Отдел продаж

Телефоны: (3532) 25-27-22, 93-60-02, 93-50-02

E-mail: [email protected]

г.Оренбург, ул.Беляевская, д.50/1, стр.1

 

Своими руками

Твердотельное реле своими руками: Схема твердотельного реле постоянного тока своими руками

Содержание

Твердотельное реле своими руками

В последнее время набрали популярность твёрдотельные реле. Для очень многих устройств силовой электроники твёрдотельные реле стали просто необходимы. Их преимущество в несоизмеримо большем количестве срабатываний, по сравнению с электромагнитными реле и большой скоростью переключений. С возможностью подключения нагрузки в момент перехода напряжения через ноль, тем самым избегая тяжёлых пусковых токов. В некоторых случаях их герметичность тоже играет свою положительную роль, но одновременно лишая владельца такого реле преимущества в возможности ремонта с заменой некоторых деталей. Твёрдотельное реле, в случае выхода из строя, не ремонтируется и подлежит замене целиком, это его отрицательное качество. Цены на такие реле несколько кусаются, и получается расточительно.
Попробуем вместе сделать твёрдотельное реле своими руками с сохранением всех положительных качеств, но, не заливая схему смолой или герметиком, чтобы иметь возможность ремонта, в случае выхода из строя.

Схема

Посмотрим схему этого очень полезного и нужного устройства.

Основу схемы составляют силовой симистор Т1 — BT138-800 на 16 Ампер и управляющий им оптрон МОС3063. На схеме выделены чёрным цветом проводники, которые нужно проложить медным проводом повышенного сечения, в зависимости от планируемой нагрузки.
Управление светодиодом оптрона мне удобнее запитать от 220 Вольт, а можно от 12 или 5 Вольт, кому как нужно.

Для управления от 5 Вольт, нужно гасящий резистор 630 Ом поменять на 360 Ом, остальное всё одинаково.
Номиналы деталей рассчитаны на МОС3063, если примените другой оптрон, то номиналы нужно пересчитать.
Варистор R7 защищает схему от бросков напряжения.
Цепочку индикаторного светодиода можно совсем убрать, но с ней получается нагляднее, что аппарат работает.
Резисторы R4, R5 и конденсаторы C3, C4 служат для предотвращения выхода из строя симистора, их номиналы рассчитаны на ток не выше 10 Ампер. Если потребуется реле на большую нагрузку, то номиналы нужно пересчитывать.
Радиатор охлаждения для симистора впрямую зависит от нагрузки на него. При мощности триста Ватт, радиатор не нужен вовсе, и соответственно – чем больше нагрузка, тем больше площадь радиатора. Чем меньше будет симистор перегреваться, тем дольше проработает и поэтому даже кулер охлаждения не будет лишним.
Если вы планируете управлять повышенной мощностью, то наилучшим выходом будет поставить симистор большей мощности, например, ВТА41, который рассчитан на 40 Ампер, или подобный ему. Номиналы деталей подойдут без пересчёта.

Детали и корпус

Нам потребуется:

  • F1 — предохранитель на 100 мА.
  • S1 — любой маломощный переключатель.
  • C1 – конденсатор 0.063 мкФ 630 Вольт.
  • C2 – 10 — 100 мкФ 25 Вольт.
  • C3 – 2.7 нФ 50 Вольт.
  • C4 – 0.047 мкФ 630 Вольт.
  • R1 – 470 кОм 0.25 Ватт.
  • R2 – 100 Ом 0.25 Ватт.
  • R3 – 330 Ом 0.5 Ватт.
  • R4 – 470 Ом 2 Ватта.
  • R5 – 47 Ом 5 Ватт.
  • R6 – 470 кОм 0.25 Ватт.
  • R7 – варистор TVR12471, или подобный.
  • R8 – нагрузка.
  • D1 – любой диодный мост на напряжение не менее 600 Вольт, или собрать из четырёх отдельных диодов, например — 1N4007.
  • D2 – стабилитрон на 6.2 Вольта.
  • D3 – диод 1N4007.
  • T1 – симистор ВТ138-800.
  • LED1 – любой сигнальный светодиод.

Изготовление твердотельного реле

Сначала намечаем размещение радиатора, макетной платы и прочих деталей в корпусе и закрепляем их на места.

Симистор нужно изолировать от радиатора охлаждения специальной теплопроводной пластиной с применением теплопроводной пасты. Паста должна слегка вылезти из-под симистора при закручивании крепёжного винта.

Далее размещаем следующие детали в соответствии со схемой и припаиваем их.

Припаиваем провода для подключения питания и нагрузки.

Помещаем устройство в корпус, предварительно испытав его при минимальной нагрузке.

Испытание прошло успешно.

Смотрите видео

Смотрите видео испытания устройства совместно с цифровым регулятором температуры.

Все своими руками Твердотельное реле своими руками

Опубликовал admin | Дата 18 июля, 2018

Твердотельное реле (ТТР) или Solid State Relay (SSR) — это электронные устройства, которые выполняют те же самые функции, что и электромеханическое реле, но не содержит движущихся частей. Серийные твердотельные реле используют технологии полупроводниковых устройств, таких как тиристоры и транзисторы.

То есть вместо подвижных контактов в ТТР используются электронные полупроводниковые ключи, в которых цепи управления имеют гальваническую развязку с силовыми, коммутируемыми цепями. Благо сейчас переключательных полевых транзисторов приобрести нет никаких проблем. Таким образом, для построения твердотельного реле нам потребуется MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) транзистор, русский эквивалент термина — МОП-транзистор или полевой транзистор с изолированным затвором, и оптрон. На страницах сайта есть статьи, посвященные транзисторным ключам с оптической изоляцией – «Транзисторный ключ переменного тока»

В данной статье рассмотрен ключ для коммутации переменного тока. Используя SMD компоненты по этой схеме можно изготовить ТТР переменного тока. Часть деталей монтируется на печатной плате, которая крепится к алюминиевой положке. Транзисторы устанавливаются на подложку через слюдяные прокладки. Конденсатор С1 лучше брать или танталовый или керамический. Его емкость можно уменьшить.
Еще одна статья – «Транзисторный ключ с оптической развязкой»

В этой схеме к качестве коммутирующих транзисторов используются биполярные транзисторы разных структур.

Есть еще одна схема гальванически развязанного ключа на моп-транзисторе с защитой от предельного тока нагрузки. О нем шла речь в статье «Mощный ключ постоянного тока на полевом транзисторе»

Все это хорошо, если напряжения, с которыми работают ТТР реализованные на MOSFET, позволяют управлять этими полевыми транзисторами. А как быть с коммутацией напряжения, например 3,3 вольта. Для открывания полевого транзистора этого напряжения явно не достаточно. Нужен какой-то преобразователь, способный поднять напряжение управления хотя бы до пяти вольт. Классический импульсный преобразователь использовать для реле – слишком громоздко. Но есть другие преобразователи – оптические, например — TLP590B.

Такие преобразователи на выходе обеспечивают напряжение порядка 9 вольт, что вполне достаточно для управления моп-транзисторами. Из документации на эти преобразователи видно, что они очень маломощные и способные отдать на выходе ток всего лишь порядка 12мкА. У моп-транзисторов есть такой параметр – Заряд затвора – Qg. Пока затвор данного транзистора не получит необходимый заряд – транзистор не начнет открываться. Скорость заряда зависит от тока, который может обеспечить цепь управления, чем больше ток управления, тем быстрее затвор получает необходимый заряд, тем быстрее открывается транзистор. Тем меньше будет время, когда коммутирующий транзистор будет находиться в активной зоне выходной характеристики – тем меньше на нем будет выделяться тепла. Но в нашем случае, когда транзистор работает не в преобразователе, на относительно высоких частотах, а в качестве реле, вкл – выкл, ток в 12 мкА будет достаточен. Правда лучше конечно выбирать ключевые транзисторы с малым зарядом затвора. Например.

Этот транзистор способен коммутировать напряжение 600В при токе стока 7А. Мощность стока при температуре +25 С — 100Вт. При этом заряд затвора Qg всего 8,2 нанокулона = 8,2nC. Для сравнения популярный транзистор IRF840 имеет Qg = 63nC.

Для управления низковольтными нагрузками можно применить транзистор irlr024zpbf. При данных режимах измерения ток стока – 5А, напряжение сток – исток – 44В, напряжение затвор – исток -5В, имеет типовое значение заряд затвора Qg = 6,6nC.

Но у меня таких транзисторов нет и я для реле использовал транзисторы IRL2505 с каналом типа n. У данного транзистора Qg = 130nC !

Другой транзистор с каналом типа р — IRF4905, у этого транзистора максимальный Qg = 180nC !!!

Схему собрал самую простую, ту что на рисунке 4

В качестве коммутирующего транзистора в этой схеме использован транзистор IRF4905 с каналом – р. Транзистор не был снабжен теплоотводом и в открытом состоянии нагревался до +60˚С при токе 2А. Напряжение 3,3В коммутировал нормально. Теперь, имея в своем распоряжении такой преобразователь, что нам мешает использовать в положительном проводе питания и транзистор с каналом n?

Результат превзошел мои ожидания. Транзистор IRF2505 без радиатора практически не грелся при токе нагрузки 4А. при напряжении на нагрузке 12,6 В В обоих экспериментах ток управления я выставил примерно 10 мА. Максимальный ток светодиода по документам – 50 мА. Больше 10 мА не стоит увеличивать ток – практически ни чего не меняется. Я очень доволен таким реле. Если описать параметры этой релюхи, применительно к электромагнитному реле, то они были бы такими. Напряжение срабатывания – какое хочешь ! Только подбирай R2. Ток срабатывания – 10 мА. Ток и напряжение коммутации – какое хочешь !!! (В разумных пределах конечно)Только подбирай транзисторы. Не слабо. Хотелось бы проверить данные устройства с коммутацией емкостных и индуктивных нагрузок. Это позже. Пока искал буквы на клавиатуре, пришла еще одна мысль. Если транзистор поставить в диагональ диодного моста, то можно коммутировать переменные напряжения. Таким реле можно коммутировать обмотки трансформаторов. Пока все. Всем удачи. К.В.Ю.

Скачать “Самодельное-твердотельное-реле” Самодельное-твердотельное-реле.rar – Загружено 1 раз – 80 КБ

Просмотров:5 308

Твердотельное реле сделать самому своими руками: схема

Изготовить твердотельное реле своими руками под силу даже начинающему радиолюбителю. Ничего сложного в конструкции этого устройства нет, но разобраться со схемотехникой, особенностями применения и подключения, все же нужно. Твердотельное реле – это элемент, изготовленный на основе полупроводников. В его конструкции имеются силовые ключи на симисторах, тиристорах или транзисторах. Эти реле, работающие бесшумно, являются хорошей заменой контакторам и пускателям. С их помощью устройства подключаются более надежно и безопасно.

Простая схема реле

В силовой электронике часто возникает необходимость использовать одно- или 3 х-фазное твердотельное реле. Своими руками изготовить это устройство можно по одной из схем, представленных в статье.

Преимущество твердотельного реле перед механическими контакторами очевидно – у них ресурс намного выше. И это из-за того, что в них нет ни одного механического компонента, а именно они являются наиболее уязвимыми.

Для изготовления твердотельного реле можно использовать цепочки, состоящие из схемы управления и симистора. Гальваническую развязку осуществляет симисторная оптопара. В схеме используются такие элементы:

  1. Оптопара типа МОС3083.
  2. Симистор марки ВТ139-800 16А с изолированным анодом.
  3. Ограничивающий резистор, который снижает ток, проходящий через светодиод.
  4. Светодиод для индикации работы устройства.
  5. К управляющему электроду симистора подключается резистор 160 Ом.

А теперь давайте рассмотрим более детально процесс изготовления устройства.

Особенности процесса изготовления

Рекомендуется заключать все элементы схемы в металлический корпус, чтобы охлаждение происходило намного лучше. Для надежности нужно заливать короб при помощи клеевого пистолета. Главное при работе – это правильно подобрать металлическую подложку, чтобы обеспечить наилучшее отведение тепла. Для изготовления используется опалубка, в которую заключается твердотельное реле постоянного тока. Своими руками ее изготовить можно из любого материала.

Идеально подойдет пластиковая коробка или отрезок трубы. Все зависит от того, какой размер у изделия. Металлическая подложка должна размещаться в этой опалубке. Тщательно нужно залить клеем все элементы схемы, отверстия в корпусе, чтобы обеспечить качественную изоляцию. Обратите внимание на то, что у симисторов выводы обычно неоднозначно определяются, поэтому их нужно заранее проверить. Для проверки открытия симистора необходимо использовать мегомметр. Как только симистор откроется, сопротивление изменится от нескольких десятков мегаом до 1-2 кОм.

Особенности устройства твердотельного реле

Независимо от того, какой производитель твердотельного реле, элементная база у него постоянна – в редких случаях можно найти незначительные различия. На входе обычно устанавливается резистор, соединяется он последовательно с оптическим устройством. Иногда сопротивление изготавливается по сложной конструкции, в которую включается защита от обратной полярности и регулятор тока. Нужно выделить такие свойства твердотельных реле:

  1. При помощи оптической развязки обеспечивается изоляция различных цепей электронного устройства.
  2. При помощи переключающей цепи удается осуществить подачу на нагрузку питающего напряжения.
  3. С помощью триггерной цепи обрабатывается входной сигнал и происходит его переключение на выход.

Промышленный образец Siemens V23103-S2232-B302

Схема твердотельного приведена на рисунке:

По этой схеме своими руками твердотельное реле можно довольно быстро изготовить, трудностей при этом не возникнет. Главное – это найти необходимые компоненты или аналоги. Защита может находиться как внутри корпуса реле, так и отдельно. Теперь нужно рассмотреть дополнительные устройства, которые необходимо использовать совместно с реле.

Особенности защитной цепи

Как видите, трудностей при изготовлении нет никаких. Если сомневаетесь в своих силах, то лучше, конечно, приобрести промышленный образец устройства. Можно выделить ключевые особенности самодельных реле:

  1. Управляющее напряжение – 3..30 В, ток постоянный.
  2. К выходу допускается подключать источники напряжением 115. .280 В.
  3. Выходная мощность порядка 400 Вт.
  4. Минимальный ток, при котором работает устройство, составляет около 50 мА.

Если устройство используется для коммутации низких токов (до 2 А), то нет необходимости устанавливать радиатор. Но если токи высокие, будет происходить сильный нагрев элементов. Поэтому об охлаждении нужно позаботиться – установите дополнительный радиатор и кулер (если имеется возможность организовать питание для него).

Обратите внимание на то, что при управлении асинхронными моторами нужно увеличивать примерно в 10 раз запас по току. При запуске двигатель «тянет» из сети ток, который в несколько раз превышает рабочее значение. Именно по этой причине нужно использовать силовые элементы со значительным запасом по току.

Особенности работы и схемы включения реле

При изготовлении своими руками твердотельного реле на полевом транзисторе важно учитывать параметры схемы, в которой оно будет использоваться. Но давайте, чтобы разобраться в особенностях работы твердотельных элементов, рассмотрим обычные электромагнитные реле. В них, когда на обмотку подается напряжение, генерируется магнитное поле. С его помощью происходит притягивание контактов.

При этом цепь либо размыкается, либо замыкается. Есть один недостаток у такого механизма – имеется в конструкции немало подвижных элементов. У твердотельных их нет, а это является основным преимуществом. Также можно выделить следующие особенности:

  1. Включение и отключение нагрузки происходит только в том случае, когда напряжение проходит через нуль.
  2. При работе не происходит появление помех электрического типа.
  3. Достаточно большой диапазон напряжений, при котором работает устройство.
  4. Между цепями управления и нагрузкой качественная изоляция.
  5. Высокая механическая прочность изделия.

А еще при работе не издается ни единого звука – просто открывается и закрывается переход полупроводника.

Пример подключения твердотельного реле

Вы знаете, как изготовить твердотельное реле своими руками. Аналоги такого устройства встречаются в продаже достаточно часто. Можно использовать как любительские схемы, так и промышленные – зависит от того, какие возможности нужно получить от устройства. С помощью такого устройства обеспечивается контакт высоковольтной и низковольтной цепей.

Большая часть промышленных устройств и самоделок имеет схожую структуру. Отличия несущественные, на работу не влияют никак. Убедиться в этом несложно. На рисунке приведена простейшая схема включения реле:

Структура устройства:

  1. Оптическая развязка цепей.
  2. Триггерная цепь (может быть несколько).
  3. Защитные устройства и переключатели.
  4. Входы.

Вход – это первичная цепь, в которой устанавливается постоянное сопротивление. Функция входа заключается в приеме сигнала и передаче нужной команды на устройство, которое производит коммутацию нагрузки.

Развязка оптического типа

Оптическая развязка – это прибор, который осуществляет изоляцию входов и выходов. Когда происходит обработка сигнала, поступающего на вход, обязательно нужно использовать триггерную цепь. Это отдельный компонент, но иногда он включен в конструкцию оптической развязки. Цепь переключения используется в том случае, когда нужно подать напряжение к нагрузке.

Подключение твердотельного реле — принцип работы и назначение

Для обеспечения бесконтактной коммуникации самых разнообразных устройств без использования электромагнитов пользуются твердотельными реле тока. В этой статье мы расскажем об особенностях таких приборов, принципе их работы, а также рассмотрим схему подключения.

Твердотельное реле — принцип работы

Твердотельные реле тока — это приборы, которые обеспечивают контакт между низковольтными и высоковольтными электрическими цепями.
При детальном рассмотрении структуры этого устройства, можно заметить, что большая часть моделей очень похожи между собой. Конечно, имеются определенные отличия, однако они совершенно не влияют на принцип их работы.
В конструкции твердотельного реле присутствует:

  • вход
  • оптическая развязка
  • триггерная цепь
  • цепь переключателя
  • цепь защиты.

Фактически вход – это первичная цепь, характеризующаяся присутствием резистора на постоянном изоляторе, в условиях последовательного подключения. Главная задача цепи входа заключается в принятии сигнала и передаче команды прибору твердотельного реле, коммутирующего нагрузку.
Изоляцией входной и выходной сети с переменным током является прибор оптической развязки. От вида данного компонента зависит и тип реле, и принцип его функционирования.
Чтобы осуществить обработку входного сигнала и переключить выход необходимо наличие в конструкции триггерной цепи. Эта цепь является отдельным элементом, а в ряде моделей она находится в составе оптической развязки.
Для подачи силы напряжения на нагрузку применяют цепь переключающего типа, включающая транзистор, кремниевый диод, а также симистор.
В качестве защиты твердотельного реле от сбоев при функционировании или возникновении ошибок, применяют отдельную защитную цепь. Данный прибор бывает двух типов: внутреннего и внешнего.
Принцип работы твердотельного реле заключается в замыкании или размыкании контактов, передающих напряжение прямо на реле. Для приведения контактов в действие требуется наличие активатора. Активатором в схеме твердотельного реле выступает полупроводник или твердотельный прибор. В устройствах, функционирующих в условиях переменного тока, активатором является тиристор или симистор, а в условиях постоянного тока — транзистор.
Устройство, в котором присутствует ключевой транзистор, является твердотельным реле. К примеру, это может быть датчик движения или света, передающий напряжение при помощи транзистора.
Между напряжением в катушке и в силовых контактах формируется гальваническая развязка, исчезающая в результате присутствия оптической цепи.

Плюсы использования реле

Твердотельными реле довольно часто заменяют стандартные контактеры вследствие большого числа достоинств перед ними. Перечислим главные плюсы:

  • потребляет мало энергии. В результате отсутствия электромагнитного разнесения, электромагнитному полю необходимо большое количество электроэнергии, а поскольку в твердотельном реле применяется полупроводник, количество электроэнергии для его работы меньше на 90%
  • небольшие размеры. Благодаря компактным размерам реле без проблем транспортируется и устанавливается
  • этот прибор отличается высоким коэффициентом быстродействия, ему не нужно ожидание для запуска
  • низкий уровень шумопроизводительности, чем твердотельное реле выгодно отличается от контактеров
  • твердотельное реле характеризуется довольно длительным пеиродом эксплуатации и не нуждается в дополнительном техническом обслуживании
  • широко применяются в разных сферах жизнедеятельности, поскольку их можно использовать в разных приборах и механизмах
  • благодаря наличию твердотельного реле включение цепи не сопровождается помехами электромагнитного характера
  • повышенный уровень быстродействия предотвращается дребезжание контактов в процессе работы устройства
  • число срабатываний превышает миллиард
  • уровень производительности прибора повышается за счет присутствия надежной изоляции между цепями входа и коммутации
  • реле имеет компактную герметичную конструкцию и стойкую вибрацию перед ударами.

Область использования

Твердотельные реле тока достаточно широко применяются в различных сферах жизнедеятельности. Они применяются при необходимости коммутировать индуктивную нагрузку. К основным сферам применения таких реле можно отнести:

  • систему, в которой осуществляется регулировка температуры с помощью тэна
  • для поддержки постоянной температуры в технологическом процессе
  • для коммутирования цепи управления
  • в процессе смены пускателей бесконтактного реверсного типа
  • управление электродвигателями
  • контроль за нагревом, трансформаторами и другими техническими приборами
  • регулировка освещения.

Виды твердотельных реле

Существует несколько видов твердотельных реле, отличающихся особенностями контролирующего и коммутируемого напряжения:

  • реле постоянного тока – применяется в условиях действия постоянного электричества в диапазоне от 3 до 32-х Вт. Такие реле отличаются высокими удельными показателями, светодиодной индикацией, а также высоким уровнем надежности. Большая часть моделей обладают широким спектром рабочих температур от -30 до +70 градусов
  • реле переменного тока имеет низкий уровень электромагнитных помех, и не создает шума в процессе работы. Такие реле потребляют мало электроэнергии и работают с высокой скоростью. Рабочий интервал – от 90 до 250 Вт
  • реле с ручным управлением дают возможность настраивать тип работы.

Согласно типу нагрузки существуют такие виды:

  • однофазное твердотельное реле
  • трехфазное твердотельное реле.

Наличие однофазного реле дает возможность коммутировать электричество в диапазоне от 10 до 120 А, или в диапазоне от 100 до 500 А. Фазовое управление происходит с помощью аналогового сигнала и переменного резистора.
Трехфазные реле используют для коммутации тока одновременно на трех фазах. Они работают в интервале от 10 до 120 А. Среди трехфазных реле стоит выделить механизмы реверсивного типа, отличающиеся маркировкой и бесконтактной коммутацией. Их функция заключается в надежной коммутации каждой цепи по отдельности. Особые устройства могут надежно защищать реле от ложных включений.
Их применяют в процессе запуска и работы асинхронного силового агрегата, который производит их реверс. Во время выбора этого прибора нужно соблюдать большой запас мощности тока, который безопасно и эффективно использует устройство.
Во избежание формирования перенапряжений во время использования реле, нужно обязательно купить варистор или предохранитель быстрого действия.
Трехфазные реле имеют более длительный период эксплуатации, чем однофазные. Коммутация осуществляется в результате перехода тока через ноль и светодиодную индикацию.
По методу коммутации существуют:

  • механизмы, которые выполняют нагрузки емкостного типа, редуктивного типа, слабой индукции
  • реле со случайным или моментальным срабатыванием. Они необходимы лишь тогда, когда нужно мгновенное срабатывание
  • реле с наличием фазового управления дает возможность настраивать нагревательные элементы, лампы накаливания.

Как выбрать твердотельное реле

Для покупки твердотельного реле вам нужно отправиться в специализированный магазин электроники, где опытные консультанты помогут выбрать устройство, согласно вашим требованиям.
Стоимость твердотельного реле определяется следующими параметрами:

  • вид устройства
  • присутствуют или нет крепежные элементы
  • из какого материала создан корпус
  • тип включения – мгновенный или постепенный
  • есть ли дополнительные функции
  • страна производитель
  • показатель мощности
  • количество потребляемой электроэнергии
  • размеры устройства. 

Также помните, что такие приборы работают исключительно с запасом мощности, который должен быть больше мощности устройства в несколько раз. Если не соблюдать данное правило, то даже при незначительном повышении мощности, прибор моментально сломается.
Существует несколько разновидностей предохранителей, которые вы можете использовать:

  • g R – применяются в обширном диапазоне мощностей, характеризуются быстрым действием
  • g S – можно применять во всем диапазоне тока. Такие предохранители способны защитить элементы полупроводников от повышенных нагрузок электросети
  • a R – выступают защитниками элементов полупроводникового типа от возникновения коротких замыканий.

Стоимость предохранителей практически равна стоимости самого реле, однако они гарантируют надежную защиту устройства от поломки.
На прилавках магазина вы можете встретить и предохранители классов В, С и D. Но они обладают меньшим спектром защиты и более низкой ценой.
В процессе использования твердотельного реле, нужно учитывать, что такое устройство довольно быстро греется. Когда корпус устройства сильно нагревается, то оно уже не может коммутировать ток в обычном режиме, и количество тока сильно падает. Когда температура нагрева составляет 65 градусов, то прибор сгорает.
По этой причине в обязательном порядке нужен монтаж охлаждающего радиатора.

Как подключить твердотельное реле?

Теперь рассмотрим, как подключить твердотельное реле своими руками. Подключение твердотельного реле вы должны выполнять, придерживаясь следующих правил:

  • для формирования соединений вам не потребуется ничего паять. Все соединения осуществляются винтовым способом
  • во избежание повреждения прибора, не допускайте проникновения в него пыли или металлических предметов
  • нельзя прилагать недопустимые внешние действия к корпусу прибора 
  • не стоит размещать твердотельное реле рядом с легко воспламеняющимися предметами
  • нельзя прикасаться к прибору, во время его работы. Вы можете получить ожог
  • прежде чем включать реле, убедитесь в правильной коммутации соединений
  • во избежание повреждения прибора не допускайте формирования короткого замыкания на выходе.

Практическое применение и схемы подключения твердотельного реле

Классические пускатели и контакторы постепенно уходят в прошлое. Их место в автомобильной электронике, бытовой технике и промышленной автоматике занимает твердотельное реле – полупроводниковое устройство, в котором отсутствуют какие-либо подвижные части.

Приборы имеют различные конструкции и схемы подключения, от которых зависят их сферы применения. Прежде чем использовать устройство, необходимо разобраться в его принципе действия, узнать об особенностях функционирования и подключения разных видов реле. Ответы на обозначенные вопросы подробно изложены в представленной статье.

Устройство твердотельного реле

Современные твердотельные реле (ТТР) представляют собой модульные полупроводниковые приборы, являющиеся силовыми электропереключателями.

Ключевые рабочие узлы этих устройств представлены симисторами, тиристорами или транзисторами. ТТР не имеют подвижных частей, чем отличаются от электромеханических реле.

Размер твердотельного реле во многом зависит от максимально допустимой нагрузки и возможности отводить тепло путем теплопередачи и конвекции (+)

Внутреннее устройство этих приборов может сильно различаться в зависимости типа регулируемой нагрузки и электрической схемы.

Простейшие твердотельные реле включают такие узлы:

  • входной узел с предохранителями;
  • триггерная цепь;
  • оптическая (гальваническая) развязка;
  • переключающий узел;
  • защитные цепи;
  • узел выхода на нагрузку.

Входной узел ТТР представляет собой первичную цепь с последовательно подключенным резистором. Предохранитель в эту цепь встраивается опционально. Задача узла входа – принятие управляющего сигнала и передача команды на коммутирующие нагрузку переключатели.

При переменном токе для разделения контролирующей и основной цепи применяют гальваническую развязку. От её устройства во многом зависит принцип работы реле. Ответственная за обработку входного сигнала триггерная цепь может включаться в узел оптической развязки или располагаться отдельно.

Защитный узел препятствует возникновению перегрузок и ошибок, ведь в случае поломки прибора может выйти из строя и подключенная техника.

Основное предназначение твердотельных реле – замыкание/размыкание электрической сети с помощью слабого управляющего сигнала. В отличие от электромеханических аналогов, они имеют более компактную форму и не производят в процессе работы характерных щелчков.

Управление резистором

Плавно подходим к переменному току.

Управление переменным резистором

Не путать переменный ток и переменный резистор! В данном случае твердотельное реле фактически является диммером, который изменяет скважность выходного напряжения для нагрузки, которая приспособлена для этого. Такие реле – только с коммутацией переменного тока, и включаются/выключаются 100 раз в секунду.

Принцип работы ТТР

Работа твердотельного реле довольно проста. Большинство ТТР предназначено для управления автоматикой в сетях 20-480 В.

Оптическая развязка позволяет создавать управленческие сигналы минимальной мощности, что критически важно для датчиков, работающих от автономных источников питания (+)

При классическом исполнении в корпус прибора входит два контакта коммутируемой цепи и два управляющих провода. Их количество может изменяться при увеличении количества подключенных фаз. В зависимости от наличия напряжения в управляющей цепи, происходит включение или выключение основной нагрузки полупроводниковыми элементами.

Особенностью твердотельных реле является наличие небесконечного сопротивления. Если контакты в электромеханических устройствах полностью разъединяются, то в твердотельных отсутствие тока в цепи обеспечивается свойствами полупроводниковых материалов.

Поэтому при повышенных напряжениях возможно появление небольших токов утечки, которые могут негативно сказаться на работе подключенной техники.

Твердотелки – надо ли их использовать?

Для начала рассмотрим также целесообразность применения таких реле. Например, реальный случай:

У нас на предприятии на одном станке стоят соленоидные клапаны с питанием 24VDC 2А. Эти два клапана соединены параллельно, и включаются-выключаются с частотой примерно 1 раз в секунду. Питание идёт через реле. И, несмотря на то, что номинальный ток реле 10А индуктивной нагрузки, приходилось менять его каждый месяц-два. Поставили мы твердотелку – и забыли, работает без шума и проблем уже два года.

Другой случай, когда такие реле не нужны:

Простейший контроллер температуры, точность поддержания не существенна. Нагрузка – ТЭНы, работают в воде круглосуточно. Чаще, чем раз в год, один из ТЭНов замыкает или коротит на корпус. Здесь большая вероятность того, что ТТР выгорит, так как они очень чувствительны к перегрузкам.

О перегрузках и защите твердотельных реле будет подробно сказано ниже, а в данном случае целесообразно применить обычный контактор, который прекрасно справляется с перегрузкой и стоит в 10 раз дешевле.

Поэтому, за модой гнаться не стоит, а лучше применить трезвый расчет. Расчет по току и по финансам.

Если кому-то придёт в голову, можно кнопкой звонка или герконом запускать двигатель мощностью 10 кВт! Но не так всё просто, подробности будут ниже.

Классификация твердотельных реле

Сферы применения реле разнообразны, поэтому и их конструктивные особенности могут сильно отличаться, в зависимости от потребностей конкретной автоматической схемы. Классифицируют ТТР по количеству подключенных фаз, виду рабочего тока, конструктивным особенностям и типу схемы управления.

По количеству подключенных фаз

Твердотельные реле используются как в составе домашних приборов, так и в промышленной автоматике с рабочим напряжением 380 В.

Поэтому эти полупроводниковые устройства, в зависимости от количества фаз, разделяются на:

  • однофазные;
  • трехфазные.

Однофазные ТТР позволяют работать с токами 10-100 или 100-500 А. Их управление производится с помощью аналогового сигнала.

К трехфазному реле рекомендуется подключать провода различных цветов, чтобы при монтаже оборудования можно было правильно их присоединить

Трехфазные твердотельные реле способны пропускать ток в диапазоне 10-120 А. Их устройство предполагает реверсивный принцип функционирования, который обеспечивает надежность регуляции одновременно нескольких электрических цепей.

Часто трехфазные ТТР используются для обеспечения работы асинхронного двигателя. В его электросхему управления обязательно включаются быстрые предохранители из-за высоких пусковых токов.

По виду рабочего тока

Твердотельные реле нельзя настроить или перепрограммировать, поэтому они могут нормально работать только при определенном диапазоне электропараметров сети.

В зависимости от потребностей ТТР могут управляться электроцепями с двумя видами тока:

  • постоянным;
  • переменным.

Аналогично можно классифицировать ТТР и по виду напряжения активной нагрузки. Большинство реле в бытовых приборах работают с переменными параметрами.

Постоянный ток не используется в качестве основного источника электроэнергии ни в одной стране мира, поэтому реле такого типа имеют узкую сферу применения

Устройства с постоянным управляющим током характеризуются высокой надежностью и используют для регуляции напряжение 3-32 В. Они выдерживают широкий диапазон температур (-30..+70°С) без значительного изменения характеристик.

Реле, регулирующиеся переменным током, имеют управляющее напряжение 3-32 В или 70-280 В. Они отличаются низкими электромагнитными помехами и высокой скоростью срабатывания.

По конструктивным особенностям

Твердотельные реле часто устанавливают в общий электрощит квартиры, поэтому многие модели имеют монтажную колодку для крепления на DIN-рейку.

Кроме того, существуют специальные радиаторы, располагающиеся между ТТР и опорной поверхностью. Они позволяют охлаждать прибор при высоких нагрузках, сохраняя его рабочие характеристики.

Реле крепиться на DIN-рейку преимущественно через специальный кронштейн, который имеет и дополнительную функцию – отводит излишки тепла при работе прибора

Между реле и радиатором рекомендуется наносить слой термопасты, который увеличивает площадь соприкосновения и увеличивает теплоотдачу. Существуют и ТТР, предназначенные для крепления к стене обычными шурупами.

По типу схемы управления

Не всегда принцип работы регулируемой реле техники требует его мгновенного срабатывания.

Поэтому производители разработали несколько схем управления ТТР, которые используются в различных сферах:

  1. Контроль «через ноль». Такой вариант управления твердотельным реле предполагает срабатывание только при значении напряжения, равном 0. Используется в устройствах с емкостной, резистивной (нагреватели) и слабой индуктивной (трансформаторы) нагрузкой.
  2. Мгновенное. Используется при необходимости резкого срабатывания реле при подаче управляющего сигнала.
  3. Фазовое. Предполагает регулирование выходного напряжения методом изменения параметров управляющего тока. Применяется для плавного изменения степени нагрева или освещения.

Твердотельные реле различаются и по многим другим, менее значимым, параметрам. Поэтому при покупке ТТР важно разобраться в схеме работы подключаемой техники, чтобы приобрести максимально соответствующее ей регулировочное устройство.

Обязательно должен быть предусмотрен запас мощности, потому что реле имеет эксплуатационный ресурс, который быстро расходуется при частых перегрузках.

Известные модели

Расшифровка маркировки
Основные характеристики зависят от многих факторов. К популярным отечественным моделям, произведенным фирмами КИПпрбор, Протон, Cosmo, относятся:

  • ТМ-О. Устройства со встраиваемой схемой «ноль», через которую проходит переход фазы.
  • ТС. Модели, которые выключаются в любой момент времени.
  • Наиболее популярные и используемые – ТМВ, ТСБ, ТСМ, ТМБ, ТСА. Они обладают выходной RC цепью.
  • Тс/ТМ – силовые. Токи достигают значений 25 мА.
  • ТСА, ТМА – применяются в чувствительных приборах.
  • ТСБ, ТМБ – низковольтные модели. Напряжение не превышает 30 В.
  • ТСВ, ТМВ – высоковольтные. Напряжение достигает 280 В.

К иностранным аналогам относятся изделия, произведенные фирмами Carlo Gavazzi, Gefran, CPC.

Расшифровка

Модели SSR, TSR (однофазные и трехфазные соответственно) являются самыми популярными. Их сопротивление равно 50 Мом и более при напряжении 500 В.

Записывается обозначение как SSR -40 D A H. SSR или TSR обозначает число фаз. 40 – нагрузка в Амперах. Буквой обозначается сигнал на входе (L 4-20 мА, D – 3-32 В при постоянном токе, V – переменное сопротивление, A – 80-250 В при переменном токе). Следующая буква – входное напряжение (А – переменное, D – постоянное). Последняя буква – диапазон выходных напряжений (Н – 90-480 В, нет буквы – 24-380 В).

Преимущества и недостатки ТТР

Твердотельные реле не зря вытесняют с рынка обычные пускатели и контакторы. Эти полупроводниковые приборы обладают множеством преимуществ перед электромеханическими аналогами, которые заставляют потребителей останавливать выбор именно на них.

Реле для микросхем имеет компактные размеры и сильно ограничены по максимально пропускаемому току. Крепятся они преимущественно путем припаивания специальных ножек

К таким достоинствам относят:

  1. Низкое потребление электроэнергии (на 90% меньше).
  2. Компактные габариты, позволяющие монтировать устройства в ограниченном пространстве.
  3. Высокая скорость запуска и отключения
  4. Пониженная шумность работы, отсутствуют характерные для электромеханического реле щелчки.
  5. Не предполагается техническое обслуживание.
  6. Длительный срок службы благодаря ресурсу в сотни миллионов срабатываний.
  7. Благодаря широким возможностям по модификации электронных узлов, ТТР имеют расширенные сферы применения.
  8. Отсутствие электромагнитных помех при срабатывании.
  9. Исключается порча контактов вследствие их механического удара.
  10. Отсутствие прямого физического контакта между цепями управления и коммутации.
  11. Возможность регулирования нагрузки.
  12. Наличие в импульсных ТТР автоматических цепей, защищающих от перегрузок.
  13. Возможность использования во взрывоопасных средах.

Указанных преимуществ твердотельных реле не всегда достаточно для нормальной работы оборудования. Именно поэтому они ещё не полностью вытеснили электромеханические контакторы.

Для стабильной работы мощных твердотельных реле важен эффективный отвод тепла, потому что при повышенных температурах резко искажается напряжение нагрузки (+)

ТТР имеют и недостатки, которые не позволяют им использоваться во многих случаях.

К минусам относят:

  1. Невозможность работы большинства устройств с напряжениями свыше 0,5 кВ.
  2. Высокая стоимость.
  3. Чувствительность к высоким токам, особенно в пусковых цепях электродвигателей.
  4. Ограничения по использованию в условиях повышенной влажности.
  5. Критическое снижение рабочих характеристик при температурах ниже 30°С мороза и выше 70°С тепла.
  6. Компактный корпус приводит к избыточному нагреву устройства при стабильно высоких нагрузках, что требует применения специальных устройств пассивного или активного охлаждения.
  7. Возможность расплавления устройства от нагрева при коротком замыкании.
  8. Микротоки в закрытом состоянии реле могут быть критическими для работы оборудования. Например, подключенные в сеть люминесцентные лампы могут периодически вспыхивать.

Таким образом, твердотельные реле имеют определенные сферы применения. В цепях высоковольтного промышленного оборудования их использование резко ограничено из-за несовершенных физических свойств полупроводниковых материалов.

Однако в бытовой технике и автомобильной промышленности ТТР занимают прочные позиции за счет своих положительных свойств.

Возможные схемы подключений

Схемы подключения твердотельных реле могут быть самые разнообразные. Каждая электрическая цепь строится, исходя из особенностей подключаемой нагрузки. В схему могут добавляться дополнительные предохранители, контроллеры и регулирующие устройства.

Благодаря тому, что цепи управления и нагрузки в приборе не перекрываются, их электрические характеристики могут отличаться любыми параметрами (+)

Далее будут представлены наиболее простые и распространенные схемы подключения ТТР:

  • нормально-открытая;
  • со связанным контуром;
  • нормально-закрытая;
  • трехфазная;
  • реверсивная.

Нормально-открытая (разомкнутая) схема – реле, нагрузка в котором находится под напряжением при наличии управляющего сигнала. То есть подключенная техника оказывается в отключенном состоянии при обесточенных входах 3 и 4.

Перед покупкой реле необходимо определиться с требуемым типом его первоначального состояния (замкнутое или разомкнутое), чтобы обеспечить правильную работу подключенной техники (+)

Нормально-замкнутая схема – подразумевается реле, нагрузка в котором находится под напряжением при отсутствии управляющего сигнала. То есть подключенная техника оказывается в рабочем состоянии при обесточенных входах 3 и 4.

Существует схема подключения твердотельного реле, в которой управляющее и нагрузочное напряжение одинаково. Такой способ можно использовать одновременно для работы в сетях постоянного и переменного тока.

Трехфазные реле подключаются несколько по иным принципам. Контакты могут соединяться в вариантах «Звезда», «Треугольник» или «Звезда с нейтралью».

Выбор трехфазной схемы подключения реле во многом зависит от особенностей работы техники, подключенной к нему в качестве нагрузки

Реверсные твердотельные реле применяются в электродвигателях в соответствующем режиме. Они изготавливаются в трехфазном варианте и включают два контура управления.

Если для реле важно соблюдение полярности подключения контактов, то на маркировке всегда будет указано, куда подключать фазу и ноль

Собирать электрические цепи с ТТР необходимо только после их предварительной прорисовки на бумаге, потому что неверно подключенные устройства могут выйти из строя из-за короткого замыкания.

Советы по выбору

Предохранитель от повышения нагрузок
Купить твердотельные реле можно только в специализированном магазине электронной техники. Опытные специалисты помогут подобрать лучшее устройство для определенных целей. На стоимость изделия влияют следующие факторы:

  • тип реле;
  • наличие фиксирующих механизмов;
  • материал корпуса;
  • время включения;
  • фирма-изготовитель и страна производства;
  • мощность;
  • необходимая энергия;
  • габариты.

При покупке важно учесть, что должен быть запас по мощности, превышающий рабочую в несколько раз. Это убережет реле от поломок. Также дополнительно используются специальные предохранители. К самым надежным относятся:

  • G R – используются в широком диапазоне нагрузок, отличаются высоким быстродействием.
  • G S – работают во всем диапазоне токов. Надежно защищают устройство от превышения нагрузки электросети.
  • A R – защищают компоненты полупроводникового устройства от короткого замыкания.

Такие приборы обеспечивают высокую защиту от поломок. Их стоимость сопоставима с ценой самого реле. Меньшими защитными свойствами и, соответственно, меньшей стоимостью обладают предохранители классов B, C, D.

Для надежной и стабильной работы реле нужно подобрать охлаждающий радиатор. Особенно это актуально при превышении температуры выше 60 градусов. Запас тока для обычного реле должен превышать рабочие токи в 3-4 раза. При работе с асинхронными двигателями этот показатель должен увеличиться до 8-9 раз.

Практическое применение устройств

Сфера использования твердотельных реле довольно обширна. Из-за высокой надежности и отсутствия потребности в регулярном обслуживании их часто устанавливают в труднодоступных местах оборудования.

Во многих реле подключение проводов управляющего контура требует соблюдения полярности, что необходимо учитывать в процессе монтажа оборудования

Основными же сферами применения ТТР являются:

  • система терморегуляции с применением ТЭНов;
  • поддержание стабильной температуры в технологических процессах;
  • контроль работы трансформаторов;
  • регулировка освещения;
  • схемы датчиков движения, освещения, фотодатчиков для уличного освещения и т.п.;
  • управление электродвигателями;
  • источники бесперебойного питания.

С увеличением автоматизации бытовой техники твердотельные реле приобретают все большее распространение, а развивающиеся полупроводниковые технологии постоянно открывают новые сферы их применения.

При желании, собрать твердотельное реле можно собственноручно. Подробная инструкция представлена в этой статье.

Твердотельное реле: принцип работы и схема устройства

Твердотельное реле своими руками: схема подключения

Элементная база данного радиоэлектронного модуля, в не независимости от производителя, можно сказать относительна постоянна, иногда только имеются небольшие отличительные моменты.

Входная цепь устройства состоит из привычного сопротивления, которое соединено последовательно с общим оптическим изолятором, или же обладает более сложной конструкцией, имеющей в своем составе регулятор тока и защиту от обратной полярности.

Свойства устройства:

  • Оптическая развязка обычно обеспечивает изоляцию между разными цепями электронного модуля;
  • Переключающая цепь осуществляет подачу напряжения на нагрузку;
  • Триггерная цепь ответственна за обрабатывание входного сигнал и переключения его на выход;

Защитная цепь механизма может как иметь свободное подключение, так и быть внутри устройства.

Защита твердотельного реле

Твердое реле можно, не только купить, но и попробовать изготовить самостоятельно. Работы по его сборке не трудные, и практически каждый радиолюбитель в состоянии сделать для себя простой вариант конструкции.

Особенностями такой самодельной конструкции можно назвать следующие позиции:

  • Управляющее напряжения в диапазоне от 3 В до 30 В тока постоянного;
  • Выходное напряжение подключений от 115 В до 280 В;
  • Минимальный рабочий ток предполагается от 50 мА;
  • Мощность выходная 400 Вт.

Если вам нужно использовать устройство при коммутации токов, которое будет выше 2 ампер, то нужно предусмотреть возможность охлаждения прибора с помощью радиатора. Во время управления асинхронными двигателями параметры запаса по току следует увеличить до 10 раз.

Удобное твердотельные реле: принцип работы и схема включения

В системах автоматик для управления силовыми соединениями с помощью низковольтных сигналов применяют коммутаторы, которые называются реле. Эти элементы могут быть самых разных устройств и видов.

Наиболее простые электромагнитные реле обычно содержат контакты и обмотку на сердечнике. Во время подачи на обмотку напряжения в сердечниках возникают магнитные поля, притягивающие контакты. Они либо размыкают, либо замыкают цепь нагрузки. Вместе с электромагнитными, сегодня, частое применение находят изделия нового поколения, которые обладают рядом преимуществ – твердотельные реле.

Главным преимуществом твердотельного реле можно считать отсутствие механических деталей и узлов, которые обычно подвержены износу.

Кроме того, можно отметить следующие положительные факторы использования прибора:

  • Отключение и включение нагрузки осуществляется лишь в случае прохождения напряжения через ноль;
  • Не создается электрических помех в процессе работы;
  • Большой диапазон рабочего напряжения;
  • Отличный уровень изоляции, существующий между управлением и нагрузкой;
  • Уверенная механическая прочность.

Также немаловажным фактором, которые отмечают многие пользователи, является отсутствие звуков при коммутации нагрузки.

Рассмотрим, как подключить твердотельное реле к светильнику: структура прибора

Твердотельным реле называется устройство, которое обеспечивает контакт между низковольтной и высоковольтной электрическими цепями.

Ели рассматривать структуру данного прибора, то можно заметить, что большинство моделей похожи между собой. Они имеют лишь незначительные отличия, никак не влияющие на принцип работы устройства, что очень легко проверить.

Структура твердотельного реле следующая:

  • Входы,
  • Оптические развязки,
  • Триггерные цепи,
  • Цепи защиты и переключателя.

Входом есть первичная цепь, характеризующаяся наличием резистора, имеющемся на постоянном изоляторе, с последовательным подключением. Основная функция схемы входа состоит в том, чтобы принять сигнал и передаче команду устройству твердотельного реле, коммутирующему нагрузку.

Схема твердотельного реле переменного тока: проверка прибора

В качестве изоляции выходной и входной сети переменного тока используют прибор оптической развязки. Тип данного компонента, влияет на общий вид реле и общий принцип его работы. При обработке входного сигнала, а также, при переключении выхода нужно использовать конструкцию триггерной цепи. Выступает она в роли отдельного элемента, а иногда, входит в состав развязки оптической.

Для того, чтобы можно было подать напряжение на нагрузку используют цепь переключающего типа, включающая транзистор, симистор, и кремниевый диод.

Для обеспечения твердотельному реле защиты от сбоев при работе, а также для устранения возможности возникновения ошибок, используют отдельную защитную цепь. Данное устройство может быть двух видов: внешнего и внутреннего.

Схема твердотельного реле состоит из:

  • Систем контроля;
  • Самого твердотельного реле;
  • Насоса;
  • Двигателя;
  • Трансформатора;
  • Нагревателя.

Для того, чтобы можно было коммутировать индуктивную нагрузку при помощи твердотельного реле нужно увеличить запас переменного тока в 6-9 раз.

Как работает твердотельное реле российского производства

Принцип работы устройства прибора твердотельного реле заключается в размыкании и замыкании контактов, передающих напряжение именно на реле. Для того, чтобы привести в движение контакты, нужно наличие активатора. Такую его роль в твердотельном реле осуществляет полупроводник или, как еще его называют, твердотельный прибор. В устройствах, работающих при переменном токе данную функцию выполняет тиристор или симистор, а в приборах с постоянным, транзистор.

Прибор, характеризующийся наличием ключевого транзистора, называется твердотельным реле. К нему относятся, например, датчики света или движения, которые при помощи транзистора осуществляют передачу напряжения. Между током в катушке и силовыми контактами появляется процесс гальванической развязки, исчезающий в следствие появления оптической цепи.

Область применения твердотельного реле очень широкая. Его принято использовать в том случае, если появляется необходимость коммутировать индуктивную нагрузку.

Твердотельное реле применяют в следующих случаях:

  • В системах, где производится регулировка температурных показателей при помощи тэна;
  • Для поддержания постоянной температуры в определенном технологическом процессе;
  • При коммутировании цепей управления;
  • В случае замены пускателей реверсного бесконтактного типа;
  • Управление электродвигателями;
  • Для регулирования уровня и силы освещения.

Кроме того, необходимо знать, что реле твердотельные постоянного тока – используют при работе постоянного электричества в диапазонах от 3 до 30 Вт. Ему характерны высокие удельные характеристики, со светодиодной индикацией, отличающейся высокой надежностью.

Как работает твердотельное реле (видео)