на входе и светодиодных цепочек на выходе.Автомобильная среда также требует, чтобы драйвер имел низкий уровень электромагнитных помех и защиту от обрыва и короткого замыкания.

Автомобильные драйверы светодиодов LT3795 и LT3952 удовлетворяют этим требованиям при использовании в повышающих топологиях и (подана заявка на патент) повышающих понижающих схемах. Эти драйверы светодиодов могут работать в топологиях повышенного (повышающего) и понижающего (повышающего и понижающего) напряжения. Они поддерживают большие стопки светодиодных цепочек, принимают широкий диапазон напряжения батареи и могут плавно изменять количество включенных светодиодов на выходе.Оба они имеют частотную модуляцию с расширенным спектром для уменьшения электромагнитных помех, а также защиты от короткого замыкания и размыкания светодиода.

Общее напряжение группы фар ближнего, дальнего и дневного света может составлять около 70 В при работе со светодиодами 1 А. Одноканальный драйвер светодиодов 100V + LT3795 может управлять светодиодами мощностью 70 Вт напрямую от стандартного автомобильного входа 9–16 В — все три источника света в кластере могут подключаться последовательно.

Схема комбинированного драйвера на рис. 1 показывает, как одноканальный драйвер светодиодов LT3795 может использоваться для питания 1А через дневные ходовые огни, фары ближнего и дальнего света в топологии с усилением.Это позволяет включать и выключать фары ближнего и дальнего света — дневные ходовые огни всегда включены.

Рисунок 1. Автомобильный импульсный светодиодный драйвер LT3795 70 Вт (70 В, 1 А) последовательно управляет дневными ходовыми огнями, фарами ближнего и дальнего света с эффективностью 95%.

Когда фары ближнего и дальнего света включаются и выключаются, их светодиодные цепочки добавляются и вычитаются из цепочек дневных ходовых огней с помощью сильноточных полевых МОП-транзисторов M3 и M4. Эти переключатели действуют как закорачивающие устройства.Когда MOSFET включен, он закорачивает соответствующий луч, выключая его; когда полевой МОП-транзистор выключен, луч работает с током 1 А. Эта простая в реализации конструкция надежна и значительно экономит место, не требуя дополнительных контроллеров.

Включение и выключение всей цепочки светодиодов 23 В (например, ближнего света) создает переходный процесс 23 В на выходе. Важно, чтобы переходы между включениями и выключениями не происходили мгновенно. В этой конструкции Q1 и Q2 управляют включением и выключением полевого МОП-транзистора, чтобы предотвратить большие всплески тока цепочки светодиодов, которые в противном случае могли бы привести к энергии, которая принимается или высвобождается выходной крышкой.Мгновенное переключение M3 и M4 привело бы к временному падению тока светодиода до нуля, вызывая видимое мигание в огнях ближнего света, или могло бы вызвать сильный всплеск тока, до 3 А, который повлиял бы на нагрузку даже на самую прочную светодиодную цепочку.

На рисунке 2 показано управляемое переключение M3 и M4, при котором ток светодиода и выходное напряжение меняются в течение ~ 500 мкс. Закорачивающий драйвер для M3 и M4 работает со скоростью, с которой выходной конденсатор и преобразователь могут обрабатывать медленные переходные процессы с отклонением выходного тока менее 20% за очень короткое время.Когда строка добавляется к постоянно включенным ходовым огням или удаляется из них, не наблюдается заметного мигания или мерцания в ближнем свете или других ходовых огнях.

Рис. 2. Все цепочки кластерных светодиодов последовательно управляются одним каналом ИС, но включение (или выключение) других цепочек существенно не влияет на работающую цепочку — постоянная яркость сохраняется даже при включении цепочек ближнего и дальнего света и выключенный. Переходы контролируются путем медленного включения или выключения светодиодных лучей с закорачивающими полевыми МОП-транзисторами, предотвращая скачки тока на других, неизмененных цепочках.

Схема усилителя светодиодов LT3795 на рис. 1 имеет КПД 91% и 95%, когда включены только дневные ходовые огни, и когда включены все лучи света соответственно. Имеет защиту от короткого замыкания и обрыва светодиода. Благодаря хорошей компоновке и достаточной площади меди для дискретных компонентов питания, компонент с максимальным повышением температуры этого буст-драйвера мощностью 70 Вт может поддерживаться ниже 40 ° C без дополнительных радиаторов или воздушного потока. Для уменьшения электромагнитных помех можно использовать фильтры электромагнитных помех, резистор привода GATE и частотную модуляцию с расширенным спектром.

В некоторых автомобилях светодиодное освещение используется для дневных ходовых огней и сигнальных огней, но не для дальнего или ближнего света. Дневные ходовые огни имеют множество различных конфигураций, от длинных цепочек светодиодов с относительно низким током до коротких цепочек с большим током. Микросхема, которая может поддерживать как повышающее, так и понижающее преобразование, может питать комбинированные дневные ходовые огни и иногда включенный дифферент или желтый сигнальный свет. Использование интегральной схемы, которая может беспрепятственно обрабатывать переходы напряжений составных цепочек в повышающей и понижающей топологии, позволяет дизайнерам сосредоточиться на световой эстетике и функциональности, не беспокоясь о драйвере.Затемнение можно добавить в смесь без особых усилий.

Рис. 3. Эффективность различных комбинаций света составляет от 94% до 96%.

Повышающий понижающий драйвер светодиода LT3952 (подана заявка на патент), показанный на рис. 4, регулирует ток 1А с помощью компактного дневного ходового света и последовательного желтого сигнального или подстроечного света. Янтарный свет с двумя светодиодами можно мигать или регулировать с помощью ШИМ-регулирования с помощью закорачивающего полевого МОП-транзистора M2, не влияя на яркость постоянно включенных дневных ходовых огней.

Рисунок 4.Этот автомобильный повышающий светодиодный драйвер мощностью 18 Вт (18 В, 1 А) включает дневные ходовые огни и сигнальные огни желтого цвета с разными уровнями яркости. Частота переключения 2 МГц удерживает EMI выше и вне диапазона AM.

В результате получился одиночный компактный повышающий понижающий драйвер светодиодов на 1 А, выходной сигнал которого управляет видимым постоянным дневным светом из 2–4 светодиодов, а также мигающим сигнальным светом и / или регулируемым световым сигналом с регулируемой яркостью.

Переходные процессы тока светодиода

сводятся к минимуму за счет управляемого переключения MOSFET M2, который включается, чтобы закоротить желтый свет, и выключается, чтобы включить желтый свет.На рисунке 5 показано ШИМ-регулирование янтарного света с частотой 120 Гц для немерцающего затемнения 10: 1 без влияния на яркость дневного ходового света. Точно так же он может включаться и выключаться с частотой 1 Гц — скажем, с 10% -ным затемнением «выключено» (или другое) до 100% «включено», чтобы действовать как световой сигнал поворота.

Рис. 5. ШИМ-регулировка яркости янтарных сигнальных огней с коэффициентом 10: 1 (и до 20: 1) и частотой 120 Гц не влияет на ток цепочки светодиодов дневных ходовых огней.

Новая топология драйвера светодиодов повышающего и понижающего напряжения позволяет диапазонам входного и выходного напряжения пересекаться друг с другом, упрощая конструкцию за счет уменьшения необходимости предварительного регулирования.

Преобразователь защищен светодиодами от короткого замыкания и обрыва. Дополнительный диод с низким VF в цепи LED обеспечивает защиту LED от GND в дополнение к защите LED + от GND от TG MOSFET (M1) и обнаружения перегрузки по току LT3952. Топология повышения-понижения имеет как низкие входные, так и выходные пульсации для очень низкого уровня электромагнитных помех, которые еще больше уменьшаются с помощью частотной модуляции с расширенным спектром.

Для повышения эффективности преобразователь может работать при частоте переключения 350 кГц (рисунок 6).Эффективность этих двух вариантов сравнивается на рисунке 7. Обратите внимание, что решение 2 МГц имеет преимущества уменьшенного размера катушки индуктивности и электромагнитных помех выше и вне диапазона AM. На частоте 350 кГц или 2 МГц несвязанные катушки индуктивности могут использоваться вместо одиночной связанной катушки индуктивности в топологии повышающего напряжения.

Рис. 6. Автомобильный повышающий понижающий драйвер светодиодов аналогичен рис. 4, но в нем используется частота переключения 350 кГц для повышения эффективности.

Рис. 7. Сравнение эффективности повышающе-понижающего решения 350 кГц (рис. 6) и решения 2 МГц (рис. 4).

В автомобильной среде важно, чтобы отказ одной лампы не препятствовал работе других светодиодов. LT3795 и LT3952 включают функции обнаружения неисправностей и составления отчетов, которые позволяют системному контроллеру включать рабочие светодиоды, даже если другие цепочки в серии неисправны.

Используя флаги неисправности и дополнительный, дополнительный диагностический переключатель (M FAULT ), системный компьютер может опрашивать светодиодные лучи, включая и выключая их, чтобы определить, какой из них имеет обрыв.Системный контроллер может включать оставшиеся исправные светодиодные лучи, в то время как неисправный луч закорочен. Неисправная строка может быть повторно опрошена и переведена в оперативный режим, как только она снова станет здоровой. Обе цепи LT3795 и LT3952 работают с короткими и открытыми цепями, поэтому замыкание и размыкание цепочек не представляет потенциального вреда для цепей.

Дополнительные показания напряжения и обнаружения короткого замыкания могут использоваться для отключения цепочек, которые были закорочены, или для сообщения о закороченных сегментах, требующих обслуживания.Схемы драйверов светодиодов сохраняют функциональность и надежность даже при повреждении одной из цепочек светодиодов.

Комбинированные автомобильные светодиодные фонари могут управляться от одноканального светодиодного драйвера для экономии затрат и места. Строки высокой мощности и высокого напряжения могут быть объединены в повышающую топологию, или цепочки с различной яркостью или более низким напряжением могут быть включены и выключены в новой, повышающей топологии. Использование одного драйвера для нескольких струн снижает стоимость и сложность, сохраняя эстетические преимущества.

LT3795 и LT3952 — это мощные и гибкие микросхемы драйверов светодиодов, которые можно использовать для комбинированных цепочек светодиодных индикаторов группы фар. Они отличаются высоким напряжением, высоким током, частотной модуляцией с расширенным спектром, а также защитой от короткого замыкания и обрыва светодиода.

.