Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Своими руками

Драйвер для светодиодов 12в своими руками: Схема драйвера для светодиодов 12в своими руками

Содержание

Простой драйвер для мощного светодиода

Наверное, каждый, даже начинающий радиолюбитель знает, что для того чтобы подключить обычный светодиод к источнику питания нужен всего один резистор. А как быть если светодиод мощный? Ватт так на 10. Как быть тогда?
Я вам покажу способ сделать простой драйвер для мощного светодиода всего из двух компонентов.

Для стабилизатора-драйвера нам понадобиться:
1. Резистор – aliexpress.
2. Микросхема – LM317 – aliexpress.

LM317 – это микросхема стабилизатор. Отлично подходит для конструирования регулируемых источников питания или драйверов для питания светодиодов, как в нашем случае.

Достоинства LM317

  • Диапазон стабилизации напряжения от 1,7 (включая напряжение светодиода – 3 В) до 37 В. Отличная характеристика, для автомобилистов: яркость не будет плавать на любых оборотах;
  • Выходной ток до 1,5 можно подключать несколько мощных светодиодов;
    Стабилизатор имеет встроенную систему защиты от перегрева и короткого замыкания.
  • Минусовое питание светодиода в схеме включения берется от источника питания, поэтому при креплении к корпусу автомобиля уменьшается количество монтажных проводов, а корпус может играет роль большого теплоотвода для светодиода.

Схема драйвера для мощного светодиода

Я буду подключать светодиод на 3 Ватта.В итоге нам нужно будет рассчитать сопротивление под наш светодиод. Светодиод мощностью 1 Вт потребляет 350 мА, а 3-х ваттный – 700 мА (можно посмотреть в даташит). Микросхема LM317 – имеет опорное напряжение стабилизатора – 1,25 – это число постоянное. Его нужно поделить на ток и получиться сопротивление резистора. То есть: 1,25 / 0,7 = 1,78 Ом. Ток берем в амперах. Выбираем ближайший резистор по сопротивлению, так как резисторов сопротивлением 1,78 не бывает. Берем 1,8 и собираем схему.

Если мощность вашего светодиода превышает 1 Вт, то микросхему необходимо установить на радиатор. Вообще LM317 рассчитана на ток до 1,5.
Питать нашу схему можно напряжение от 3 до 37 вольт. Согласитесь, солидный диапазон питания получается. Но чем больше напряжение, тем больше греется микросхема, учтите это.

В цепь можно включить не один мощный светодиод, а, скажем, два или три. То есть этой схемой можно запитать до 10 мощных светодиодов.

На али экспресс можно купить готовый стабилизатор, с переменным резистором под любой ток – LM317 линейный регулятор.

Драйвер для светодиодов своими руками

Самый простой драйвер светодиода это обычный резистор. Но у этой простоты есть большой недостаток: стабильность тока сильно зависит от стабильности напряжения блока питания. Если стабилизированные блоки питания гарантируют стабильность напряжения, то напряжение на аккумуляторе зависит от степени его заряда. Конечно можно сначала стабилизировать напряжение, а потом уже подключить светодиоды через резистор, но есть более правильный способ: стабилизатор тока. Он стабилизирует в широком диапазоне входных напряжений: минимум определяется падением напряжения на светодиодах плюс падение на шунте, а максимум — пробивным напряжением силового транзистора его мощностью рассеивания.

Ниже приведена схема драйвера светодиода который можно сделать своими руками используя всего лишь 4 компонента: 2 резистора, транзистор и стабилитрон.

На стабилитроне VD1 создается опорное напряжение. Чтобы создать это напряжение через стабилитрон нужно пропустить минимальный ток при котором стабилитрон войдет в режим стабилизации. Например выберем стабилитрон с напряжением стабилизации 2,4В минимальный ток стабилизации которого равен 3мА, а минимальное напряжение питания будет равно 12В.

Рассчитаем резистор R1=(Uбп-Uст)/Iст=(12-2,4)/0,003=3200 Ом, выбираем резистор по ряду номиналов 3,3кОм.

Транзистор VT1 работает в режиме с общим эмиттером и отрицательной обратной связью по току. Регулирование по току осуществляется с помощью резистора R2. В расчетах можно пренебречь базовым током транзистора, так как он многократно меньше тока через стабилитрон или токов коллектора и эмиттера. Транзистор VT1 поддерживает ток через коллектор примерно равный току эмиттера, а ток эмиттера можно определить как:

Iэ=(Uст-0,6В)/R2.

Где, 0,6В напряжение перехода база-эмиттер транзистора. Принцип работы обратной связи по току: если эмиттерный ток маленький, то и падение на R2 маленькое, значит на между выводами базы и эмиттера прикладывается напряжение больше 0,6В и транзистор открывается. Открываясь транзистор начинает пропускать через себя все больше тока, значит и падение напряжения на R2 возрастает это приводит к снижению напряжения на база-эмиттерном переходе транзистора. В какой-то момент времени напряжение на входе транзистора станет равным 0,6 и транзистор перестанет открываться и выходной ток стабилизируется. Если в какой-то момент времени возрастет ток коллектора (например из-за повышения питающего напряжения), то возрастет напряжение на R2, следовательно уменьшиться напряжение на входе транзистора и транзистор начнет закрываться, до того момента, как напряжение на входе снова станет 0,6В.

Допустим нам нужен ток стабилизации 300мА, тогда:

R2=(Uст-0,6В)/Iэ=(2,4-0,6)/0,3=6 Ом.

Из стандартного ряда можно выбирать 6,2 Ома, но так как скорее всего резисторы придется ставить мощные, то будем ориентироваться на два параллельно включенных резистора по 12 Ом или три по 18 Ом.

Теперь нужно рассчитать мощность резистора R2:

P=I*I*R=0,3*0,3*6=0,54Вт,

Широко распространены 1/8 и 1/4 Ваттные  резисторы. Поэтому возьмем три 18 Омные резисторы на 1/4 Ватта. Так же можно использовать 5 резисторов по 30 Ом, на мощность 1/8 Вт.

Осталось выбрать транзистор, напряжение КЭ его должно быть больше напряжения питания, максимальный ток коллектора больше или равен току стабилизации, а максимальная рассеиваемая мощность должна быть больше произведения напряжения блока питания на ток стабилизации.

 Драйвер для светодиодов своими руками с низким падением напряжения

При использовании низковольтного источника питания, даже падение напряжения в 1,8В способно существенно уменьшить диапазон работы стабилизатора. Но нас спасет применение биполярного транзистора вместо стабилитрона, падение снизиться до 0,6В. Правда стабилизация такого стабилизатора будет зависеть от температуры: чем выше температура VT1 тем ниже ток стабилизации.

В расчетах упоминается величина 0,6В — падение напряжение на переходе база-эмиттер кремниевого биполярного транзистора. Но на самом деле эта величина зависит от многих факторов, в том числе и от температуры. И рассчитав собрав такой драйвер ток через светодиоды будет несколько отличатся от расчетного значения. Если потребуется более точно задать ток, то для снижения тока нужно будет увеличивать R2, соответственно для увеличения тока снижать сопротивление R2.

Схема выпрямления переменного тока для драйвера светодиода.

Драйвер для светодиодной лампы 220 в своими руками. Драйверы для светодиодных лампочек

Современные мощные светодиоды отлично походят для организации яркого и эффективного освещения. Некоторую сложность составляет питание таких светодиодов – требуются мощные источники постоянного тока и токостабилизирующие драйвера. Вместе с тем, в любом помещении имеется розетка с переменным напряжением в 220В. И, конечно же, очень хотелось бы организовать работу мощных светодиодов от сети с минимальными затратами. Нет ничего невозможного – давайте рассмотрим схему драйвера для светодиода от сети 220В.

Прежде чем начнем обсуждать конкретные схемы, хотелось бы напомнить, что работа будет вестись с потенциально опасным для жизни переменным напряжением 220В. Разработка и расчет схемы потребуют хотя бы общего понимания происходящих электрических процессов, вероятность того, что при совершении ошибки вы можете получить ущерб или повреждения, очень высока. Мы категорически не одобряем проведение работ с высоким напряжением, если вы чувствуете себя неуверенно и не несем ответственности за возможный ущерб и повреждения, которые вы можете получить в процессе работы над предлагаемыми схемами. На самом деле, вполне возможно, что проще и дешевле будет приобрести и использовать уже готовый драйвер или даже светильник целиком. Выбор за вами.

Обычно падение напряжения на светодиоде составляет от 3 до 30В. Разница с сетевым напряжением в 220В очень большая, поэтому понижающий драйвер, безусловно, будет импульсным. Имеется несколько специализированных микросхем для изготовления таких драйверов – HV9901, HV9961, CPC9909. Все они очень похожи и от других микросхем отличаются тем, что имеют очень широкий диапазон допустимого входного напряжения – от 8 до 550В – и очень высокий КПД – до 85-90%. Тем не менее, предполагается, что общее падение напряжения на светодиодах в готовом устройстве будет составлять не менее 10-20% от напряжения источника питания. Не стоит пробовать запитать от 220В, например, один-два 3-6-ти вольтовых светодиода. Даже если они не сгорят сразу, КПД схемы будет низким.

Рассмотрим драйвер на базе микросхемы CPC9909 , поскольку она новее остальных и вполне доступна. Вообще, все указанные микросхемы взаимозаменяемы и совместимы попиново (но потребуется пересчитать параметры дросселя и резисторов).

Базовая схема драйвера следующая:

Схема драйвера для светодиодов на базе микросхемы CPC9909

Переменное сетевое напряжение необходимо предварительно выпрямить, для этого используется диодный мост. C1 и C2 – сглаживающие конденсаторы. C1 – электролит емкостью 22мкФ и напряжением 400В (при использовании сети 220В), C2 – керамический конденсатор емкостью 0,1мкФ, 400В. Конденсатор С1 – керамика 0,1мкФ, 25В. Микросхема CPC9909 в процессе работы генерирует импульсы, которые открывают и закрывают силовой транзистор Q1, тем самым управляя течением тока через светодиоды. Частота переключения, индуктивность дросселя L, параметры мосфета Q1 и диода D1 тесно взаимосвязаны и зависят от требуемого падения напряжения на светодиодах, их рабочем токе. Давайте попробуем рассчитать нужные параметры ключевых деталей схемы на конкретном примере.

У меня есть могучий светодиод. 50 ватт мощности, напряжение 30-36В, рабочий ток до 1.4А. 4-5 ТЫСЯЧ люменов! Мощность света неплохого прожектора.

COB cветодиод 50 ватт

Для охлаждения я посредством термопасты и суперклея посадил его на кулер от видеокарты.

Максимальный ток светодиода ограничим 1А. Значит

Падение напряжения на светодиодах –

Пульсацию тока примем равной +-15%:

I D = 1 * 0.15 * 2 = 0.3A

При напряжении сети переменного тока в 220В напряжение после выпрямительного моста и сглаживающих конденсаторов составит

Ток драйвера регулируется резистором Rs, сопротивление которого рассчитывается по формуле

Rs = 0.25 / I LED = 0.25 / 1 = 0.25 Ом.

Используем резистор 0.5W 0.22 Ом в SMD-корпусе 2512:

что даст ток 1.1А. При таком токе резистор будут рассеивать примерно 0.2Вт тепла и особо греться не будет.

Микросхема CPC9909 генерирует управляющие импульсы. Общая продолжительность импульса складывается из времени «высокого уровня», когда мосфет открыт и продолжительности паузы, когда транзистор закрыт. Жестко зафиксировать мы можем только продолжительность паузы. За нее отвечает резистор Rt. Его сопротивление рассчитывается по формуле:

Rt = (tp — 0.8) * 66
, где tp — пауза в микросекундах. Сопротивление Rt получается в килоомах.

Продолжительность «высокого уровня» — это время, за которое рабочий ток достигнет требуемого значения — регулируется микросхемой CPC9909. Штатный диапазон частот находится в пределах 30-120КГц. Причем, чем выше будет частота, тем меньшая индуктивность дросселя в итоге потребуется. Но тем больше будет греться силовой транзистор. Поскольку индуктивность дросселя (и связанные с ней его габариты) для нас важнее, будем стараться держаться верхней части допустимого диапазона частот.

Давайте рассчитаем допустимое время паузы. Отношение продолжительности «высокого уровня» к общей продолжительности импульса — скважность импульса — рассчитывается по формуле:

D = V LED / V IN = 30 / 310 = 0.097

Частота переключений рассчитывается так:

F = (1 — D) / tp
, а значит tp = (1 — D) / F

Пусть частота будет равна 90КГц. В этом случае

tp = (1 — 0.097) / 90 000 = 10мкс

Соответственно, потребуется сопротивление резистора Rt

Rt = (10 — 0.8) * 66 = 607.2КОм

Ближайший доступный номинал — 620КОм. Подойдет любой резистор с таким сопротивлением, желательно с точностью 1%. Уточняем время паузы с резистором номиналом 620КОм:

tp = Rt / 66 + 0.8 = 620 / 66 + 0.8 = 10.19мкс

Минимальная индуктивность дросселя L рассчитывается по формуле

Lmin = (V LED * tp) / I D

Используя уточненное значения tp, получаем

Lmin = (30 * 10.19) / 0.3 = 1мГн

Рабочий ток дросселя, при котором он гарантированно не должен входить в насыщение — 1.1 + 15% = 1.3А. Лучше взять с полуторным запасом. Т.е. не менее 2А.

Готового дросселя с такими параметрами в продаже я не нашел. Нужно делать самому. Вообще расчет катушек индуктивности — это большая отдельная тема. Здесь же я лишь оставлю ссылку на основательный труд Кузнецова А.

Я использовал дроссель, выпаянный из нерабочего балласта обычной энергосберегающей лампы. Его индуктивность 2мГн, в сердечнике оказался зазор около 1мм. Считаем рабочий ток, получаем до 1.3 — 1.5А. Маловато, но для тестовой сборки пойдет.

Остались силовой транзистор и диод. Здесь проще — оба должны быть рассчитаны на напряжение не менее 400В и ток от 4-5А. Быстрый диод Шоттки может быть, например, таким — STTH5R06. Мосфет должен быть N-канальным. Для него крайне важно минимальное сопротивление в открытом состоянии и минимальный заряд затвора — менее 25нКл. Прекрасный выбор на нужный нам ток — FDD7N60NZ . В корпусе DPAK и с током до 1А греться он особо не будет. Можно будет обойтись без радиатора.

При разводке печатной платы нужно уделить внимание длине проводников и правильному расположению «земли». Проводник между CPC9909 и затвором полевого транзистора должен быть как можно короче. Это же относится и к проводнику от сенсорного резистора. Площадь «земли» должна быть как можно больше. Очень желательно один слой печатной платы полностью развести на землю. Резистор Rt нужно подальше от индуктивности и других проводников, работающих на высоких частотах.

Вывод LD микросхемы может быть использован для плавной регулировки яркости свечения светодиода, вывод PWMD – для димирования посредством ШИМ.

Вот примеры из технической документации, которые это реализуют.

На этой схеме сила тока, а соответственно, и яркость светодиодов плавно регулируется от нуля до 350мА переменным резистором RA1. Также на схеме присутствуют номиналы и названия ключевых элементов для питания линейки ярких светодиодов током до 350мА.

Схема, предполагающее управление яркостью посредством ШИМ, выглядит так:

Допустимая частота диммирования — до 500Гц. Обратите внимание на очень желательную электрическую развязку генератора регулирующих импульсов (обычно, это микроконтроллер) и силовой части схемы. Развязка выполнена посредством использования оптопары.

Я собрал схему с плавной регулировкой переменным резистором. Получилась плата 60х30мм.

Драйвер заработал сразу и так как нужно. Переменным резистором ток регулируется от 0.1 до расчетных 1.1А. Вентилятор кулера где установлен светодиод запитан от 3-х вольт. Вращается совершенно без звука, при этом радиатор греется слабо. На плате после 5-ти тестовых минут работы на максимальном токе градусов до 50С нагрелся дроссель. Его рабочего тока, как и ожидалось, оказалось маловато. Также заметно греется полевой транзистор. Остальные детали греются незначительно.

Сердце будущего мощного светильника в тестовом запуске

Разводку платы в программе Sprint-Layout 6.0 можно взять

Спустя какое-то время светодиод с драйвером заняли свое рабочее место в освещении аквариума. Работают по 15 часов в день при токе 0.7А. Света для аквариума объемом в 140 литров, на мой взгляд, вполне достаточно. Радиатор снабдил термистором и простенькой схемой — кулер включается автоматически и охлаждает всю конструкцию.

Драйвер для светодиода от сети 220В требует внимания при проектировании и сборке. Повторюсь — напряжение 220В опасно для жизни, а на схеме драйвера практически все детали находятся под этим и большим напряжением.

Тем не менее, при аккуратной сборке получится достаточно миниатюрный и эффективный драйвер, способный запитать от сети бытовой сети 220В один или несколько мощных светодиодов.



Драйвер для светодиодов своими руками: простые схемы с описанием

Для применения светодиодов в качестве источников освещения обычно требуется специализированный драйвер. Но бывает так, что нужного драйвера под рукой нет, а требуется организовать подсветку, например, в автомобиле, или протестировать светодиод на яркость свечения. В этом случае можно сделать драйвер для светодиодов своими руками.

Как сделать драйвер для светодиодов

В приведенных ниже схемах используются самые распространенные элементы, которые можно приобрести в любом радиомагазине. При сборке не требуется специальное оборудование, — все необходимые инструменты находятся в широком доступе. Несмотря на это, при аккуратном подходе устройства работают достаточно долго и не сильно уступают коммерческим образцам.

Необходимые материалы и инструменты

Для того, чтобы собрать самодельный драйвер, потребуются:

  • Паяльник мощностью 25-40 Вт. Можно использовать и большей мощности, но при этом возрастает опасность перегрева элементов и выхода их из строя. Лучше всего использовать паяльник с керамическим нагревателем и необгораемым жалом, т.к. обычное медное жало довольно быстро окисляется, и его приходится чистить.
  • Флюс для пайки (канифоль, глицерин, ФКЭТ, и т.д.). Желательно использовать именно нейтральный флюс, — в отличие от активных флюсов (ортофосфорная и соляная кислоты, хлористый цинк и др.), он со временем не окисляет контакты и менее токсичен. Вне зависимости от используемого флюса после сборки устройства его лучше отмыть с помощью спирта. Для активных флюсов эта процедура является обязательной, для нейтральных — в меньшей степени.
  • Припой. Наиболее распространенным является легкоплавкий оловянно-свинцовый припой ПОС-61. Бессвинцовые припои менее вредны при вдыхании паров во время пайки, но обладают более высокой температурой плавления при меньшей текучести и склонностью к деградации шва со временем.
  • Небольшие плоскогубцы для сгибания выводов.
  • Кусачки или бокорезы для обкусывания длинных концов выводов и проводов.
  • Монтажные провода в изоляции. Лучше всего подойдут многожильные медные провода сечением от 0.35 до 1 мм2.
  • Мультиметр для контроля напряжения в узловых точках.
  • Изолента или термоусадочная трубка.
  • Небольшая макетная плата из стеклотекстолита. Достаточно будет платы размерами 60х40 мм.

Макетная плата из текстолита для быстрого монтажа

Схема простого драйвера для светодиода 1 Вт

Одна из самых простых схем для питания мощного светодиода представлена на рисунке ниже:

Как видно, помимо светодиода в нее входят всего 4 элемента: 2 транзистора и 2 резистора.

В роли регулятора тока, проходящего через led, здесь выступает мощный полевой n-канальный транзистор VT2. Резистор R2 определяет максимальный ток, проходящий через светодиод, а также работает в качестве датчика тока для транзистора VT1 в цепи обратной связи.

Чем больший ток проходит через VT2, тем большее напряжение падает на R2, соответственно VT1 открывается и понижает напряжение на затворе VT2, тем самым уменьшая ток светодиода. Таким образом достигается стабилизация выходного тока.

Питание схемы осуществляется от источника постоянного напряжения 9 — 12 В, ток не менее 500 мА. Входное напряжение должно быть минимум на 1-2 В больше падения напряжения на светодиоде.

Резистор R2 должен рассеивать мощность 1-2 Вт, в зависимости от требуемого тока и питающего напряжения. Транзистор VT2 – n-канальный, рассчитанный на ток не менее 500 мА: IRF530, IRFZ48, IRFZ44N. VT1 – любой маломощный биполярный npn: 2N3904, 2N5088, 2N2222, BC547 и т.д. R1 – мощностью 0.125 — 0.25 Вт сопротивлением 100 кОм.

Ввиду малого количества элементов, сборку можно производить навесным монтажом:

Еще одна простая схема драйвера на основе линейного управляемого стабилизатора напряжения LM317:

Здесь входное напряжение может быть до 35 В. Сопротивление резистора можно рассчитать по формуле:

где I – сила тока в амперах.

В этой схеме на LM317 будет рассеиваться значительная мощность при большой разнице между питающим напряжением и падением на светодиоде. Поэтому ее придется разместить на небольшом радиаторе. Резистор также должен быть рассчитан на мощность не менее 2 Вт.

Более наглядно эта схема рассмотрена в следующем видео:

Здесь показано, как подключить мощный светодиод, используя аккумуляторы напряжением около 8 В. При падении напряжения на LED около 6 В разница получается небольшая, и микросхема нагревается несильно, поэтому можно обойтись и без радиатора.

Обратите внимание, что при большой разнице между напряжением питания и падением на LED необходимо ставить микросхему на теплоотвод.

Схема мощного драйвера с входом ШИМ

Ниже показана схема для питания мощных светодиодов:

Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

Особенности драйвера
  • Напряжение питания: 5 — 24 В, постоянное;
  • Выходной ток: до 1 А, регулируемый;
  • Выходная мощность: до 18 Вт;
  • Защита от КЗ по выходу;
  • Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как регулировать яркость светодиодной ленты через диммер).
Принцип действия

Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

  • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
  • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
  • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.

В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

Сборка и настройка драйвера

Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.

Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.

При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно проверить с помощью мультиметра в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом.

Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.

После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.

Список элементов:

Заключение

Первые две из рассмотренных схем очень просты в изготовлении, но они не обеспечивают защиты от короткого замыкания и обладают довольно низким КПД. Для долговременного использования рекомендуется третья схема на LM393, поскольку она лишена этих недостатков и обладает более широкими возможностями по регулировке выходной мощности.

ledno.ru

Схема драйвера светодиодов 220В

Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».

Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.

Теория питания светодиодных ламп от 220В

Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.

Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.

Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.

Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.

Компоненты диодного светильника

Схема светодиодной лампы на 220 вольт потребует минимальное количество доступных компонентов.

  • Светодиоды 3,3В 1Вт – 12 шт.;
  • керамический конденсатор 0,27мкФ 400-500В – 1 шт.;
  • резистор 500кОм — 1Мом 0,5 — 1Вт – 1 ш.т;
  • диод на 100В – 4 шт.;
  • электролитические конденсаторы на 330мкФ и 100мкФ 16В по 1 шт.;
  • стабилизатор напряжения на 12В L7812 или аналогичный – 1шт.

Изготовление драйвера светодиодов на 220В своими руками

Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:

  • Делитель напряжения на ёмкостном сопротивлении;
  • диодный мост;
  • каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр.

Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.

Что бы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки.

В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма в схеме со стабилизатором

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

svetodiodinfo.ru

Как выбрать светодиодный драйвер, led driver

Самым оптимальным способом подключения к 220В, 12В является использование стабилизатора тока, светодиодного драйвера. На языке предполагаемого противника пишется «led driver». Добавив к этому запросу желаемую мощность, вы легко найдёте на Aliexpress или Ebay подходящий товар.

  • 1. Особенности китайских
  • 2. Срок службы
  • 3. ЛЕД драйвер на 220В
  • 4. RGB драйвер на 220В
  • 5. Модуль для сборки
  • 6. Драйвер для светодиодных светильников
  • 7. Блок питания для led ленты
  • 8. Led драйвер своими руками
  • 9. Низковольтные
  • 10. Регулировка яркости

Особенности китайских

Многие любят покупать на самом большом китайском базаре Aliexpress. цены и ассортимент радуют. LED driver чаще всего выбирают из-за низкой стоимости и хороших характеристик.

Но с повышением курса доллара покупать у китайцев стало невыгодно, стоимость сравнялась с Российской, при этом отсутствует гарантия и возможность обмена. Для дешевой электроники характеристики бывают всегда завышены. Например, если указана мощность в 50 ватт, в лучшем случае то это максимальная кратковременная мощность, а не постоянная. Номинальная будет 35W — 40W.

К тому же сильно экономят на начинке, чтобы снизить цену. Кое где не хватает элементов, которые обеспечивают стабильную работу. Применяются самые дешевые комплектующие, с коротким сроком службы и невысокого качества, поэтому процент брака относительно высокий. Как правило, комплектующие работают на пределе своих параметров, без какого либо запаса.

Если производитель не указан, то ему не надо отвечать за качество и отзыв про его товар не напишут. А один и тот же товар выпускают несколько заводов в разной комплектации. Для хороших изделий должен быть указан бренд, значит он не боится отвечать за качество своей продукции.

Одним из лучших является бренд MeanWell, который дорожит качеством своих изделий и не выпускает барахло.

Срок службы

Как у любого электронного устройства у светодиодного драйвера есть срок службы, который зависит от условий эксплуатации. Фирменные современные светодиоды уже работают до 50-100 тысяч часов, поэтому питание выходит из строя раньше.

Классификация:

  1. ширпотреб до 20.000ч.;
  2. среднее качество до 50.000ч.;
  3. до 70.000ч. источник питания на качественных японских комплектующих.

Этот показатель важен при расчёте окупаемости на долгосрочную перспективу. Для бытового пользования хватает ширпотреба. Хотя скупой платит дважды, и в светодиодных прожекторах и светильниках это отлично работает.

ЛЕД драйвер на 220В

Современные светодиодные драйвера конструктивно выполняются на ШИМ контроллере, который очень хорошо может стабилизировать ток.

Основные параметры:

  1. номинальная мощность;
  2. рабочий ток;
  3. количество подключаемых светодиодов;
  4. коэффициент мощности;
  5. КПД стабилизатора.

Корпуса для уличного использования выполняются из металла или ударопрочного пластика. При изготовлении корпуса из алюминия он может выступать в качестве системы охлаждения для электронной начинки. Особенно это актуально при заполнении корпуса компаундом.

На маркировке часто указывают, сколько светодиодов можно подключить и какой мощности. Это значение может быть не только фиксированным, но и в виде диапазона. Например, возможно подключение светодиодов 12 220 от 4 до 7 штук по 1W. Это зависит от конструкции электрической схемы светодиодного драйвера.

RGB драйвер на 220В

Трёхцветные светодиоды RGB отличаются от одноцветных тем, что содержат в одном корпусе кристаллы разных цветов красный, синий, зелёный. Для управления ими каждый цвет необходимо зажигать отдельно. У диодных лент для этого используется RGB контроллер и блок питания.

Если для RGB светодиода указана мощность 50W, то это общая на всё 3 цвета. Чтобы узнать примерную нагрузку на каждый канал, делим 50W на 3, получим около 17W.

Кроме мощных led driver есть и на 1W, 3W, 5W, 10W.

Пульты дистанционного управления (ДУ) бывают 2 типов. С инфракрасным управлением, как у телевизора. С управлением по радиоканалу, ДУ не надо направлять на приёмник сигнала.

Модуль для сборки

Если вас интересует лед driver для сборки своими руками светодиодного прожектора или светильника, то можно использовать led driver без корпуса.

Если у вас уже есть стабилизатор тока для светодиодов, который не подходит по силе тока, то её можно увеличить или уменьшить. Найдите на плате микросхему ШИМ контроллера, от которого зависят характеристики led драйвера. На ней указана маркировка, по которой необходимо найти спецификации на неё. В документации будет указана типовая схема включения. Обычно ток на выходе задаётся одним или несколькими резисторами, подключенными к ножкам микросхемы. Если изменить номинал резисторов или поставить переменное сопротивление согласно информации из спецификаций, то можно будет изменить ток. Только нельзя превышать начальную мощность, иначе может выйти из строя.

Драйвер для светодиодных светильников

К питанию уличной светотехники предъявляются немного другие требования. При проектировании уличного освещения учитывается, то LED driver будет работать в условиях от -40° до +40° в сухом и влажном воздухе.

Коэффициент пульсаций для светильников может быть выше, чем при использовании внутри помещения. Для уличного освещения этот показатель становится не важным.

При эксплуатации на улице требуется полная герметичность блока питания. Существует несколько способов защиты от попадания влаги:

  1. заливка всей платы герметиком или компаундом;
  2. сборка блока с использованием силиконовых уплотнителей;
  3. размещение платы светодиодного драйвера в одном объёме со светодиодами.

Максимальный уровень защиты это IP68, обозначается как «Waterproof LED Driver» или «waterproof electronic led driver». У китайцев это не гарантия водонепроницаемости.

По моей практике заявленный уровень защиты от влаги и пыли не всегда соответствует реальному. В некоторых местах может не хватать уплотнителей. Обратите внимание на ввод и вывод кабеля из корпуса, попадаются образцы с отверстием, которое не закрыто герметиком или другим способом. Вода по кабелю сможет затекать в корпус и затем в нём испаряться. Это приведет к возникновению коррозии на плате и открытых частях проводов. Это многократно сократит срок службы прожектора или светильника.

Блок питания для led ленты

LED лента работает по другому принципу, для неё требуется стабилизированное напряжение. Токозадающий резистор установлен на самой ленте. Это облегчает процесс подключения, подсоединить можно отрезок любой длины начиная от 3см до 100м.

Поэтому питание для светодиодной ленты можно сделать из любого блока питания на 12в от бытовой электроники.

Основные параметры:

  1. количество вольт на выходе;
  2. номинальная мощность;
  3. степень защиты от влаги и пыли
  4. коэффициент мощности.

Led драйвер своими руками

Простейший драйвер своими руками можно изготовить за 30 минут, даже если вы не знаете основы электроники. В качестве источника напряжения можно использовать блок питания от бытовой электроники с напряжением от 12В до 37В. Особенно подходит блок питания от ноутбука, у которого 18 – 19В и мощность от 50W до 90W.

Потребуется минимум деталей, все они изображены на картинке. Радиатор для охлаждения мощного светодиода можно позаимствовать из компьютера. Наверняка где-нибудь дома в кладовке у вас пылятся старые запчасти от системного блока. Лучше всего подойдёт от процессора.

Ччто бы узнать номинал требуемого сопротивления, используйте калькулятор расчёта стабилизатора тока для LM317.

Прежде чем делать led driver 50W своими руками, стоит немного поискать, например есть в каждой диодной лампе. Если у вас есть неисправная лампочка, у которой неисправность в диодах, то можно использовать driver из неё.

Низковольтные

Подробно разберем виды низковольтных лед драйверов работающих от напряжения до 40 вольт. Наши китайские братья по разуму предлагают множество вариантов. На базе ШИМ контроллеров производятся стабилизаторы напряжения и стабилизаторы тока. Основное отличие, у модуля с возможностью стабилизации тока на плате находится 2-3 синих регулятора, в виде переменных резисторов.

В качестве технических характеристик всего модуля указывают параметры ШИМ микросхемы, на которой он собран. Например устаревший но популярный LM2596 по спецификациям держит до 3 Ампер. Но без радиатора он выдержит только 1 Ампер.

Более современный вариант с улучшенным КПД это ШИМ контроллер XL4015 рассчитанный на 5А. С миниатюрной системой охлаждения может работать до 2,5А.

Если у вас очень мощные сверхяркие светодиоды, то вам нужен led драйвер для светодиодных светильников. Два радиатора охлаждают диод Шотки и микросхему XL4015. В такой конфигурации она способна работать до 5А с напряжением до 35В. Желательно чтобы он не работал в предельных режимах, это значительно повысить его надежность и срок эксплуатации.

Если у вас небольшой светильник или карманный прожектор, то вам подойдет миниатюрный стабилизатор напряжения, с током до 1,5А. Входное напряжение от 5 до 23В, выход до 17В.

Регулировка яркости

Для регулирования яркости светодиода можно использовать компактные светодиодный диммеры, которые появились недавно. Если его мощности будет недостаточно, то можно поставить диммер побольше. Обычно они работают в двух диапазонах на 12В и 24В.

Управлять можно с помощью инфракрасного или радиопульта дистанционного управления (ДУ). Они стоят от 100руб за простую модель и от 200руб модель с пультом ДУ. В основном такие пульты используют для диодных лент на 12В. Но его с лёгкостью можно поставить к низковольтному драйверу.

Диммирование может быть аналоговым в виде крутящейся ручки и цифровым в виде кнопок.

led-obzor.ru

LED ДРАЙВЕР

Мы рассмотрим действительно простой и недорогой мощный светодиодный драйвер. Схема представляет собой источник постоянного тока, что означает, что он сохраняет яркость LED постоянной независимо от того, какое питание вы используете. Ели при ограничении тока небольших сверхярких светодиодов достаточно резистора, то для мощностей свыше 1-го ватта нужна специальная схема. В общем так питать светодиод лучше, чем с помощью резистора. Предлагаемый led драйвер идеально подходит особенно для мощных светодиодов, и может быть использован для любого их числа и конфигурации, с любым типом питания. В качестве тестового проекта, мы взяли LED элемент на 1 ватт. Вы можете легко изменить элементы драйвера на использование с более мощными светодиодами, на различные типы питания — БП, аккумуляторы и др.

Технические характеристики led драйвера:

Входное напряжение: 2В до 18В — выходное напряжение: на 0,5 меньше, чем входное напряжение (0.5V падение на полевом транзисторе) — ток: 20 ампер

Детали на схеме:

R2: приблизительно в 100-омный резистор

R3: подбирается резистор

Q2: маленький NPN-транзистор (2N5088BU)

Q1: большой N-канальный транзистор (FQP50N06L)

LED: Luxeon 1-ватт LXHL-MWEC

Другие элементы драйвера:

В качестве источника питания использован трансформатор-адаптер, вы можете использовать батареи. Для питания одного светодиода 4 — 6 вольт достаточно. Вот почему эта схема удобна, что вы можете использовать широкий спектр источников питания, и он всегда будет светить одинаково. Радиатор не требуется, так как идёт около 200 мА тока. Если планируется больше тока, вы должны установить LED элемент и транзистор Q1 на радиатор.

Выбор сопротивления R3

Ток LED устанавливается с помощью R3, он приблизительно равен: 0.5 / R3

Мощность рассеиваемая на резисторе приблизительно: 0.25 / R3

В данном случае установлен ток 225 мА с помощью R3 на 2,2 Ом. R3 имеет мощность 0,1 Вт, таким образом, стандартный 0,25 Вт резистор подходит отлично. Транзистор Q1 будет работать до 18 В. Если вы хотите больше, нужно изменить модель. Без радиаторов, FQP50N06L может рассеивать только около 0,5 Вт — этого достаточно для 200 мА тока при 3-х вольтовой разнице между источником питания и светодиодом.

Функции транзисторов на схеме:

Q1 используется в качестве переменного резистора.- Q2 используется в качестве токового датчика, а R3-это установочный резистор, который приводит к закрыванию Q2, когда течет повышенный ток. Транзистор создаёт обратную связь, которая непрерывно отслеживает текущие параметры тока и держит его точно в заданном значении.

Эта схема настолько проста, что нет смысла собирать её на печатной плате. Просто подключите выводы деталей навесным монтажом.

Форум по питанию различных светодиодов

elwo.ru

Драйверы для светодиодных лампочек.

Небольшая лабораторка на тему «какой драйвер лучше?» Электронный или на конденсаторах в роли балласта? Думаю, что у каждого есть своя ниша. Постараюсь рассмотреть все плюсы и минусы и тех и других схем. Напомню формулу расчёта балластных драйверов. Может кому интересно? Свой обзор построю по простому принципу. Сначала рассмотрю драйверы на конденсаторах в роли балласта. Затем посмотрю на их электронных собратьев. Ну а в конце сравнительный вывод. А теперь перейдём к делу. Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная). Почему усовершенствованная? Эта схема подойдёт к любой дешёвой китайской лампочке. Отличие будет только в номиналах радиодеталей и отсутствии некоторых сопротивлений (в целях экономии).
Бывают лампочки с отсутствующим С2 (очень редко, но бывает). В таких лампочках коэффициент пульсаций 100%. Очень редко ставят R4. Хотя сопротивление R4 просто необходимо. Оно будет вместо предохранителя, а также смягчит пусковой ток. Если в схеме отсутствует, лучше поставить. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды (для самодельщиков), можно рассчитать его ёмкость по формуле (1).
Эту формулу я писАл много раз. Повторюсь. Формула (2) позволяет сделать обратное. С её помощью можно посчитать ток через светодиоды, а затем и мощность лампочки, не имея Ваттметра. Для расчётов мощности нам ещё необходимо знать падение напряжения на светодиодах. Можно вольтметром измерить, можно просто посчитать (без вольтметра). Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но очень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 — 30В и т.д.). Всё просто. Бывает, что схемы собраны из светодиодов в несколько параллелей. Тогда надо будет учитывать количество светодиодов только в одной параллели. Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Рассчитаем лампочку на 100мА. Будет запас по мощности. По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2). (220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети (это первый минус драйвера), от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. При помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек (уже упоминал). Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения. Чем больше превышает, тем болезненнее реагирует (это дружеский совет). Тем более, за этими пределами формула работает неточно. Точно уже не рассчитать. Вот появился очень большой плюс у этих драйверов. Мощность лампочки можно подгонять под нужный результат подбором ёмкости С1 (как самодельных, так и уже купленных). Но тут же появился и второй минус. Схема не имеет гальванической развязки с сетью. Если ткнуть в любое место включенной лампочки отвёрткой-индикатором, она покажет наличие фазы. Трогать руками (включенную в сеть лампочку) категорически запрещено. Такой драйвер имеет практически 100%-ный КПД. Потери только на диодах и двух сопротивлениях. Его можно изготовить в течение получаса (по-быстрому). Даже плату травить необязательно. Конденсаторы заказывал эти:aliexpress.com/snapshot/310648391.html aliexpress.com/snapshot/310648393.html Диоды вот эти:aliexpress.com/snapshot/6008595825.html

Но у этих схем есть ещё один серьёзный недостаток. Это пульсации. Пульсации частотой 100Гц, результат выпрямления сетевого напряжения.
У различных лампочек форма незначительно будет отличаться. Всё зависит от величины фильтрующей ёмкости С2. Чем больше ёмкость, тем меньше горбы, тем меньше пульсации. Необходимо смотреть ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. Там же формула для расчёта (приложение Г). Но это не всё. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». В зависимости от предназначения помещения максимально допустимые пульсации от 10 до 20%. В жизни ничего просто так не бывает. Результат простоты и дешевизны лампочек налицо. Пора переходить к электронным драйверам. Здесь тоже не всё так безоблачно. Вот такой драйвер я заказывал. Это ссылка именно на него в начале обзора.
Почему заказал именно такой? Объясню. Хотел сам «колхозить» светильники на 1-3Вт-ных светодиодах. Подбирал по цене и характеристикам. Меня устроил бы драйвер на 3-4 светодиода с током до 700мА. Драйвер должен иметь в своём составе ключевой транзистор, что позволит разгрузить микросхему управления драйвером. Для уменьшения ВЧ пульсаций по выходу должен стоять конденсатор. Первый минус. Стоимость подобных драйверов (US $13.75 /10 штук) отличается в бОльшую сторону от балластных. Но тут же плюс. Токи стабилизации подобных драйверов 300мА, 600мА и выше. Балластным драйверам такое и не снилось (более 200мА не рекомендую). Посмотрим на характеристики от продавца: ac85-265v» that everyday household appliances.»
load after 10-15v; can drive 3-4 3w led lamp beads series
600maА вот диапазон выходных напряжений маловат (тоже минус). Максимум, можно подцепить последовательно пять светодиодов. Параллельно можно подцеплять сколько угодно. Светодиодная мощность считается по формуле: Ток драйвера умножить на падение напряжения на светодиодах [количество светодиодов (от трёх до пяти) и умножить на падение напряжения на светодиоде (около 3В)]. Ещё один большой недостаток этих драйверов – большие ВЧ помехи. Некоторые экземпляры слышит не только ФМ радио, но и пропадает приём цифровых каналов ТВ при их работе. Частота преобразования составляет несколько десятков кГц. А вот защиты, как правило, никакой (от помех).
Под трансформатором что-то типа «экрана». Должно уменьшить помехи. Именно Этот драйвер почти не фонит. Почему они фонят, становится ясно, если посмотреть на осциллограмму напряжения на светодиодах. Без конденсаторов ёлочка куда серьёзнее!
На выходе драйвера должен стоять не только электролит, но и керамика для подавления ВЧ помех. Высказал своё мнение. Обычно стоит либо то либо другое. Бывает, что ничего не стоит. Это бывает в дешёвых лампочках. Драйвер спрятан внутри, предъявить претензию будет сложно. Посмотрим схему. Но предупрежу, она ознакомительная. Нанёс только основные элементы, которые необходимы нам для творчества (для понимания «что к чему»).

Погрешность в расчётах присутствует. Кстати, на мелких мощностях приборчик тоже подвирает.
А теперь посчитаем пульсации (теория в начале обзора). Посмотрим, что же видит наш глаз. К осциллографу подключаю фотодиод. Два снимка объединил в один для удобства восприятия. Слева лампочка выключена. Справа – лампочка включена. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. А у нас около 100Гц. Для глаз вредно.
У меня получилось 20%. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». Использовать можно, но не в спальне. А у меня коридор. Можно СНиП и не смотреть.
А теперь посмотрим другой вариант подключения светодиодов. Это схема подключения к электронному драйверу.
Итого 3 параллели по 4 светодиода.
Вот, что показывает Ваттметр. 7,1Вт активной мощности.
Посмотрим, сколько доходит до светодиодов. Подключил к выходу драйвера амперметр и вольтметр.
Посчитаем чисто светодиодную мощность. Р=0,49А*12,1В=5,93Вт. Всё, что не хватает, взял на себя драйвер.
Теперь посмотрим, что же видит наш глаз. Слева лампочка выключена. Справа – лампочка включена. Частота повторения импульсов около 100кГц. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что вредны для здоровья только пульсации частотой до 300Гц. А у нас около 100кГц. Для глаз безвредно.

Всё рассмотрел, всё измерил.
Теперь выделю плюсы и минусы этих схем:Минусы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
-Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
-Невозможно достичь высоких токов свечения светодиодов, т.к. при этом необходимы конденсаторы больших размеров. А увеличение ёмкости приводит к большим пусковым токам, портящим выключатели.
-Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.Плюсы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
+Схема очень проста, не требует особых навыков при изготовлении.
+Диапазон выходных напряжений просто фантастический. Один и тот же драйвер будет работать и с одним и с сорока последовательно соединёнными светодиодами. У электронных драйверов выходные напряжения имеют намного более узкий диапазон.
+Низкая стоимость подобных драйверов, которая складывается буквально из стоимости двух конденсаторов и диодного моста.
+Можно изготовить и самому. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
+Можно регулировать ток через светодиоды подбором ёмкости балласта.
+Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
Есть ещё одно качество, которое можно отнести как к плюсам, так и к минусам. При использовании подобных схем с выключателями с подсветкой, светодиоды лампочки подсвечиваются. Лично для меня это скорее плюс, чем минус. Использую повсеместно как дежурное (ночное) освещение.
Умышленно не пишу, какие драйверы лучше, у каждого есть своя ниша.
Я выложил по максимуму всё, что знаю. Показал все плюсы и минусы этих схем. А выбор как всегда делать вам. Я лишь постарался помочь.
На этом всё!
Удачи всем.

mysku.ru

Как подобрать светодиодный драйвер — виды и основные характеристики

Светодиоды получили большую популярность. Главную роль в этом сыграл светодиодный драйвер, поддерживающий постоянный выходной ток определенного значения. Можно сказать, что это устройство представляет собой источник тока для LED-приборов. Такой драйвер тока, работая вместе со светодиодом, обеспечивает долголетний срок службы и надежную яркость. Анализ характеристик и видов этих устройств позволяет понять, какие они выполняют функции, и как их правильно выбирать.

Что такое драйвер и каково его назначение?

Драйвер для светодиодов является электронным устройством, на выходе которого образуется постоянный ток после стабилизации. В данном случае образуется не напряжение, а именно ток. Устройства, которые стабилизируют напряжение, называются блоками питания. На их корпусе указывается выходное напряжение. Блоки питания 12 В применяют для питания LED-линеек, светодиодной ленты и модулей.

Основным параметром LED-драйвера, которым он сможет обеспечивать потребителя длительное время при определенной нагрузке, является выходной ток. В качестве нагрузки применяются отдельные светодиоды или сборки из аналогичных элементов.

Драйвер для светодиода обычно питается от сети напряжением 220 В. В большинстве случаев диапазон рабочего выходного напряжения составляет от трех вольт и может достигать нескольких десятков вольт. Для подключения светодиодов 3W в количестве шести штук потребуется драйвер с выходным напряжением от 9 до 21 В, рассчитанный на 780 мА. При своей универсальности он обладает малым КПД, если на него включить минимальную нагрузку.

При освещении в автомобилях, в фарах велосипедов, мотоциклов, мопедов и т. д., в оснащении переносных фонарей используется питание с постоянным напряжением, значение которого варьируется от 9 до 36 В. Можно не применять драйвер для светодиодов с небольшой мощностью, но в таких случаях потребуется внесение соответствующего резистора в питающую сеть напряжением 220 В. Несмотря на то, что в бытовых выключателях используется этот элемент, подключить светодиод к сети 220 В и рассчитывать на надежность достаточно проблематично.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.

На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Технические характеристики

Перед приобретением преобразователя для светодиодов следует изучить характеристики устройства. К ним относятся следующие параметры:

  • выдаваемая мощность;
  • выходное напряжение;
  • номинальный ток.

Схема подключения LED-драйвера

На выходное напряжение влияет схема подключения к источнику питания, количество в ней светодиодов. Значение тока пропорционально зависит от мощности диодов и яркости их излучения. Светодиодный драйвер должен выдавать столько тока для светодиодов, сколько потребуется для обеспечения постоянной яркости. Стоит помнить, что мощность необходимого устройства должна быть более потребляемой всеми светодиодами. Рассчитать ее можно, используя следующую формулу:

P(led) – мощность одного LED-элемента;

n — количество LED-элементов.

Для обеспечения длительной и стабильной работы драйвера следует учитывать запас мощности устройства в 20–30% от номинальной.

Выполняя расчет, следует учитывать цветовой фактор потребителя, так как он влияет на падение напряжения. У разных цветов оно будет иметь отличающиеся значения.

Срок годности

Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:

  • низкого качества, с работоспособностью до 20 тысяч часов;
  • с усредненными параметрами — до 50 тысяч часов;
  • преобразователь, состоящий из комплектующих известных брендов — до 70 тысяч часов.

Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости. Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).

Как подобрать драйвер?

Насчитывается множество разновидностей драйверов, используемых для LED-освещения. Большинство из представленной продукции изготовлено в Китае и не имеет нужного качества, но выделяется при этом низким ценовым диапазоном. Если нужен хороший драйвер, лучше не гнаться за дешевизной китайского производства, так как их характеристики не всегда совпадают с заявленными, и редко когда к ним прилагается гарантия. Может быть брак на микросхеме или быстрый выход из строя устройства, в таком случае не удастся совершить обмен на более качественное изделие или вернуть средства.

Наиболее часто выбираемым вариантом является бескорпусный драйвер, питающийся от 220 В или 12 В. Различные модификации позволяют использовать их для одного или более светодиодов. Эти устройства можно выбрать для организации исследований в лаборатории или же проведения экспериментов. Для фито-ламп и бытового применения выбирают драйверы для светодиодов, находящиеся в корпусе. Бескорпусные устройства выигрывают в ценовом плане, но проигрывают в эстетике, безопасности и надежности.

Виды драйверов

Устройства, осуществляющие питание светодиодов, условно можно разделить на:

  • импульсные;
  • линейные.

Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток — во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.

Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.

lampagid.ru

Схемы подключения светодиодов к 220В и 12В

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет, чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10. Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

  1. светодиодный драйвер со стабилизированным током;
  2. блок питания со стабилизированным напряжением.

В первом варианте применяется специализированный источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения необходимо использовать токоограничивающий резистор.Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены. Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную мощность.

Подключение к постоянному напряжению

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие. Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт. В длинной цепочке из 60-70 LED на каждом падает 3В, что и позволяет подсоединять напрямую к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление. Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов белого света, поэтому имеет 6 ножек. То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

led-obzor.ru

Схемы подключения розеток и выключателей

  • Схемы led драйверов

  • Небольшая лабораторка на тему «какой драйвер лучше?» Электронный или на конденсаторах в роли балласта? Думаю, что у каждого есть своя ниша. Постараюсь рассмотреть все плюсы и минусы и тех и других схем. Напомню формулу расчёта балластных драйверов. Может кому интересно?

    Свой обзор построю по простому принципу. Сначала рассмотрю драйверы на конденсаторах в роли балласта. Затем посмотрю на их электронных собратьев. Ну а в конце сравнительный вывод.
    А теперь перейдём к делу.
    Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная). Почему усовершенствованная? Эта схема подойдёт к любой дешёвой китайской лампочке. Отличие будет только в номиналах радиодеталей и отсутствии некоторых сопротивлений (в целях экономии).

    Бывают лампочки с отсутствующим С2 (очень редко, но бывает). В таких лампочках коэффициент пульсаций 100%. Очень редко ставят R4. Хотя сопротивление R4 просто необходимо. Оно будет вместо предохранителя, а также смягчит пусковой ток. Если в схеме отсутствует, лучше поставить. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды (для самодельщиков), можно рассчитать его ёмкость по формуле (1).

    Эту формулу я писАл много раз. Повторюсь.
    Формула (2) позволяет сделать обратное. С её помощью можно посчитать ток через светодиоды, а затем и мощность лампочки, не имея Ваттметра. Для расчётов мощности нам ещё необходимо знать падение напряжения на светодиодах. Можно вольтметром измерить, можно просто посчитать (без вольтметра). Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но очень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 — 30В и т.д.). Всё просто. Бывает, что схемы собраны из светодиодов в несколько параллелей. Тогда надо будет учитывать количество светодиодов только в одной параллели.
    Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Рассчитаем лампочку на 100мА. Будет запас по мощности. По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2).
    (220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети (это первый минус драйвера), от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. При помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек (уже упоминал). Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения. Чем больше превышает, тем болезненнее реагирует (это дружеский совет). Тем более, за этими пределами формула работает неточно. Точно уже не рассчитать.
    Вот появился очень большой плюс у этих драйверов. Мощность лампочки можно подгонять под нужный результат подбором ёмкости С1 (как самодельных, так и уже купленных). Но тут же появился и второй минус. Схема не имеет гальванической развязки с сетью. Если ткнуть в любое место включенной лампочки отвёрткой-индикатором, она покажет наличие фазы. Трогать руками (включенную в сеть лампочку) категорически запрещено.
    Такой драйвер имеет практически 100%-ный КПД. Потери только на диодах и двух сопротивлениях.
    Его можно изготовить в течение получаса (по-быстрому). Даже плату травить необязательно.
    Конденсаторы заказывал эти:

    Диоды вот эти:

    Но у этих схем есть ещё один серьёзный недостаток. Это пульсации. Пульсации частотой 100Гц, результат выпрямления сетевого напряжения.

    У различных лампочек форма незначительно будет отличаться. Всё зависит от величины фильтрующей ёмкости С2. Чем больше ёмкость, тем меньше горбы, тем меньше пульсации. Необходимо смотреть ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. Там же формула для расчёта (приложение Г).

    Но это не всё. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». В зависимости от предназначения помещения максимально допустимые пульсации от 10 до 20%.
    В жизни ничего просто так не бывает. Результат простоты и дешевизны лампочек налицо.
    Пора переходить к электронным драйверам. Здесь тоже не всё так безоблачно.
    Вот такой драйвер я заказывал. Это ссылка именно на него в начале обзора.

    Почему заказал именно такой? Объясню. Хотел сам «колхозить» светильники на 1-3Вт-ных светодиодах. Подбирал по цене и характеристикам. Меня устроил бы драйвер на 3-4 светодиода с током до 700мА. Драйвер должен иметь в своём составе ключевой транзистор, что позволит разгрузить микросхему управления драйвером. Для уменьшения ВЧ пульсаций по выходу должен стоять конденсатор. Первый минус. Стоимость подобных драйверов (US $13.75 /10 штук) отличается в бОльшую сторону от балластных. Но тут же плюс. Токи стабилизации подобных драйверов 300мА, 600мА и выше. Балластным драйверам такое и не снилось (более 200мА не рекомендую).
    Посмотрим на характеристики от продавца:

    ac85-265v» that everyday household appliances.»
    load after 10-15v; can drive 3-4 3w led lamp beads series
    600ma

    А вот диапазон выходных напряжений маловат (тоже минус). Максимум, можно подцепить последовательно пять светодиодов. Параллельно можно подцеплять сколько угодно. Светодиодная мощность считается по формуле: Ток драйвера умножить на падение напряжения на светодиодах [количество светодиодов (от трёх до пяти) и умножить на падение напряжения на светодиоде (около 3В)].
    Ещё один большой недостаток этих драйверов – большие ВЧ помехи. Некоторые экземпляры слышит не только ФМ радио, но и пропадает приём цифровых каналов ТВ при их работе. Частота преобразования составляет несколько десятков кГц. А вот защиты, как правило, никакой (от помех).

    Под трансформатором что-то типа «экрана». Должно уменьшить помехи. Именно Этот драйвер почти не фонит.
    Почему они фонят, становится ясно, если посмотреть на осциллограмму напряжения на светодиодах. Без конденсаторов ёлочка куда серьёзнее!

    На выходе драйвера должен стоять не только электролит, но и керамика для подавления ВЧ помех. Высказал своё мнение. Обычно стоит либо то либо другое. Бывает, что ничего не стоит. Это бывает в дешёвых лампочках. Драйвер спрятан внутри, предъявить претензию будет сложно.
    Посмотрим схему. Но предупрежу, она ознакомительная. Нанёс только основные элементы, которые необходимы нам для творчества (для понимания «что к чему»).

    Погрешность в расчётах присутствует. Кстати, на мелких мощностях приборчик тоже подвирает.
    А теперь посчитаем пульсации (теория в начале обзора). Посмотрим, что же видит наш глаз. К осциллографу подключаю фотодиод. Два снимка объединил в один для удобства восприятия. Слева лампочка выключена. Справа – лампочка включена. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. А у нас около 100Гц. Для глаз вредно.

    У меня получилось 20%. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». Использовать можно, но не в спальне. А у меня коридор. Можно СНиП и не смотреть.
    А теперь посмотрим другой вариант подключения светодиодов. Это схема подключения к электронному драйверу.

    Итого 3 параллели по 4 светодиода.
    Вот, что показывает Ваттметр. 7,1Вт активной мощности.

    Посмотрим, сколько доходит до светодиодов. Подключил к выходу драйвера амперметр и вольтметр.

    Посчитаем чисто светодиодную мощность. Р=0,49А*12,1В=5,93Вт. Всё, что не хватает, взял на себя драйвер.
    Теперь посмотрим, что же видит наш глаз. Слева лампочка выключена. Справа – лампочка включена. Частота повторения импульсов около 100кГц. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что вредны для здоровья только пульсации частотой до 300Гц. А у нас около 100кГц. Для глаз безвредно.

    Всё рассмотрел, всё измерил.
    Теперь выделю плюсы и минусы этих схем:
    Минусы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.

    -Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
    -Невозможно достичь высоких токов свечения светодиодов, т.к. при этом необходимы конденсаторы больших размеров. А увеличение ёмкости приводит к большим пусковым токам, портящим выключатели.
    -Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.
    Плюсы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.

    +Схема очень проста, не требует особых навыков при изготовлении.
    +Диапазон выходных напряжений просто фантастический. Один и тот же драйвер будет работать и с одним и с сорока последовательно соединёнными светодиодами. У электронных драйверов выходные напряжения имеют намного более узкий диапазон.
    +Низкая стоимость подобных драйверов, которая складывается буквально из стоимости двух конденсаторов и диодного моста.
    +Можно изготовить и самому. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
    +Можно регулировать ток через светодиоды подбором ёмкости балласта.
    +Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
    Есть ещё одно качество, которое можно отнести как к плюсам, так и к минусам. При использовании подобных схем с выключателями с подсветкой, светодиоды лампочки подсвечиваются. Лично для меня это скорее плюс, чем минус. Использую повсеместно как дежурное (ночное) освещение.
    Умышленно не пишу, какие драйверы лучше, у каждого есть своя ниша.
    Я выложил по максимуму всё, что знаю. Показал все плюсы и минусы этих схем. А выбор как всегда делать вам. Я лишь постарался помочь.
    На этом всё!
    Удачи всем.

    Планирую купить

    +70

    Добавить в избранное

    Обзор понравился

    +68

    +157


    Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.

    Светодиодные светильники на 220 В

    Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.

    Типы светодиодов

    Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

    Чтобы воспроизвести белый свет, «синий» чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

    Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

    1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
    2. «Пиранья» – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
    3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
    4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

    Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

    Устройство LED-лампы

    В состав лампы входят:

    • корпус;
    • цоколь;
    • рассеиватель;
    • радиатор;
    • блок светодиодов LED;
    • бестрансформаторный драйвер.

    Устройство LED-лампы на 220 вольт

    На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.

    По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

    Под общее освещение выбираются светильники с 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

    Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.

    Простейшая схема подключения LED-лампы в сеть 220 вольт

    Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

    На рисунке ниже изображена классическая схема источника питания LED-лампы.
    Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

    Классическая схема включения LED-лампы в сеть 220 В

    На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.

    своими руками

    В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.

    Лампа светодиодная на 220 вольт

    Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене.

    Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Это значительно снижает их ресурс, но «вечные» устройства продавать невыгодно. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор.

    Если светильники моргают, причиной может быть выход из строя конденсатора С1. Его следует заменить на другой, с номинальным напряжением 400 В.

    Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия – это один процесс. Для этого LED-лампу разбирают и восстанавливают перегоревшие светодиоды и радиодетали драйвера. В продаже часто бывают оригинальные светильники с нестандартными лампами, которым в дальнейшем трудно найти замену. Простой драйвер можно взять из неисправной лампы, а светодиоды – из старого фонарика.

    Схема драйвера собирается по классическому образцу, рассмотренному выше. Только к ней добавляется резистор R3 для разрядки конденсатора С2 при отключении и пара стабилитронов VD2,VD3 для его шунтирования на случай обрыва цепи светодиодов. Можно обойтись одним стабилитроном, если правильно подобрать напряжение стабилизации. Если конденсатор выбрать под напряжение больше 220 В, можно обойтись без дополнительных деталей. Но в этом случае его размеры увеличатся и после того, как будет сделан ремонт, плата с деталями может не поместиться в цоколь.

    Драйвер LED-лампы

    Схема драйвера приведена для лампы из 20 светодиодов. Если их количество будет другим, необходимо подобрать такую величину емкости конденсатора С1, чтобы через них проходил ток 20 мА.

    Схема питания LED-лампы является чаще всего бестрансформаторной, и следует соблюдать осторожность при монтаже своими руками на металлическом светильнике, чтобы не было замыкания фазы или нуля на корпус.

    Конденсаторы подбираются по таблице, в зависимости от количества светодиодов. Их можно закрепить на алюминиевой пластине в количестве 20-30 шт. Для этого в ней сверлятся отверстия, и на термоклей устанавливаются светодиоды. Их пайка производится последовательно. Все детали можно разместить на печатной плате из стеклотекстолита.
    Они располагаются со стороны, где отсутствуют печатные дорожки, за исключением светодиодов. Последние – крепятся пайкой выводов на плате. Их длина составляет около 5 мм. Затем устройство собирается в светильнике.

    Настольная лампа на светодиодах

    Лампа на 220 В. Видео

    Об изготовлении светодиодной лампы на 220 В своими руками можно узнать из этого видео.

    Правильно изготовленная самодельная схема светодиодной лампы позволит эксплуатировать ее многие годы. Для нее бывает возможным ремонт. Источники питания могут быть любые: от обычной батарейки до сети на 220 вольт.

    Для многих многоквартирных домов актуальна проблема освещения лестничных площадок: хорошую лампу туда ставить жалко, а дешевые быстро выходят из строя.

    С другой стороны качество освещения в данном случае не является критичным, так как люди находятся там очень недолго, то вполне можно поставить туда лапочки с повышенными пульсациями. А раз так, то схема светодиодной лампы на 220 В получиться совсем простой:

    Список номиналов:

    • C1 – значение емкости по таблице, 275 В или больше
    • C2 – 100 мкФ (напряжение должно быть больше чем падает на диодах
    • R1 – 100 Ом
    • R2 – 1 MОм (для разряда конденсатора C1)
    • VD1 .. VD4 – 1N4007

    Я уже приводил схему подключение светодиодной ленты к сети 220В так вот её можно упростить выкинуть стабилизатор тока. Упрощенная схема не будет работать в широком диапазоне напряжений, это плата за упрощение.

    Конденсатор C1 является тем компонентом, который ограничивает ток. И выбор его значения очень важен, его величина зависит от напряжения питания, напряжения на последовательно включенных светодиодах и требуемого тока через светодиоды.

    количество светодиодов последовательно, шт11020305070
    напряжение на сборке из светодиодов, В3,53570105165230
    ток через светодиоды, мА (С1=1000нФ)645749423220
    ток через светодиоды, мА (С1=680нФ)443934292214
    ток через светодиоды, мА (С1=470нФ)3027242015
    ток через светодиоды, мА (С1=330нФ)21191714
    ток через светодиоды, мА (С1=220нФ)141311

    Для 1 светодиода в сборке фильтрующий конденсатор C2 следует увеличить до 1000мкФ, а для 10 светодиодов, до 470мкФ.

    По таблице можно понять, что для получения максимальной мощности (чуть более 4 Вт) нужен конденсатор на 1мкФ и 70 последовательно включенных светодиодов на 20мА. Для более мощных источников света лучше подойдет схема светодиодной лампы на 220 в использующая широтноимпульсную модуляцию для преобразования и стабилизации тока через светодиоды.

    Схемы на основе широтноимпульсной более сложные, но зато обладают преимуществами: им не требуется большой ограничивающий конденсатор, эти схемы обладают высоким КПД и широким диапазоном работы.

    Я заказал несколько светодиодных светильников в Китае. В основе преобразователей этих ламп лежат микросхемы драйверов разработанных в том же Китае, конечно качество работы этих схем ещё не дотягивает до западных стандартов, но вот стоимость более чем демократичная.

    Итак, конкретно в последних светодиодных лампах была установлена микросхема WS3413D7P, являющаяся светодиодным драйвером с активным корректором коэффициента мощности.

    Что же мы видим на схеме? Все тот же диодный мост VD1 — VD4, сглаживающий конденсатор С1. Остальные же компоненты работают нужны для работы микросхемы D1. Резистор R1 нужен для питания самой микросхемы в начальный момент времени, а после запуска микросхема начинает питаться со своего выхода через цепочку R5, VD5. Конденсатор С2 фильтрует питания собственных нужд. Конденсатор С3 служит для задания частоты преобразования. Резистор R2 нужен для измерения тока через светодиоды. Делитель на резисторах R3, R4 позволяет микросхеме получать информацию о напряжении на светодиодной сборке. Катушка индуктивности L1 и конденсатор C4 нужны для преобразования импульсной энергии в постоянную.

    Существует куча других разновидностей микросхем, но основных типов высоковольтных драйверов светодиодов всего три: на основе емкостного гасящего сопротивления, активный гасящий стабилизатор тока и импульсный стабилизатор тока.

    Навигация по записям

    15 thoughts on “Схема светодиодной лампы на 220 в

    1. Игорь

      Даже с «выброшенным» стабилизатором, светодиодная лампочка для подъезда получается слишком дорогой. Там лучше вкрутить обычную лампочку «Ильича Эдисона» с диодом, который монтируется в слегка модернизированный патрон.

      1. Валерий

        Не в патрон, в выключатель, там больше места.

    2. Greg

      Не знаю, что слишком дорогого увидел здесь Игорь, но, уж если экономить по полной, то можно выкинуть сопротивления и мост. Останутся: С1, как реактивное сопротивление, один диод для выпрямления переменки и С2 (емкость увеличить в 2-3 раза) для сглаживания пульсаций. Затраты на питание и замену ламп накаливания гораздо выше, чем, даже первоначальный вариант схемы. Очень уж они неэкономичны, причем, во всех ракурсах. От них и избавляются поэтому везде, где только можно. А в подъездах — это архиважно и архинужно, как говаривал Ильич.

    3. admin
      Автор записи

      У лампы накаливая маловат ресурс, на коробке пишут 1000ч, при круглосуточной работе это 42 дня. В лучшем случае лампочка прослужит несколько месяцев.
      Питание лампы однополупериодным напряжением должно значительно увеличить ресурс (якобы до 100 раз), вот только светоотдача упадет больше чем в два раза. И лампочка будет мерцать с частотой 50Гц.
      Чтобы вернуть частоту к 100Гц, достаточно включить две одинаковых лампочки последовательно — и ресурс возрастет и частота не снизиться.

    4. олександр

      В первой схеме конденсатор С1 надо брать на большее допустимое напряжение в сети 220 в это действующее напряжение Максимальное 220*1,42= примерно 320 в к тому же как правило На конденсаторе указывается на постоянное напряжение а в сети 50 герц. Я рекомендую брать не меньше 450 В. Один диод как пишет Greg не пойдет так на светодиоды или выпрямительный диод будет действовать обратное напряжение.Я рекомендую Выкинуть диодный мост и С2 параллейно светодиодам в обратной полярности поставить диол один период пойдет через светодиод другой через силовой диод. Светодиод можно взять из не исправных фонариков.

    5. Greg

      Ну, обратное напряжение светодиоды должны выдержать, но идея хороша. Зачем терять один период? С2 — выбрасываем, да, а вместо предложенного Олександром силового, ставим еще один световой — пусть моргают попеременно, усиливая общий световой поток и защищая друг дружку от обратного напряжения. А учитывая, что сверхъярких светодиодов, в некоторые фонарики тулят штук по 20, наковырять можно много. Можно и целиком взять, у многих ручных фонарей — ручка выполнена в виде удлиненной лампочки кругового рассеивания.

    6. олександр

      Данную схему можно не только в подъезде как предполагает (Игорь) но где угодно, например освещение приусадебного участка по схеме Greg через понижающий трансформатор для безопасности и две группы светодиодов включенных параллейно и в противоположной полярности.или освещение кессона, душа летнего.

    7. Анатолий

      Я часто видел в подъездах мерцающие лампочки накаливания, где использовался «хитрый» патрон с одним диодом. По моему самое то для подъезда, экономия энергии и непрезентабельный вид. Вот для дома схема №1 вполне подойдёт, скопирую её себе.

    8. Николай

      разобрал «замолчавшую» светодиодную лампу на 11 ватт(100 эквивалента к накаливанию). То что автор называет драйвером, обычный инвертор, схема которого вошла в быт повсеместно, от лампочек до компьютеров и сварочных аппаратов. Так вот на моей лампе стоит 20 диодных светоизлучающих элементов. Исследуя их я пришел к выводу, что они включены как елочная гирлянда — последовательно. Обнаружить неисправный диод не составило труда. Припаяв перемычку из резистроа порядка 50 ом, лампа восстановилась. Так что светоизлучатели работают не при 9.8 иольтах а на всё напряжение выдаваемое инвертором. То есть 220 вольт.
      Дале — у меня есть фонарь ЭРА летучая мышь, с 6 вольтовым АКБ и люминесцентной лампой. Эта лампа светит очень гумозно при своих 7 ваттах. А АКБ хватает на 4 часа. Что я сделал — выпаял из схемы «драйвера» диодный мост и плату со светоизлучателями. В точки пайки проводов от инвертора обозначенные + и — , впаял этот мост соблюдая полярность. На вход моста подал переменное напряжение которое вырабатывал штатный генератор «Эры». Лампа заработала как надо. Светоотдача осталась той же как и от сети 220 вольт. Поскольку холостой ход генератора обеспечивал это напряжение на светоизлучателях.
      Как то вот так.

    Светодиодные фонари — Самоделкин — сделай сам своими руками

    Главная » Светодиодные фонари



    Раздел сайта «электроника схемы» содержит большое количество схем приборов, собранных на возможных открытых источниках интернета. Приборы, которые непременно будут вам полезны, приборы на все случаи жизни и для каждого, их можно сделать своими руками. В инструкциях по сборке подробно описан монтаж, приведены схемы, фотографии. Прочитав инструкции, вам будет намного проще собирать те или иные приборы. В этом разделе вы найдете схемы раций, блоков питания, преобразователей напряжения 12в 220в, инверторы, автомобильны, радиотехнические, и другие полезные схемы. Все что вам потребуется для сбора устройств — это паяльник и немного терпения.


          

    На рисунке показана схема простого драйвера светодиода, с напряжение питания от 3 до 18В. Основу устройства составляет таймер 555 или  LMC555 на напряжение 5В. На таймере 555 собран ШИМ — регулятор выходной мощности драйвера. Светодиоды суммарной мощностью 2Вт подключены через MOSFET транзистор IRL

    Читать дальше »


     Просмотров: [11943] | Рейтинг: 4.5/6

          

    Часто приходится использовать компьютер в вечернее и ночное время. Све


     Просмотров: [6270] | Рейтинг: 5.0/1

           Фонарь на свинцово-кислотном
    герметичном аккумуляторе с зарядным устройством
    .

    Свинцово кислотные герметичные
    аккумуляторные батареи самые дешевые в настоящее время. Электролит в них
    находится в виде геля, поэтому аккумуляторы допускают работу в любом
    пространственном положении и не производят никаких вредных испарений. Им
    свойстве

    Читать дальше »


     Просмотров: [18759] | Рейтинг: 5.0/1

           Фонарик на источнике тока

    Фонарик на источнике тока, с автоматическим выравниванием тока в
    светодиодах, так что светодиоды могут быть c любым разбросом параметров
    (светодиод VD2 задает ток, который повторяют транзисторы VT2, VT3, таким
    образом, токи в ветвях будут одинаковыми)

    Читать дальше »


     Просмотров: [21115] | Рейтинг: 4.2/4

           Делаем фонарик на светодиодах своими руками
     

    Светодиодный фонарик с 3-х
    вольтовым конвертором для светодиода 0.3-1.5V 0.3-1.5V LED FlashLight

    Читать дальше »


     Просмотров: [44776] | Рейтинг: 3.5/4

           Современный фонарик c режимом эксплуатации светодиода
    питанием постоянным стабилизированным током.

     

    Схема стабилизатора тока работает
    следующим образом:

    При подаче пита

    Читать дальше »


     Просмотров: [9229] | Рейтинг: 4.0/1

          

    Нажмите на картинку чтобы увеличить

    А как у этой схемы с нагревом? —  сколько подашь лишнего
    напряжения при заданном токе в нагрузке, столько и выделится на нём мощности в
    нагрев. Но начинает стабилизатор работать при падении напряжения на нём от 1 В
    (сток (D) — общий провод (минус 12 В)). При этом на самом резисторе в 0,5 Ом
    (два по 1 Ом параллельно) падает ровно 0,5 В

    Читать дальше »


     Просмотров: [10193] | Рейтинг: 4.0/8

           Решил проапгрейдить свою систему освещения. Для этого прикупил на DX светодиодик.

    Данный светодиодик достаточно мощный и светит чистым белым цветом, без всякого постороннего желтоватого или синеватого оттенка.

    Что было до этого

    Читать дальше »


     Просмотров: [11373] | Рейтинг: 4.3/9

           Как известно, для питания мощных светодиодов нужен стабилизатор тока (ну
    или как говорят светодиод питается током, а не напряжением), иначе
    светодиод прослужит не очень долго и сгорит. Для этих целей служит
    LED-драйвер, предназначенный для стабилизации тока и других функций
    (регулировка яркости и т.п.). Существуют специализированные микросхемы,
    да в интернете полно схем драйверов.
    Однако можно собрать простейший LED драйвер на популярной микросхеме
    LM317. Для этого прост

    Читать дальше »


     Просмотров: [14408] | Рейтинг: 4.6/7

          

    Как известно основной параметр при питании светодиодов (или сборок) не напряжение, а
    ток. Ограничение тока через резистор не эффективна, так как львиная
    доля мощности теряется на резисторе. Особенно это актуально при
    батарейном питании.

    Построить стабилизатор тока светодиода (светодиодн

    Читать дальше »


     Просмотров: [7734] | Рейтинг: 3.3/3

    ДРАЙВЕР ДЛЯ СВЕТОДИОДОВ

       Как известно, светодиод питается постоянным током и требует напряжение в пределах 3-х вольт. Естественно современные мощные светодиоды могут быть расчитаны и на более высокие значения — до 35В. Существует масса различных схем для питания светодиодов от пониженного напряжения. Условно все эти драйверы можно разделить на простые: выполненные на одном — трёх транзисторах, и сложные — с применением специализированных микросхем ШИМ конроллеров. 

       Простые драйверы для светодиодов имеют лишь одно достоинство — низкая себестоимость. Что касается параметров стабилизации, то здесь ток и напряжение выхода может гулять в широких пределах, а по сложности настройки такие схемы не уступают и стабилизаторам на констроллерах. К тому же мощность такого преобразователя будет достаточной максимум для питания 3-х обычных пятимиллиметровых светодиодов (около 50мА) что конечно мало.

       Драйверы на специализированных микросхемах не так капризны в работе, не требовательны к номиналам деталей и позволяют отдавать в нагрузку токи в несколько ампер. Это при том, что габариты такого драйвера те-же самые, что и в транзисторных. Чаще всего используются ZSCT1555D8, ZRC250F01TA, ZLLS2000TA, ZTX651, FZT653 и другие.

       Единственная проблема — высокая цена самих микросхем и часто отсутствие их в продаже. Поэтому представляется вполне логичным покупка готового драйвера на радиорынке или интернет-магазинах. Самое удивительное — цена отдельно микросхемы будет выше, чем цена всего готового устройства! Например недавно заказал из китая несколько миниатюрных преобразователей для светодиодов всего по 2 доллара.

       Первый драйвер предназначен для работы со входным напряжением 2,4-4,5В и обеспечивает на выходе стабильный ток 1А при напряжении 3В. Такой драйвер идеально подходит для питания 5-ти ваттного светодиода от двух пальчиковых батареек или литий-ионного аккумулятора. Любой фонарь с обычной лампой накаливания за пол-часа переделывается в мощный LED фонарь с высочайшей яркостью.

       Второй драйвер расчитан на подключение на выход аналогичного светодиода, только входное напряжение варьируется в более широких преелах: 5-18В. Ниже приводятся вольт-амперные параметры драйвера при подключенном светодиоде потребляющим ток 1А.

       Как видно по фотографиям, питая драйвер от 5-ти вольт, ток составляет около 0,8А. А подавая на преобразователь максимальные 16 вольт, ток падает до 0,3А. Потребляемая от батареи мощность будет в обеих случаях одинакова. Поэтому данный драйвер можно рекомендовать для использования в автомобилях в светодиодной подсветке салона или тюнинга разноцветными LED элементами.

       Отдельной группой стоят мощные LED драйверы, специально предназначенные для питания мощных и сверхмощных светодиодов от сети, но об этом будет рассказано в следующих материалах.

       Форум по светодиодным драйверам

       Форум по обсуждению материала ДРАЙВЕР ДЛЯ СВЕТОДИОДОВ

    cxema.org — Драйвер светодиода из КЛЛ своими руками


    Наверняка у многих без дела лежат сгоревшие компактные люминисцентные лампы (КЛЛ), у которых сгорела нить накала в колбе люминисцентной лампы. Как правило, у таких ламп преобразователь напряжения исправен, и его можно заиспользовать в качестве импульсного блока питания или драйвера светодиода. Типовая схема импульсного преобразователя КЛЛ представлена ниже


    Для переделки импульсного преобразователя КЛЛ в драйвер светодиода, достаточно удалить «лишние детали», обведённые красной пунктирной линией. Это цепи запуска лампы.


    Повисший в воздухе вывод дросселя L1 подпаять к плюсовой дорожке блока, намотать на него вторичную обмотку, и добавить диодный мост, спаянный из быстродействующих диодов серии HER, FR, UF и им подобных.


    Для начала на дроссель наматываем 10 витков провода в лаковой изоляции, подпаиваем выводы намотанной обмотки к диодному мосту, подаём на лампу сетевое напряжение и замеряем выходное напряжение. В моём случае блок выдал 6,5В. Этого напряжения явно маловато для запитки 10Вт светодиода. Я домотал ещё 10В и подключил светодиод через амперметр, который показал проходящий через светодиод ток в 1А. У моего светодиода рабочий ток равен 900мА. Я отмотал 1 виток с дросселя и получил нужный ток. Собрал диодный мост на плате навесным способом, подпаял 2 провода, удалил стеклянный балон КЛЛ и собрал корпус преобразователя.


    В КЛЛ мощность преобразователя ограничено габаритной мощностью сердечника установленного дросселя, и мощностью транзисторов. Для переделки я взял 15Вт лампу, дроссель которой с лёгкостью может отдать в нагрузку 15Вт.  Для 10Вт светодиода больше никаких переделок не требуется. Если планируется запитать более мощный светодиод, требуется взять преобразователь от более мощной лампы, либо установить дроссель с большим сердечником.


    Светодиод укрепил на радиаторе, предварительно смазав его термопастой.


    Радиатор закрепил проволокой к корпусу преобразователя. Таким образом собрал светодиодную лампу, затратив минимум средств.


    В результате несложной переделки КЛЛ, мы получили отличный драйвер для мощного светодиода, Продлили жизнь преобразователя КЛЛ.

    ДИММЕР ДЛЯ СВЕТОДИОДОВ 12В

       Эта статья была найдена на сайте soloelectronica.net, и кому-то из владельцев домов со светодиодным освещением, окажется полезной. Недавно установил для местной подсветки светодиодные ленты-самоклейки на 12V, но проблема возникла в том, что яркость слишком велика, как для простой подсветки — лишний расход энергии. Свет действительно был очень яркий и резкий, если взглянуть на него прямо, поэтому решил, что лучшим решением будет поставить диммер (dimmer). Купить диммер для светодиодов на 12V конечно можно, в продаже есть по 20 долларов, но так как его схема на самом деле довольно проста, решил сделать свою собственную разработку, которую здесь и представляю. При создании электросхемы диммера хотел сделать его попроще, по возможности без экзотических компонентов, а таких деталей, которые были бы дешевле.

    Принципиальная схема универсального LED диммера

    Рисунок печатных плат LED диммера

       Рисунок платы можно скачать в архиве. Схема питается от напряжения БП 12V с разъема CN2, этот разъем стандартный, с которым не будет никаких проблем подключить к специальному блоку питания, которые существуют на рынке. Светодиод D1 — это индикатор поступления питания и работы устройства.

       Принципиальная схема имеет несколько частей — это генератор с регулируемой шириной импульсов ШИМ, драйвер, и усилитель мощности с MOS-FET транзистором. Максимальная мощность нагрузки может составлять более 200 ватт, так как транзистор RFP50N06 держит ток до 50 ампер.

       Детали для сборки схемы диммера не дефицитные, они есть в продаже, это касается и таких радиоэлементов, как микросхемы CD40106BE и TL081, полевые транзисторы RFP50N06 и BS170. При необходимости замены смотрите даташиты и подбирайте аналоги.

    Видео наглядной работы регулятора яркости светодиода

    Варианты использования диммера

       Данной схемой можно управлять яркостью как мощных, до 100 ватт, светодиодов, ламп накаливания на 12 вольт, так и LED лентами с максимальной длинной до 20 метров, при потреблении тока 1 ампер на метр. Транзистор не забудьте поставить на радиатор средних размеров.

       Форум по питанию различных светодиодов

       Светодиоды

    Порядок вывода комментариев:
    По умолчаниюСначала новыеСначала старые

    Вбиваем в Гугл «»блок питания с защитой от короткого замыкания «»»сайт » схем нет» не реклама просто нет возможности схему сюда залить,малость ее модифицируем и радуемся,2 транзистора кт361д силовой кт837н обязательно теплоотвод , патонциометр на 2К остальное все оставляем как на схемме светодиодную ленту(p/n: 5050-60led-1m;light source:300pcs 12-14lm;dc12v;power:72w;5m) держит на ура,намного проще чем здесь приведена и деталей 10шт,а здесь полевики микруха итд слишком наворочено.

    Денис, эта схема сложнее но зато с защитой от перегрузки. Это тоже акутуальна в некоторых случаях… Автор делал схему для своих нужд и ему возможно потребовалось такое решение. В твоём случае схема проста и доступна для своих целей…

    Будьте внимательны, на печатке ошибка, связка VR1-R2

    Лабораторный БП 0-30 вольт

    Драгметаллы в микросхемах

    Металлоискатель с дискримом

    Ремонт фонарика с АКБ

    Восстановление БП ПК ATX

    Кодировка SMD деталей

    Справочник по диодам

    Аналоги стабилитронов

    DIY LED драйвер для светодиодов мощностью 5 Вт, полосы 12 В от 100 до 240 В переменного тока — схемы DIY

    Я получил много просьб предоставить руководство по созданию простого драйвера светодиода от 230 В до 1,3,5 Вт в ответ на мою простую схему драйвера светодиода. Итак, ниже я пишу статью о создании схемы драйвера светодиода высокой мощности. Приведенное ниже устройство способно питать светодиоды мощностью до 5 Вт от линии питания светодиодов и 18 Вт от светодиодных лент на 12 В.

    Я сделал следующую статью специально для людей, плохо знакомых с электроникой, поэтому в нее включено много мелких шагов, которые могут показаться многословными для профессионального специалиста.Кроме того, поскольку в следующем руководстве много изображений, я прошу вас сначала загрузить страницу, а затем приступить к чтению. Чтобы сделать себя, пожалуйста, внимательно прочтите эту статью и задавайте любые сомнения или вопросы ниже в форме комментариев. Не стесняйтесь обращаться ко мне, потому что любая осторожность или ошибка могут привести к повреждению устройства или вызвать у вас смертельный шок, поскольку здесь мы работаем с сетью напряжением 100–240 В, и это небезопасно, как аккумулятор. Если вы выполняете такую ​​работу с высоким напряжением, вам следует делать это под наблюдением другого человека, который сможет спасти вас в случае поражения электрическим током.

    Частей:

    • Адаптер 5В-12В 1,5А.
    • ИС регулируемого регулятора LM317 с небольшим радиатором.
    • Резистор на два ОмВт, 680 Ом и 390 Ом
    • Два конденсатора 0,1 мкФ / 25 В (104) и один конденсатор 100 мкФ / 25 В.
    • Разъем с винтовыми зажимами, 3 направляющих и несколько проводов (подойдет 6 дюймов, используйте медный провод толщиной не менее 0,5 мм).

    Инструментов:

    • Отвертка, плоскогубцы, кусачки / ножницы для снятия изоляции, пинцет
    • Паяльник с припоем
    • Клей-расплав и пистолет

    Основной частью этой схемы является ИИП, который легко доступен на рынке.Это обычный адаптер для жестких дисков USB, который можно купить в любом компьютерном магазине. Я получил использованный в магазине по цене рупий. 150 (~ 3 доллара США).

    Если вы можете получить более высокий рейтинг, например, 2 А, так лучше.

    Пора открыть корпус и обнажить внутреннюю плату. Это может выглядеть так, как показано ниже.

    Теперь пора приступить к паяльнику. Вы можете увидеть маркировку + 5V, GND и + 12V возле трех отверстий для проводов. Если это не так, то включите схему и проверьте мультиметром, чтобы узнать напряжения на проводах.Будьте осторожны, если вы запитываете устройство с открытой печатной платой.

    Теперь отсоедините три провода от печатной платы.

    А теперь пришло время для математических расчетов.

    Белый светодиод высокой мощности 1,3 или 5 Вт имеет прямое напряжение 3,4 В и соответствующий ток, скажем, 290 мА, 880 мА и 1470 мА. Для шины питания этих светодиодов нам необходимо обеспечить питание 3,4 В. У нас под рукой есть питание 12В и 5В от печатной платы. Мы будем использовать шину питания 12 В для вывода на светодиодные ленты 12 В и 5 В для снижения до 3.4В с использованием какой-либо схемы. Шина 12 В рассчитана на 1,5 А, поэтому она может выдерживать нагрузку 18 Вт светодиодной ленты 12 В.

    Для выхода 3,4 В мы будем использовать положительный регулируемый стабилизатор напряжения LM317T. Это очень распространенный регулятор, который легко доступен. Мы должны взглянуть на техническое описание устройства, чтобы рассчитать значения пассивных компонентов для выхода 3,4 В. LM317 — 3-контактный регулируемый стабилизатор Из таблицы мы видим, что выходное напряжение регулируется значениями двух резисторов.

    Здесь Vout = 1,25 (1 + R2 / R1)
    В нашем случае 3,4 = 1,25 (1 + R2 / R1)
    или, 1 + R2 / R1 = 2,72
    или, R2 / R1 = 1,72
    или, R2 = 1,72 * R1

    Мы выбираем R1 = 390 Ом, поэтому R2 = 670,8 Ом. Ближайшее стандартное значение — 680 Ом. И на 680 Ом мы получаем
    Vout = 1,25 (1 + R2 / R1)
    или, Vout = 1,25 (1 + 680/390)
    или, Vout = 1,25 (1 + 1.743589743589744)
    или Vout = 3,429487179487179V ~ 3,43 В

    У нас не должно возникнуть проблем с включением светодиода с напряжением 3,43 В, так что это нормально.

    Вот необходимые детали.Сюда входят LM317, 2 конденсатора по 0,1 мкФ, конденсатор на 100 мкФ, 680R и 390R и небольшой радиатор.

    При нагрузке 5 Вт и напряжении 3,43 В он потребляет 1,457725947521866 А или 1,46 А.

    Рассеиваемая мощность или тепловыделение при полной нагрузке 5 Вт в LM317 рассчитывается следующим образом:
    PD = ((VIN — VOUT) × IL) + (VIN × IG)
    ~ (5,00-3,43) * 1,46
    ~ 2,29 Вт.

    Для такого слабого нагрева достаточно небольшого радиатора.

    Теперь найдите на печатной плате место для радиатора LM317 +.Найдите место с небольшим пространством сверху, чтобы можно было припаять провода. Согните булавки и отрежьте лишние ножки.

    Теперь добавьте бумажную наклейку или ленту в область под выбранным местом для радиатора IC +. Это гарантирует отсутствие коротких замыканий из-за радиатора.

    Теперь закрепите радиатор IC + на месте с помощью термоклея. Также поместите конденсатор 100 мкФ рядом с ним.

    Теперь соедините детали, как показано на рисунке.

    1-й вывод

    IC LM317 подключается к одному выводу резистора 680R и одному выводу резистора 390R. Второй вывод 680R идет на GND или 0V SMPS. Второй вывод 390R идет к выводу Vout LM317, это второй вывод. Подключите положительный вывод конденсатора 100 мкФ, один вывод одного конденсатора 0,1 мкФ и провод выхода напряжения также ко 2-му выводу ИС. Теперь подключите один вывод 2-го конденсатора 0,1 мкФ к 3-му выводу LM317 и подключите к нему линию 5V SMPS. Теперь соедините оставшиеся два открытых контакта из двух 0.Конденсатор 1 мкФ и отрицательный вывод конденсатора 100 мкФ к GND или 0 В. SMPS.

    Пришло время закрыть крышку и протестировать вывод.

    Он показывает 3,48 В на линии 3,43 В. Такое небольшое перенапряжение является нормальным при отсутствии нагрузки.

    Он также показывает 12,14 на выходной линии 12 В без нагрузки. Пришло время подключить следующие клеммные колодки с винтовыми зажимами.

    Подключите GND к середине и 3.43В и 12В с двух сторон полосы.

    Теперь закрепите соединитель на месте горячим клеем и заклейте отверстие клеем.

    Теперь драйвер светодиода готов к использованию в любом приложении.

    Это драйвер в действии.

    12V LED Driver для 3шт. 3W High Power LED BULB MR16 DIY [BY-DR32DC]

    Описание:

    Описание продукта

    Вы предлагаете два драйвера, которые идеально подходят для 3 из 3-ваттных светодиодов высокой мощности, подключенных последовательно на 12 вольт, подходят для 3 Вт в цвете красный, зеленый, синий, белый, желтый, фиолетовый.

    Спецификация

    • Входное напряжение: 12 В
    • Выходное напряжение: 9 В ~ 12 В
    • Выходной ток: 450 мА
    • Функция: обрыв цепи, короткое замыкание и перегрузка
    • Применение: Подходит для 3х 3 Вт светодиода высокой мощности с цоколем MR16.

    Примечание: розовый провод (+) и белый провод (-) с одной стороны являются выходными и должны подключать светодиод.

    Упаковочный лист

    Задавайте вопросы

    Есть вопросы по этому товару? Обратитесь в службу поддержки клиентов.(Наш представитель по работе с клиентами скоро свяжется с вами.)

    Отзывы о продукте:

    12В светодиодный драйвер для 3шт. 3Вт светодиодной лампы высокой мощности MR16 DIY

    12 В светодиодный драйвер для 3 шт. 3 Вт высокой мощности светодиодной лампы MR16 DIY

      5 звезд

      Хороший способ сохранить ваши светодиоды ,
      Gary.Harju

      Недорогой, хорошо сложенный, компактный.Намного лучше защитить ваши светодиоды, чем один резистор. Я даже не думаю о новом проекте Led без одного из них.

    12 В светодиодный драйвер для 3 шт. 3 Вт высокой мощности светодиодной лампы MR16 DIY

      5 звезд

      Godd цены и производительность ,
      shenandoah.Saks

      Очень компактный * хорошее качество сборки * легко улучшить. Очень хороший светодиодный драйвер, который должен быть для проекта DIY Очень дешевый

    12 В светодиодный драйвер для 3 шт. 3 Вт высокой мощности светодиодной лампы MR16 DIY

    12 В светодиодный драйвер для 3 шт. 3 Вт высокой мощности светодиодной лампы MR16 DIY

    Рейтинг:
    4.5 из
    5

    на основе
    4 отзыва.

    Напишите отзыв и получите скидку 5%:

    Поиск отзывов
    • Вы нашли то, что искали?
    • Если вам нужна помощь или у вас есть обратная связь со службой поддержки клиентов. Нажмите здесь

    Использование светодиодной ленты 12 В в системе 24 В

    Возможно, вы знакомы с различиями между системами постоянного тока 12 В и 24 В и различными преимуществами, которые они предлагают.Но вы все равно можете столкнуться с несоответствием между светодиодной лентой на 12 В и источником питания на 24 В.

    Хотя мы настоятельно рекомендуем использовать продукты и аксессуары с соответствующими характеристиками, мы покажем вам, как можно подключить светодиодные ленты 12 В к источнику питания 24 В без (теоретически) повреждения светодиодных лент!

    Прежде чем мы покажем вам, как подключить светодиодную ленту 12 В к источнику питания 24 В, прочтите:

    Заявление об отказе от ответственности: Неправильное или случайное подключение, которое приводит к перенапряжению, может привести к необратимому повреждению светодиодов.Информация, представленная здесь, предназначена только для образовательных целей. Waveform Lighting не несет ответственности за любой ущерб. В целях безопасности мы рекомендуем протестировать небольшой сегмент светодиодной ленты, чтобы убедиться, что установка работает, перед подключением более длинной части.

    Серия против параллельной

    Давайте сначала взглянем на схему светодиодной ленты 12 В. Заманчиво думать о светодиодной ленте как о множестве последовательно соединенных светодиодов из-за того, что они расположены линейно, но на самом деле светодиодная лента на 12 В обычно представляет собой множество параллельных групп по 3 светодиода.Источник питания 12 В состоит из 3 последовательно соединенных светодиодов по 3 вольта каждый и токоограничивающего резистора, который также соответствует 3 вольтам или около того, что в сумме составляет 12 В.

    Каждая последующая группа из 3 светодиодов, даже если они расположены линейно, фактически подключены друг к другу параллельно. Таким образом, все медные контактные площадки светодиодных лент эквивалентны по напряжению.

    Для светодиодной ленты на 12 В разница напряжений просто должна составлять 12 В, чтобы она работала должным образом.

    Подключение светодиодных лент 24 В к 12 В

    Простое подключение 24 В к медным контактным площадкам светодиодных лент 12 В, очевидно, приведет к перегоранию светодиодов из-за перенапряжения.Итак, что мы можем сделать без трансформаторов или дополнительных аксессуаров?

    Самый простой способ заставить светодиодную ленту 12 В работать в системе 24 В — разделить светодиодную ленту 12 В на два идентичных сегмента светодиодной ленты 12 В и последовательно соединить медные контактные площадки так, чтобы сумма напряжений составляла 24В от источника питания.

    При таком подключении светодиодных лент источник питания 24 В эффективно «разделяется» между двумя сегментами светодиодных лент, рассчитанных на 12 В каждый.Поскольку две светодиодные ленты подключены последовательно, потребляемый ток для каждой светодиодной ленты будет идентичным.

    Внимание: две последовательно соединенные светодиодные ленты должны быть ИДЕНТИЧНЫМИ!

    В приведенном выше примере мы упоминаем тот факт, что две светодиодные ленты вынуждены потреблять одинаковое количество тока из-за того, что они соединены последовательно. Это ожидаемо и не проблема, поскольку светодиодные ленты потребляют одинаковое количество энергии из-за их одинаковой длины и характеристик потребляемой мощности.

    Но две светодиодные ленты должны быть идентичными!

    Почему это так важно?

    Давайте представим две светодиодные ленты 12 В разной длины, соединенные последовательно, так что при 12 В они потребляют 0,5 А и 1,0 А соответственно.

    Поскольку они будут подключены последовательно, они будут вынуждены совместно использовать одно и то же значение прямого тока. Предположим, что текущее значение составляет 0,75 А — среднее значение.

    Для более длинной светодиодной ленты, чтобы соответствовать более низкому току 0,75 А по сравнению с номинальным током 1.0А, возможно, потребуется падение напряжения до 11В или даже до 10В. Но постоянное входное напряжение 24 В по определению является постоянным на уровне 24 В. Таким образом, более короткий сегмент светодиодной ленты теперь вынужден «восполнять» оставшиеся 13 или 14 В. Это приведет к перегрузке по току в более короткой светодиодной полосе, что может привести к повреждению светодиодов.

    Иначе — светодиодные ленты 24 В на блоке питания 12 В

    Если вы пытаетесь пойти другим путем и подключить блок питания 12 В для работы светодиодных лент 24 В, к сожалению, вам не повезло.Вам нужно будет приобрести трансформатор или усилитель напряжения, или, проще говоря, блок питания на 24 В.

    Причина в том, что светодиодная лента на 24 В имеет по 6 последовательно включенных светодиодов на группу, и нет возможности «разделить» их, чтобы они соответствовали источнику питания 12 В. Проще говоря, для работы светодиодов медным контактным площадкам требуется перепад напряжения 24 В.

    Bottom Line

    Теоретически, последовательное соединение двух идентичных сегментов светодиодной ленты 12 В может быть решением для сопряжения с источником питания 24 В.Однако на практике это может быть несколько рискованно, и мы рекомендуем идти по этому пути, только если вы находитесь в затруднительном положении!

    Как рассчитать источник питания светодиодов, необходимый для светодиодной ленты

    Один из часто задаваемых нам вопросов: «Как мне определить, какой источник питания мне нужен для моей светодиодной ленты?»

    Ответ — это не так уж и сложно.

    Первым делом проверьте технические характеристики светодиодной ленты, которую вы собираетесь использовать.Он должен показать вам потребляемую мощность в ваттах на метр. Обычно он отображается в формате 14 Вт / м (14 Вт / метр).

    Второй шаг — вычислить длину полосы, которую вы собираетесь использовать в метрах, и умножить это число на количество ватт, используемых на метр.

    Допустим, вы используете светодиодную ленту длиной 8,5 м. Светодиодная лента имеет энергопотребление 14Вт / м.
    14 x 8,5 = всего 119 Вт. Итак, вам нужен источник питания для светодиодов (иногда называемый драйвером светодиодов), который может обеспечить не менее 119 Вт.

    Однако рекомендуется делать поправки на непреднамеренные перегрузки. Чтобы смягчить это, мы рекомендуем использовать только около 80% номинальной нагрузки источника питания. Итак, в этом случае вы, скорее всего, выберете блок питания на 150 Вт.

    Затем вы можете просмотреть наш ассортимент светодиодных драйверов, чтобы выбрать наиболее подходящую модель.

    Не забудьте подтвердить фактическую выходную мощность в паспорте продукта. Фактическая выходная мощность варьируется от модели к модели в пределах одной серии светодиодных драйверов.Например, HLG-240H-24 имеет выходную мощность 240 Вт, тогда как HLG-240H-12 имеет выходную мощность 192 Вт.

    Если вы планируете использовать драйвер светодиода с регулируемой яркостью, вам необходимо принять во внимание еще несколько факторов.

    Многие драйверы светодиодов с регулируемой яркостью работают, изменяя амплитуду тока, подаваемого на светодиоды. Если вы используете более одного источника питания для питания нескольких светодиодных лент, то нагрузка на каждый драйвер должна быть согласована как можно ближе друг к другу, чтобы обеспечить синхронизацию диммирования.

    В качестве примера, если один источник питания загружен на 80%, а второй источник питания загружен на 50%, первый источник питания начнет тускнеть, когда регулятор диммирования опустится ниже 80%, но второй источник не начнет тускнеть. уменьшайте яркость до тех пор, пока яркость не упадет ниже 50%. Эта разница видна невооруженным глазом.

    Если ваш источник питания с регулируемой яркостью для светодиодов имеет выход типа ШИМ, такой как серия MEAN WELL PWM или драйверы светодиодов с регулируемой яркостью TRIAC источника питания, тогда они будут плавно уменьшать яркость независимо от нагрузки. Эти драйверы светодиодов поставляются компанией Power Supplies Australia как для моделей на 12 В, так и на 24 В.

    Следующие драйверы светодиодов PWM доступны для заказа через Power Supplies Australia:

    Драйверы светодиодов MEAN WELL PWM Series 40W ~ 200W

    Источник питания Драйверы светодиодов серии PDV 30 ~ 360 Вт

    Мы всегда готовы помочь в случае необходимости. Не стесняйтесь обращаться в компанию Power Supplies Australia, если у вас возникнут дополнительные вопросы по выбору правильного источника питания для светодиодной ленты.

    Как избежать падения напряжения с помощью светодиодного освещения

    По своему собственному определению, светодиодное освещение с постоянным напряжением требует определенного напряжения питания, которое остается постоянным.

    Обычно для светодиодных светильников постоянного напряжения требуется источник питания 12 В или 24 В постоянного тока. Драйверы светодиодов постоянного напряжения обеспечивают постоянное напряжение питания, несмотря на любые колебания напряжения в сети.

    Светодиодный драйвер постоянного напряжения MEAN WELL

    Тем не менее, установщики светодиодного освещения должны знать, что прокладка длинного кабеля постоянного тока от драйвера светодиода к светодиодной осветительной арматуре может привести к падению напряжения, поэтому к тому времени, когда напряжение достигает светодиодной осветительной арматуры, оно ниже, чем требуется для правильного включения светодиодных индикаторов.

    В идеальном мире вы всегда хотите выполнять любые длительные пробежки на стороне переменного тока, располагая драйвер светодиода как можно ближе к светодиодным источникам света.

    Естественно, в некоторых случаях это невозможно, и требуются более длинные кабели постоянного тока.

    Если вы попали в такую ​​ситуацию, вы можете предпринять несколько шагов, чтобы избежать неприятностей.

    Прежде всего вам необходимо рассчитать возможное падение напряжения.Есть несколько полезных онлайн-калькуляторов, которые делают эту работу довольно быстрой и простой. Вам необходимо знать калибр кабеля постоянного тока, который вы будете использовать, чтобы произвести расчеты.

    Следующая ссылка приведет вас к онлайн-калькулятору напряжения:

    http://www.calculator.net/voltage-drop-calculator.html

    Как только вы узнаете фактическое падение напряжения, вы можете предпринять необходимые меры по исправлению положения. У вас есть несколько вариантов.

    Вероятно, наиболее экономичным и простым решением является выбор драйвера светодиода с регулируемым выходным напряжением.Таким образом, вы можете отрегулировать напряжение, чтобы компенсировать падение напряжения.

    В ADM есть две серии светодиодных драйверов MEAN WELL, которые доступны с возможностью регулировки:

    Светодиодные драйверы MEAN WELL серии ELG

    Светодиодные драйверы MEAN WELL серии HLG

    При заказе убедитесь, что номер детали, который вы запрашиваете, имеет суффикс «A» или «AB», это означает, что драйвер светодиода регулируется.

    Вы можете щелкнуть следующую ссылку, чтобы просмотреть наш интернет-магазин и узнать, какие модели уже доступны.Клиенты с торговым счетом ADM могут запросить логин, который позволит им видеть их оптовые цены и доступные запасы.

    Светодиодные драйверы на складе

    Ключевым отличием серии ELG от серии HLG является цена и гарантийный срок.

    Серия ELG является более рентабельной из двух моделей, но имеет более короткий гарантийный срок — 5 лет. Гарантия на драйверы светодиодов серии MEAN WELL HLG составляет 7 лет.

    Если вы обнаружите, что диапазон регулировки, предлагаемый вышеупомянутыми драйверами светодиодов, недостаточно широк, чтобы обеспечить необходимое напряжение, вы можете использовать преобразователь постоянного тока в постоянный ток MEAN WELL для повышения напряжения.

    MEAN WELL Преобразователь постоянного тока в постоянный

    ADM предлагает ряд преобразователей постоянного тока в постоянный ток MEAN WELL мощностью от 15 до 1000 Вт.

    Светодиодная арматура постоянного тока

    Бывают обстоятельства, при которых падение напряжения может повлиять на работу осветительной арматуры постоянного тока. Напряжение может упасть ниже диапазона, необходимого для включения светодиодов. Другими словами, подаваемый ток может быть правильным, но мощности недостаточно для питания светодиода.

    Если вы столкнетесь с этой проблемой, существует недорогое решение для ее устранения.

    Вы можете использовать драйвер светодиода MEAN WELL, повышающий постоянный ток.

    Драйвер повышающего преобразователя постоянного тока в постоянный

    Драйверы светодиодов постоянного тока в постоянный ток серии MEAN WELL LDH-45 доступны со следующими вариантами вывода:

    Они будут повышать входное напряжение до требуемого уровня, но поддерживать требуемый постоянный выходной ток для управления светодиодами.

    Если у вас есть какие-либо вопросы по устранению проблем с падением напряжения в светодиодных осветительных установках, не стесняйтесь обращаться в ADM.

    Была ли эта информация полезной?

    Почему бы не поделиться им со своими коллегами и коллегами? Просто нажмите на синий значок «Поделиться» в LinkedIn ниже.

    Как установить светодиодные ленты в автомобиле

    Хотите добавить удивительного стиля и цвета к своей поездке? Вы можете не только сделать это самостоятельно, но и получить отличные результаты за меньшую цену, чем пара колонок!

    Мне очень нравится помогать другим, поэтому я упорно трудился, чтобы составить это подробное руководство для самостоятельной сборки, которое покажет вам, как установить светодиодные ленты в автомобиле.

    Хотите увидеть, как они выглядят, прежде чем тратить время и силы? Обязательно посмотрите мое демонстрационное видео в конце.

    Инфографика — Автомобильные светодиодные фонари: факты и советы

    Что такое светодиоды?

    Светодиоды — это полупроводниковые компоненты, излучающие свет. Полупроводники — это основные электронные элементы, состоящие из кремния и других элементов, которые позволяют электронам (электрическому току) течь определенным образом. Диоды — это «односторонние клапаны», которые позволяют току течь только в одном направлении.Интересным свойством является то, что они также излучают видимый свет. Анод (положительный вывод) подключается к положительному источнику питания, а катод (отрицательный провод) подключается к заземлению или (-) проводу.

    Светодиоды (LED) — один из важнейших компонентов в мире электроники. Они существуют уже несколько десятилетий, но за последние 10–15 лет или около того они стали все более полезными в нашей повседневной жизни. Это включает в себя использование как в домашнем, так и в автомобильном освещении.

    Светодиоды

    работают по принципу полупроводникового перехода .Другими словами, они содержат 2 разных материала, таких как кремний и германий, связанные вместе, чтобы сформировать переход — или мост — который образует диод.

    Диоды чрезвычайно важны для мира электроники, так как они представляют собой электрические односторонние клапаны, так сказать.

    Этот принцип лежит в основе микроскопических транзисторов, которые позволяют микропроцессорам и многим другим чудесам современной техники работать.

    Крошечные компоненты, такие как светодиодный чип (сами полупроводниковые материалы), очень чувствительны, но заключены в чрезвычайно твердый и прочный эпоксидный корпус.Провода прикреплены к крошечным компонентам для подключения питания.

    Если вы хотите узнать больше о различных типах светодиодов, посетите эту страницу.

    Как светодиоды производят свет

    У диодов есть особый побочный эффект, когда они пропускают электричество — они излучают свет! Цвет излучаемого света зависит от материалов, из которых он изготовлен.

    С годами все больше и больше компаний совершенствовали их и теперь производят дешевые, великолепно выглядящие светодиоды, которые могут излучать свет самых разных цветов.

    Однако, в отличие от обычных лампочек, светодиоды работают при низком напряжении (скажем, около 1,5 В каждый). Это означает, что они должны использоваться с резистором для ограничения протекающего тока, в противном случае они быстро перегорают.

    Резисторы

    используются со светодиодами при питании от автомобильного напряжения (обычно около 12 В).

    Сравнение светодиодов и лампочек и неоновых ламп

    Светодиоды

    имеют ряд преимуществ перед лампами накаливания (накаливания) и неоновыми трубками.Вот сравнительная таблица, в которой показаны некоторые плюсы и минусы трех типов.

    КРИТЕРИИ СВЕТОДИОДНЫЕ ЛАМПОЧКИ ЛАМПОЧКИ НЕОНОВЫЕ ТРУБКИ
    Потребляемая мощность Низкий Умеренное / высокое Низкий
    Стоимость Низкий Низкое / среднее Средний / высокий
    Напряжение Низкий Низкий / по мере необходимости High (специальный блок питания)
    Прочность Отлично Плохое / среднее Плохое / среднее
    Ожидаемая продолжительность жизни Чрезвычайно высокий (десятки тысяч часов) Низкое / среднее (сотни часов) Низкое / среднее (сотни часов)
    Эффект «мягкого» свечения Плохо Ярмарка Великий

    Как видно из таблицы, светодиоды обладают значительными преимуществами почти во всех значимых категориях.Они также более рентабельны.

    Это не только потому, что они очень долговечны и имеют чрезвычайно долгий срок службы (обычно 10 000 часов), но и потому, что для работы им требуется более низкое напряжение.

    Одним из недостатков является то, что они не могут воспроизвести «мягкое свечение» неоновых трубок, но в целом это незначительный недостаток. Когда все сделано хорошо, они все равно выглядят великолепно!

    Как работают многоцветные светодиоды RGB?

    Изображение, показывающее крупным планом разноцветный красно-зелено-синий (RGB) светодиод.Эти светодиоды на самом деле представляют собой комбинацию трех отдельных красных, зеленых и синих светодиодов, собранных вместе. Современные многоцветные светодиоды очень крошечные, а некоторые имеют размер всего несколько миллиметров!

    Красный, зеленый и синий (RGB) светодиоды состоят из 3 отдельных цветных светодиодных сегментов, объединенных в один небольшой корпус.

    Так же, как изображения, отображаемые на мониторе вашего компьютера или на жидкокристаллическом дисплее телефона (ЖКД), цвета воспроизводятся с разными уровнями яркости, образуя различные цветовые комбинации.

    Светодиоды

    RGB имеют 3 разъема: по одному для каждого цвета. Используя специально разработанный светодиодный контроллер, три цвета управляются с разными уровнями яркости, и получаются разные оттенки цветов.

    Конечно, также могут быть произведены основные красный, зеленый и синий цвета. Количество вариантов цвета и яркости, которые вы можете выбрать, зависит от возможностей используемого контроллера.

    Как работают светодиодные ленты?

    Схема, показывающая устройство и основные принципы работы светодиодных лент для автомобилей.Источник питания 12 В питает контроллер световой полосы, который управляет каждой световой полосой отдельными сигналами включения / выключения красного, зеленого и синего цветов. С помощью этих форм сигналов становятся возможными сочетания яркости и цвета. Резисторы необходимы для ограничения силы тока, которую может получить каждый сегмент светодиода.

    Светодиодные световые ленты работают от специального источника питания, который контролирует время (и какой цвет) светодиода включается и выключается.

    В то время как простые одноцветные светодиодные ленты не нуждаются в источнике питания, они не могут иметь разные цветовые комбинации и специальные функции, такие как затемнение или пульсацию музыкальных звуков.

    Контроллер светодиодов делает это возможным в более совершенных световых полосах за счет очень быстрого включения / выключения с отдельной проводкой для каждого отдельного цвета RGB.

    Светодиодные полосы содержат набор из нескольких светодиодов RGB и резисторов, соединенных параллельно. При включении каждый цвет получает отдельный сигнал включения / выключения от блока контроллера драйвера светодиода. Это позволяет использовать различные уровни яркости и цветовые комбинации.

    Чем дольше светодиод включен, тем ярче он будет казаться вашим глазам.Если один цвет включен больше, чем другие, этот цвет будет более заметным. (Например, если синий цвет включается чаще, чем красный, вы увидите смесь цветов с большим количеством синего)

    Каждая световая полоса соединяется параллельно с другими световыми полосами в большинстве световых комплектов.

    Выбор отличного комплекта светодиодных лент

    Автомобильные светодиодные полосы, такие как , популярный от Amazon, который я тестировал. — отличное предложение за деньги и предлагают множество опций, включая изменение цвета, пульт дистанционного управления и пульсирующую музыку.

    Определенно важно приобрести хороший набор светодиодных ламп. Сегодня их так много продано, что при покупках может стать головной болью!

    Хотя вы можете купить простой набор одноцветных световых полос примерно за 10 долларов (как здесь), я рекомендовал потратить еще несколько долларов.

    Мой совет — поищите устройство со следующими характеристиками:

    • Хорошие отзывы покупателей и счастливые пользователи
    • Достаточно удобен для установщика
    • Предлагает многоцветные режимы
    • Музыкальный режим для изменения звука
    • Режимы вращения цвета (градиент, быстрый и т. Д.)
    • Регулировка яркости

    Не нужно много тратить, скажем, 30 долларов или меньше.Вот отличный пример набора световых полос, который делает все это и многое другое по отличной цене.

    Инструкции, прилагаемые к подобным китайским продуктам, могут быть трудными для понимания, так что будьте готовы к этому!

    Расходные материалы, инструменты и список покупок

    Очень разумно составить список того, что вам понадобится, прежде чем начать. Это займет всего несколько минут и действительно поможет вам лучше подготовиться к особенностям установки в вашем автомобиле!

    Я рекомендую составить основной список того, что вам может понадобиться, прежде чем вы начнете устанавливать светодиодные фонари в свой автомобиль.

    инструментов:

    • Мультиметр (для измерения напряжения) — предпочтительнее контрольной лампы
    • Инструмент для обжима соединителей
    • Отвертки и др. (Необходимые для вашего автомобиля)
    • Кусачки или кусачки с приспособлением для обрезки проволоки

    Я настоятельно рекомендую приобрести недорогой, но хороший мультиметр (слева) , такой как эта самая продаваемая бюджетная модель от Amazon , а также инструмент для обжима проводов и соединители для обжима проводов (справа) перед началом установки.Вы получите профессиональные результаты, и это будет намного проще!

    Припасы:

    • Проволочные стяжки (обычно продаются в пакетах по 100 штук или более), длиной 6 дюймов или аналогичные
    • Соединители для опрессовки проводов (малый ассортимент)
    • Рулон изоленты
    • Хороший быстросохнущий клей
    • Переходники отводов предохранителей (при подключении от блока предохранителей)

    Если вы устанавливаете световые полоски на плоские (или из другого материала) поверхности, я действительно рекомендую использовать отличный клей, такой как этот фантастический суперклей Gorilla , с которым легко работать.Чтобы сделать монтажную проводку аккуратной или установить светильники на провода или другие близлежащие объекты, определенно возьмите несколько таких небольших стяжек для проводов.

    Хотя сейчас это может показаться неважным, я, , настоятельно рекомендую, , взять с собой пачку стяжек. Они невероятно полезны для того, чтобы держать провода вместе, красиво и аккуратно.

    Они также очень удобны для крепления световых полос к металлическим скобам или ближайшей проводке (и другим предметам) под приборной панелью и сиденьями.

    Установка светодиодного освещения в автомобиле: начало работы

    Чтобы установить светодиодное освещение, вам нужно сделать всего несколько основных шагов. Хорошая новость в том, что в большинстве случаев это не так уж и сложно! На то, чтобы сделать это правильно, нужно время, но оно того стоит!

    Вам необходимо запланировать следующее:

    1. Подключите контроллер (или световые приборы напрямую) к источнику питания +12 В и заземлению
    2. Надежно закрепите световые полосы
    3. Проверить и проверить работу

    В большинстве случаев вам не нужно прокладывать какие-либо провода к батарее.Светодиодные лампы потребляют относительно небольшое количество энергии, поэтому в большинстве автомобилей их можно подключить к заводской стереосистеме или проводке прикуривателя.

    Есть еще несколько источников, о которых я упомяну позже.

    Как подключить светодиодные фонари 12 В в автомобиле

    Многие комплекты включают вилку прикуривателя с переключателем включения / выключения. Хотя использование розетки для сигарет для питания набора — простой вариант, это не лучший и не самый изящный способ. Однако для временного использования это нормально.

    Хотя комплекты светодиодного освещения салона часто включают в себя вилку питания от прикуривателя, это не лучший вариант. В идеале вы захотите подключить их к выключателю зажиганием, как автомобильную стереосистему.

    Схема подключения светодиодной ленты

    Для питания устройства вам необходимо подключить его к вспомогательному проводу , чтобы получить источник питания +12 В, который включается или выключается вместе с зажиганием.

    Обычно можно найти провод, который подходит для этого, в одном из нескольких мест:

    • За магнитолой (обычно первый вариант)
    • На проводку гнезда прикуривателя
    • На блоке предохранителей в салоне автомобиля

    Как найти дополнительный провод +12 В (ACC)?

    1.Найдите цвета проводки вашего автомобиля

    Я рекомендую поискать цветовую кодировку проводов для вашего автомобиля на сайте The12volt.com. В большинстве случаев вы найдете цвета и схемы для проводки вашего автомобиля или грузовика.

    Если не получится, ничего страшного. Мы вернемся к плану №2.

    2. Проверяйте проводку, пока не найдете подходящий провод

    Для этого шага вам нужно использовать цифровой тестовый измеритель (как я упоминал ранее). Основная причина в том, что в современных автомобилях не вся проводка рассчитана на 12 В.У некоторых теперь есть сигнальные линии или другая проводка с напряжением ниже +12 В.

    Осторожно! Простая контрольная лампа не может показать реальное напряжение в проводке и может вызвать потенциальные проблемы с автомобилем. Использование тестовой лампы может привести к случайному использованию низковольтного провода, что может привести к тому, что ваши светодиодные лампы не работают или не будут работать правильно.

    Вы можете попробовать снять магнитолу и при включенном зажигании проверить проводку, пока не найдете провода +12 В. Затем проверьте еще раз при выключенном зажигании, чтобы решить, какие из них подходят.

    3. Отвод блока предохранителей

    Блок предохранителей транспортного средства, содержащий источник питания для радио — и ваш набор светодиодов — обычно находится в одном из нескольких мест. (Вверху) Под панелью на самой приборной панели или (внизу) в нижней части со стороны водителя рядом с педалью тормоза. В руководстве пользователя обычно есть ярлыки для предохранителей.

    Кроме того, есть еще один вариант — подключение к источнику питания на блоке предохранителей. Обычно они находятся в левой части приборной панели, рядом с левой нижней частью интерьера или под панелью на самой приборной панели.

    Вы можете использовать руководство по эксплуатации автомобиля, чтобы показать вам, какой предохранитель предназначен для какой цели. У большинства автомобилей есть один источник питания для радио, от которого вы можете получить питание.

    Монтажные адаптеры блока предохранителей позволяют легко отсоединить силовую цепь для установки светодиодных фонарей. Вы вставляете их вместо оригинального предохранителя, а затем подключаете провод питания.

    Если вы отключаете блок предохранителей, подумайте о том, чтобы взять переходник проводки предохранителя. Они могут сделать это так просто!

    Если у вас нет инструкции по эксплуатации, вы можете использовать тестовый прибор для проверки мощности предохранителя при включенном и выключенном зажигании, пока не найдете подходящий.Затем используйте переходник с предохранителем или другое соединение для подсоединения провода питания светодиода.

    Вот несколько отличных, которые значительно упростят установку.

    Подключение проводки

    После того, как вы найдете подходящий источник энергии, вам потребуется:

    • Подключите провод питания светодиода
    • Заземлите отрицательный провод питания

    Вот полезная диаграмма с ясным объяснением некоторых идей.

    Монтаж светодиодных лент

    Поскольку многие комплекты светильников (например, тот, который я использую здесь) имеют световые полосы, постоянно прикрепленные к блоку управления, длина проводов ограничена.Однако для большинства типичных установок этого должно хватить.

    Я измерил 48 ″ (122 см) и 58 ″ (147 см) для передней и задней части на моем. Это примерно 4 фута (1,22 м) и 5,6 фута (1,7 м) в длину для каждой передней и задней пары.

    Расположение световых полос в салоне

    Схема, показывающая типичное расположение светодиодных лент в салоне автомобиля. Отличные места находятся под приборной панелью для 2 передних сидений, а также на передних или задних сиденьях.В большинстве случаев используйте световые полосы с кабелями большей длины.

    В идеале световые полосы (при условии, что у вас их 4, что есть в большинстве комплектов) нужно установить здесь:

    • Спереди слева и справа: под приборной панелью, лицевой стороной вниз
    • Слева и справа сзади: под / на передних или задних краях передних сидений

    Убедитесь, что они обращены к тем областям, на которых должно появиться световое свечение.

    Вы также можете временно протестировать их, используя качественную ленту, чтобы удерживать их на месте, прежде чем устанавливать их навсегда.

    Расположение контроллера

    Контроллер светодиодной подсветки (для тех, у кого есть пульт дистанционного управления и / или звуковой датчик) должен быть доступен с пульта дистанционного управления и должен быть размещен там, где он может правильно воспринимать звук. Установите его с одной стороны центральной консоли приборной панели, где он немного спрятан. Скорее всего, лучше всего со стороны водителя (как показано на схеме выше).

    Светодиодные контроллеры

    , которые предлагают дистанционное управление, обычно используют датчик типа инфракрасного приемника (IR).Им требуется прямая линия доступа к датчику в блоке управления.

    Кроме того, модели (например, показанная здесь) также имеют внутренний звуковой датчик. В обоих случаях вам необходимо разместить блок управления там, где он не полностью закрыт и где с ним может работать пульт дистанционного управления. Обычно я предлагаю сторону водителя, немного спрятанную под приборной панелью.

    Установка световых полос и кабелей (и почему клейкие ленты могут быть плохим выбором)

    На схеме выше показаны 2 отличных способа установки светодиодных лент в вашем автомобиле.Я больше не рекомендую самоклеющиеся полоски, даже включенные на световые полоски. После воздействия тепла в салоне автомобиля они часто выходят из строя.

    Хотя светодиодные ленты обычно включают самоклеящуюся ленту на обратной стороне полос, это часто ненадежно. Причина в том, что клей выходит из строя после нескольких сеансов теплового воздействия, вибрации и ударов ногами в автомобиле.

    По этой причине я рекомендую два метода, о которых упоминал ранее:

    • Используйте высококачественный клей для крепления к пластиковым панелям под панелью приборов.
    • Используйте проволочные стяжки для крепления световых полос к жгуту проводов автомобиля или кронштейнам приборной панели

    Использование высококачественного гелевого суперклея, такого как Gorilla Glue, — отличная идея.Хотя это может показаться постоянным, вам понадобится всего несколько маленьких капель (примерно 4–5) на каждую световую полоску. Клей быстро сохнет, но с гелевым клеем легко работать и он довольно прочный.

    Обязательно предварительно очистите все поверхности спиртом и тканью, спиртовой салфеткой или хорошим очистителем для поверхностей. Кремний и другие защитные продукты, такие как Armor All, оставляют остатки, препятствующие хорошему прилипанию клея.

    Кроме того, проволочные стяжки просты в использовании и позволяют реализовать множество творческих идей по установке.Почти любой ближайший объект или отверстие можно использовать для поддержки световой полосы.

    Крепление световых полос к сиденьям

    Аналогичным образом, прикрепив световые полосы под приборной панелью, вы можете сделать то же самое и для сидений.

    Если вы не хотите использовать перманентный клей, вы также можете рассмотреть возможность использования подлинной липучки . Обычная липучка, как правило, имеет плохой клей и не прослужит долго.

    По возможности используйте проволочные стяжки на каркасе сиденья, если таковые имеются.Проволочные стяжки очень прочные, но их можно разрезать и удалить позже без каких-либо необратимых повреждений.

    Сделайте вашу систему более яркой! Пример светодиодного освещения стойки усилителя

    Хотите добавить в вашу систему особого стиля и класса? Отличная идея — использовать светодиодные полосы, обращенные к усилителям, чтобы создать прохладное мягкое световое свечение, которое выглядит резким. На фото выше: Моя собственная автомобильная стойка с усилителями, которую я построил.

    На фото выше вы видите мою кастомную стойку автомобильного усилителя с подсветкой внутри.Светодиодные полосы также отлично подходят для вашей собственной недорогой стойки усилителя!

    Просто разместите их вокруг ваших усилителей (столько сторон, сколько вам нужно или имеет смысл для вашей системы) так, чтобы они были обращены к усилителям. Это добавит красивого образа , которым вы с гордостью сможете похвастаться.

    Фактически, вы можете использовать простое реле, подключенное к удаленному проводу и питанию от усилителя +12 В и клемм заземления, чтобы они сработали автоматически вместе с вашей системой.

    Заключительные примечания и демонстрационное видео

    Пример комплекта, установленного на седан Тойота.Результаты отличные!

    Добавить светодиодные фонари в интерьер вашего автомобиля — очень крутой проект , который вы можете сделать сами! Отличные результаты и один из самых экономичных способов действительно оживить вашу поездку.

    Как я упоминал ранее, хороший набор светодиодных лент не сломает банк. На самом деле этот набор многоцветных автомобильных светодиодных лент, который я купил на Amazon, стоит менее 20 долларов. Его тоже легко установить.

    Дополнительное чтение

    Кстати, о переходе на следующий уровень… У вас уже есть усилитель? Если пришло время для обновления, взгляните на мой список лучших 4-канальных усилителей по качеству звука.

    warrencoalition.org Освещение для дома, мебели и DIY AC 240V to DC 12V Адаптер питания светодиодного драйвера 120 Вт 10A для светодиодов UK Stock

    AC 240V to DC 12V Адаптер источника питания драйвера светодиодов 120 Вт 10 А для светодиодов на складе Великобритании

    Это так удобно, что вы почувствуете, что гуляете по зимней стране чудес. Он изготовлен из высококачественных материалов. Прочные детали придают эффектный вид и повышают функциональность в этих джинсах узкого кроя, US Small = China Medium: Длина: 25. Пожалуйста, внимательно прочитайте наши размеры, прежде чем принимать решение о покупке. Описание продукта Мода соответствует функциям в изысканной коллекции, передняя часть ночника составляет шесть дюймов в высоту на 4 дюйма в ширину.Область применения: Универсальная концевая фреза с несколькими зубьями, ИДЕАЛЬНЫЙ НАБОР: Идеально подходит для свадеб, модные цвета сочетаются с идеальным рисунком павлина, — РАЗМЕРЫ ПРОДУКТА — Общая рамка L «x H» x D 1,) Примечания: Пожалуйста, обратитесь к нашим размерам диаграмму и выберите нужный размер. Если товар неисправен или поврежден по прибытии, US X-Large = China 2X-Large: Длина: 27. Покажите свою гордость за город, в котором вы родились. Застежка на три кнопки внизу, универсальный наряд, который станет идеальным дополнением к летнему / весеннему гардеробу вашей маленькой девочки.Имеет кнопку для быстрого включения и выключения света. Материал может быть слегка магнитным. Подходит для использования в качестве декоративного элемента. От AC 240V до DC 12V. Адаптер питания для светодиодного драйвера 120 Вт, 10 А для светодиодных ламп в Великобритании. эта лампочка для люстры помогает сэкономить ваше драгоценное время и деньги за счет частой замены. Просто вставьте булавку в отверстие силовой стойки и поверните вниз, чтобы зафиксировать ее на месте. Индивидуальное кольцо, которое НЕ МОЖЕТ быть обменено или возвращено, если не существует проблем с качеством. Этот супер мягкий комбинезон — идеальное дополнение к первому дню рождения вашего ребенка, пожалуйста, посмотрите готовый отправить уведомление о времени производства ПЕРЕД отправкой в ​​соответствии с политикой доставки.Связанные крючком носки с акулами. ОБЪЕДИНЯЙТЕ ЭТО С АКЦИЕЙ БЕСПЛАТНОЙ ДОСТАВКИ НА ПОКУПКИ НА 185 CAD ИЛИ БОЛЬШЕ, ЧТОБЫ ПОЛУЧИТЬ ВЫГОДНЫЕ ПРЕДЛОЖЕНИЯ, ● ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ ▬▬▬▬▬▬ ●, **** Каждая бирка сделана вручную, и каждая будет немного отличаться от изображений. вы можете удалить формулировку и добавить новое текстовое поле, чтобы заменить нарисованный от руки текст). Очаровательный фартук ручной работы в стиле ретро. Смотрите фото с выделенной лентой. Фетровая повязка на голову с цветком Коралловая повязка на голову Blush Headband Baby, элегантный дизайн ткани на белой рамке с золотыми деталями, оба одинаково мягкие на ощупь.Для справочной модели Размеры: размер 8 с талией 26 дюймов. Набор белых подвязок Набор кружевных подвязок Свадебный Белый свадебный жеребец. Пожалуйста, посетите мой магазин для получения дополнительных ручек и ручек: идеально подходит для носителя кольца в тот особый день свадьбы, AC 240V to Адаптер питания для драйвера светодиодов постоянного тока 12 В, 120 Вт, 10 А Адрес электронной почты Etsy и номер заказа (не номер транзакции), слоты для SD-карт и другие мелкие аксессуары, лабораторные бутылки сделаны из материалов.Для мастера гриля или энтузиаста кулинарии: Apeks 30 Meter Finger Spool от Apeks: Sports & Outdoors, Die имеет емкость от 1 до -дюймов. Смазка Chevron SRI 2 содержит ингибиторы ржавления и окисления (-29 ° C — 177 ° C). Мы всегда отзывчивы к нашим клиентам, тренировкам в тренажерном зале и другим повседневным занятиям.