Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Своими руками

Делаем заземление для частного дома своими руками: Как сделать заземление в частном доме своими руками

Содержание

Заземление в частном доме своими руками 220в, как сделать

Чтобы обеспечить свой собственный частный дом безопасной системой электроснабжения, необходимо в процессе его реконструкции или при проведении новой схемы электрической разводки учесть систему заземления. При этом необходимо отметить, что монтаж заземления в частном доме своими руками 220в – процесс не очень сложный. Особенно, если сравнивать с монтажом в многоквартирном доме. И хотя все понимают, зачем нужно защитное заземление, не всего его делают. Поэтому рассмотрим конструкцию полностью, а заодно ответим на вопрос, как сделать контур заземления загородного дома.

Устройство заземления на улице у дома

Устройство контура заземления в частном доме – это штыри, вбитые в грунт вертикально, которые обвязываются между собой проводниками. И вся эта конструкция соединяется с распределительным щитком в доме. Перед тем как сделать заземление в частном доме, необходимо подготовить необходимые инструменты и материалы.

Из инструментов понадобятся лопаты, лом, кувалда, молоток, сварочный аппарат с электродами, болгарка, гаечные ключи. Из материалов:

  • металлический уголок размерами 50х50х5 мм;
  • стальная лента шириною 40 мм и толщиною 4 мм;
  • металлическая проволока катанка диаметром 8-10 мм.

Чисто в конструктивном исполнении домовый контур заземления представляет собой равносторонний треугольник, в углы которого вбиваются металлические заземлители. Для этого и используется металлический уголок. Глубина вбивания – 2,5-3,0 м. Сделать это можно самостоятельно обычной кувалдой. Если грунт на участке твердый, то можно сначала провести углубление при помощи бура на глубину 1,5 м, после чего добить уголки кувалдой.

Монтажный процесс необходимо начать с нанесения на грунт размеров и формы заземляющего контура. После чего по всему периметру выкапывается траншея шириною до 60 см, чтобы было удобно проводить сварку, и глубиною 80-100 см. Вбиваются заземлители. Чтобы процесс вхождения в грунт уголков проходил без проблем, рекомендуется их концы заострить под конус. До упора забивать не надо, нужно чтобы над дном траншей остались торчать края штырей, приблизительно 20-30 см.

Теперь необходимо уголки состыковать между собой горизонтальными элементами контура заземления. Для этого используется металлическая лента. Соединение производится только электрической сваркой. Никаких болтов, которые под землей покроются коррозией, а это частичное или полное отсутствие контакта, что приведет к неэффективности заземления в загородном доме.

Следующий этап – это соединение сделанного контура с распределительным щитком в доме. Для этого можно использовать или катанку, или ту же металлическую полосу. По двору соединительный контур проводится в траншее, внутри дома по стене или плинтусу. На конце проводника, который вошел в дом, приваривается болт М6 или М8. На него будет надеваться кольцо провода, отвечающего за внутреннее заземление частного дома. Крепление производится аналогичной гайкой. Может понадобиться изоляция стыков.

Внимание! В качестве элементов заземляющего контура нельзя применять металлическую арматуру. Ее внешний слой является каленым, что нарушает равномерное распределение тока по всему сечению профиля. К тому же арматура в земле быстрее ржавеет.

Места сварки надо обязательно обработать антикоррозийными составами. Но весь контур окрашивать или покрывать каким-то защитными составами запрещено. Потому что в системе необходим полный контакт с землей, куда будут уходить блуждающие токи.

На этом монтаж контура заземления для частного дома можно считать законченным. Поэтому убедитесь, что сварочные стыки прочные, после чего лопатами надо закопать траншеи. Кстати, эту технологию можно использовать и для сооружения системы молниеотвода (громоотвода). Вот такое устройство заземления в частном доме можно сделать своими руками.

Необходимо отметить, что правильная форма заземления частного дома – это необязательно треугольник. Можно использовать квадрат, окружность, линию и другие фигуры. Важно, чтобы сам контур не создавал сопротивления, поэтому максимальное количество вбитых вглубь земли заземлителей и их горизонтальных собратьев было как можно больше. Хотя треугольник – проверенный временем вариант. И еще один немаловажный момент – расстояние от домашнего контура системы заземления до фундамента дома не должно быть меньше одного метра.

Подключение в электрическом щите

Обычно питание частных домов электрическим током осуществляется воздушными линиями электропередач. Поэтому ввод в дом делают двумя проводами: фаза и ноль. Их система заземления основана на схеме TN-C, в которой установленный нулевой контур – он же и заземляющий, подключен к общей нейтрали в трансформаторной подстанции.

Так как свой дом оборудуется заземляющей системой, то подключение может быть проведено по двум разным схемам:

  1. TN-C на TN-C-S;
  2. TN-C на TT.

Подключение контура по схеме TN-C-S

Система заземления частного дома своими руками по схеме TN-C – это, как правило, двухпроводная разводка, в которой один провод является фазой, второй нулевой выполняет сразу две функции: рабочего проводника N и защитного PE. Чтобы перевести на схему TN-C-S, необходимо внутри распределительного щитка установить дополнительную шину. Она должна иметь металлический контакт с корпусом электрощита. К ней будут присоединены нулевой провод питающей сети и проводник от нового заземляющего контура, собранного своими руками.

Новую шину нужно соединить с шиной, к которой был соединен нулевой провод N, выходящий из дома. При этом контакта шины N с щитком не должно быть. По сути, так и получится, потому что в щитке на шине устанавливается диэлектрический клеммник, через который и проводится соединение. Кстати, фазный провод также изолирован от элементов распределительного щита и его корпуса.

Последний этап, как правильно сделать заземление в частном доме по системе TN-C-S, это соединить между собой новую шину и заземлительный контур. Обычно для этого используется медный многожильный кабель сечением не меньше 4 мм², один конец которого крепится к щитку, второй к болту, приваренному на конец заземляющего проводника на вводе в дом.

Подключение по схеме TT

Схема похожа на заземление дома по системе TN-C-S, но есть у нее и разительные отличия. В системе подключения TT входящий проводник PEN, несущий двойную нагрузку (нуля и земля), подключается к шине, которая изолирована от контакта с распределительным щитком. Как, в принципе, и фазный проводник. К ней будет подключаться нулевой провод, выходящий из дома.

К не заизолированной шине, которая с другими шинами ничем не связана, подключается заземляющий провод, выходящий из дома. Сюда же подсоединяется и заземлитель, идущий от уличного контура заземления. Соединение производится медным кабелем с минимальным сечением 10 мм². То есть, получается, что все провода проходят по разным контурам и друг с другом соединяются лишь в бытовых приборах.

Отличительной особенностью системы заземления TT, ее положительная сторона – это разделение двух контуров: нуля и заземления. В системе TN-C-S есть один негативный момент – при отгорании провода PEN, электричество пойдет по наименьшему сопротивлению, то есть, по самому защитному заземлению. А это чревато большими неприятностями. Минимально, что может случиться, произойдет короткое замыкание в проводке, могут сгореть бытовые приборы. Максимально – здесь и до пожара не так далеко.

Заземления в частном доме по системе TT гарантирует полную безопасность при любых нестандартных ситуациях. И даже если проводник PEN отгорит, то просто в доме не будет электричества, потому что заземляющая сеть проходит отдельным контуром. И ничем с нулем она не связана. Поэтому, выбирая систему заземления для дома ТТ (своими руками смонтированную), можно быть уверенным в полной ее безопасности.

Проверка заземления

Заземление в деревянном доме или кирпичном готово, необходимо его проверить. Что для этого нужно сделать?

  • Разбираем любую розетку в доме.
  • Берем мультиметр и выставляем его в режим напряжения.
  • Соединяем щупами прибора провода фазы и нуля. Должно появиться значение напряжения в сети.
  • Затем соединяются фаза и заземление. Прибор должен показать немного отличающееся (сниженное) значение напряжения, чем в предыдущем пункте.

Все это можно сделать и при помощи контрольной лампочки. Все те же манипуляции, при которых лампочка должна гореть ярко при соединении фазы с нулем, и тусклее при соединении фазы с землей. Вот так можно ответить на вопрос, как проверить заземление в частном доме.

Полезные советы

В связи с устройством заземления дома своими руками частные владельцы домов и новоиспеченные застройщики часто сталкиваются с некоторыми проблемами, которые сами решить не могут. К примеру, заземление в частном доме своими руками (380в подводимого напряжения). Есть ли какие-то особенности в проведении монтажа? Никаких особенностей нет, потому что трехфазное подключение внутри дома разбивается по однофазным контурам, которые равномерно разбрасываются по всему зданию. К примеру, одна фаза идет на освещение, вторая на розетки, третья замыкается, к примеру, на бойлер. Заземлить же дом приходится по одному контуру. Тот есть, провод заземления, выходящий из дома, соединяется с шиной, куда был подсоединен заземлитель с улицы. При этом внутри помещений заземляющий контур соединяет между собой все розетки и мощные бытовые приборы, как отдельно стоящие потребители.

Можно ли сделать заземление в доме, используя для этого подвал или погреб? Никаких проблем и здесь нет. Главное, чтобы заземление в подвале (погребе) полностью находилось в земле, чтобы сопротивление конструкции было минимальным. При этом погреб будет идеальным местом (влажный пол и грунт, хорошо проводящие ток), единственное к нему требование – это закрыть место установки контура защитными приспособлениями, к примеру, уложить деревянные решетки на пол.

Заключение по теме

Устанавливая схему заземления в частном доме своими руками на 220в, необходимо осознавать, что это мера безопасности. И какие бы затраты не пришлось делать, не стоит переживать, что семейный бюджет несет убытки. Это окупится сторицей, ведь здоровье и жизнь стоят дороже. Поэтому не стоит раздумывать, делать заземление в частном доме или нет. Ответ положительный – нужно заземление делать, не откладывая. Для заземления не стоит скупиться, а как оно делается, подробно описано.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Заземление в частном доме: системы, схемы, фото, видео

Эксплуатация современной бытовой и компьютерной техники без заземления чревата ее выходом из строя. На значительной части нашей страны, особенно в сельской местности, системы электропередач старого образца. В них наличие защитного заземления не предусмотрено или они находятся в таком состоянии, что просто не удовлетворяют требованиям электробезопасности. Потому приходится владельцам делать самим заземление частного дома или дачи.

Содержание статьи

Что оно дает

Защитное заземление необходимо для обеспечения электробезопасности в доме. Правильно выполненное, появлении тока утечки оно ведет к немедленному срабатыванию УЗО (повреждение электроизоляции или при прикосновение к токоведущим частям). Это — главная и основная задача этой системы.

Вторая функция заземления — обеспечение нормальной работы электрооборудования. Для некоторых электроприборов наличия защитного провода в розетке (если он есть) недостаточно. Необходимо подключение к заземляющей шине напрямую. Для этого обычно есть специальные зажимы на корпусе. Если говорить о бытовой технике, то это микроволновая печь, духовка и стиральная машина.

Основная задача заземления — обеспечить электробезопасность частого дома

Мало кто знает, но микроволновка без прямого подключения к «земле» во время работы может существенно фонить, прием уровень излучения может быть опасным для жизни. В некоторых моделях на задней стенке можно увидеть специальную клемму, хотя в инструкции обычно только одна фраза: «необходимо заземление» без уточнения как именно его желательно сделать.

При прикосновении мокрыми руками к корпусу стиральной машины часто ощущается пощипывание. Оно неопасно, но неприятно. Избавиться можно подключив «землю» напрямую на корпус. В случае с духовкой ситуация аналогична. Даже если она не «щиплет», прямое подключение более безопасно, так как проводка внутри установки работает в очень тяжелых условиях.

С компьютерами дело обстоит еще интереснее. Подключив напрямую «земляной» провод к корпусу, вы можете  разы поднять скорость работы Интернета и свести к минимуму количество «зависаний». Вот так просто из-за наличия прямого соединения с заземляющей шиной.

Нужно ли заземление на даче или в деревянном доме

В дачных поселках делать заземление надо обязательно. Особенно, если дом построен из горючего материала — деревянный или каркасный. Дело в грозах. На дачах очень много элементов, притягивающих молнии. Это колодцы, скважины, трубопроводы, лежащие на поверхности или закопанные на минимальную глубину. Все эти объекты притягивают молнии.

На дачах высока вероятность попадания молнии

Если громоотвода и заземления нет, попадание молнии почти равнозначно пожару. Пожарной части поблизости нет, так что огонь распространится очень быстро. Потому в паре с заземлением делайте еще и молниеотвод — хоть пару стержней метровой длины, прикрепленных к коньку и соединенных при помощи стальной проволоки с заземлением.

Системы заземления частного дома

Всего систем шесть, но в индивидуальной застройке применяется, в основном, только две: TN-S-C и TT. В последние годы рекомендована система TN-S-C. В этой схеме нейтраль на подстанции глухозаземлена, а оборудование имеет непосредственный контакт с землей. К потребителю земля (PE) и нейтраль/ноль (N) ведется одним проводником (PEN), а на входе в дом снова разделяется на два отдельных.

Система заземления TN-S-C

При такой системе достаточная степень защиты обеспечивается автоматами (УЗО не обязательны). Недостаток — при отгорании или повреждении провода PEN на участке между домом и подстанцией на земляной шине в доме появляется фазное напряжение, которое ничем не отключается. Потому ПУЭ предъявляет жесткие требования к такой линии: должна быть обязательная механическая защита провода PEN, а также периодическое резервное заземление на столбах через 200 м или 100 м.

Тем не менее, многие линии электропередачи в сельской местности этим условиям не удовлетворяют. В этом случае рекомендована к использованию система TT. Также эта схема должна использоваться в отдельно стоящих открытых хозяйственных пристройках с земляным полом. В них есть риск прикоснуться одновременно к заземлению и грунту, что может быть опасным при системе TN-S-C.

Система заземления частного дома TT

Разница в том, что «земляной» провод на щиток идет от индивидуального контура заземления, а не от трансформаторной подстанции, как в предыдущей схеме. Такая система устойчива к повреждениям защитного провода, но требует обязательной установки УЗО. Без них защиты от поражения электрическим током нет. Поэтому ПУЭ определяет ее только как резервную, если имеющаяся линия не удовлетворяет требованиям системы TN-S-C.

Система заземления ТТ в более понятном изображении

Устройство заземления частного дома

Некоторые старые линии электропередачи вообще не имеют защитного заземления. Все они должны меняться, но когда это произойдет — вопрос открытый. Если у вас именно такой случай, необходимо сделать отдельный контур. Варианта два — сделать заземление в частном доме или на даче самостоятельно, своими руками или доверить исполнение кампании. Услуги кампаний дороги, но имеется важный плюс: если в процессе эксплуатации возникнут проблемы, вызванные неправильным функционированием системы заземления, возмещает ущерб кампания, которая производила монтаж (должно быть прописано в договоре, внимательно читайте). В случае самостоятельного исполнения все на вас.

Устройство заземления в частном доме

Состоит система заземления частного дома из:

  • заземлителей-штырей,
  • металлических полос, их объединяющих в одну систему;
  • линии от контура заземления до электрощитка.

Из чего делать заземлители

В качестве штырей можно использовать металлический прут диаметром 16 мм и больше. Причем брать арматуру нельзя: поверхность у нее каленая, что меняет распределение тока. Также каленый слой в земле быстрее разрушается. Второй вариант — металлический уголок с полочками 50 мм. Эти материалы хороши тем, что в мягкий грунт их можно забить кувалдой. Чтобы это было легче делать, один конец заостряют, на второй приваривают площадку, по которой проще бить.

В качестве стержней можно использовать трубы, уголок, металлический стержень

Иногда используют металлические трубы, один край которых сплющен (заварен) в конус. В нижней их части (около полуметра от края) сверлятся отверстия. При пересыхании грунтов распределение тока утечки значительно ухудшается, а в такие стержни можно заливать соляной раствор, восстанавливая работу заземления. Минус этого способа — приходится под каждый стержень копать/бурить скважины — забить их кувалдой на нужную глубину не получится.

Глубина забивания штырей

Штыри-заземлители должны уходить в грунт ниже глубины промерзания как минимум на 60-100 см. В регионах с засушливым летом желательно чтобы штыри находились хотя бы частично во влажном грунте. Потому используются в основном уголки или прут длиной 2-3 м. Такие размеры обеспечивают достаточную площадь соприкосновения с грунтом, создающую нормальные условия для рассеивания токов утечки.

Чего делать нельзя

Работа защитного заземления состоит в том, чтобы рассеивать по большой площади токи утечки. Происходит это за счет плотного контакта металлических заземлителей — штырей и полос — с грунтом. Поэтому элементы заземления никогда не красят. Это очень сильно снижает токопроводимость между металлом и землей, защита становится неэффективной. Предотвратить коррозию в местах сварки можно антикоррозионными составами но не краской.

Второй важный момент: заземление должно иметь маленькое сопротивление, а для этого очень важен хороший контакт. Он обеспечивается сваркой. Все соединения провариваются, причем качество шва должно быть высоким, без трещин, каверн и других дефектов. Еще раз обращаем внимание: заземление в частном доме нельзя делать на резьбовых соединениях. Со временем металл окисляется, разрушается, сопротивление многократно возрастает, защита ухудшается или вообще не работает.

Использовать только сварные соединения

Очень неразумно использовать в качестве заземлителя трубопроводы или других металлические конструкции, находящиеся в земле. Какое-то время такое заземление в частном доме работает. Но со временем стыки труб из-за электрохимической коррозии, активизированной токами утечки, окисляются и разрушаются, заземление оказывается нерабочим, как и трубопровод. Потому такие виды заземлителей лучше не использовать.

Как правильно сделать

Сначала разберемся с формой заземлителя. Наиболее популярный — в виде равностороннего треугольника, в вершинах которого забиты штыри. Есть еще линейное расположение (те же три штуки, только в линию) и в виде контура — штыри забиваются вокруг дома с шагом около 1 метр (для домов площадью более 100 кв. м).  Штыри между собой соединены металлическими полосами — металлосвязью.

Самая популярная модель заземлителя

Порядок действий

От края отмостки дома до места установки штыре должно быть не менее 1,5 метров. На выбранном участке копают траншею в виде равностороннего треугольника со стороной 3 м. Глубина траншеи 70 см, ширина — 50-60 см — чтобы было удобно варить. Одну из вершин, как правило, расположенную ближе к дому, соединяют с домом траншеей имеющей глубину не менее 50 см.

Копают траншею

В вершинах треугольника забивают штыри (круглый пруток или уголок длиной по 3 м). Над дном котлована оставляют около 10 см. Обратите внимание, заземлитель на выводят на поверхность земли. Он находится ниже уровня грунта на 50-60 см.

К выступающим частям стержней/уголков приваривают металлосвязь — полосу 40*4 мм. Созданный заземлитель с домом соединяют металлической полосой (40*4 мм) или круглым проводником (сечением 10-16 мм2). Полосу с созданным треугольником из металла тоже сваривают. Когда все готово, места сварки очищают от шлака, покрывают антикоррозионным составом (не краской).

Приваренная полоса

После проверки сопротивления заземления (в общем случае оно не должно превышать 4 Ом), траншеи засыпают землей. В грунте не должно быть крупных камней или строительного мусора, земля послойно утрамбовывается.

На входе в дом к металлической полосе от заземлителя приваривают болт, к которому крепится медный проводник в изоляции (традиционно окраска заземляющих проводов — желтая с зеленой полосой) сечением жилы не менее 4 мм2.

Выход заземления у стены дома с приваренным на конце болтом

В электрощитке заземление подключается к специальной шине. Причем, только на специальную площадку, начищенную до блеска и смазанную консистентной смазкой. От этой шины «земля» подключается к каждой линии, которая разводится по дому. Причем разводка «земли» отдельным проводником по ПУЭ недопустима — только в составе общего кабеля. Это значит, что если у вас проводка разведена двухжильными проводами, вам придется ее полностью менять.

Почему нельзя делать отдельные заземления

Переделывать проводку во всем доме, конечно долго и дорого, но если вы хотите без проблем эксплуатировать современные электроприборы и бытовую технику, это необходимо. Отдельное заземление определенных розеток неэффективно и даже опасно. И вот почему. Наличие двух или более таких устройств рано или поздно приводит к выходу включенного в эти розетки оборудования. Все дело в том, что сопротивление контуров зависит от состояния почвы в каждом конкретном месте. В какой-то ситуации между двумя устройствами заземления возникает разница потенциалов, которая приводит к поломке оборудования или электротравме.

Модульная штырьевая система

Все описываемые ранее устройства — из забиваемых уголков, труб и стрежней — называют традиционными. Их недостаток — большой объем земельных работ и большая площадь, которая требуется при устройстве заземлителя. Все потому, что необходима определенная площадь контакта штырей с грунтом, достаточная для того чтобы обеспечить нормальное «растекание» тока. Сложность может вызвать и необходимость сварки — по другому соединять элементы заземления нельзя. Зато плюс этой системы — относительно небольшие затраты. Если делать традиционное заземление в частном доме своими руками, оно по-максимуму обойдется в 100$. Это если покупать весь металл и платить за сварку, а остальные работы проводить самостоятельно

Набор модульной системы заземления

.

Несколько лет назад появились модульные штыревые (штырьевые) системы. Это комплект штырей, которые забиваются на глубину до 40 м. То есть получается очень длинный заземлитель, который уходит на глубину. Фрагменты штыря соединяются друг с другом при помощи специальных хомутов, которые не только фиксируют их, но и обеспечивают качественное электрическое соединение.

Плюс модульного заземления — малая площадь и меньший объем работ, которые необходимы. Требуется небольшой приямок со сторонами 60*60 см и глубиной 70 см, траншея, соединяющая заземлитель с домом. Штыри длинные и тонкие, забивать их в подходящий грунт несложно. Вот тут и подошли к основному минусу: глубина большая, и если на пути встретиться, например, камень, придется начинать сначала. А вынуть стержни — это проблема. Они не сварены, а выдержит или нет хомут — вопрос.

Второй минус — высокая цена. Вместе с установкой обойдется вам такое заземление в 300-500$. Самостоятельная установка проблематична, так как забивать эти стержни кувалдой не получится. Нужен специальный пневматический инструмент, который научились заменять перфоратором с ударным режимом. Еще необходима проверка сопротивления после каждого забитого стержня. Но если вы не хотите связываться со сваркой и земельными работами, модульное штыревое заземление — неплохой вариант.

схемы и размеры контуров, последовательность

Электричество в нашем доме облегчает жизнь и делает её более комфортной, но нельзя забывать, что оно же может стать причиной серьёзных электротравм. Один из способов обезопасить себя -это применять защитное заземление. Кроме того, некоторые современные электроприборы, например, микроволновые печи, газовые котлы, системные блоки домашних компьютеров, нуждаются в заземлении для обеспечения их нормальной работы (уменьшение помех, снижение уровня вредного излучения).

Очень редко можно встретить частный дом или дачу, в которых используется заземление. Перед владельцами такого жилья встаёт выбор, нанять рабочих или сделать заземление самостоятельно. Для сети 220 В (380в) решить эту задачу достаточно просто. Поэтому, если у вас есть желание физически поработать, нет необходимости покупать дорогостоящие комплекты готовых заземлителей или нанимать организации для выполнения этих работ.

В процессе изготовления понадобится выполнение небольшого количества сварочных работ, если с этим трудностей не возникает, остаётся приобрести металлоизделия и приниматься за работу.

Защитное заземление

Большинство наших сетей оборудовано глухозаземленной нейтралью, проще говоря, нулевой провод в розетке на электростанции соединён с землёй. Ещё провод заземляется в дополнительных точках, например, на столбах линий электропередач. К сожалению, электросети сильно изношены, и это заземление оставляет желать лучшего.

Теперь представим ситуацию, когда из-за повреждённой изоляции напряжение попало на корпус прибора. Если прикоснуться к прибору, ток начнёт течь через тело человека к земле. Принято считать, что тело человека имеет сопротивление около 1 тыс. Ом, увеличивает эту величину резиновая подошва обуви, сухой коврик на полу и т. д. Чем меньше эта величина, тем сильнее будет ощущаться воздействие тока на организм.

Если присутствует заземление, ток с повреждённого устройства потечёт на землю по нему. Если в этом случае человек касается корпуса прибора, то его тело становится параллельно подключённым к заземляющему проводнику. Сопротивление последнего намного меньше сопротивления тела, поэтому большая часть тока будет течь по пути наименьшего сопротивления, а человек максимум ощутит лёгкое пощипывание и избежит получения тяжёлых электротравм.

Для того чтобы схема работала так, как описано выше, система заземления должна иметь определённое сопротивление:

  • для сети напряжением 380В — не более 2 Ом;
  • для сети напряжением 220В — не более 4 Ом.

Требования к конструкции устройства заземления частного дома с сетью 380 В более высокие, поэтому такой контур можно использовать и для сети 220 В. При построении отличаются они только тем, что для 380 В применяются заземляющие проводники большего сечения, а элементы конструкции выполнены из более толстого металла. Поэтому нет необходимости отдельно рассматривать, как сделать контур заземления 380 В и 220 В. Рассмотрим изготовление заземления для 380 В.

Элементы и материалы

Устройство заземления состоит из трёх элементов.

  1. Вертикальные заземлители — металлические элементы, которые забиваются вглубь грунта, Предпочтительно их изготавливать из толстостенной трубы диаметром не менее 32 мм или из уголка шириной от 40 мм.
  2. Горизонтальные элементы, которые соединяют все вертикальные элементы в одну цепь. Лучше всего для этих целей подойдёт металлическая полоса 40×4 мм, но можно использовать уголок или прут диаметром от 16 мм.
  3. Шина заземления — металлический проводник, идущий от заземлителей к распределительному щиту или к защищаемому оборудованию. Для этих целей можно применять полосу 40×4 мм. В целях экономии и для удобства выполнения изгибов и поворотов допустимо применение прута диаметром 10 мм. Заводить в дом или в распределительный щит металлическую полосу достаточно трудно. Для облегчения этой процедуры поступают так. Доводят шину заземления до наружной стены дома. На конце приваривают болт с резьбой м10 или м12, с помощью которого присоединяют медный провод сечением не менее 6 мм2. Дальше этот проводник заводят в щит.

Чем больше сечение применяемых металлических элементов, тем лучше токи растекаются на землю, а следовательно, лучше работает весь контур заземления. Кроме того, толстый метал будет дольше разрушаться коррозией, поэтому при прочих равных условиях следует выбирать металл потолще.

Электропроводность у калёного металлопроката ниже, чем у обычной стали, по этой причине не следует применять арматуру, швеллер и подобные им элементы металлоконструкций.

Схемы и размеры

Схема контура заземления частного дома — это способ расположения и соединения вертикальных заземлителей. Если вы делаете заземление 380 вольт на дом, схема выполнения может быть разной, но основных две.

  1. Замкнутая — контур выполняется в виде геометрической фигуры. В углы забивают вертикальные штыри, которые соединяют горизонтальными элементами, образуя стороны выбранной фигуры. Чаще всего контур изготавливают в виде равностороннего треугольника. Длина стороны 2.5−3 метра. Глубина погружения вертикальных стержней около трёх метров. В случае необходимости размер стороны треугольника можно уменьшить до 1.2 метра.
  2. Линейная — контур имеет вид прямой или изогнутой линии. Вертикальные штыри забивают на расстоянии 2.5−3 метра друг от друга и соединяют их последовательно горизонтальными элементами.

Размеры контура заземления для частного дома, приведённые выше, подходят для большинства случаев, но их можно изменять в зависимости от конкретных условий. Например, если на вашем участке грунтовые воды расположены близко, то длина вертикальных заземлителей может быть уменьшена до метра.

Если невозможно углубить заземлители до необходимого уровня, или на участке сухая песчаная почва, может возникнуть ситуация, когда готовое заземление обладает большим сопротивлением и не выполняет свои функции. В этом случае необходимо увеличивать число вертикальных штырей. Например, если уже есть треугольный контур, нужно отступить от него три метра и вбить стержень, который соединяется с треугольником металлической полосой. Получается совмещение замкнутой и линейной схем построения. Можно сделать два треугольника и соединить их между собой. Так поступать до тех пор, пока сопротивление контура не опустится до необходимой величины.

Выбор места

Заземляющее устройство располагается не ближе одного метра от дома.

Хорошо, если в выбранном месте земля никогда не пересыхает, например, участок земли с северной стороны дома, низина и так далее.

Не следует забывать и о мерах предосторожности, нужно ограничить посещение места с контуром заземления животными и людьми. Для этого заземление нужно расположить там, где исключено нахождение людей, или огородить его.

Перед началом земляных работ убедитесь, что под землёй не проложены трубопроводы и кабели.

Проверка заземления

Методика измерения сопротивления заземления отличается от измерения обычного сопротивления, поэтому для таких целей используют специальные приборы. Если у вас такого прибора нет, вы можете проверить свой контур практическим методом.

Понадобится патрон с лампой накаливания мощностью не менее 100 Вт. Один провод от патрона лампы подключают к фазному контакту розетки, а второй — к шине заземления. Если лампа светит так же, как и при обычном подключении к сети, контур работает правильно. В идеале напряжение на лампе в обоих случаях должно быть одинаковым.

В случае когда лампа светит тускло или не горит вовсе, необходимо проверить места сварки металла и соединения проводов. Если соединения в норме, необходимо увеличивать контур заземления.

Последовательность выполнения работ

  1. Делаем разметку. Отмечаем места расположения вертикальных заземлителей, расположение горизонтальных перемычек и путь, по которому к дому будет проходить заземляющая шина.
  2. Можно приступать к земляным работам. Все элементы контура должны располагаться под поверхностью грунта, желательно ниже уровня промерзания, поэтому глубина должна быть не менее пятидесяти сантиметров. Ширину траншеи нужно выбрать такой, чтобы обеспечить удобство выполнения сварочных работ и процедуры заглубления заземлителей.
  3. Подготавливаем метал. Нарезаем заготовки для вертикальных заземлителей и заостряем один из концов. На другом конце желательно приварить площадку — это уменьшит расклепывание металла и облегчит работу. Нарезать сразу и горизонтальные перемычки не следует, так как при забивании штыри могут уйти в стороны, и практические длины перемычек могут отличаться от расчётных. Для защиты металла от коррозии можно покрыть его специальными составами, которые сохраняют электропроводность стали. Применять обычные лакокрасочные материалы нельзя.
  4. Забиваем штыри. Длина штырей около трёх метров, поэтому в начале этой процедуры может понадобиться стремянка. Забивать можно обычной кувалдой или использовать мощный отбойный молоток. После заглубления верхний край штырей будет деформирован, и его лучше подрезать до ровной части — это облегчит сварочные работы. Заглублять штыри нужно настолько, чтобы после подрезки они были выше дна траншеи примерно на 10 см.
  5. Нарезаем метал для горизонтальных элементов контура и приступаем к сварочным работам. Обваривать следует сплошным швом высокого качества. Если вы не можете этого сделать, пригласите специалиста, так как очень важно обеспечить качественный и надёжный контакт между всеми элементами контура.
  6. Если шина заземления ведётся только к дому, то её следует довести до стены и поднять. Этот конец должен выступать над поверхностью земли сантиметров на двадцать. На конце привариваем болт для подключения заземляющего провода.
  7. Делаем проверку работоспособности контура заземления.
  8. Если контур прошёл проверку, траншею можно закапывать.

Защитное зануление

Некоторые люди для экономии или по незнанию вместо защитного заземления используют в частном доме зануление. Схема последнего применяется на предприятиях при использовании промышленного оборудования. Основное назначение зануления — это защита оборудования от короткого замыкания. Поэтому применение его в частном доме нецелесообразно, и оно никак не может заменить защитное заземление.

Не стоит экономить на своей безопасности. Сделать заземление для 220 В в частном доме своими руками несложно. Все необходимые инструменты есть в наличии у каждого хозяина.

Если проводка в вашем доме выполнена двухжильными проводами, то провода для подключения заземляющего проводника нет. Решить эту проблему можно без замены проводки следующим способом. Розетки в доме заменяются с обычных на розетки с заземлением, а заземляющий провод ведут по наружной поверхности стены, можно его спрятать под плинтусом или в декоративный пластмассовый короб.

Для безопасной эксплуатации мощных электроприборов, особенно расположенных во влажных помещениях (бойлер, стиральная машина), применения заземляющего контакта в розетке недостаточно. Корпусы таких приборов нужно соединить медными жилами напрямую с заземляющей шиной. Для этого на корпусе есть специальный болт, помеченный значком заземления.

Элементы заземлителя выполнены из чёрного металла, который под действием коррозии будет постепенно разрушаться, и в какой-то момент заземление перестанет выполнять свои функции. Чтобы не пропустить этот момент, необходимо периодически проверять работоспособность контура и при необходимости восстанавливать его. Поэтому нелишним будет зарисовать план расположения всех элементов.

Правильное заземление своими руками в частном доме и квартире

Жизнь насыщается электроприборами. «Хрущевская» норма энергопотребления в 1,3 кВт на квартиру (220 В; пробки – 6 А) ныне вызывает смех. Электроприборы дают комфорт и экономят немало денег, но есть оборотная сторона медали: возрастает опасность электрошока. Поэтому без защитного заземления (а для стиральной машины – и рабочего) теперь не обойтись. Но в старых домах его нет, а частнику нужно делать самому; цены же в специализированных организациях соответствуют объему работы. Чем платить такие деньги, проще сделать заземление в доме своими руками – работа не легкая, но и не сложная.

Можно ли делать заземление самому?

Но не будет ли проблем с электриками? Штрафовать они любят.

Если заземление сделано правильно, а измерения показали сопротивление растекания тока не более 4 Ом, формального повода для придирок не возникнет. Устройство заземления дома подробно регламентируется следующими нормативными документами:

  • ПТБЭ – Правила техники безопасности при эксплуатации электроустановок потребителей.
  • ПУЭ – Правила устройства электроустановок потребителей.
  • ПТЭЭ – Правила технической эксплуатации электроустановок потребителей.

Однако ни в одной из этих книжек ни сном, ни духом, ни прямым текстом не сказано, что заземление должна делать специализированная организация. Сделано по правилам, нормам соответствует – защищайтесь на здоровье, претензий быть не может. В настоящей статье описывается, как правильно сделать заземление частного дома и устроить заземление в квартире, если дом не заземлен.

Но! Если заземление сделано специализированной организацией по проекту, проверено и принято энергослужбой, и все-таки случилась авария, вы имеете полное право требовать возмещения ущерба. При самодельном заземлении такая возможность, разумеется, исключается. Можно заказать у энергетиков проект, оплатить приемку готового, получить на руки акт ввода в эксплуатацию. Однако практика показывает, что, если «шарахнуло», судиться с энергетиками бесполезно. А в договоре с коммерческой фирмой возмещение ущерба прописывается. Но и работа выходит очень дорогая.

Защитное и рабочее заземления

Защитное заземление спасает людей от электрошока, а включенную в сеть аппаратуру от выхода из строя при пробое какого-либо электроприбора на корпус. При наличии молниеотвода – также при ударе молнии.

Рабочее заземление при электрическом ЧП выполняет роль защитного, но оно же обеспечивает нормальную работу электрооборудования. Постоянное рабочее заземление применяется только в промышленном оборудовании. Для бытовой техники считается достаточным заземление через евророзетку. Но в реальных условиях кое-что из «бытовухи» полезно все же заземлить наглухо:

  1. Стиральную машину. У нее большая собственная электрическая емкость, и во влажном помещении вполне исправная машина, даже включенная в надежно заземленную евророзетку, может безвредно, но ощутимо «щипаться».
  2. Микроволновая печь. В ней, как известно, работает источник СВЧ – магнетрон большой мощности. При плохом контакте в розетке микроволновка может «сифонить» на опасном для здоровья уровне. На многих микроволновках сзади можно увидеть винтовую клемму под отдельный заземлитель, причем инструкция об этом стыдливо умалчивает: наличие такой клеммы переводит устройство из разряда бытовой техники в промышленное оборудование. А так – ну, это такой декоративный элемент.
  3. Электродуховка и индукционная плита (варочная поверхность). Внутренняя проводка в них работает в тяжелых условиях, мощность же велика, так что высока и вероятность пробоя.
  4. Настольный компьютер. Его импульсный блок питания (ИБП) компактности ради устроен так, что нормальную рабочую утечку дает побольше стиралки. От таких плавающих потенциалов на корпусе и производительность снижается, и «глюков» добавляется, и скорость интернета падает. Наглухо заземлить компьютер можно за любой крепежный винт сзади.

У автора этих строк скорость беспроводного интернета после правильного заземления компьютера возросла с 17,8 кбит/с до 310 кбит/с (!).

Части заземления

Заземлители – вбитые или врытые в землю металлические проводники. Не менее полуметра заземлителя должно находиться ниже максимального горизонта промерзания; в местах с плюсовой зимой – ниже горизонта просыхания, т.е. в слое почвы со стабильной влажностью. Чаще всего это обеспечивается при длине заземлителя в 2-3 м. Точные данные о необходимой длине и количестве заземлителей можно получить в местной энергослужбе.

Металлосвязь – сварная металлическая конструкция, соединяющая между собой верхние концы заземлителей и заведенная в дом в виде шины заземления. Вводов шин заземления в доме может быть несколько, но одна непременно должна заземлять вводный щит (ВЩ, или вводно-распределительное устройство – ВРУ). Заземлители с металлосвязью образуют жесткий цельный контур заземления.

Заземляющие проводники соединяют заземлительные клеммы электроустановок с шиной заземления. Они могут быть как голыми жесткими, так и гибкими многожильными в изоляции. В последнем случае их сечение должно быть не менее 4 кв.мм, а расцветка оболочки – желтая с продольной зеленой полосой. Допустим перенос заземляющего проводника с шины на шину заземления.

К шине заземления заземляющие проводники подключаются на специальные контактные площадки: зачищенные до блеска и смазанные консистентной смазкой ее участки с резьбовыми отверстиями не менее М4 под болты. Смазка, помимо защиты от окисления, нужна для предотвращение электрокоррозии (см. след. разд).

Ряд контактных площадок обозначается с одной или с двух сторон, если он на транзитном участке шины, парами косых, под углом 45 градусов, черными полосами. Сплошное окрашивание шины заземления недопустимо, но допустимо ее замоноличивание, кроме контактных рядов, в стену.

Электрическое сопротивление металлосвязи измеряется от ЗАЗЕМЛИТЕЛЬНОЙ КЛЕММЫ электроустановки до наиболее удаленной от нее наземной части контура заземления. То есть, заземляющий проводник электрически считается частью металлосвязи. Сопротивление любой металлосвязи не должно превышать 0,1 Ом.

Зачем несколько заземлителей?

Одним заземлителем нельзя обойтись, потому что земля – проводник нелинейный. Ее сопротивление сильно зависит от приложенного напряжения и площади контакта с заземлителем. У одного заземлителя площадь поверхности слишком мала, чтобы обеспечить надежную защиту. Между двумя заземлителями, разнесенными на 1-2 м, возникает потенциальная поверхность, и эффективная площадь контакта с землей возрастает в сотни раз. Но разносить заземлители слишко далеко нельзя: потенциальная поверхность разорвется, и останется просто два заземлителя. Оптимальное расстояние между заземлителями в рыхлом грунте вне зоны вечной мерзлоты – 1,2 м.

Как нельзя заземлять

Непригодное по ПУЭ заземление

П. 1.7.110 ПУЭ категорически запрещает заземлять электроустановки на любые трубопроводы. «Радиолюбительское» заземление на водяную трубу теперь также недопустимо: любой кусок пластиковой трубы в домовой разводке многократно увеличивает поражающее действие тока пробоя. А что будет, и по закону и по-свойски, если пробой у вас убьет принимающую душ жену соседа, объяснять не нужно.

Также запрещено выводить наружу заземляющие проводники и подключать их к шине заземления на неподготовленные контактные площадки. На рисунке справа – дважды непригодное к использованию заземление.

Дело тут в том, что каждый металл имеет свой электрохимический потенциал. При неизбежном снаружи увлажнении образуется гальваническая пара и начинается электрокоррозия; смазка спасает от нее только в сухом помещении. Коррозионный процесс распространяется под оболочку заземляющего проводника. Хозяин пребывает в полной уверенности, что «его заземление его бережет», но при аварии заземляющий проводник мгновенно отгорает.

Также запрещено заземлять электроустановки последовательно, друг через друга, и подключать более одного заземляющего проводника на одну контактную площадку шины заземления (рис. ниже). В первом случае одна аварийная установка «потянет» за собой другие, и все они будут создавать помехи друг другу; это называется – электромагнитная несовместимость. В обоих случаях работы по устранению аварии связаны с риском для жизни.

Правльное (справа) и неправильное (слева и в центре) подключения к заземлению

О молниеотводах

По ПУЭ объект, снабженный контуром заземления, обязательно должен оборудоваться и молниеотводом. Особенно необходим молниеотвод на даче. Дачные поселки и так места, предпочтительные для ударов молний: ведь дачники, стараясь снабдить себя водой, копают колодцы, забивают скважины на воду, прокладывают водопроводные трубы неглубоко или вообще по поверхности почвы. Дачные же строения большей частью возводятся из горючих материалов, а пожарная охрана далеко, и грозу всегда сопровождает сильный ветер.

Известны случаи, когда целые дачные поселки выгорали от удара молнии. И если на пожарище обнаружится контур заземления, но не найдется остатков молниеотвода, и властям, и соседям виновника долго искать не нужно.

Простейший молниеотвод – две заостренных арматурины, торчащие вверх от концов конька крыши на 1,2–1,5 м. С контуром они соединяются стальной проволокой не менее 6 мм, или стальной же шиной 15х3 мм, или полосой из нескольких слоев оцинковки, набранной до нужного сечения – 45 кв.мм.

Шина молниеовода не должна быть шире 60 мм, иначе при ударе молнии произойдет разбрызгивание плазмы, последствия которого разрушительны. Попросту говоря, слишком широкая шина сработает как своего рода антенна, не отводящая молнию в землю, а распространяющая ее в стороны.

Все детали молниеотвода соединяются только сваркой. Слоеную шину нужно по краям проварить прихватами с шагом 50-60 см с захватом всех слоев.

Заземление частного дома

Контур заземления частного дома может быть выполнен различными способами в зависимости от особенностей строения и свойств грунта. Три наиболее распространенных показаны на рисунке. Во всех случаях заземлители лучше делать из труб со сплющенным в острие концом. На нижнем полуметре трубы насверливают вразброс десяток-полтора отверстий 5-8 мм. Летом, в жару и сушь, в такой заземлитель можно заливать раствор соли (полпачки на ведро воды), чтобы сопротивление растекания держалось в норме.

Также во всех случаях шина заземления такая же, как для молниеотвода. Но использовать для металлосвязи «слойку» из оцинковки нельзя: быстро проржавеет.

Различные виды контуров заземления

Для дачного дома или аналогичного ему жилья, а также в качестве рабочего заземления при наличии защитного зануления строят простейший контур (на рисунке – справа). В постоянно влажном грунте или для рабочего заземления можно обойтись двумя заземлителями; для защитного заземления нужны три, расположенные в ряд или, лучше, треугольником. Размещают заземлители не ближе 1,2 м от края отмостки.

Линейный контур с двумя группами заземлителей (средний рисунок) нужно делать если присутствует хотя бы один из следующих факторов:

  • Электроввод – подземный через ВЩ.
  • В дом заведены коммуникации: вода, канализация, газ, связь, в любом сочетании или хотя бы одна из них.
  • Долговременно (свыше 20 мин.) потребляемая мощность превышает 1 кВт.

И, наконец, полный контур заземления (левый рисунок) необходим при наличии любого из следующего:

  • Электроввод – 220/380 В через ВРУ или ЩВС (щит вводный силовой).
  • Общая площадь помещения – свыше 100 кв. м.
  • Долговременно потребляемая мощность – свыше 3 кВт.
  • Наличие стационарных электроустановок промышленного типа (с клеммой заземления; напр. – сверлильный станок, циркулярка и т.п.).
  • Наличие ДГУ резервного электропитания.

Измерение заземления

Сделали вы себе контур, и вам, разумеется, хочется убедиться, надежно ли он вас защитит. Для этого нужно измерить сопротивление растекания тока в почве и сопротивление металлосвязи. Профессионалы для этого пользуются специальными приборами, как старыми советскими ПКП-3, так и современными электронными.

Вам же измерить заземление бытовым тестером нельзя: данные будут достоверными при подаче измерительного напряжения в 600 В. Вспомним: земля – нелинейный проводник. Поэтому одолжите или возьмите напрокат электронный измеритель заземлений или старый, но надежный электроиндукционный ручной мегомметр – меггер. Меггеры до сих пор в употреблении: в них нет никакой электроники, они не требуют элктропитания, нечувствительны к наводкам в измерительных проводах и не создают шумов в измеряемой цепи. Правда, металлосвязь меггером не промеряешь, но у сварного контура и правильно подключенных заземляющих проводниках она десятилетиями держится в норме.

Сопротивление же растекания меггером, включенным на омы, измеряют по схеме на рисунке. Расстояние пары измерительных электродов (они справа) до угла или края металлосвязи – 12-15 м. Электроды должны быть голыми и зачищенными до блеска; металл – любой. Электроды погружают в грунт на 0,6-1 м на расстоянии 1,2-1,5 м друг от друга.

Измерение сопротивления растекания заземления меггером

Полярность подключения меггера нужно соблюдать: защитное заземление должно выдерживать удар молнии. Обычные молнии – отрицательные, т.е. представляют собой поток электронов. Отмечены единичные случаи положительных молний: из земли прямо в небо бьет толстенный столб огня. Но разрушительная сила такой природной катастрофы примерно равна взрыву тактического ядерного заряда, только без проникающей радиации и радиоактивного загрязнения местности, так что заземление от положительной молнии не спасает.

Собственно же процедура измерения элементарна: крутят ручку меггера и смотрят, сколько показала стрелка на шкале.

Предупреждение: использовать для измерения заземления сетевое напряжение, гасящий резистор и миллиамперметр смертельно опасно!

Видео: пример монтажа комплекта заземления

Квартирное заземление

В СССР и РФ до 1997 г. электроснабжение многоквартирных домов осуществлялось по схеме с глухозаземленной нейтралью (схема TN–C). В этой схеме домовый проводник защитного заземления (PE) совмещен в нейтралью трехфазного ввода (N). Эта схема дает большую экономию металла, и в огромном СССР, при необходимости интенсивного жилищного строительства и жестком централизованном управлении энергослужбами, во времена слабой насыщенности жилья электроприборами была вполне оправдана. Но у нее есть два существенных недостатка, «во всей красе» проявивших себя в рыночном обществе века электроники:

  1. Схема TN–C мало пригодна в качестве рабочего заземления: ток в нейтрали – сам по себе электропомеха.
  2. В случае отгорания нуля на подстанции происходит тяжелая авария: в розетках дома оказывается фазное напряжение 380 В; электроприборы взрываются и возгораются; в доме возникает пожар. На металлических же корпусах электроустановок появляется линейное напряжение 220 В; отсюда – массовый электротравматизм со смертельными случаями.

Энергетики, нужно отдать им должное, прекрасно, как профессионалы, понимая ситуацию, даже во время ельцинской «демократии» насколько могли, ноль держали. Ныне энергоснабжающие предприятия в достаточной степени обеспечены финансами на зарплату специалистам и материалы для ремонта. Случаев отгорания нуля не отмечено уже несколько лет.

Но проблема электромагнитной совместимости из-за отсутствия рабочего заземления остается. Поэтому с 1997 г. новыми СНиП и ПУЭ предусматривается запитка многоквартирных домов по схеме TN–C–S. При этом каждый дом снабжается контуром заземления, а защитный проводник PE разводится по квартирным евророзеткам.

Как узнать, есть ли заземление в доме? Для этого нужно открыть домовый ЩВС. Этого на полном законном основании может потребовать любой владелец приватизированной квартиры, но открывать должен ДЭЗовский электрик; вы можете только смотреть в его присутствии. Даже если у вас группа допуска к электроустановкам IV или V, дающая право единоличного их осмотра.

Осмотра достаточно: если от подстанции приходят пять жил кабеля, у вас система TN–C–S, и вам эта статья вообще не нужна. Если же жил четыре – у вас TN–C, и нужно думать, как заземлиться.

Скажем сразу: сделать контур заземления для многоэтажки своими силами нереально: нужно разрешение ДЭЗа, нужен утвержденный проект, нужен большой объем земляных работ с применением спецтехники на придомовой территории (а если там детская площадка?) Если вопрос решается поквартирно, то единственный выход: защитное зануление и УЗО.

Защитное зануление

В качестве рабочего заземления защитное зануление пригодно лишь для стиральной машины. Микроволновка от него только больше «засифонит», а компьютер – заглючит. Но при нуле, соответствующем ПТБ и ПУЭ, защиту оно даст надежную.

Устройство защитного зануления сводится к подведению заземляющего проводника от этажного щитка к заземляющим контактам евророзеток. Самому заниматься этим нет смысла: за такую работу охотно и за небольшую плату берутся ДЭЗовские или РЭСовские электрики (РЭС – район электросетей; районное энергоснабжающее предприятие). Но если ноль (нейтраль) слабоват, нужно еще и ставить УЗО.

Как узнать, хороша ли у вас нейтраль? Верный признак плохого нуля – бессистемные колебания напряжения в сети при стабильной погоде. Или внезапное повышение напряжения сети вечером, при максимальной нагрузке. Если это наблюдается сразу во всем доме – ноль плохой, и нужны УЗО.

УЗО

УЗО – устройство защитного отключения. Они бывают трехфазными и однофазными, а по принципу работы – дифференциальными реле (дифреле) и электронными заземлениями.

Дифреле измеряет токи в фазе и нуле. Если утечки нет, то токи равны. Если ток в фазном проводе больше, чем в нейтрали – где-то «течет», и срабатывает аварийный контактор. Выключившее электричество дифреле обесточивает и себя, так что по устранении причины утечки его нужно включать вручную.

Дифреле выполняются либо в виде настенной розетки, либо в виде блочка, размещаемого рядом со встроенной розеткой или распределительной коробкой («дозой») возле счетчика, сразу на всю квартиру, либо в виде включаемой в розетку коробочки, в которую, в свою очередь, включается электроприбор. Первые и последние удобны, но менее надежны: в них размыкатель тиристорный, а не электромеханический.

Электронное заземление, грубо говоря, имитирует электромонтера с индикатором. Чувствительность современной электроники на порядки выше, чем у неонки, и для создания рабочей электроемкости достаточно собственной емкости монтажа. Электронные заземления монтируются непосредственно на корпусе электроустановки.

Однако все УЗО имеют два недостатка:

  • УЗО совершенно непригодны в качестве рабочего заземления: они или не устранят помеху, или будут упрямо выключать и выключать совершенно исправный прибор.
  • УЗО защищают только от пробоя на корпус. При отгорании нуля, когда защита более всего нужна, УЗО сами сгорают быстрее, чем успевают что-либо отключить.

Как все-таки заземлить квартиру

Но как же все-таки сделать заземление в квартире? К счастью, обрыв нуля случается не чаще, чем удар молнии. Поэтому для домов, запитанных по схеме TN–C можно рекомендовать следующий порядок заземления:

  1. Для стиральной машины оборудовать евророзетку с защитным занулением. Это обойдется намного дешевле, чем разводить защитный проводник по всей квартире.
  2. Дорогие устройства запитать через УЗО-дифреле. Для лампочек в нем смысла нет: сгоревшую заменить дешевле.

А затем приступить к радикальным мерам: собраться всем миром, то бишь всем домом, избрать надежного доверенного человека – владельца приватизированной квартиры, и поручить ему выяснить, во что обойдется устройство контура заземления специализированной фирмой, и смогут ли они сделать контур для вашего дома. Если по ПУЭ контур возможен, а расходы в расчете на квартиру окажутся посильными – пусть общественный ходатай, не заходя в ДЭЗ, заключает с ними договор, а все оргвопросы те уж сами уладят – это их хлеб, так что процедура отработана.

Напоследок

Электроснабжение TN–C и дома без контура заземления – не самое легкое из наследий развитого социализма. Но вспомним законы Мэрфи, среди них есть и положительные. Один их них такой: «Из всякого безвыходного положения существует по крайней мере два выхода».

***

© 2012-2020 Вопрос-Ремонт.ру

Загрузка…


что еще почитать:

Вывести все материалы с меткой:

советы по проектированию и монтажу

Строительство загородного дома включает в себя множество электротехнических работ. Среди них не последнее место занимает планирование и обустройство системы заземления, которую нельзя игнорировать по причинам безопасности и требованиям ПТЭЭП.

Делать заземление в частном доме своими руками не запрещено, поэтому в этом материале подробно рассмотрим основные этапы проектирования и монтажа контура.

Содержание статьи:

Значение и необходимость заземления

Основу энергообеспечения частного дома составляет электрическая сеть, представляющая опасность для жильцов, если не применить некоторые меры по ее устранению. К таким мерам относится двойная изоляция проводников, выравнивание потенциалов, и дифавтоматов.

Заземление электросети также играет важную роль и предназначено, чтобы отводить появившийся в ненужном месте электроток в грунт.

Технически это выглядит так: все электроустановки в доме соединяются между собой и автоматами защиты, а затем – с землей, чтобы в критической ситуации было куда сбросить лишнее напряжение

Одного забитого в землю куска арматуры или профиля недостаточно. Заземление – это целая система взаимодействующих между собой элементов, связанная с другими системами.

Ее нельзя монтировать, не подобрав подходящие по параметрам детали и не произведя предварительные расчеты.

Для внедрения конструкции в грунт необходимо выбрать небольшой открытый участок земли рядом с домом. Над ним нельзя возводить постройку или гараж, так как периодически будет производиться профилактическое или ремонтное вскрытие грунта

Между городскими многоэтажками и частным жильем существует разница в устройстве заземляющих систем.

В многоквартирных домах шина находится в этажном электрощите, тогда как для частного дома контур заземления зарывают буквально в землю, так как он расположен рядом и не требует больших усилий для монтажа.

Все требования к проектированию и устройству системы заземления изложены в ПТЭЭП 2.7.8. Владелец дома должен знать, что прием в эксплуатацию самостоятельно обустроенной конструкции будет проводить организация-поставщик электроэнергии.

Ее представители раз в полгода обязаны визуально осматривать наземные видимые части системы, а примерно раз в 12 лет производить выемку грунта и поверять состояние подземных элементов.

Выбор системы и составление схемы

Всего существует три системы заземления: ТТ, IT, TN, из них последняя делится еще на три разновидности – TN-S, TN-C, TN-C-S.

В частном домостроении обычно используют схемы систем TN-C-S или ТТ, причем TN-C-S выглядит более привлекательной, так как к ее монтажу предъявляется меньше требований.

Схема системы заземления TN-C-S: 1 – условное обозначение заземлителя источника питания; 2 – токопроводящие части открытого типа. На определенном участке цепи заземляющий проводник соединяется с PEN

Система начинается от главной заземляющей шины, которая установлена или в электрощитке дома, или в шкафу вводного устройства.

Наиболее рациональным считается решение, когда заземление расположено на опоре, перенаправляющей электромагистраль в дом.

Схема электробокса с разделенными проводниками заземления и нейтрали: 1 – электрощит; 2 – нулевой проводник; 3 – заземляющий проводник; 4 – фазовые групповые проводники; 5 – выключатель дифференциального тока; 6 – автоматы; 7 – групповые цепи; 8 – дифференциальный автомат; 9 – прибор учета электроэнергии

Схема системы ТТ, которая кардинально отличается подключением заземляющего проводника. Он не зависит от источника электропитания, действует в автономном режиме

Система ТТ используется гораздо реже. Ею занимаются представители энергоснабжающей организации, а если владелец все же решит сэкономить и самостоятельно произвести монтаж, то заверять документы придут все те же работники Энергоснаба.

Если все же рискнете и выберете схему заземления ТТ для частного дома, то не забудьте про обязательную !

Инструкции по монтажу заземления

Существует два способа сборки и установки подземных заземляющих конструкций. Первый можно выполнить своими силами, хотя придется потрудиться и потратить немало времени, а второй по силам только профессионалам, так как потребуется специальное оборудование и навыки измерения сопротивления.

Вариант 1 — заземляющий провод + заземлитель

Сначала рассмотрим, как самостоятельно сделать заземление в частном доме, не прибегая к платным услугам. Система состоит из двух основных элементов, каждый из которых подбирается в зависимости от условий монтажа.

Заземляющий провод – медный проводник с сечением, равным сечению фазной жилы. Он одним концом подключен к шине, расположенной в электрощите, вторым – к заземлителю, зарытому в грунт. К шине также ведут заземляющие проводники от всех электроустановок в доме.

Провода «земли» легко распознать по цветовой маркировке – желто-зеленой полимерной изоляции. Способ крепления к шине – винтовой, посредством установки наконечников

Заземлитель – это конструкция из стальных элементов, тесно контактирующая с грунтом и служащая для выравнивания потенциалов при появлении напряжения.

При проектировании учитывают параметры сопротивления грунта, вычисляют размеры стержней и рамы, а также глубину залегания.

Удельное сопротивление грунта. Очевидно, что значение УСГ песка, глины или торфа различается. Чем влажнее и плотнее грунт, тем менее объемной будет конструкция заземлителя

Существует универсальная конструкция, для создания которой не нужно производить сложные расчеты.

Для ее изготовления потребуются:

  • три 3-метровых уголка 50*50 мм или стальная труба со стенкой 3 мм и диаметром 16 мм;
  • три 3-метровых уголка 40*40 мм.

Также понадобится , режущий инструмент, кувалда, крепежные материалы, а для земляных работ – лопата и ведро.

Пошаговая инструкция:

  1. Выкапываем траншею от дома до места установки заземлителя. Ее глубина и ширина – около полуметра.
  2. Делаем разметку для вбивания штырей (уголков) в виде равностороннего треугольника со стороной 3 м.
  3. В местах вершин треугольника выкапываем ямки глубиной 50 см.
  4. Соединяем ямки узкими канавками по периметру, чтобы получился треугольник.
  5. Забиваем уголки 50*50 в землю так, чтобы над ее поверхностью остались части длиной около 0,2 м.
  6. Свариваем три уголка 40*40 в форме треугольника.
  7. Привариваем треугольник к уголкам, забитым в землю.

Затем подключаем к конструкции заземляющий проводник: запрессовываем его конец круглым наконечником и с помощью болта подходящего размера прикручиваем к отверстию, высверленному в одном из уголков.

Схема установки заземлителя. Проводник ведет от зарытой треугольной конструкции к дому и заканчивается в электрощите на заземляющей шине

Металлические детали необходимо засыпать грунтом, лучше песком, а место монтажа заземлителя и проводника пометить табличкой, чтобы при строительных или хозяйственных работах не повредить.

Рекомендации по выбору деталей и монтажу заземлителя в грунт:

Галерея изображений

Фото из

Фабричные изделия имеют преимущества перед изготовленными своими руками: поставляются комплектно, не требуют сварки, позволяют получить нужное сопротивление при минимуме земляных работ

Чтобы забить длинные 3-метровые уголки в землю, на первом этапе потребуется стремянка или другое возвышение, с которого можно производить удары электроинструментом или кувалдой

Чтобы максимально сохранить проводимость металлического уголка, элементы конструкции не нужно покрывать защитной антикоррозийной краской или другим похожим составом

Кроме стального уголка 50*50 см можно использовать 6-миллиметровый оцинкованный прут, 10-миллиметровый прут из черного металла или прямоугольный прокат 48 мм²

Лучший вариант заземляющей шины – пластина из электротехнической бронзы с отверстиями для присоединения заземляющих проводников. Она монтируется на стенку электроящика

Заземляющую конструкцию рекомендуется зарывать в грунт как можно ближе к фундаменту дома – примерно на расстоянии в 1 м

Чтобы самодельные металлические элементы легче забивались в грунт, концы уголков необходимо заострить, подрезав пилой. Заводские изделия оснащены остроконечной головкой

Чтобы соединения не окислились и не повысили сопротивление заземлителя, вместо винтов используют сварку, которая гарантирует прочный и длинный шов

Комплектация заводского заземлителя

Стремянка или специально сколоченная подставка

Металлический уголок из оцинкованной стали

Металлопрокат для изготовления заземлителя

Шина заземления в электрощите

Контур заземления около дома

Монтаж заземлителя в грунт

Сварка деталей из черного металла

Для стальных стержней и соединяющей их полосы опасна пищевая соль – она разъедает металл и приводит конструкцию в негодность. Проследите, чтобы это вещество случайно не попало в грунт рядом с заземлителем.

Вариант 2 — модульная штыревая система

Если конструкцию из деталей металлопроката можно сделать своими руками, то заводской штырь необходимо приобрести в магазине.

Его главное преимущество – отсутствие трудоемких земляных и сварочных работ, а недостаток заключается в дополнительных расходах на оплату услуг обслуживающей организации.

Схема монтажа штыревого заземлителя и его устройство. Основные составляющие части – головка, стальной электрод с электрохимическим медным покрытием и муфты, соединяющие фрагменты электрода

Большая глубина объясняется еще и тем, что в указанном диапазоне обычно присутствуют грунтовые воды, резко снижающие сопротивление устройства, а это – необходимое условие для создания заземляющей системы

В самодельной конструкции площадь соприкосновения с грунтом увеличивается за счет использования нескольких уголков. Здесь штырь всего один, поэтому увеличение контакта происходит за счет его длины. Устройство забивают в грунт на глубину 20-40 м.

Земляные работы сводятся к вырыванию одной ямки с размерами 0,5*0,5*0,4 м. Для забивания штыря ударной дрелью пользоваться не рекомендуется, так как нужно исключить вращение головки штыря. Здесь нужен перфоратор со специальной насадкой.

В заводском комплекте вместе со штырем есть зажим для крепления проводника заземления, поэтому процесс монтажа заключается в забивании основного устройства и подключении его к проводу.

Пошаговая инструкция по монтажу штыревого заземлителя. Проводить замеры растекания мультиметром и рассчитывать глубину установки может только специалист – представитель из обслуживающей организации

Существуют нормативы, которых следует придерживаться в процессе монтажа:

  • для 3-фазной сети 380 В – сопротивление не более 2 Ом;
  • для 1-фазной сети 220 В – сопротивление не более 4 Ом.

При самостоятельном монтаже для подстраховки перед проверяющими органами лучше точно вычислить уровень залегания грунтовых вод и убедиться, что заземлитель опустится до этой отметки.

При контакте с грунтовыми водами параметры сопротивления придут в норму.

Выводы и полезное видео по теме

Опыт устройства заземления своими руками:

Практические советы по монтажу заземлителя фабричного изготовления:

Установка системы заземления из нескольких стержней:

Как видите, смонтировать систему заземления можно как собственноручно, так с помощью бригады приглашенных электромонтажников – первый способ дешевый, но более сложный, второй дорогостоящий, но надежный.

Однако главное в грамотном монтаже – это результат, который должен сделать электросеть дома полностью безопасной для его владельцев.

У вас остались вопросы по собственноручному обустройству контура заземления? Задавайте их ниже под статьей – наши эксперты и компетентные посетители сайта постараются вам помочь.

Если вы заметили неточности или ошибки в приведенном выше материале, или хотите дополнить статью полезными сведениям – пишите нам, пожалуйста, в блоке комментариев.

Заземление в частном доме своими руками 220В

Наверное, значение слова заземление знают все, но, к сожалению, не каждый сможет ответить на вопрос, для чего оно нужно и действительно ли это необходимость в частном доме или же всего лишь рекомендательный совет.

Сразу же хотелось бы сказать о том, что именно заземление в доме является гарантом безопасного пользования различными бытовыми предметами электрического типа, и неважно, квартира это или офис. Помимо всего прочего, при его наличии, вероятность того, что случится короткое замыкание, сводится к минимуму.

Когда появилась необходимость сделать заземление в частном доме своими руками 220в и 380в, нужно проанализировать всю имеющую информацию об этом процессе и учесть то, что это совершенно разные сети и для подключения каждой из них нужно будет предпринять различные меры.

Проще, конечно же, заземлением с меньшей нагрузкой, потому как в здесь не потребуется производить монтаж самого контура, в отличие от 380В. Это не единственное но, поэтому, приступим к подробному изучению этого вопроса.

Зачем нужно заземление в частном доме?

Для начала разберемся с вопросом, для чего вообще необходимо организовывать заземление и какие последствия могут быть при его отсутствии.

Порой, мы забываем об элементарных вещах, и такая забывчивость иногда может стоить человеку жизни, именно поэтому, мы не будем пренебрегать напоминаниями элементарных вещей и информацией, которую, вроде бы все знают. Начнем с того, что электрический ток унес немало жизней, и об этом знают все. Аварийная ситуация нередко приводит к тому, что электроприбор, вся его поверхность оказываются под высоким напряжением, которое является опасным для человеческого организма, и прикосновение к нему, может стать смертельным.

Если в доме присутствует заземление сети 220В, избежание этого риска становится обычным делом. Работает это достаточно просто – как только нулевая фаза будет оборвана, весь контур электроприбора становится опасной, а вот контур заземления эту фазу, можно сказать аннулирует, если говорить конкретнее, уводит в землю.

Заземление в частном доме является важной составляющей безопасной жизни в любом помещении, и не важно, дача это или квартира. Функции приспособления:

  • приведение практически к нулю электрических перегрузок
  • повышение уровня пожаробезопасности любого помещения
  • обеспечение безопасной работы с электроприборами

Необходимые материалы и инструменты для заземления 220в

Первое, что нужно будет сделать, перед тем, как произвести монтаж конструкции, подготовить все инструменты и материалы, которые будут нужны в этом процессе, и только после этого, можно будет смело приступать к организации качественного и правильного заземления своими руками. Итак:

  • Детали (сюда входят различного рода трубы, уголки, а также профили, желательно металлические). Сколько и чего нужно будет, зависит от параметров электродов. Под рукой их должно быть необходимое количество (лучше даже с запасом).
  • Полоска из металла. Ширина такого изделия меньше 2.5 м, ширина от 70 до 100 мм. Стоит сразу отметить, что длина рассматриваемой полоски в обязательном порядке должна быть рассчитана заблаговременно (этот показатель непосредственно зависит от длины создаваемого контура заземления).
  • Нержавеющая сталь тоже пригодиться в таком деле, ведь из нее нам понадобится полоска шириной 95 мм. Используется такая деталь как элемент токопроводящего типа и ее длины должно хватить от дома до самого контура.
  • Аппарат для сварки, для обеспечения электропроводности.
  • Без болгарки в таком деле тоже не обойтись, и кувалду захватить не помешает.
  • Болт М8-М10 и провод из меди, сечение которого должно быть не меньше 5 м2.

Имея все это под рукой, можно переходить к следующему этапу.

Порядок заземления 220В в частном доме своими руками

Следующим этапом будет непосредственный монтаж заземления. Для того чтобы процесс был понятнее, разберемся с последовательностью действий:

1. Выкапываем две траншеи, одна, ведущая к дому, другая – для электродов. Здесь главное, правильно выбрать глубину, она должна быть такой, чтобы штыревые срезы были выше дна на сантиметров 25. Ширина тоже не должна быть маленькой, нужно чтобы работать было в ней удобно.

2. Следующий этап – вбивание в почву электродов.

3. После чего, проводиться оперативный монтаж контура (данный процесс подробнее будет рассмотрен ниже).

4. Приступаем к монтированию токопроводящего проводника. Для этого необходимо уложить нержавеющую полоску в траншею, причем, таким образом, чтобы один конец можно было приварить к контуру заземления, а другой – вывести возле стены.

5. Засыпаем выкопанную ранее яму с готовым заземлением.

6. К токопроводящей полосе подсоединяется провод из меди одним концом, другим же — он будет подсоединен непосредственно к щитку.

Немного времени уйдет для монтажа заземления в частном доме, если под рукой есть все необходимые инструменты и если следовать всем рекомендациям по этому поводу.

Как сделать заземляющий контур?

Идеальным участком для расположения заземляющего контура является отмостка частного сооружения. В любом случае, рекомендуется создавать линейный контур, если же есть желание и средства прокладывать его по всему периметру – с вами спорить никто не будет.

Главным преимуществом линейного контура в том, что в любой удобный для этого момент, его без проблем можно будет нарастить. Итак, процесс создания контура заземления достаточно прост – вырывается яма, глубина которой должна быть, как минимум, 1.9 м, вбиваем туда один за другим пруты заземления.

Контур заземления в частном доме своими руками видео

После того, как все пруты расположились в земле, переходим к процессу их обрезки (верхушки срезаются, примерно, на 17 см). Следующий этап – рытье канавы такой же глубины, в которой производим прокладку прутов. Соединяем элементы контура сваркой (по крайней мере, это оптимальный вариант, по мнению специалистов).

Что запрещается делать при заземлениях 220в?

Есть ряд правил, нарушение которых может привести к негативным последствиям. Чтобы избежать их, необходимо помнить, что:

  • Двух вбитых в землю штырей точно не хватит для создания качественного контура заземления. В данном случае минимальное количество – два треугольника, которые будут находиться под землей на расстоянии 2-2.5 метров.
  • Нельзя использовать для рассматриваемых целей изделия из металла с упрочненной поверхностью. Сюда не подойдут швеллеры или арматура.
  • Из чего бы ни было сделано заземление, оно не вечное и от коррозии его не спасти, так что обновлять контур желательно хотя бы раз в 3-4 года.

Помня об этих правилах и соблюдая все рекомендации, приведенные выше, создать качественное заземление в частном доме 220в своими руками будет совсем не сложно.

Заземление дома своими руками — как правильно сделать заземление в частном доме своими руками

Каждый частный дом оснащен множеством самых разнообразных электрических устройств и розеток. Во избежание поражения электрическим током и выхода из строя бытовой электроники, возникновения пожаров, частный дом необходимо заземлить. Сделать это может специализированная бригада, однако стоимость их услуг будет далеко не низкой. Вполне возможно выполнить составление схемы и заземление дома своими руками. Если сеть имеет напряжение 220в, то монтаж защитного заземлительного контура не обязателен, но при условии, что напряжение в сети 380в — изготовление контура заземления потребуется.

Что значит «заземлить»?

Заземлить — значит соединить точки электрического оборудования с землей. Почва в этом случае выступает в роли проводника. Состоит любое заземление из 2 частей:

  • контура
  • проводников

Чтобы сделать заземление в загородном доме, нужно смонтировать контур заземления. Изготавливается он из вертикальных заземлителей, которые попросту вбиваются в грунт. Проводники соединяются при помощи горизонтальных лент. Таким образом, создается определенный контур, который после будет соединен с электрощитом.

Как сделать заземление в доме?

Заземление в частном доме своими руками выполняется в несколько шагов:

  • этап подготовки
  • работа с почвой
  • вбивание электродов
  • проделывание технических отверстий в стенах дома
  • установка провода
  • проверка функциональности

На подготовительном этапе осуществляется выбор участка, на котором предполагается расположение контура. После этого проводятся работы с землей. В земле создается треугольник (равносторонний, как правило), он и станет контуром заземления. Затем роются углубления и желоба, их глубина не должна быть меньше полутора метров. Помните, что траншеи лучше всего расположить не ближе, чем на один метр от фундамента вашего старого деревянного дачного дома. Ширину желобов рассчитывайте с учетом того, чтобы после без труда можно было выполнить сварку электродов. На следующем этапе в землю вбиваются электроды на каждой вершине треугольного контура. Вбивать их следует на глубину два-три метра. Нельзя допускать деформации электродов. Далее соедините электроды болтиками. Они привариваются к краям полос для крепления провода. К самому краю болтика необходимо будет прикрепить медный провод, который будет вести на распределительный щит. Последний этап — проверка. Измерение величины сопротивления производится с помощью омметров специализированными лабораториями. Самому же возможно будет проверить заземление при помощи специального устройства — меггера, включенного на омы. Сопротивление растекания тока не должно составлять более 4 Ом для сети 380 в, для сети 220 в — не более 30 Ом. Электрическое же сопротивление металлосвязи — не более 0,1 Ом.

Основные схемы контура заземления

Выделяется три основных схемы контура заземления:

  • простой контур — для рабочего заземления будет достаточно двух заземлителей, для защитного — три, располагаться они будут по краям треугольника
  • линейный контур — имеет две группы заземлителей, необходим, если в доме есть такие коммуникации, как газопровод, водонагреватель и т.д., если долгое время потребляется мощность более 1 кВт
  • полный контур — нужен, если в наличии есть электровод 220/380в через ВСЩ, площадь помещения превышает 100 м2 или в наличии стационарные электрические установки (в т.ч. водонагреватели)

Перед тем, как приступать к заземлению, необходимо ознакомиться с особенностями каждого из контуров.

Самым популярным материалом считается сталь и медь (а точнее сталь в оболочке из меди). Однако, не стоит забывать, что медь — материал не из дешевых, но и качество оправдывает ее цену. Выбирая электрод, обратите внимание на площадь сечения.

 

Как правильно сделать заземление в частном доме: что делать запрещено?

При установке заземления запрещается следующее:

  • заземлять на трубы, металлические или пластиковые
  • заземлять электрические устройства и розетки последовательно
  • заземлять электрические устройства и розетки на одну контактную площадь
  • разрывать проводники (как заземляющие, так и нулевые) коммутационными аппаратами

Несоблюдение этих правил может привести к риску для вашей жизни и здоровья. Еще один важный момент при прокладывании заземления — почва, в которой оно будет находиться. Подходящими вариантами грунта являются суглинистые и глинистые. Нежелательные типы грунта — это супеси, мергели, песчаные, известняки, каменистые и скальные.

Если вам не повезло с грунтом, существует одна хитрость. Чтобы повысить электропроводность, в месте установки контура заземления сверлится несколько скважин, в которые будет залит соляной раствор. Также можно просто заполнить пробуренные для электродов скважины почвой, смешанной с солью. Соблюдая все вышеперечисленные правила и рекомендации, вы сможете сделать заземление для вашего частного дома своими силами качественно и быстро. Оно верно прослужит вам еще много лет и обеспечит абсолютную безопасность вашему дому и родным. Главное, придерживаться основных правил и выполнять работу с учетом рекомендаций профессионалов.

Схема заземления в частном доме своими руками: схема, расчет, установка

Современный частный дом оборудован большим количеством бытовых электроприборов. Чтобы подключить их к электросети, из соображений безопасности необходимо выполнить заземление. Из этой статьи вы сможете узнать, как правильно сделать контур заземления в частном доме своими руками.

Что такое заземление?

Это название специально сделанного соединения с заземляющими элементами электрооборудования.Его основное предназначение — гарантировать защиту от воздействия электрического тока при выходе из строя бытовой техники.

Комплект заземления

В продаже можно найти специальные комплекты заземления, цена которых составляет около 4 600 руб. Также можно приобрести отдельные комплектующие для установки, они недорогие. Например, стальной стержень (электрод) длиной 1,5 м будет стоить 500 рублей, муфта — 200 рублей, соединительный шнур — 850 рублей. К каждому комплекту заземления прилагается соответствующая инструкция по установке, учитывающая специфику всех изделий.

Однако большинство необходимых элементов можно изготовить самостоятельно. К тому же выбор материалов достаточно широк. Вам просто нужно знать требования, которые к ним предъявляются.

Заземлитель вертикальный

  • Уголок 50x50x5 мм.
  • Трубопровод диаметром не менее 32 мм с толщиной стенки 3,5 мм и более.

Эти электроды можно использовать при объемах потребления электроэнергии не более 15 кВт.

Горизонтальный заземлитель

  • Проволока стальная сечением не менее 10 мм 2 .
  • Многопроволочный стальной 40х4 мм.

Проводники

В качестве проводников можно использовать металлическую ленту, стальную или медную проволоку. Например, провод СИП с жилами соответствующего сечения и без изоляции. При укладке в траншею — не менее 25 мм 2 , при открытой кладке — не менее 16 мм 2 .

Принципиальные элементы

  • Углубление электрода — не менее 1,5 м.
  • Расстояние от отмостки здания до контура заземления не менее 1 м.
  • Расстояние между вертикальными стержнями не менее 1,5 м.

Схема и выбор места

Монтаж контура заземления должен выполняться ближе к дому с учетом указанных выше расстояний. Длина соединительной «линии» в этом случае будет минимальной, что снизит расход материала. А главное, в дальнейшем он не будет мешать ведению хозяйственной деятельности — прокладке инженерных коммуникаций, поломке цветников.

Расчет

Сделать точный расчет не в силах человеку, обладающему глубокими познаниями. Потому что в расчете используется сложная форма, в которой содержится множество факторов, характеризующих свойства почвы, влажность почвы, а также климатические условия зоны. Эти коэффициенты можно получить только путем сложных дополнительных анализов и расчетов, что требует определенной квалификации и, следовательно, будет стоить недешево.

По этой причине рассмотрим, как сделать контурное заземление в частном доме своими руками проще.Учитывая, что бытовая техника работает в определенном диапазоне сопротивлений шлейфа, в котором она будет нормально работать.

Установка

Заземляющий контур в частном доме своими руками не так уж и прост. Этот процесс достаточно трудоемкий и включает следующие этапы:

  • Начать работу следует с рытья траншеи. Необходимо отступить на 1 м от стены здания и приступить непосредственно к процессу. Глубина траншеи должна быть 0.5-0,75 м, выглядят как треугольник, большая сторона которого 2,5-3 м.
  • При покупке уголка не стоит экономить, как уже было сказано ранее, следует выбирать уголок 50х50х5 мм. Поскольку конструкции меньшего размера не прослужат долго. Всего требуется 3 метра угла. Чтобы облегчить вход в землю, болгарке необходимо отрезать один ее конец. Затем углы с помощью кувалды почти на всю длину по вершинам треугольника должны выступать на 10 см над землей.
  • Выполняя заземляющий контур в частном доме своими руками, следующим этапом является объединение в единую цепь трех электродов. Для этого потребуется металлическая полоса шириной 50 мм и толщиной 5 мм, а также электросварка. Эта полоска соединит углы, которые стоят на вершинах треугольника. Его необходимо приварить к ним в доступных местах. Швы следует сваривать по всей длине. Очень важно покрыть эти места краской, чтобы в результате воздействия блуждающих токов и ржавчины сварной шов не разрушился.
  • Устройство контура заземления на этом этапе завершено, осталось только вывести его внутрь помещения и проверить.

Как попасть в дом?

Контур заземления подключается к электрическому щиту с помощью металлической ленты, которая использовалась для соединения электродов, следующим образом:

  • Необходимо будет выкопать траншею.
  • Цепь заземления (схема ниже) и лента приварены друг к другу.
  • После этого полоску нужно подтянуть к электрическому щиту.
  • Для дальнейшего подключения заземляющего провода к электрическому щиту можно использовать медную жилу.
  • Затем к заземляющей шине приваривается винт и соединяется с медной жилой. К винту с помощью двух шайб и гаек подключается медный кабель, который собирает все заземляющие провода дома.

Проверка контура заземления

Для точного измерения сопротивления контура потребуется специальное оборудование. При его отсутствии можно воспользоваться народным способом, который определит работоспособность получившегося контура.

Надо взять мощный потребитель (от 2кВт) и подключить его так: к фазе в квартире — один конец питающего провода, к земле — другой, и прибор должен заработать. Затем следует в этой сети замерить напряжение при выключенном и включенном оборудовании. Небольшая разница напряжений (5-10 В) свидетельствует о том, что вы сделали правильный контур заземления, который полностью готов к работе.

Если тест показывает значительную разницу напряжений, вам нужно будет добавить больше электродов.От вершины треугольника в любую сторону просверливается еще одна траншея длиной 2,5 м и на ее конце втыкается в землю дополнительный угол, который соединяется с полосой, и снова проводится проверка. Если все в норме, то контур заземления (схема выше) можно считать готовым.

Не допускается

  • Подключение проводов к металлическим трубопроводам любых инженерных коммуникаций.
  • Покройте элементы схемы лакокрасочными составами.
  • Используйте «нулевой» провод для подключения заземления.
  • Имеют горизонтальные заземлители и разъемы вверху (в редких случаях используется заземляющая прокладка).

Полезные советы

1. Перед тем, как приступить к работе, рекомендуется создать временную схему схемы, которую желательно сохранить. Ведь со временем многое забывается, и чтобы не гадать, где проходит разъем и где расположены электроды, контурная схема всегда будет под рукой.

2. Электроды можно размещать не только по вершинам треугольника. Их можно расположить по дуге, на линии. Важно, чтобы общее сопротивление системы заземления не превышало 3 Ом (диапазон напряжений до 500 В) и 4 Ом (до 1 кВт). При необходимости этот показатель снижают, устанавливая еще 1-2 штанги.

3. Если не можете измерить самостоятельно, желательно пригласить специалиста для стопроцентной уверенности в качестве монтажа схемы. Эта услуга будет стоить в среднем 400-500 рублей.

Очень часто эту энергосервису буквально навязывают, убеждая, что данный вид работ вправе выполнять только лицензированные организации. Однако ни в одной нормативной документации нет указаний на запрет самостоятельной установки схемы.

Естественно, установку можно заказать у энергетиков, принять готовые работы и оплатить их. Но если вы уверены в своих силах, почему бы не смонтировать контур заземления самостоятельно.

процесс построения схемы и подключения

Как сделать заземление своими руками

Раньше при строительстве домов заземления никто не делал, и особой надобности в этом не было.В настоящее время с появлением множества электрических устройств, таких как газовый котел, электронагреватель, стиральная машина, холодильник, компьютер и др. Тема заземления стала очень актуальной. Чтобы понять, как сделать заземление своими руками, необходимо для начала понять принцип его работы. Именно с этим мы познакомимся в этой статье, а также с тем, как установить контур заземления.

Содержание

  • Заземление: для чего оно нужно?
  • Как сделать заземление
  • Выбор заземляющего электрода
  • Устройство контура заземления
  • Вход в здание с заземлением
  • Проверка надежности заземления
  • Краткий план действий
  • Заземление: для чего оно нужно?

    Заземление — это специальная проводка, которая соединяет различные электрические устройства в доме с заземляющим устройством.Основная цель такого мероприятия — повышение безопасности.

    Зачем нужно заземление :

    • оно исключит поражение электрическим током человека, коснувшегося корпуса электрического аппарата;
    • обеспечит нормальное функционирование электроприборов, так как при их изготовлении учитывается наличие заземления;
    • уменьшают электромагнитное излучение высокой частоты;
    • уменьшить количество помех в электросети.

    Как сделать заземление

    Нам понадобится трехпроводная проводка в больших количествах, прутки металлические, сварочный аппарат. Работы по заземлению делятся на 3 категории:

    • установка самого заземляющего устройства;
    • электромонтажные работы с заземлением жилого помещения;
    • Монтаж арматуры с учетом наличия заземления.

    По европейским стандартам все розетки должны быть заземлены, так как современная бытовая техника оснащена специальными вилками с заземляющими «антеннами».

    Чтобы принять решение, как сделать заземление своими руками, нужно продумать, какие устройства в обязательном порядке будут подключены к заземленной розетке. К ним относятся:

    1. Электрические устройства, генерирующие динамические процессы: стиральные машины, электрические мясорубки, кухонные комбайны. Другими словами, все устройства с электродвигателем потенциально чреваты угрозой обрыва фазы на их корпусе.
    2. Устройства большой мощности. Сегодня к этой категории можно отнести даже обычные электрочайники..
    3. Все электронные устройства. В случае компьютеров, генерирующих статическое электричество, заземление защитит не только человека, но и саму машину от повреждений.

    Отсюда делаем вывод, что заземление просто необходимо в ванной, на кухне, а также в местах подключения компьютерного оборудования. Куда будут подключаться не очень мощные устройства, розетки могут быть обычными. Хотя большинство владельцев предпочитают, чтобы все розетки в доме были безопасными, как того требуют европейские стандарты..

    По европейским стандартам все розетки должны быть заземлены

    Выбор заземляющего электрода

    Для заземляющих электродов в целях экономии чаще всего используют сталь, хотя было бы неплохо использовать медь или сталь в медной оболочке. Важнейшим критерием выбора заземляющего электрода является площадь сечения. Если мы используем угловой или прямоугольный профиль, то площадь поперечного сечения не должна быть меньше 150 кв. Мм. При использовании стальной трубы минимальная толщина стенки 3.5 миллиметров, а диаметр — 32 миллиметра. Длина заземляющих электродов должна быть не менее двух метров. Заземление не должно содержать никаких покрытий, которые могут нарушить электрический контакт (краски и т. Д.).

    Устройство контура заземления

    Устройство заземления на самом деле имеет довольно простую конструкцию. Для этого вам понадобятся три заземляющих электрода. Вбиваем их в землю, придавая форму равностороннего треугольника (длина каждой стороны не менее 1,2 м). Перед загрузкой электродов в грунт необходимы подготовительные земляные работы.Дальнейшие работы по устройству заземления выполняются в таком порядке:

    • Выкапываем 3 ямы глубиной 50 см в виде заземления (равносторонний треугольник), соединяем их траншеями.

    Заземляющие траншеи

    • Перед тем, как забить, затачиваем электроды болгаркой.

    Электроды заостренные болгаркой

    • Берем большую кувалду и забиваем заземляющие электроды.
    • Если почва твердая, не исключено, что под ударом кувалды концы электродов начнут сильно деформироваться.В этом случае необходимо срезать деформированные участки болгаркой и после этого продолжить работу.

    Заземляющие электроды забиты кувалдой

    • Следующим шагом является соединение электродов между собой. Для этого используем стальной провод сечением более 50 мм2. Также можно использовать стальную полосу толщиной 4 мм и шириной 40 мм.
    • Стальные детали лучше всего соединять сваркой. Возможно, конечно, и болтовое соединение, однако идеальное решение — сварка.

    Приварка электродов к стальной полосе

    • Притягиваем стальную полосу к предполагаемому месту входа в дом. Мы переносим его над поверхностью земли.

    Вывод полосы на поверхность земли к месту входа в дом

    • Привариваем к полосе болт М8 или болт М10. Впоследствии намотаем на него провод, ведущий к щиту.

    Проволока, ведущая к экрану, наматывается на приварные болты

    • По окончании всех этих действий можно засыпать ямы.

    Заземляющая полоса подключена к дому, траншеи заделаны землей

    Въезд в здание с заземлением

    Дело практически готово: сделали заземлитель. Теперь необходимо провести разводку, чтобы подвести заземление к самому распределительному щиту. Для этого понадобится трехжильный провод. Самыми прочными считаются медные монолитные жилы.

    Трехпроводные провода используются, как правило, при необходимости особой конфигурации системы освещения для прокладки проводки от выключателя.Именно эти провода нужны для заземления. Заменяем их на обычные монолитные жилы. Теперь к розетке выводим не только фазу и ноль, но и землю.

    Заземление розетки трехжильным проводом — фаза, ноль и земля

    Подводим к стеклам всех розеток по три провода, придерживаясь цветовой маркировки, чтобы точно знать, какой провод является заземлением. Ведь не так уж и принципиально перепутать фазу с нулем, важно не перепутать фазу с землей, так как розетка в этом случае не подойдет.Аккуратно скрутите «землю» с «землей» во всех имеющихся распределительных коробках и проследите, чтобы заземление шло везде, как в отдельном жилом.

    Разводка проводки, приступаем к установке фурнитуры. Но сначала проверьте надежность нашего заземления.

    Проверка надежности заземления

    Сделав своими руками установку заземления, необходимо протестировать систему. Лучше всего для этих целей использовать измеритель сопротивления заземления. Но, поскольку такое сложное оборудование у домашнего мастера маловероятно, заземление можно сделать так:

    • берем переносную лампу накаливания (от 100 Вт) и подключаем один контакт к земле, а другой к фазе;
    • лампа загорится ярко, если заземление выполнено качественно.Если лампа не загорается или просто тускло горит, это будет означать, что заземление имеет высокое сопротивление из-за некачественных электрических контактов во всех узлах; №
    • Чтобы исключить повышенное сопротивление, мы хорошо очищаем все провода, трубки, зажимные механизмы, одним словом — все, что играет роль посредника между массой и контактом заземления в розетке.

    Краткий план действий

    Обобщая подробно описанные выше операции, можно составить краткий план действий по организации заземления своими руками:

    1. Изготовление заземляющего устройства в виде треугольного металлического каркаса с кромкой 1 метр.В каждый угол треугольника приварены стержни длиной 1,5 м.
    2. Погружение заземляющего устройства в грунт: рамой вверх, штифтами вниз.
    3. Приваривание к прибору металлической полосы, с помощью которой заземление соединяется со счетчиком.
    4. Выполнение разводки от трехжильного провода в доме, подключение лишней жилы к заземленным розеткам.
    5. Подключение этой жилы к земле на счетчике.
    6. Установка розеток с подключением заземляющих антенн к дополнительному проводу.
    7. Еще один важный момент — это организация молниезащиты здания (это тема отдельного разговора).

    Как видите, сделать домашнее заземление своими руками достаточно просто, важно только действовать согласно рекомендациям и соблюдать технологию. Но вы сами обеспечите свой дом хорошей электропроводкой с надежным заземлением, избежав лишних затрат. Что ж, а если все же сомнения не дают покоя, пригласите знакомого электрика, чтобы проверить, все ли вы сделали правильно.

    Последствия для здоровья повторного подключения человеческого тела к поверхностным электронам Земли

    J Environ Public Health. 2012; 2012: 291541.

    ,
    1, 2
    ,
    * ,
    3
    ,
    4
    ,
    5
    и
    6

    Гаэтан Шевалье

    1 Департамент развития и клеточной биологии, Калифорнийский университет в Ирвине, Ирвин, Калифорния 92697, США

    2 Earth FX Inc., Палм-Спрингс, Калифорния 92262, США

    Стивен Т.Sinatra

    3 Медицинский факультет Университета CT, c / o Optimum Health Building, 257 East Center Street, Farmington, CT 06040, USA

    James L. Oschman

    4 Nature’s Own Research Association, Dover, NH 03821, США

    Кароль Сокал

    5 Отделение амбулаторной кардиологии, Военный клинический госпиталь, 85-681 Быдгощ, Польша

    Павел Сокаль

    6 Отделение нейрохирургии, Военный клинический госпиталь, 85-681 Быд

    1 Кафедра биологии развития и клеточной биологии, Калифорнийский университет в Ирвине, Ирвин, Калифорния 92697, США

    2 Earth FX Inc., Палм-Спрингс, Калифорния 92262, США

    3 Медицинский факультет Университета CT, c / o Optimum Health Building, 257 East Center Street, Фармингтон, Коннектикут 06040, США

    4 Nature’s Own Research Association, Dover, NH 03821, США

    5 Отделение амбулаторной кардиологии, Военный клинический госпиталь, 85-681 Быдгощ, Польша

    6 Отделение нейрохирургии, Военный клинический госпиталь, 85-681 Быдгощ, Польша

    Академический редактор: Герри Швальфен

    Поступило 15.06.2011; Принята в печать 4 октября 2011 г.

    Это статья в открытом доступе, распространяемая по лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.

    Эта статья цитируется в других статьях в PMC.

    Abstract

    Экологическая медицина обычно занимается факторами окружающей среды, оказывающими негативное влияние на здоровье человека. Тем не менее, новые научные исследования выявили удивительно положительный и недооцененный экологический фактор, влияющий на здоровье: прямой физический контакт с огромным количеством электронов на поверхности Земли.Современный образ жизни отделяет людей от таких контактов. Исследования показывают, что этот разрыв может быть одним из основных факторов физиологической дисфункции и плохого самочувствия. Было обнаружено, что воссоединение с электронами Земли способствует интригующим физиологическим изменениям и субъективным отчетам о благополучии. Заземление (или заземление) относится к открытию преимуществ — включая лучший сон и уменьшение боли — от ходьбы босиком на улице или сидения, работы или сна в помещении, подключенных к проводящим системам, которые переносят электроны Земли из земли в тело.В этой статье рассматриваются исследования заземления и потенциал заземления как простого и легко доступного глобального метода, имеющего важное клиническое значение.

    1. Введение

    Экологическая медицина фокусируется на взаимодействии между здоровьем человека и окружающей средой, включая такие факторы, как загрязненный воздух и вода и токсичные химические вещества, а также то, как они вызывают или опосредуют заболевания. Повсюду в окружающей среде присутствует удивительно полезный, но игнорируемый глобальный ресурс для поддержания здоровья, профилактики заболеваний и клинической терапии: поверхность самой Земли.Это установленный, хотя и не получивший широкого признания факт, что поверхность Земли обладает безграничным и постоянно обновляемым запасом свободных или подвижных электронов. Поверхность планеты электропроводна (за исключением ограниченных ультрасухих областей, таких как пустыни), и ее отрицательный потенциал поддерживается (т.е. пополняется запасом электронов) глобальной атмосферной электрической цепью [1, 2].

    Растущее количество свидетельств свидетельствует о том, что отрицательный потенциал Земли может создать стабильную внутреннюю биоэлектрическую среду для нормального функционирования всех систем организма.Более того, колебания интенсивности потенциала Земли могут быть важны для установки биологических часов, регулирующих суточные ритмы тела, такие как секреция кортизола [3].

    Также хорошо известно, что электроны из молекул антиоксидантов нейтрализуют активные формы кислорода (ROS, или, говоря популярным языком, свободные радикалы), участвующие в иммунных и воспалительных реакциях организма. Интернет-ресурс Национальной медицинской библиотеки PubMed содержит список 7021 исследований и 522 обзорных статей, полученных в результате поиска по запросу «антиоксидант + электрон + свободный радикал» [3].Предполагается, что приток свободных электронов, поглощаемых телом при прямом контакте с Землей, вероятно, нейтрализует АФК и тем самым уменьшает острое и хроническое воспаление [4]. На протяжении всей истории люди в основном ходили босиком или в обуви из шкур животных. Спали на земле или на коже. Благодаря прямому контакту или через смоченную потом шкуру животных, используемую в качестве обуви или ковриков для сна, многочисленные свободные электроны земли могли проникать в тело, которое является электропроводящим [5].Благодаря этому механизму каждая часть тела могла уравновеситься с электрическим потенциалом Земли, тем самым стабилизируя электрическую среду всех органов, тканей и клеток.

    Современный образ жизни все больше отделяет людей от изначального потока электронов Земли. Например, с 1960-х годов мы все чаще носим изолирующую обувь на резиновой или пластиковой подошве вместо традиционной кожи, сделанной из шкур. Росси посетовал на то, что использование изоляционных материалов в обуви после Второй мировой войны отделило нас от энергетического поля Земли [6].Очевидно, мы больше не спим на земле, как раньше.

    За последние десятилетия резко возросло количество хронических заболеваний, иммунных и воспалительных заболеваний, и некоторые исследователи ссылаются на факторы окружающей среды как на их причину [7]. Однако возможность современного отключения от поверхности Земли как причина не рассматривалась. Большая часть исследований, рассмотренных в этой статье, указывает на это.

    В конце 19 века движение за возвращение к природе в Германии утверждало, что босиком на улице даже в холодную погоду приносит много пользы для здоровья [8].В 1920-х годах Уайт, врач, исследовал практику сна заземленным после того, как некоторые люди сообщили, что они не могут нормально спать, «если они не находятся на земле или не подключены к земле каким-либо образом», например, с помощью медных проводов. прикреплены к заземленным водопроводным, газовым или радиаторным трубам. Он сообщил об улучшении сна с помощью этих методов [9]. Однако эти идеи никогда не прижились в обществе.

    В конце прошлого века эксперименты, инициированные независимо Обером в США [10] и К.Sokal и P. Sokal [11] в Польше выявили явные физиологические преимущества и пользу для здоровья при использовании проводящих подкладок, матов, электродных пластырей типа EKG и TENS, а также пластин, соединенных внутри помещения с Землей снаружи. Обер, бывший руководитель кабельного телевидения, обнаружил сходство между человеческим телом (биоэлектрическим организмом, передающим сигнал) и кабелем, используемым для передачи сигналов кабельного телевидения. Когда кабели «заземлены» на землю, помехи практически исключаются из сигнала.Кроме того, все электрические системы стабилизируются путем заземления их на Землю. К. Сокал и П. Сокал, тем временем, обнаружили, что заземление человеческого тела представляет собой «универсальный регулирующий фактор в природе», который сильно влияет на биоэлектрические, биоэнергетические и биохимические процессы и, по-видимому, оказывает значительное модулирующее воздействие на хронические заболевания, с которыми они ежедневно сталкиваются. клиническая практика.

    Заземление (также известное как заземление) относится к контакту с электронами поверхности Земли при ходьбе босиком на улице или сидя, работе или сне в помещении, подключенном к проводящим системам, некоторые из которых запатентованы, которые передают энергию земли в тело.Новые научные исследования подтверждают концепцию, согласно которой электроны Земли вызывают множественные физиологические изменения, имеющие клиническое значение, включая уменьшение боли, улучшение сна, переход от симпатического к парасимпатическому тонусу в вегетативной нервной системе (ВНС) и разжижающий кровь эффект. Исследование, наряду со многими анекдотическими сообщениями, представлено в новой книге под названием Earthing [12].

    2. Обзор документов по заземлению

    Исследования, обобщенные ниже, включают методы тестирования в помещении в контролируемых условиях, которые имитируют ходьбу босиком на открытом воздухе.

    2.1. Сон и хроническая боль

    В слепом пилотном исследовании Обер набрал 60 субъектов (22 мужчины и 28 женщин), которые страдали самоописанными нарушениями сна и хронической болью в мышцах и суставах в течение как минимум шести месяцев [10]. Субъекты были случайным образом разделены на месячное исследование, в котором обе группы спали на проводящих матрасах из углеродного волокна, предоставленных Ober. Половина контактных площадок была подключена к специальному заземлению за окном спальни каждого испытуемого, а другая половина была «фиктивно» заземлена — не подключена к Земле.Результаты представлены в.

    Таблица 1

    Субъективная обратная связь о сне, боли и самочувствии.

    4 904 = 85%

    Категории Испытуемые * Контрольные испытуемые **
    То же Улучшено То же Улучшено
    Время засыпать 20 = 87% 3 = 13%
    Качество сна 2 = 7% 25 = 93% 20 = 87% 3 = 13%
    Ощущение бодрствования отдохнувшим 0 = 0% 27 = 100% 20 = 87% 3 = 13%
    Жесткость и боль в мышцах 5 = 18% 22 = 82% 23 = 100% 0 = 0%
    Хроническая боль в спине и / или суставах 7 = 26% 20 = 74% 23 = 100% 0 = 0%
    Общее состояние здоровья -быть 6 = 22% 21 = 78% 20 = 8 7% 3 = 13%

    Большинство обоснованных испытуемых описали симптоматическое улучшение, в то время как большинство в контрольной группе этого не сделали.Некоторые субъекты сообщили о значительном облегчении астматических и респираторных состояний, ревматоидного артрита, ПМС, апноэ во сне и гипертонии во время сна. Эти результаты показали, что эффект заземления выходит за рамки уменьшения боли и улучшения сна.

    2.2. Сон, стресс, боль и кортизол

    Пилотное исследование оценивало суточные ритмы кортизола, коррелирующие с изменениями сна, боли и стресса (тревожность, депрессия и раздражительность), что контролировалось субъективными отчетами [13].Двенадцать субъектов с жалобами на дисфункцию сна, боль и стресс были заземлены на Землю во время сна в собственных кроватях с использованием проводящего наматрасника в течение 8 недель.

    Чтобы получить базовое измерение кортизола, испытуемые жевали дакроновые мази в течение 2 минут, а затем помещали их в промаркированные по времени пробирки, которые хранились в холодильнике. Самостоятельный сбор образцов начинался в 8 часов утра и повторялся каждые 4 часа. После 6 недель заземления субъекты повторили этот 24-часовой тест слюны.Образцы обрабатывали с помощью стандартного радиоиммуноанализа. Сводные результаты показаны в.

    Уровни кортизола до и после заземления. У нестрессированных людей нормальный 24-часовой профиль секреции кортизола следует предсказуемой схеме: самый низкий около полуночи и самый высокий около 8 часов утра. Тенденция нормализации паттернов после шести недель сна обоснована.

    Субъективные симптомы нарушения сна, боли и стресса сообщались ежедневно в течение 8-недельного периода тестирования. У большинства испытуемых с уровнем ночной секреции от высокого до вне допустимого наблюдались улучшения после того, как они спали на земле. Это демонстрируется восстановлением нормальных профилей секреции кортизола днем ​​и ночью.

    Одиннадцать из 12 участников сообщили, что засыпали быстрее, и все 12 сообщили, что ночью просыпались реже. Заземление тела ночью во время сна также положительно влияет на уровень утренней усталости, дневную энергию и уровень боли в ночное время.

    Около 30 процентов взрослого населения Америки жалуются на нарушение сна, в то время как примерно у 10 процентов наблюдаются симптомы функционального нарушения в дневное время, соответствующие диагнозу бессонницы. Бессонница часто коррелирует с большой депрессией, генерализованной тревогой, злоупотреблением психоактивными веществами, деменцией, а также с различными болями и физическими проблемами. Прямые и косвенные издержки хронической бессонницы оцениваются в десятки миллиардов долларов ежегодно только в США [14].Принимая во внимание бремя личного дискомфорта и затрат на лечение, заземление тела во время сна, кажется, может многое предложить.

    2.3. Заземление снижает электрические поля, наведенные на тело

    Напряжение, наведенное на человеческое тело из-за электрической среды, измерялось с помощью измерительной головки с высоким импедансом. Эпплуайт, инженер-электрик и эксперт по проектированию систем электростатического разряда в электронной промышленности, был одновременно объектом и автором исследования [15].Измерения проводились в незаземленном состоянии, а затем были заземлены с помощью токопроводящей накладки и токопроводящей подушки. Автор измерил индуцированные поля в трех положениях: левая грудь, живот и левое бедро.

    Каждый метод (пластырь и пластырь) немедленно снижал общий переменный ток (AC) 60 Гц окружающего напряжения, наведенный на тело, на очень значительный коэффициент, в среднем примерно в 70 раз. показывает этот эффект.

    Влияние заземления подушки на режим 60 Гц.

    Исследование показало, что когда тело заземлено, его электрический потенциал выравнивается с электрическим потенциалом Земли за счет передачи электронов от Земли к телу.Это, в свою очередь, препятствует тому, чтобы режим 60 Гц создавал электрический потенциал переменного тока на поверхности тела и не создавал возмущений электрических зарядов молекул внутри тела. Исследование подтверждает «зонтичный» эффект заземления тела, объясненный лауреатом Нобелевской премии Ричардом Фейнманом в его лекциях по электромагнетизму [16]. Фейнман сказал, что когда потенциал тела такой же, как электрический потенциал Земли (и, следовательно, заземлен), оно становится продолжением гигантской электрической системы Земли.Таким образом, потенциал Земли становится «рабочим агентом, который нейтрализует, уменьшает или отталкивает электрические поля от тела».

    Applewhite смог задокументировать изменения окружающего напряжения, индуцированного на теле, путем отслеживания падения напряжения на резисторе. Этот эффект ясно продемонстрировал «эффект зонтика», описанный выше. Тело заземленного человека не подвержено возмущениям электронов и электрических систем.

    Джеймисон спрашивает, является ли отсутствие надлежащего заземления людей фактором, способствующим потенциальным последствиям электрического загрязнения в офисных помещениях [17].Существует много споров о том, вызывают ли электромагнитные поля в окружающей среде риск для здоровья [18], но нет никаких сомнений в том, что организм реагирует на присутствие электрических полей в окружающей среде. Это исследование демонстрирует, что заземление по существу устраняет внешнее напряжение, наведенное на тело от обычных источников электроэнергии.

    2.4. Физиологические и электрофизиологические эффекты

    2.4.1. Снижение общих уровней стресса и напряжения и сдвиг в балансе ВНС

    Пятьдесят восемь здоровых взрослых субъектов (включая 30 контрольных) участвовали в рандомизированном двойном слепом пилотном исследовании, посвященном влиянию заземления на физиологию человека [19].Заземление осуществлялось с помощью токопроводящей клейкой ленты на подошве каждой ступни. Система биологической обратной связи регистрировала электрофизиологические и физиологические параметры. Подопытные были подвергнуты воздействию 28 минут в незаземленном состоянии, а затем 28 минут с подключенным заземляющим проводом. Контроли откопали в течение 56 минут.

    После заземления примерно у половины испытуемых было обнаружено резкое, почти мгновенное изменение среднеквадратичных (среднеквадратичных) значений электроэнцефалограмм (ЭЭГ) левого полушария (но не правого полушария) на всех частотах, проанализированных системой биологической обратной связи (бета , альфа, тета и дельта).

    Все заземленные испытуемые показали резкое изменение среднеквадратичных значений поверхностных электромиограмм (SEMG) правой и левой верхней трапециевидной мышцы. Заземление снизило пульс объема крови (BVP) у 19 из 22 подопытных (статистически значимо) и у 8 из 30 контрольных (несущественно). Заземление человеческого тела оказало значительное влияние на электрофизиологические свойства мозга и мускулатуры, на BVP, а также на шум и стабильность электрофизиологических записей. Взятые вместе, изменения в ЭЭГ, ЭМГ и BVP предполагают снижение общих уровней стресса и напряжения и сдвиг баланса ВНС при заземлении.Результаты расширяют выводы предыдущих исследований.

    2.4.2. Подтверждение перехода от симпатической к парасимпатической активации

    Многопараметрическое двойное слепое исследование было разработано для воспроизведения и расширения предыдущих электрофизиологических и физиологических параметров, измеренных сразу после заземления, с помощью улучшенной методологии и современного оборудования [20]. Четырнадцать мужчин и 14 женщин с хорошим здоровьем в возрасте от 18 до 80 лет были протестированы, сидя в удобном кресле, в течение 2-часовых сеансов заземления, оставляя время для стабилизации сигналов до, во время и после заземления (40 минут для каждого периода). .Также были записаны фиктивные двухчасовые сеансы заземления с теми же испытуемыми, что и в контрольной группе. Для каждого сеанса статистический анализ проводился на четырех 10-минутных сегментах: до и после заземления (фиктивное заземление для контрольных сеансов) и до и после незаземления (фиктивное незаземление для контрольных сеансов). Были задокументированы следующие результаты:

    1. немедленное уменьшение (в течение нескольких секунд) проводимости кожи (SC) при заземлении и немедленное увеличение при отсутствии заземления. Никаких изменений в контрольных сеансах (фиктивное заземление) не наблюдалось;

    2. Частота дыхания (ЧД) увеличилась во время заземления, эффект продолжался после заземления.Дисперсия RR увеличивалась сразу после заземления, а затем уменьшалась;

    3. Дисперсия оксигенации крови (BO) снизилась во время заземления, после чего резко увеличилась после заземления;

    4. Дисперсия частоты пульса (PR) и индекса перфузии (PI) увеличивалась к концу периода заземления, и это изменение сохранялось после незаземления.

    Немедленное снижение SC указывает на быструю активацию парасимпатической нервной системы и соответствующую дезактивацию симпатической нервной системы.Немедленное увеличение SC при прекращении заземления указывает на обратный эффект. Повышенный RR, стабилизация BO и небольшое увеличение частоты сердечных сокращений предполагают начало метаболической реакции исцеления, требующей увеличения потребления кислорода.

    2.4.3. Иммунные клетки и болевые реакции с индукцией мышечной болезненности с отсроченным началом

    Уменьшение боли при заземленном сне было документально подтверждено в предыдущих исследованиях [10, 13]. Это пилотное исследование искало маркеры крови, которые могли бы различать заземленных и незаземленных субъектов, которые завершили один сеанс интенсивных эксцентрических упражнений, что привело к отсроченной мышечной болезненности (DOMS) икроножной мышцы [21].Если бы маркеры могли различать эти группы, будущие исследования можно было бы проводить более подробно с большей предметной базой. DOMS является распространенной жалобой в мире фитнеса и спорта после чрезмерной физической активности и включает острое воспаление перенапряженных мышц. Он развивается через 14–48 часов и сохраняется более 96 часов [22]. Нет известных методов лечения, сокращающих период выздоровления, но очевидно, что массаж и гидротерапия [23–25] и иглоукалывание [26] могут уменьшить боль.

    Восемь здоровых мужчин в возрасте 20–23 лет проделали аналогичную процедуру подъема носков, неся на плечах штангу, равную одной трети веса их тела.Каждый участник тренировался индивидуально в понедельник утром, а затем наблюдали за остальной частью недели, соблюдая аналогичный график приема пищи, сна и жизни в отеле. Группа была случайным образом разделена пополам и либо заземлена, либо мнимо заземлена с использованием токопроводящего пластыря, помещенного на подошву каждой ступни в часы активности, и токопроводящего листа в ночное время. Полный анализ крови, биохимический анализ крови, химический анализ ферментов, уровень кортизола в сыворотке и слюне, магнитно-резонансная томография и спектроскопия, а также уровни боли (всего 48 параметров) были взяты в одно и то же время дня перед эксцентрическим упражнением и в 24, 48 и 72 часа спустя.Параметры, постоянно различающиеся на 10 процентов и более, нормализованные к исходному уровню, были сочтены заслуживающими дальнейшего изучения.

    Параметры, которые различались по этим критериям, включали количество лейкоцитов, билирубин, креатинкиназу, соотношение фосфокреатин / неорганический фосфат, глицеринфосфорилхолин, фосфорилхолин, визуальную аналоговую шкалу боли и измерения давления в правой икроножной мышце.

    Результаты показали, что заземление тела на Землю изменяет показатели активности иммунной системы и боли.Среди необоснованных мужчин, например, наблюдалось ожидаемое резкое увеличение лейкоцитов на этапе, когда известно, что DOMS достигает своего пика, и большее восприятие боли (см.). Этот эффект демонстрирует типичную воспалительную реакцию. Для сравнения, у заземленных мужчин было только небольшое снижение лейкоцитов, что указывало на скудное воспаление и, что впервые наблюдалось, на более короткое время восстановления. Позже Браун прокомментировал, что были «значительные различия» в боли, о которой сообщали эти мужчины [12].

    Отсроченное начало болезненности и заземления мышц. В соответствии со всеми измерениями, необоснованные субъекты выражали ощущение большей боли. Обнаружение боли было связано с приглушенным ответом белых кровяных телец, указывающим на то, что заземленное тело испытывает меньше воспалений.

    2.4.4. Вариабельность сердечного ритма

    Быстрое изменение проводимости кожи, о котором сообщалось в более раннем исследовании, привело к гипотезе о том, что заземление может также улучшить вариабельность сердечного ритма (ВСР), измерение реакции сердца на регуляцию ВНС.Было разработано двойное слепое исследование с 27 участниками [27]. Испытуемые сидели в удобных креслах с откидывающейся спинкой. На подошву каждой ступни и на каждую ладонь помещали четыре адгезивных электродных пластыря типа чрескожной электрической стимуляции нервов (TENS).

    Участники служили своим собственным контролем. Данные каждого участника из 2-часового сеанса (40 минут из которых были обоснованными) сравнивались с данными другого 2-часового фиктивного сеанса. Последовательность сеансов заземления по сравнению с сеансами фиктивного заземления назначалась случайным образом.

    Во время заземленных сеансов у участников наблюдалось статистически значимое улучшение ВСР, которое выходило далеко за рамки основных результатов релаксации (которые были продемонстрированы на необоснованных сеансах). Поскольку улучшение ВСР является важным положительным показателем состояния сердечно-сосудистой системы, предлагается использовать простые методы заземления в качестве базовой интегративной стратегии для поддержки сердечно-сосудистой системы, особенно в ситуациях повышенного вегетативного тонуса, когда симпатическая нервная система активнее, чем парасимпатическая. нервная система.

    2.4.5. Снижение основных показателей остеопороза, улучшение регуляции глюкозы и иммунного ответа

    К. Сокал и П. Сокал, кардиолог и нейрохирург, отец и сын из медицинского персонала военной клиники в Польше, провели серию экспериментов, чтобы определить, действительно ли контакт с Землей через медный проводник может повлиять на физиологические процессы [11]. Их исследования были вызваны вопросом, влияет ли естественный электрический заряд на поверхности Земли на регуляцию физиологических процессов человека.

    Двойные слепые эксперименты проводились в группах от 12 до 84 субъектов, которые соблюдали одинаковую физическую активность, диету и потребление жидкости в течение испытательных периодов. Заземление было достигнуто с помощью медной пластины (30 мм × 80 мм), размещенной на нижней части стойки, прикрепленной полосой, чтобы она не оторвалась в течение ночи. Пластина была соединена проводящим проводом с большей пластиной (60 мм × 250 мм), контактировавшей с Землей снаружи.

    В одном эксперименте с субъектами, не принимавшими лекарства, заземление в течение одной ночи сна приводило к статистически значимым изменениям концентрации минералов и электролитов в сыворотке крови: железа, ионизированного кальция, неорганического фосфора, натрия, калия и магния.Почечная экскреция кальция и фосфора была значительно снижена. Наблюдаемое снижение содержания кальция и фосфора в крови и моче напрямую связано с остеопорозом. Результаты показывают, что заземление на одну ночь снижает основные показатели остеопороза.

    Непрерывное заземление во время отдыха и физической активности в течение 72 часов снижает уровень глюкозы натощак у пациентов с инсулинозависимым сахарным диабетом. Пациенты хорошо контролировались глибенкламидом, противодиабетическим препаратом, в течение примерно 6 месяцев, но на момент исследования у них был неудовлетворительный гликемический контроль, несмотря на рекомендации по питанию и физическим упражнениям и дозу глибенкламида 10 мг / день.

    К. Сокал и П. Сокал взяли образцы крови у 6 взрослых мужчин и 6 женщин, не имевших в анамнезе заболеваний щитовидной железы. Одна ночь заземления вызвала значительное снижение уровня свободного трийодтиронина и повышение уровня свободного тироксина и тиреотропного гормона. Значение этих результатов неясно, но предполагает влияние заземления на взаимосвязь печени, гипоталамуса и гипофиза с функцией щитовидной железы. Обер и др. [12] наблюдали, что многие люди, принимающие препараты для лечения щитовидной железы, сообщали о симптомах гипертиреоза, таких как учащенное сердцебиение, после начала приема заземления.Такие симптомы обычно исчезают после того, как лечение будет снижено под наблюдением врача. Через ряд регуляций обратной связи гормоны щитовидной железы влияют почти на все физиологические процессы в организме, включая рост и развитие, обмен веществ, температуру тела и частоту сердечных сокращений. Очевидно, что необходимы дальнейшие исследования влияния заземления на функцию щитовидной железы.

    В другом эксперименте исследовали влияние заземления на классический иммунный ответ после вакцинации. Заземление ускорило иммунный ответ, о чем свидетельствует увеличение концентрации гамма-глобулина.Этот результат подтверждает связь между заземлением и иммунным ответом, как было предложено в исследовании DOMS [21].

    К. Сокал и П. Сокал приходят к выводу, что заземление человеческого тела влияет на физиологические процессы человека, включая повышение активности катаболических процессов, и может быть «основным фактором, регулирующим эндокринную и нервную системы».

    2.4.6. Электродинамика измененной крови

    Поскольку заземление вызывает изменения многих электрических свойств тела [1, 15, 19, 28], следующим логическим шагом была оценка электрических свойств крови.Подходящим показателем является дзета-потенциал эритроцитов (RBC) и агрегация RBC. Дзета-потенциал — это параметр, тесно связанный с количеством отрицательных зарядов на поверхности эритроцитов. Чем выше число, тем выше способность эритроцитов отталкивать другие эритроциты. Таким образом, чем больше дзета-потенциал, тем хуже свертывается кровь.

    В исследовании приняли участие десять относительно здоровых субъектов [29]. Они были удобно усажены в кресло с откидной спинкой и были заземлены в течение двух часов с накладками электродов на их ступни и руки, как и в предыдущих исследованиях.Образцы крови брали до и после.

    Приземление тела к земле существенно увеличивает дзета-потенциал и снижает агрегацию эритроцитов, тем самым снижая вязкость крови. Субъекты, страдающие от боли, сообщали об уменьшении до такой степени, что это было почти незаметно. Результаты убедительно свидетельствуют о том, что заземление — естественное решение для пациентов с чрезмерной вязкостью крови, вариант, представляющий большой интерес не только для кардиологов, но и для любого врача, обеспокоенного взаимосвязью вязкости крови, свертывания крови и воспаления.В 2008 году Адак и его коллеги сообщили о наличии как гиперкоагулируемой крови, так и плохого дзета-потенциала эритроцитов у диабетиков. Зета-потенциал был особенно низким среди диабетиков с сердечно-сосудистыми заболеваниями [30].

    3. Обсуждение

    До сих пор физиологическое значение и возможные последствия для здоровья стабилизации внутренней биоэлектрической среды организма не были важной темой исследований. Однако некоторые аспекты этого относительно очевидны. В отсутствие контакта с землей внутреннее распределение заряда не будет равномерным, а будет подвержено различным электрическим возмущениям в окружающей среде.Хорошо известно, что многие важные регуляции и физиологические процессы связаны с событиями, происходящими на поверхности клеток и тканей. В отсутствие общей контрольной точки или «земли» электрические градиенты из-за неравномерного распределения заряда могут накапливаться вдоль поверхностей тканей и клеточных мембран.

    Мы можем предсказать, что такая разница зарядов будет влиять на биохимические и физиологические процессы. Во-первых, структура и функционирование многих ферментов чувствительны к местным условиям окружающей среды.Каждый фермент имеет оптимальный pH, который способствует максимальной активности. Изменение электрического окружения может изменить pH биологических жидкостей и распределение заряда на молекулах и тем самым повлиять на скорость реакции. Эффект pH возникает из-за критически важных заряженных аминокислот в активном центре фермента, которые участвуют в связывании субстрата и катализе. Кроме того, способность субстрата или фермента отдавать или принимать ионы водорода зависит от pH.

    Другой пример — потенциалзависимые ионные каналы, которые играют критическую биофизическую роль в возбудимых клетках, таких как нейроны.Локальные изменения профилей заряда вокруг этих каналов могут привести к электрической нестабильности клеточной мембраны и к несоответствующей спонтанной активности, наблюдаемой во время определенных патологических состояний [31].

    Исследование заземления предлагает понимание клинического потенциала контакта босиком с Землей или имитации контакта босиком в помещении через простые проводящие системы, стабильности внутренней биоэлектрической функции и физиологии человека. Первоначальные эксперименты привели к субъективным сообщениям об улучшении сна и уменьшении боли [10].Последующие исследования показали, что улучшение сна коррелирует с нормализацией дневного и ночного профиля кортизола [13]. Результаты значительны в свете обширных исследований, показывающих, что недостаток сна оказывает стрессовое воздействие на организм и приводит ко многим пагубным последствиям для здоровья. Недостаток сна часто является следствием боли. Следовательно, уменьшение боли может быть одной из причин только что описанных преимуществ.

    Уменьшение боли во время сна было подтверждено в контролируемом исследовании DOMS.Заземление — первое известное вмешательство, ускоряющее восстановление после DOMS [21]. Болезненные состояния часто являются результатом различных видов острых или хронических воспалительных состояний, частично вызванных АФК, генерируемыми нормальным метаболизмом, а также иммунной системой как частью реакции на травму или травму. Воспаление может вызвать боль и потерю подвижности в суставах. Воспалительный отек может оказывать давление на болевые рецепторы (ноцирецепторы) и нарушать микроциркуляцию, что приводит к ишемической боли.Воспаление может вызвать выброс токсичных молекул, которые также активируют болевые рецепторы. Современные биомедицинские исследования также документально подтвердили тесную связь между хроническим воспалением и практически всеми хроническими заболеваниями, включая болезни старения, и сам процесс старения. Резкий рост воспалительных заболеваний недавно был назван «воспалительным старением» для описания прогрессирующего воспалительного статуса и потери способности справляться со стрессом как основных компонентов процесса старения [32].

    Уменьшение воспаления в результате заземления было зарегистрировано с помощью инфракрасной медицинской визуализации [28], а также с помощью измерений химического состава крови и количества лейкоцитов [21]. Логическое объяснение противовоспалительных эффектов заключается в том, что заземление тела позволяет отрицательно заряженным антиоксидантным электронам с Земли проникать в организм и нейтрализовать положительно заряженные свободные радикалы в очагах воспаления [28]. Документально подтвержден поток электронов от Земли к телу [15].

    Пилотное исследование электродинамики эритроцитов (дзета-потенциал) показало, что заземление значительно снижает вязкость крови, важный, но игнорируемый параметр при сердечно-сосудистых заболеваниях, диабете [29] и кровообращении в целом. Таким образом, разжижение крови может способствовать доставке большего количества кислорода к тканям и дополнительно способствовать уменьшению воспаления.

    Снижение стресса подтверждено различными измерениями, показывающими быстрые сдвиги в ВНС от симпатического к парасимпатическому преобладанию, улучшение вариабельности сердечного ритма и нормализацию мышечного напряжения [19, 20, 27].

    Здесь не приводится множество наблюдений Обера и др. За более чем два десятилетия. [12] и K. Sokal и P. Sokal [11], указывающие на то, что регулярное заземление может улучшить кровяное давление, сердечно-сосудистые аритмии и аутоиммунные состояния, такие как волчанка, рассеянный склероз и ревматоидный артрит. Некоторые эффекты заземления на лекарства описаны Ober et al. [12] и на сайте: http://www.earthinginstitute.net/. Например, комбинация заземления и кумадина может оказывать комплексный разжижающий кровь эффект и должна контролироваться врачом.Сообщалось о нескольких случаях повышенного МНО. МНО (международное нормализованное отношение) — широко используемый метод измерения коагуляции. Влияние заземления на функцию щитовидной железы и прием лекарств было описано ранее.

    С практической точки зрения, врачи могут рекомендовать пациентам «занятия босиком» на открытом воздухе, если позволяют погода и условия. Обер и др. [12] заметили, что ходьба босиком всего 30-40 минут в день может значительно уменьшить боль и стресс, и исследования, обобщенные здесь, объясняют, почему это так.Очевидно, что заземление босиком не требует затрат. Однако использование токопроводящих систем во время сна, работы или отдыха в помещении предлагает более удобный и рутинный подход.

    4. Заключение

    De Flora et al. написал следующее: «С конца 20-го века хронические дегенеративные заболевания преодолели инфекционные заболевания как основные причины смерти в 21-м веке, поэтому увеличение продолжительности жизни человека будет зависеть от поиска вмешательства, которое подавляет развитие этих заболеваний и замедляет их развитие. их прогресс »[33].

    Может ли такое вмешательство быть расположено прямо у нас под ногами? Исследования, наблюдения и связанные с ними теории, связанные с заземлением, открывают интригующую возможность относительно поверхностных электронов Земли как неиспользованного ресурса здоровья — Земли как «глобального лечебного стола». Новые данные показывают, что контакт с Землей — будь то на улице босиком или в помещении с подключением к заземленным проводящим системам — может быть простой, естественной и в то же время чрезвычайно эффективной экологической стратегией против хронического стресса, дисфункции ВНС, воспаления, боли, плохого сна, нарушения ВСР. , гиперкоагулируемая кровь и многие общие расстройства здоровья, включая сердечно-сосудистые заболевания.Исследования, проведенные на сегодняшний день, подтверждают концепцию, согласно которой заземление человеческого тела может быть важным элементом в уравнении здоровья наряду с солнечным светом, чистым воздухом и водой, питательной пищей и физической активностью.

    Раскрытие информации

    Г. Шевалье, С. Т. Синатра и Дж. Л. Ошман являются независимыми подрядчиками Earthx L. Inc., компании, спонсирующей исследования в области заземления, и владеют небольшим процентом акций компании.

    Ссылки

    1. Уильямс Э., Хекман С.Локальный суточный ход электризации облаков и глобальный суточный ход отрицательного заряда на Земле. Журнал геофизических исследований . 1993. 98 (3): 5221–5234. [Google Scholar] 2. Анисимов С., Мареев Э., Бакастов С. О возникновении и эволюции аэроэлектрических структур в поверхностном слое. Журнал геофизических исследований D . 1999. 104 (12): 14359–14367. [Google Scholar] 3. Oschman JL. Перспектива: предположим, что сферическая корова: роль свободных или мобильных электронов в работе с телом, энергетической и двигательной терапии. Журнал работы с телом и двигательной терапии . 2008. 12 (1): 40–57. [PubMed] [Google Scholar] 4. Oschman JL. Перенос заряда в живой матрице. Журнал работы с телом и двигательной терапии . 2009. 13 (3): 215–228. [PubMed] [Google Scholar] 5. Холидей Д., Резник Р., Уокер Дж. Основы физики, четвертое издание . Нью-Йорк, Нью-Йорк, США: John Wiley & Sons; 1993. [Google Scholar] 6. Росси В. Сексуальная жизнь стопы и обуви . Vol. 61. Хартфордшир, Великобритания: Издания Вордсворта; 1989 г.[Google Scholar] 7. Stein R. Разрушает ли современная жизнь нашу иммунную систему? Вашингтон Пост; 2008. [Google Scholar] 8. Просто A. Возвращение к природе: истинный естественный метод исцеления и жизни и истинное спасение души . Нью-Йорк, Нью-Йорк, США: Б. Похоть; 1903. [Google Scholar] 9. Уайт Г. Более тонкие силы природы в диагностике и терапии . Лос-Анджелес, Калифорния, США: типография Phillips Printing Company; 1929. [Google Scholar] 11. Сокал К., Сокал П. Заземление человеческого тела влияет на физиологические процессы. Журнал альтернативной и дополнительной медицины . 2011. 17 (4): 301–308. [Бесплатная статья PMC] [PubMed] [Google Scholar] 12. Обер С., Синатра С.Т., Цукер М. Заземление: самое важное открытие в области здравоохранения? Лагуна-Бич, Калифорния, США: Основные публикации в области здравоохранения; 2010. [Google Scholar] 13. Гали М., Теплиц Д. Биологические эффекты заземления человеческого тела во время сна, измеренные по уровням кортизола и субъективным отчетам о сне, боли и стрессе. Журнал альтернативной и дополнительной медицины .2004. 10 (5): 767–776. [PubMed] [Google Scholar] 15. Applewhite R. Эффективность токопроводящей накладки и токопроводящей подушки в снижении наведенного напряжения человеческого тела за счет заземления. Европейская биология и биоэлектромагнетизм . 2005; 1: 23–40. [Google Scholar] 16. Фейнман Р., Лейтон Р., Сэндс М. Лекции Фейнмана по физике . II. Бостон, Массачусетс, США: Аддисон-Уэсли; 1963. [Google Scholar] 17. Джеймисон KS, ApSimon HM, Джеймисон SS, Белл JNB, Йост MG. Влияние электрических полей на заряженные молекулы и частицы в отдельных микросредах. Атмосферная среда . 2007. 41 (25): 5224–5235. [Google Scholar] 18. Genuis SJ. Реализация актуальной идеи: изучение воздействия электромагнитного излучения на здоровье населения. Здравоохранение . 2008. 122 (2): 113–124. [PubMed] [Google Scholar] 19. Chevalier G, Mori K, Oschman JL. Влияние заземления на физиологию человека. Европейская биология и биоэлектромагнетизм . 2006. 2 (1): 600–621. [Google Scholar] 20. Chevalier G. Изменения частоты пульса, частоты дыхания, оксигенации крови, индекса перфузии, проводимости кожи и их изменчивость, вызванные во время и после заземления людей в течение 40 минут. Журнал альтернативной и дополнительной медицины . 2010; 16 (1): 1–7. [PubMed] [Google Scholar] 21. Браун Р., Шевалье Г., Хилл М. Пилотное исследование влияния заземления на болезненность мышц с отсроченным началом. Журнал альтернативной и дополнительной медицины . 2010. 16 (3): 265–273. [Бесплатная статья PMC] [PubMed] [Google Scholar] 22. Бобберт М.Ф., Холландер А.П., Хуйцзин ПА. Факторы отсроченной мышечной болезненности мужчины. Медицина и наука в спорте и физических упражнениях . 1986. 18 (1): 75–81.[PubMed] [Google Scholar] 23. Тартибиан Б., Малеки Б., Аббаси А. Влияние приема жирных кислот Омега-3 на воспринимаемую боль и внешние симптомы отсроченной мышечной болезненности у нетренированных мужчин. Клинический журнал спортивной медицины . 2009. 19 (2): 115–119. [PubMed] [Google Scholar] 24. Вэйл Дж, Халсон С., Гилл Н., Доусон Б. Влияние гидротерапии на признаки и симптомы отсроченной мышечной болезненности. Европейский журнал прикладной физиологии . 2008. 102 (4): 447–455. [PubMed] [Google Scholar] 25.Зайнуддин З., Ньютон М., Сакко П., Носака К. Влияние массажа на отсроченную болезненность мышц, отек и восстановление мышечной функции. Журнал спортивной подготовки . 2005. 40 (3): 174–180. [Бесплатная статья PMC] [PubMed] [Google Scholar] 26. Hübscher M, Vogt L, Bernhörster M, Rosenhagen A, Banzer W. Влияние иглоукалывания на симптомы и мышечную функцию при отсроченной мышечной болезненности. Журнал альтернативной и дополнительной медицины . 2008. 14 (8): 1011–1016. [PubMed] [Google Scholar] 27.Chevalier G, Sinatra S. Эмоциональный стресс, вариабельность сердечного ритма, заземление и улучшение вегетативного тонуса: клиническое применение. Интегративная медицина: журнал врача . 2011; 10 (3) [Google Scholar] 28. Oschman JL. Могут ли электроны действовать как антиоксиданты? Обзор и комментарии. Журнал альтернативной и дополнительной медицины . 2007. 13 (9): 955–967. [PubMed] [Google Scholar] 29. Шевалье Г., Синатра СТ, Ошман Дж. Л., Делани Р. М.. Заземление человеческого тела снижает вязкость крови — главный фактор сердечно-сосудистых заболеваний. Журнал альтернативной и дополнительной медицины . Под давлением. [Бесплатная статья PMC] [PubMed] [Google Scholar] 30. Адак С., Чоудхури С., Бхаттачарья М. Динамическое и электрокинетическое поведение мембраны эритроцитов при сахарном диабете и диабетических сердечно-сосудистых заболеваниях. Biochimica et Biophysica Acta . 2008. 1780 (2): 108–115. [PubMed] [Google Scholar] 31. Шахин М, Шателье А, Бабич О, Крупп Дж. Напряжение-управляемые натриевые каналы при неврологических расстройствах. ЦНС и неврологические расстройства — мишени для лекарств .2008. 7 (2): 144–158. [PubMed] [Google Scholar] 32. Франчески С., Бонафе М., Валенсин С. и др. Воспаление-старение: эволюционная перспектива старения иммунитета. Летопись Нью-Йоркской академии наук . 2000; 908: 244–254. [PubMed] [Google Scholar] 33. де Флора С., Квалья А., Бенничелли С., Верчелли М. Эпидемиологическая революция 20-го века. Журнал FASEB . 2005. 19 (8): 892–897. [PubMed] [Google Scholar]

    Влияние заземления на воспаление, иммунный ответ, заживление ран, а также профилактику и лечение хронических воспалительных и аутоиммунных заболеваний

    J Inflamm Res.2015; 8: 83–96.

    Джеймс Л. Ошман

    1 Nature’s Own Research Association, Dover, NH, USA

    Gaétan Chevalier

    2 Департамент биологии развития и клеточной биологии, Калифорнийский университет в Ирвине, Ирвин, Калифорния, США

    Ричард Браун

    3 Кафедра физиологии человека, Орегонский университет, Юджин, штат Орегон, США

    1 Nature’s Own Research Association, Довер, Нью-Хэмпшир, США

    2 Кафедра биологии развития и клеточной биологии, Калифорнийский университет в Ирвине, Ирвин, Калифорния, США

    3 Кафедра физиологии человека, Орегонский университет, Юджин, штат Орегон, США

    Для переписки: Гаэтан Шевалье, Департамент развития и клеточной биологии, Калифорнийский университет в Ирвине, 2103 Макго-Холл, Ирвин, Калифорния, 92697 -2300, США, тел. + 1760815 9271, факс +1858225 3514, электронная почта десять.labolgcbs @ cgobld Авторские права © 2015 Oschman et al. Эта работа опубликована Dove Medical Press Limited и находится под лицензией Creative Commons Attribution — Non Commercial (unported, v3.0) License. Полные условия лицензии доступны по адресу http://creativecommons.org/licenses/by-nc/3.0 / Некоммерческое использование работы разрешено без какого-либо дополнительного разрешения Dove Medical Press Limited при условии правильной атрибуции работы. Эта статья цитируется в других статьях PMC.

    Abstract

    Многопрофильные исследования показали, что токопроводящий контакт человеческого тела с поверхностью Земли (заземление или заземление) оказывает интригующее воздействие на физиологию и здоровье.Такие эффекты относятся к воспалению, иммунным ответам, заживлению ран, а также к профилактике и лечению хронических воспалительных и аутоиммунных заболеваний. Этот отчет преследует две цели: 1) проинформировать исследователей о том, что представляется новым подходом к изучению воспаления, и 2) предупредить исследователей о том, что продолжительность и степень (сопротивление заземлению) заземления экспериментальных животные — важный, но обычно упускаемый из виду фактор, который может повлиять на результаты исследований воспаления, заживления ран и туморогенеза.В частности, заземление организма вызывает измеримые различия в концентрациях лейкоцитов, цитокинов и других молекул, участвующих в воспалительной реакции. Мы представляем несколько гипотез для объяснения наблюдаемых эффектов, основанных на результатах текущих исследований и нашем понимании электронных аспектов физиологии клеток и тканей, клеточной биологии, биофизики и биохимии. Экспериментальное повреждение мышц, известное как мышечная болезненность с отсроченным началом, использовалось для мониторинга иммунного ответа в заземленных и необоснованных условиях.Заземление уменьшает боль и изменяет количество циркулирующих нейтрофилов и лимфоцитов, а также влияет на различные циркулирующие химические факторы, связанные с воспалением.

    Ключевые слова: хроническое воспаление, иммунная система, заживление ран, лейкоциты, макрофаги, аутоиммунные заболевания

    Введение

    Заземление означает прямой контакт кожи с поверхностью Земли, например, босиком или руками , или с различными системами заземления. Субъективные сообщения о том, что ходьба босиком по Земле укрепляет здоровье и дает чувство благополучия, можно найти в литературе и практиках различных культур со всего мира. 1 По разным причинам многие люди не хотят выходить на улицу босиком, если только они не отдыхают на пляже. Опыт и измерения показывают, что постоянный контакт с Землей приносит устойчивые выгоды. Доступны различные системы заземления, которые позволяют часто контактировать с Землей, например, во время сна, сидя за компьютером или прогулок на открытом воздухе. Это простые токопроводящие системы в виде листов, циновок, повязок на запястья или щиколотки, липких пластырей, которые можно использовать в доме или офисе, и обуви.Эти приложения подключаются к Земле через шнур, вставленный в заземленную розетку или прикрепленный к заземляющему стержню, помещенному в почву снаружи под окном. При использовании обуви в подошве обуви на подушечке стопы, под плюсневыми костями, в точке акупунктуры, известной как почка 1, размещается токопроводящая заглушка. С практической точки зрения эти методы предлагают удобный, рутинный и удобный в использовании. подход к заземлению или заземлению. Их также можно использовать в клинических ситуациях, как будет описано в разделе, озаглавленном «Краткое изложение результатов на сегодняшний день». 1

    Недавно группа из примерно десятка исследователей (включая авторов этой статьи) изучала физиологические эффекты заземления с различных точек зрения. По результатам этого исследования в рецензируемых журналах опубликовано более десятка исследований. Хотя в большинстве этих пилотных исследований было задействовано относительно небольшое количество субъектов, вместе взятых, исследование открыло новые и многообещающие рубежи в исследованиях воспалений с широкими последствиями для профилактики и общественного здравоохранения.Полученные данные заслуживают рассмотрения сообществом исследователей воспаления, у которого есть средства для проверки, опровержения или уточнения интерпретаций, которые мы сделали до сих пор.

    Заземление уменьшает или даже предотвращает основные признаки воспаления после травмы: покраснение, жар, отек, боль и потерю функции (и). Быстрое исчезновение болезненного хронического воспаления было подтверждено в 20 тематических исследованиях с использованием медицинских инфракрасных изображений (). 2 , 3

    Фотографические изображения, подтверждающие ускоренное улучшение 8-месячной незаживающей открытой раны, перенесенной 84-летней женщиной, страдающей диабетом.

    Примечания: ( A ) Показывает открытую рану и бледно-серый оттенок кожи. ( B ) Снимок, сделанный после недели процедур заземления, показывает заметный уровень заживления и улучшения кровообращения, на что указывает цвет кожи. ( C ) Снимок, сделанный после 2 недель лечения заземлением, показывает, что рана зажила, а цвет кожи значительно улучшился. Лечение состояло из ежедневного 30-минутного сеанса заземления с помощью пластыря с электродом, когда пациент сидел удобно.Причиной раны, прилегающей к левой щиколотке, стал плохо подогнанный ботинок. Через несколько часов после ношения ботинка образовался волдырь, который затем превратился в стойкую открытую рану. Пациент проходил различные процедуры в специализированном раневом центре без каких-либо улучшений. Визуализация сосудов нижних конечностей показала плохое кровообращение. При первом осмотре она слегка хромала и испытывала боль. После первых 30 минут воздействия заземления пациент сообщил о заметном уменьшении боли.По ее словам, после 1 недели ежедневного заземления ее уровень боли уменьшился примерно на 80%. В то время у нее не было никаких признаков хромоты. По прошествии 2 недель она сказала, что полностью избавилась от боли.

    Быстрое выздоровление после серьезной раны с минимальным отеком и покраснением, ожидаемым при такой серьезной травме.

    Примечания: Велосипедист получил травму на соревнованиях Тур де Франс — цепное колесо выбило ему ногу. ( A ) Пластыри заземления помещали выше и ниже раны как можно скорее после травмы.Фото любезно предоставлено доктором Джеффом Спенсером. ( B ) День 1 после травмы. ( C ) 2-е сутки после травмы. Покраснение, боль и припухлость были минимальными, и велосипедист смог продолжить гонку на следующий день после травмы. ( B и C ) Авторские права © 2014. Перепечатано с разрешения Basic Health Publications, Inc. Обер Калифорния, Синатра СТ, Цукер М. Заземление: самое важное открытие в области здравоохранения? 2-е изд. Лагуна-Бич: Основные публикации о здоровье; 2014 г. 1

    Уменьшение воспламенения с помощью заземления, документированное с помощью медицинского инфракрасного изображения.

    Примечания: Тепловизионные камеры регистрируют крошечные изменения температуры кожи для создания карты с цветовой кодировкой горячих областей, указывающих на воспаление. Панель A показывает уменьшение воспаления после сна в заземленном состоянии. Медицинское инфракрасное изображение показывает теплые и болезненные области (стрелки в верхней части панели A ). Сон на земле в течение 4 ночей разрешил боль, а горячие области охладились.Обратите внимание на значительное уменьшение воспаления и возврат к нормальной термической симметрии. На панели B показаны инфракрасные изображения 33-летней женщины, получившей гимнастическую травму в 15 лет. Пациентка долгое время страдала хронической болью в правом колене, отеком и нестабильностью и не могла стоять в течение длительного времени. Простые действия, такие как вождение, усиливали симптомы. Ей приходилось спать с подушкой между колен, чтобы уменьшить боль. Периодическое лечение и физиотерапия на протяжении многих лет приносили минимальное облегчение.17 ноября 2004 г. она обратилась с жалобой на значительную болезненность правого медиального колена и легкую хромоту. Верхние изображения на панели B были сделаны в положении ходьбы, чтобы показать внутреннюю часть обоих колен. Стрелка указывает на точное место боли у пациента и указывает на выраженное воспаление. Нижние изображения на панели B , сделанные через 30 минут после заземления электродной накладкой. Пациент сообщил о легком уменьшении боли. Обратите внимание на значительное уменьшение воспаления в области колен. После 6 дней заземления она сообщила об уменьшении боли на 50% и сказала, что теперь она может дольше стоять без боли и ей больше не нужно спать с подушкой между ног.После 4 недель лечения она почувствовала себя достаточно хорошо, чтобы играть в футбол, и впервые за 15 лет не почувствовала нестабильности и незначительной боли. К 12 неделям она сказала, что ее боль уменьшилась почти на 90% и отека не было. Впервые за много лет она научилась кататься на водных лыжах. Пациентка связалась с офисом после 6 месяцев лечения, чтобы сообщить, что она завершила полумарафон, о чем она даже не мечтала, что когда-либо сможет это сделать до лечения.

    Наша основная гипотеза заключается в том, что соединение тела с Землей позволяет свободным электронам с поверхности Земли распространяться по телу и внутрь тела, где они могут оказывать антиоксидантное действие.В частности, мы предполагаем, что мобильные электроны создают антиоксидантную микросреду вокруг области восстановления повреждений, замедляя или предотвращая появление реактивных форм кислорода (АФК), доставляемых окислительным взрывом, от причинения «побочного повреждения» здоровой ткани, а также предотвращения или уменьшения образования так — так называемая «воспалительная баррикада». Мы также предполагаем, что электроны с Земли могут предотвратить или устранить так называемое «тихое» или «тлеющее» воспаление. В случае подтверждения эти концепции могут помочь нам лучше понять и исследовать воспалительную реакцию и заживление ран, а также получить новую информацию о том, как иммунная система функционирует в условиях здоровья и болезней.

    Сводка результатов на сегодняшний день

    Заземление улучшает сон, нормализует ритм кортизола днем ​​и ночью, уменьшает боль, снижает стресс, переводит вегетативную нервную систему с симпатической на парасимпатическую активацию, увеличивает вариабельность сердечного ритма, ускоряет заживление ран и снизить вязкость крови. Резюме было опубликовано в журнале Journal of Environmental and Public Health . 4

    Влияние на сон

    В одном из первых опубликованных исследований заземления изучалось влияние заземления на сон и профили циркадного кортизола. 5 В исследовании приняли участие 12 человек, которые испытывали боль и проблемы со сном. Они спали заземленными в течение 8 недель, используя систему, показанную на рисунке. В течение этого периода их дневные профили кортизола нормализовались, и большинство испытуемых сообщили, что их сон улучшился, а уровень боли и стресса снизился.

    Заземленная система сна.

    Примечания: Заземленная система сна состоит из хлопкового полотна с вплетенными в него проводящими углеродными или серебряными нитями. Нити соединяются с проводом, который выходит из окна спальни или через стену к металлическому стержню, вставленному в землю рядом со здоровым растением.В качестве альтернативы его можно подключить к заземляющей клемме электрической розетки. Сон в этой системе соединяет тело с Землей. Люди, использующие эту систему, часто сообщают, что заземленный сон улучшает качество сна и уменьшает боли по разным причинам.

    Результаты эксперимента привели к следующим выводам: 1) заземление тела во время сна дает количественные изменения в суточных или циркадных уровнях секреции кортизола, которые, в свою очередь, 2) вызывают изменения сна, боли и стресса (тревога, депрессия, и раздражительность), согласно субъективным оценкам.Эффекты кортизола, описанные Ghaly и Teplitz 5 , особенно важны в свете недавних исследований, показывающих, что длительный хронический стресс приводит к устойчивости к глюкокортикоидным рецепторам. 6 Такая устойчивость приводит к неспособности подавлять воспалительные реакции, что может, таким образом, увеличивать риски различных хронических заболеваний. Этот эффект дополняет результаты, описанные в разделе «Влияние на боль и иммунный ответ».

    Воздействие на боль и иммунный ответ

    Пилотное исследование влияния заземления на боль и иммунного ответа на травму использовало мышечную болезненность с отсроченным началом (DOMS). 7 DOMS — это мышечная боль и скованность, которая возникает от нескольких часов до нескольких дней после напряженных и незнакомых упражнений. DOMS широко используется в качестве исследовательской модели физиологами, занимающимися физическими упражнениями и спортом. Болезненность DOMS вызвана временным повреждением мышц, вызванным эксцентрическими упражнениями. Фаза сокращения, которая происходит, когда мышца укорачивается, как при поднятии гантели, называется концентрической, тогда как фаза сокращения, когда мышца удлиняется, как при опускании гантели, называется эксцентрической.

    Восемь здоровых испытуемых выполнили незнакомое эксцентрическое упражнение, которое вызвало боль в икроножных мышцах. Для этого им предложили выполнить два подхода по 20 подъемов пальцев ног со штангой на плечах и подушечками стоп на деревянной доске размером 2 × 4 дюйма. 7

    Все субъекты ели стандартизированную пищу в одно и то же время дня и придерживались одного и того же цикла сна в течение 3 дней. Ежедневно в 17.40 у четырех испытуемых на икроножных мышцах и подошвах стоп были прикреплены проводящие заземляющие пластыри.Они отдыхали и спали на системах заземления, подобных показанной на рисунке. Они оставались на заземленных простынях, за исключением посещения туалета и приема пищи. В качестве контроля четыре субъекта следовали одному и тому же протоколу, за исключением того, что их пластыри и листы не заземлялись. Перед тренировкой и через 1, 2 и 3 дня после нее были проведены следующие измерения: уровни боли, магнитно-резонансная томография, спектроскопия, содержание кортизола в сыворотке и слюне, химический анализ крови и ферментов, а также количество клеток крови. 7

    Боль контролировалась двумя методами.Субъективный метод включал использование визуальной аналоговой шкалы утром и днем. Во второй половине дня на правую икроножную мышцу накладывали манжету для измерения кровяного давления и надували ее до уровня острого дискомфорта. Боль была задокументирована с точки зрения максимально допустимого давления. У заземленных испытуемых было меньше боли, о чем свидетельствует как аналоговая шкала болезненности (), так и их способность выдерживать более высокое давление манжеты для измерения кровяного давления (). 7

    Изменения в отчетах по визуальной аналоговой шкале боли после обеда.

    Изменение уровня боли после полудня (после полудня) с помощью манжеты для измерения кровяного давления.

    Отчет об обоснованном исследовании DOMS 7 содержит обзор литературы по изменениям химического состава крови и содержания форменных элементов (эритроцитов, лейкоцитов и тромбоцитов), ожидаемых после травмы. Иммунная система обнаруживает патогены и повреждение тканей и реагирует, инициируя каскад воспаления, отправляя нейтрофилы и лимфоциты в область. 8 12 Как и ожидалось, количество лейкоцитов увеличилось у незаземленных или контрольных субъектов.Количество лейкоцитов у заземленных субъектов неуклонно снижалось после травмы (). 7

    Сравнение количества лейкоцитов, сравнение предварительного и пост-теста для каждой группы.

    Предыдущие исследования показали увеличение нейтрофилов после травмы. 13 16 Это происходило как с заземленными, так и с незаземленными субъектами (), хотя количество нейтрофилов всегда было ниже у заземленных субъектов. 7

    Сравнение количества нейтрофилов до и после теста для каждой группы.

    Ожидается, что по мере увеличения количества нейтрофилов количество лимфоцитов будет уменьшаться. 17 19 В исследовании DOMS количество лимфоцитов у заземленных испытуемых всегда было ниже, чем у незаземленных (). 7

    Сравнение количества лимфоцитов до и после теста для каждой группы.

    Обычно нейтрофилы быстро проникают в поврежденную область 8 , 20 22 , чтобы разрушить поврежденные клетки и посылать сигналы через сеть цитокинов для регулирования процесса восстановления.Производство нейтрофилами АФК и активных форм азота (РНС) называется «окислительным взрывом». 21 В то время как АФК удаляют патогены и клеточный мусор, чтобы ткань могла регенерировать, АФК также могут повреждать здоровые клетки, прилегающие к области восстановления, вызывая так называемое побочное повреждение. Тот факт, что у заземленных субъектов было меньше циркулирующих нейтрофилов и лимфоцитов, может указывать на то, что первоначальное повреждение разрешилось быстрее, побочное повреждение уменьшилось, а процесс восстановления ускорился.Это могло бы объяснить уменьшение основных признаков воспаления (покраснение, жар, отек, боль и потеря функции) после острой травмы, как задокументировано, например, в и, а также быстрое уменьшение хронического воспаления, задокументированное в.

    Наша рабочая гипотеза включает следующий сценарий: подвижные электроны Земли проникают в организм и действуют как естественные антиоксиданты; 3 они частично проходят через матрикс соединительной ткани, в том числе через воспалительную преграду, если таковая имеется; 23 нейтрализуют АФК и другие окислители при ремонте; и они защищают здоровые ткани от повреждений.Тот факт, что у заземленных субъектов меньше циркулирующих нейтрофилов и лимфоцитов, может быть полезным из-за вредной роли, которую, как считается, эти клетки играют в продлении воспаления. 24 Мы также поднимаем вероятность того, что воспалительная баррикада на самом деле формируется у необоснованных субъектов в результате сопутствующего повреждения здоровых тканей, как предполагал Селье в первом и последующих изданиях его книги The Stress of Life (). 25

    Формирование воспалительной баррикады.

    Примечания: Copyright © 1984, Селье Х. Воспроизведено из Селье Х. Стресс жизни . Пересмотренное изд. Нью-Йорк: McGraw-Hill Companies, Inc .; 1984. 25 ( A ) Нормальная соединительнотканная территория. ( B ) Та же ткань после травмы или воздействия раздражителя. Сосуд расширяется, клетки крови мигрируют к раздражителю, клетки соединительной ткани и волокна образуют толстую непроницаемую преграду, которая предотвращает распространение раздражителя в кровь, но также препятствует проникновению регенеративных клеток, которые могут восстанавливать ткань и замедлять проникновение антиоксидантов в нее. поле ремонта.Результатом может стать длительный очаг не полностью разрешенного воспаления, из которого в конечном итоге могут просачиваться токсины в систему и нарушаться функционирование органа или ткани. Это называется «тихим» или «тлеющим» воспалением. ( C ) Воспалительный мешок, мешочек Селье или гранулема, как первоначально описано Selye, 30 , широко используется в исследованиях воспаления.

    Хотя могут быть и другие объяснения, мы предполагаем, что быстрое разрешение воспаления происходит потому, что поверхность Земли является обильным источником возбужденных и подвижных электронов, как описано в другой нашей работе. 1 Мы также предполагаем, что контакт кожи с поверхностью Земли позволяет электронам Земли распространяться по поверхности кожи в тело. Один из путей внутрь тела может лежать через точки акупунктуры и меридианы. Известно, что меридианы представляют собой пути с низким сопротивлением для прохождения электрических токов. 26 28 Другой путь — через слизистые оболочки дыхательных и пищеварительных трактов, которые проходят через поверхность кожи. Сокал и Сокал 29 обнаружили, что электрический потенциал на теле, на слизистой оболочке языка и в венозной крови быстро падает примерно до -200 мВ.Когда тело отключено от Земли, потенциал быстро восстанавливается. Эти эффекты показывают изменения во внутренней электрической среде внутри тела. 29

    Селье 30 исследовали гистологию стенки воспалительного мешка или баррикады (). Он состоит из фибрина и соединительной ткани. Наша гипотеза состоит в том, что электроны могут частично проходить через барьер и затем нейтрализовать активные формы кислорода (свободные радикалы). 30 Путь или коридор полупроводникового коллагена может объяснить, как электроны с Земли быстро ослабляют хроническое воспаление, не устраняемое диетическими антиоксидантами или стандартной медицинской помощью, включая физиотерапию ().Баррикада, вероятно, ограничивает проникновение циркулирующих антиоксидантов в ремонт.

    В совокупности эти наблюдения показывают, что заземление человеческого тела значительно изменяет воспалительную реакцию на травму.

    Анатомические и биофизические аспекты

    Представление о том, что воспалительная баррикада образуется из побочного повреждения здоровых тканей, окружающих место повреждения, подтверждается классическими исследованиями Селье, опубликованными вместе с его описанием гранулемы или мешочка Селье (). 25 , 30 Более того, исследования в области клеточной биологии и биофизики показывают, что человеческое тело оснащено коллагеновой, жидкокристаллической полупроводниковой сетью, известной как живая матрица, 31 или, другими словами, a система наземной регуляции 32 , 33 или матричная система тканевого тенсегрити (). 34 Эта сеть, охватывающая все тело, может доставлять подвижные электроны к любой части тела и, таким образом, регулярно защищать все клетки, ткани и органы от окислительного стресса или в случае травм. 23 , 31 Живая матрица включает внеклеточные и соединительнотканные матрицы, а также цитоскелеты всех клеток. 31 Считается, что интегрины на поверхности клеток обеспечивают полупроводимость электронов внутрь клетки, а связи через ядерную оболочку позволяют ядерной матрице и генетическому материалу быть частью схемы. 23 Наша гипотеза состоит в том, что эта электронная схема, охватывающая все тело, представляет собой первичную систему антиоксидантной защиты.Эта гипотеза является центральным пунктом данного отчета.

    Живая матрица, система регуляции почвы или матрица тенсегритичности тканей — это непрерывная волокнистая паутина или сеть, которая проникает в каждую часть тела. Внеклеточные компоненты этой сети состоят в основном из коллагена и основного вещества. Это самая большая система в организме, так как это единственная система, которая затрагивает все остальные системы.

    Внеклеточная часть матричной системы состоит в основном из коллагена и основных веществ (и).Цитоскелет состоит из микротрубочек, микрофиламентов и других волокнистых белков. Ядерный матрикс содержит другую белковую ткань, состоящую из гистонов и родственных материалов.

    Коллаген и основное вещество.

    Примечания: (A) Коллаген, основной белок внеклеточного матрикса соединительной ткани, представляет собой тройную спираль с гидратной оболочкой, окружающей каждую полипептидную цепь. Белок может переносить электроны посредством полупроводников, а протоны (H + ) и гидроксилы (OH ) мигрируют через гидратную оболочку.Эти движения зарядов могут быть очень быстрыми и жизненно важны. ( B ) Авторские права © 2005. R Paul Lee Воспроизведено с разрешения Lee RP. Интерфейс. Механизмы духа в остеопатии. Портленд, Орегон: Stillness Press; 2005. 67 Основное вещество — это сильно заряженный полиэлектролитный гель, огромный резервуар электронов. Обратите внимание на фибриллы коллагена, встроенные в единицы основного вещества, известные как матрисомы (термин, введенный Гейне). 33 Деталь матрицы справа ( b ) показывает огромные запасы электронов.Электроны из основного вещества могут мигрировать через сеть коллагена в любую точку тела. Мы предполагаем, что они могут поддерживать антиоксидантную микросреду вокруг области заживления травм, замедляя или препятствуя реактивным формам кислорода, доставляемым окислительным взрывом, вызывать побочное повреждение здоровой ткани, а также предотвращать или уменьшать образование так называемой «воспалительной баррикады». ».

    Не принято считать, что коллаген и другие структурные белки являются полупроводниками.Эта концепция была представлена ​​Альбертом Сент-Дьёрдьи на лекции в память о Корани в Будапеште, Венгрия, в 1941 году. Его доклад был опубликован в журналах Science (На пути к новой биохимии?) 35 и Nature (Исследование уровней энергии) в биохимии). 36 Идея о том, что белки могут быть полупроводниками, была немедленно и решительно отвергнута биохимиками. Многие современные ученые продолжают отвергать полупроводимость в белках, потому что живые системы имеют только следовые количества силикона, германия и соединений галлия, которые являются наиболее широко используемыми материалами в электронных полупроводниковых устройствах.Однако существует множество способов изготовления органических полупроводников без использования металлов. Одним из источников путаницы было широко распространенное мнение, что вода — это просто наполнитель. Теперь мы знаем, что вода играет решающую роль в ферментативной активности и полупроводимости. Гидратированные белки на самом деле являются полупроводниками и стали важными компонентами мировой индустрии микроэлектроники. Для некоторых приложений предпочтительнее использовать органические микросхемы, поскольку они могут быть очень маленькими, самосборными, прочными и с низким энергопотреблением. 37 , 38

    Один из лидеров в области молекулярной электроники, NS Hush, поблагодарил Альберта Сент-Дьёрдьи и Роберта С. Малликена за предоставление двух концепций, фундаментальных для промышленных приложений: теории биологической полу- проводимость и теория молекулярных орбиталей соответственно. 39 В недавних исследованиях, получивших награды Общества исследования материалов в Европе и США, ученые из Израиля создали гибкие биоразлагаемые полупроводниковые системы, используя белки из крови, молока и слизи человека. 40 Кремний, наиболее широко используемый полупроводниковый материал, является дорогостоящим в чистом виде, необходимым для производства полупроводников, негибким и экологически опасным. Предполагается, что органические полупроводники приведут к появлению новой линейки гибких и биоразлагаемых компьютерных экранов, сотовых телефонов, планшетов, биосенсоров и микропроцессорных чипов. Мы прошли долгий путь с тех времен, когда полупроводимость в белках так решительно отвергалась. 41 , 42 , 43

    Молекулы полиэлектролита основного вещества, связанные с матрицей коллагеновой соединительной ткани, являются резервуарами заряда ().Таким образом, матрица представляет собой обширную окислительно-восстановительную систему всего тела. Гликозаминогликаны имеют высокую плотность отрицательных зарядов из-за сульфатных и карбоксилатных групп на остатках уроновой кислоты. Таким образом, матрица представляет собой систему, охватывающую все тело, способную поглощать и отдавать электроны везде, где они необходимы для поддержания иммунного функционирования. 44 Внутренние части клеток, включая ядерный матрикс и ДНК, являются частями этой биофизической электрической системы хранения и доставки. Продолжительность воздействия заземления на восстановление травм можно оценить по-разному.Во-первых, из медицинских инфракрасных изображений мы знаем, что воспаление начинает спадать в течение 30 минут после соединения с землей через проводящий участок, помещенный на кожу. 2 , 3 Во-вторых, в этот же период увеличивается метаболическая активность. В частности, наблюдается увеличение потребления кислорода, частоты пульса и дыхания, а также снижение оксигенации крови в течение 40 минут заземления. 45 Мы подозреваем, что «заполнение» резервуаров с зарядом происходит постепенно, возможно, из-за огромного количества заряженных остатков в полиэлектролитах и ​​из-за того, что они расположены по всему телу.Когда резервуары с зарядом насыщены, организм находится в состоянии, которое мы называем «подготовленностью к воспалительным процессам». Это означает, что основное вещество, которое пронизывает все части тела, готово быстро доставить антиоксидантные электроны к любому месту повреждения через полупроводниковую коллагеновую матрицу (см.).

    Резюме центральной гипотезы этого отчета: сравнение иммунного ответа у необоснованного и заземленного человека.

    Примечания: ( A ) После травмы незаземленный человек (мистер Туфель) образует воспалительную преграду вокруг места травмы.( B ) После травмы заземленный человек (г-н Бэрфут) не образует воспалительную преграду, потому что активные формы кислорода, которые могут повредить близлежащие здоровые ткани (побочное повреждение), немедленно нейтрализуются электронами, полупроводниками из насыщенного электронами основного вещества. через коллагеновую сеть.

    Эти соображения также подразумевают антивозрастные эффекты заземления, поскольку доминирующая теория старения подчеркивает кумулятивный ущерб, вызванный АФК, вырабатываемым во время нормального метаболизма или производимым в ответ на загрязняющие вещества, яды или травмы. 46 Мы предполагаем антивозрастной эффект заземления, основанный на том, что живая матрица достигает каждой части тела и способна доставлять антиоксидантные электроны к участкам, где целостность ткани может быть нарушена реактивными окислителями из любого источника. 47 , 48

    Молекулы, образующиеся во время иммунного ответа, также отслеживались в исследовании DOMS. 7 Параметры, которые постоянно различались на 10% или более между заземленными и незаземленными субъектами, нормализованные до исходного уровня, включали креатинкиназу, соотношение фосфокреатин / неорганический фосфат, билирубин, фосфорилхолин и глицеролфосфорилхолин.Билирубин — природный антиоксидант, который помогает контролировать АФК. 49 53 В то время как уровни билирубина снизились как в заземленных, так и в необоснованных группах, разница между испытуемыми была большой (). 7

    Сравнение уровней билирубина до и после теста для каждой группы.

    Маркеры воспаления менялись одновременно с изменением показателей боли. Это было выявлено как с помощью визуальной аналоговой шкалы боли, так и путем измерения давления на правой икроножной мышце (и).Авторы исследования DOMS предположили, что билирубин мог использоваться в качестве источника электронов у незаземленных субъектов. 7 Возможно, меньшее снижение уровня циркулирующего билирубина у заземленных людей было связано с наличием в поле восстановления свободных электронов с Земли.

    Другие маркеры подтверждают гипотезу о том, что заземленные субъекты более эффективно устраняют повреждение тканей: показатели боли, соотношение неорганического фосфата и фосфокреатина (Pi / PCr) и креатинкиназа (CK).Повреждение мышц широко коррелировали с КК. 54 56 Как видно, значения CK у необоснованных испытуемых были постоянно выше, чем у заземленных испытуемых. 7 Различия между Pi / PCr двух групп контролировали с помощью магнитно-резонансной спектроскопии. Эти соотношения указывают на скорость метаболизма и повреждение клеток. 57 60 Уровни неорганических фосфатов указывают на гидролиз PCr и аденозинтрифосфата.Незаземленные субъекты имели более высокие уровни Pi, в то время как заземленные субъекты демонстрировали более высокие уровни PCr. Эти результаты показывают, что митохондрии заземленных субъектов не производят столько метаболической энергии, вероятно, потому, что потребность в ней меньше из-за более быстрого достижения гомеостаза. Различия между группами показаны в.

    Уровни креатинкиназы до и после теста для каждой группы.

    Отношения неорганического фосфата / фосфокреатина (Pi / PCr) до и после теста для каждой группы.

    Пилотное исследование 7 о влиянии заземления на ускорение выздоровления от боли DOMS обеспечивает хорошую основу для более крупного исследования. Представленные здесь концепции резюмируются в виде сравнения между «мистером Ботинсом» (необоснованный человек) и «мистером Бэрфут» (обоснованным лицом).

    Обсуждение

    Текущие объемные исследования коррелируют воспаление с широким спектром хронических заболеваний. Поиск по запросу «воспаление» в базе данных Национальной медицинской библиотеки (PubMed) выявил более 400 000 исследований, из которых только в 2013 году было опубликовано более 34 000 исследований.Наиболее частой причиной смерти и инвалидности в США являются хронические заболевания. Семьдесят пять процентов национальных расходов на здравоохранение, которые в 2008 году превысили 2,3 триллиона долларов США, идут на лечение хронических заболеваний. Болезни сердца, рак, инсульт, хроническая обструктивная болезнь легких, остеопороз и диабет являются наиболее распространенными и дорогостоящими хроническими заболеваниями. 61 Другие включают астму, болезнь Альцгеймера, расстройства кишечника, цирроз печени, муковисцидоз, рассеянный склероз, артрит, волчанку, менингит и псориаз.Десять процентов всех долларов здравоохранения тратятся на лечение диабета. Остеопороз поражает около 28 миллионов стареющих американцев. 61 , 62 Однако существует несколько теорий о механизмах, связывающих хроническое воспаление с хроническим заболеванием. Обобщенные здесь исследования заземления представляют собой логичную и поддающуюся проверке теорию, основанную на различных доказательствах.

    Описание иммунного ответа в учебнике описывает, как большие или маленькие повреждения заставляют нейтрофилы и другие лейкоциты доставлять большое количество ROS и RNS для разрушения патогенов и поврежденных клеток и тканей.Классические описания в учебниках также относятся к «воспалительной баррикаде», которая изолирует поврежденные ткани, чтобы препятствовать перемещению патогенов и мусора из поврежденной области в соседние здоровые ткани. Селье описал, как мусор коагулирует, образуя воспалительную баррикаду (). Этот барьер также препятствует перемещению антиоксидантов и регенеративных клеток в заблокированную зону. Восстановление может быть неполным, и это неполное восстановление может создать порочный воспалительный цикл, который может сохраняться в течение длительного периода времени, что приводит к так называемому тихому или тлеющему воспалению, которое, в свою очередь, со временем может способствовать развитию хронического заболевания.

    Каким бы примечательным это ни казалось, наши открытия предполагают, что эта классическая картина воспалительной баррикады может быть следствием отсутствия заземления и, как следствие, «недостатка электронов». Раны заживают по-разному, когда тело заземлено (и). Заживление происходит намного быстрее, а основные признаки воспаления уменьшаются или устраняются. Профили различных воспалительных маркеров с течением времени сильно различаются у здоровых людей.

    Те, кто исследует воспаление и заживление ран, должны знать, как заземление может изменить временной ход воспалительных реакций.Им также необходимо знать, что экспериментальные животные, которых они используют для своих исследований, могут иметь очень разные иммунные системы и реакции, в зависимости от того, были ли они выращены в заземленных или незаземленных клетках. Стандартная исследовательская практика состоит в том, чтобы исследователи тщательно описывали свои методы и вид животных, которых они используют, чтобы другие могли повторить исследования, если захотят. Предполагается, что все крысы линии Вистар, например, будут генетически и физиологически похожи. Однако сравнение новообразований у крыс Sprague-Dawley (первоначально аутбредных от крысы Wistar) из разных источников выявило весьма значимые различия в частоте эндокринных опухолей и опухолей молочной железы.Частота опухолей мозгового вещества надпочечников также варьировала у крыс от одних и тех же поставщиков, выращенных в разных лабораториях. Авторы «подчеркнули необходимость крайней осторожности при оценке исследований канцерогенности, проводимых в разных лабораториях и / или на крысах из разных источников». 63

    С нашей точки зрения, в этих вариациях нет ничего удивительного. Животные будут сильно различаться по степени насыщения их зарядовых резервуаров электронами. Их клетки сделаны из металла, и если да, то заземлен ли этот металл? Насколько близко их клетки находятся к проводам или трубопроводам, по которым проходит электричество 60/50 Гц? Согласно нашим исследованиям, эти факторы будут иметь измеримое влияние на иммунные реакции.Фактически, они представляют собой «скрытую переменную», которая могла повлиять на результаты бесчисленных исследований, а также могла повлиять на способность других исследователей воспроизвести конкретное исследование.

    Доминирующие факторы образа жизни, такие как изоляционная обувь, высотные здания и возвышающиеся кровати, отделяют большинство людей от прямой связи кожи с поверхностью Земли. Связь с землей была повседневной реальностью в прошлых культурах, которые использовали шкуры животных для обуви и сна. Мы предполагаем, что процесс уничтожения патогенов и очистки участков повреждений с помощью ROS и RNS эволюционировал, чтобы воспользоваться преимуществом постоянного доступа организма к практически безграничному источнику мобильных электронов, который Земля обеспечивает, когда мы находимся в контакте с ней.Антиоксиданты являются донорами электронов, и мы твердо верим, что лучший донор электронов находится прямо у нас под ногами: поверхность Земли с ее практически неограниченным хранилищем доступных электронов. Электроны с Земли на самом деле могут быть лучшими антиоксидантами с нулевыми отрицательными вторичными эффектами, потому что наше тело эволюционировало, чтобы использовать их в течение эонов физического контакта с землей. Наша иммунная система прекрасно работает до тех пор, пока доступны электроны для уравновешивания АФК и активных форм азота (РНС), используемых при борьбе с инфекциями и повреждениями тканей.Наш современный образ жизни застал организм и иммунную систему врасплох, внезапно лишив их изначального источника электронов. Это планетарное разделение стало ускоряться в начале 1950-х годов с появлением обуви с изоляционной подошвой вместо традиционной кожи. Вызовы образа жизни для нашей иммунной системы происходили быстрее, чем могла приспособиться эволюция.

    Отключение от Земли может быть важным, коварным и упускаемым из виду вкладом в физиологическую дисфункцию и вызывающий тревогу глобальный рост неинфекционных хронических заболеваний, связанных с воспалительными процессами.Недостаток электронов также может привести к ненасыщению цепей переноса электронов в митохондриях, что приведет к хронической усталости и замедлению клеточных миграций и других важных действий клеток иммунной системы. 64 На этом этапе даже небольшая травма может привести к долгосрочным проблемам со здоровьем. Когда подвижные электроны недоступны, воспалительный процесс принимает ненормальное течение. Области с дефицитом электронов уязвимы для дальнейшего повреждения — они становятся положительно заряженными, и им будет сложно предотвратить инфекции.В результате иммунная система постоянно активируется и в конечном итоге истощается. Клетки иммунной системы могут не различать различные химические структуры организма (называемые «я») и молекулы паразитов, бактерий, грибков и раковых клеток (называемые «чужими»). Эта потеря иммунологической памяти может привести к атаке некоторых иммунных клеток на собственные ткани и органы тела. Примером может служить разрушение продуцирующих инсулин бета-клеток островков Лангерганса у больного диабетом.Другой пример — иммунная система, атакующая хрящи в суставах, вызывая ревматоидный артрит. Красная волчанка — это крайний пример аутоиммунного состояния, вызванного атакой иммунной системы организма на ткани и органы хозяина. Волчанка, например, может поражать множество различных систем организма, включая кожу, почки, клетки крови, суставы, сердце и легкие. Со временем иммунная система ослабевает, и человек становится более уязвимым для воспалений или инфекций, которые могут не зажить, как это часто бывает с ранами пациентов с диабетом.В частности, какая часть или части тела ослабленная иммунная система атакует первой, зависит от многих факторов, таких как генетика, привычки (сон, еда, напитки, упражнения и т. Д.), А также токсины в организме и в окружающей среде. 65 , 66 Повторное наблюдение показывает, что заземление уменьшает боль у пациентов с волчанкой и другими аутоиммунными заболеваниями. 1

    Заключение

    Накопленный опыт и исследования по заземлению указывают на появление простой, естественной и доступной стратегии здравоохранения против хронического воспаления, требующей серьезного внимания со стороны клиницистов и исследователей.Живая матрица (или наземная регуляция, или система тканевого тенсегрити-матрица), сама ткань тела, по-видимому, служит одной из наших основных систем антиоксидантной защиты. Как поясняется в этом отчете, для оптимальной эффективности этой системы требуется периодическая подзарядка за счет проводящего контакта с поверхностью Земли — «батареи» для всей планетарной жизни.

    Благодарности

    Авторы признательны Мартину Цукеру за очень ценные комментарии к рукописи. Клинтон Обер из EarthFx Inc.обеспечивает постоянную поддержку и поощрение исследований, которые были проведены для изучения науки о заземлении, с особым вниманием к иммунной системе.

    Сноски

    Раскрытие информации

    G Chevalier и JL Oschman являются независимыми подрядчиками EarthFx Inc., компании, спонсирующей исследования в области заземления, и владеют небольшой долей акций компании. Ричард Браун — независимый подрядчик EarthFx Inc., компании, спонсирующей исследования в области заземления.Авторы не сообщают о других конфликтах интересов.

    Ссылки

    1. Обер Калифорния, Синатра СТ, Цукер М. Заземление: самое важное открытие в области здравоохранения? 2-й. Лагуна-Бич: Основные публикации о здоровье; 2014. [Google Scholar] 3. Oschman JL. Могут ли электроны действовать как антиоксиданты? Обзор и комментарии. J Altern Complement Med. 2007. 13: 955–967. [PubMed] [Google Scholar] 4. Chevalier G, Sinatra ST, Oschman JL, Sokal K, Sokal P. Обзорная статья: Заземление: последствия для здоровья повторного соединения человеческого тела с электронами на поверхности Земли.J Environ Public Health. 2012; 2012: 291541. [Бесплатная статья PMC] [PubMed] [Google Scholar] 5. Гали М., Теплиц Д. Биологические эффекты заземления человеческого тела во время сна, измеренные по уровням кортизола и субъективным отчетам о сне, боли и стрессе. J Altern Complement Med. 2004. 10 (5): 767–776. [PubMed] [Google Scholar] 6. Коэн С., Яницки-Девертс Д., Дойл В. Дж. И др. Хронический стресс, резистентность к рецепторам глюкокортикоидов, воспаление и риск заболеваний. Proc Natl Acad Sci U S. A. 2012; 109 (16): 5995–5999.[Бесплатная статья PMC] [PubMed] [Google Scholar] 7. Браун Д., Шевалье Г., Хилл М. Пилотное исследование влияния заземления на болезненность мышц с отсроченным началом. J Altern Complement Med. 2010. 16 (3): 265–273. [Бесплатная статья PMC] [PubMed] [Google Scholar] 8. Баттерфилд ТА, Лучшая ТМ, Меррик Массачусетс. Двойная роль нейтрофилов и макрофагов в воспалении: критический баланс между повреждением и восстановлением тканей. J Athl Train. 2006. 41 (4): 457–465. [Бесплатная статья PMC] [PubMed] [Google Scholar] 9. Такмакидис С.П., Коккинидис Е.А., Симилиос И., Дуда Х.Влияние ибупрофена на отсроченную болезненность мышц и мышечную работоспособность после эксцентрических упражнений. J Strength Cond Res. 2003. 17 (1): 53–59. [PubMed] [Google Scholar] 10. Закройте Г.Л., Эштон Т., Кейбл Т., Доран Д., Макларен Д.П. Эксцентрические упражнения, изокинетический мышечный момент и отсроченное начало болезненности мышц: роль активных форм кислорода. Eur J Appl Physiol. 2004. 91 (5–6): 615–621. [PubMed] [Google Scholar] 11. Макинтайр Д.Л., Рид В.Д., Листер Д.М., Сас И.Дж., Маккензи, округ Колумбия. Наличие лейкоцитов, снижение силы и отсроченная болезненность в мышцах после эксцентрических упражнений.J. Appl Physiol (1985) 1996; 80 (3): 1006–1013. [PubMed] [Google Scholar] 12. Франклин М.Э., Карриер Д., Франклин Р.С. Влияние одной тренировки мышечной болезненности, вызывающей подъем тяжестей, на количество лейкоцитов, креатинкиназу сыворотки и объем плазмы. J Orthop Sports Phys Ther. 1991. 13 (6): 316–321. [PubMed] [Google Scholar] 13. Пик Дж., Носака К., Судзуки К. Характеристика воспалительных реакций на эксцентрические упражнения у людей. Exerc Immunol Rev.2005; 11: 64–85. [PubMed] [Google Scholar] 14. Макинтайр Д.Л., Рид В.Д., Маккензи, округ Колумбия.Отсроченная болезненность мышц: воспалительный ответ на мышечное повреждение и его клинические последствия. Sports Med. 1995. 20 (1): 24–40. [PubMed] [Google Scholar] 15. Смит Л.Л., Бонд Дж. А., Холберт Д. и др. Дифференциальное количество лейкоцитов после двух серий бега с горы. Int J Sports Med. 1998. 19 (6): 432–437. [PubMed] [Google Scholar] 16. Смит Л.Л. Цитокиновая гипотеза перетренированности: физиологическая адаптация к чрезмерному стрессу? Медико-спортивные упражнения 2000322317–331. [PubMed] [Google Scholar] 17. Ascensão A, Rebello A, Oliveira E, Marques F, Pereira L., Magalhães J.Биохимическое воздействие футбольного матча: анализ окислительного стресса и повреждения мышц на протяжении восстановления. Clin Biochem. 2008. 41 (10–11): 841–851. [PubMed] [Google Scholar] 18. Смит Л.Л., Маккаммон М., Смит С., Чамнесс М., Израиль Р.Г., О’Брайен К.Ф. Реакция лейкоцитов на ходьбу в гору и бег трусцой при одинаковых метаболических нагрузках. Eur J Appl Physiol. 1989. 58 (8): 833–837. [PubMed] [Google Scholar] 19. Бродбент С., Руссо Дж. Дж., Торп Р.М., Чоат С.Л., Джексон Ф.С., Роулендс Д.С. Вибрационная терапия снижает уровень IL6 в плазме и болезненность мышц после бега с горы.Br J Sports Med. 2010. 44 (12): 888–894. [PubMed] [Google Scholar] 20. Глисон М., Алми Дж., Брукс С., Кейв Р., Льюис А., Гриффитс Х. Гематологические и острофазовые реакции, связанные с отсроченной болезненностью мышц. Eur J Appl Physiol Occup Physiol. 1995. 71 (2–3): 137–142. [PubMed] [Google Scholar] 21. Tidball JG. Воспалительные процессы при повреждении и восстановлении мышц. Am J Physiol Regul Integr Comp Physiol. 2005; 288 (2): R345 – R353. [PubMed] [Google Scholar] 22. Чжан Дж., Клемент Д., Тонтон Дж. Эффективность Фараблока, электромагнитного щита, в ослаблении отсроченной мышечной болезненности.Clin J Sport Med. 2000. 10 (1): 15–21. [PubMed] [Google Scholar] 23. Oschman JL. Перенос заряда в живой матрице. J Bodyw Mov Ther. 2009. 13 (3): 215–228. [PubMed] [Google Scholar] 24. Бест ТМ, Хантер К.Д. Травма и восстановление мышц. Phys Med Rehabil Clin North Am. 2000. 11 (2): 251–266. [PubMed] [Google Scholar] 25. Селье Х. Жизненный стресс. Пересмотрено. Нью-Йорк: McGraw-Hill Companies, Inc .; 1984. [Google Scholar] 26. Мотояма Х. Измерения энергии Ki: диагностика и лечение. Токио: Human Science Press; 1997 г.[Google Scholar] 27. Колберт А.П., Юн Дж., Ларсен А., Эдингер Т., Грегори В.Л., Тонг Т. Измерения импеданса кожи для исследования акупунктуры: разработка системы непрерывной записи. Evid Based Complement Altern Med. 2008. 5 (4): 443–450. [Бесплатная статья PMC] [PubMed] [Google Scholar] 28. Райхманис М, Марино А.А., Беккер РО. Электрические корреляты точек акупунктуры. IEEETrans Biomed Eng. 1975. 22 (6): 533–535. [PubMed] [Google Scholar] 29. Сокал К., Сокал П. Заземление организма человека влияет на биоэлектрические процессы.J Altern Complement Med. 2012. 18 (3): 229–234. [PubMed] [Google Scholar] 30. Селье Х. О механизме воздействия гидрокортизона на устойчивость тканей к травмам; экспериментальное исследование с использованием техники мешка гранулемы. ДЖАМА. 1953. 152 (13): 1207–1213. [PubMed] [Google Scholar] 31. Ошман Дж.Л., Ошман Н.Х. Материя, энергия и живая матрица. Рольф Лайнс. 1993. 21 (3): 55–64. [Google Scholar] 32. Пишингер А. Внеклеточный матрикс и основная регуляция: основа целостной биологической медицины.Беркли: Североатлантические книги; 2007. [Google Scholar] 33. Heine H. Lehrbuch der biologischen Medizin. Grundregulation und Extrazellulare Matrix. [Справочник по биологической медицине. Внеклеточный матрикс и наземная регуляция] Штутгарт: Hippokrates Verlag; 2007. Немецкий. [Google Scholar] 34. Пиента К.Дж., Коффи Д.С. Передача клеточной гармонической информации через систему тканевого тенсегрити-матрикса. Мед-гипотезы. 1991. 34 (1): 88–95. [PubMed] [Google Scholar] 35. Сент-Дьёрдьи А. К новой биохимии? Наука.1941; 93: 609–611. [PubMed] [Google Scholar] 36. Сент-Дьёрдьи А. Исследование уровней энергии в биохимии. Природа. 1941; 148 (3745): 157–159. [Google Scholar] 38. Сарпешкар Р. Биоэлектроника со сверхнизким энергопотреблением. Основы, биомедицинские приложения и биологические системы. Кембридж: Издательство Кембриджского университета; 2010. [Google Scholar] 39. Тише NS. Обзор молекулярной электроники за первые полвека. Ann N Y Acad Sci. 2003; 1006: 1–20. [PubMed] [Google Scholar] 40. Ментович Э., Белгородский Б, Гозин М, Рихтер С, Коэн Х.Легированные биомолекулы в миниатюрных электрических переходах. J Am Chem Soc. 2012. 134 (20): 8468–8473. [PubMed] [Google Scholar] 41. Куэвас Дж. К., Шеер Э. Молекулярная электроника: Введение в теорию и эксперимент. Vol. 1. World Scientific Publishing Co; Сингапур: 2010. (Сингапур; World Scientific Series in Nanoscience and Nanotechnology). [Google Scholar] 42. Реймерс-младший, United Engineering Foundation (США) и др. Молекулярная электроника III. Vol. 1006. Нью-Йорк, штат Нью-Йорк: Анналы Нью-Йоркской академии наук; 2003 г.[Google Scholar] 43. Иоахим C, Ратнер MA. Молекулярная электроника: некоторые взгляды на транспортные соединения и не только. Proc Natl Acad Sci USA. 2005. 102 (25): 8801–8808. [Бесплатная статья PMC] [PubMed] [Google Scholar] 44. Heine H. Система гомотоксикологии и наземной регуляции (GRS) Баден-Баден: Aurelia-Verlag; 2000. [Google Scholar] 45. Chevalier G. Изменения частоты пульса, частоты дыхания, оксигенации крови, индекса перфузии, проводимости кожи и их изменчивость, вызванные во время и после заземления людей в течение 40 минут.J Altern Complement Med. 2010. 16 (1): 81–87. [PubMed] [Google Scholar] 46. Мива С., Бекман КБ, Мюллер Флорида, редакторы. Окислительный стресс при старении: от модельных систем к болезням человека. Тотова: Humana Press; 2008. [Google Scholar] 47. Oschman JL. Митохондрии и клеточное старение. В: Клац Р., Голдман Р., редакторы. Антивозрастная терапия. XI. Чикаго: Американская академия антивозрастной медицины; 2008. 2009. С. 275–287. [Google Scholar] 48. Кесслер WD, Oschman JL. Противодействие старению с помощью основ физики. В: Клац Р., Голдман Р., редакторы.Антивозрастная терапия. XI. Чикаго: Американская академия антивозрастной медицины; 2009. С. 185–194. [Google Scholar] 49. Штокер Р. Антиоксидантная активность желчных пигментов. Сигнал антиоксидантного окислительно-восстановительного потенциала. 2004. 6 (5): 841–849. [PubMed] [Google Scholar] 50. Paschalis V, Nikolaidis MG, Fatouros IG, et al. Равномерные и продолжительные изменения окислительного стресса в крови после мышечных нагрузок. In Vivo. 2007. 21 (5): 877–883. [PubMed] [Google Scholar] 51. Николаидис М.Г., Пасхалис В., Гиакас Г. и др. Снижение окислительного стресса в крови после повторяющихся упражнений, повреждающих мышцы.Медико-спортивные упражнения. 2007. 39 (7): 1080–1089. [PubMed] [Google Scholar] 52. Флорчик У. М., Йожкович А., Дулак Дж. Биливердин-редуктаза: новые свойства старого фермента и его потенциальное терапевтическое значение. Pharmacol Rep. 2008; 60 (1): 38–48. [Бесплатная статья PMC] [PubMed] [Google Scholar] 53. Sedlak TW, Salehb M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Билирубин и глутатион выполняют взаимодополняющие антиоксидантные и цитопротекторные функции. Proc Natl Acad Sci U S. A. 2009; 106 (13): 5171–5176. [Бесплатная статья PMC] [PubMed] [Google Scholar] 54.Close GL, Ashton T., McArdle A, MacLaren DP. Растущая роль свободных радикалов в отсроченном возникновении мышечной болезненности и мышечных повреждений, вызванных сокращениями. Comp Biochem Physiol A Mol Integr Physiol. 2005. 142 (3): 257–266. [PubMed] [Google Scholar] 55. Хиросе Л., Носака К., Ньютон М. и др. Изменения медиаторов воспаления после эксцентрической нагрузки сгибателей локтя. Exerc Immunol Rev.2004; 10: 75–90. [PubMed] [Google Scholar] 56. Hartmann U, Mester J. Маркеры тренировок и перетренированности в отдельных спортивных соревнованиях.Медико-спортивные упражнения. 2000. 32 (1): 209–215. [PubMed] [Google Scholar] 57. Маккалли К.К., Аргов З., Боден Б.П., Браун Р.Л., Банк В.Дж., Шанс Б. Обнаружение мышечных травм у людей с помощью магнитно-резонансной спектроскопии 31-Р. Мышечный нерв. 1988. 11 (3): 212–216. [PubMed] [Google Scholar] 58. Маккалли К.К., Познер Дж. Измерение адаптации и травм, вызванных физической нагрузкой, с помощью магнитно-резонансной спектроскопии. Int J Sports Med. 1992; 13 (S1): S147 – S149. [PubMed] [Google Scholar] 59. Маккалли К.К., Шеллок Ф.Г., Банк В.Дж., Познер Дж.Д. Использование ядерного магнитного резонанса для оценки мышечных травм.Медико-спортивные упражнения. 1992. 24 (5): 537–542. [PubMed] [Google Scholar] 60. Zehnder M, Muelli M, Buchli R, Kuehne G, Boutellier U. Дальнейшее снижение гликогена во время раннего восстановления после эксцентрических упражнений, несмотря на высокое потребление углеводов. Eur J Nutr. 2004. 43 (3): 148–159. [PubMed] [Google Scholar] 63. Мак Кензи WF, Гарнер FM. Сравнение новообразований в шести источниках крыс. J Natl Cancer Inst. 1973; 50 (5): 1243–1257. [PubMed] [Google Scholar] 64. Oschman JL. В кн .: Митохондрии и клеточное старение. Антивозрастная терапия, том XI.Клац Р., Гольдман Р., редакторы. Чикаго, штат Иллинойс: Американская академия антивозрастной медицины; 2008. С. 285–287. [Google Scholar] 65. Биаги Э., Кандела М., Фэйрвезер-Тейт С., Франчески С., Бриджиди П. Старение человеческого метаорганизма: микробный аналог. Возраст (Дордр) 2012; 34 (1): 247–267. [Бесплатная статья PMC] [PubMed] [Google Scholar] 66. Франчески С., Бонафе М., Валенсин С. и др. Воспаление-старение. Эволюционная перспектива иммунного старения. Ann N Y Acad Sci. 2000; 908: 244–254. [PubMed] [Google Scholar] 67. Ли РП.Интерфейс. Механизмы духа в остеопатии. Портленд, Орегон: Stillness Press; 2005. [Google Scholar]

    методов элементарного заземления для восстановления после травм

    Земля. Воздух. Воды. Хотя игра с огнем не совсем рекомендуется в качестве метода преодоления трудностей, тепло может быть чрезвычайно полезным. Заземление и заземление — это тесно связанные практики. Прикосновение к элементам возвращает нас к нашей человечности. Приставка гул означает землю. Ощущение разъединения между нашим разумом и нашим телом может заставить нас чувствовать, что мы где-то в другом месте, а не там, где мы есть, как если бы сущность нашего существа плавала вне нашего собственного тела.Техники заземления, которые включают элементы, помогают нам вернуться домой к себе, в наш разум, наше человеческое тело и свое место как человека на Земле.

    Травма — это любое жизненное событие, которое меняет наше восприятие мира, в котором мы живем, и нашего места в этом мире. Стоя босиком в траве, купаясь, гуляя на свежем воздухе или наслаждаясь успокаивающим теплом нашего огненного солнца, мы напоминаем нам, что мы, по крайней мере, люди на планете Земля. Даже худшая из наших травм терпит неудачу по сравнению с нашим чудесным существованием.

    Работа с глиной

    Глиняная терапия — лишь одно из многих приложений арт-терапии для преодоления травм. Доказано, что арт-терапия дает множество преимуществ для восстановления души и тела, включая необходимое снижение стресса. Дополнительным преимуществом работы с глиной является то, что она соединяет вас с землей. Погружение рук в глину — это чувственный опыт, вырывающий вас из головы и погружающий в царство настоящего.

    Погружение в воду

    «Желаю вам воды», — пишет д-р.Уоллес Дж. Николс в своей книге Blue Mind. Его обширный объем информации подтверждает простую мысль: вода лечит. Доказано, что находиться рядом с водой, находиться в воде, смотреть на воду или даже быть рядом с синим цветом чаще всего активирует парасимпатическую нервную систему, вызывает чувство умиротворения и спокойствия, а также предлагает безопасное пространство для исцеления травма.

    Глубокое дыхание

    Вдох. Выдохните. Согласно некоторым восточным философиям, это суть всей жизни.Без дыхания мы не можем жить на земле как люди. Заземление может быть таким же простым, как возвращение к дыханию с глубокими вдохами и глубокими выдохами. Также полезно проводить время на свежем воздухе.

    Наслаждайтесь солнцем

    Кому-то нравится горячее, кому-то холодно. Тепло естественно расслабляет. Наше солнце — это горящая звезда, гигантский огненный шар, изрыгающий пламя. Если стоять на солнце, это заземляет нас и дает дозу витамина D, которая помогает нам регулировать наше настроение.Стоя на солнце, мы получаем перспективу: мы можем чувствовать тепло солнца за тысячи и тысячи миль от нас.

    У каждого есть своя история. Когда вы приходите в гостевой дом «Окала», вас ждут с распростертыми объятиями, независимо от того, о чем вы рассказываете. Наши частные программы лечения в стационаре предлагают индивидуальную настройку уровня консьержа, чтобы спланировать ваше выздоровление от травм, зависимостей и связанных с ними психических заболеваний. Для получения информации позвоните нам сегодня: 1-855-483-7800

    Госдепартамент

    блокирует вылет частных спасательных рейсов из Афганистана, организаторы говорят: «Кровь на их руках»

    ПЕРВЫЙ НА FOX: американца участвовали в спасении U.Граждане S., SIV и держатели грин-карт, оставленные президентом Байденом в Афганистане , в ужасе от того, что они описывают как необъяснимые задержки из государственного департамента , которые не позволяют эвакуационным рейсам покинуть страну.

    Задержки Государственного департамента безрассудно ставят под угрозу жизни американцев, сообщили Fox News три разных человека, участвовавших в частной эвакуации.

    Рик Клей, который руководит частной спасательной группой PlanB, сказал Fox News, что Государственный департамент — единственное, что препятствует вылету из Афганистана рейсов, которые он организует.

    Два других американских человека, отдельно участвовавших в эвакуации, которых Fox News не называет, чтобы не поставить под угрозу текущие спасательные работы, также заявили, что Государственный департамент является единственной организацией, препятствующей вылету их чартерных рейсов из Афганистана.

    «Это ноль для переговоров с американскими жизнями. Это наши люди, стоящие на взлетной полосе, и все, что для этого требуется, — это гребаный телефонный звонок», — один из тех людей, которые участвовали в частных усилиях по эвакуации. из Афганистана, сообщил Fox News.

    «Если в результате этого погибнет одна жизнь, то кровь будет на руках Белого дома. Кровь на их руках», — сказал этот человек, добавив: «Это не Талибан, который поддерживает это — поскольку Как бы то ни было, мне неприятно говорить об этом — это правительство Соединенных Штатов «.

    Этот человек предположил, что препятствие Госдепартамента частично вызвано смущением в связи с тем, что частные лица спасают американцев, оставленных правительством США.

    Те, кто хотел получить разрешение на посадку в Катаре, были проинформированы по военным каналам, что они должны сначала пройти через Государственный департамент, чтобы получить разрешение, говорится в электронном письме, рассмотренном Fox News.

    Клей содержит манифест, содержащий 4500 имен граждан США, держателей грин-карт, SIV и беженцев, пытающихся перебраться в США. Пока что они дали Госдепартаменту 800 имен для первого раунда полетов. Fox News просмотрела этот манифест, который подтверждает версию Клея.

    ВОЕННЫЙ БЕГ США ИЗ АФГАНИСТАНА: ЭКИПАЖИ ВВС ОПИСЫВАЮТ «АПОКАЛИПТИЧЕСКИЕ» ЗАКЛЮЧИТЕЛЬНЫЕ СЦЕНЫ

    «Совершенно необходимо попасть в Доху, где есть другие центры для беженцев», — сказал Fox News основатель PlanB. текстовое сообщение.«Вот где я попросил разрешения».

    Клей сообщил Fox News, что у его организации «проблемы с получением разрешения» от госдепартамента Байдена «на посадку обратным рейсом» из Афганистана в соседнюю страну.

    Государственный департамент «не разрешает частным чартерам, перевозящим беженцев []], приземляться где угодно» в соседних странах, если они выезжают из Афганистана, и использует различные «оправдания», объясняющие причину, например, указывая на отсутствие воздушного движения. проблемы с контроллерами и радаром, сказал Клей Fox News на этой неделе.Два других человека, по отдельности участвовавшие в частной эвакуации, подтвердили рассказ Клея.

    «Если мы можем садиться в самолет, забирать людей и вывозить их, почему мы не можем доставить их в Доху, в центр для беженцев или другие центры для беженцев?» — заметил Клей. «Это не имеет никакого смысла.»

    «У нас еще есть американцы, от которых мы можем выбраться», — добавил он.

    После небольшого прогресса в отношениях с Государственным департаментом, группа Клея обратилась к сенаторам от обеих сторон: сенатору Тому Коттону, R-Ark.Ричард Блюменталь из штата Коннектикут и Рон Джонсон из штата Висконсин пытались помочь PlanB и другим организациям получить разрешение, необходимое для безопасного вывоза эвакуированных из Афганистана, сообщили Fox News организаторы и сотрудники Сената.

    В четверг Клэй получил известие, что их полеты из Афганистана в конечном итоге будут одобрены после рассмотрения их манифеста Государственным департаментом — задача, которая может занять несколько дней, даже если только начальные 800 имен проходят проверку.

    По состоянию на вечер воскресенья Государственный департамент еще не дал PlanB зеленый свет на посадку любого из своих рейсов в какие-либо страны, граничащие с Афганистаном.

    Двое других американцев, участвовавших в другой частной эвакуации, сообщили Fox News, что Государственный департамент обеспечил им разрешение на посадку в соседней стране и что Талибан дал им зеленый свет для взлета, в зависимости от одобрения Государственного департамента, что не пришло.

    БИДЕН ПОМОГАЕТ ОБЕСПЕЧИТЬ БЕЗОПАСНОСТЬ ГРАНИЦЫ ТАДЖИКИСТАНА В УСЛОВИЯХ ГРАНИЦЫ США

    Тем временем боевики Талибана, как сообщается, проводят казни против тех, кто помогал американским войскам во время войны.

    Клей поделился некоторыми сообщениями, которые он получил от семьи из списка манифестов PlanB, с которой он контактировал.

    «Пожалуйста, спасите нас как можно скорее», — говорится в одном сообщении. «Моя семья и я сталкиваемся с множеством проблем. Здоровье моих детей ухудшается день ото дня из-за многих забот».

    «С другой стороны, есть сообщения о том, что талибы вербовали людей в Министерстве технологий и коммуникаций, чтобы найти людей, которые будут сотрудничать с войсками США», — сказал этот человек.«Если они узнают что-нибудь обо мне, они убьют меня и мою семью».

    Джонсон сказал Fox News в заявлении, что «трудно поверить, что правительство США откажет американским гражданам и афганским союзникам, которые помогли спасти американские жизни, в возможности эвакуации из Афганистана».

    «Однако то, что мы слышим от людей, действительно участвовавших в эвакуации, полностью отличается от радужных тонов администрации», — сказал сенатор. «Когда я слышу, как президент Байден объявляет этот разгром« экстраординарным успехом », это не только показывает, что он оторван от реальности, но и ставит под сомнение все, что эта администрация говорит американскому народу.»

    НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ ПОЛУЧИТЬ ПРИЛОЖЕНИЕ FOX NEWS

    Во время брифинга в четверг пресс-секретарь Белого дома Джен Псаки и официальный представитель Государственного департамента Нед Прайс отрицали, что администрация Байдена препятствовала вылету самолетов из Афганистана.

    Госдепартамент указал Fox News на замечания Прайса в четверг вместо комментария к этой статье

    В понедельник, после публикации этой статьи, Госдепартамент и группа Клея успешно эвакуировали четырех американцев из Афганистана.Четверо американцев путешествовали по суше.

    Хьюстон Кин — корреспондент Fox News Digital. Вы можете найти его в Твиттере по адресу @HoustonKeene.

    Как справиться с тревогой: дыхание и заземление

    Уровень нашей тревожности будет волнообразно изменяться (независимо от того, диагностировано ли у нас тревожное расстройство или нет). Иногда, когда уровень тревожности высок, методы заземления и дыхания могут помочь снизить их до приемлемого уровня. Это может быть особенно полезно, если мы начинаем чувствовать панику, отстраненность или одышку.Эти методы также полезны для тех из нас, кто испытывает ретроспективные кадры, отключения и / или диссоциацию.

    Что такое заземление?

    Grounding — это возвращение нашего внимания к «здесь и сейчас».

    Это термин, который может означать разные вещи. Некоторые люди используют термин «заземление» для описания «заземления»; практика быть связанным с землей. Существует некоторая взаимосвязь между методами заземления при тревоге и заземлением, но это не совсем одно и то же.

    Мы можем использовать техники заземления, чтобы переориентировать наш ум, сосредоточиться на себе и снизить уровень стресса. Техники, которые мы пробуем, не всегда срабатывают сразу. Чтобы они начали приходить к нам естественным образом, нам часто придется практиковаться в их использовании (как и в любом другом навыке).

    Разве мы не все дышим?

    Идея «техники дыхания» может показаться странной; подавляющее большинство из нас дышит без посторонней помощи со дня своего рождения.

    Когда мы беспокоимся, наше дыхание часто учащается и становится поверхностным.Это может повлиять на нашу парасимпатическую нервную систему. Мы часто начинаем ощущать физические симптомы беспокойства, такие как напряжение в груди и напряженные мышцы.

    Беспокойство может вызвать у нас головокружение, и мы можем начать паниковать. Часто мы беспокоимся, что не получаем достаточно кислорода, поэтому больше паникуем, дышим быстрее и попадаем в порочный круг. На самом деле, у нас часто кружится голова из-за того, что мы получили слишком много кислорода. Наше учащенное дыхание может означать, что мы недостаточно выдыхаем. Прием слишком большого количества кислорода и недостаточное выделение углекислого газа вызывает головокружение.Дыхательные техники помогают нам замедлить дыхание и вернуть все в равновесие.

    Чем могут помочь методы заземления и дыхания?

    Техники заземления и дыхания не устраняют источник или «спусковой крючок» нашего беспокойства, и их использование не в том, чтобы похоронить наши чувства и притвориться, что их не существует. Они помогают нам безопасно «оседлать волну». Заземление, дыхание и самоуспокоение часто связаны.

    При раннем использовании методы заземления и дыхания могут помочь предотвратить паническую атаку.Даже если у нас случится паническая атака, эти методы не будут лишними. Они по-прежнему могут помочь нам справиться с атакой как в данный момент, так и после нее.

    У некоторых из нас могут быть постоянные боли. Это может быть связано с напряжением, которое мы испытываем, когда тревожимся. Если мы остановимся и подумаем об этом, многие из нас, вероятно, сейчас испытывают некоторое напряжение в своем теле. Возможно, наши плечи немного приподняты. Возможно, мы сжимаем бедра или зубы, когда читаем это. Техники дыхания могут помочь нам снять часть этого напряжения.

    Диссоциация, дереализация и деперсонализация — это вещи, с которыми некоторые из нас живут. Каждый из них может заставить нас чувствовать себя оторванными от себя и / или своего окружения. Техники заземления могут вернуть нас к «здесь и сейчас», помогая нам снова почувствовать связь как с окружающей средой, так и с самими собой.

    Заземление при отключении и около

    Некоторые из нас не хотят, чтобы другие знали, что у нас проблемы. Нам было бы неудобно стоять на кассе, возясь с игрушкой-непоседой.Хорошая новость заключается в том, что есть методы заземления, которые мы можем использовать незаметно, когда на улице.

    При заземлении часто можно начать с размышлений о своих чувствах. Помимо вкуса, текстуры, запаха, звука и зрения, есть три чувства, о которых многие из нас никогда не слышали. Наша вестибулярная система связана с движениями нашего тела, проприоцепция — это ощущение того, где находятся наши части тела в любой момент времени, а интероцепция описывает наше осознание основных функций, таких как голод, жажда или необходимость в туалете.

    Если мы идем по улице и чувствуем, что наше беспокойство начинает нарастать, тогда может помочь концентрация на ритме наших шагов и их подсчет на ходу. Он затрагивает как нашу вестибулярную систему, так и проприоцепцию. Иногда мысленное повторение аффирмаций во время прогулки также может помочь нам понять ритм наших шагов.

    Некоторым из нас звук полезен, другим нужна тишина. Наушники могут помочь в любой из этих ситуаций. Наушники с шумоподавлением могут отключать фоновый шум, уменьшая наши сенсорные входные данные, что может уменьшить наше беспокойство.С другой стороны, мы можем обнаружить, что музыка, утверждения, подкасты, радио или что-то еще могут помочь сосредоточиться на том, где мы находимся, и не дать нам почувствовать себя отстраненными.

    Шары для снятия стресса, неудобные вещи, текстуры, камни для беспокойства и mohdoh (или что-то подобное) — все это может помочь нам соединиться с нашим чувством осязания. Если мы хотим, чтобы они были незаметными, мы могли бы поиграть с ними в кармане, повозиться с чем-нибудь, прикрепленным к нашим ключам или пеналу, или надеть одежду с текстурой, которая нас утешает.В следующий раз, когда вокруг будет группа людей, посмотрите, что они делают. Многие, вероятно, будут как-то ерзать; играть со своими волосами, делать прядь волос, постукивать ногой, катать синий такт, щелкать ручкой или возиться с брелоком для ключей. Возникновение — не редкость, поэтому, даже если мы открыто играем с брелоком для ключей или застежкой-молнией для пенала, вряд ли кто-то задумается об этом.

    Роллеры, «ароматические пакеты» (например, лавандовые), кондиционер для белья или духи — это способы, с помощью которых мы можем избавиться от запахов из дома.Запахи могут вызывать невероятные воспоминания и очень хорошо помогают нам заземлить. Некоторым может оказаться полезным опрыскать гигантский шарф нашим любимым ароматом или постирать его в нашем любимом кондиционере для ткани. Кроме того, у нас есть портативный предмет «понюхай меня, чтобы успокоиться», который не будет неуместным вне дома (если только он не очень горячий).

    Тем из нас, кто считает, что вкус хорошо помогает нам, могут помочь жевательная резинка, сладкие сладости или горячие напитки. Некоторые из нас подвержены влиянию кофеина, и, возможно, им следует избегать горячих напитков с кофеином, если мы особенно беспокоимся.Горячие или охлажденные напитки особенно хороши, потому что они также влияют на наше осязание.

    Сосредоточение внимания на окружающей среде помогает нам чувствовать себя связанными. Мы могли бы сыграть с собой в категориальную игру. Например, мы могли бы мысленно перечислить все видимое синим цветом или начать с буквы «g».

    Если мы хотим использовать множество наших чувств одновременно, система 5, 4, 3, 2, 1 может работать хорошо. Здесь мы ищем пять вещей, которые подходят одному чувству, четыре, которые подходят другому, и продолжаем работать по списку.Например, пять вещей, которые мы можем видеть, четыре, которые мы можем услышать, три, которые мы можем потрогать, два, которые мы можем обонять, и один, который мы можем попробовать. Поскольку это делается в нашей голове, никому вокруг нас не нужно знать, что мы делаем.

    Заземление дома

    Когда мы дома, у нас часто есть больше возможностей для заземления.

    Босиком — отличный способ почувствовать связь с окружающей средой. Ходить по траве часто приятно, некоторые из нас могут быть любителями текстуры и любят ощущение гравия под ногами.У нас может быть несколько одеял с разной текстурой на нашем диване или даже коврик, который нам нравится чувствовать. Бывают случаи, когда мы можем ходить босиком, например, когда на пляже, нам просто нужно быть осторожными, чтобы убедиться, что это безопасно (внутри или снаружи!).

    Вода отлично подходит для заземления. Проведение руками по ней или брызги на лице могут помочь нам перестать чувствовать себя отключенными (особенно, если вода холодная). Лед может помочь нам сосредоточиться на одном конкретном месте.Душ одновременно стимулирует множество органов чувств — ощущение и звук воды, а также запах любых продуктов, которые мы используем.

    Диффузоры, расплав воска, масляные горелки, эфирные масла, средства для ванной и чистящие средства — все это может влиять на запах в нашем доме. Кулинария — еще один источник запаха. Если мы гурманы, то запах продуктов, которые мы готовим, может помочь нам почувствовать себя заземленными. Некоторые виды приготовления пищи, например, выпечка хлеба вручную, могут включать другие чувства, например осязание. При приготовлении пищи и выпечке нам просто нужно быть осторожными, чтобы мы были на связи — достаточно, чтобы оставаться в безопасности.

    Для любителей текстуры есть много вещей, которые мы можем сделать, например, погладить питомца, хлопать в ладоши, потирать руки друг о друга, закутываться в одеяло или утяжеленное одеяло или носить старый удобный джемпер. Мы могли бы создать сенсорную чашу, полную таких вещей, как сушеный рис, бусы или стеклянные камни.

    Растяжка помогает нам чувствовать связь со своим телом. Помимо легкого растяжения, размышления о точках соприкосновения могут помочь нам почувствовать связь с окружающей средой. Например, если бы мы стояли на одной ноге, у нас была бы одна точка соприкосновения.

    Садоводство — отличный способ почувствовать себя заземленным, потому что мы буквально связаны с землей, особенно если мы не надеваем перчатки (где это безопасно). Нас тоже окружают виды, запахи и звуки. Если у нас нет особо «зеленых пальцев», может помочь даже сидение и наблюдение за окружающим миром. Некоторые люди считают фотографию очень подходящей, потому что мы активно фокусируемся на конкретных вещах.

    Техники дыхания на улице и около

    Иногда нас охватывает тревога, когда мы на улице.Возможно, мы на встрече и начинаем чувствовать нарастающее беспокойство, может быть, мы чувствуем запах чего-то, что вызывает воспоминания. Возможно, мы идем по городу, обнаруживаем, что он более загружен, чем ожидалось, и начинаем отключаться.

    В каждой из этих ситуаций мы, вероятно, не сможем выхватить коврик для йоги и погрузиться в собаку, опускающуюся вниз, но есть техники дыхания, которые мы можем использовать, часто незаметно для окружающих.

    Темп дыхания — хорошая техника, которую стоит попробовать в первую очередь, потому что нам не нужно слишком много запоминать.Все, что для этого нужно, — это считать наши вдохи и выдохи. Есть приложения, которые могут помочь нам ускорить дыхание.

    Для начала мы могли бы придерживаться малых чисел, например, вдыхать три и выдыхать четыре. По мере того, как мы привыкаем к этому, мы можем начать считать более высокие числа, делая более медленные вдохи. Когда мы тревожимся, мы часто вдыхаем слишком много и недостаточно выдыхаем, поэтому часто полезно считать до большего числа на выдохе, чем на вдохе.

    Для тех, кто считает полезным счет, подойдет техника 4, 7, 8.Здесь мы вдыхаем на счет до четырех, задерживаем дыхание на счет до семи и выдыхаем на счет до восьми. Эта техника требует практики и не всегда проста. Мы могли бы начать с немного меньших чисел и двигаться дальше.

    Если мы не считаем подсчет полезным, мы можем попробовать другие вещи. Вдыхание через нос и выдох через рот помогает нам замедлить дыхание и устранить проблему «слишком быстро вдыхать и выдыхать недостаточно».

    Некоторые из нас очень наглядны. Представьте, что мы дышим от кончиков пальцев ног до макушки, а затем снова выдыхаем, может помочь нам дышать глубже. В качестве альтернативы мы могли бы представить наши легкие в виде воздушных шаров. Они должны быть полными, чтобы лопнуть, когда мы вдыхаем, и полностью пустыми, когда мы выдыхаем.

    Визуальная и тактильная техника, которую мы можем использовать, — это квадратное дыхание. Для этого мы делаем четыре вдоха, четыре раза задерживаемся, четыре выдыхаем, четыре раза задерживаемся и повторяем.Визуальная / тактильная составляющая появляется, когда мы начинаем визуализировать квадрат. Мы можем не только представить себе квадрат, но и нарисовать его на руке или ноге, что успокаивает. Мысль о том, чтобы сделать это с окружающими, может немного оттолкнуть, но мы можем отследить квадрат незаметно. Например, мы можем засунуть руку в карман и провести по ноге.

    Долгосрочная дыхательная активность

    Помимо дыхательных техник «в данный момент», мы можем выполнять некоторые действия, которые позволят нам замедлить дыхание в долгосрочной перспективе.Они могут помочь нам улучшить наши дыхательные навыки, а также нашу способность глубоко дышать и задерживать дыхание.

    Одна техника — парное расслабление мышц. Здесь мы начинаем с кончиков пальцев ног и работаем вплоть до сжимания и разжимания каждого набора мышц по ходу движения. Сжимая мышцы, мы вдыхаем, а разжимая их, мы выдыхаем.

    Йога, медитация и осознанность — это вещи, которые многие люди находят полезными. Не всегда легко мотивировать себя, поэтому приверженность класса может вывести нас за дверь (или перед экраном, если наш класс удален).Если уроки не для нас, есть много видео, за которыми мы могли бы следить в Интернете, или приложений, которые мы могли бы использовать. Мы можем объединиться с другом, чтобы мотивировать и быть подотчетными друг другу.

    Упражнения (при необходимости) могут помочь нам сосредоточиться на дыхании. Сердечно-сосудистые упражнения, такие как бег, походы, плавание или гребля, могут быть особенно полезными, потому что мы можем сосредоточиться на ритме нашего дыхания.

    Как мы научим наших детей заземлению и дыханию?

    Дети — это маленькие люди, которые часто испытывают большие эмоции.Как родители и опекуны, нам часто приходится помогать нашим детям преодолевать эти эмоции и помогать им научиться справляться с ними.

    Заземление, в частности, может быть очень полезным для молодых людей, потому что они естественным образом используют свои чувства для познания мира.

    Некоторые детские игры естественным образом подключаются к заземлению. Например, играть в я-шпиона или пытаться обнаружить каждый красный фургон на автомагистрали — это оба способа использовать зрение для заземления. Мы можем играть в эти игры практически где угодно; на прогулке, в машине или даже просто посидели в салоне.

    Еще одна игра, которая часто хорошо работает, — это своего рода словарь. Подумайте о предмете, а затем нарисуйте его (пальцем) где-нибудь на нашем теле или теле нашего ребенка. Затем наш ребенок угадывает нарисованный предмет. Здесь мы соединяем руку и тело — используя осязание, зрение, осознанность тела и движения тела.

    Игра в улов заставляет нас присутствовать. Если наш ребенок борется с домашним заданием и все больше его беспокоит, то прогулка в саду или местном парке может помочь ему хорошо отдохнуть и снизить уровень беспокойства.Во время игры, если они беспокоятся и начинают беспокоиться о своей домашней работе, они, скорее всего, пропустят мяч. Так что они должны присутствовать.

    Некоторым детям очень нравятся занятия вроде йоги. В Интернете часто есть видеоролики, за которыми они могут следить. Мы тоже можем следовать за ними!

    Коробка заземления

    Некоторым людям полезно иметь «заземляющую коробку». Эти коробки содержат различные действия или инструменты, которые мы можем использовать для заземления. Он может находиться в определенном месте в нашем доме или быть чем-то вроде портативного «комплекта заземления», который можно положить в сумку.

    Когда мы сильно подвержены стрессу, может быть трудно думать о том, что мы можем сделать, чтобы заземлить себя. Вот где входит коробка или набор. Он может содержать такие вещи, как игрушки для скрипки, нашу любимую жевательную резинку, «категории для поиска», напоминания о технике дыхания, шарики-роллеры и наушники.

    Если мы не хотим иметь физический комплект, то мы могли бы иметь список идей на телефоне или прилепить его к холодильнику.

    Не забывайте использовать то, что работает

    Когда мы в стрессе, часто бывает трудно остановиться и использовать свои навыки снятия стресса.

    У некоторых из нас есть близкие друзья или члены семьи, которые могут нам подсказать. Мы можем использовать напоминания или будильники на нашем телефоне — они могут появляться каждый час, напоминая нам о том, что нужно сделать паузу и проверить себя. Некоторым из нас нравятся физические напоминания, такие как записка в кошельке или жетон в кармане, который напоминает нам остановиться и зарегистрироваться.

    Это не всегда просто

    Изучить техники заземления и дыхания не всегда легко. Это может потребовать времени, практики и поддержки. Мы можем расстроиться, потому что перепробовали много разных вещей, а нам кажется, что ничего не работает.Но мы найдем то, что нам подходит.

    Постарайтесь не отказываться от техники после того, как попробовали ее однажды. Мало кто из нас может делать что-то «действительно хорошо» с первого раза. С другой стороны, если мы пробовали какую-то технику несколько раз, и она просто не работает для нас, то, возможно, пришло время попробовать другую. Мы все разные, поэтому предпочтем разные техники.

    Нам нужно не забывать быть добрыми к себе. Это непросто, и избиение себя от этого не упростит.Мы делаем все, что в наших силах, и никто не может требовать большего.

    Пожалуйста, помогите нам помочь другим и поделитесь этим постом, никогда не знаешь, кому он может понадобиться.